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Abstract—Power-efficiency has become one of the most critical concerns for HPC as we continue to scale computational capabilities.
A significant fraction of system power is spent on large main memories, mainly caused by the substantial amount of DIMM standby
power needed. However, while necessary for some workloads, for many workloads large memory configurations are too rich, i.e., these
workloads only make use of a fraction of the available memory, causing unnecessary power usage. This observation opens new
opportunities for power reduction by powering DIMMs on and off depending on the current workload. In this paper, we propose
footprint-based DIMM hotplug that enables a compute node to adjust the number of DIMMs that are powered on depending on the
memory footprint of a running job. Our technique relies on two main subcomponents—memory footprint monitoring and DIMM
management—which we both implement as part of an optimized page management system with small control overhead. Using Linux’s
memory hotplug capabilities, we implement our approach on a real system, and our results show that our proposed technique can save
50.6–52.1% of the DIMM standby energy and the CPU+DRAM energy of up to 1.50 Wh for various small-memory-footprint applications
without loss of performance.

Index Terms—High performance computing, energy saving, DIMM, hotplug.

F

1 INTRODUCTION

The power consumed by High Performance Computing
(HPC) systems has become a major constraint in their design
and consequently power efficiency is a critical metric for
their operation [1]. As we scale towards exascale systems,
i.e., systems that can execute 1018 operations per second,
20-30 MW is generally seen as the practical limit for their
deployment [2], [3], yet, already today the fastest system,
the Summit system at the Oak Ridge National Laboratory,
consumes 8.8 MW, while only delivering less than a fifth of
an exaflop peak [4] and is even further away in terms of
sustained performance. Closing this apparent gap requires
continued efforts in both hardware and software techniques
to increase power efficiency.

While most work focuses on hardware improve-
ments [5], [6], [7] or software techniques optimizing com-
putation [8], [9], [10], [11], [12], software techniques to
reduce standby power consumed by main memory have not
been focused on in the HPC community, yet, main memory
consumes a significant fraction of the overall system power
(up to 25% of system power in some cases [13]) and its
power efficiency is seen by leading HPC architects as key
challenge going forward [14]. Modern supercomputers have
large amounts of main memory in the form of DIMMs
using DRAM technology, often in the order of tens or even
hundreds of GB per compute node. These DIMMs are a
constant consumer of power—once a node is powered on—
since all DRAM cells must be kept refreshed, whether they
are used or not.

While such large memory configurations are driven by
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Fig. 1. Memory usage of all jobs on a 1,476-node CX400 cluster at
Kyushu University from Jan. 1 to Jun. 10, 2013; a 320-node IBM iData-
Plex cluster at PIK (Potsdam Institute for Climate Impact Research) from
Apr. 2009 to Jul. 2012 [15]; and the RICC cluster at RIKEN from May to
Sep. 2010 [16].

an important subset of HPC workloads, there are also
equally many workloads for which they are too rich and
hence underutilized. One example is Molecular Dynamics,
which requires significant computation; for these codes
problem sizes that would fill all memory would be in-
tractable. As a result, many jobs on real HPC systems exhibit
small memory footprints and hence leave memory unuti-
lized, yet have to spend power also on the unused memory
cells. For example, 99.8%, 94.5% and 99.2% of jobs use less
than half of the node memory in the CX400, iDataPlex and
RICC clusters, respectively (Figure 1 (a)). In addition, the
total execution time of the above jobs accounts for 97.8%,
96.8% and 99.9% of the total time on the CX400, iDataPlex
and RICC clusters, respectively (Figure 1 (b))1.

In this paper, we propose an operating-system-level so-
lution to the above problem. Our technique, called footprint-
based DIMM hotplug, dynamically updates the DIMM config-

1. We computed the memory usage of RICC with the memory request
at job submission as actual measurements are not available.
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uration during operation to achieve power efficiency using
the existing DIMM hotplug functionality available in Linux.
For this, each compute node monitors the memory footprint
of the running job and then dynamically powers on DIMMs
at runtime as they are needed. This optimized approach,
transparently integrated into the OS’s page management
system, enables footprint-based DIMM hotplug to achieve
large DIMM power savings at little to no performance
loss. Footprint-based DIMM hotplug is built upon a Linux
technology that allows system software to power down
DRAM with firmware and hardware support. The idea of
powering partial or entire DIMMs on/off has been proposed
at various levels (e.g., application [17], architecture [18]
and OS level [19]), but to our knowledge this paper is
the first work to offer a real implementation of OS-level
DIMM on/off with small control overhead, show the impact
on performance and energy of a small-scale system, and
estimate performance impact on supercomputing systems.

The main contributions of this paper are summarized
below:

• We perform a memory footprint analysis of work-
loads on several production supercomputers and
found that memory is overprovisioned for many jobs. Our
analysis of the workloads on the CX400, PIK IPLEX
and RICC systems unveiled that about 95% of jobs
use less than half of the node memory.

• We discuss a novel DIMM hotplug algorithm called
footprint-based DIMM hotplug, which enables com-
pute nodes to adjust the number of powered-on
DIMMs depending on the memory footprint of jobs.

• We provide a lightweight implementation of our
technique based on the DIMM hotplug mechanisms
available in Linux kernels 4.1.34 and newer.

• We emulate power savings, running our approach
on a small-scale system with HPC workloads. To the
best of our knowledge, there is no study that shows
impacts of OS-level DIMM power management on
real systems. Our experiments reveal that our tech-
nique can save half of DIMM standby power for
various jobs without performance loss.

• We estimate performance impact of our technique
on supercomputing systems based on real workload
data. Our analysis shows that our technique has no
degradation in the overall system performance.

The remainder of this paper is organized as follows.
Section 2 gives a more detailed description of the DIMM
standby power, followed by background on DIMM hotplug.
Section 3 describes our footprint-based DIMM hotplug and
Section 4 details its implementation. Sections 5 and 6 show
the experimental setup and results, respectively. Section 7
lists related work and Section 8 presents our conclusions.

2 POWER SAVING WITH DIMM HOTPLUG

2.1 DIMM Standby Power
Despite advances in memory technologies, including recent
advances in 3D-stacking memory, DIMMs are still the most
common memory architecture in current computer systems.
Figure 2 illustrates the memory architecture of a typical sys-
tem, as it is also used as a node building block in large scale
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Fig. 2. Memory architecture.
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Fig. 3. Trend of DIMM standby power in supercomputing systems. We
assume that both Sierra and Summit employs DDR4-2400 memories
because the details of the memory configurations (e.g., clock frequency)
are not available.

HPC systems. The CPU is surrounded by several DIMM
slots, which can hold one DIMM each. Several DIMM slots
form one group and each group is connected to the CPU
using a separate memory channel. DIMM slots within a
group must be populated in fixed order starting with slot 1.

A set of the DRAM chips integrated into one DIMM
form a memory rank, i.e., they are wired to the same chip
select signal and hence always accessed simultaneously.
Multiple memory ranks can simultaneously serve data for
multiple memory requests, even though they share external
and/or internal memory buses (known as rank-level par-
allelism); consequently, installing multiple DIMMs in one
DIMM group generally also increases the memory through-
put as it increases the rank count, though its main benefit
is the increase in memory capacity. However, it has been
shown that this impact can be ignored on supercomputing
systems, as an increase in rank count only has marginal
impact due to the typically inefficient physical memory
mappings [20], [21]. In summary, channel count is more
important than rank count, as supercomputing systems offer
sufficient memory bandwidth for running applications.

Although commercial DIMMs employ several tech-
niques to lower power consumption, like self-refresh to
reduce standby power [13], even idle DIMMs still consume
a noticeable amount of power. For example, David et al.
report that a 4 GB DDR3 RDIMM consumes 0.56 W or
0.13 W/GB even in low power modes and with self-refresh
+ register-off [22]. This is mainly caused by the required
refresh operations needed to keep the data stored in the
DRAM chips. To make matters worse, real servers are un-
likely to use deeper power-down modes due to their large
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Fig. 4. Potential power savings using DIMM hotplug techniques in the CX400 cluster based on workload data from Jan. 1 to Jun. 10, 2013. We
assume that each node has 16x 8 GB DDR3 memory, with each consuming a standby power of 1.04 W (= 8 GB × 0.13 W/GB), and that there was
no time and energy overhead of powering DIMMs on/off.

exit latency, so that they are often faced with significant
DIMM standby power [23]. In fact, our experiment with a
power meter shows that an 8 GB DDR3L-1600 RDIMM used
in our server consumes 0.91 W, which is almost equivalent
to the power of the precharge power-down mode of 8 GB
DDR3L-1600 DRAMs [24]. Thus, in this paper, we focus on
power of DIMMs in precharge or active power-down mode,
assuming real use cases of DRAM low power mode.

Figure 3 shows the trend of DIMM standby power in
HPC systems. We computed the DIMM standby power of
each system with its memory specification and Micron’s
DRAM datasheets [25], [26], [27], [28]. The data shows that,
although the improvement in both DRAM architectures and
manufacturing processes slightly reduces DIMM standby
power, DIMM standby power per CPU in supercomputers
keeps increasing.2 This is caused by the huge memory
capacities built into modern supercomputers as the core
count per CPU increases in order to suit the class of memory
hungry applications. In particular, DIMM standby power
in the Sierra and Summit systems, which deploy 128 GB
and 256 GB DDR4 memories per CPU, respectively, will
consume 13.5 W and 27.0 W, respectively, with current oper-
ating approaches. This amounts to 10–20% of the maximum
power of a modern server CPU.

2.2 DIMM Hotplug and Its Use for Power Savings

Memory or DIMM hotplug, which is supported in Linux
starting at kernel version 2.6, is a technique to enable and
disable DIMMs dynamically at runtime [29], [30]. When
disabling a DIMM, all data on that DIMM is lost and hence
all active pages allocated to that DIMM must be relocated
to other DIMMs prior to disabling it. Linux’s memory
hotplug functionality supports this transparently [30]. Once
disabled, if supported by both hardware and firmware, a
disabled DIMM can be powered down, thereby eliminating
its stand-by power.

To our knowledge, only two studies utilize memory
hotplug to implement some form of power awareness:
Chen et al. use it to save DIMM standby power for idle
nodes [29], and a poster by Miwa et al. provides a prelimi-

2. DIMM standby power per CPU is appropriate metrics to roughly
estimate the impact of DIMM standby power on power of compute
nodes where CPU jobs are executed. Some supercomputers shown in
Figure 3 employ GPU, but we can ignore its power in such compute
nodes because it is relatively small due to the low power state.

TABLE 1
Performance of on-demand memory hot-add for ∗FFT.

Problem size Baseline On-demand memory hotadd
Exec. time (s) Exec. time (s) Slowdown (%)

20,000 4.66 5.61 20.4
40,000 19.2 23.2 20.8

nary study on saving the DIMM standby power during job
execution [31].

Chen et al. base their approach on memory hotplug
provided through ACPI in order to save DIMM standby
power [29]. ACPI-based memory hotplug, which is par-
tially supported in Linux starting in kernel version 3.11,
shuts down a complete CPU with its connected DIMMs
when the CPU becomes idle. This approach provides lower
potential for saving DIMM standby power, especially in
highly utilized systems, since the entire CPU has to be idle.
Figure 4 shows the potential power savings of this ACPI-
based memory hotplug in the CX400 cluster. As the figure
shows, such ACPI-based memory hotplug can only achieve
half of the DIMM standby power savings compared to our
footprint-based DIMM hotplug approach.

Miwa et al. propose on-demand memory “hot-add” to
control DIMM standby power based on observed memory
usage at runtime [31]. Memory hot-add means enabling
DIMMs within a running node. The disadvantage of this
work is twofold: first, on-demand memory hot-add dras-
tically degrades application performance due to increased
I/O accesses. Table 1 exemplifies this. The on-demand mem-
ory hot-add temporarily swaps out pages to storage when
memory usage exceeds available memory capacity, so that
applications show the performance degradation of up to
20.8%.3. Second, the authors do not show the impact of on-
demand memory hot-add on DIMM and node power.

3 FOOTPRINT-BASED DIMM HOTPLUG

We propose footprint-based DIMM hotplug, a novel technique
to reduce DIMM standby power in HPC systems, which
provides a more dynamic and finer grained solution com-
pared to previous techniques, and we demonstrate it using

3. Our experimental result of an input of 20,000 is slightly different
from that shown in the poster paper [31] because our daemon program
halts the application processes for 200 ms to measure performance
overhead of physically powering on DIMMs, which was ignored in
the prior work.
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an implementation on a real system. We monitor an appli-
cation’s memory footprint and adjust the system’s DIMM
configuration to reduce its power needs by only powering
on needed DIMMs. This does not require any modifications
to applications and therefore offers a practical solution that
can easily be added into existing production systems.

3.1 Design

Both components, the monitoring and the adjustment of the
DIMM configuration, are executed transparently through
modifications to the memory management in the operating
system. Monitoring is implemented by extending the page
manager and using it to trace which pages are accessed.
This provides us with a fast and low overhead mechanism
to track an application’s memory footprint. Based on the
information gathered using this step, which is executed
continuously throughout the runtime of the application, we
determine an application’s memory needs and with that
how much memory is actually used and hence must be
turned on. The latter we accomplish by using the existing
DIMM hotplug APIs in Linux—with the matching firmware
and hardware support—to, at startup, first “logically” re-
move all DIMMs and then only turn on the needed DIMMs
in the system as the application executes.

3.2 Performance Considerations

The central design challenge for footprint-based DIMM hot-
plug is to minimize or eliminate any impact on application
performance, since overheads would both increase overall
energy usage caused by longer runtimes, thereby canceling
out the benefits of footprint-based DIMM hotplug, and
reduce the acceptance of the proposed method by end users,
who ultimately only care about the “amount of science”
achieved.

In particular, we must consider the following main fac-
tors that impact application performance: (i) the overhead
caused by monitoring the memory footprint at runtime,
(ii) the overhead caused by dynamically changing DIMM
configurations, (iii) how often we change DIMM configura-
tions, and (iv) the impact on available memory bandwidth
by reducing DIMMs.

Overhead from (i) and (ii) directly stems from monitor-
ing and adjusting the application’s exception behavior. (i)
is implemented through some minimal bookkeeping in the
OS’s page fault handler, which is insignificant compared
to the large fault latencies on today’s systems. Enabling
DIMMs (ii) is slightly costly, but we can minimize its over-
head by executing it very infrequently (iii), especially for
large production applications. Low overheads due to (iii) is
further ensured by our decision to keep DIMMs active until
the end of a job’s execution once they are powered up, even
if a job deallocates a part of the allocated memory region
and a large number of memory cells become unused. While
this design decision reduces some of the opportunities for
DIMM power saving, in reality it has only very limited
practical impact as most HPC applications allocate their
working set upfront (e.g., in the form of large arrays or

graph data structures), but rarely release them before the
end of the execution4.

To prevent (iv), footprint-based DIMM hotplug only shuts
down DIMMs without impact on memory bandwidth. Specifi-
cally, we limit our approach to DIMMs plugged into the
second or subsequent slots as this doesn’t impact memory
bandwidth, as described in Section 2.1. Consequently, the
available memory bandwidth can be maintained even if
the power-on DIMM count changes. Despite the limited
positions of DIMMs available to be powered down, our
technique still has enough flexibility to save DIMM standby
power as standby power of second or subsequent DIMMs
accounts for more than half of the entire DIMM standby
power.

4 IMPLEMENTATION

We begin to explain our implementation using one particu-
lar memory configuration, and then generalize it.

4.1 Initial Assumptions and Constraints
To explain the concepts behind our approach, we first as-
sume the memory system configuration shown in Figure 5:
each node consists of one CPU socket with 4 memory
channels and two DIMMs installed in each memory channel.
Note that only four DIMMs are plugged into the second
DIMM slots and hence are candidates to be powered off.

Our technique changes the power state of the second
DIMM in all groups together, as partial shutdown and
restart of individual DIMMs in the second DIMM slots is
typically unsupported, including on our hardware. Most
memory controllers are optimized for and only allow a
balanced DIMM configuration both for simplicity and since
unbalanced for memory channels often lead to reduced
memory throughput [32], [33].

4.2 Power Modes
Conceptually, in our approach the memory system has two
power modes, as shown in Figure 5. In the active mode all
DIMMs are powered up and available for the page manage-
ment system to use, while in the sleep mode all DIMMs in
the second slots are powered down and unavailable. In the
latter case, the total memory capacity of a node is therefore
cut in half (assuming all DIMMs have the same memory
capacity). Since all nodes keep one powered-up DIMM for
each channel, the proposed technique does not impact the
maximum memory bandwidth of a node, even during the
sleep mode5.

4. Disabling DIMMs during job execution is costly as it requires page
relocation as described in Section 2.2. For example, our experimental
result shows that copying 4 GB to a DIMM installed in another channel
via the DDR3-1333 interface takes 0.90 second with additional power of
15.9 W. Production supercomputers have fewer opportunities to benefit
from this dynamic memory reconfiguration as jobs that both use more
than half of the node memory and dynamically release their working
sets make up less than 5.5% of the jobs executed.

5. Memory interleaving, which is widely used in production systems,
is available for systems that employ our footprint-based DIMM hot-
plug. In fact, our experimental system shown in Section 5 enables mem-
ory interleaving. A page is interleaved to multiple DIMMs connected
to different channels and the DIMMs therefore can serve the sequential
data of the page in the peak memory bandwidth even during the sleep
mode.
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with each having 2 DIMMs.

𝑇𝑜𝑓𝑓

Sum of used physical framesSum of free physical frames

𝑇𝑜𝑛

2nd DIMMs

1st DIMMs

-2nd DIMMs +2nd DIMMs

(a) Active      Sleep (b) Sleep      Active
(during process termination or booting)

Memory
capacity

Time

Fig. 6. Mode transition based on free physical frame count.

4.3 Power Mode Transitions

We dynamically switch between the two power modes
according to the number of free physical page frames left
in a node. A physical page frame is a contiguous piece of
physical memory that can be mapped to a virtual page in
order to make it accessible to the application. The number
of physical page frames that are used or unused, i.e., page
frames mapped or not mapped to virtual memory, is tracked
by the virtual memory management system. If a node has a
large number of free physical frames left, it means that the
applications running on that node only uses a small amount
of memory; in this case, our technique turns off all second
DIMMs. On the other hand, we turn on all of the second
DIMMs when there are few free physical frames left in a
node.

We use two thresholds, called power-on and power-off, to
determine the right time for the transition described above.
As shown in Figure 6, (a) the memory system switches from
the active mode to the sleep mode when the number of
free physical frames (Nfree) exceeds the power-off threshold
(Toff ), while (b) the memory system returns to the active
mode when Nfree is less than or equal to the power-on
threshold (Ton). In order to reduce overhead, though, Nfree

is compared with Ton when the page allocation happens,
but not with Toff at every page deallocation. Instead, we
perform the comparison of Nfree with Toff at process ter-
mination to reset the number of used DIMMs and minimize
the used standby power between jobs and for new jobs. This
is generally sufficient for HPC applications, as described in
Section 3. We do, however, execute the above comparison at
page deallocation when processes are not running, yet (i.e.,
during boot operations), as this cannot impact application
performance. The optimal values of Ton and Toff highly
depend on both system configuration and usage and should
be set by system administrators based on results from op-
erational tests conducted during the acceptance testing of a
production system.

𝑁𝑓𝑟𝑒𝑒 ≥ 𝑇𝑜𝑓𝑓 𝑁𝑓𝑟𝑒𝑒 ≤ 𝑇𝑜𝑛 𝑁𝑓𝑟𝑒𝑒 ≥ 𝑇𝑜𝑓𝑓

Start booting Finish booting Start a process Terminate a process

Sleep modeActive mode

Time

Fig. 7. Time line of power mode in the memory system.

Figure 7 shows a sample timeline of the memory system
and its mode transitions: all DIMMs are powered up by the
firmware at boot time, and the OS kernel then conducts boot
operations in the active mode. Next, the kernel frees some
physical frames after the boot completes, resulting in the in-
crease of Nfree. If Nfree ≥ Toff , the system enters the sleep
mode and stays there until sufficient memory allocations
are performed. After a job with a large memory footprint is
launched on the node, the kernel starts to allocate the virtual
pages of the job using the free physical frames in the DIMMs
that are powered on. Nfree is gradually reduced while the
job is running, and the memory system then turns to the
active mode when Nfree ≤ Ton. The kernel frees all physical
frames used for the job at the process termination, which
causes Nfree to increase. Once the threshold is reached, the
memory system goes back to the sleep mode during the
termination process.

4.4 Implementation Details

We implement our technique in the page management sys-
tem of a Linux Kernel version 4.1.34. Since Linux is the
most common operating system in HPC systems (100% of
the top500 supercomputers run on Linux as of November
2018 [4]), we believe that many systems will benefit from
our implementation, assuming they support and enable
memory hotplug.

In Linux terminology, disabling a DIMM within a run-
ning node is called memory hot-remove, while enabling the
DIMM is called memory hot-add. This section discusses the
implementation of these operations in detail.

4.4.1 Hot-Remove at Process Termination

When a process terminates, the page management system
deallocates all physical frames from the virtual pages of
the process. The above operation is conducted in the func-
tion exit_mm(). Since exit_mm() is always called from
the function do_exit(), we append the code needed for
monitoring Nfree and possibly power off DIMMs to that
function.

Algorithm 1 shows the pseudocode of memory
hot-remove executed in do_exit(). First, the current
power mode of the memory system is checked after
exit_mm() finishes (Lines 1–2). If the power mode is
active, our algorithm computes Nfree by invoking the
function global_page_state() and then compares it
with Toff (Lines 3–4). When Nfree ≥ Toff , the algo-
rithm calls the primitive function of memory hot-remove,
offline_pages(), with the inputs of the start physical
frame number and the physical frame count of second
DIMMs (Lines 5–7). Finally, the power mode changes into
the sleep mode (Line 8). These procedures are executed in
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Algorithm 1 Pseudocode of memory hot-remove
1: PowerMode← current power mode
2: if PowerMode = active then
3: Nfree ← global page state(NR FREE PAGES)
4: if Nfree ≥ Toff then
5: StartFN ← start frame number of 2nd DIMMs
6: FrameCount← frame count of 2nd DIMMs
7: offline pages(StartFN , FrameCount)
8: PowerMode← sleep
9: end if

10: end if

Algorithm 2 Pseudocode of memory hot-add
1: PowerMode← current power mode
2: if PowerMode = sleep then
3: Nfree ← global page state(NR FREE PAGES)
4: if Nfree ≤ Ton then
5: StartFN ← start frame number of 2nd DIMMs
6: FrameCount← frame count of 2nd DIMMs
7: online pages(StartFN , FrameCount, ...)
8: PowerMode← active
9: end if

10: end if

an atomic manner to avoid the redundant memory removes
caused by multiple processes terminating simultaneously.

4.4.2 Hot-Remove at Boot Time
During boot operations, some memories are allocated to the
kernel via the functions kmalloc() and vmalloc(), and
such memories are freed by the functions kfree() and
vfree(). The functions vmalloc() and vfree() use a
paging system to manage the memory, but kmalloc() and
kfree() do not. In order to gain control to implement
our technique, we add the memory hot-remove function
to vfree(). The procedure for memory hot-remove in
vfree() is similar to that in do_exit(). More specifically,
we insert the code listed in Algorithm 1 at the end of
vfree().

4.4.3 Memory Hot-Add
Many free physical frames are allocated to the vir-
tual pages of a process when the process calls
_alloc_pages_nodemask() via alloc_pages(). We
therefore added the code of memory hot-add into
alloc_pages().

Algorithm 2 shows the pseudocode of memory hot-
add executed in alloc_pages(). Similar to Algorithm 1,
Algorithm 2 first checks the current power mode of the
memory system (Line 1). If the power mode is sleep
(Line 2), the algorithm calculates Nfree (Line 3). When
Nfree ≤ Ton (Line 4), the algorithm calls the primitive func-
tion for memory hot-add, online_pages(), with some
information for the second DIMMs (Lines 5–7). Finally,
the power mode is changed to the active mode (Line 8),
and alloc_pages_current() is invoked. In contrast to
Algorithm 1, the above procedures do not have to be ex-
ecuted atomically since mutual exclusion has already been
implemented within online_pages(). Consequently, the
redundant memory hot-add never occurs if multiple pro-
cesses simultaneously call online_pages().

4.5 Extensions to the Other Configurations

So far we have only discussed our proposed technique
under the assumption of a specific configuration (i.e., 1
CPU socket, 4 channels and 2 DIMMs per channel). In the
following we show how we can generalize our approach to
other configurations.

4.5.1 Multiple CPU Sockets
Our technique can also be used on nodes that consist of mul-
tiple CPU sockets. The page management system controls all
physical frames of the DIMMs connected to any CPU in the
entire node, so that the proposed technique can deal with
the DIMMs attached to the local CPU as well as the DIMMs
attached to other CPU sockets. That is, second DIMMs con-
nected to all CPU sockets are simultaneously powered off
if the total number of free physical frames (Nfree) exceeds
Toff , while these DIMMs are simultaneously powered on if
Nfree ≤ Ton. Our technique always balances the number of
available DIMMs on all CPU sockets as this configuration
has been shown to be the most efficient in most cases [32],
[33].

The only concern is that DIMM hotplug could poten-
tially interfere with NUMA-aware page allocation imple-
mented in Linux. Some modifications (e.g., counting the
number of free physical frames per socket) may be needed
for our switching algorithm to benefit from the NUMA-
aware page allocation. We will further investigate this issue
in the future.

4.5.2 Different Numbers of Channels
Our approach naturally expands to nodes with different
numbers of channels. If each channel has multiple DIMMs,
the DIMMs in the second or subsequent slots can be con-
trolled by the proposed technique.

4.5.3 Different Numbers of DIMMs per Channel
We can easily extend our proposed technique to nodes that
employ 3 DIMMs per channel. Such nodes can define three
power modes (e.g., active, sleep and deep sleep), which
correspond to the cases of 3, 2 and 1 active DIMMs per
channel, respectively. In this scenario, we need at least three
thresholds (e.g., Ton, Toff1 and Toff2) to switch between
the three power modes. If Nfree exceeds Toff2 in the active
mode, the memory system first enters the sleep mode. The
memory system in the sleep mode then turns into the deep
sleep mode if Nfree ≥ Toff1. On reverse, the memory
system in a deep sleep mode goes back to active modes
in sequence if Nfree ≤ Ton.

On the downside, our technique does not work for
nodes with only one DIMM per channel, since we aim
to save DIMM standby power while maintaining memory
bandwidth. Memory bandwidth is a key factor in the perfor-
mance of many HPC applications and hence we purposely
took an approach that leaves one active DIMM in each
channel when powering DIMMs off, maintaining constant
bandwidth. Even, though, some present supercomputers
only have one DIMM per channel, our approach opens new
opportunities for installing multiple DIMMs per channel to
save the operational cost while maintaining the performance
of memory-hungry applications.
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Nevertheless, powering off first DIMMs remains a
promising option, especially for workloads tolerable to de-
creased memory bandwidth. We found ∗DGEMM as one
such example, which shows the performance loss of only
0.35% by removing 6 DIMMs from full DIMMs in our
experimental system shown in Section 5 (i.e., disabling 2 out
of 4 channels). We will explore this option in future work.

4.5.4 New Memory Technologies
Some state-of-the-art computers adopt HBM (High Band-
width Memory) [34] or HMC (Hybrid Memory Cube) [35]
for increased memory bandwidth. Unfortunately memory
hotplug is not available for HBM and HMC at present, but
it is possible that the power of DRAM stacks in HBM and
HMC will be controlled with memory hotplug in the future.
In addition, memory hotplug may possibly have the capa-
bility to manage the power of HMC stacks connected in a
daisy-chain manner. Our technique will be available in HBM
and HMC once these architectures and the corresponding
Linux kernels support memory hotplug.

Many researchers expect that the future supercomputing
systems will use NVMs (Non-Volatile Memories), such as
PCM (Phase Change Memory), in the memory systems [36],
[37], [38]. NVMs exhibit very low standby power due to
their non-volatility, and hence powering off NVM modules
has only a marginal benefit in terms of power savings.
However, even with NVMs added, DRAM will remain an
important part of system, since—for the foreseeable future—
a complete replacement of DRAMs by NVMs is unrealistic,
mainly caused by the long write latencies of NVMs. For
example, PCMs need 12x time and 43x energy for write
accesses when compared to DRAMs [37], [38]. The standby
power of the remaining DRAMs can then again be con-
trolled by our technique.

5 EXPERIMENTAL SETUP

We installed both the original and our modified version of
the Linux Kernel 4.1.34 in a 4-node Xeon server (PowerEdge
r620). Each node has one Xeon E5-2630L CPU and 32 GB
DDR3L memory (if all DIMMs are powered up). The core
count, the clock frequency and the TDP of this CPU are six,
2.0 GHz and 60 W, respectively. These values are similar to
those of a SPARC64 VIIIfx CPU used in the K computer [39].
The memory system has eight 4 GB DDR3L-1333 RDIMMs
and 4 memory channels (two DIMMs per channel). Thus,
the number of memory-system power modes is two (active
and sleep). The transition from active to sleep mode reduces
the memory capacity to 16 GB and also cuts the needed
DIMM standby power in half. Each node is connected
to a network switch (PowerConnect 5548) using Gigabit
Ethernet.

As discussed in Section 4, our proposed technique is
based on two thresholds (Ton and Toff ) to switch between
the two power modes. We tested various pairs of thresholds,
but we were not able to see any difference in behavior when
varying Toff , and hence we only show the experimental
results of Toff = 24 GB in the next section. For Ton, on
the other hand, we vary the threshold from 1 GB to 8 GB.
The complete experimental parameters are summarized in
Table 3.

We note that we have to take impact of a kswapd daemon
into account when configuring values of these parameters.
In order to prevent kswapd from freeing pages additionally,
we need to set a value larger than a low watermark (3.39 MB
in our experimental system) to Ton. In contrast to this, we
do not need to pay special attention to a value of Toff. This
is because if Ton is appropriately configured, kswapd is in
sleep state whenever our technique starts to power DIMMs
off, and the running application is never affected by kswapd.

Since the firmware/hardware combination of our server
currently does not allow an actual hot plug operation (i.e.,
our server can conduct only logical hot plugging including
page relocation), we emulate the effects caused by physical
hot plugging. In order to truthfully capture the overhead
caused by physically powering DIMMs on/off, we insert the
function udelay() at the point where we call the respective
primitive functions for memory hotplug operations, and
then test our benchmark programs with various delays. We
choose the inputs for udelay() (denoted as D) as follows:
the datasheet [24] shows that DDR3L SDRAM takes up to
200 ms for the initialization sequence (i.e, stabilizing power
supply), which means that powering up a DIMM takes
200 ms or less. For this reason, D is varied between 0.2 and
200 ms as shown in Table 3, and we conservatively estimate
that the delay of 200 ms is the most realistic.

Further, we estimate DIMM standby power. Powered up
DIMMs consume standby power depending on their power
mode (i.e., part of powered up circuit within a DIMM),
while fully powered down DIMMs do not consume standby
power. We estimate the standby power of a DIMM as being
equal to the power of the active power-down mode of a
4 GB DDR3L-1333 DRAM (i.e., 0.63 W [24]), which accounts
for 38.8% of the power of DRAM that shows the CX400-like
utilization rate, according to the DDR3L DRAM power cal-
culator provided by Micron [40]. Therefore, we can estimate
that power of the active power-down mode is about 9.7%
of the system power, if DRAM consumes 25% of the system
power [13]. However, this number highly depends on node
architecture, DRAM technology and utilization rate. In fact,
we can save 5.9% of the overall node power for ∗FFT by
halving the number of DIMMs installed in our experimental
node, when compared to the execution on full DIMMs. We
also assume that the standby power of a DIMM during
mode transition is the same in the full case.

For all experiments, we run our benchmarks on our
Linux server node and compute DIMM standby energy
by using the above assumptions combined with memory
usage traces acquired during the run, which we achieve
by executing the Linux command free per second as a
background process.

We use ten diverse MPI-parallel applications (4
computation-intensive and 6 memory-intensive), see Ta-
ble 2. We test these programs with various inputs to model
jobs with different memory footprints, as the effectiveness
of the proposed technique can mainly be characterized by
memory footprints. Four of the ten programs (PTRANS,
∗DGEMM (i.e., star DGEMM), ∗FFT (i.e., star FFT) and
∗STREAM (i.e., star STREAM)), which are selected from the
HPC Challenge Benchmark suite [41], are simple and stress
particular properties, while the rest (HACC, NAMD, QBOX,
UMT2013, BDAS and GRAPH), which are selected from the
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TABLE 2
Benchmark programs.

Name Code description Type Inputs (single) Inputs (multi) Footprints
PTRANS Array transpose memory Ns: 10-50K Ns: 20-60K S to L
∗DGEMM Matrix-matrix multiplication computation Ns: 10-50K Ns: 20-60K S to L
∗FFT Fast Fourier transform computation Ns: 10-50K Ns: 20-60K S to L
∗STREAM Stream memory access memory Ns: 10-50K Ns: 20-60K S to L
HACC Hardware accelerated cosmology code computation np: 20, 40 np: 40, 60 XS
NAMD Classic molecular dynamics computation apoa1, kv1.2 apoa1, kv1.2 S
QBOX Quantum molecular dynamics memory 128-384 atoms 256-768 atoms S to L
UMT2013 Unstructured mesh deterministic radiation transport memory - Zone: 12x12x24, 12x24x24 M to L
BDAS Big data analysis with machine learning memory 0.8–3.2M rows 0.8–3.2M rows S to L
GRAPH Graph500 benchmarks memory 223–225 vertices 223–225 vertices S to L

TABLE 3
Hotplug parameters.

Name Remarks
Power-on threshold (Ton) 1, 2, 4, 8 GB
Power-off threshold (Toff ) 24 GB
FW and HW overhead (D) 0.2, 2, 20, 200 ms

CORAL, CORAL-2 and Graph500 Benchmark suites [42],
[43], [44], represent more realistic workloads. These applica-
tions use the following inputs that affect memory footprint:
matrix size (Ns); number of particles per dimension (np);
names of proteins (apoa1 and kv1.2); number of atoms;
number of zones per MPI ranks; number of rows; and
number of vertices. The Inputs columns present the values
of the parameters used. The rightmost column in Table 2
represents the memory footprint size of each application
using the above values. All programs are compiled for
mpich2-1.4.1p1 using gcc-4.8.0. We launch 4 MPI processes
per node in each run and the number of OMP threads was 1.
Intel Hyper Threading and Turbo Boost technologies were
disabled following common practice in many HPC centers
to ensure repeatable program behavior. Further, we run all
experiments on dedicated sets of nodes, as usual for current
HPC systems.

6 EXPERIMENTAL RESULT

First we provide results from a single node, followed by
a comprehensive sensitivity study, and experiments that
show the performance and energy of footprint-based DIMM
hotplug on multiple nodes. Finally, we show the impact of
footprint-based DIMM hotplug on real workloads.

6.1 Performance and Energy

Figures 8 and 9 show the performance and DIMM standby
energy of our approach on a single node. The vertical axes
represent the relative performance or DIMM standby energy
running with the modified kernel compared to running the
original kernel, while the horizontal axes represent the peak
memory usage of the tested applications. Each of the nine
dotted lines represents the result from one of the nine tested
programs with varying problem sizes. More specifically, we
use Ns =10,000–50,000, np =20–40, 128–384 atoms, 0.8–
3.2M rows and 223–225 vertices for the HPCC applications,
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Fig. 8. Performance of footprint-based DIMM hotplug on a single node.
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Fig. 9. DIMM standby energy of footprint-based DIMM hotplug on a
single node.

HACC, QBOX, BDAS and GRAPH, respectively. In addition, we
use the apoa1 and kv1.2 inputs in the small dataset for
NAMD. We did not use UMT2013 for the single-node experi-
ment as it requires more MPI processes than we had cores
available. We set Ton to 4 GB and D to 200 milliseconds. We
run each program five times and show average results.

Figure 8 shows that footprint-based DIMM hotplug only
experiences a small slowdown caused by the control over-
head; for many applications we are within 2% of the original
kernel. However, we also observed a performance difference
of 2% comparing the five trials with one kernel, as shown in
the error bars that represents standard deviation in the five
trials. This graph indicates that the control overhead of our
proposed technique is typically hidden within OS jitter.

Figure 9 illustrates that our approach saves DIMM
standby power for jobs with small memory footprints, but
(as expected) does not impact the power usage for jobs with
large ones. For example, the proposed technique can save
50.6–52.1% of the DIMM standby energy for all programs
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with a peak memory usage of less than 10.5 GB. On the
other hand, our technique shows little energy saving if the
peak memory usage of a program exceeds 16.4 GB.

Our technique prevents some applications with moder-
ate memory footprints (e.g, ∗DGEMM at the peak memory
usage of 12.4 GB) from saving the DIMM standby energy, as
it is designed to avoid page relocation during the job execu-
tion. Recall that when an application is likely to run out of
the memory available in the sleep mode (i.e., Nfree ≤ Ton),
our technique increases the available memory and then
keeps the increased memory at the end of the application.
However, we believe that our algorithm is acceptable to
production systems, because jobs with moderate memory
footprints are rarely executed in real supercomputers (e.g.,
only 0.46% of jobs use a node memory amount of 12–16 GB
in the PIK iDataPlex cluster).

Figure 10 shows the memory usage over the runtime of
QBOX. The top figure represents a run with 256 atoms, while
the bottom one represents a run with 384 atoms. The mem-
ory footprint of QBOX with 256 atoms never exceeds 12 GB
(= 16 GB − Ton), so that the available memory size stays
around 16 GB during the execution. On the other hand, the
memory footprint of QBOX with 384 atoms hits the power-
on threshold at around 400 seconds. Our page management
system immediately doubles the available memory size at
that time and then keeps the increased memory until the
end of the application.

Figure 11 shows the node energy saving of footprint-
based DIMM hotplug. We focus only on the package and
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Fig. 12. Speedup in power-capped scenarios.

DRAM power reported by RAPL [45] because the power
of the other components within a node highly depends
on the node architecture. Since RAPL does not model the
power of DRAM standby modes [45], we computed the
node energy of the proposed technique by subtracting the
DIMM energy saving shown in Figure 9 from the amount
of energy measured with RAPL. Note that our experiment
includes the impact of our software modification on both
power of CPU and dynamic power of DRAM, which are
modeled by RAPL.

The figure shows that the longer an application with a
small memory footprint runs, the more our proposed tech-
nique saves energy. For example, the proposed technique
saves the energy of 1.50 Wh for QBOX with 256 atoms (at
point A). This amount of energy saving is larger than that of
QBOX with 384 atoms (at point B), as QBOX with 384 atoms
has little chance to power the second DIMMs off due to its
large memory footprint.

From Figures 8 to 11, we can conclude that the proposed
technique has a good ability to control the standby power of
DIMMs matching the memory footprints of the applications.

Additionally, our footprint-based DIMM hotplug has the
ability to improve performance of power-constrained HPC
systems [5]. Figure 12 shows the relative performance of the
HPCC applications with Ns=30,000 running on our mod-
ified kernel compared to running on the original one. We
selected the best combination of package and DRAM power
budgets by using a brute-force search. The figure shows that
our technique can improve the performance of memory-
intensive applications in stringent power-constraint scenar-
ios. E.g., ∗STREAM shows a speedup of 1.21x at a power
budget of 45 W.

6.2 Sensitivity Studies

Figure 13 shows the performance sensitivity of footprint-
based DIMM hotplug against Ton. D is 200 ms. The top
figure shows that a larger Ton is more helpful to applications
with large memory footprints (16.4 GB). We emphasize that
this feature clearly appears in case of applications with a
short execution time. As shown in the bottom figure, the
difference in Ton has no impact on the performance of QBOX,
which runs for a long time.

Figure 14 shows the performance sensitivity of the pro-
posed technique against D. Ton is 4 GB. There is no remark-
able difference in application performance between different
values for D, as the value of D (up to 200 ms) is two or more
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orders of magnitude shorter than the execution time of the
applications (a few seconds or longer). Further, these two
figures show that the firmware and hardware overheads are
not dominant in the performance of footprint-based DIMM
hotplug. Reducing the overhead of operating system kernels
(e.g., the cost to stop page management systems for the page
relocation) is more important to increase the performance.

6.3 Multi-Node Experiments

We tested our proposed technique with all four nodes;
Figures 15 and 16 show the results. Ton was 4 GB and
D was 200 ms. We used Ns =20,000–60,000, np =40–60,
256–768 atoms, 0.8–3.2M rows and 223–225 for the HPCC
applications, HACC, QBOX, BDAS and GRAPH, respectively,
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and apoa1 and kv1.2 inputs for NAMD. For UMT2013, the
processor block was 4x2x2 and we tested with 12x12x24 and
12x24x24 zones. Similar to Figure 8, Figure 15 shows that
our technique does not affects the performance of many
applications, as our proposed technique has no additional
overhead for controlling DIMMs in multi-node systems.

Figure 16 shows the DIMM standby energy saving of the
proposed technique. As shown in the figure, the proposed
technique can save 51.1–51.6% of the DIMM standby energy
if the peak memory usage per node is less than 10.0 GB. On
the other hand, the proposed technique has little ability to
save the DIMM standby energy if the peak memory usage
per node exceeds 12.4 GB. This result is quite similar to
Figure 9, as the memory usage of these applications is well-
balanced between nodes and all nodes therefore show an al-
most identical power mode, despite that they independently
monitor and control their own memory systems.

6.4 Impact on Real Workloads

Finally, we estimate impact of our footprint-based DIMM
hotplug on performance of production supercomputing sys-
tems. Since our approach needs to modify Linux kernels and
memory configurations, real experiment of our approach on
a production system may cause some operational issues.
Instead, we use three real workloads shown in Figure 1 and
a performance model for this experiment.

Performance of a job under footprint-based DIMM hot-
plug (Photplug) can be defined as follows.

Photplug = Porg + Poverhead (1)

where Porg and Poverhead represent the original execution
time of the job and the performance overhead of powering
DIMMs on/off, respectively. Poverhead is zero if the peak
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TABLE 4
Performance of footrpint-based DIMM hotplug for real workloads.

CX400
Class # of jobs [%]

∑
Porg (s)

∑
Photplug (s) SD

S 61,048 [98.7] 1.40×109 1.40×109 1.00
LS 27 [4.37×10−4] 530 540.8 1.02
LL 760 [0.0123] 5.95×107 5.95×107 1.00
Total 61,835 1.46 ×109 1.46 ×109 1.00
PIK IPLEX
Class # of jobs [%] Porg (s) Photplug (s) SD
S 688,405 [94.4] 9.65×1010 9.65×1010 1.00
LS 2,662 [3.65×10−3] 29,356 30,421 1.04
LL 37,804 [0.0519] 3.28×109 3.28×109 1.00
Total 728,871 9.98 ×1010 9.98 ×1010 1.00
RICC
Class # of jobs [%] Porg (s) Photplug (s) SD
S 440,918 [98.5] 9.36×1010 9.36×1010 1.00
LS 397 [8.87×10−4] 3,332 3,481 1.05
LL 6,479 [0.0145] 7.98×108 7.98×108 1.00
Total 447,794 9.44 ×1010 9.44 ×1010 1.00

memory usage of the job is lower than the half memory
capacity minus Ton. Otherwise, we assume a uniform over-
head of 400 ms (each 200 ms for turing DIMMs on and off,
respectively) for the simplicity.

To make an effect of our approach clear, we classify the
jobs included in the workloads into the following three
types: S, LS and LL. S represents jobs that have small
memory footprints, and our approach does not need to
switch power mode for the jobs. Both LS and LL mean
jobs that have large memory footprints, and our approach
therefore powers DIMMs on/off during the execution of
the jobs. The difference between LS and LL are length of
execution time (i.e., short or long). We assume that memory
footprints per node less than 28 GB, 12 GB and 2 GB are
small for CX400, PIK IPLEX and RICC, respectively, and the
execution time less than 40 s (i.e., 100x of the overhead) is
short.

Table 4 shows performance of footprint-based DIMM
hotplug for real workloads. As shown in the table, most
jobs executed on the production systems are classified into
Class S (i.e, 98.7%, 94.4% and 98.5% for CX400, PIK IPLEX
and RICC, respectively), in which jobs do not suffer from
the control overhead. Many of the remaining jobs are cate-
gorized to Class LL, in which the control overhead is hidden
by the large execution time. Very few jobs (i.e., Class LS)
suffer from the control overhead, so that the overall impact
of our footprint-based DIMM hotplug on performance of
production systems would be negligible.

7 RELATED WORK

The efficient usage of low power DRAM modes has been
identified as a promising technique in other projects as
well. Delaluz et al. propose a power-aware OS scheduler
that changes DRAM power modes during context switches
depending on process memory usage [46]. Zhou et al. pro-
pose optimizing page allocation based on page miss ratio
curves in order to increase energy efficiency [47]. In addi-
tion, several power-aware memory controllers have been
proposed [48], [49], [50]. Our approach complements these
techniques and adds the ability to completely shutdown
DIMMs.

Further, there have been many efforts to optimize re-
fresh operations for DRAM power savings. Ghosh and Lee
propose a technique to stop refresh operations for those
DRAM rows that have been recently accessed [51]. Isen and
John propose an architecture-level technique to halt refresh
operations for free memory region with OS support [52].
Liu et al. propose a framework that stops refresh opera-
tions for non-critical data a programmer designates [53].
Wilkerson et al. propose a technique to reduce refresh rates
with the help of multi-bit ECC [54]. In contrast to these
techniques, our technique completely powers off all DRAMs
in a DIMM at the OS level.

Some techniques using memory DVFS [22], [55], [56]
have been proposed. Similar to CPU DVFS, memory DVFS
reduces the memory power consumption by adjusting a set
of voltage and frequency levels at runtime. However, to the
best of our knowledge, there is no hardware to support
memory DVFS, yet. Moreover, memory DVFS has limited
capability of saving DRAM standby power due to the fol-
lowing two reasons. First, typical memory DVFS controls
power of DIMMs at a spatially coarse granularity, requiring
all DIMMs to change their memory clock frequencies con-
currently. Second, memory DVFS has no ability to reduce
the standby power to zero.

Zhang et al. proposed DIMMer, which turns DRAM
ranks on/off based on an analysis of a datacenter trace [19].
However, no real implementation or system experiment
is shown. Further, our work provides easier transparent
integration of OS-level DIMM-on/off.

8 CONCLUSIONS

This paper presented a new power management technique
called footprint-based DIMM hotplug. It enables a compute
node to dynamically adjust the number of DIMMs that are
powered matching the memory footprint requirements of
a running application. We implemented this approach as
part of an optimized page management system with small
control overhead, using the existing DIMM hotplug APIs in
Linux. We demonstrated our technique on a real server, and
show that it has the capability to save substantial DIMM
power.

Our future work will focus on verifying the effective-
ness of our technique on real HPC systems. Additionally,
powering down also the first DIMMs, while mitigating
the impact on bandwidth, offers further opportunities for
power savings.
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