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1. Introduction

Multiple collaborations including ALPHA [1, 2], ATRAP [3, 4], ASACUSA [5, 6], AEGIS

[7, 8], and GBAR [9] propose to use antihydrogen for tests of CPT (charge conjugation,

parity, time-reversal) and/or gravitational symmetries. Successful production and

confinement of antihydrogen on timescales of up to 103 s have been demonstrated

[4, 10]. Current experiments involve relatively small numbers of antiatoms and

future experiments may benefit from increases in production of trappable antihydrogen

[11, 12, 13].

The ALPHA and ATRAP experiments aim to confine antihydrogen atoms in traps

based on the Io↵e-Pritchard configuration [3, 14, 15]. Charged particles are confined in

a Malmberg-Penning trap that has additional magnetic fields superimposed to create

a magnetic minimum for neutral particle confinement. The minimum field consists of

the superposition of a uniform field, a transverse multipole field, and axial mirror fields.

Antihydrogen producing plasmas are confined near the center of the trap, where the

multipole and axial mirror fields are weak relative to the uniform field.

In the ALPHA experiment, potentials applied to the Malmberg-Penning trap

electrodes create axial nested potential wells that simultaneously confine antiprotons

and positrons. Autoresonant excitation of the antiproton plasma is used to mix the

two species [16, 17]. For antihydrogen in a low-field seeking state, confinement occurs

through interaction of an antihydrogen atom’s intrinsic magnetic moment with the

magnetic minimum field.

In the present study, equilibria of non-neutral plasmas are evaluated in a model of

the ALPHA trap. Malmberg-Penning trap electrode potentials produce a single well

such that the positron plasma extends axially to the magnetic mirrors in the absence

of the transverse multipole field. By extending to higher magnetic field regions, the

positron plasma self-consistently produces a three-dimensional potential well. The

formation of electric potential wells in Penning traps with mirror fields has been

discussed previously [18, 19]. Conditions leading to potential well formation in a positron

plasma are used in the present study to investigate the possibility of simultaneous

confinement of two plasma species.

Equilibria are calculated by self-consistently solving Poisson’s equation using a

finite-di↵erence computational approach [20]. Computational techniques are developed

to apply the Boltzmann density relation along curved magnetic field lines. Once

developed, the techniques are applied to calculate the equilibrium of a positron plasma

in the model trap. Two-species equilibria are also evaluated for an antiproton plasma

that follows the Boltzmann density distribution in three dimensions and is confined

by the space charge of a positron plasma. Equilibria of non-neutral plasmas have

been previously computed using similar methods in multiple trap geometries, but with

uniform magnetic fields or no magnetic field [21, 22, 23].

The equilibrium solutions presented here require the Boltzmann density relation

to hold along each magnetic field line for positron plasmas. The theoretical treatment
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considers the positron plasma to extend axially to each magnetic mirror coil, where a

boundary of the computation region is located. Thus, the theoretical treatment doesn’t

include axial positron confinement, aside from that associated with the magnetic mirror

e↵ect on the positron density distribution. For a real system, an electric field could be

applied just beyond each magnetic mirror coil, such that the positron plasma extends

axially to each mirror coil but not farther. The associated electric potential well could

be made deep enough for axial positron losses to be negligible.

The theoretical treatment also doesn’t include radial positron confinement, aside

from assuming that positrons follow magnetic field lines. Although radial plasma

transport processes are considered to be beyond the scope of the present study, an

important e↵ect of radial transport processes should be mentioned. Radial expansion

of the positron plasma could convert potential energy to kinetic energy thereby heating

the plasma. Collisions among particles can cause radial plasma transport processes

to occur. Because a non-neutral plasma rotates, a magnetic field that deviates from

being cylindrically symmetric can cause radial plasma transport processes to occur.

The octupole field causes such a deviation. In addition to a↵ecting radial transport

processes, the octupole field may directly a↵ect plasma equilibria. A self-consistent

three-dimensional computation would be needed for obtaining plasma equilibria that

include the octupole field. For connecting the present theoretical work with a real

system, it must be kept in mind that a limitation of the present work is that the

computation is two-dimensional and neglects e↵ects associated with the presence of the

octupole field.

The model of the ALPHA trap is described in section 2, and the computational

techniques are detailed in section 3 and section 4. Equilibria showing potential well

formation in a positron plasma are presented in section 5, and equilibria for an

antiproton plasma confined in the potential well created by the space charge of a positron

plasma are reported in section 6. The three-body recombination timescale, antiproton

loss timescale, and temperature equilibration timescale are calculated for two-species

equilibria in section 7. The computations are discussed in section 8 and a summary is

given in section 9. Throughout, subscripts + and � designate quantities that pertain

only to positrons and antiprotons, respectively.

2. Model

The model of the ALPHA trap is illustrated in figure 1 and consists of a Malmberg-

Penning trap with magnetic mirror fields. The magnitude of the transverse octupole

magnetic field near the radial center of the trap where the plasma is located is assumed

to be negligible in the model. Mirror fields are represented by the magnetic fields of

two circular current loops centered on the z axis at z = ±z

m

, and the uniform magnetic

field is B
U

= B

U

ẑ. The superposition principle gives the two components of the total

magnetic field in cylindrical coordinates as

B

r

(r, z) = B

m,r(r, z � z

m

) (1a)
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+B

m,r(r, z + z

m

),

B

z

(r, z) = B

m,z(r, z � z

m

) (1b)

+B

m,z(r, z + z

m

) + B

U

.

The components B
m,r(r, z) and B

m,z(r, z) are given in the Appendix.

x

zrP-zm zmIm

rw
rm

BU
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(c)
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Figure 1. A schematic of the model for the ALPHA trap is shown in (a), the magnetic
field magnitude along the z axis is plotted in (b), and magnetic field lines are shown
in (c). The model is symmetric about the z = 0 plane and is cylindrically symmetric.
In (b), R is the mirror ratio along the z axis.

The model is radially bounded by a grounded cylindrical electrode centered on the

z axis with inner radius r
w

. The electrostatic potential profile is computed in the region

0  r  r

w

, �z

m

 z  0 and applied to other regions through symmetry. Neumann

boundary conditions are set at z = 0, r = 0, and in the z = �z

m

plane. Boundary

conditions are consistent with symmetry about the z = 0 plane, cylindrical symmetry,

and approximate symmetry near the z = �z

m

plane. The Neumann boundary condition

in the z = �z

m

plane closes the otherwise open boundary. Symbolically, the boundary

conditions are

�(r
w

, z) = 0, (2a)

@�(r, z)

@r

���
r=0

= 0, (2b)

@�(r, z)

@z

���
z=0

= 0, (2c)
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@�(r, z)

@z

���
z=�zm

= 0, (2d)

where �(r, z) is the electric scalar potential.

3. Methods

Equilibria are computed by solving Poisson’s equation, r2

�(r) = �⇢(r)/✏
0

, through a

self-consistent finite-di↵erence computation [20]. Here, ⇢(r) is the charge density and

✏

0

is the vacuum permittivity. The charge density for a confined positron plasma can

be written as ⇢(r) = e n

+

(r), where n

+

(r) is the positron density distribution, each

positron carrying elementary charge e.

The positron density in the z = 0 plane is considered to be radially uniform out

to a radius r = r

P

, where it possesses a sharp edge. Symbolically, the density in the

z = 0 plane is n
+

(r, 0) = ⇥(r
P

� r)n
0+

, where ⇥ is the Heaviside step function defined

as ⇥(x < 0) = 0, ⇥(x � 0) = 1 and n

0+

is the positron density. If the positron plasma

follows the Boltzmann density relation along magnetic field lines, the density at any

point is

n

+

(r, z) = n

0+

⇥(r
P

� r

0

) (3)

⇥ exp

✓
� e

k

B

T

+

[�(r, z)� �(r
0

, 0)]

◆
,

where T

+

is the positron plasma temperature, k
B

is the Boltzmann constant, and r

0

is the radial position where the magnetic field line passing through (r, z) intersects the

z = 0 plane. Magnetic field lines are solutions to dr/B
r

(r, z) = dz/B
z

(r, z), which is

solved numerically in parametric form,

dr

ds
=

B

r

(r(s), z(s))

|B(r(s), z(s))| , (4a)

dz

ds
=

B

z

(r(s), z(s))

|B(r(s), z(s))| , (4b)

using a fourth-order Rungge-Kutta solver.

4. Computations

A finite-di↵erence approximation with central di↵erencing starting from an arbitrary

initial solution �

(0)(r, z) is used to self-consistently solve Poisson’s equation. The

potential is calculated at the vertices of a computational mesh with radial spacing �r

and horizontal spacing �z. Values for each iteration are obtained through

�

(l+1)(r, z) = �(↵� 1)�(l)(r, z) (5)

+
↵

2

✓
1

�r

2

+
1

�z

2

◆�1

⇥

�

(l)(r +�r, z)� �

(l)(r ��r, z)

2 r�r
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+
�

(l)(r +�r, z) + �

(l)(r ��r, z)

�r

2

+
�

(l)(r, z +�z) + �

(l)(r, z ��z)

�r

2

� f

(l)(r, z)

�
,

where, ↵ is a mixing constant taking values 0 < ↵  1 and f(r, z) = �⇢(r, z)/✏
0

. Here,

⇢ = en

+

is the charge density, and equation (3) is used to calculate the positron density

n

+

. A review of iterative finite-di↵erence techniques can be found in [20].

Generally, mesh spacing of less than half the Debye length is needed for convergence

[20]. In the model, the criteria �r < �

D+

/4 and �z < �

D+

/4 are used. Here, an

additional minimum factor of two is introduced to o↵set increased density expected

in the high field region [18], and �

D+

is the Debye length for a positron plasma with

temperature T
+

and density n

0+

given by �

D+

= [✏
0

k

B

T

+

/ (e2n
0+

)]1/2. For example, for

a 40 K plasma with density 5.5⇥ 1013 m�3, �
D+

= 5.9⇥ 10�5 m. A method to reduce

computation time is employed.

The region that requires mesh spacing dictated by the Debye length is known

a priori to be r . r

P

. With r

P

⌧ r

w

, computation time is reduced by employing

two uniform mesh spacings where the coarse spacing is a multiple of the fine spacing.

The static mesh refinement method employed here is developed from adaptive mesh

refinement methods [24] by using simplifying assumptions. Mesh spacing is �r

A

=

�z

A

= 10�5 m in the region r  2 r
P

and �r

B

= �z

B

= 10�4 m in the region r > 2 r
P

and is sketched in figure 2.

The potentials �

(l+1)(r < 2 r
P

, z) and �

(l+1)(r > 2 r
P

, z) are calculated through

direct application of (5). Calculations for potentials with r = 2 r
P

use ‘ghost’ points

along the line r = 2 r
P

+�r

A

for the forward di↵erence terms. For example, a ghost point

is located at (2 r
P

+�r

A

, z

A

) in figure 2. The potential at (2 r
P

+�r

A

, z

A

) is calculated

through linear interpolation of �(l)(2 r
P

+�r

B

, z

A

) and �

(l)(2 r
P

, z

A

). Interpolation from

axially adjacent points is used when (2 r
P

+�r

B

, z

A

) lies between previously calculated

values.

2rP

zA

2rP- rA

zA+ zA

zB zB+ zB
2rP+ rB

2rP+ rA

Figure 2. The computational grid used consists of two regions. The region with
r  2 rP has points spaced at �rA = �zA and the region at r > 2 rP uses spacing
�rB = �zB with �rB = m�rB where m is an integer.
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5. Equilibria Conditions

Model dimensions are selected to represent the ALPHA trap [25]. In the model,

Malmberg-Penning trap electrodes have inner radius r

w

= 22.3 mm, and the uniform

magnetic field is B

U

= 1.0 T. The current loops have radius r

m

= 44.5 mm and are

centered at (0, 13.7 cm) and (0,�13.7 cm). In a ‘base case’ configuration, parameters

are selected to represent feasible conditions in the ALPHA trap [1, 2]. The mirror coils

produce a total magnetic field magnitude at (0,±13.7 cm) of 2.0 T, giving a mirror ratio

along the z axis of R = 2.0. The positron plasma is set to a temperature of T
+

= 40 K

and has a uniform density in the z = 0 plane n

0+

= 5.5 ⇥ 1013 m�3 out to radius

r

P

= 0.9 mm.

The axial potential well is the di↵erence between the maximum and minimum

potentials along the z axis, while the radial potential well is the di↵erence between

the maximum potential and the electrode applied potential. A contour plot of the

electrostatic potential near the z axis is shown in figure 3. Plots of the positron density

are shown in figure 4. For the base case, the radial potential well depth is 6.7 ⇥ 103 K

and the axial potential well depth is 27 K. The possibility of using the electric potential

well to simultaneously confine antiprotons is explored in section 6.

Values for the magnetic field mirror ratio, positron density, plasma radius, and

plasma temperature are individually changed from the base case. Axial and radial

potential well depths under each change are given in table 1. The base case is shown at

the top of the table, and parameter values that deviate from the base case are given in

the first two columns for other cases. Increases in the positron plasma temperature or

the axial mirror ratio lead to an increased axial potential well depth while leaving the

radial potential well approximately unchanged. Changes to the positron density and

plasma radius a↵ect the radial well depths with small changes to the axial well depth.

The well depths are converted to temperature units through U

W

= e��/k

B

.

0.4

0.5
0.52
0.54
0.560.5735

0.574

0.5745

0.575

-13.7 0 13.7
z (cm)

x (mm)

0

-0.3
-0.6

-0.9

0.3
0.6
0.9

Figure 3. A contour plot of the computed electrostatic potential (in volts) within a
confined positron plasma. The results indicate the formation of a three-dimensional
electric potential well, which may serve for simultaneously confining antiprotons.
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Table 1. Potential well depth under various conditions in a model of the ALPHA trap.
The well depth is converted to temperature units through UW = e��/kB. The base
case has rP = 0.9 mm, T+ = 40 K, n0+ = 5.5⇥1013 m�3, and R = 2.0. Parameters are
individually varied from base case conditions. The symbol for the parameter varied is
listed in the first column and the parameter value is given in the second column. The
fifth column gives the ratio of the positron density at r = 0 in the plane of the mirror
coil to the density at the center of the trap. The final column gives the full width at
half maximum (FWHM) density for the positron plasma in the the z = �zm plane.

parameter UW (radial) UW (axial) n+(0,�zm)/n0+ FWHM
symbol value 103 K K unitless mm

base 6.68 26.8 1.95 1.14

T+ 20 K 6.69 13.6 1.97 1.14
T+ 80 K 6.67 53.1 1.94 1.16
n0+ 1.0⇥ 1013 m�3 1.43 27.9 2.01 1.14
n0+ 1.0⇥ 1014 m�3 11.5 26.4 1.93 1.16
rP 0.5 mm 2.30 26.7 1.95 0.66
rP 1.3 mm 12.5 25.8 1.91 1.66
R 1.5 6.68 15.7 1.48 1.40
R 3.0 6.68 41.1 2.79 0.84

0.2

0.6

1.0

0.0 0.3 0.6-0.3-0.6

r (mm)

0 13.7-13.7
z (cm)

0

-0.9

0.9
x (mm)

0 13.7-13.7

z (cm)

0.8

0.6

1.0

(a)

(b)

(c)

1014 m-3n+ ))

0.6

0.3

-0.3

-0.6

1014 m-3n+ ))

Figure 4. The equilibrium positron density distribution is shown for the mirror plane
(z = �13.7 cm) in (a) and along the z axis in (b). In (c), the equilibrium positron
distribution in two dimensions is shown with magnetic field lines. Darker regions
indicate higher densities and magnetic field lines are depicted as solid black lines.
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6. Two-Species Confinement

For two-species confinement, the electric potential profile is computed from Poisson’s

equation by including the distribution of both species through ⇢(r) = e [n
+

(r)� n�(r)].

Here, the positron density distribution, n
+

(r), is given by (3) and n�(r) is the antiproton

density distribution. Antiprotons are assumed to be confined in the potential well

created by the positron plasma and to follow the Boltzmann density distribution in

three dimensions. The antiproton density at the coordinate origin is specified as n

0�

and the density elsewhere is given by

n�(r, z) = n

0� exp

✓
e [�(r, z)� �(0, 0)]

k

B

T�

◆
, (6)

where T� is the antiproton temperature.

In the two-species base case, the antiprotons are at 4 K and have density n

0� =

1.0⇥1012 m�3, and the positron plasma parameters are the same as in the single-species

base case. The two-species base case equilibrium is found to possess a radial well depth

of 6.6 ⇥ 103 K and an axial well depth of 27 K. Compared to the single-species base

case, the axial and radial well depths are approximately unchanged. The equilibrium

antiproton density under two-species base case conditions is shown in figure 5.

0 13.7-13.7
z (cm)

0

-60

60

0 13.7-13.7

0.4

0.6

0.8

1.0

x (µm)(b)

(a) (1012 m-3)
1.2

n-

z (cm)

Figure 5. The equilibrium antiproton density distribution along the z axis is shown in
(a). In (b), the antiproton density near the center of the trap is shown with magnetic
field lines. Darker regions indicate higher density and magnetic field lines are shown
as solid, black lines.

The well depths and antiproton plasma dimensions under various conditions are

reported in table 2. Values for the two-species base case are given in the first row.

Parameters are individually varied from the two-species base case and the parameter

that is varied and its value are given in the first two columns. The full width at half the

maximum (FWHM) density for the antiproton plasma is given radially at z = 0 and

along the z axis (axial) in the final two columns.
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Table 2. Well depths and the dimensions of the antiproton plasma are given under
various conditions. The two-species base case conditions are rP = 0.9 mm, T+ = 40 K,
T� = 4 K, n0+ = 5.5⇥ 1013 m�3, n0� = 1.0⇥ 1012 m�3, and R = 2.0. Parameters are
individually changed from the base case. The symbol for the parameter changed and
its value are given in the first two columns. The full width of the antiproton plasma
at half its maximum density (FWHM) is given radially at z = 0 and along the z axis
(axial).

parameter UW (radial) UW (axial) FWHM (radial) FWHM (axial)
symbol value 103 K K µm cm

base 6.65 26.6 100 11.8

T+ 20 K 6.63 13.5 100 15.0
T+ 80 K 6.63 52.9 100 8.94
T� 0.4 K 6.63 26.7 60 4.33
T� 8 K 6.63 26.6 120 15.1
n0+ 1.0⇥ 1013 m�3 1.42 27.1 180 12.1
n0+ 1.0⇥ 1014 m�3 11.4 26.3 80 11.8
n0� 5.0⇥ 1011 m�3 6.63 26.7 100 11.7
n0� 5.0⇥ 1012 m�3 6.63 26.0 100 12.3
rP 0.5 mm 2.27 26.5 100 11.8
rP 1.3 mm 12.4 25.6 100 12.0
R 1.5 6.65 15.6 100 14.9
R 3.0 6.65 40.9 100 9.20

In some cases, the radial FWHM density for the antiproton plasma is less than

10�r

A

. An uncertainty from mesh size, of ±5 µm is associated with the values. Varying

the parameters of the positron plasma produces changes in the well depths similar to

the single-species cases. Equilibria computed with the density or temperature of the

antiproton plasma varied, have axial and radial potential well depths within 5% of

the two-species base case value. With these variations, equilibrium antiproton FWHM

dimensions deviate from the two-species base case by up to 40% radially and 63%

axially.

7. Timescale Calculations

The three-body recombination process that produces stable Rydberg atoms can be

associated with the timescale [26]

⌧

TBR

u 1.8⇥ 1021
T

9/2
+

n

2

+

. (7)

Collisions between antiprotons can cause losses from an e↵ectively one-dimensional

electrostatic well. An expression for the axial loss rate for plasma particles in an electric

potential well and a uniform magnetic field is obtained in [27] using the axial loss rate

of a plasma in a magnetic mirror field with an electric potential well derived in [28].
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The axial loss rate of antiprotons is estimated as [27]

ṅ� =
0.0059 � (e2n

0�)2p
✏

4

0

M�(kBT�)3
(8)

⇥
✓
e�!

!

+

r
⇡

4!3

erfc(
p
!)

◆
.

Here, all dimensionless constants are reduced to a numerical factor, ṅ� is the rate of

change of the antiproton density,M� is the antiproton mass, ! = U

W

/T� = e��/(k
B

T�)

is the unitless ratio of the electrostatic potential energy well depth to the antiproton

temperature, erfc is the complimentary error function, and � is the Coulomb logarithm.

The timescale associated with antiproton loss is calculated as ⌧� = n

0�/ṅ�.

The Coulomb logarithm is calculated through [29, 30]

� =
(1 + ⇤)2 ln [(1 + ⇤)2]

2(2 + ⇤)2
� ⇤

2(2 + ⇤)
, (9)

where ⇤ = ⇢

max

/�. For Coulomb collisions between antiprotons, the impact parameter

for 90° scattering in the center-of-mass frame is � = e

2(8⇡✏
0

k

B

T�)�1 [27], and the

maximum binary interaction radius is taken to be ⇢

max

= min(�
D+

,�

D�, 2 rc�). Here

min returns the smallest of its argument’s values, �

D� = [✏
0

k

B

T�/(e2n0�)]
1/2 is the

Debye length associated with an antiproton plasma with density n

0� at the center of

the trap, and r

c� = (M�kBT�B
�2

e

�2)1/2 is the cyclotron radius of an antiproton with

mass M� moving in a uniform magnetic field with magnitude B.

The e↵ect of the magnetic field is not accounted for except, when the antiproton

cyclotron radius is su�ciently small, ⇢
max

= 2 r
c� is used. The collision theory used for

the calculation of the Coulomb logarithm is known to not be valid for binary collisions

involving particles with like charges when � < 0.06 [30]. The Coulomb logarithm values

are not a↵ected by this limit for the equilibria considered in table 2 except the case

where T� = 0.4 K.

When simultaneously confined, a two-species plasma with disparate temperatures

will equilibrate through Coulomb collisions between particles. For an antiproton and

positron plasma, the equilibration timescale is calculated by [31]

⌧

EQ

=
47.2✏2

0

M�M+

e

4

n

0+

�
�
0, 4

⇡e
�2�

,

4

⇡

� (10)

⇥
✓
k

B

T�

M�
+

k

B

T

+

M

+

◆
3/2

.

Here, � is the zeroth-order incomplete gamma function. The Coulomb logarithm in (10)

is calculated through (9). For Coulomb collisions between an antiproton and a positron

� = �e

2[32✏
0

k

B

(T
+

M� + T�M+

)/(M
+

+ M�)]�1 is used [31], where the leading sign

is incorporated to account for the opposite charge signs of the colliding particles. The

maximum binary interaction radius is taken to be ⇢

max

= min(�
D+

,�

D�, 2 rc�, 2 rc+),

which includes the cyclotron radius for a positron moving in a uniform magnetic field

with magnitude B, r
c+

= [M
+

k

B

T

+

B

�2

e

�2]1/2.
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Table 3. Timescales associated with three-body recombination (⌧TBR), losses due
to antiproton-antiproton collisions (⌧�), and temperature equilibration between the
antiprotons and the positrons (⌧EQ) are calculated for the two-species plasma.

parameter ⌧TBR ⌧� ⌧EQ

symbol value s s ms

base 9.63 5.02 2.26

T+ 20 K 0.426 0.0899 8.77
T+ 80 K 217 > 103 2.85
T� 0.4 K 9.63 > 103 2.26
T� 8 K 9.63 0.0790 2.26
n0+ 1.0⇥ 1013 m�3 291 5.75 12.4
n0+ 1.0⇥ 1014 m�3 2.91 4.52 1.24
n0� 5.0⇥ 1011 m�3 9.63 10.3 2.26
n0� 5.0⇥ 1012 m�3 9.63 0.833 2.26
rP 0.5 mm 9.63 4.85 2.26
rP 1.3 mm 9.63 3.78 2.26
R 1.5 9.63 0.178 2.26
R 3.0 9.63 284 2.26

The timescales associated with the equilibria described in table 2 are given in

table 3. For the two-species base case ⌧

TBR

= 9.6 s, ⌧� = 5.0 s, and ⌧

EQ

= 2.3 ms. For

the equilibria in table 2, the temperature equilibration timescale is much smaller than

the three-body recombination timescale. In (7), the three-body recombination timescale

depends strongly on the positron temperature and, in the parameter space considered,

decreases to less than 1 s when the positron temperature is reduced to 20 K.

The timescale associated with losses due to antiproton-antiproton collisions varies

under each parameter set with deviations of more than two orders of magnitude

from the timescale with two-species base case conditions. Timescales for temperature

equilibration between the positrons and antiprotons demonstrate weaker dependence on

the parameters considered. For ⌧EQ, the greatest deviation from two-species base case

conditions is less than an order of magnitude.

Experimental conditions where ⌧

TBR

< ⌧

EQ

and ⌧

TBR

< ⌧� are preferable for

antihydrogen trapping. Equilibria meeting these conditions can be computed. By way

of example, an equilibrium is found for a two-species plasma with T

+

= 5 K, T� = 0.5 K,

n

0+

= 2.0⇥1013 m�3, n
0� = 2.0⇥1011 m�3, rP = 0.9 mm, and R = 2.0. This equilibrium

has an axial potential well depth of 3.6 K, yielding timescales ⌧
TBR

= 6.3 ms, ⌧� = 410 s,

and ⌧

EQ

= 340 ms. A revised computation of ⌧� is called for as � < 0.06 occurs.

8. Discussion

Using the space charge of the positron plasma to confine or enhance confinement

of the antiprotons in an Io↵e-Pritchard trap represents an alternative approach to

antihydrogen production. Some trends are reported here in the potential well depths,

plasma dimensions, and various timescales under variation of a few parameters. Detailed
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investigations using the finite-di↵erence methods employed here and particle-in-cell

simulations such as those used in [19] could serve to further probe the relationships

between the plasma parameters and equilibrium conditions.

The theoretical approach used to compute equilibria neglects e↵ects associated with

plasma rotation and does not simulate the time-dependent approach to the equilibria.

For all equilibria computed, iterations were continued until the maximum change

between iterations at any grid point was less than 5.0 ⇥ 10�7 V. The positron density

distribution obtained for the base case (figure 4) is consistent with analytical studies [18]

and particle-in-cell studies [19] of non-neutral plasmas in non-uniform magnetic fields.

The temperature equilibration timescales in table 3 are smaller than the three-

body recombination timescales. The parameters that lead to ⌧

TBR

< ⌧

EQ

require colder

positron plasmas. Using the electrostatic space charge of the positrons, it may be

possible to mix the two species without adding energy to the antiprotons. Further

theoretical and experimental studies are needed to evaluate the feasibility of utilizing

the positron space charge for antiproton confinement with the goal of antihydrogen

formation.

A limitation of the present work is that the time-dependent approach to an

equilibrium isn’t simulated. Only a final equilibrium is computed, and the theoretical

treatment provides no assurance that there exists an experimental method for

approaching the equilibrium. For approaching an equilibrium predicted here, it is

envisioned that the system would first be prepared in the same way as is done for

commencing a mixing experiment using the nested well approach to antihydrogen

production. Next, the applied potentials would be changed to the same potential so

as to remove the applied electric fields used to confine each species axially. The applied

potentials would be switched on a timescale faster than other timescales, such that the

positrons plasma is allowed to expand axially to the mirror coils. It is speculated that the

positron plasma would begin to produce an axial potential energy well for antiprotons

on a timescale that is su�ciently short for many antiprotons to remain trapped by the

positron space charge. Throughout the procedure, two applied electric field regions

could be maintained that would be located just beyond the magnetic mirror coils. The

two applied electric field regions would serve for providing axial positron confinement

after the positron plasma is allowed to expand axially.

After the positron plasma is allowed to expand axially, the positron plasma would

be much longer than currently employed using the nested well approach to antihydrogen

production. Confinement of such long positron plasmas may be an issue. Although it

may be possible to construct an apparatus with a shorter distance between magnetic

mirror coils, it may not be necessary. The positron plasma may only need to remain

confined for a timescale somewhat longer than the three-body recombination timescale,

once the positron plasma is allowed to expand axially. In fact, it may be desirable

for the positron plasma to only remain confined for a timescale somewhat longer than

the three-body recombination timescale, assuming that trappable antihydrogen would

be produced primarily during a time period approximately equal to the three-body
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recombination timescale. Trapped antihydrogen that leaves the positron plasma could

become ionized as a result of passing back through the positron plasma. Newly formed

antiatoms that avoid being ionized by collisions with positrons as a result of traveling

out of the positron plasma represent what may be observed experimentally as an

enhancement of the three-body recombination rate, as compared to the rate predicted

by a theoretical treatment that considers a plasma of infinite extent. Such a theoretical

treatment leads to the T 9/2 temperature dependence of the timescale used in the present

work, and much shorter timescales may occur experimentally due to the finite size of

the positron plasma.

9. Summary

Electrostatic equilibria of a positron plasma in a model of the ALPHA trap were

computed. The model consists of a uniform magnetic field with magnetic mirror fields

superimposed and is radially bounded by grounded Malmberg-Penning trap electrodes.

The transverse octupole field was assumed to be negligible compared to the axial field

near the radial center of the trap where the plasma is located. The positron plasma was

considered to extend to the mirror coils and follow the Boltzmann density distribution

along magnetic field lines.

Computational techniques were developed to apply the Boltzmann density

distribution in a non-uniform magnetic field. Equilibria were computed by solving

Poisson’s equation using a finite-di↵erence method. The formation of an electrostatic

potential well was found, and the possibility of using the potential well to confine an

antiproton plasma was explored. The electrostatic potential well depths and plasma

dimensions for a positron plasma and a two-species plasma were evaluated under various

parameters. Timescales associated with three-body recombination, antiproton loss from

the potential well due to antiproton-antiproton collisions, and temperature equilibration

between the antiproton and positron plasmas were calculated. An equilibrium was found

where the three-body recombination timescale is the smallest.
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Appendix

The magnetic field everywhere in space of a circular loop of radius R
m

, carrying current

I

m

is (see, for example, [32])

B

m,r(r, z) =
µ

0

I

m

2⇡R
m

↵

1

(1.1a)
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⇥ (�
1

E(m)�K(m)) ,

B

m,z(r, z) =
µ

0

I

m

2⇡R
m

↵

2

(1.1b)

⇥ (�
2

E(m) + K(m)) ,

where µ

0

is the vacuum permeability, and K and E are the complete elliptic integrals

of the first and second kind, respectively. The elliptic integrals and their argument are

defined as

K(m) =

Z ⇡/2

0

d✓p
1�m sin2

✓

(1.2a)

E(m) =

Z ⇡/2

0

d✓
p

1�m sin2

✓ (1.2b)

m ⌘ 4R
m

r

(r +R

m

)2 + z

2

, (1.2c)

and the dimensionless coe�cients ↵
1

, �
1

, ↵
2

, and �

2

are

↵

1

=
R

m

z

(r + �)
p

(R
m

+ r)2 + z

2

, (1.3a)

�

1

=
R

2

m

+ r

2 + z

2

(R
m

� r)2 + z

2

, (1.3b)

↵

2

=
R

mp
(R

m

+ r)2 + z

2

, (1.3c)

�

2

=
R

2

m

� r

2 � z

2

(r �R

m

)2 + z

2

, (1.3d)

where a constant with su�ciently small value to not disturb the calculations, � = 10�10,

is added to remove the singularity at the origin.
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