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INTRODUCTION 

Wheat streak mosaic is a serious virus disease that 

threatens the production of winter wheat in some areas of . 

the United States. It is caused by a virus transmitted by 

a wheat-curl mite, Aceria tulipae Keifer. Immunity from 

the virus has not · been found in Triticum species but 

tolerance to &0me strains of the virus has been reported. 

An obvious way to _improve this important crop plant 

is to exploit the variability ·Qf its relatives. A good 

sourc.e of immunity found in Agropyron intermedium (host) 

Beau (2n = 70) has been used in crosses with common wheat, 

Triticum aestivum L. em. Thell. Transferring the immunity 

has been difficult because homoeologous chromosomes will · 

not pair due to the presence of a gene on 5BL that acts as a 

suppressant. 

Interchanges between chromosomes can be achieved in 

seve~al ways. One is by irradiation (Sears 1956, 1977). 

Another is by removing or suppressing a dominant g ene on 5B 

that prevents pa~ring of homoeologues (Riley et a1. 1965, 

Sears 1975, 1977). A third is by taking advantage of the 

joining of two telocentrics from ~ifferent chromosomes ori­

ginating from misdivision (Morrison, 1954). 

The transfer of characters to wheat from alien spe­

cies contributes to our understanding of evolutionary rela­

tionships and may improve common wheat (Larsen, 1974). If 
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the interchanged segments are homoeologous and compensating, 

they are transmitted normally through egg and pollen 

(Dvorak and Knott, 1977). 

Once transfers are achieved, it is desirable to eva­

luate the derived lines cytologically and agronomically. 

The purposes of this study are two-fold. One is to 

characterize lines cytologically. Chromosome pairing in 

F.1 hybrids can indicate. the size and nature of 

translocations. In the Triticinae, chromosome pairing can 

be redu~ed as a result of chromosomal structural 

·~iff~rentiation. The second purpose is to measure the 

~frects or the ~gropyron chromatin on th~ phenotypes of the 

~ines studied in . relation to the recurrent parent, Centurk, 

·and to one another. 



LITERATURE REVIEW 

Common wheat Triticum aestivum L. is a hexaploid 

(AABBDD 2n = 42) with triplication of genetic material. 

For this reason it is favorable for use in experiments 

which involve gross changes in the chromosomes. Sears 

(1954) and others have shown that the chromosomes or wheat 

fall into seven homoeologous groups of three pairs of 

chromosomes, each reflecting the origin of wheat from 

three related diploids each wi~h seven pairs or 

chrompsomes. Within these ' seven homoeologous groups of 

three pairs, chromosomes are so closely related, that an 

extra dose of any one will compensate for the absence of 

either of the other two (Sears, 1966). 

A gene 'Ph' allows only pairing of homologues (Wall 

et al., 1971). It suppresses pairi~g of hornoeologous 

chromosomes. In tetraploid wheats (AABB, 2n = 28) and 

hexaploid wheats (AABBDD, 2n = 42), only bivalents are 

formed so disomic inheritance is the rule. 

3 

The cytological diploidizing system that limits 

synapsis to homologous chromosomes in polyploid wheats 

results from a balanced ~nteraction among pairing promoting 

and pairing suppressing genes. It was discovered that 

chromosome 5B of wheat carries a gene that s~ppre s ses the 

pairing of homoeologous chromosomes (Okamoto, 1958; Sears 

and Okamoto, 1958; Riley and Chapman, 1958). Feldman (1966) 



pointed out that the activity of chromosome arm 5B is 

controlled by a single dominant gene. Wall et al. (1971) 

concluded that common wheat carries a single gene 'Ph', 

(homoeologous pairing) at the distal end of the long arm 

of 5B controlling the diploidizing system. 'In the absence 

of this gene, the homoeologous chromosomes of A, B and D 

genomes may synapse with each other and also with at least 

some homoeologues in related species and genera. 

There are number of other genes in wheat that affect 

pairing. Genes in chromosome ar11lS 3AS and 3DS play a 

similar but minor suppressing role. There is probably a 

third minor suppressor on chromosome 4D, which is almost 

as effective as the gene on 3AS (Driscoll, 1972; Sears, 

1977). 

There are also some genes that promote pairing. 

There is a gene on chromosome arm 5BS, which has an opposite 

but substantially less effect than gene 'Ph'. Moreover 

genes on chromosome arms 2AS and 3BL also carry genes essen­

tial to normal pairing. Absence of these two gene s l eads to 

asynapsis. Chromosome arm 3AL also slightly promotes 

pairing. It is well known that the cytological 

diploidizing system of wheat is caused by the integrated 

activity of several genes. Some of these promote , while 

others suppress synapsis between homoeologous chr omosomes 

but a gene on chromosome arm 5BL plays a major suppressive 

role. The diploidizing system acts either by amplifying 



differences acquired by homoeologous chromosomes during 

their evolution (Dvorak, 1975) or by preventing the for­

mation of the synaptinemal complex (Dvorak, 1972b). 
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Some diploid relatives of wheat, particularly T• 

speltoides (= Aegilops speltoides) and T. tripsacoides (= 

A. mutica), have genes that promote homoeologous pairing in 

their hybrids (Riley et al. 1961). The accessory (B-type) 

chromosomes carried by some strains of Aegilops (Triticum) 

suppress pairing by acting like the Ph gene (Dover and 

Riley, 1972). Mochizuki (1962} found that the addition 0f 

a particular pair of chromosomes of Agropyron elongatum to 

~urum wheat (a tetraploid) resulted in homoeologous 

pairing. 

The other genera besides Triticum which belong to 

the subtribe Triticinae of the tribe Triticeae of the 

family Graminae are Agropyron Gaertn; Secale L; and 

Haynaldia Shur. Cytogenetic studies in T. umbellulatum­

wheat additions (Sears, 1956), Agropyron-wheat additions 

(Knott, 1958; Weinhues, 1967; Dvo~ak, 1972) and T. comosum­

wheat additions (Riley et al. 1966) have shown that wheat 

chromosomes do not synapse with their alien homoeologues 

when the diploidizing system is active. When the 

diploidizing system is suppressed, however, the wheat 

chromosomes synapse with their alien homoeologues (Dvorak, 

1972b, Dvorak and Knott, 1973, 1974). 
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The genetic relationships between particular alien 

and wheat chromosomes are indicated by the degree to which 

alien chromosomes substitute for wheat chromosomes (Sears, 

1975). Convincing evidence for genetic homoeology of chro­

mosomes of Agropyron, Aegilops and Secale with those of 

wheat comes from a study of the compensation effect in male 

gametophytes. According to Knott (1968) pollen grains with 

twenty wheat chromosomes and one Agropyron chromosome func­

tion just as well as pollen grains with twenty-one wheat 

chromosomes. From a study .of fifteen substitution lines 

~nvolving a wheat-Agropyron derivative, Knott (1964) round 

that ths Ag~opyron chromosome compensated very well ror 6A 

·and was homoeologous to it. Johnson (1966) showed that the 

Agropyron chromosome from PW-327 substituted for members of 

homoeologous group 6, particularly chromosomes 6A and 6D. 

Alien substitution lines of Agropyron intermedium developed 

by Weinhues (1966) were fully fertile and vigorous. The 

substitutions were probably between homoeologues. The 

three alien subst~tution lines developed by Riley t al . 

(1966) of chromosome 2H of Aegilops comosa are also 

v~gorous and have relatively normal spikes and fertility. 

CI 15092, a disomic substitution line developed at 

South Dakota ·State University, has a pair of chromo somes 

from Agropyron lntermedium. CI 15092 is vigorous and fer­

tility is as high as 89% (Wong, 1972). The allen pair 
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probably are homoeologous to the 4th group (Larson, Wells 

personal communication). If a chromosome of the subtr!be 

Tricicinae will only substitute for those of a particular 

homoeologous group of wheat, then this chromosome may be 

said to have specific substituting ability (Riley et al. 

1966). On the other hand, if an alien chromosome will 

substitute for the chromosomes of more than one homoeologous 

group, it may be said to have general substituting ability 

(Riley et al. 1966). 

Among all the related genera, the Agropyrons are 

noted · for their resistance to three types of wheat rusts, 

to bunt and to wheat streak mosaic. Knott (1961, 1968) 

transferred stem rust resistance from Agropyron elongatum 

(Host) Beauv. to common wheat, using the wheat-Agropyron 

derivative PW-327. Tests of the backcross derivatives of 

PW-327 and Thatcher showed resistance against stem rust to 

be dominant. Sears (1968) showed that an Agropyron genome . 

is most closely related to the A genome of wheat. On the 

cytological side there is not much pairing of Agropyron 

with wheat chromosomes, when the 5B effect is neutralized. 

Johnson and Kimber (1966) found 4.8% of pairing of a telo­

centric of Knott's chromosome in hybrids in which the 5B 

effect was suppressed. 

It is well known that each kind of Agropyron chromo­

some is able to substitute only for its homoeologous 
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chromosomes in wheat (Larson and ·Atkinson, 1970). Agropyron 

addition and substitution lines appear unlikely to be of 

direct value in wheat production (Knott, 1968). Addition 

lines having only one or two alien chromosomes and · an intact 

· genetic complement of wheat are less vigorous than normal. 

They tend to be cytologically unstable giving rise to mono­

somic additions. Due to gametic selection, only a relatively 

small number of resistant plants (approximately 20%) are 

found in the offspring of 43 chromosome plants. About 3-5% 

of the total offspring will have 44 chromosomes as 22 biva­

lenti. In spite of useful traits such as disease resistance, 

earliness (Sear3, 1956) winter hardin2sa, higher protein 

content (Riley and Ewart, 1970) and larger seeds (Weinhues, 

1966) which are all transferred to recipient species by 

alien chromosomes, none of the addition line~ have found a 

place in agriculture (Khush, 1971). The quantitative traits 

in wheat such as tillering, spike conformation, straw 

strength and length are adversely affected (Riley and 

Kimber, 1966). Weinhues (1966) found a delay of g rmination 

in addition lines of A. elongatum. Commercial value of 

addition lines has been limited by cytological instability, 

reduced fertility and adverse effects on agronomic trait • 

The main disadvantage of addition lines as parents 

in practical breeding is the loss of the added chromosome 
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to some progeny. For example, from the completely 

resistant offspring of a 44-chromosome plant~ there appear 

about 10% of plants with 2n = 43, which are difficult to 

identify morphologically from plants with 44 chromosomes. 

If the descendents are harvested for a few generations 

without elimination of susceptible plants~ there would be 

about 50% of susceptible plants after about seven genera­

tions (Weinhues, 1966). The best way to overcome this dif­

ficulty is by incorporation of Agropyron gene(s) into the 

chromosome set of wheat. IncorpJration of Agropyron chroma­

tin can be achieved by substituting for a whole chromosome 

pair of wheat a pair of chromosomes from Agropyrons or by 

manipulating the exchange of chromosomal segments between 

wheat and Agropyron (Weinhues, 1966). 

In o~der to develop substitution lines, the resistant 

plants carrying the right chromosomal combinations must be 

selected through cytological analysis of pollen mother cells 

in F1 and F2 generations. The cytological techn iques used 

in exploiting aneuploid material in the production of inter­

varietal and alien substitution lines were developed by 

Sears (1953) and further expanded by Unrau (1956), Person 

and Kuspira (1954) and Kuspira and Unrau (1957). 

To become a commercial variety, an alien su bst·itution 

line must demonstrate integration of the alien chr omosome · 

with the chromosomes of the recipient species and be relati­

vely free of meiotic instability. It must also be able to 
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compensate for the missing chromosome. Most rye chrom6so­

mes compensate poorly whereas Agropyron chromosomes com­

pensate somewhat better. Few undesirable traits should 

be present. Most of the substitution lines so far 

reported have been normal in vigor and fertility (except 

rye substitution lines) and inferior in yield and quality. 

· weique, a substitution line in which rye chromosome V 

(IR) replaced wheat chromosome lB, was quite successful as a 

commercial variety in Germany (Weinhues, 1965; Zeller, 

~972). Another substitutio~ line, Agrus, has a pair of 

/th h6moeologous wheat chromosomes replaced by 7el of 

Agropyron elongatum (Knott, 1964; Dvcrak, 1975). 

CI 15092, the source of resistance to wheat streak 

mosaic virus in the present study, was shown to have a 

pair of chromosomes from Agropyron intermedium substituted 

ror 4B in wheat (Larson, Wells, personal communication; 

Wang, et al., 1977a, 1977b). Immunity is completely 

dominant. Use of CI 15092 ·as a commercial variety is not 

feasible because of an inferior phenotype. Genes f om 

Agropyron species are simple to handle and most useful if 

they are transferred to wheat chromosomes (Knott, 1968). 

Even though the alien addition lines are not succe s­

ful commercially, they have been used in incorporat ing 

s mall segments of alien chromosomes into the chromosomes 

of wheat by irradiation. Sears (1956) transferred a 



segment of chromosome from Aegilops umbellulata (now 

Triticum) carrying rust-resistance by irradiating a mono­

somic addition line. The procedure used by Sears was 

time-consuming and screening for the alien chro~osome was 

not very effective (Driscoll, 1962). Elliott· (1957) and 

Elliot and Larter (1957) used thermal neutrons for the 

same purpose. 
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At South Dakota State University, a program was 

started for incorporating immunity from wheat streak mosaic 

virus from Agropyron intermedium to Triticum aestivum var. 

Centurk. CI 15092 was the immediate source. (Sandhu and 

Wells, personal communication). They selected families 

segregating 3:1 (resistance to susceptibility), discarding 

families segregating 1:3 which is a characteristic 

ratio from monosomic additions. 

To appraise the irradiation approach, transfers that 

have been induced must be evaluated cytogenetically and 

agronomically. One of the most commonly used methods for 

identification of the translocation chromosome is t he 

investigation of chromosome pairing at meiosis of their · 

hybrids with common wheat in F1· Such studies indicate the 

degree of homology and structural differentiation of chromo­

somes. In subtribe Triticinae, chromosome pairing can be 

reduced as a result of chrom0somal structural diff eren­

tiation (Sears, 1976; Dvorak, 1979). 
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Immediately following irradiation, assuming a 

reciprocal translocation is obtained, in the meiosis of X1 

plants, pairing between translocated and unchanged 

chromosomes would give rise to heteromorphic trivalents. 

In later generations, the F1 hybrids would only give rise 

to heteromorphic bivalents since the changed chromosome 

without the gene for immunity would not be present because 

of selection pressure. If an intercalary type of transloca­

tion is obtained, 21 ring bivalents are expected to occur in 

F1 hybrids. This type of interch~nge involves two breaks in 

the same chromosome arm, thus isolating a small segment 

from the alien chromosome carrying the gene for immunity. 

The intercalary type of translocation is the most favorable, 

in which there would be no loss of wheat chromatin but is 

very rare. The reciprocal type of interchanges would 

result in loss of wheat germplasm. 

Agronomic evaluation of translocation lines beyond 

cursory observation of qualitative characters involves 

field trials. Riley-67, a soft-red winter wheat variety 

developed at Purdue University, is the only induced trans­

location line that has succeeded as a variety (Knott, 1971). 

The resistance to leaf rust in Riley-67 was derived from 

Transfer. Transfer was developed by the pioneering work 

of Sears (1956) by irradiating a monoisosomic add i tion 

line. Sears produced seventeen translocation lines, but 



only Transfer was free of deleterious effects. Transfer 

was a few days earlier in flowering, but was low yielding 

due to small culms and spikes (Sears, 1956). 
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Of seven translocations produced by Knott (1961) 

only one translocation line involving 6A with its homoeo­

logue 6 el, derived from Agropyron elongaturn, has normal 

transmission through pollen. Knott and Dvorak (1976) used 

this line as a source of stem rust resistance for transfer 

to Australian cultivars ~ag1e and Kite. Sharma and Knott 

(1966) transferred Lr 19 for r~sistance to leaf rust fro~ 

Agrus·, a substitution line in which 7D was replaced by 7 

el from Agropyron (Dvorak and Knott, 1972). They recovered 

four translocation lines, but only one 'Agatha' was trans­

mitted normally through egg and pollen. A gene for yellow 

flour in Agatha is linked with a gene for resistance to 

rust. Dvorak (unpublished) broke that linkage. He 

crossed a substitution line carrying A. elongatum chromo­

some 7E, which is homoeologous with group _7 and has white 

flour, with Agatha to induce cross~ng over between the gene 

for r.esistance and the gene for yellow pigment (Knott and 

Dvorak, 1976). 

The translocation lines developed by Knott (1961, 

1968) ·were low yielding and several days late in flowering 

but were equal to or· better than the checks in protein 

content. The variety Transec, developed by Driscoll and 

355126 
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Jensen carried two genes for resistance to mildew and 

stripe rust on 4A/2N translocation (Driscoll, 1965). 

Weinhues (1974) produced seven translocation lines, with · 

the genetic background of the wheat variety Heine IV, but 

none of them outyielded the check. 

Cultivars that involved spontaneo~s translocations 

between wheat and alien chromosomes have been rather more 

successful than induced· translocation lines. The vari-
~ 

eties Kavkaz and Aurora, which have the lB/lR interchange 

are being grown commercial~y in Europe and U.s.s.R. An-

·other variety 'Agent' involving a 3D/Ag spontaneous 

transfer (Sehrs, 1974), has been extensively used in 

wheat breeding programs. Agent is the rust resistant 

parent of cultivars Gent, Sage and Cloud. 

The reason for the absence of deleterious effects 

~n some translocation lines and their presence in other 

~ines appears to depend on the ability of the alien chro-

matin to compensate for the replaced chromatin of the 

recipient chromosome. Translocation lines exhibit ing 

normal transmission through the pollen were labelled by _ 

Dvorak a..'1d Knott ( 1977) a3 'compensating transloca tions' • 

Compensating translocations are those in which a segment 

of a recipient chromosome is replaced by a corresp nding 

segment of a homoeologous chromosome and is able to com-
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pensate for the deficiency. The freq~ency of compensating 

translocations obtained by irradiation-induced methods is 
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rather high (Knott, 1968)~ 

Knott (1968) pointed out that somatic association 

or homoeologues would raise the frequency with which radi­

ation induced transfers involve only homoeologues. He 

suggested that the close association of homoeologous 

chromosomes may enhance the chances of homoeologous trans-

locations. Feldman et al. ' (1972) and Feldmann and Avivi 

(1973) demonstrated that homoeologous chromosomes in wheat 

are closely associated in somatic cells. 

Noronha-Wagner and Mello-Sampayo presented evidence 

or translocations occurring between homoeologous chromo-

somes in the backcross progenies of hybrids between Triti-

~ aestivum var. Chinese spring and T. durum var. Ld. 222 

(Mello-Sampayo, 1968). In plants, spontaneous somatic 

cross-overs occur both between homologous and homoeolog-

-ous chromosomes. This indicates that the heterochromatin 

or genetically related chromosomes came into contact 

(Natarajan and Ahnstrom, 1969). 

Compensating translocations obtained by ionizing 

radiation have involved homoeologous chromatin. Dvorak 

and Knott (1977) indicated that bomoeologous chromosome 

arms might be closely associated with another in somatic 

cells. The frequency of radiation-induced transfers to 
I 

homoeologous chromosomes is rather high. Whe.ther this 

rrequency is due to a non-random distribution of 



chromosomes within the nucleus or haplontic selection has 

not been clear. rr a translocation is to be rree of 

16 

. deleterious errects, compensating segments or homoeologous 

chromosomes must be interchanged. (Dvorak and Knott, 

1977). The transmission rates of compensating transloca­

tion lines is quite normal. 

Most translocation lines sufrer yield loss because 

of the considerable loss of wheat chromatin (Weinhues, 

1966, 1976). However, Knott reported that one or his 

translocation lines outyielded the recurrent parent 

-Thatcher. Despite the loss or yield, from the plant 

~reeders poi~t or view, excellent parental genes ror 

~esistance can be contributed by translocation lines. 

Selection or favorable back-cross lines might help recover 

the yield loss (Weinhues, 1974). 

~or determining cytogenetic afrinity, most studies 

. have been limited to the determination of chromosome pair­

ing at MI. Occurrence or chromosome pairs at metaphase I 

~eflects two phenomena: one, . chromosome synapsis a nd 

two, chiasma formation. When a ~MC with complete chromo­

some pairing is not observed in a reasonably large sample, 

it is correct to conclude that a specific number of 

chromosomes have not paired (Dvorak, 1979). 

Chromosome or point mutations or temperature could 

affect . the synapsis of chromosomes. Fu and Sears (1973) 
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reported desynapsis of heteromorphic bivalents before 

metaphase at high temperature. The desynapsed chromo-

somes behaved as ordinary univalents. Lin and Ross (1969) 

observed an increase of univalents as metaphase proceeded 

in triploid sorghum. Rhodes (1946) suggested· that cross­

over bivalents could desynapse and the resulting univa­

lents assort to the same pole. Normally, synapsed 

chromosomes are each transmitted to 1/2 of the gametes. 

Fu and Sears (1973) observed 51% of 4AB telocentric 

chromosomes at optimum temperatu~e. Pollen mother cells 

with reduced pairing would have univalents at meiosis I, 

particularly in metaphase. Later, these univalents would be 

subject to misdivision at anaphase I and II and as a 

result produce inviable gametes. (Soost, 1951; Moens, 

1969; Sears, 1974; L. M. s. Sears, 1974). 

Sen (1952) observed that genetic changes induced 

by x-rays and mustard gas produced characteristic morphol­

ogical changes. He observed that isochromosomes formed 

ring univalents in the late stages of meiosis. T er e have 

been several reports concerning the origin of isochromosomes 

and telocentrics in Triticum aestivum L. by misdivision in 

meiosis (Hakansson, 1933; Huskins, 1933; Sears, 1946, 1952a, 

1952b; L. M • . S. Sears, 1966, 1974; Sanchez-Monge a n d Mackey, 

1948; Makino et al. 1977). Existence of isochromosomes in 

wheat was first reported by Hakansson, who referred to them 
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as "co-chromosomes". Huskin referred to them as 

"chromosomes with two similar halves". From the reports of 

Koller (1938) and Darlington (1939), it is clear that univa­

lents tend to be subject to misdivision, giving rise to 

·isochromosomes and telocentrics. Sears (1952) observed mis­

division of univalents at anaphase I in . microsporocytes of 

wheat. Sanchez-Mange and Mackey reported misdivision only 

at the second meiotic division in Swedish wheats. They 

concluded that the origin of isochromosomes in their 

material could be due to nqn-disjunction of the two chro~a­

tids of a telocentric at meiosis. Sanchez-Mange and Mackey 

reported 97% of misdivision of univalents in Swedish 

wheats. Sears (1952a) found misdivision in Chinese spring 

wheat at a total frequency of 39.7%. Darlington found 98% 

of misdivision of univalents in Fritillaria karadaghensis. 

Sears demonstrated that chromosome IX from Chinese spring is 

more susceptible to misdivision than the corresponding chro­

mosome of any of the other varieties. By misdivision of a 

centromere, a chromosome can divide into four rune ional 

parts at AI (Sears, 1952 in wheat and Upcott, 1937, in 

Tulips). 

Misdivision at T II consists .of the pulling apart of 

the two arms at the centromere. Misdivision of uni valents 

at the second division of meiosis was reported by Nishiyama 

(1931) in oats, by Darlington (1939) in Fritillaria, and by 



Sanchez-Mange and Mackey (1948) in wheat. Many of the 

second division laggards fail to be included in the 

telophase nuclei. They form micronuclei which can con­

veniently be counted at the quartet stage. 
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Sanchez-r.1onge and Mackey explained the origin of 

isochromosomes in their material by nondlsjunction or the 

two chromatids or a telocentric at pollen meiosis. 

Darlington in Fritillaria (1940) and Rhoides in maize (1940) 

found the origin of isochromosomes to be nondisjunction of 

telocentrics in pollen mitosis. Isochromosomes in wheat are 

· or maternal origin and there is no elimination or dericient 

gametes, mru~ing it posible to determine 6enetic ratios 

(Sears, 1944). Isochromosomes are produced at a com­

paratively low frequency, and frqaently escape observation. 

It is clear how the isochromosomes and telocentrics 

originate 1n wheat according to Sears (1952a) for they are 

mainly produced at the rirst division. 

Varieties of Triticum aestivum L. differ in their 

chromosomal constitutions and degree of irregularity. 

Powers (1938) counted micronuclei at the quartet stage to 

determine meiotic instab1lity. They concluded that the 

loss of chromatin was highly correlated with non-orienta­

tion and the occurrence of univalents. Love (1949 ) pro­

posed that the percentage of normal pollen quartets could 

be called "the meiotic index," and used to indicate the 
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regularity of · chromosome behavior. The meiotic index has 

been correlated with yield. Love (1951) considered a 

· plant with a meiotic index of 90%-100% to be · quite stable. 

Plants with a meiotic index of less than 90% present 

difficulties to the plant breeder. In plants ·having 

lagging bivalents and a highly disorganiz~d second 

meiotic division, Mendelian ratios cannot be expected 

ror loci on chromosomes that fail to be included in the 

gametes. Rupert et al. (1974) cytologically selected 

ror meiotic regularity in s~ccessive generations in 

Triticales. They found a 66.9% increase in seeds per 

spikelet. They recommended that a casual survey of 

meiotic division and pollen structure followed by rigid 

field selection would suffice to eliminate aberrant 

individual plants and to improve fertility. 
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MATERIALS AND NETHODS 

A program to acquire irr~unity in bread wheat from 

wheat streak mosaic was started in 1963 in the winter wheat 

improvement program at South Dakota State University. Lay 

·et al. (1971) developed CI 15092, a ·42 chromosome line immune 

rrom WSMV from the cross of immune octoploid TA 25 and 

·susceptible hexaploid wheat. Wong (1972) reported that a 

pair of wheat chromosomes had been replaced by a pair from 

Agropyron intermedium in CI 15092. 

Monosomic addition s.eeds ( 21" + lAi') tracing back to 

CI 15092 were irradiated (Wells, personal communication) . by 

rast neutr·ons. Immune plant3 grown re·om those irradiated 

seeds were used as pollen parents crossed onto a winter 

wheat variety 'Centurk', the recurrent parent of the 

·population. 

Lines believed by Sandhu (1978) to have a transloca­

tion for a gene conferring immunity for WSMV were chosen for 

a cytological and agronomic study. Sandhu used five homozy­

gous translocation lines breeding true for immunity and 

designated as A, B, C, D and G. He also used six heterozy­

gous lines E, F, H, I, J and L which segregated some suscep­

tible plants even as late as F6BC4 and FgBC4 generations. 

The sources of the lines used in the present study 

and their genetic ratios for WSMV in the FsBC4 gen eration 

are presented in Table 1. The pedigree of the lines is 



CI15092/Triticum speltoides //Fletcher/3/5* Centurk. 

Centurk, the recurrent parent of the population, and Sage 

were used as checks. 
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Seeds were sown in wooden flats, chilled for five 

days, allowed to germinate at room temperature, and then 

vernalized at 35-42°F for 42 days. After vernalization, the 

seedlings were transplanted to the field or the greenhouse. 

Two agronomic experiments were conducted in 1978 apd 1979 on 

the east agronomy farm. A third agronomic experiment was 

conducted in 1979 in the wipter and spring in the 

greenhouse. 

Peat moss was used en greenh0use beds as a mulch to 

avoid loss of moisture and diminish growth of weeds. Thirty 

days after planting, parathion was sprayed on the plants to 

.control green bugs. Due to an excessive dose of parathion, 

the first greenhouse experiment suffered from burning of 

leaves. Sulfur was used to control powdery mildew on the 

headed plants. Banks of fluorescent lights over F1 plants 

~ere provided for good pollen production in the gre ~nhouse. 

To study the cytological behavior of the lines, ~oung 

~pikes were collected from plants grown near the yield test 

~or use in crossing, examination of ·segregations, and 

collection of pollen mother cells. To identify the types of 

, translocations involved, the disomic substitution line CI 

15092 and Centurk wer~ crossed with the suspected 
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translocation lines. Immune plants in the iines were used 

as male parents in crosses with CI 15092 and Centurk, 

"{Table 2). 

Seedlings were inoculated using the blast method as 

described by Gardner et al. (1969). Primary inoculation was 

kindly supplied by _Dr. W. S. Gardner from wheat plants 

infected with WSMV. Inoculum was increased in the greenhouse 

by inoculating 10 two-week old seedlings of Centurk grown in 

each of 10 pots. Fifteen days later, cell sap was extracted 

from infested plants in a Hobart grinder. · The concentrated 

~ap was diluted 1:5 with -distilled water. Carborundum (240 

mesh/em) for . an abrasive was added to the inoculum at the 

rate or 22 gms/liter. This mixture was used to inoculate 

the F1 seedlings and lines both in the greenhouse and field 

-about 15 days after transplanting. Inoculation was done 

with a portable sand blaster, at 4.2 to 4.9 kg/cm2 air 

pressure. 

To reduce the frequency of escapes from inoculation, 

-each plant was given three blasts of inoculum on th ee 

alternate days in a week. Fourteen days after inoculation, 

plants showing chlorotic, yellow streaks on leaves were con­

sidered to be susceptible and were discarded. Centurk wa 

used as a susceptible check. 

Young heads were collected rrom resistant plants and 

~ixed in three parts of absolute alcohol to one part g acial 
0 

acetic acid by volume and stored in the refrigerator at 34 F. 
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Raj (1965) suggested that pollen mother cells 

collected at noon provided more cells in diakinesis and MI 

· stage. PMC's were therefore collected at noon from different 

plants and on different dates from each line to provide 

interplant and day to day variation as suggested by 

Steinitz-Sears (1974). 

· Several microscopic slide preparations were made from 

each spike using three anthers per slide. The anthers were 

squashed in acetocarmine and then observed under the 

microscope. The slides with meiotic divisions were heated 

gently over an alcohol flame for a few seconds and the 

coverslips ~ounted with wax. Different stages of meiosis 

were studied. 

For an observation of pairing in F1s, lines and 

checks, the diakinesis stage of meiosis was chosen. The 

occurrence of desynapsis of a bivalent was obtained by 

studying cells in diakinesis and metaphase I stages. For the 

occurrence of misdivision of univalents, cells with anaphase 

I - telophase I and anaphase II - telophase II were studied. 

Meiotic indices were prepared by observing spore quartets 

and counting the number of micronuclei. Micronuclei are 

formed from lagging univalents and fail to be included in 

the telophase II nucleus. 

Pictures of meiotic cells were taken with a Zeiss 

camera at 90x magnification, using Kodak Plus X Pan black 
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and white film. Pictures were printed on Kodak Polycontrast 

paper. 

Three yield tests were conducted. In the first test, 

I used five homozygous lines A, B, C, D and G and six 

heterozygous lines E, F, H, I, J and· L, and two checks, 

Centurk and Sage. In the second yield test which was con­

ducted in . the greenhouse, lines A, B, C, D and G and one chek 

variety, Centurk," were used. A third experiment was con­

ducted in the field using lines A, B,C, D and G and the 

checks Centurk and Sage. F;ield and greenh.ouse tests were of 

like design but with a modification of plot size appropriate 

ror the 3pace available. 

Vernalized seedlings were transplanted in a randomized 

complete-block experiment with four replications. In the 

rield, each plot consisted of a single row, half of which 

was a line and half was either Sage or Centurk. Rows were 

184 em long and 30 em apart. Plants were 8 em apart in the 

row. Nine seedlings were transplanted for each line in each 

replicate. Ellar, an awnless spring wheat variety, was used 

for border plantings. Three seedlings of Ellar were planted 

at the end of each row. Three rows were planted en each 

side of the replicate to reduce border effects and bird 

damage. Seedlings were watered immediately after 

transplanting. In the greenhouse test only three seedlings 

were used in a subplot because of limited space. 
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In all tests, the phenotypic characters studied were 

grain y ield per plant, tillers per plant, 50-kernel weight, 

spik e lets per primary spike excluding the immature top and 

bottom spikelets, number of f~orets per priary spike, number 

of kernels per primary spike, percent seed set in a primary 

spik e , number of kernels per plant, length of primary spike, 

and plant height. After the _ plants were pulled, plant 

heigh t was measured as the distance from the base of the 

plan t to the tip of the primary spike excluding awns. 

All data were analyzed by standard analysis of 

variance for each c~aracter under study, by using complete 

random block design across the entries. 

Correlation coefficients were obtained between 10 

phenotypic characters under study. Multiple regression ana­

lysis for dependent variable yield was done on independent 

characters, which are considered as yield components. 

Indep endent variables used for multiple regression analysis 

were tillers per plant, seed weight, percent seed set and 

number of kernels per head. 
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RESULTS 

Cytological Studies 

Lines A, B, C, D and G (Table 1) are homozygous for 

reaction to wheat streak mosai~ and resemble the recurrent 

parent, Centurk, in phenotype. 

The immunity of the homozygous lines is equal to that 

of CI 15092, the disomic subs~itution line used as a source 

of immunity (Sandhu, 1978). 

In diakinesis, chromosome spreading was only found 

in a few cells of different lines. It was not then possible 

to collect quantitative data at diakinesis. The con­

figurations of ~hromosomes photographed or drawn for lines A, 

B, C, D and G in diakinesis of PMC's are described as 

follows. 

a. The majority of PMC's contained 21" (Figs. 3 and 8). 

b. 20'' + i' + 1', a double monoisosomic configuration, 

were observed infrequently (Fig. 6). 

Isochromosomes were observed in a ring formation. 

Kimber and Sears (1966) suggested that 'i' be us ed to 

designate the isochromosome whether or not it is involved in 

'airing. 

In line G, however, no cells ~ith a configuration of 

20"+1'+i' were found. In Centurk, no configurations other 

than 21" were observed. A chromosome configuration of 21" 



28 

Fig. 1. Diakinesis in PMC's of Centurk with 21". 



Table 1. Sources or seed and segregation ratios for 11 
lines backcrossed to Centurk and for two check 
varieties used in the studies. 

Sesre~ation ratios in 
Line or seed F6 BC FB BC4 

check variet:t source I:S I:S 

1 A 4776-8 16:12 20:0 

2 B 976541..;.0 20:0 20:0 

3 c 976567-0 19:1 20:0 

4 D 976547-1 50:0 18:0 

5 E 977550-0 14:1 

6 p 47726-0 22:1 17:3 

7 G 477557-1 23:0 20:0 

8 H 977505-1 11:5 15:4 

9 I 977512-1 12:1 20:0 

10 J 977516-1 8:0 20:0 

11 L 977522-0 14:8 19:1 

12 Centurk -------- 0: 

13 CI15092 -------- 40:0 



Fig. 2a. Diakinesis in FMC's of the F1 of' Centurk/Line D 

with 20" + 1" (heteromorphic ·bivalent). 
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Fig. 2b. Drawing of Fig. 2a showing 20" + 1" (heteromorphic 

bivalent is indicated with an arrow). 
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Table ·2. Pedigrees 
1979. 

and sources of F1s made in the greenhouse, 

Greenhouse Cultures in field used 
culture # Cross # Pedigree as Earents 

978268 XR78158 Centurk/A 478201-5 X 478221-21 

978262 XR78152 Centurk/B lt78201-11 X 478303-8 

978263 XR78153 Centurk/C 278729-1 . X 4 78303-61 

978264 XR78154 Centurk/D 478201-11 X 478305-16 

978265 XR78155 Centurk/G 278729-5 X 478307-4 

978270 XR78160 Centurk/F 478201-9 . X 478223-8 

978269 XR78159 Centurk/J 478201-10 X 478226-5 

978259 XR78149 CI15092/F 478234-18 X 478223-8 
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Fig. 3. Diakinesis in PMC's of Line D with 21". 

Fig. 4. MI in PMC's of F1 of Centurk/Line A with 20" + 1 " 

(heteromorphic rod bivalent isolated from MI plate). 

• <' 
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in diakinesis in Centurk is shown in Fig. 1. Cells with a 

configuration of 20"+i'+i' in lines A, B, C and D were few 

in number. Transmission of spores with isochromosomes is 

infrequent and occurs only maternally. Isochromosomes and 

·telochromosomes originate from the misdivision of a 

univalent. 

Euploid configurations - look alike whether in Centurk 

or in a translocation homozygote (Figs. 3 and 8, 

respectively). In the latter, i~ is not possible to 

recognize a chromosome pair involved in an interchange. 

Since all the translocation homozygotes have shown 21 biva-

lents and are i~~unc f~on wheat streak mosaic, an 

interchange between Agropyron and wheat chromosomes must have 

occurred. That .evidence does not distinguish between inter­

calary and reciprocal translocations. 
. . 

In the F1 Bc5 hybrids of translocation lines crossed 

with Centurk, good pairing was observed at diakinesis pro­

viding cytological evidence on the nature of inte rcha nges 

obtained by irradiation. PMC's with chromosomes forming 21 

bivalents were most frequently observed. Usually one hetero­

~orphic bivalent and 20 ring bivalents were observed in 

diakinesis and metaphase I stages. The heteromorphic biva­

lent was comprised of the unchanged wheat chromosome paired 

at only one end with the interchanged chromosome. The 

unchanged wheat chromosome pairing at only one end with the 



Fig. s . . MI in PMC's of F1 of Centurk/Line B with 20" + 1" 

heteromorphic bivalent (pointed with an arrow). 

Fig. 6. Diakinesis in PMC's of Line A .with 20" + 1' + 1'. 

34 



35 

interchanged chromosome would have been based on DNA 

homology and would have involved only one chiasma. Presence 

of a heteromorphic bivalent i~ F1BC5 hybrids of lines A, B, . 

C, D and G with Centurk indicated that these lines were 

involved in interchanges which are of reciprocal rather than 

intercalary type (Figs. 2, 4, 5, 1, and 8). 

Different forms of heteromorphic bivalents were 

found. One had the appear~nce of a long telochromosome as 

in Centurk/D (Figs. 2a and 2b) •. . Twenty of 35 translocations 

obtainea by Weinhues produced heteromorphic bivalents in F1 

hybrids resembling a long telocentric chromosome and had the 

Ag~opyron centromere. Therefore it is probably reasonable 

to conclude that line D has the Agropyron centromere 

translocated with the segment containing a gene for 

immunity. 

The other form of heteromorphic bivalent was rod 

shaped, and was seen in F1 hybrids involving lines A and B 

(Figs. 4 and 5). The heteromorphic rod bivalent in A and B 

was much longer than the one observed in F1 cells involving 

lineD (Figs. 2a and 2b). Therefore lines A and B must have 

involved the whole arm of the Agropyron chromosome without 

the Agropyron centromere, while less than an entire arm with 

the Agropyron centromere is represented by line D. 

The type of translocation in lines A, B, C and G is 

reciprocal rather than intercalary since a rod shaped 
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Fig. 7. Drawing of Diakinesis in FMC's of the Fl of 

Centurk/Line C with 20" + 1" heteromorphic bivalent 

(indicated with an arrow). 

Fig. 8. Drawing of Diakinesis in FMC's of line C with 21". 
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Fig 9a. MI in PMC's of F1 of Ceriturk/Line G with 20" + 1" 

(heteromorphic bivalent). 

Fig 9b. Drawing of MI in PMC's of F1 of Centurk/Line G with 

20" + 1" (heteromorphic bivalent indicated with an 

arrow). 
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heteromorphic bivalent was observed in F1BC5 hybrids (Figs. 

4, 5, 7, and 9). Assuming the gene ~or immunity is close 

.to the centromere, a break on the Agropyron centromere may 

have occurred to produce such a translocation to a wheat 

chromosome (see later). 

The heteromorphic rod bivalents observed in the PMC's 

of F1BC5 hybrids involving lines C and G are much longer and 

morphologically di~ferent ~rom those observed in F1BC5 

hybrids involving lines A and B (Figs. 7 and 8). 

The type of translocation is sti~l reciprocal in C and G but 

the whol~ arm of Agropyron must have been interchanged. 

However, the differences observed in chromosome morphology 

of heteromorphic bivalents might also be due to the involve-

ment in interchanges of different .chromosomes in the 

. -homoeologous group. 

The chromosome behaviour in MI stage of the lines and 

of their F1BC5 hybrids with Centurk is summarized in Tables 

3 and 4. The different types of FMC's observed were: 

a. 21" and no laggards. 

b. 21" of which one or two were lagging near the 

metaphase plate. 

c. 20" and two lagging univalents. Infrequently, 

only one univalent was lagging (Figs. 11 a n d 14). 

A few cells in the lines A, B, C and D were found 

having a lagging ring isochromosome (Fig. 20). However, in 

p
1

Bc
5 

hybrids, no isochromosomes were found in metaphase I 

stage. 
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Fig. 10 . First meiotic metaphase with two lagging bivalents 

in PMC's of line D. 

Fig. 11 . First meiotic metaphase with one bivalent and one 

univalent lagging behind in PMC's or line B. 



Fig. 12. First meiotic metaphase with one bivalent just 

desynapsed in PMC's or line B. 
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Fig. 13. First mieotic metaphase with 20" + 2' in PMC's or 

line B. 
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Fig. 13 illustrates two univalents isolated from MI 

-plate in line B. They were alike in size and shape. 

From Table 3 it is clear that both the check and the 
~ . 

lines s owed lagging bivalents in MI stage for reasons 
~~ 

unknown. In Centurk, 5.5% of PMC's had · lagging chromosomes 

in MI, both bivalents and univalents. All eight - lines were 

more unstable than Centurk, ·varying from 13% to 32% of total 

laggards. L~ne G was most stable of all. 
-

The two univalents in lines and in Centurk must have 

originated by desynasis fro~ a l0gging bivalent. This 

assumption is clearly supported in MI, Fig. 12. A pair of 

chromosomes disjoining before metaphase I could produce 

univalents, particularly under the stress of high tem­

perature (Fu and Sears, 1973). Temperatures were high in the 

field at noon when I collected PMC's. In F1Bcs hybrids in the 

greenhouse, the same type of behaviour was observed (Table 4) 

at moderate air temperature. 

The aberration of two univalents in F1BC5 hybrids 

(Table 4) also resulted from desynapsis of a bivalnt. The 

successful transfer of the alien segment means that 

gametes having the interchanged chromosome compete quite 

well with gametes having a normal karyotype. A hybrid 

resulting from a cross of Centurk with a translocat i on line 

must have twenty ring bivalents and one heteromorphic biva­

lent assuming only one chromosome is involved in reciprocal 
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Fig. 14. First meiotic metaphase with one univalent lagging 

behind the metaphase plate in PMC's o~ line D. 

Fig. 15. Nondisjunction of a bivalent, resulting in its 

movement to one pole in PMC's of Line c. 
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Table 3. Behaviour of chromosomes of F7BC4 lines and Centurk in the MI stage of 
meiosis in the field, 1978. 

# of immune # of pollen %_of % of % of 
Culture plants mother total lagging lagging 

Line # examined cells laggards bivalents univalents 

A 478302 6 1483 24.0 7.1 16.9 

B 478303 5 1426 21.7 4.2 17.5 

c 478304 4 1505 27.2 7.3 ·19.9 

D 478305 8 1616 21.5 9.4 12.1 

G 478307 4 735 13.7 I 12.2 1.5 

F 478223 2 541 32.1 '17 .o 15.1* 

H 478224 3 . 674 14 .9· 9.2 5-7 

I 478225 2 288 12.9 12.9 0 

Centurk -- 3 274 5.5 3-3 2.2 

*The two univalents in this line diffeP in size, one may belong to Agropyron. 

+=' 
w 



Fig. 16. Drawing of first meiotic telophase with two 

univalents lagging behind in PMC's of Line D. 

Fig. 17. First meiotic telophase with the sister chromatids 

of one univalent lagging behind in PMC's of Line D. 
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Table 4. Behaviour of chromosomes in M1 of F1BC5 hybrids between six lines and 
Centurk and between CI 15092 and line F in the greenhouse, 1979. 

# of immune # of pollen % of % of % of 
F1Bc5 Culture plants mother ,· total lagging lagging 

h~brids # examined cells laggards bivalents univalents 

Ctk/A 978268 3 324 8.6 0.6 8.0 

Ctk/B 279182 6 509 24.6 4.0 20.6 

Ctk/C 279194 4 679 20.2 4.2 16.0 

Ctk/D 279181 8 1121 19.4 1.1 18.4 

Ctk/G 978265 2 339 . 4. 7 4 .• 7 0 

Ctk/J 978269 2 207 19.2 5.3 13.9 

CI 15092/F 978259 2 172 4.6 --- ·4 .6 

.:: 
(11 
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Fig. 18. First meiotic anaphase with two univalents lagging 

behind the main group of chromosomes in PMC's of 

Line D. 

Fig. 19. First meiotic anaphase with an unpaired isochro­

mosome lagging behind in PMC's of Line D. 
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interchange. 

The term desynapsis is preferred to asynapsis because 

I actually observed pairing i~ many cells. Terminalization. 

of chiasma normally takes place between diakinesis and 

metaphase I (Darlington, 1940). Desynapsis then must occur 

between diakinesis -and metaphase I. That · no univalents were 

observed in diakinesis and that two lagging univalents were 

seen supports the assumpt~on of desynapsis (Fig. 14). Fu 

and Sears (1973) reported preme~aphase disorientation in 

heteromorphic bivalents of F1 plants involving 'Transfer' 

with Chinese spring. The frequency of desynapsis expressed 

as a percent of univalents was obtained for each line 

(Tables 3 and 4). 

In the F1 hybrids of Centurk/B, 20.6% of FMC's showed 

univalents (Table 4). The high occurrence of univalents in 

this line might be due to the additional desynapsis of 

heteromorphic bivalents, which were observed in a few cells 

besides the two univalents already existing. Heteromorphic 

bivalents never appeared to desynapse in F1BC5 hybrids of 

Centurk with lines A, C,D and G • . In F1BC5 plants of 

Centurk/G, no univalents were observed (Table 4), ~roviding 

evidence of the stability of line G. 

The univalents observed in PMC's of line F (Table 3) 

were unequal in size. Therefore one was probably 

from Agropyron intermedium. From the study of FMC's of 
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Fig. 20. First meiotic metaphase with a ring isochromosome 

lagging behind the metaphase plate in FMC's of 

Line D. 

Fig. 21. Two micronuclei formed by lagging chromosomes in 

interphase in FMC's of Line D. 



Fig. 22. Ring isochromosome lagging behind at the second 

metaphase of meiosis in PMC's or Line D. 

Fig. 23. Ring isochromosome lagging behind in the second 

telophase in PMC's of Line C. 

49 



Table 5. Behaviour of chromosomes in AI-Tl stages of meiosis in PMC's of the F7BC4 lines studied in 
the field, 1978. 

II of I of cells 
immune with T~2e and # of univalent& + % PMC's · % PMC's 

Cultu~el 
plants normal Normal 1&08 Telos IN+ 2T showing showing 

Line examined division 1 2 1 2 1 2 3 4 lagsards misdivision 
... 

A 478302 6 307 14 6 6 4 2 4 0 4 0 11.5 5.8 

B 478303 5 541 26 10 11 4 . . 36 31 6 2 0 18.9 13.5 

c 478304 4 508 58 19 7 4 8 7 5 Oi 0 17.6 5.1 

D 478305 6 791 42 13 9 0 29 19 2 9 12' 14.5 . 8.6 

G 478307 4 307 0 0 0 0 0 0 0 0 0 0 0 

F 478223 3 316 42 13 5 13 8 10 5 2 8 25.1 12.1 

H 478224 2 224 27 7 3 s 0 0 0 0 0 15.8 ' 3.0 

I 478225 2 329 15 7 0 0 o. 0 0 0 0 0 0 

Centurk - 2 388 8 3 0 0 0 0 0 0 0 0 0 

+One normal univalent plus .two telosoalc chromoaomea. 

. . 
\..fl 
(j) 
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Fig. 24. One lagging telocentric chromosome in the second 

telophase in PMC's of line B. 

Fig. 25. Two telocentric chromosomes lagging behind in 

the second telophase in PMC's of line B. 



Table 6. Behaviour of chromosomes of seven F1BC3 hybrids between seven lines and Centurk in AI-TI 
stages of meiosis. 

II of I of cells 
immune with Type and I of univalent& % PUC's % PMC's 

F1Bc5 plants normal Gormai Isos Telos IN+ 2t+ showing showing 
hybrids Culture I examined division 1 2 1 2 I 2 3 4 laggards misdivision 

Ctk/A 978268 3 326 15 5 4 1 o· 0 0 0 0 7.67 " 1.5 

Ctk/B 279182 4 646 57 26 16 s 2 0 2 1 0 16.7 4.0 

Ctk/C 279194 3 393 23 9 24 8 18 7 1 s 0 24.2 16.0 

Ctk/D 279181 4 562 25 12 9 0 29 19 2 9 12 20.8 14.2 

Ctk/G 978265 2 241 0 0 0 0 o. 0 0 0 0 0 0 

Ctk/F 978256 2 313 15 9 0 0 0 0 0 0 0 7.7 0 

Ctk/J 978269 2 345 15 11 0 0 0 0 0 0 0 7.5 0 

-
+ane iaochromoaoae plus two telocentric chroaoaomea. 

VI 
(\) 



53 

CI 15092, Wong et al. (1972) reported two univalents of une­

qual size, one from Agropyron intermedium. Meiotic irregu­

larity of line F in MI stage was found to be 32.1% (Table . 

2). 

In the F1 of CI 15092/F, 4.6% of univalents were seen 

(Table 4). In fact, the F1 of CI 15092 resembled the 

Centurk check in regularity of meiosis. The Agropyron 

univalent in line F would _have paired with the Agropyron 

chromosome in CI 15092 to form-~ bivalent. 

Line F seems not to have a translocation. 

Two univalen~s per pollen mother cell produce a high 

percentage or chromosomal aberrations in the off"spring. To 

~stimate the rate of misdivision in these lines, anaphase I 

telophase I and anaphase II - telophase II stages of 

~meiosis were studied. Cells with questionable figures were 

not included. The different types of aberrations observed 

in eight lines and Centurk and their F1BC5's were grouped 

~nto four classes. 

a. Normal division of the two lagging univalents with 

.chromatids passing intact to opposite poles, no 

-misdivision, (Figs. 16 and 18). 

b. Isochromosomes either ring or not, which divide 

and go to different poles. Isochromosomes are formed 

by a misdivision of a chromosome at the centromere. 

As a result in meiosis isochromosomes tend to pair 

with themselves to · form a ring shaped univalent. In 
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Fig. 26. Misdivision or a univalent rorming long and short 

telocentric · chromosomes in the second telophase in 

PMC's of Line A. 

Fig. 27. Three telocentric chromosomes moving to the same 

pole in the second telophase in PMC's of Line D. 



Table 7. Behaviour of chromosomes in AII-TII stages of meiosis in PMC's of F7BC4 lines studied in the 
field, 1978. 

,- o{--Juor cells 
immune with Type and I of univalents % PMC's % PMC's 
plants normal Normal Isos Teios Ii + 2rf" showing showing 

Line Culture I examined division I . 2 I 2 I 2 3 ~ laggards llisdivision 

A 478302 5 427 13 l 19 7 10 4 1 4-. 0 12.5 9.22 

B 478303 5 759 24 5 14 2 64 36 5 6 16 18.5 15.4 

c 478304 4 649 47 18 25 13 22 . 21 17 6 35 23.9 16.3 

D 478305 6 614 18 6 11 6 39 ·25 6 6 15 17.7 14.5 

G 478307 3 338 0 0 0 0 0 
I 

0 0 0 ' 0 0 0 

F 478223 3 273 25 11 11 25 . 17 18 9 7 9 32.6 23.7 

H 478224 2 295 9 1 8 7 19 13 5 13 0 20.3 17.6 

I 478225 2 179 10 7 0 0 0 · 0 0 0 0 0 0 

Centurk -- 3 336 3 0 0 0 0 0 0 0 0 0 0 

+0ne 1•ochromosome plua two telosomic chromoaomes. 

VI 
VI 
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Fig. 28. Two sister chromatids just separated to form telo­

~entrlc chromosomes in PMC's of Line D. 

Fig. 29. Four telocentric chromosomes moving to opposite 

poles in second telophase in PMC's or F1 or 

Centurk/line D. 



Table 8. Behaviour of chromosomes in AII-TII stages of meiotic division of PMC's in F1BC5 hyrids between 
seven lines and Centurk. 

I ·of I of cells 
immune with Type and I of univalent& % PMC's % PHC's 

F1BCs plants normal Normal laos Telos 11 + 2t+ showing showing 
hybrids Culture I ~xamtned division 1 2 1 2 1 2 3 4 laggards aisdivision 

Ctk/A 978268 4 737 25 13 13 2 24 1 9 11 0 14.11 9.0 

Ctk/B 279182 7 942 98 45 39 14 42 18 S 1 · 9 l9,7 14.5 

Ctk/C 219194 3 540 25 12 13 11 25 12 !3 11 0 22.6 15.7 

Ctk/D 279181 4 309 44 15 32 3 37 19 ~ 9 0 31.6 20.0 

Ctk/G 97826~ 5 362 6 3 0 1 0 ' Q 1 0 3~6 1.1 

Ctk/J 978269 1 204 21 11 6 2 ~· · 5 4 4 l 31.9 16.2 

CI 15092/F 978259 2 206 8 5 0 0 ~, 0 Q 0 0 6.3 0 

+ane iaochromosome plua two telocentric chromoaomes. 

j V1 
1...:] 
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this study two different ring chromosomes were 

observed one smaller than the other in size (Fig. 6). 

c. Some cells were fou~d having one normal univalent· 

and two telocentric chromosomes (Fig. 25). 

d. One to four telocentrics assort to the same or to 

opposite poles (Figs~ 24, 25, 27, 28 and 29). 

These four classes were described by Sears (1952a) in 

wheat and Sharma et al. (~975) in Agropyron intermedium. 

The data in Table 5 show .that line B had the highest 

rate of misdivision at the tirst meiotic division. All the 

dirferent types or misdivision reported by Sears (1952a) for 

chromosome 5A of Chinese spring were observed. In Centurk 

even though 2.2% of univalents were observed, no misdivisi~n 

was found in AI stage. Line G is more stable than Centurk 

cytologically but less fertile for reasons unknown. 

·The dirferent kinds of univalents observed in seven 

F1 Bc5 lines, percent of PMC's showing laggards, and rate of 

misdivision are summarized in Table 6. No misdivision was 

observed in F1Bc5 hybrids of G, F, and J with Centurk. 

To determine the frequency of misdivision in AII - TII 

~tages, parental lines and F1BC5 hybrids, PMC' ·s were counted 

and grouped as was done at AI - TI itages (Tables 7 and 8). 

In the second division of meiosis a few cells with a ring 

isochromosome and two telocentrics were observed. It is 

clear from observations of late AII, that many of the second 



Table 9. Occurrence of micronuclei in the lines and their meiotic indices in the field, 1978. 

II of 
immune No. of tetrads with Percent of 

Meiotic+ plants indicated no. of micronuclei tetrads with 
Line Culture # · examined 0 1 2 3 4 4 micronuclei index 

A 478302 3 460 52 19 5 2 0 14.5 85.5 
.. 

B 478303 7 1269 178 52 16 4 0 16. 5 83.5 

c 478304 8 1659 304 182 98 48 . 43 28.9 71.1 

D 478305 12 2035 280 49 21 •11 0 15.1 84. 9 

G 478307 6 967 62 16 0 o.· 0 7.5 92 . 5 

F 478223 4 985 344 121 41 11 1 34.5 65.5 

H 478224 2 628 87 29 11 1 0 . 16.9 83.1 

I 478225 3 730 45 14 0 0 0 8.1 91.9 

Centurk -------- 6 1587 37 6 0 0 0 2.7 97.3 
- ~ ~ . . 

+Percent of tetrads .without micronuclei. 

c 

Vl 
\0 

( 



Table 10. Distribution of micronuclei in tetrads of F1BC5 hybrids between seven lines and 
Centurk. 

II of 
immune No. of tetrads with Percent of 
plants indicated no. of micronuclei tetrads with 

F~rids Culture I examined 0 1 2 3 4 4 .micronuclei 

Ctk/A 978268 6 1037 117 27 14 6 0 13.7 

Ctk/B 279182 8 2223 442 142 56 20 s 23.0 

Ctk/C 279194 6 1310 250 68 . 27 " 16 o, 27.6 

Ctk/D 279181 6 1612 322 103 32 ·14 0 25.0 

Ctk/G 978265 4 561 62 14 3 0 0 ·12.3 

Ctk/J 978269 2 211 28 17 12 s 6 32.2 

CI15092/F 978259 4 607 27 7 0 0 0 . 5.3 

Meiotic 
index 

82.3 

77.0 

72.4 

75.0 

87.7 

67.8 

94.7 

0\ 
0 



Table 11. Means across four replicates of lines and two check varieties for different characters 
studied in three seasons. 

~liaracter Site+ Ctlt Sage A B c I) G E F R I J L 
1 Yield per plant 1 5.23 4.38 3.25 3.08 2.88 4.10 2.75 2.33 1.28 2.84 2.54 1.53 2.58 

(gms) 2 10.30 2.37 4.75 3.86 6.7.5 4.46 
3 3.30 5.81 2.71 3.96 3.21 3.71 2.26 

2 Tillers per plant 1 8 8 6 7 5 8 5 6 5 6 6 4 5 
2 10 4 6 6 10 5 
3 7 8 5 7 6 7 4 

3 Ke.rnels per 1 55 48 50 38 51 38 46 35 27 47 46 . 47 43 
primary spike 2 46 26 40 36 31 31 

3 49 44 42 48 47 40 48 
4 50-kernel weight 1 1.17 1.23 1. 03 1.08 1.03 1.27 1.06 0.93 1.05 1.09 0.98 .88 1.10 

2 1.47 1.40 1.21 1.27 1.48 1.67 
3 0.77 1.26 0.91 0489 0.85 1.10 0.86 

5 Spikelet& per 1 14 15 14 14 13 15 14 12 12 12 13 12 13 
primary spike 2 15 13 14 14 13 14 

3 14 15 14 14 15 13 14 i 

6 Florets per 1 59 54 60 52 63 51 58 53 45 54 58 55 55 
primary spike 2 59 49 52 56 49 52 

3 53 53 52 53 57 47 54 
7 Percent seed set 1 92 89 82 73 79 76 79 66 60 87 78 16 77 

2 80 61 78 65 64 61 
3 94 84 82 90 75 84 85 

8 Kernels per plant 1 222 190 157 144 142 171 130 121 61 126 128 97 116 
2 317 80 188 155 223 131 
3 218 213 160 228 184 184 134 

9 Primary spike length 1 7.7 9.4 8.0 7.6 10.2 7.9 9.5 7.4 6.8 7.6 8.0 7.9 8.4 
(ems) 2 7.8 7.1 8.3 10.6 8.7 9.4 

3 1.9 9.7 8.3 8.4 10.5 8.2 9.4 
10 Plant height (ems) 1 83 88 78 80 81 83 80 79 74 78 76 76 78 

2 107 101 106 191 97 98 
3 74 87 73 81 · 81 76 76 

11 Days to flowering 1 83 84 78 74 80 71 78 83 79 81 88 79 84 
2 
3 86 87 82 78. 80 76 • 82 

+1 - 1978 field 
2· - 1979 spring greenhouse 
3 - 1979 field g; 

i 

,. 
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division laggards were not included in the telophase nuclei 

and consequently appeared as micronuclei in the spore 

quartets. Data are presented in Tables 9 and 10 for numbe~ 

of micronuclei in quartets arid meio~ic indices of parental 

lines and their F1BC5 hybrids. Line G was second to Centurk 

in meiotic index (Table 9) •. All lines had lower indices than 

Centu~k (Table 10). Indice~ varied from 72% to 88% for the 

five translocation lines. ~ The F1 of CI 15092/F, a cross 

between disomic additions, was · the most stable with a 

meiotic index of 95%. Loss of chromosomes · by direct obser­

vation at the quartet stage can be compared with the self­

fertilty of the lines (Table 11). 

A univalent chromosome may divide equationally at 

anaphase I or it may misdivide. The products of misdivision 

may be two telocentrics, four telocentrics, two isochromoso­

mes (one for each arm), or one telocentric and one 

isochromosome. The logical sources , then, of secon-

dary trisomies are the genotypes with univalent chro osomes. 

Depending on the frequency of lagging and misdivision of the 

univalent, n and n-1 spores are produced. An appreciable 

proportion of n-1 megaspores abort due to the imbclance 

caused by the missing chromosome (Khush, 1971). 

AGRONOMIC STUDIES 

The design used in three experiments on agronomic 

performance more or less compensated for soil heterogeneity 

... 
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Table 12. Mean squares for the characters stuied in a 1978 test in the field. 

Hean Squares 
Source of Degrees of Grain yield 50-kernel Tillers Kernels per Kernels per 
Variation Freedom per plant weight per plant primary spike plant 

Blocks 3 10.75** 0.26** 20.54** 377.08 15464.92 

Lines 11 34. 0** 0.32* 48.52** 1957.44** 47995.27** 

Blocks*Lines 32 3. 46 0.05 6.74 155.57 6099.38 

Error 309 2.29 0.03 4. 47· 122.01 4072.79 

Table 12 (cont . ). Mean squares for the characters studied in a 1~79 . test in the greenhouse. 

Source of Degrees of 
Variation Freedom 

Blocks 3 

Lines 11 

B1ocks*Lines 32 

Error 309 

Florets per Percent Spikelet& per - Height of Plant 
pri~~~Y spike seed set primary spike primary spike height 

377.57** 

768.59** 

55.18 

36.54 

1226.84** 

2228.55** 

280.88 

242.75 

6.83* 

43.81** 

3.09 

1.78 

0.87 

31.40** 

0.98 

0.36 

259.12** 

432.30** 

96.48 

24.09 

*• **Mean squares are significant at the 0.05 and 0.01 probability levels, respectively~ 

0\ 

l1 

' 



Table 13. Mean squares for the · characters studied in a 1979 test in the greenhouse. 

Mean Sguares 
Source of Degrees of Grain yield 50-kernel Tillers Kernels per Kernels per 
Variation Freedom per plant weight per· plant primary spike plant 

Blocks 3 12.56 1.06 4.52 71.05 10062.38 

Lines 5 93.04** 4.90** 65.60** 643.48** 77202.16** 

Blocks*Lines 15 15.42** 0.21** 32.89* 41.45* 10880.57* 

Error 48 5.64 0.08 4.5·4 38.15 . 4494.53 

Table 13 (cont.). Mean squares for the characters studied in a 1979 test in the greenhouse. 

Source of 
Variation 

Blocks 

Lines 

Blocks*Lines 

Error 

Degrees of Florets per Percent Spikelets per Height of . Plant 
Freedom primary spike seed set primary · spike primary spik~ _ height 

3 

5 

15 

48 

12.76 

210.22** 

27.86 

22.18 

212.94 

1168.98** 

48.57 

88.9 

1.72 

10.32** 

1.63 

1.29 

0.75 

16.66** 

1.63 

0.23 

353.00 

221.26* 

201.17** 

75.15 

*• **Mean squares are sigqificant at 9.05 and .01 probability levels, respectively. 

, 0'\ 
~ 



Table 14. Mean squares for the characters studied in a 1979 test in the field. 

Mean Squares 
Source of Degrees of Grain yield 50-kernel Tillers Kernels per Kernels per 
Variation Freedom per plant weight per plant primary spike plant 

Blocks 3 14.97** 0.30 20.20 371.07** 43148.45** 

Lines 5 14.17** 0.41** 55.63** 408.80** 44639.37** 

Blocks*Lines 15 4.75 0.03 6.16 44.06 15375.54 

Error 181 3.02 0.02 6.20 76.81 9435.94 

Table 14 (cont.). Mean squares for the characters studied in a 1979. test in the field. 

Source of Degrees of Florets per Percent Spikelets per , Height of Plant 
Variation Freedom 2rimar~ s2ike seed set Erimar~ sEike 2rimar~ seike height 

Blocks 3 141.34* 270.56 6.87* 5.51** 101.07 

Lines 5 370.47** 1139.20** 29.83** 34.28** 379.48** 

Blocks*Lines 15 61.91 101.25 4.34 1.28 60.35 

Error 181 37.78 110.37 2.02 0.57 50.95 

*, **Mean squares are significant at the 0.05 and 0.01 probability levels, respectively. 

0\ 
Vl 
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because of randomization and replication. An analysis of 

variance was done on plots of Centurk alone. Since the 

variance between the plots of Centurk was not significant, · 

an analysis of variance was calculated for all the charac-

-ters studied. 

Averaged results of .three agronomic tests for the 

different characters are presented in Table 11. G~ain yield 

and yield components, whi9h are tillers per plant, kernels 

per primary spike, and weight of 50 kernels were usually 

lower for the lines than f~r Centurk except for line D in 

tillers per plant (8) and line Gin 50 kernel weight (1 •. 27) • . 

Lines E, F, H, I, J and L are inferior to lines A,B, c, D 

and G for all the characters studied. · This must be due to 

the effect of the whole Agropyron chromosome present in the 

former lines. 

Mean squares for the characters studied in three 

experiments are presented in Tables 12, 13 and 14. Mean 

squares associated with lines were highly significant in all 

but one instance for all the characters studied in three 

experiments indicating that the genotypes differed from each 

other in grain yield and yield components. The block x line 

interaction was significant in the 1979 experiment i n the 

greenhouse . The only apparent reason may be differential 

leaf burn caused by an excessive dose of Cygon. 

Only lines B and D out yielded Centurk in the 1979 

field trial, due to more kernels per plant and larger seeds 



Table 15. Simple correlation coefficients for the characters across immune lines studied. 

Cha~a~tei __________ Site TPP KPS SDWT SPS~--rPs~-PSS ___ RPP ____ PSL--PLHt--
Craln-ylela per 1 O;G41i1CW\J~43Ewtr-0~33Jir~-;280ww-Q.JI9ww-Q.442** 0.930** o.oss-u--:TI4H 
plant (yld) 2 0.908** 0.643** 0.513** 0.495** 0.544** 0.530** 0.961** -o.054 0.610** 

3 0.811** 0.355** 0.234** 0.246** 0.283** 0.253** 0.947** 0.180* 0.576** 

Tillers per plant 1 0.085** 0.255** -0.033 -0.030 0.146** 0.662** -o.216** 0.324** 
(TPP) 2 0.515 0.349** 0.345** 0.401** 0.443* 0.929** -o.309 0.509** 

3 0.213** 0.025 0.168** 0.187** 0.132 0.838** 0.025 0.465** 

Kernels per primary 1 0.152** 0.642** 0.752** 0.902** 0.501** 0.463** 0.145** 
spike (KPS) 2 0.116 0.669** 0.757** 0.920** 0.707** 0.077 0.577** 

3 -o.102 0.603** 0.732** 0.760** 0.414** 0.359** 0.351** 

50-kernel weight 1 0.002 -0.002· 0.211** 0.373** -Q;084 . 0.310** 
(SDWT) 2 .0.360** 0.301** -o.035 0.363** 0.060 0.403** 

3 -o.23~** -o.l72* 0.012 0.002 -0.008 0.164** 

Spikelet& per 1 0.907** 0.320** 0.487** 0.718** 0.162** 
2 0.935** 0.382** 0.321** 0.336** 0.509** 
3 ~ 0.930** 0.011 ' o. 327** 0.678** 0.480** 

Florets per primary 1 0.412** 0.375** 0.626*• 0.147** 
spike (FPS) 2 0.467** 0.557** 0.296* 0.500** 

3 0.133 0.358** 0.638** 0.480** 

Percent seed set 1 0.902** 0.243** 0.120* 
(PSS) 2 0.920** -o.020 0.496** 

3 o.760** -o.o55 0.064 

Kernels per plant 1 0.106* 0.403** 
(KPP) 2 -o.034 0.638** 

3 0.164* 0.564** 

Primary spike 1 -0.015 
length (PSL) 2 0.051 

3 0.419** 

1 • 1978 field (11 entries) 
2 • 1979 spring greenhouse (5 entries) 
3 • 1979 field (5 entries) . 
* and **Significant at 5% and 1% levels of probability, respectively. ~ 

-;J 
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respectively (Table 11). These results are in good 

agreement with those of Sandhu (1978). Centurk is known as 

a good responsive variety across varied climatic conditions. 

In the 1979 summer test the soil was often dry, air tem­

peratures were high, and Centurk was shorter than normal. 

The fertility of the lines was inferior to Centurk. 

The fertility of Centurk was high in the field tests which 

agrees with the high meiotic index (Table 9). Centurk in 

the greenhouse had a meiotic ~ndex of 97% while the seed set 

was 92% and 94% in 1978 and 1979 field tests respectively. 

The percent seed set in the greenhouse test in 1979 was 

rather low, which could have been due to the burning effect 

of Cygon insecticide or poor pollen development. 

Owing to the disturbances observed at different sta­

ges of meiosis·, the percent seed set of the lines was low. 

The percent seed set of the lines is in good agreement with 

their meiotic indices. For line G, even though there was no 

considerable degree of disturbance at meiosis, seed set of 

this line was still inferior to Centurk. This may be due to 

genetic or physiological effects. It is clear that yield 

loss in translocation lines is not entirely due to meiotic 

irregularities. From the cytological observations of F1BC5 

PMC's, it is understood that there is frequently a l oss of 

wheat chromatin. The wheat chromatin replaced by Agropyron 

chromatin must have contained some genes for yield or yield 

) 



Table 16. Coefficients or determination (r2) for the dependent variable, 
yield versus the three components of yield. 

Character 1978 field .1979 greenhouse 1979 field 

Tillers per plant (TPP) 0.415 0.825 0.662 

TPP + 50-kernel weight 0.561 0.869 0.713 

Other characters 0.699 0.914 0.750 

0'\ 
\0 
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components . 

In wheat, grain yield is determined by number of 

tillers, number of kernels per spike and kernel weight. 

Only line G equalled Centurk in tillers per plant. Number 

of kernels per spike of the lines were inferior to Centurk. 

Line D equalled Centurk in number of tillers per plant 

and yielded next to Centur~ in 1978 field and the 1979 

greenhouse tes~s. Line · D had larger seeds than Centurk. 

Line D was earlier in flowering than the others. Line A, B, 

C, D and G were earlier th~n Centurk and were of course the 

ones having translocations. In the other lines, the whole 

alien chromosome probably conferred lateness. 

Weight of 50 kernels was significantly different bet~ 

ween the lines at 0.01 level of probability. Only the D 

translocat ion line had larger kernels than Sage in one test. 

Positive and high correlation was found for seed weight 

and yield (significant at 0.01 level of probability in three 

experiments, Table 15). Even though lineD had good seed 

weight, its reduced yield compared with Centurk was mainly 

·due to fewer kernels per plant and an inferior seed set. 

Large seed size alone cannot produce a high yield. Tillers 

per plant and kernels per spike were positively and highly 

correlated in three tests. The high positive correlations 

observed between these characters is encouraged for their 

simultaneous improvement. 
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From the multiple regression analysis (table 16) it is 

known that the number of tillers per plant is the most 

influential in determining yield and 50 kernel weight second 

in importance. Seeds per head is least influential of the 

yield components in affecting yield. 

The lower yield of ~he lines, all of which prepon­

derantly have Centurk germplasm, as caused by loss of impor­

tant wheat chromatin through irradiation. Desynapsis and 

misdivision of univalents may have contributed to lower yield 

by reducing fertility. 

Morphological differences were observed between 

Centurk and the translocation lines. Th~ lines had more 

erect and fewer leaves than Centurk. Line C lacked auricles 

on the leaf sheath. 
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DISCUSSION 

Many relatives of wheat and other crop plants carry 

genes of some potential for crop improvement. Genes from 

Agropyron are simple to handle and most useful (Driscoll, 

1965). If immunity, for instance, conferred by a gene in 

Agropyron and is located near the end of the chromosome, 

then an easy transfer can b~ obtained by ~imple exchange of 

distal ends between wheat- and Agropyron chromosomes 

(Fig.30a). However, if the gene concerned lies near the 

centromere of the alien chromosome, three types of transfers 

are theoretically possible. 

It is possible by irradiation to break the alien chro­

mosome at two points and transfer the segment with the gene 

for resistance to a position within a wheat chromosome (Fig. 

30b). This type of transfer, if th~ segment is small, 

limits to a minimum amount of alien chromatin carrying 

potentially deleterious genes and may reduce the loss of· 

important wheat chromatin. This type of transfer i s called 

"intercalary" and while it is the most favorable one, it is 

very rare (Sears, 1956). 

The second possibility called "reciprocal 

translocation" results from a break · at or within the centro­

mere and the transfer of a whole arm of or part of the arm of 

the alien chromosome (Fig. 30c). As a result, many possibly 

deleterious genes along with _the gene for resistance will be 

transferred. The possibility of losing import~nt wheat 
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genes is high. However, in some cases detrimental effects 

may be minimal with loss of a wheat segment since the entire 

arm of certain wheat chromosomes such as 2B can be lost 

without much affect at least on seed yield. 

A third kind of transfer involves a break on the 

wheat chromosome beyond and not involving the centromere 

(Fig. 30d). In this type o~ translocation, also called 

reciprocal, how much of· the alien genetic material is 

added to the wheat chromosome depends on where the breaks 

occur. 

The lines A, B, C, D and G studied here were found 

to have reciprocal translocations. None of the lines 

involved an intercalary translocation. From genetic data 

obtained by Sandhu (1978), it was clear that a single 

dominant gene is responsible for immunity to WSMV. From 

the study of PMC's of the F1BC5 of translocation lines, 
\ 

crossed to Centurk, I have learned that the gene respon-

sible for immunity to wheat streak mosaic lies closer to 

the centromere than it does to the distal end. The hetero­

morphic bivalent obser.ved (Fig. 2a) in a diakinesis of 

Ctk/D resembled a long telocentric chromosome. The 

conclusion that there is a heteromorphic bivalent here as 

evidenced by its shape is supported by the results of 

Sears (1956) for translocation 36, and Weinhues (1966) for 

T7. The theoretical origin of the kind of reciprocal 

translocation found here is shown in Fig. 30d, after 

Winhues (1966). Most of the· translocation lines obtained 
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by Weinhues had a centromere from Agropyron. 

The PMC's of plants in translocation line D were 

found to have 21 bivalents in diakinesis (Fig. 5). In F1BCs 

hybrids, the unchanged chromosome of Centurk paired with the 

interchanged chromosome of line D, to form a heteromorphic 

rod bivalent with only one chiasma. As shown in Fig. 30d, a 

break occurred on the alien _chromosome through the . 

centromere. A second break may have occurred beyond the 

gene for immunity but so as to omit a distal portion. A 

single break on one of the arms of the wheat chromosomes · 

occurred. In the process of rejoining, a new chromosome was 

formed with an Agropyron centromere and a segment having a 

gene for immunity. In F1BC5 hybrids, the newly formed chro­

mosome paired with the unchanged homologue of Centurk to 

form a heteromorphic rod bivalent. Other unchanged chromo­

somes from both parents produced 20 ring bivalents. 

If an intercalary translocation had occurred, 21 ring 

bivalents would be expected both in the heterozygous and 

homozygous state. On the other ha~d, if a reciprocal 

translocation had been produced immediately following 

radiation in the x1 plant, a heteromor phic trivalent would 

appear consisting of these two whea~-Agropyron chromosomes 

in xl pairing with the unchanged homologue to form hetero­

morphic trivalent. The immune plants in the present study 

were at F7BC4. At this point in the propagation of inocu­

lated generations, the wheat-Agropyron chromosome which does 
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not have a gene for immunity would confer susceptability · and 

be subject to elimination by selection pressure. In the 

next backcross generation (F1BC5) the wheat-Agropyron chro­

mosome with the gene for immunity would pair with its 

unchanged homologue to form a heteromorphic bivalent. 

It is clear that none of the translocation lines 

studied here had an intercalary transfer because hetero­

morphic rod bivalents were observed rather than open biva­

lents in F1BC5 hybrids with Centurk lines A, B, C, D and 

G. 

As explained ~arlier, only line D has an Agropyron 

centromere with a gene for immunity. Lines A, B, C and G 

have the wheat centromere and more or less of the alien arm. 

(Figs. 3, 4, 7 and 8). The heteromorphic bivalents 

-:observed in F1BC5 hybrids of lines A,B, C, and G are long 

and easily distinguishable from other bivalents. The 

translocations obtained in A, B, C and G would fit the 

model shown in Fig. 30c, which explains the possible origin 

of translocations. The heteromorphic bivalents of F1 

hybrids of lines A and B are different from heteromorphic 

bivalents of lines C and C in their shape, length and 

morphology due possibly to the involvement of the other 

members of the homoeologous group, 4A and 4D. 

CI 15092 is a disomic substitution line in which a 

pair of 4B chromosomes were replaced by their homoeologues 

from Agropyron intermedium (Larson 1973, Wells personal 
. ,. 
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communication, Wang et al. 1977a. Most of the best trans-

location lines are interchanges within homoeologous groups 

of chromosomes (Dvorak and Knott, 1977). Knott (1968) 

pointed out that due to soma~ic association of homoeologous 

chromosomes, the frequency of radiation indu~ed transfers 

involving homoeologues is high. He further hypothesized 

that most of the radiation induced transfers devoid of dele-

terious effects must have involved not only homoeologues but 

also corresponding segments of homoeologues. The validity 

of this hypothesis has been provnn on a radiation-induced 

translocation which involved 7el of Agropyron and 7D of 

wheat. It is rather clear that the homozygous lines used in 

this study have deleterious effects. Transmission rates of 

the translocation chromosomes in heterozygotes is also good 

(Sandhu, 1978). The high frequency of reasonably good phe-

notypes of translocation lines support Knott's hypothesis 

that translocations may have involved only chromosomes of 

the 4th homoeologous group. 

The reason for the absence of deleterious effects 

in some translocation _lines and their presence in other 

lines, depends on the ability of the alien chromatin to 

compensate for the displaced wheat chromatin. Lines A, 

B c D and G can be considered as compensating transloca-' , 
tions even though they are inferior to Centurk. Despite 

the loss of wheat chromatin, lines B and D fared fairly 
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well in agronomic tests. 

In some translocation lines, reported in the 

literature, the Agropyron chromatin cannot substitute pro­

perly. This may be due to the involvement in the transfer 

of' chromosomes that are not homoeologous between wheat and 

Agropyron. One effect is poor transfer, through pollen. 

Such translocations are always reproduced as heterozygotes 

(Weinhues, 1966). 

Immune plants in lines E, H, I, J and L which have 

the whole alien chromosome always give rise to susceptible 

·plants (Table 2). In these lines the degree of' compen­

sation may not be good. Twenty-five translocation lines 

~btained by Weinhues behaved inconsistently in rust 

reaction. The susceptible plants might have been due to poor 

transmission of' the translocated segment through pollen or to 

the segregation of an Agropyron univalent through pollen. 

Chromosome spreading was not seen in these lines at 

diakinesis. 

In line F in the MI stage, there were 34 PMC's among 

~47 (6.37%) that had one lagging bivalent and a lagging 

univalent. The univalent appeared to be f'rom Agrcpyron 

because of its smallness. In 15.1% of the cells there were 

two univalents of' unequal size. These results indicate that 

the whole chromosome of Agropyron intermedium is present in 

Line F. The cytological data on this line are not in 

agreement with the genetic data obtained by Sandhu (1978). 
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Line F seems not to be involved in an interchange. 

The deterioration of the Centurk phenotype and cyto­

logical aberrations in the translocation lines must be due · 

to t he exchange of chromatin.. In F1 Bc 5 hybrids of Ctk/B, 

separation of a heteromorphic bivalent was observed in a few 

cells. Since so few cells were observed with desynapsis of 

the ring bivalent, no attempt was made t o estimate the rate 

of desynapsis of the heteromorphic bivalent. This explains 

the higher frequency of univalents observed in PMC's of 

Ctk/B p 1 ants. Fu and Sears· ( 1973), reported ::>eparation of 

heteromorphic bivalents at MI in F1 hybrids involving the 

variety "Transfer". 

Love (1951) saw two possible sources of meiotic abnor­

malities leading to the complete disintegration of quartets. 

One was the failure of pairing due to a lack of complete 

homology. A second was the genetic . disturbance of the 

meiotic proces s . Love found t hat l agging b i valents and the 

presence of univalent s in s ome ce l ls led to the p r odu ction 

of abnormal pollen and a low meiotic index. 

The partial s terili t y observed in the present 

investigation might be due to lagging of bivalents and 

univalents. It is difficult to properly i nterpret the 

results obtained in the present investigation. The lagging 

bivalents at MI in Centurk must have been characteristic of 

the centurk genotype or due to an e~vironmental factor. 

Love found that a line 2787C was the source or genes causing 

-
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meiotic disturbances in the Brazilian varieties Esteana , 

Oiten and Rio Negro. 

The genes present in the lagging bivalent in Centurk . 

might influence desynapsis in. hybrids. Lagging of bivalents 

in s ome cells in MI and the presence of two univalents of 

equal size support the idea that one of the lagging bivalent~ 

desynapsed producing two uniyalents. Unpaired chromosomes 

lagged behind the bivalents in the MI stage . Usually not 

more than one bivalent was involved in fail ure of pairing. 

Darlington (1940) reported lagging of bivalents in 

Podophyllum versipelle. He also reported that the non­

congression and non-orientation of bivalents was due to 

£ailure of repulsion. Dvorak (1972b) attributed the failure 

of synapsis and crossing-over between already paired chromo­

somes to the absence of the synaptonemal complex. This 

results in an enormous variation i n chiasmata from nucleus 

to nucleus. Howev r, there appea red to be no major distu~- · 

~ance of the meiotic process due to lagging univalents . At 

least two univalents per pollen mother cell may result in a 

highe r percentage of chromosomal aberrations in the 

offspring. 

Soost (1951) found in tomato . that cell s with reduced 

pairing have univalents at meiosis I and these cells pro­

duced inviable gametes due to misdivision at anaphase I and 

II. steinitz-Sears found 14.6% of misdivision in Thatcher 

(monosomic 3B) ~nd 26.9% in Red Egyptian. The m1sd1vis1on 

...... 
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II. The frequency of misdivision is high in these lines. 
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An alternative explanation cannot easily be put forward. · At 

best, it can be guessed that the more lagging . univalents 

there are, the higher the frequency of misdivision. The 

relative frequency of isochromosomes and telocentric chro-

mosomes observed in Meiosis II (Tables 7 and 8) agree with 

what is expected based upon cytological studies, an increase 

in their prevalence in A II. The relatively low meiotic 

indices observed in translocation lines are due to the loss 

-of wheat chromatin in meiosis, especially the loss of telo-

centric chromosomes at the M II division. Deficient pollen 

rarely functions in competition with normal pollen. 

At the first division of meiosis, univalents undergo 

a variety of types of misdivision, producing both isochromo-

somes and teloc entric c romosomes . At the second division, 
. 

some of the normal un valents, which escaped misdivision in 

the MI undergo misdiv~sion and f orm telocentri c chromosomes. 

~Telocentric chromos omes formed at the second division tend 

to be lost (Sears, 1952a). No i s ochromosomes or telo­

centric chromosomes were 0bserved in F1BC5 hybrids at the 

MI stage. Since they appeared at Al-Tl stages, misdi vision 

of the centromere must have taken place at AI stge. 

, Steinitz-Sears observed misdivision in monosomic 3B lines of 

~hatcher at the MI stage. The ring i~ochromosornes observed 

at diakinesis and MI stages in parental lines must have 

-
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originated in the previous generation. 

Isochromosomes are of maternal origin (Sears 1952b). 

Small ring chromosomes .appeared throughout meiosis. The 

large ring chromosome must have been subjected to a second 

misdivision. One ring chromosome and twq telocentrics 

observed at AII - TII support the conclusion that large ring 

chromosomes are subjected to a second division. The 

increas e of the rate of misdivision from AI to AII results 

from a second misdivision of univalents which escaped mis­

divis ion in meiosis I and of isochromosomes at AII. 

Misdivision in meiosis II consists of the pulling apart of 

the two arms at the centromere (Fig. 28). 

Sanchez-Mange (1950) grouped misdivisions in meiosis 

II into two classes: (1) a- rnisdivisions 

(attraction)-(misdivisions) which are due to early separa­

tion of the centromere into two halves; (2) p - misdivisions 

(push-mi3divisions ) in which the centromere is pulled apart 

~nly after the two arms have moved toward opposite p le • 

-Based on this assumption, the misdivision observed at AII 

~ay belong to the push-misdivision class. 

It is clear that the chromosome pair involved in 

interchange was not subject to desynapsis and misdivi sion 

because the five lines bred true for immunity. Lagging of 

bivalents and univalents were also observed in the Centu k 

~heck at a low frequency (3%). Centurk is the recurrent 

parent of the translocation lines in this study. 

...... 
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Moe ns (1969) pointed out that temperature, chemicals and 

chromosomal and point mutations can interfere with synapsis 

or chromosomes. Love pointed out that if a bivalent lags at 

MI, Mendelian ratios may not occur for a par t icular locus 

present on the lagging chromosome. Misdivision rates are 

higher in translocation lines than in F1 hybrids • 

. The consequenc e of translocation and desynapsis was a 

lower potential grai n yield by the translocation lines. 

Los s of yield in these lines is 'due to an i ndirect effect of 

·eytological abnormalities on y i eld components and Agr6pyron 

genes. Yield is quantitatively inherited, literally 

hundreds o~ genes being invo l ved (Shebeski and Eva~s, 1973). 

Because the number of tillers is influenced by the 

environment, no firm conclusion can be drawn about efrect on 

numb er of tillers of trans location lines. Some spikes have 

shown sterile flor ets resulting in low percent seed set and 

~ew kernels per plant. A study of correlations be tween the 

characters showed that many tiller s per plant and a high set 

or s eed were positively correlated with many kernels per 

plant. A second factor which playe d an important role in 

determination of yield was the 50-kernel weigh t which is 

also p ositively correlated with yield. 

Among the translocation lines used in this s t udy, 

lines B and D outyielded Centurk in 1979 agronomic tests . 

~hese two lines were earlier than Centurk. Line D exceeded 

Centurk in 50-kernel weight, but fewer s eeds per head 

........ 
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probably caused them to be larger than they otherwise would 

have been. Improvement in number or kernels per spike and 

percent seed set would make line D a potential variety. 

Becuse or immunity from WSMV, earliness, and ·larger seed, 

line D may be useful in breeding programs. 

Use of the translocation lines in breeding programs, 

may require many crosses to fit a resistance gene into a 

congenial genotype. The transmission rate or a transloca­

tion through gametes is affected by the genotypes of gametes 

carrying the translocations. The translocations showed nor-

·mal rates of transmission to progeny (Sandhu, 1978). 

Weinhues was able to incorporate some translocations in 

varieties such as Rabe. Sharma and Singh (1967) found that 

the rate of transmission of translocation T4 was con­

siderably lower in Indian wheat varieties than in Canadian 

varieties. A high rate o~ transmission of a translocation 

is advantageous in reeding programs. In order to develop 

trans location D as a variety, selection for cytologi al sta­

bility and ror good plant type needs to be done. 

Rupert et al. (1974) increased the seed set in 

Triticale by selecting pl~nts for cytological stabilty and 

good plant type. Improving the fertil ity of line D would 

increase its yield. Weinhues suggested selection of 

favorable backcross lines to recover high yield. 

-
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SUMMARY 

Cytological study of PMC's showed that lines A B , , 
C, D and G contained reciprocal translocations. In F1BC5 of 

those lines with Centurk, there were twenty open bivalents 

and one heteromorphic rod bivalent at diakinesis. The cyto­

logical instability of lines varied from less than to more 

than Centurk. Bivalents and univalents were found lagging 

at MI stage of meiosis. It was concluded that two univa­

lents resulting from the desynapsis of a bivalent and sub­

jected ~0 misdivision gave rise to isochromosomes and telo-

centr ic chromosomes. The meiotic indices of lines were 

rather low compared to the recurrent pa~ent Centurk. The 

trans location chromosomes in the five lines were unlike in 

appearance. The shortest were in A and B. The longest were 

in C and G. In D a whole arm and the centromere were from 

Agropyron. Because the five l ines bred true for immunity, 

the cytological irregularities noted must have involved chro­

mosomes other t h an the tPa n slocated member. 

The results of thi s s tudy suggest that all the 

translocation lines have too large a chromatin segment from 

Agropyron for them to be of commercial value. Line G, 

however, had larger seed than Centurk and wa~ more stable 

cytologically than Centurk. It may then be a promising 

parent and also the object of efforts to diminish its amount 

of Agropyron chromatin. Line D had some favorable 

qualities, too, for use as a parent. 
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