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We propose a fully quantum approach to nonperturbatively calculate the spin-split Landau levels and g
factor of various spin-orbit coupled solids based on the k · p theory in the matrix mechanics representation.
The new method considers the detailed band structure and the multiband effect of spin-orbit coupling
irrespective of the magnetic-field strength. We show an application of this method to PbTe, a typical Dirac
electron system. Contrary to popular belief, we show that the spin-splitting parameter M, which is the
ratio of the Zeeman to cyclotron energy, exhibits a remarkable magnetic-field dependence. This field
dependence can rectify the existing discrepancy between experimental and theoretical results. We also
show that M evaluated from the fan diagram plot is different from that determined as the ratio of the
Zeeman to cyclotron energy, which also overturns common belief.
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A change in the Zeeman splitting is the most direct
observable consequence of spin-orbit coupling (SOC) in
solids. The Zeeman energy, which is the energy difference
between spin-up and -down electrons under a magnetic
field B, is usually defined as EZ ¼ gμBB, where g is the g
factor and μB is the Bohr magneton. For free electrons,
g ¼ 2. On the contrary, for itinerant electrons in solids, it is
modified due to the SOC and correlation between electrons
[1,2]. Particularly, large g factors, such as in Zn (g ¼ 170)
[3] and Bi (g ¼ 1060) [4], are characteristics of the SOC
mechanism with low carrier density. Therefore, measure-
ments of the g factor or the Zeeman energy can provide rare
and valuable information of the SOC in solids.
Experimentally, the g factor can be determined from

quantum oscillations, where the frequency F of an oscil-
lation is given by F=B ¼ nþ 1=2�M=2 [2] (n is the
Landau level index). The spin-splitting parameter M is
defined as the ratio of the Zeeman energy to the cyclotron
energy Ec ¼ ℏωc. It is usually expressed as

MZC ¼ EZ

Ec
¼ gμBB

ℏωc
¼ gmc

2me
; ð1Þ

where me is the free-electron mass, mc is the cyclotron
mass, and ωc ¼ eB=mc. MZC characterizes the relative
energy scale of the SOC to the kinetic energy in crystals [5].
When the SOC is negligibly small, it is expected to
be MZC ≪ 1. MZC increases as the impact of the SOC
becomes significant. ForMZC ¼ 1, the system is equivalent
to the Dirac electrons [6–8]. MZC can also be greater than
unity, depending on the contributions from the higher
energy bands [5,9–11]. In recent years, M has attracted
renewed interest since it is related to Berry’s phase as

ϕB ¼ πM, which is routinely discussed for topological
materials [12–15].
Theoretically, on the other hand, it is extremely chal-

lenging to develop a fully quantum framework for the
calculation of the g factor and M, while considering the
multiband effect of SOC. Yafet formulated perturbatively
a basic idea of the g factor [1,16]. This was followed by
several investigations of the g factor, especially for semi-
conductors [17–20]. Here, the specific symmetry of each
crystal was analyzed while perturbatively considering the
multiband (more than three bands) effect of SOC. For a
Luttinger Hamiltonian, which is the effective Hamiltonian
for the two valence bands of Si or Ge, the spin-split Landau
levels can be computed nonperturbatively using a specific
symmetry operation [1,21,22]. Thus far, the nonperturba-
tive computation of the spin-split Landau levels has been
limited to a two-band model, which is the minimum model
for the interband effect [6,7]. The multiband models have
been solved using the perturbative approach only.
Recently, a general analytic formula of the g factor was

obtained on the basis of the relativistic multiband k · p
Hamiltonian with perturbation theories (Löwdin partition-
ing) [5]. This method does not require an analysis of the
crystal, which makes it easily applicable to various solids.
Although we were able to solve the half-a-century-old
mystery on the large anisotropic g factor and MZC of holes
in Bi using this method, it is still a perturbative method.
Further, the g factor could only be obtained up to an order
of Oðℏωc=ΔÞ ∼OðB1Þ, where Δ is half of the band gap.
This is not sufficient for the cases with strong magnetic
fields and narrow gaps, which have garnered considerable
interest recently, particularly for topological insulators and
Weyl and Dirac fermion systems. In fact, an issue related to
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the spin splitting of PbTe, which is a typical narrow gap
semiconductor, was reported. Using the perturbative
g-factor formula, it was predicted that MZC ¼ 0.83 [23].
On the contrary, M ¼ 0.52–0.57 experimentally, as
obtained from the analysis of the Shubnikov–de Haas
oscillation [24]. This large discrepancy cannot be attributed
to theoretical error and points towards a fundamental
problem with the spin-splitting parameter that has not been
encountered yet.
In this Letter, we propose a novel nonperturbative matrix

mechanics approach to perform a rigorous calculation of
the spin-split Landau levels and the g factor, regardless of
the magnitude of the field and the size of the gap. We have
termed it the π-matrix method in this Letter (cf. Fig. 1). It is
based on a fully quantum theory without any semiclassical
assumptions and the Bohr-Sommerfeld quantization rule.
Here, we do not need any specific analysis of the crystal
symmetry, whereas the previous methods [17–22] need an
analysis of the specific symmetry of each crystal, so that the
previous theory is unique for a particular crystal symmetry.
This method can be easily combined with the band
calculations, such as first principles calculations and
tight-binding calculations. Consequently, the detailed band
structures and the multiband effect of SOC can be taken
into account automatically. To test the potential of the
π-matrix method, we attempt to resolve a recently raised
issue of discrepancy in M of PbTe. We show that M
exhibits a remarkable dependence on magnetic fields, even
though it has been believed to be invariant against the field
[cf. Eq. (1)]. Our result can bridge the existing gap between
theoretical and experimental studies. Further, we show that
the spin-split parameter derived from the fan diagram plot
is different from that defined as the ratio of the Zeeman to
cyclotron energy.
It was shown by Luttinger and Kohn [25] that the motion

of electrons in a periodic potential and a uniform magnetic
field is described by the following equation in the so-called
Luttinger-Kohn representation [8,26,27]:

X
l0σ0

��
ϵl þ

π2

2me

�
δll0δσσ0 þ π · vσσ

0
ll0

�
ψl0σ0 ðrÞ ¼ EψlσðrÞ:

ð2Þ

π ¼ −iℏ∇þ eA is the kinematical momentum operator
under the magnetic field, where A is the vector potential

and e > 0 is the elementary charge. The wave function
ΨðrÞ can be expanded in terms of the band-edge Bloch
functions ulσðrÞ asΨðrÞ ¼

P
lσ ψlσðrÞulσðrÞ, where l and

σ indicate the lth Bloch band and its spin, respectively.
Although only the first order of π appears in Eq. (2), it is
not a series expansion with respect to π. Equation (2) is
exact as long as the complete set of ulσðrÞ is taken [8,25].
It may be noted that σ is not the bare spin but expresses
the degree of freedom of the Kramers doublet. ϵl is the
band-edge energy of the lth Bloch band. vσσ

0
ll0 is the matrix

element of the velocity operator between u†lσ and ul0σ0 .
Since the basis of the wave function is chosen to be the
eigenfunction of the Hamiltonian with the SOC, the multi-
band SOC effect is considered nonperturbatively by vσσ

0
ll0,

which is the strong merit of the k · p theory [8,25,27].
In principle, the Hamiltonian in the Luttinger-Kohn

representation can be written in a matrix form. For an L
band system, it is expressed in terms of a 2L × 2L matrix.
Initially, it seems that the energy of such electrons can be
easily obtained by diagonalizing the Hamiltonian, which is
true for the cases in the absence of magnetic field. However,
this is not true in the presence of magnetic field since the
commutation relation

π × π ¼ −ieℏB ð3Þ

cannot be satisfied by the simple diagonalization. This
commutation relation prevents the rigorous calculation of
the Landau levels. As discussed earlier, a possible way to
circumvent this theoretical difficulty is the inclusion of the
perturbation theory [1,5,16–20,23].
We use an unconventional yet simple idea to resolve this

difficulty, which is the incorporation of matrix mechanics
[28,29]. Because the commutation relation Eq. (3) is
essentially the same as that of the harmonic oscillation,
π can be expressed in terms of a matrix [29]. By replacing π
in Eq. (2) by the matrix form π̂, we obtain the Hamiltonian
as the combination of the Luttinger-Kohn representation
and the matrix mechanics representation (see Fig. 1). The
basis of the matrix π̂ is the Landau level index n in the
present case. With this matrix of π̂, the spin-split Landau
levels can be calculated rigorously by a simple numerical
diagonalization, even though the matrix size of the
Hamiltonian becomes large, i.e., ð2LNÞ × ð2LNÞ, where
N is the number of Landau levels considered. It is not a
perturbation approach with respect to B, but a nonpertur-
bative approach, so that all orders in B can be taken into
account. This method is gauge invariant, which guarantees
the validity of the theory under a magnetic field, since the
commutation relation Eq. (3) holds for arbitrary gauge. The
parameters ϵl and vσσ

0
ll0 in the Hamiltonian can be directly

calculated from the band calculations, such as tight-binding
and first principles calculations, at zero fields. To the best of
our knowledge, this is the first nonperturbative method that
can be used to calculate the spin-split Landau levels while

FIG. 1. Schematic image of the π matrix method. The kin-
ematical momentum operator π in the k · p Hamiltonian is
expressed in the matrix mechanics representation.
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considering the detailed band structure and the multiband
effect of SOC under any magnetic-field strength. We verified
the validity of the present method for the well-known case of
free electrons and Dirac electrons. The details of the π-
matrix method are given in the Supplemental Material [30].
We now apply the π-matrix method to PbTe, which is a

narrow gap IV-VI semiconductor with a strong SOC.
As mentioned earlier, an issue regarding large discrepancy
between experimentally and theoretically reported values
ofM in PbTe has been raised recently. To resolve this issue,
we calculate the Zeeman energy, the cyclotron energy, and
their ratio MZC by the π-matrix method along with the
relativistic tight-binding model by Lent et al. [31]. The
results obtained agree with those obtained by another
model by Lach-hab et al. [32]. The details are given
in Ref. [30].
Figure 2(a) shows the spin-split Landau levels for the top

valence band at the L point as a function of the magnetic
field. (The experimental values of M were obtained for
hole-doped samples [24].) The magnetic field is along
the (001) direction, and the wave number along the field is
set to be at the extremum of energy. The Landau level index
n and their spins σ are uniquely determined from the weak-
field-limit value of MZC obtained by using the Löwdin
partitioning [30]. Each energy level exhibits a sublinear
field dependence, suggesting that the system is close to
the Dirac electrons, whose energy is given by ED

j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 2Δℏωcj

p
, (j ¼ nþ σ=2 ¼ 0; 1; 2;…). For perfect

Dirac electrons, the lowest Landau level is field invariant.
However, the obtained lowest Landau level exhibits a weak
field dependence. This deviation from the perfect Dirac
electrons is a clear indication of the contribution from
the other bands, i.e., the multiband effect of SOC, which
are ignored in the ordinary Dirac electron model. This
multiband effect of SOC can be expressed by introducing
the additional g-factor term up to the order of OðB1Þ in
the form

EexD
n;σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 2Δℏωcðnþ σ=2Þ

q
þ σ

2
g0μBB; ð4Þ

which is called as the extended Dirac model [4,33–35]. [For
holes, a negative sign is needed in Eq. (4).] To date, the
value of g0 has been phenomenologically determined to fit
the experimental data [4,35,36]. We, for the first time,
determine this value microscopically. The corresponding
results for g0 ¼ −10.4 are shown in Fig. 2(a) as dashed
lines. [Note that the absolute value of the lowest Landau
level ðn; σÞ ¼ ð0;−Þ increases with the magnetic field
when g0 < 0.] It is evident from Fig. 2(a) that the spin-
split Landau levels of PbTe can be well reproduced by the
extended Dirac model, at least for B < 60 T.
From the spin-split Landau levels, we evaluate the

cyclotron energy Ec;n ¼ En;þ − En−1;þ and the Zeeman
energy EZ;n ¼ En;þ − En;−, which are shown in Fig. 2(b)

for n ¼ 2. Both Ec;n and EZ;n are proportional to B1 in the
weak field limit (B≲ 2 T). In the zero-field limit, g ¼ 41.0,
which agrees with the previous value obtained perturba-
tively [23,30]. However, EZ;c exhibits a sublinear behavior
in the strong field regime. Therefore, the g factor, which is a
coefficient of B1, cannot be well defined in this regime.
This field dependence is roughly explained by the extended
Dirac model, as shown in Fig. 2(b). The observed deviation
of the extended Dirac model from the π-matrix method,
which is particularly noticeable for B≳ 30 T, indicates
that the former is not adequate for this field region. These
deviations arise because the higher order corrections,
which are not considered in the extended Dirac model
but rigorously considered in the π-matrix method, are not
negligible at high fields. Next, we calculate the spin-
splitting parameter MZC¼EZ=Ec to investigate the long-
established assumption that MZC is independent of the
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FIG. 2. Magnetic-field dependence of (a) spin-split Landau
levels, (b) Zeeman EZ and cyclotron Ec energy, and (c) spin-
splitting parameter MZC (EZ;c and MZC are obtained for n ¼ 2).
The solid and dashed lines represent the results obtained by the π
matrix method and the extended Dirac model, respectively.
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magnetic field. This is because, in Eq. (1), both Ec and EZ

have been obtained up to only OðB1Þ in the existing
theories. Consequently, the field dependence of MZC has
never been examined in detail. However, we observe that
MZC exhibits a remarkable field dependence, which is clear
from Fig. 2(c), where n ¼ 2. At zero field, MZC ¼ 0.80,
and it rapidly decreases as MZC ¼ 0.46 at B ¼ 55 T. This
drastic reduction is remarkable, and we found that it can be
qualitatively explained using the extended Dirac model.
From this model, it is easy to derive that

MZC ¼ ED
jþ1 − ED

j þ g0μBB
ED
jþ1 − ED

j
: ð5Þ

The above equation clearly shows thatMZC < 1, and it is a
decreasing function of B for g0 < 0. Therefore, the reduc-
tion of MZC in Fig. 2(c) is a logical consequence of the
increase in the lowest Landau level in Fig. 2(a).
It is expected that MZC should be an increasing function

of B for g0 > 0. This can be verified by substituting Sn for
Pb, i.e., Pb1−xSnxTe. It is well known that the band
inversion between the conduction and valence bands occurs
at around x ≃ 0.4 [37,38], which accompanies the topo-
logical transition from trivial to nontrivial [39]. In the
Lent et al. model, the inversion point is at x ¼ 0.38,
where MZC changes from MZC < 1 to MZC > 1 [23,30].
Figure 3 shows the field dependence of MZC for
Pb1−xSnxTe using the Lent et al. model. As expected,
MZC is an increasing function of B after the inversion at
x ¼ 0.38, sinceMZC > 1 so that g0 > 0 for x > 0.38. These
results are entirely consistent with the understandings
obtained from the extended Dirac model.
An alternate method for evaluatingM is the fan diagram

plot [2], where 1=Bn is plotted as a function of the Landau
level index. Here, Bn is the field at which the chemical
potential touches the nth Landau level. These reciprocal
fields are linearly fitted for each spin, following whichM is

evaluated from the difference of the x intercept, i.e.,
Mfan ¼ x− − xþ. In principle, Mfan is not exactly equal
toMZC. The significant difference can be easily understood
from the fact that Mfan is independent of B, but dependent
on μ, and vice versa is true for MZC. The relation Mfan ¼
MZC is only true for the cases of free electrons with Zeeman
energy and Dirac electrons [30]. Figure 4 shows the fan
diagram of PbTe for the Lent et al. model with μ ¼
−92 meV from the top of the valence band (the hole
density is nh ¼ 3.7 × 1018 cm−3). We obtain MLent

fan ¼ 0.63
by fitting the calculated 1=Bn. The μ dependence ofMfan is
shown in the inset of Fig. 4. Mfan tends to approach the
zero-field value of MZC ¼ 0.80 in the μ ¼ 0 limit. This is
also consistent with the analysis using the extended Dirac
model [30].
Experimentally, MZC can be determined directly from

the Zeeman and cyclotron energy [5]. It is not appropriate
to compare the approximate value of M obtained from the
Lifshitz-Kosevich formula with the present theoretical
value, since this formula is not based on a fully quantum
theory. According to Akiba et al. [24], Mexp

fan ¼ 0.56
(evaluated from Fig. 9), which is less than that obtained
using the Lent et al. model MLent

fan ¼ 0.63. Although the
agreement is not perfect yet, we have successfully removed
the large discrepancy between experiment and theory.
Further enhancements of the theoretical accuracy can be
achieved by improving the accuracy of the band calcu-
lations, since the value of M is quite sensitive to the details
of the band structure. Even the high-energy bands (more
than 1 eV far from the conduction band) can change M
from MLent

fan ¼ 0.63 to MLach-hab
fan ¼ 0.40 [30].

In summary, we have demonstrated a novel nonpertur-
bative method, which is based on matrix mechanics, for
calculating the spin-split Landau levels. This is the first
method to elucidate the following properties of the spin-
splitting parameter M. (i) MZC is largely dependent on the
magnetic field. (ii) In general, MZC is not equivalent
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toMfan. The origin of these previously unknown properties
is the multiband effect of SOC and the higher order
corrections in B. This method also provides an explanation
for the large discrepancy between experimentally and
theoretically reported values of M in PbTe. Apart from
the specific case of PbTe considered here, this method can
be useful for other systems in which the SOC plays a
relevant role, such as topological insulators (M ∼ 2 in
Bi2Se3 has not been explained yet [9–11]) and Weyl and
Dirac fermion systems.

We thank M. Tokunaga and K. Akiba for helpful
discussions. This work is supported by JSPS KAKENHI
(Grants No. 16K05437 and No. 19H01850).
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