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INTRODUCTION 

Nature of the Problem 

The United States Public Health Service (USPHS) established water 

quality standards in 1946 -and revised them in 1956 and 1962. In these 

standards the maximum recommended concentrations of iron and manganese 

were 0.3 and 0.05 mg/1 respectively (1). Because trace amounts of these 

elements are essential for proper nutrition of both plants and animals, 

the recommended limits are not based on any physiological or environ-

-
mental considerations (2) (3). Rather~ the presence of iron and manr:!ln-

ese in water is objectio~able " because the precipitation of these metals 

alters the appearance of the water, turning it a turbid yellow-bro~vn to 

black. (4). 

Additional problems associated with high concentrations of. iron 

and manganese may include one or more of . the following: 

1. The water may have taste and/or odor due to the presence 
of these metals (2)(4). 

2. Industrial products; such as paper and textiles, may become 
discolored due to the precipitates of these metals in the 
process water (5). 

3. Household utensils, porcelain plumbing fixtures and clothes 
may become stained (4). 

4. Industrial demineralizers for high-pressure boilers and 
home· zeolite water softeners may become clogge.d reducing 
their efficiencies (4). 

5. Deposition of precipitates in the distribution system will 
form a film on the pipe walls. This film can act as a 
catalyst and speed up the deposition of the s e metals. In­
creased deposition can reduce the pipe diametec and eventually 
clog the pipe. Also, when these precipitates are already in 
the mains and the flow throughout the distribution system is 



increased, some of the precipitates can be resuspended, 
causing high turbidities (6). 

6. Iron bacteria (e.g., Crenothrix and Leptothrix) and man­
ganese bacteria (e.g., Pedomicrobium and Hyphomicrobium) 
can grow within the .filters and distribution pipes, where 
they can seriously interfere with the service. Upon the 
death and decay of these organisms, bad· odors and un­
pleasant tastes may be produced (4)(6)(7). 

Scope and Objectives 

The Brookings, South Dakota East Water Treatment Plant is 

primarily an iron and manganese removal plant. Present operation of 

2 

the facilj_ty includes aeration, lime softening, alum coagulation, re-

carbonation, potassium permanganate oxidation, filtration, chlorina­

tion and fluoridation 1• Iron and manganese in the plant effluent are 

within the USPHS recommended standards 2. 

The purpose of this investigation was to determine if comparable 

iron and manganese removal can be achieved using only aeration, po-

tassium permanganate oxidation and filtration. In this investigation, 

removal efficiencies and water stability were used as parameters of 

comparison. 

A pilot unit was used in these investigations to avoid disruption 

of the East Plant operations. This pilot unit included the same units 

and filter media as the East Plant and was operated at the same de-

tention times and filter rates. Both the East Plant and pilo t unit 

received raw water from Well 1. 

1 
Based on plant inspection. 

2 
Based on inspection of plant operating records. 
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REVIEW OF LITERATURE 

Chemi stry of Iron and Manganese 

Iron and manganese are adjacent to each other on the periodic table 

and because of this would be expected to be similar chemically. Man­

ganese chemistry, however, is much more complex (8). Iron occurs in 

two oxidation states, as 'divalent ferrous iron or as trivalent ferric 

form (3)_, whereas, manganese can exist at any oxidation state from 0 

to +7 (8). However, Bel~ stated that in most water supplies, only the 

+2, +3, ~.4, and +6 oxidat i on levels are likely to be encountered (9). 

fine (8) explained this further, stating that Mn +6 is stable only in a 

strongly alkaline solution and when in a non-alkaline solution 9 tends 

to oxidize to Mn +7. In turn, Mn +7 tends to reduce to either the 

Mn +2 or Mil +4 depending upon the oxidation demand of the water. 

Iron and manganese are generally in the ferrous (fe +2) and man­

ganous (Mn +2) states when found in natural waters. However, at low 

pH or high alkalinity, other ~orms can also occur in solution (10)(11). 

for example, ferric iron (Fe +3) can exist in concentrat ions greater 

than 0.01 mg/1 at pH values below 5.0 (11). 

Iron and manganese are the most abundant of the heavy metals and 

comprise roughly 5.0 and 0.1 percent of the lithosphere, respectively 

(3). Since manganese-bearing minerals are less abundant than iron­

bearing minerals, manganese is usually found less frequently in 

natural waters than is iron. The concentrations of iron and manganese 

found in solution are frequently limited by the solubility of their 
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carbonates. Because carbonates are less soluble at . high alkalinity, 

·waters with high alkalinity often have lower iron and manganese con­

t ents than waters of low alkalinity (4). 

Iron and manganese~ as well as other cations and anions in solu­

tion, are derived from solid-phase rock minerals with which the water 

has been in contact (12)~ Iron occurs in silicate minerals of igneous 

rocks such as pyroxenes, ·amphiboles, and some micas. Manganese, on 

the other hand, is found in greatest abundance in metamorphic and sedi­

mentary rocks. Only small amounts of manganese can be found in igneous 

rocks. A list of iron and manganese-l~aring minerals is presented in 

Table 1 ·(4). Oxides of -iron and manganese will accumulate in soils as 

t he more soluble constituents are leached from weathered rocks _(4). 

When water percolates through soil containing organic matter and 

aerobic organisms, the water is readily deprived of oxygen. These or­

ganisms produce carbon dioxide (C02) as a by-product~ thereby intro­

ducing co
2 

into the water (4). Carbon dioxide in the water lowers the 

pH by converting the hydroxides to carbonates and the carbonates to 

h~carbonates and carbonic acid (13). Iron and manganese are also 

leached out of decaying plants and animals. This is especially true 

f or plants, since manganese is an essential element in photosynthesis. 

Concentrations of 13 to 128 milligrams (mg) of manganese per kilogram 

(kg) of · plant material have been extracted from leave s (14). Even 

though it is possible for iron and manganese to exist in solution in 

surf a ce waters, it is not a common situation. 
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Table 1. Iron and Manganese-Bearing Minerals (4) 

Formula Mineralogical Name 

Fe0.950 
,, 

Wusite 

Fe2o3 
Hematite 

2Fe2o3.3H20 Limonite 

Fe
3
o

4 
Magnetite 

FeS Trolite 

FeC03 
Siderite 

Fe2Si04 
:Fay lite 

FeOOH Goethite 

MnO !-langanosite 

Mn304 Hausmannite 

~ -MnOOH M3:nganite 

p -Mn02 Pyrolusite 

MnC03 
Phodochrosite 

:t-inS Albandite 

MnSi03 
Rodonite 

Xn2sio4 
Tephroite 

When dissolved oxygen comes in contact with dissolved iron and 

manganese the oxidation process begins: 

Fe (+2)- Fe (+3) J + e (1) 
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Iron and manganese are slowly oxidized to form insoluble precipitates. 

However, acid and anaerobic conditions create a reducing environment in 

wh~ch iron and manganese a~e converted from the insoluble to the soluble 

forms. An example of this is in acid mine wastes; where iron is re-

duced to the soluble--state as a ·result of the acid condi tj,ons. 

The relat~onship between the oxidized and reduced forms of iron 

and manganese is expressecl by the Nernst Equation: 

Eh 

wheL.~: 

E
o .f- RT 1 .Aox 

nF n A · 
red 

Eh Redox potential, millivolts (mv) 

E0 ~ Standard oxidation potential, mv 

(3) 

i.e. for Fe (+2) ..... Fe (+3) + e-; E0 += +0. ~81 mv 
Mn (+2) + 2H20- Mn02 + 4H + 2e ; E = +1. 230mv 

R =Universal gas Constant; 1.987 cal/degree Mole 

T ~ Temperature; degrees Kelvin 

n = Number of electrons involved in the reaction 

F ~ Faraday constant, 96,484 absolute coulombs 

~x = Activity of oxidized forms of ions 

A d ~ Activity of reduced forms of ions 
re 

Exact analysis of the redox potential requires the actual activity 

of the ions, however, the ionic concentrations are generally so small 

that they can be used as approximations of the activi ty. Thus by in-

serting the appropriate constants and using ionic concentrations in-

stead of activities, the Nernst equation for iron may be written 

(15)(16): 
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_ Fe (+3). 
Eh- 0. 771 + 0.0592 log Fe (+2), (4) 

·and for manganese (+2 state to +4 state) 

Eh = 1.230 + 0.0592 log Mn(+4) · 
, 2 Mn(:;L) (5) 

An understanding of redox equations can be helpful in determining 

whether a particular reaction is possible under given environmental con-

ditions and in evaluating how conditions might be altered to encourage 

desirable transformations (i.e. Fe +2 _...Fe +3) or prevent undesirable 

rea.ct:Lons (i.e. Mn +4-. Mn +2). Theoretically, the possibility for 

further oxidation can be determined. With this information, method·. -

could be optimized to produce the best removals assuming equilibrium 

conditions. However~ conversion of iron and manganese to the ~nsoluble 

form is also dependent on the reaction rates. Factors which influence 

the rate of oxidation are summarized in Table 2. 

Table 2. Factors Affecting the Rate of Iron and Manganese Oxidation. (5) 

v 2. 

PHYSICAL 

An increase in temperature will speed up the oxidation reaction and 
a decrease in temperature will slow the reaction . 

Detent;ion ··. time ·following the oxidation process will determine· how 
complete the redox reactions occur. 

CHEMICAL 

1. A low pH following the addition of an oxidant may slow the 
reaction (for iron~ pH less than 6 and for manganese, pH less than 
9.5). (3) 

2. Highly alkaline waters often have lower iron and manganese con­
centrations than waters with low alkalinity. 
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3. The solubility of iron and manganese is altered by the presence 
of anionic constituents such as chlorides, nitrates, phosphates. 

4. The catalytic effect of other cations in the water, such as copper 
and aluminum, tend to accelerate the oxidation reactions of iron 
and manganese. 

5. The more dissolved oxygen present in the water, the faster the 
oxidation reactions proceed. 

6. The presence of complex-forming organic material combines with the 
iron and manganese thus slowing the ox:Ldation process. 

All of these factors affect removal methods d~fferently and the net re-

sult cannot be anticipated from chemical analysis of the water. For 

these reasons, laboratory and pilot studies are essential in evaluating 

the treatability of an unfamiliar water supply or one subjected to a 

new treatment method (i7.)~ 

Methods of Removal 

The first iron-removal plant was constructed at Charlotten, Germany 

in 1874. The first plant to remove manganese along with iron was com-

pleted in 1889, in Zutphen, Holland. In 1893~ the first iron-removal 

plant in the United States was put into operation at Atlantic Highlands, 

New Jersey. The earliest plants employed aeration and f iltration, some-

times supplemented by~'.the _ . addition of lime (4)' 

By 1941 there were about 598 iron and manganese removal plants in 

the United States. The great majority served small communities and the 

total pumpage was only 220 million gallons per day (mgd) or an average 

of 370,000 gallons per day (gpd) per plant. Seventeen years later 

(1958), approximately 1340 water-treatment plants, roughly 14 percent 

of the total in the United States, included processes for the removal 
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of iron and manganese . (4)~ 

Oxidation is generally believed to be the most effective process 

in removing soluble iron and manganese (18). However, proper treatment 

of w·aters containing iron and manganese largely depends upon the exact 

character of the water (19). Precipitation and agglomeration of iron 

and manganese during oxidation is not instantaneous. Even where strong 

oxidants such as chlorine ·, ozone, and potassium permanganate are used, 

detention must be provided to allow time for both oxidation reactions 

to proceed and for oxidi~ed iron and manganese to agglomerate to a 

sizer ca'pable of feinoval by filters (4). 

There are a number of techniques · employed to accomplish oxida-

tj,on (?.0) -

1. Aeration 

2. Potassium Permanganate 

3. Ozone 

4. Hypochlorites 

5. Chlorine 

6. Chlorine Dioxide 

7. Catalyst. 

Other iron and manganese removal methods include: 

1. pH adjustment with lime 

2. Manganese dioxide 

Aeration. 

The most commonly-used agent for oxidation of iron and manganese 

is oxygen. It is added to water through aeration. In practice, 



aeration may be accomplished by one or more of the following pro-

cedures (2). 

a) Cascade aerators in which water flows by gravity over 
trays so that the water droplets are exposed to air. 
Often the air is forced or induced into the aerator 
countercurrent to the downward flow of water. 

b) · D~vices which spray the water into the air through 
nozzles. 

c) Di:i;fused aeration in which air is bubbled through 
tt~ water. 

d) Aspirator devic~s, eg. venturi devices. 

10 

Although in many instances aeration is satisfactory, it is often 

ineffective in bringing about complete oxidation of iron and manganese. 

Also~ when high concentrations of m~nganese are present, or when the 

iron and manganese exist as complexes or chelates, air oxidation is 

generally ineffective (6)(22). 

However, aeration is usually effective in oxidizing iron in waters 

devo~d of manganese. The reaction of oxygen with ferrous iron leads to 

the formation of ferr~c oxides or hydroxides according to the following 

equation: 

(6) 

Stoichiometri,cally, 1 mg/1 of oxygen will oxidize 7 mg/1 of ferrous 

iron (2). 

The oxidation of manganese by air alone is usually a slow 
process 

at the pH values generally encountered in practice. T b 0 0 tain manganese 

oxidation rates rapid enough to be practical~ the pH should be 
raised 

to between 9.0 and 10.3. However, aeration is often d 
use as an effec-

tive first step in manganese oxidation because it not only adds 
oxygen 
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to reduce the quantity of oxidizing chemical needed, but also offers 

an economical means of stripping carbon dioxide and hydrogen sulfide 

from the water. The increase in pH brought about by the removal of 

these gases reduces the amount of chemicals needed for pH adjustment (21). 

Potassium Permanganate. 

It seems paradoxical that a manganese compound would be effective 

in removing manganese from water. Manganese in the permanganate form 

!s an oxidizing agent wh~ch converts dissolved iron and manganese to 

their insoluble states, ~aking it possible to remove these two elements 

as precipitates (24)~ Potassium pennanganate (KMn04 ) is usually fed 

conttnuously to the water that is held for a time in a reaction basin 

to allow the oxidation reaction to occur. Followi~g the reacti_on basi;:: 

the water is filtered through anthracite coal, sand, or a dual-layer 

bed consisting of anthracite coal underlain with manganese greensand (19): 

The reactions of permanganate with ferrous and manganous ions are: 

(10) (2 7) 

Fe (+2) + MnO-
4 

+ 8H+- Mn(+2) + 5Fe (+3) + 4H2 (7) 

and 

(8) 

Theoretically, one part KMn0
4 

will oxidize 1.06 parts of soluble ferrous 

iron to its insoluble ferric state or 0.52 parts of divalent manganese 

to insoluble tetravalent manganese (18)(20)(23)(24). 

Practical experience shows that the theoretical permanganate re­

quirement is usually in excess of the actual amount required to oxidize 

the iron and manganese. This is attributed to secondary oxidation 
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reactions in which manganese sesquioxide (Mn2o
3 

. x H
2

0) and ferric ions 

are formed in the reaction with iron: (18)(20) 

Fe(+2) + Mn2 . 2H20~Fe(+3) + Mn
2

0
3 

• x (H20) (9) 

And, in the reactions with manganese~ (22)(26) manganese sesquioxide; 

(10) 

and mangano-manganic oxide; 

2 MD (+2) + . Mn02 ~2H20~Mn304 .x (H20) (11) 

or more correctly, MnO.Mn
2
o

3
.x(H

2
0) is formed. The end products of these 

secondary oxidations are ~nsoltible. In addition to the secondary reaction, 

there is also evidence that Mn02 may act as a catalist, thus increasing the 

·rate at which the redox reactions occur (20). ~or these reasons, it is ne-

ccssa~J to ~s~ empirical procedures to determine proper dosag~s of v~v~o4 . 

Permanganate oxidation generally occurs at a fairly rapid rate. 

Iron is oxidized almost instantaneously (20) and manganese will oxidize 

within five minutes at pH values from 5.0 to 9.0 (6). Any additional 

reaction time .allows the oxidized iron ·and manganese to settle in the 

reaction basin, thereby relieving the load on the filters. Also, KMn04 

will usually oxidize organically-bound iron and mangan se more rapidly 

than aeration, chlorine, or chlorine dioxide (18). In addition, the 

reaction of iron and manganese with KMn0
4 

is not dependent upon pH as 

with other oxidants. 

Potassium permanganate is also effective in removing color, taste 

and odor from water within the pH limits normally encountered. Also, 

KMn0
4 

is an effective algicide and its toxicity to fish is much lower 

than other agents commonly used for this purpose. As a disinfectant, 
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the action of permanganate surpasses that of chlorine in destroying some 

viruses. However, the oxidation and disinfection effect of permanganate 

does not continue through the filters. Therefore, chlorine must be ap­

plied f6llowing filtration to maintain a free residual of disinfectant. 

In other words, pre-oxidation with KMn04 produces a conditioned water in 

which the addition of chlqrine in post treatment accomplishes its job 

without producing chlorinous odors and tastes (24). 

Potassium permanganate may be fed in crystalline form or as a solu­

tion. It weighs about 100 pounds per cubic foof of dry chemical, is 

·dustless, safe to ha.ndle, and can be k ·;pt indefinitely in dry storage. 

lt is odorless, does not produce harmful vapors and can be handled by 

conventional methods. However, KMn04 is not compatible with rubber~ so 

pump diaphragms a.nd chemical feed lines should be made of plastic. 

Metallic pipelines are entirely satisfactory for transporting the per­

manganate solution (24). 

Potassium permanganate has been used for iron and manganese removal 

in the United States for many years. Its use, as with other methods, 

should be based on laboratory or pilot-scale experiment s and cost com­

parisons (24). Generally, ~t is cost effective for waters when the sum 

of the iron and manganese concentrations does not exceed approximately 

15 mg/1 (3). 

~requently, pre-oxidation using aeration or pre-chlorination is 

practiced in conjunction with permanganate treatment . These schemes 

serve to reduce the permanganate dosage and, in some instances~ result 

in a net reduction in treatment costs. 

3563 0J 
SOUTH DAKOTA STATE U IVERSITY LIBRARY 
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Ozone. 

Although ozone is a more powerful oxidant than permanganate and 

other oxidants used for iron and manganese removal~ no published data 

could be found comparing its effectiveness, advantages and disadvantages 

with those of permanganate·. 

Hypochlorites. 

Hypochlorites appli~d as sodium or calciu ·~ salts, hydrolize to 

hypochlorous acid which is a stronger oxidant than molecular oxygen. 

Therefore, soluble i1.·on and manganese ar.e more rapidly and completely 

oxi,diz.ed by hypochlorites than aeration. However, this process has 

certain limitations. In most cases dosages higher than the theoretical 

~aunt are required. Also, chloro-derivatives of organic compounds can 

be formed which cause taste and odor problems and have been shown to be 

carcinogenic in test ani~als (27). Additionally, hypochlorous acid does 

not e£fectively o~cidize manganese and organically-bound iron and man­

ganese (20). 

Chlorine Gas. 

Chlorine, like hyPochlorites, first · reacts with w~ter forming 

hypochlorous acid. Theretore, it is subject to the same limitations 

as hypochlori.tes (20). 

Chlorine Dioxide. 

Chlorine Dioxide, formed by reacting sodiun1 chlorite with chlorine, 

is a strong oxidizing agent which will rapidly oxidize soluble iron and 

manganese. It is used predominantly to oxidize manganese. However, the 
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cost of chlorine dioxide is generally prohibitive (20). 

Catalysis. 

A variety of catalysts · ~re available, the most common is the cup-

perous ion (Copper II). Catalysts are used to enhance air oxidation 

and is limited .in its use (20). 

'Adjustment of pH.~ 

Adjustment of pH is an et~ective means of removing iron and man-

ganese in lime or . lime-soda softening plants. Generally this gives 

satisfactory results since the pH rang~· is about 9. 5. This process 

~s ~ore efficient when preceded by aeration (20). 

Li~e precipitates the insoluble ferrous hydroxide in an alkaline 

medium as follows: 

FeS04} Caso4} . 
FeC03 + Ca(OH) 2--cac03 + Fe(OH) 2 f 
FeC12 CaClz 

(12) 

where 1 gram of iron corresponds to 1 gram of CaO. However, in an acid 

or neutral water~ the ferrous hydroxide is soluble. So under acid or 

neutral conditions and the presence of oxygen, the ferrous hydroxide is 

rapldly converted into ferric hyd~oxide: 

4Fe (OH) 2 + 02 + 2H20 ~Fe (OH) 3 J (13) 

and 1 gram of iron corresponds to 0.14 grams of oxygen. (2) 

This method of treatment was employed for "super high" iron con-

centrations (64, 110, and 174 mg/1) in Alaska~ villages. The finished 

water quality had iron concentrations within the limits of the USPHS 

recommendations (26). 
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Manganese is readily removed by adding suffici~nt lime to raise the 

pH to a range of 9-10 (28). At this pH value manganese is rapidly 

oxidized by the oxygen diss~lved in the water. On the other hand, the 

raising ·of alum-treated water to such a high pH .range generally results 

in peptizing a sizable portion of the alum floc carried over from the 

sedimentation basins. Such peptization results in the passage of alum 

through the filter, to precipitate later in dead ends of the distribu­

tion system. Therefore -it can be said that manganese can be removed by 

conventional treatment . plants. ~ but only with some impairment to the 

quality of the finished water (28). r.:.· lim,e or lime-soda softening is 

not practi.ced, pH adjust~ent for . iron . and manganese removal is seldom 

economically feasible (20). 

Manganes·e Dioxide. 

Manganese dioxide affixed to a greensand filter media, called 

manganese greensand, ~s effective in removing soluble iron and man­

ganese. The greensand filter is regenerated with KMn04 by either the 

batch or the continuous flow .processes. lron and manganese removal 

by this method is sometimes called the manganese zeolite process, al­

tho~gh it does not invQlve ~on exchange, rather they are removed by 

adsorption. The adsorbed iron and. manganese are periodically oxidized . 

by dosing the bed with permanganate (29). 
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METHODS &~D MATERIALS 

Description of Pilot Plant 

The pilot plant used in these studies is shown photographically in 

Figure 1. This plant consisted .of a constant-head tank, counter-current 

aerator, mixing chamber, upflow basin, and filter. The plant was con­

structed of non-ferrous materials, mostly aluminum and polyvinylchloride 

(PVC) to eliminate any possible addition of ferrous ions to the water by 

corrosion. The constant-head tank is shoWn in Figure 2. This unit was 

·a 15 em ~6 in) cubical acrylic tarik. An overflow spout was located 

above the bottom of . the constant-head tank to maintain the liquid depth 

at 10.2 em (4 ·in). A brass valve was located 2.5 em (1 in) above the 

bottom to insure a constant flow of water to the aerator. The constant­

head tank was elevated so that the water level was 46 em (18 in) above 

the inlet of the aerator. 

The aeration unit; depict~d in Figure 3, was 15 em (5.91 in) in 

diameter and made of Schedule 40 transparent PVC pipe. The aerator de­

sign, presented in Appendix I was in accordance with Ten States Standards · 

(30) using 7 trays. The top tray was used to distribute the water 

evenly over the remaining trays. Each tray was made from 4.8:-rnm (3/16-

in) perforated PVC sheet stock. The trays, held in place by a l uminum 

wires, were removable to facilitate cleaning. A 55-cfm Dayton Box Fan 

(Model 4C548) manufactured by Dayton Electric Manufacturing Co., was 

used for aeration. This fan, located at the top of the aerator, in­

duced air entering at the bottom of the aerator to flow upwards and 
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. I 

Figure 1. Pilot Set-up. Units from lett to right are Constant head 
tank (upper lett corner)~ riser tube effluent, aerator, 
filter and piezometric tubes, and reaction basin. 
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countercurrent to the flow of water. The aerator underdrain was made 

of .635-cm (.25-in) aluminum plate. The · sides of the underdrains were 

0 sloped at 48.4 from the h~rizontal to prevent settling of oxidized 

iron and manganese. Baffled inlets were provided on two sides of the 

underdrain to allow air to enter the bottom of the aerator. Aluminum 

nuts were welded to the underside of the · top plate of the underdrain. 

The bottom fl~nge of the aerator column was then bolted to the underdrain 

using 1.905~cm (.75-in) -nylon bolts. 

Aerated water was pumped f ·rom the aerator · underdrain to the reac­

t;ion · cha.:.ber us~ng a SillWl~r® Paddle® pump (Model · BP20) manufactured by 

the S;immer Pump Co. The reaction chamber consisted of an inner 15.25-cm 

(6-in) diameter Schedule 40 transparent PVC p;i,pe 297 ·em (11 T in) .in 

l~ngth located within an outer pipe 30.48 em (12 in) in diameter made 

of Schedule 80 transparent PVC, the top section being 183 em (72 in) 

and the bottom section 99 em (39 in) in length. The reaction basin was 

supported by an aluminum box. The bottom 15.25 em (6 in) of the inner 

chamber was filled with sand to hold it in place. A laboratory funnel 

was cut to 15.25 em (6 in) diameter, plugged and inverted, as shown in 

Figure 4, to prevent oxidized iron and manganese from settling in the 

inner pipe. Three outlets, 10.16 em (4 ·in) in circumferencial length 

were provided to allow water to flow from the bottom of the inner 

pipe into .the bottom of the outer pipe. 

The reaction basin was designed to provide a total of 2.5 hours 

retention time, the same as the Upflow Basin in the East Water Treatment 
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Figure 4. E;ff_luent Ports of I.nner Pipe Chamber o;f · Reaction Basin. 
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Plant. The effluent from the reaction basin was collected at the top in 

an octagonal-shaped trough and then transferred to the filter unit through 

PVC piping. 

The pilot filter is shown in Figure 5. This unit was made of 

schedule 80 transparent . PVC with a 15. 25-cm (6-in) ·diameter and a height 

of 2. 51 ·m (99 in). It was divided into two flanged sections. The under­

drain for the filter, as pictured in Figure 6, is an aluminum box 23 em 

(9 i .n) in height and 30 -em (12 in) on a side. A 40 em (16 in) square 

base plate was welded to the bot.tom for stability. A removable side 

was provided to facilitate cleaning of the underdrain. The effluent 

line from the filter underdrain included valving for backwash, a meter 

and a pla.s tic ~f flu~n t riser tube "l'ith a di.ameter of 1. 9 em (. 7 5 in). 

The riser tube ~aintained a 4 ·em (1.57 in) minimum water depth over the 

filter media to prevent air binding. The . backwash effluent line was 

located so that a 50 percent filter bed expansion could be obtained if 

desj.red. 

The filter media and support gravel were the same as used in the 

East Plant filters. The media consisted of No. 1 anthracite coal 

ranging from 0.6 to 0.8 mm in size with a uniformity coefficient of 

1.75. This layer was 76.2 em (30 in) in depth. The support gravel was . 

30-cm (12-;i.n) in depth. Twelve piezometric tubes enabled the measure­

ment of head losses throughout the filter media on 7.5 em (3 in) centers. 

A Wallace Tiernan series 94-100 Chemical feed pump was used to 

feed potassium permanganate to the reaction basin. 
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Pilot Plant Operation 

The pilot plant was first operated on January 5, 1979. Raw ·water 

from Well No. 1 was obtained from the influent line entering the East 

W~ter Treatment Plant, located east of Interstate Highway 29 in 

Brookings, South Dakota. Initially, the filter was backwashed for two 

hours to remove excessive dust and fines from the medium. Backwash 

water was obtained from the high service pumping station discharge line. 

Backwash flow was adjusted as needed to provi.de for 50 percent filter 

bed expansion. This was done by visual means since the filter was trans­

parent. No ripening per:i,od was required · since the filter _media used was 

the same as used by Farvardin in 1977-1978 (31). Farvardi.n ripened the 

filter for a total of 73 days followed by several ~onths of operation 

for data collection. The ;filter rate was 2 gal/min./sq ft. 

· · J..ength of :Filter Runs 

Filter runs for both the East Plant and the pilot plant were 48 

h.ou.rs in length, After each run the pilot filter was backt11ashed for 

seven mj.nutes. The backwash time was the same as the East vlater Treat­

ment ~lant. Beginning March 1, 1979, the filters at the East Plant 

were backwashed when the headless through the filters reached 8 feet 

or had operated for 10 days, whichever came first. Pilot operation 

did not change maintaining continuity throughout the expe riments. 

Sampling 

Samples were collected at 4 locations: 1) from the constant head 

tank which was considered to be the influent to both the pilot and East 
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Plant; 2) from the pilot reaction basin effluent; 3) from the pilot 

plant effluent; and 4) from the clearwell effluent of the East Plant. 

For each sampling run, two 250-ml samples and one 500-ml sample were 

collected at each location, except that a 500-ml sample was not taken 

at the reaction basin effluent. Because manganese has a strong ten-

dency to be absorbed on gla.ss storage bottles (31), plastic containers 

were used to collect all samples, These samples were analyzed as shown 

in F~gure 7. Temperature , pH, dissolved oxygen, hardness, alkalinity 

and filtration for soluble .iron and manganese determinations were 

carried out immediately after sampling •. 

Total 
Hardness! 

,_., Temperature 
pH . 

50 Totnl Alkalinity 

Total Iron 
and 

l1anganese 
Soluble Iron 

and 
Manganese 

Calcium 
Hardness Dissolved 

11 Of mf} Oxygen 

Total Dissolved Solids 

Figure 7. Flow diagram of Chemical Analysis. 

Potassium Permanganate Feed 

A series of experiments were conducted at different MnO 4 dosages 

with at least 96 hours (2 filter runs) of operation at each dosage. 

Table 3 shows the schedule of operation and Mn0-4 feed concentration. 

The feed concentrati.ons were varied to enable the feed pump to operate 
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within its normal output range. The feed solutions for the entire 

study were made by dissolving potassium permanganate crystals in dis-

tilled water. 

Table 3. Potassium Perm~nganate Feed Solution Schedule. 

Mn0-4 
Dosage 
(mg/1) 

0.0 

2.00 

1.20 

0.50 

0.30 

0.87 

· Combination Used ·. 

Feed Solution 
Concentration 
(mg/1 MriO-4) . 

250 

250 

250 

100 

100 

·Analyses 

Iron and Manganese 

Feed Rate 
(ml/hr) 

713.46 

178.36 

267.55 

775.80 

The samples to be analyzed for soluble iron and manganese were 

filtered through a 0.45 micron (JU) membrane filter (MetricelGYMembrane 

Filters manufactured by Gelman Filtration Products) immediately after 

collection. The first 10 to 25 ml of filtrate were used to rinse the 

filter flask and were then discarded. The remaining filtrate was 

saved for analysis. Except tor filtration, samples for soluble 

(filtered) and total (unfiltered) ~ron and manganese received identical 
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treatment described as follows. 

1) Preservation. Each sample was preserved by the addition of 2 

to 5 illl of concentrated hydrochloric acid (HCI) to lower the pH to less 

than 2.0 (32)(33). 

2) Concentration. Most samples had iron and manganese concentra-

tions of less than 0.9 mg/1 and required concentration. In this proce-

dure a 100-ml sample was evaporated to dryness. Then, approximately 2· ·ml 

of 1:1 HCl were used to redissolve the residue. Following this, the con-

tents of the dish were transferred to a 10· ml volumetric flask. The dish 

was then ~insed using approximately 2 · ~1 demineralized water and 1 ml 1:1 

.~4oH. The ammonium hydroxide (NH40H) neutralized the acid. The volume 

was then brought to 10 ml with demineralized water. Samples having iron 

and/or ~anganese concentrations greater than 0.9 mg/1 were not concentrated. 

3) Analysis. Iron and manganese determinations were made using a 

Perkin and Elpter 290-.B Atomic Absorption Spectrophotometer (Figu.re 8) 

with a Jarrel-Ash multi-element neon gas-filled hollow cathode tube. 

The operating conditions for this instrument during analysis are summar-

ized in Table 4. 

Table 4. Operating Conditions of Perkin-Elmer 290-B Atomic Absorption 
Spectrophotometer for Iron and Manganese Determination. 

Wave Slit 
Length Instrument Setting 

Metal (nm) Setting_ (nm) Light Source Flame Type 

Hollow Cathode Air-Acetylen 
Iron 248.3 144 0.2 Lamp (multi-element) oxidizing 

Hollow Cathode Air-Acetylen 
Manganese 279.5 199 0.2 Lamp (multi-element) oxidizing 

e 

e 



Figure 8. Perkin-Elmer 290-B Atomic Absorption Spectrophometer with Sampler and recorder. 

LV 
0 
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A Technicon Auto Analyzer sampler was used to provide an equal 

aspirating period for each sa~ple. The output was recorded as relative 

absorbance on a Moseley 680 Strip-Chart Recorder manufactured by Hewlett­

Packard. 

Stock solutions for the iron and manganese analysis were prepared in 

accordance with Standard Hethods (33). Each stock solution was then di­

luted to a metal concentration of 100 mg/1 from which the standards were 

prepared. Standards of 0.0, 0.5~ 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mg/1 

of iron and manganese were prepared. Since iron and manganese co-exist 

naturally. in raw water entering the Brookings East Plant, the standard 

solutions were combined into one solution containing equivalent concen­

trations of iron end m~ngBnese. 

The standard curve is a straight-line relationship between the metal 

concentration and the measured relative absorbance. Concentrations of 

iron and manganese in the concentrated samples (unknowns) could be 

measured to the nearest 0.01 mg/1 (10 ;ug/1) iron and/or manganese. Un­

concentrated samples could be measured to the nearest 0.1 mg/1 (100 ~g/ 

1). (:32) ~ 

.E!! 

Measurement of pH was made using a Corning 610 portable pH meter 

equipped with glass and calomel electrodes. The pH of the samples was 

taken within 30 minutes after sample collection. The pH was measured 

prior to the total alkalinity analysis. The pH meter was standardized 

twice daily, once prior - to analysis and once upon completion of all 

analytical work for the day. 
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Temperature 

The temperature of the samples was taken with a thermometer im­

mediately following collection. The temperature was taken of all samples 

except the reaction · basin effluent. · 

Total Hardness 

The UniVer II titration method by HACH Chemical Company (34) was 

used to determine total hardness. To conserve titrant, a 25-ml sample 

was diluted with 25 ml of demineralized water. The l.O~gm scoop of 

UniVer II Powder· was used ·· instead of the UniVer II Powder Pillow. EDTA 

(.0200N) was used as titrant instead of HACH's TitraVer. 

Calcium Hardness 

The Hach procedure was also used to determine cclcium hardness (34). 

A 0.1-gm scoop of CalVer II Powder was substituted for the CalVer II 

Powder Pillow. EDTA (.0200N) was used as titrant instead of the l~CH 

equivalent TitraVer. 

Alkalinity 

Alkalinity was determined by potentiometric titration to a pre­

selected pH as described in Standard Methods (33). A 5G-ml -sample was 

titrated to a pH of 4.5 and the results reported as mg/1 as Caco
3

. 

Total Residue 

Total residue determinations were conducted in accordance -s;vith 

Standard Methods (33). Prior to solids determination~ the water samples 

were stored in se.aled plastic containers at 4°C and mixed thoroughly be­

fore pipeting to the evaporation dish. Upon evaporation of the. 100-ml 

sample~ the dish was transferred to a 103°C oven to obtain a constant 
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weight. The sample d~sh was dried a minimum of 24 hours · to eliminate 

checking for constant weight which normally can be achieved in 2 to 4 

hours. The dish was then cooled in a desic~ator at .least 60 minutes be-

fore final weighing (35). 

·Dissolved Oxygen 

Dissolved oxygen ~nalysis was conducted in accordance with the 

Idometric Method, Azide Modification as described in .Standard Methods (33) 

except that phenylarsine oxide (PAO) (.0250N), manufactured by HACH 

Chemical Company, was substituted for sodium thiosulfate. PAO solution 

is more s~able than sodium thiosulfate solution prepared according to 

·standard Methods and is not affected by bacterial action (34). 

WRter Stabilitv 

Water stability was determined by use of the Lawrence-Caldwell 

(C-L) diagr~s (36). The parameters required for selection of the proper 

Lawrence-Caldwell diagram are temperature (°C), total dissolved solids 

and ionic strength. Total residue was used as an approximation of total 

dissolved solids. This substitution was possible because of the low 

turbidity of the waters analyzed, the majority of suspended material 

being oxidized iron and manganese in concentrations of less than 3.0 mg/1. 

Ionic strength was estimated using an expression developed by 

Lowenthal and Marias (37): 

-5 
u = 2.5 X 10 SD 

where: u ionic str~ngth in moles/liter 

SD ~ total dissolved solids, mg/1 

(14) 

Us~ng mean values for temperature and total residue of the influent 
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and effluent flows, the respective ionic strengths were calculated using 

Equation 14. These values are shown in Table 5. Lawrence-Cald~ell 

diagrams nearest in temperature and ionic strength . to those obtained 

for the test waters were selected for use from available literature. 

These diagrams may be found in Appendix II. Although the diagrams 

selected were derived for temperatures and ionic .strengths differing 

somewhat from the test waters, the · estimates of water stabilities ob-

tained using these diagrams are believed to be reasonably valid. 

-Table 5. Schedule for · Lc:wrence-Caldwell Diagram Usage 

Raw· Pilot East Plant 
Sample Water Effluent ·Effluent 
Mean Temperature 

oc 9.0 12.3 9 .·o 
Mean Total 
Residue mg/1 660 640 530 
Ionic Strength 
moles/1 .0165 .0160 .0133 

....... 

....... Temperature QJ 
- ~ oc 9.0 15.0 1o.·o · ~~ 
....... QJ 

Ionic Strength ca (I) 

u:::> moles/1 720 600 600 . I 

~ ~ Total Residue 
~ ~ mg/1 .0180 .0150 .0150 QJ ()() 
~ tO 
~"" caA Reference 3 4 4 ~ 

To determine the stability, three additional parameters are needed: 

calcium hardness, alkalinity, and pH. These values when plotted, define 

a three-sided envelope on the C-L diagram. · .For example, the envelope 

obtained for a water having a calcium hardness as 290 mg/1 as Caco3, 

alkalinity as 260 mg/1 as caco3 , and the pH of 7.85 is shown in Figure 9 

(27). The fact that the water described in Figure 9 defines an envelope 
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Stability. (35) 
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rather than a single point indicates that the water is not in calcium 

carbonate equilibrium. In this case, the water is oversaturated (an 

encrusting water) since the calcium hardness is greater than the calcium 

value at . the intersection of the pH and alkalinlty lines. Also, the 

saturation pH (pH), defined as ·the inters-ection of the alkalinity and . s 

calcium lines, is 7.30 in ·this case. The value of pH can be used to . s 

determine the Langelier 1 s Saturation index, a measure of water stability~ 

us~ng the following equation: 

LI = pH - pHs (15) 

If the Lauglier index is positive, the water is oversaturated and has 

a .tendency to deposit calcium carbonate. If negative, the water is 

corrosive and will tend to dissolve calciUm carbonate. In this example: 

LI = 7.85 - 7.30 = +0.55 (16) 

thus., the water has a scaling tendency (27). 
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RESULTS AND DISCUSSION 

The major objective of. this research was to determine the practi­

cality of removing iron and manganese from a selected water supply at 

Brookings, South Dakota by the use of aer~tion and permanganate as 

oxidants. Soluble and insoluble iron and manganese were measured to 

determine the removals through the reaction basin and filter. Tests 

were also performed to determine the stability of the treated effluent. 

The data collected during the experiment are presented in Appendix III. 

Overall Treatment Efiectiveness 

In general, the use of potassium permanganate to supplement -oxida­

tion by aeration was not effective in producing a treated effluent with­

in the limits (0.3 mg/1 for iron and 0.05 mg/1 for manganese) recommended 

by the United States Public Health Service (USPHS) (1). As is sho~~ in 

Figure 10, in only one instance was the pilot effluent in compliance 

with the recommended limits and that was for iron while the pilot unit 

was operating in the "aeration only" mode, i.e. without any permanganate 

feed. 

Treatment Unit Performances 

The use of potassium permanganate was not success f ul in providing a 

treated effluent of acceptable quality on the basis of iron and manganese 

concentrations. In an attempt to explain this failure, the performance 

of the treatment units following aeration and the addition of permanganate 

were evaluated. These units were respectively the reaction basin and 

filter. 
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Reaction Basin 

The primary purpose of the reaction basin in iron and manganese 

removal by oxidation is to. retain the flow for an hour or two after 

aeration and application of any chemical oxidant to allow the oxida­

tion reactions to occur. The oxidation rate for iron when using per­

manganate is almost instantaneous, whereas at least five minutes are 

required for manganese (6)(18). Ferrous iron in the reaction basin 

effluent during operation without permanganate feed was not determined 

so that a comparison could not be made between "aeration only" as 

oxidant with the different permanganate feed rates. However, assuming 

that little oxidation of iron occurred in the filter, the concentra­

tion of soluble i~on in the filter effluent could be used as an ap­

proximation of the soluble iron in the reaction basin. Based on this 

assumption, it can be seen from Figure 11 that there is little dif­

ference between the soluble iron concentration in the reaction basin 

effluent obtained during "aeration only" and from operation while 

feeding permanganate (the average concentration for all dosages being 

0.20 mg/1). A statistical comparison of the data using an analysis of 

variance (38) reveals no significant difference at the 0.50 level of 

significance. It should be noted, that the soluble iron concentra­

tion in the reaction basin effluent does appear to decrease slightly 

with increased permanganate dosage, indicating a possible influence 

from this oxidant. However, even if reaction time is also dependent 

upon the physical and chemical factors listed in Table 2, the design 

of the reaction basin is usually based upon the time required 
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for the completion of oxidation reactions, as determined by laboratory 

and pilot-scale studies. 

Figure 11 consists of a bar graph showing both the soluble (un­

oxidized) and insoluble (oxidized) iron concentrations in the raw 

and effluent ·flows from the reaction basin and filter. The concen­

trations shown were obtained from the averages of at least 8 samples 

collected at 12-hour intervals over the span of each 48-hour run. 

Each chemical dose rate consisted of at least two 48-hour runs or 96 

hours of total filtering· time. From Figure 11 it can be calculated 

that within the approximately 2.5-hour retention time in the reaction 

basin, from 93.7 to 96.6 percent of the total iron was oxidized. 

This oxidation was sufficient to reduce the concentration of soluble 

(unoxidized) iron well below the recommended limit of 0.3 mg/1. 1be 

role of permanganate in this oxidation is not clear. If feeding 

permanganate did influence the reaction basin effluent soluble iron 

concentration, this influence was very small. 

Figure 12 was also compiled from at least 96 hours of filtering 

time (two 48-hour filter runs) with samples collected every 12 hours. 

The "added Mn" portion of the influent was calculated by multiplying 

the permanganage dose rate by the ratio of the molecular weights of 

manganese and permanganate (54.94 Mn/118.94 MnO~). Inspection of 

Figure 12 reveals that in no instance was oxidation within the reaction 

basin sufficient to reduce soluble manganese concentrations to meet the 

United States Public Health Service recommended limit (0.05 mg/1 (1). The 

total manganese concentrations entering the reaction basin did increase 
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with the permanganate dosage as would be expected. 

Figure 13, is a mass balance representation of the total., soluble 

and insoluble manganese applied and discharged per filter run as com­

pared to permanganate dosage. It is apparent from this figure that total 

and soluble manganese differed from both the influent and effluent for 

the reaction basin. The influent and effluent curves for total and in­

soluble manganese in Figure 13 show similar patterns as to the fate of 

manganese within the reaction basin for increasing permanganate dos·age. 

In addition, these curves tend to vary as the raw-water manganese con­

centration. The soluble effluent mang .. :.1ese slowly .increased for MnO~ 

dosages up to 1.20 mg/1 Mn04, and then decreased. tVhere the two lines 

intersect, the insoluble manganese concentration _is equal to the con­

centration of the soluble manganese. From the figure, this point was 

between 1.2 and 1.4 mg/1 MnO~. Beyond this point, the concentrations of 

insoluble manganese in the effluent exceed those of soluble manganese 

suggesting that the redox reactions do not go the completion. 

Dosages of .88 mg/1 and greater, as shown in Figure 12, it can be 

seen that at the dose rates of .88 mg/1 indicate that soluble manganese 

was clearly higher in the effluent than the influent. The soluble man­

ganese added would be in the +7 state indicating that MhO~ had not been 

reduced to the insoluble manganese dioxide. The only time complete re­

duction of Mn04 could not occur would be when the permanganate demand was 

exceeded. Incomplete oxidation of manganese along with the possibility of 

unreduced permanganate in solution at the -higher dose rates suggests that 

the reaction time was insufficient. However, the 2.5-hour reaction time 
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provided was well in excess of the 5-minute period claimed to be suf­

ficient for manganese reactions as reported in the literature (4)(6). 

Morgan and Stumm (39) . have found that the manganese dioxide 

formed in accordance with Equation 8 is sometimes of colloidal nature. 

The dispersions formed have been observed to be stable for extensive 

periods of time. If colloidal Mn02 was formed, it would most probably 

have been measured as soluble manganese with the analytical techniques 

used. According to Sawyer ~nd McCarty (14), the largest particle s'ize 

for colloids is about 100 nm (.1 urn) and particles of this size could 

pass through the 450 nm (.45 urn) membr~ne filters used to separate in­

soluble from soluble iron and manganese. 

Figure 14 shows the calculated weight of iron and manganese sludge 

accumulated ~n the reaction basin per run for each permanganate dosage. 

The amount of sludge produced seems to be directly correlated with the 

amount of influent iron and manganese applied to the reaction basin. 

Little or no manganese sludge was produced for the permanganate dosages 

less than .88 mg/1. This is also an indication that the permanganate 

demand probably was not exceeded for the lower permanganate dosages. 

Filter 

The mean total iron concentrations shown in Figure 11 for the filter 

effluent using permanganate for oxidation does not meet the USPHS re­

commended limits (0.3 mg/lFe). However, when aeration was not supple­

mented with permanganate, the recommended limits for total iron were 

met. At all permanganate dosages applied, the soluble iron concentration 

was greater in the reaction basin effluent than in the filter effluent. 
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This very likely is an indication that oxidation of soluble iron was 

occurring within the filter. However, using the analysis of variance 

technique described by Steel and Terrie (38), no significant difference 

existed between the mean ferrous (soluble) iron concentrations in the 

reaction basin and filter effluents at the 0.050 level of significance. 

In comparing the effluent concentrations of total iron as depicted 

in Figure 15, it is apparent that, in general, effluent total iron con­

centrat~ons increase with respect to time within the filter run when per­

m~nganate was applied, This increase can be attributed to breakthrough 

pa.r.t;iculat:c it;on that occurred after · 12 to 36 hours of filtration. The 

h~ghe~ quantity of m~nganese resulting from feeding permanganate, un­

doubtedly hastened feiii break-through.. Thus, the lower qur1ntity of 

particulates produced when permanganate was not applied explains the 

longer filter runs without break-through .. 

Another explanation ~ight be ~ade on the basis of findings by Hem 

and Cropper (40) which suggest that ferric oxides exist in colloidal 

suspension as a result of oxidation by permanganate. If this is the 

case, the filter media used in the pilot filter may not have been of 

proper size and uniformity (ie too coarse) to have effectively separated 

these colloids from the water by filtration. 

As shown in Figure 16, effluent manganese concentrations, in contrast 

to iron, seemed to remain relatively constant, with the exception of 2.02 

mg/1 dosage. The relatively flat curves indicate that filter time exerted 

little or no influence of the quantity of manganese which passed through 

the filter. Only at the 2.02 mg/1 Mn04 dose rate"' did effluent manganese 
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concentrations vary appreciably with time. With the exception of this 

dose rate, Figure 16 shows that the addition of permanganate increased 

only the manganese concentration. At 2.02 mg/1 MnO~ dosage, manganese 

concentration tended to increase with time which is probably an indi­

cation that. maximum removal occurred shortly following backwash. One 

possible explanation for this difference could be a depletion of the 

manganese dioxide coating on the filter media (responsible for the 

"aging" of the media) due .to operation without permanganate feed prior 

to start-up because the 2.02 mg/1 MnO~ dose rate was the first run of 

the series. 

Figures 17 and 18 are plots of mass balances of iron and man­

ganese (respectively) applied, retained, and passing through the filter. 

These figures were based on 48-hour filter runs at varying dosages of 

permanganate. As seen in Figure 17, the total and insoluble iron con­

centrations applied to the filter were nearly parallel to each other. 

The same was true for the effluent ferric (insoluble) iron. These re­

lationships suggest that the amount of insoluble and/or total iron in 

the effluent was approximately proportional to the amount of insoluble 

iron applied to the filter. As would be expected, the curves showing 

the iron retained on the filter and total effluent iron, appear to be 

inversely proportional. When the effluent concentrations increased, 

the amount of iron retained on the filter decreased . It can also be 

seen in Figure 17 that only minor oxidation occurred within the filter. 

In general, soluble iron concentrations were less than the USPHS 

recommendations. However, because of the insoluble iron passing the 
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filter, the total effluent iron did not meet these $tandards. It would 

appear that if a filter medium were used that was capable of· removing all 

of the insoluble iron, the USPHS recommended limit of 0.3 mg/1 could be 

met at all permanganate · dosages. 

The mass balance for manganese through the filter is shown graphi-

cally on :Figure 18. The total and insoluble applied manganese curves 

tend to parallel eac~ other with the difference between these curves re-

presenting the soluble manganese applied to the filte·r. The amount of 

ma:nganese retained - on the filter also tended to parallel the total and 

ins·oluble applied manganese · curves as \.auld be expected. However, at 

the 0.50 mg/1 and 0.88 mg/1 dose rates, more insoluble manganese was 
. . 

removed by the f;i.lter than was applied. This would appear ·to indicate 

that for these perm~nganate dosages, a greater percentage of manganese 

was being oxidized within the filter media than at other dosages, Per-

haps the permanganate was being exhausted at the lower dosage (0.30 mg/1 

MnO~) before the· demand was met. At the . higher dose rates (1.20 and 

2.02 mg/1 Mn04) excess permanganate was added. 

The plot for manganese oxidized within the filter becomes a nega­

t~ve value at the 2.02 mg/1 Mn04 dosage. A possible explanation for this 

occurrence might be that manganese in the +4 oxidation state is being 

further oxidized to the soluble manganic manganese (+6) state. 

In contrast to effluent iron in no instance did the soluble con-

centration ot manganese drop below the USPHS recommended limit. Since 

KMn0
4 

theoretically oxidizes manganese, perhaps the manganese was oxi­

dized to manganese dioxide and held in a colloidal dispersion similar 
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to those observed by Morgan and Stumm (39). If this - assumption is cor­

rect, the addition of a coagulant should make it possible for more ac­

curate measurement and removal of the manganese as manganese dioxide 

(insoluble manganese). 

The total average headless through the filter at the end of the 48-

hour filter runs for each permanganate dosage is presented in Figure 1.9. 

In general, it can b~ seen that total headless in the filter corresponds 

roughly to the mass accumulations of -iron and manganese retained by the 

fil tel:' as shown in F:Lgu.res 17 and 18. In other words, it would appear 

th~t the more solids . retained on the filter bed, the greater the heaa­

loss. This would be expected. 

In gene:!:'al_, t~e build-•..!p of he?.dloss through the filter durir..g '=2ch 

48-hour run was relatively small. It is usually unnecessary to back­

wash filters until the headless through them approaches 10 feet (3.05 

meters) (27). Consequently, with the No. 1 anthracite filter media 

used in the pilot filter under the conditions of this experiment, ex­

cessively frequent backwash would not appear to be a problem. 
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East Plant Iron and Manganese Removal Effi.ciencies 

Brookings water supply is provided from two water treatment plants. 

The pilot plant used raw water from Well No. · 1 supplying the East Water 

Treatment Plant. A complete description -of the East Plant is presented 

in Appendix V. 

I.n a 1978 investigation of iron and manganese removal at the East 

Plant, Farvardin (31) found that the addition of potassium permanganate 

following alum coagula~ion and lime-softening, significantly decreased 

the East Plant effluent manganese concentration. As a result . of 

farvardin's rec0mmendations, the City of Brookings installed a Wallace 

and Tiernan permanganate saturator and A-745 metering pump ~n · 

February 13, 1979. A potassium permanganate (KMn04) dose r.::.te of 0.12 

mg/1 K}fu0
4 

was then applied. 

An analysis of variance (38) (Appendix IV) was performed to deter­

mine whether or not the KMn04 dosage presently used at the East Plant af­

fected the effluent iron and manganese concentrations. The data (Appendix 

III) used prior to the KMn0 4 feed were obtained from 3 iron and 10 man­

ganese samples (for data, see Appendix III). It was assumed that these 

samples were a representative and random sampling. Well No. 1 was the 

raw-water source. No significant difference was found between treatment 

methods (with and 'dthout KMnu4 dosage) for iron. However, .it must be 

noted that the small number of samples may not have been sufficient to 

have provided a representative sampling. Although this is in _agreement 

with the results obtained by Farvardin (31), past chemical analysis re­

cords for the East Plant (42) also show that the iron concentration has 
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been below the recommended 0.3 mg/1 limit and the permanganate treatment 

was intended as a means of reducing effluent manganese and not neces-

sarily effluent iron. The analysis of variance did reveal a signifi-

cant difference at the 0.010 level of significance existed between treat- . 

ment methods. The mean difference being 0.07 mg/1 Mn. The mean manganese 

concentration during permanganate treatment (based on 52 samples) was 

09 02 + 0. 02 mg/1 Mn.. This is below the recommended 0. 05 mg/1 Mn limit. 

Potassium permanganat~, a proven disinfectant, (8) should also be 

expected to reduce the total chlorine demand of the treated water. This 

might be the case in the East Plant as well. The change in average 

chlorine dosage for the month of March for the years 1978 (b~fore KMn04 

feed) a~d 1979 (.:.fter l<'1'1'..n0 
4 

feed) is preser..!:ed in Table 6. It ca.n be 

seen that the chlorine dosage decreased from 1.89 mg/1 to 1.53 mg/1, a 

19 percent decrease. 

Table · 6. Chlorine Demand Comparison, Before and After KMn04 Feed. (42) 

Water Produced Chlorine Dose 
at East Plant Chlorine Usage Rate 

Month/Year (gallons/month) (pounds/month) (mg/1) 

March 1978 34,455,000 542 1.89 

March 1979 33,155,000 423 1.53 

Note: The East Plant began to . feed KMn04 on February 13, 1979. 

Water Stability 

The "water stability parameters" along with total hardness and 
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dissolved oxygen, are presented in Figures 20 and 21. Each point re­

presents the average of at least 4 determinations made during runs at 

each permanganate dose rate. A least-squares analysis of variance for 

the above parameters was performed by the Agricultural Experiment Station. 

Statistician at South Dakota State University. The results of this sta­

tistical analysis (Appendix IV) reveal that there was no significant dif­

ference at the .01 level between dose rates . and pilot effluent total and 

calcium hardness, alkalini~y, pH, total dissolved solids, and dissolved 

oxygen. The temperature was signif·icantly different at the . 01 level. 

This was probably due to the variation in down time (up to 16 .hours per 

day) experienced by the pilot plant. No significant difference existed 

for any of the parameters of the raw water and East Plant Effluent. 

Table 7 includes the mean and standard deviation for the parameters 

used in calculation of the stability index. From Table 7 it can be seen 

that both the raw water and East Plant effluent were relatively stable 

waters, even though they are both categorized as "slightly corrosive". 

However, the approximation errors accompanied with analysis and the use 

of Lawrence-Caldwell Diagrams may have affected these results. The pilot 

plant effluent water was characterized as being oversaturated (SI =+.53). 

This scaling tendency was probably caused by the increases in pH brought 

about by aeration of the raw water in an attempt to reduce the perman­

ganate demand. However, due to changes in temperature, which affect the 

solubility of dissolved gasses (ie. C02), it is difficult to draw de­

finite conclusions regarding the influence of pertnanganate treatment on 

water stability. 
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Table 7. Water stability analysis. 

Pilot East Plant 
Sample Raw Water Effluent Effluent 

Standard Standard Standard 
Parameter Mean Deviation Mean Deviation Mean Deviation 

Total Residue 658 4 7. 3 639 71.7 530 56.8 
(mg/1) .. 

Ionic .0165 .0160 .0133 
Strength* 
(moles/1) 

Tempe,...ature 9.1 .12 12.3 • 70 9.0 .09 
(oC) 

pH (units) 7.42 .08 7.85 .10 7.78 .14 

Alkalanlty 259 9.7 259 8.4 157 11.9 
(mg/1 as 
CaC03) 

Calcium Hardness 288 11.2 286 11.3 201 16.2 
(mg/1 as CaC03) 

Total Hardness 
(mg/1 as Caco3) 454 13.6 451 19.6 359 15.1 

Dissolved • 11 .18 9.50 .40 11.23 . 34 
Oxygen (mg/1) 

pH (units) 7.48 7.32 7.80 
s 

Langliers -.06 +.53 -.02 
Stability 
Index * 
Saturation 
state * undersaturated oversaturated undersaturated 

(slightly (sligh t ly 
corrosive) (scaling) corrosive) 

*those parameters calculated, not measured by analytical methods. 
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CONCLUSIONS 

Based upon an examination of the data collected, the following con­

clusions .can be made regarding use of the piiot unit for removal of iron 

and manganese with aeration and potassium permanganate for oxidation. 

1. Iron and manganese removals did not meet the USPHS recommended 

standards ·when ' feeding KMn0
4

• 

2. KMn04 seemed to act as an "anti-coagu.i.ant", which prevented the 

c~agulation of. ferr.ic oxide particles, and actually increased 

the effluent iro~ concentration. 

3. Aeration as an oxidant alone may have promoted a larger ag­

glomeration of iron particles than did aeration in .combination 

with Kl1n04. 

4. It appears that if a f;ilter medium were used that was capable 

of removing all of the insoluble iron, the USPHS recommended 

limit of 0.3 mg/1 total iron could be met at all KMno4 feed 

rates. 

5. Either water characteristics prevented the oxidation-reduction 

reactions for manganese to take ~lace, _or the Mno2 and Mn2o3 

formed by these same reactions were of colloidal nature and 

did not agglomerate. 

6. Total headless through the filter ~aried wi t h the KMno4 

dosage applied to the filter and the amount of insoluble 

manganese retained within the filter. 
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7. The East Water Treatment Plant, Brookings,. South Dakota pre­

sently operates using aeration, lime softening, alum, re­

carbonation, and KMn0
4 

dosage. The filter effluent iron and 

manganese concentrations were significantly below the USPHS 

recommended standards during the period of March-June 1979. 

8. A significant reduction in filter effluent manganese concen­

trations was noted at the East Plant as a result of feeding 

KMn0
4 

at a dosage of 0.12 mg/1. 

9. The addition of 0.12 mg/1 KMn0
4 

in the East Plant operations 

Jecreased the chlorine demand of the filter effluent by 19.0 

percent. 
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RECOMMENDATIONS FOR FUTURE STUDY 

The following recommendations are made for future studies involving 

the treatment of iron and manganese. 

1. The use of a coagulant such as aluminum sulfate (Alum) or 

ferric sulfate may increase floc production by agglomeration 

so that the iron and manganes~ could be completely removed 

using No. · 1 Anthracite. 

2. Studies should be .conducted to determine if a filter medium 

having ·a finer gradation than the No. 1 Anthracite used in 

these experiments might be successful in reducing effluent 

iron and manganese to meet USPHS recommended limits. 

3. The use of manganese greensand should be tried in an attempt 

to improve iron and manganese removal efficiencies. 

4. The use of KMrt04 for disinfection augmented with chlorine to 

provide a residual should be evaluated as a possible means for 

reducing disinfection costs. 

5. Theoretically, ozone will completely oxidi7e iron and man­

ganese. The economics of such a removal procedure should be 

investigated. 

6. The stability of the raw water seemed to be altered by aeration. 

The influence of aeration on water stabilit y should be evaluated. 
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APPENDIX I 



Aerator Design 

Design Criteria. 

East Plant Design Filter Rate (42 ) = 2gpm/ft2 filter media. 

Pilot Filter diameter = 6-in 

Pilot Filter area =If((. 5 ft) 2 
• 1963 £t 2 

4 

therefore, Pilot Flow Rate, Q = (2gpm/£t
2

) (.1963 £t
2

) 

:; .3927 gpm 

~ 1.4864 liters per minute (1/m) 

Ten States Standards (32) states that the Loading Rate (L.R.) for 

the aerator should be: 

1 gpm/£t2 ~ LR · ~ 5gpm/ft
2 

Given the minimum Aerator Loading Rate (LR) and Des_ign Flow, (Q) of: 

R = 1_ gpm/ft2 

and Q = .4 gpm 

the maximum aerator area is: 

. ~4gpm .4 ft2 
Aerator Area = 1 gpm/ft2 = 

or a maximum diameter of: 

d 4 ~ ft2
) = • 714 f t = 8. 56 in 

max 

To determine the minimum diater of the aerator use: 

LR = 5gpm/ft
2 

Q = .4gpm 

Using same procedure as before: 

d = 3. 8-in c 
min 

70 
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Therefore: 

3.8-in ~d ~ 8.5-in - -
Diameter size used: 

Dia = : 6 '-"in 

Discharge the water over a series of 5 or more trays with tray 

separation at least 6 -in and provide distribution of water uniformly 

over the top tray (32). 

For 5 trays at 6-in a~art the minimum height of the aerator is: 

height = 4 x 6 = 24-in (2ft) 

To be on the conservative side this design will use a height of: 

Height ::::. :4..:.ft 

with 7 tra.ys 

Each tray installed at 7~irt apart. 

The top tray to be 3-in below the top of the aerator column and the 

bottom tray to be 3-in above the. bottom of the column (Figure 3). 

Ten States Standards does not provide any air velocity recomrnenda-

tions for countercurrent aerators. Therefore, the General Filter Co. 

Catalogue (41) was consulted. Typical air velocities varied: 

61. 1 f t I min L V . <::... 8 8. 9 f t I min. - a1.r- . 

the minimum air flow (Q i ) for a q-in diameter aerator is: 
a r 

Q. (min)= 11.78 cfm 
al.r 

The smallest fan available in the Grainger Hotor Book No. 349, 

W.W. Grainger, Inc., Sioux Falls, S.D. was a 55 cfm Dayton Box Fan 

manufactured by Daton Electric Manufacturing Co., Chicago, which was 

used to provide adequate air flow~ 
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APPENDIX III . 



Table SA. Iron and Manganese Data Collected. 

Iron 

Reaction Basin Pilot Filter East Plant 
Raw Water Effluent Effluent Effluent 

Date(l979) T* S@ T s T s T s 

Jan. 5 3.8 3.6 .20 .10 .10 
Jan. 6 3.5 3.3 .45 .10 .14 .18 
Jan. 7 3.2 3.4 .20 .10 • 20 . 12 
J<m . 8 3.5 3.4 .18 .12 .26 .18 
Jan . 19 
Jan. 20 
Jan. 21 
Jan. 25 
Jan. 26 
Jan. 27 
Feb. 13 
feb. 14 
Feb. 14 
Feb. 15 
Feb. 21 
Feb. 22 
Feb. 22 
Feb. 23 
Har. 1 3.0 2.8 .09 .26 .09 .07 .07 
~.ar. 2 2. 7 2.6 3.7 .00 • 70 .14 .12 .00 
Nar. 2 2.9 3.4 ., ' ., ,L .02 .02 .02 .04 
Mar. 4 3.4 3.6 2.9 i 33 .18 .02 .01 .00 
Mar. 6 3.4 3.5 2.4 .10 .84 .04 .OS .06 
Mar. 7 3 0 2.3 2.6 .09 • 31 .oo • 15 .21 
}tar. 8 3.9 3.4 2.1 • 21 1.18 .09 .21 .14 
Mar. 8 2.4 2.3 3.6 • 21 1. 05 .41 . • 43 .04 
Mar. 9 3.5 3.5 3.2 .09 .20 .00 .00 .18 
Mar. 10 5. 1 4.9 4.1 .04 .36 . 2b .00 .06 
Mar. 11 4.6 4.6 2.0 .07 • 33 .00 .00 .03 
Mar. 12 4.4 4.1 3.0 4. 1 • 12 .00 .00 
Mar. 15 4.3 4.5 3.4 .03 .35 • 05 . 15 .15 
Mar. 15 4.8 4.1 3.5 • 37 .56 .11 .00 .01 
Mar. 16 4.5 4.5 3.7 .06 . • 32 .00 .07 • 09 

Manganese 

Reaetion Basin Pilot Filter 
Raw Water Erfluent Efflue.nt 

T s 'l s T s 

.65 .55 .42 • 31 

.60 .60 .60 .50 

.60 .60 .50 .so 

.55 .60 .so .so 

.56 .43 .49 .44 

.55 .45 .46 . 39 

.54 .53 .51 .41 
• 45 .42 .40 .36 
.40 .41 .34 .40 
.44 .39 • 39 
.60 . .'51 1 4 .14 • 30 
.so ·'' 1 1.0 .17 .60 
.60 .44 1 3 .21 .40 
.so .43 1.3 .14 .80 
.59 1. 4 . .63 .37 .38 
.41 .41 1'.2 .20 .46 .23 
.41 .41 1.1 .47 .63 .45 
.41 .41 1.4 • 79 .76 .52 
• 80 . 80 1.3 .88 .93 .98 
• 75 .80 1.5 .77 .94 • 85 
• 75 • 75 1.4 • 70 .83 .60 
. 75 . 75 1.3 .44 .67 .56 
.80 .60 1.3 .67 .93 .65 

. fO .88 • 75 
.60 .60 1.3 .55 • 72 .63 
.80 .65 1.2. .55 • 84 • 87 
• 55 .60 1.1 .84 .84 .81 
.75 • 75 1.3 .91 .63 .42 
. 80 .70 1.2 .94 .61 
.70 .60 1.3 1.1 • 74 
• 90 .90 1.2 .88 .90 
. 80 .90 1.2 • ~5 .59 .66 
.90 . 80 1.2 .83 • 80 • 78 

East Plant 
Effluent 
T ·s 

.14 .14 

.17 . 14 

.17 .14 

.17 .14 

.OS .04 

.OS .04 

.OS .00 

.04 .03 

.04 .03 

.OS 

.00 

.02 

.04 

.01 

.07 .04 

.05 .04 

.06 .04 

.OS .OS 

.03 .02 

.00 .00 

.00 .oo 

.01 .00 

.00 .00 

.00 . 01 

.01 .00 

.03 .02 

.00 • 02 

.00 .00 

.00 .03 

.00 .00 

.oo .02 

.03 .03 

.02 .01 

. MnO~ Feed 
Rate (mg/1) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1. 91 
2.02 
2.04 
1.97 
1. 97 
2.05 
2.19 
1. 96 
1. 22 
1. 32 
1. 41 
1.14 
1.12 
1. 19 
1. 25 
1. 16 
1.14 
1.19 
1.16 
1.09 

. • 58 
.46 
. 43 

Time Since 
Backwash 
(hr:min) 

7:26 
17:01 
29:36 
43:12 
14:56 
32:27 
50:00 
4:10 

23:03 
53:34 
11:20 
i8:36 
33:43 
45:50 
11:48 
24:48 
37:47 
51:26 
11:18 
25:50 
30:13 
56:43 
18:18 
28:39 
40:21 
50:49 
11:26 . 
21:01 
34:01 
49:19 
14:14 
20:04 
32:03 

....... 
....... 

·. 



Iron 

Reaction Basin Pilot Filter East Plant 
Raw Water Effluent Effluent Effluent 

Date(1979) 1' s T s T s T s 

Mar. 21 4.3 4.6 3.4 .25 .63 .20 .12 .10 
Mar. 21 p.5 5.4 4.8 .22 • 36 • 17 .15 .16 
l-!ar. 22 ~.8 4.6 3.8 .23 . 75 .30 .20 .10 
l-!ar. 23 4.2 3.7 2.9 . 16 .02 .18 .18 
Mar. 23 4. 7 3.9 3.4 .23 .69 • 15 .72 .11 
Mar. 28 4.3 4.1 3.3 .11 .19 .28 .16 .23 
Mar. 29 ~.5 3.9 1.7 • 38 .07 .11 .08 .12 
Mar. 30 ~.8 4.9 3.1 .18 .46 .18 .14 .21 
May 16 ~.1 3. 7 3. 1 .40 .74 .52 .15 .13 
May 17 3.9 3.8 2.9 .20 .63 • 13 .20 .08 
May 18 3.4 3.8 2.8 .29 .11 • 13 .15 
Hay 19 4.0 3.8 2.8 .33 • 83 .03 .00 .11 
May 20 4.5 4.0 3.4 .34 .23 • 21 • 19 .05 
May 22 4.5 4.0 2.9 • 32 . • 33 .17 .04 .OS 
May 23 3.8 3.9 2.0 .04 .05 .01 .03 .03 
Hay 24 3.9 3.7 2. 7 .05 .52 .05 .15 .18 
Hay 25 3. 7 3.7 3.1 .06 .73 .03 .17 .08 
May 26 3. 7 3. 7 2.9 .35 1.9 .13 .06 .07 
May 28 3.9 3.6 3. 1 .06 .87 .27 • 30 .22 
May 29 4.1 3.5 . 2. 9 .06 .63 • 07 .11 .11 
May 29 3.9 3.6 3.7 .49 1.0 .10 .25 .16 
May 30 3.6 3.4 3.9 .14 1.8 .09 .03 .09 
May 30 4.1 3.7 3.0 • 32 .61 .25 .24 .35 
May 31 4.0 3.7 2.8 .17 . 79 .16 .22 ;22 
May 31 3.8 4.2 3.2 • 30 . 80 • 26 . 17 .19 
June 1 4.1 5.3 3.3 .16 . 1.4 .47 .28 . 20 
June 2 5.0 4.6 3.0 .46 • 78 .32 • 36 .28 
June 2 4.6 4.5 2.9 . 38 1.1 • 36 . 32 .29 
June 3 4.0 4.4 2.8 .46 1.0 .27 .26 .27 
June 3 4.2 4.4 3.2 .10 1.4 .15 • 30 .24 

* T - refers to total metal concentration (mg/1) 
@ S - refers to soluble metal concentration (mg/1) 

Manganese 

Re.1ction Basin 
Raw Water Zffluent 
T s T s 

.50 .50 70 .66 

.50 .so .80 .75 

.50 .50 . 70 .62 
.60 .50 .62 .59 
.50 .60 . 70 • 68 
.60 • 70 .80 .63 
.60 .60 .70 .40 
.60 .70 .70 
.55 .40 .40 .55 
.40 . 55 . 50 .61 
.40 .40 .55 .55 
.40 .40 .60 
.80 .60 .60 .54 
.60 .60 .80 .50 
• 80 .70 • 80 .58 
.38 .28 . 61 .57 
.51 .54 .59 .56 
.52 .so .46 .53 
.60 .so ~. 1 .71 
. 80 .40 .40 .60 
.54 .58 .79 .79 
.48 .57 . 84 .77 
.48 .48 . . 79 • 75 
.48 .48 .55 .66 
.52 .62 .91 .78 
.47 .48 . 74 .66 
.51 .49 . 80 .61 
.42 .45 .77 .68 
.47 .30 .78 ,81 
.55" .53 . 81 .71 

Pilot Filter East Plant 
Effluent Effluent 

T s T s 

. 33 .• 35 . 01 .01 

.58 .53 .01 .oo 

.45 .43 .01 .01 

.58 .54 . .02 .01 

.60 .46 .07 .02 

.41 .45 .01 .02 

.61 

.40 • 30 .00 .02 

.44 .44 .02 .02 

.61 .53 .00 .02 

.61 .59 .02 .02 

.57 .57 .03 .02 

.53 .57 .03 .00 

.51 .42 • 02 .02 

.51 .51 .03 .03 

.41 .40 .02 .02 

.56 .52 .01 .01 
,46 ,37 .09 . 07 
,64 • 70 .01 • 01 
.69 .55 .00 .00 
• 70 ,71 .03 .02 
.71 ;71 .03 .01 
.60 .59 .02 .OS 
.78 • 76 .03 .01 
.72 .77 .02 .01 
.48 .53 .02 .02 
.72 .69 .oo .oo 
.56 .48 .00 .00 
.66 .63 .01 .01 
• 79 .73 .01 .01 

MnO~ Feed 
Rate (mg/1) 

.49 

.52 

.53 
• 54 
.56 
.45 
.506 
.45 
.22 
.25 

.28 
• 29 
• 31 
• 32 
.22 
• 28 : 

• 25 
• 86 
• 75 
• 89 
• 86 
.93 
.98 
.80 
.85 
• 84 

.. 

• 89 
.91 
.9_6~~ ·~ 

Time Since 
Backwash 
(hr:min) 

57:33 
"9:58 
22:17 
40:37 
50:40 
15:05 
36:33 
52:11 
11:55 
23:55 

57:12 
13:25 
49:29 
16:00 
24:14 
40:18 
52:15 
14:22 
23:42 
35:20 
48:06 
13:23 
22:51 
33:46 
48:03 
9:58 

22:43 
34:58 

__ _!.8:19_ 

o.....J 
co 

·. 



Table 9A. .Raw Water Stability Pa~ameter Data 

Parameter Total Hardness Calcium Hardness 
Date mg/1 as Caco3 mg/1 as Caco3 

Jan 6 431 282 
Jan 9 480 

I 

272 
Jan 20 442 285 
Jan 21 440 288 
Jan 27 442 303 
Jan 28 454 304 
Feb . 14 444 284 
Feb 15 445 286 
Feb 20 461 308 
Feb 27 455 292 
Mar 1 461 290 
Mar 2 453 276 
Har 6 458 288 
Har 8 450 292 
Har 9 459 283 
Har 11 448 270 
Mar 15 448 281 
Har 21 452 277 
Mar 22 ' 453 283 
Mar 23 455 282 
Har 29 476 310 
Har 30 490 301 

Mean 454 288 

Standard 11.8 6.2 
Deviation 

Alkalinity pH 
mg/1 as CaC03 unlts 

262 7.22 
266 7.50 
263 7.42 
261 7.48 
254 7.48 
262 7.46 
270 7.38 
259 7.48 
253 7.52 
259 7.36 
258 7.30 
266 7.38 
250 7.50 
259 7.56 
272 7.52 
287 7.38 
258 7.38 
259 7.'+2 
252 7.40 
249 7.40 
242 7.36 
245 7.36 

259 7.42 

5.4 0.08 

. \ 

Temperature 
0~ 

9.4 
9.0 
9.2 
9.0 
9.2 
9.0 
9.0 
9.0 
9. 2 . 
9.2 
9.0 
9.0 
9.0 
9:0 
9.0 
9.0 
9.0 
9.2 
9.2 
9.2 
9.0 
9.0 

9.08 

0.11 

Total Residue 
mg/1 

634 
646 
627 
615 
629 
645 
671 
642 
641 
740 
594 
552 
759 
639 
653 
660 
663 
711 
675 
667 
690 
727 

658 

37.6 

Dissolved Oxygen 
mg/1 

0.10 
0.00 
0.16 
0.42 
0.00 
0.14 
0.00 
0.02 
0.00 
0.30 
0.00 
0.00 
0.06 
0.00 
0.00 
0.72 
0.04 
0.00 
0.34 
0.06 
0.00 
0.10 

0.11 

0.19 

" \0 



Table lOA. Pilot Effluent Stability Parameter Data 

Total Calcium 
Parameter Hardness Hardness Alkalinity 

Date mg/1 as Caco3 mg/1 as CaC03 mg/1 as Caco3 

Jan 6 430 282 264 
Jan 9 440 275 256 
Jan 20 454 284 258 
Jan 21 454 291 255 
Jan 27 515 297 252 
Jan 28 468 304 258 
Feb 14 465 282 254 
Feb ·15 443 302 263 
Feb 20 470 311 251 
Feb 27 453 279 250 
Mar 1 458 285 257 
Mar 2 471 320 264 
Mar 6 439 288 267 
Mar 8 446 290 262 
Mar 9 442 274 287 
Mar 11 443 287 255 
Mar 15 448 288 257 
Mar , 21 441 282 265 
Mar 22 446 286 254 
Mar 23 447 286 246 
Mar 29 435 291 252 
Mar 30 444 284 264 

Mean 452 289 258 

Standard 12.5 11.8 8.4 
Deviation 

pH Temgerature 
units c 

7.70 11.6 
7.82 10.6 
7.98 11.4 
7.78 11.2 
7.92 12.8 
7.84 12.4 
7.88 12.6 . 
7.88 12.2 
8.04 12.0 
8.00 12.2 
7.90 12.0 
7.72 12 .. 2 
7.98 13.0 
7.96 12.0 
7.86 12.2 
7.80 13.0 
7.78 12.6 
7.86 13.4 
7.88 12.0 
7.74 11.8 
7. 70 13.4 
7.72 13.0 

7.85 12.3 

.08 0.42 

Total 
Residue 

mg/1. 

620 
598 

' 643 
656 
674 
670 
658 
650 
737 
684 
683 
542 
671 
720. 
541 
730 
646 
505 
500 
542 
699 
704 

639 

60.9 

Dissolved 
Oxygen 
mg/1 

9.52 
9.58 
9.38 
9.46 
9.60 

10.48 
9.96 
9.12 
9.70 
9.36 
9.00 
9.24 
9.82 
9.50 
9.96 
9.08 
9.48 
8.88 
9.88 
9.92 
8.98 
9.06 

9.05 

0.364 

Mean 
Dose Rate 
mg/1 MnO~ 

0.00 
0.00 
0.00 
0.00 
0~00 

0.00 
2.02 
2.02 
2.02 
2.02 
1. 20 
1. 20 
1. 20 
1. 20 
1. 20 
1. 20 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 

00 
0 



Table llA. East Plant Effluent Stability Parameter Data 

Total Calcium 
Parameter Hardness Hardness Alkalinity 

Date mg/1 as Caco3 mg/1 as Caco3 mg/1 as caco3 

Jan 6 358 199 168 
Jan 9 350 195 139 
Jan 20 373 206 166 
Jan 21 371 200 159 
Jan 27 400 208 158 
Jan 28 387 225 165 
Feb 14 357 248 170 
Feb 15 358 201 164 
Feb 20 381 219 164 
Feb 27 360 212 177 
Mar 1 357 222 127 
Mar 2 359 196 162 
Mar 6 347 197 155 
Har 8 358 196 . 166 
Mar 9 345 192 160 
Mar 11 345 190 164 
Mar 15 351 194 158 
Mar 21 351 186 143 
Mar .22 343 191 151 
Mar 23 306 184 140 
Mar 29 344 179 147 
Mar 30 343 184 156 

Mean 358 201 157 

Standard 6.7 12.5 11.5 
Deviation 

pH Temgel:'atul:'e . 
units c 

7.82 9.0 
7.82 9.0 
7.90 9.0 
7. 70 9.0 
7.76 9.0 . 
8.06 9.0 
7.90 9.0 
7.74 8.8 
7.86 9.0 
7.70 9.0 
7.38 9.0 
7.78 9.2 
7.78 9.0 · 
7.86 . 8. 8 
7.92 9.0 
7. 78 9.0 
7.72 8.8 
7.86 9.0 
7.86 9.0 
7.54 8.8 
7.58 9.0 
7.80 9.0 

7.78 9.0 

0.156 .095 

Total Residue 
mg/i 

523 
. 510 

515 
: 

521 
.529 
518 
577 
521 
538 
601 

470 
434 
539 
·432 
665 
538 
549 
453 
488 
584 
618 

545 

103.2 

Dissolved Oxygen 
mg/1 

11.20 
11.40 
11.14 
11.26 
11.48 
11.78 
10.74 
11.28 
11.22 
11.24 
11.28 
11.16 
10. 78 
11.48 
11.26 
11.58 
11.40 
11.32 
10.14 
11.08 
11.12 
11.64 

11.23 

0.316 

00 
I-' 
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Table 12A. Analysis of Variance, Reaction Basin Effluent Iron and 
Manganese 

Degrees of Sum of Mean 
Source ·: Freedom ·Squares Squares F 

Total ·rron 

Total 43 15.0111 
Between Dosage 3 1.8784 .6261 1.907 
Within Dosage 40 13.1326 .3283 

·· soluble Iron 

Total 41 .7467 
Between Dosage 3 .0862 .0288 1. 6541 
Within Dosage 38 .6605 .0174 

Difference Between Total and Soluble ·Manganese 

Total 50 6.7518 
Between Dosage 4 4.8238 1.2060 28.7731** 
Within Dosage 46 1.9280 .0419 

Soluble Manganese 

Total 49 1.9393 
Between Dosage 4 .9564 .2391 10.9679** 
Within Dosage 45 .9829 .0218 

* Significant differance exists at the 0.05 level of significance. 
** Significant differance exists at the 0.005 level of significance. 



Table ·13A. Analysis of Variance, Pilot Filter Effluent 
Manganese 

Degrees of Sum of 
Source · · Freedom ·· Squares 

Total 
Between Dosages 
Within Dosages 

Total 
Between Dosages 
Within Dosages 

Total 
Between Dosages 
Within Dosages 

Total 
Between Dosages 
Within Dosages 

47 
4 

43 

48 
4 

44 

52 
4 

48 

49 
4 

45 

· ·Total ·Iron 

21.5679 
3.~735 

18.1944 

· ·Soluble ·I :ton 

• 7470 
.1203 
.6267 

·Total ·Martganesc 

4.95 
3.50 
1.45 

Soluble Manganese 

1.9393 
.9564 
.9829 

Mean 
Squares 

.8434 

.4231 

.0301 

.0142 

.88 

.03 

.239 1 

.0218 

Iron and 

F 

1.993 

2.112 

29.13*~~ 

10.9679** 

* Significant difference exists at the 0.05 level of significance. 
** Significant difference exists at the 0.005 level of significance. 

84 
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Table 14A. Analysis of Variance, Affect due to KMn04 addition for East 
Plant Effluent. 

Degrees of Sum of Mean 
Source Freedom Squares Squares F 

Total Iron 

Total 47 .8489 
Between Dosages 1 .0056 .0056 .3055 
Within Dosages 46 • 8433 .0183 

Total Manganese 

Total 61 .1001 
Between Dosages 1 .0454 .0454 49.8** 
Within Dos .:.ges 60 .0547 .0009 

* Significant difference exists at the 0.05 level of significance· 
**Significant difference exists at the 0.005 level of significance· 



Table 15A. Analysis of Variance Mean Squares for Raw Water Stability Parameters. 1 

Degrees of Total Calcium 
Source Freedom Hardness Hardness Alkalinity ~ Temperature 

TOTAL 21 

DOSE 3 201.3704 135.6204 227.1111 .003551 .019259 

RUN2 2 183.6806** 449.1801 90.6250 .010868 .013889 

DOSE X RUN 5 267.3778** 211. 7944 162.40001c* .006126 ~ 613111 

WiTHI-N SAM}?LE 11 138.6818 38.5909 28.6364 .006782 .012727 

1 The table was copied from a computer analysis printout. 

2 Assuming runs to be repititions, therefore random effects, 

* Those values in which the observed significance level was less than 0.05~ 

** Those values in which the observed significance level was less than 0.01, 

Total 
Residue 

4207.7037 

2662.5139 

2820.1944 

1415.2727 

Dissolved 
Oxygen 

. 002884 

• 051118 

.037019 

.036345 

00 
0"1 



Table 16A. Analysis of Variance Mean Squares for Pilot Effluent Stability Parameters. 1 

Degrees of Total Calcium 
Source Freedom Hardness Hardness Alkalinity _pJ!_ Temperature 

TOTA~ 21 

DOSE 3 381.4514 49.8218 116.9884 .020018 -1.2015 

RUN 2 205.2813 4.0451 52.1285 .023951* 1. 4139** 

DOSE X RUN 5 729.8708* 197.7819 43.9486 .006926 o. 4311** 

WITHIN SAMPLE 11 156.0000 138.8182 70.9545 .005845 0.1782 

1 The table was copied from a computer analysis printout. 

* Those values which the observed significance level was less than 0.05. 

** Those values which the observed significance level was less than 0.01. 

Total 
Residue 

8226.0995 

9184.2535 

6165.6819 

3707.2273 

Dissolved 
Oxygen 

.1057 

.1629 

.2530 

.1322 

00 
-.....j 



Table 17A. Analysis of Variance Mean Squares for East Plant Effluent Stability Parameters. 1 

Degrees of Total Calcium Tot al 
Source Freedom Hardness Hardness Alkalinity _pJ!_ 1_empe_J:'ature Residue 

TOTAL 21 

DOSE 3 796.8056 900.0648* 356.3403* .01758 . • 00620 3057.1759 

RUN 2 112 0 5000 41.8889 129.5313 .00946 .00347 7956.8472 

DOSE X RUN 5 348.3333** 162.5778 53.6375 .01923 .01128 7264.1111 

WITHIN SAMPLE 11 44.2727 155.3636 133.3182 .02444 .00909 10656.7273 

1 The table was copied from a computer analysis printout. 

* Those values in which the observed significance level was less than 0.05. 

**Those values in which the observed singificance level was less than 0.01. 

Dissolved 
Oxygen 

0.07287 

:.o. 19906 

0.14230 

0.10016 

00 
00 
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Description of the East Water Treatment Plant (31) 

The Brookings East Water Treatment Plant, which has a design 

capacity of 10.5 m3/min. (4 mgd), obtains its water supply from three 

wells approximately one mile east of the plant. The aquifer covers ap-

proximately 52 square kilometers (20 sq mi), and has a drainage area of 

about 337 -sq km· (130 sq mi). This provides an average annual recharge 

of 34 million cu~ic meters (9 billion gallons). The geohydraulic charac­

teristics of the wells are presented in Table 18A. Table 19A contains a 

fairly complete characterization of the wells and finished waters. 

A flow diagram of the . plant is presented in Figure ·25A. The water 

is pumped from the wells through a 50-cm (20 in) transmission line. The 

water enters the aerator through two 30-cm (12 in) inlet pipes. The 

aerator is of the induced draft type with capacity of 10.5 m3/min (2800 

gpm).' In addition to aeration, the aerator strips such gasses as co2 

and H2S fromi:the water. 

Following aeration, the water enters the solids contact upflow 

basin. This unit has a water depth of 5.82 m (19 ft, 1 in), a diameter 

of 18.0 m (59 ft) and a detention time of 145 minutes at design flow. 

Lime for pH adjustment and aluminum sulfate (alum) for coagulation, are 

added to the mixing zone of this unit. The floc particles, which settle 

to the bottom of the basin, are removed automatically. The clarified 

water is withdrawn from the surface of the basin through launder troughs 

and flows to the recarbonation basin .. 

The recarbonation basin has a detention time of 20 minutes at de-

sign flow. Since the present demand is approximately one third of the 
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design flow {the discharge from one well), the basin .has been partitioned 

to maintain the 20 minute detention time. The resultant dimensions of 

the basin are: 6.1 m (20ft) length, 5.2 ~(17ft) width, and 2.7 m 

(9 ft) water depth. The purpose of this unit is to combine co2 with 

the dissolved calcium carbonate and convert it to bicarbonate form to 

prevent the build-up .of carbonate on the grains of the filter medium, 

and also to stabilize the water. 

Table 18A. 

Parameter 

Depth 

Diameter 
(casing) 

Discharge 
(measured 
1-22-78 

Drawdown 

1 Geohydraulic Characteristics of Supply Wells, East Plant. 

Well 1 - Well 2 Well 3 

19.8 m (65 ft) 19.8 m (65 ft) 19.8 l!l (65 ft) 

0.60 m (24 i.n) 0.60 m (24 in) 0.60 m (24 in) 

231 m3 /h 3 229.6 m /h 266.4 m3/h 
(1017 gpm) (1011 gpm) (1173 gpm) 

5.4 m/24 hrs 3.92 m/5.5 hrs 3.55 m/8.5 hrs 
(17.75 ft)/ (12.92 ft)/ (11.67 ft)/ 
24 hrs 5/5 hrs 8.5 hrs 

Approximate well log: 

Depth 

0 - 0.9 m (0 - 3 ft) 

0.9 - 15.2 m (3 - 50 ft) 

15.2 - 15.8 m (50 - 52 ft) 

15.8 - 19.8 (52 - 65 ft) 

Topsoil 

Fine Sand 

Blue Clay 

Gravel and Sand 

1Data in this table obtained from Water Department records, City of 
Brookings, SD. 
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Table 19A. Typical Water Analyses, East Plant, in mg/1. 
1 

Finished 
!Well 1 Well 2 Well 3 Water 

Parameters !mg/1 . mg/1 mg/1 mg/1 

pH 7.29 7.34 7.4 7.92 

Alkalinity - ~ 253.0 253.3 246.5 200.0 
(CaC3) 

Bicarbonate 308 ; 5 309 300.5 244.0 
HCo

3
(u CaCo 3) 

--

Total Hardness 408.0 455.0 487.0 372.7 

Calcium Hard- 96. '65 116.7 . 122.5 90.1 

ness (Ca) 

Magnesium Hard- 32.74 43.9 43.95 35.8 

ness (Mg) 

Conductivity 1685. 0 867.0 890 731.3 

moh/cm 

Total solids 620~0 712.0 748 548.0 

Dissolved oxygen 0.0 0.0 0.0 11. 1 

Iron Fe 2.88 3. 72 4.3 0.07 

Manganese (Mn) 0.38 0.64 0.68 0.05 

Chloride (Cl) 4.75 7.6 11.3 7.17 

Sulfate (so4) 132.40 249.0 283 195.0 

Nitrate (as N) 0.10 0.1 0.1 0.1 . 

Fluoride (F) 0.26 0.25 0.25 0.91 

Sl')dium (Na) 11.0 18.8 17.5 16.2 . 

Potassium (K) 2.43 2.92 3.05 2.78 

Chlorine Residual - - - 0.80 

Measurements 2 3 2 3 

1 . 
Except pH 
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Figure 26A. flow Diagram and Units of t~e East Treatment Plant, Brookings, South Dakota. \0 
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February 12, 1979 a permanganate saturator equipped with a metering 

pump (A-745) both manufactured by Wallace and Tiernan was .installed at 

the East Plant. The potassium permanganate was fed into the recarbona­

tion basin at a dose rate of 0.12 mg/1 KMn0
4 

(42). 

The recarbonated water flows through a 1.22 m (48-in) pipe to two 

gravity rapid sand filters, each having two cells that can be backwashed 

separately. The dimensions of each cell are 4.27 m by 7.92 m (14 ft x 

26 ft). The filter medium consists of No. 1 anthrafilt (anthracite coal) 

with grain sizes ranging from 0.6 to 0.8 nun. The uniformity coefficient 

of the particles is 1.75 and the medium depth is 0.68 m, (27-in). Th~ 

medium is underlai.d by 0. 4 m (16 -in) of graded supporting gravel. Each 

cell is backwashed at a rate of 0.26 m3/h/m2 (12.36 gal/min/sq ft), 

usually for about 7 minutes every 48 hours. 

The backwashing schedule was changed on March 1, 1979. Thereafter, 

the filters were backwashed every 10 days or whenever the headloss 

reached 8 feet, whichever occurred first (42). The washwater is re­

claimed and returned to the upflow basin influent . After filtration, 

the water flows to the clearwell. Chlorine gas for disinfection and 

fluoride for prevention of dental caries are added to the clearwell. 

Water flows from the top of the aerator through the entire plant by 

gravity. From the clearwell, the water must be pumped to an 11, 350 

cubic meter (3 MG) ground storage reservoir by three low-head pumps. 

Three high-lift pumps deliver the water from the reservoir to the 

distribution system. 

The usual dosages of the chemicals added are: 



Lime 

Alum 

Carbon dioxide 

Chlorine 

Fluoride 

90 mg/1 

10 mg/1 

6. 18 -mg/1 

2.25 mg/1 

1.0 mg/1 
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