IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 24, 2019, accepted November 14, 2019, date of publication November 26, 2019,

date of current version December 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2955915

A Dense Stereovision System for 3D

Body Imaging

MING YAO"“! AND BUGAO Xu'“1.2

! Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail: mingyao @utexas.edu)
2Department of Merchandising and Digital Retailing, University of North Texas, Denton, TX 76201 USA (e-mail: Bugao.Xu@unt.edu)

Corresponding author: Bugao Xu (bugao.xu@unt.edu)

ABSTRACT Three-dimensional (3D) body imaging has become an important mean for applications based
on body measurement, such as apparel customization and obesity assessment. In this article, we present a
3D body imaging system built upon stereovision technology. The system utilizes paired, high-resolution
single-lens reflex (SLR) cameras to image the front and back body surfaces of a person, and robust and
efficient stereo matching algorithms to reconstruct the 3D surface of the body with high-density data
clouds. The system’s accuracy and repeatability have been evaluated on mannequins and human subjects
in comparison with other measurement methods. It was found that the geometrical measurements from
reconstructed 3D body models, including body circumferences and volumes, were highly repeatable and
consistent with the manual and other 3D instrumental measurements (CV < 0.1%, and R? > 0.99).

INDEX TERMS Stereovision, camera calibration, 3D registration, body imaging.

I. INTRODUCTION

A 3D whole-body imaging device is an ideal tool for
body dimension measurement [1]. Such a device, commonly
referred to as a body scanner, captures the surface profiles
of a person’s exterior surface through non-contact optical
techniques, and reconstructs a digital model representing
the shape of the scanned person. Total and regional body
volumes, as well as circumferences, depths and breadths at
various body landmarks can be readily obtained from the
3D digital model, providing essential information needed in
many applications, such as fitness evaluation, obesity assess-
ment, apparel customization, and so on.

Popular technologies utilized in 3D imaging involve laser-
line triangulation [2], coded structured light [3], [4], and
stereovision [5], [6]. A recent review of popular 3D imaging
techniques can be found in [7]. A laserline scanner usually
requires a mechanical device to move the laser projector to
scan the object, and thus its imaging time is associated with
the scanning speed. Unlike laserline scanning, both coded
structured light and stereovision are static means that require
no mechanical motion. The former uses an active projection
to create multiple sets of stripe patterns in sequence for depth
computation, while the latter utilizes cameras to take pictures
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of a scene from multiple perspectives and recovers depth
information through stereo matching. The capability of fast
scene capture makes stereovision technology a superior solu-
tion for body imaging, because it eliminates measurement
errors originated from involuntary body movement during
image capture. A stereovision system is passive in nature
without a need for artificial lighting, and can be built with
economical off-the-shelf cameras.

Thanks to the prevalence of high resolution digital cam-
eras, the resolution of structured-light scanners has been
greatly improved. The Mephisto EX (4DDynamics, Belgium)
utilizes an HDTV machine vision camera with a resolu-
tion of 1920 x 1080 pixels at the 8-bit color depth as
the main geometry camera [1]. An optional Canon Digi-
tal SLR (DSLR) camera is used along with the geometry
camera to capture texture maps. A total of four scanner
units deployed at four corners are needed for whole body
coverage. A major disadvantage associated with a structured
light scanner is that multiple units cannot be used simulta-
neously, since the light patterns from multiple sensor units
interfere with each other. Thus, the multiple units have to
be activated sequentially, which prolongs the image acqui-
sition time. In order to reduce measurement errors caused
by subject’s movement during the scanning, a motion com-
pensating function is included in its 3D model construction
software.
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Based on the PrimeSense (Israel) technology, Microsoft™

released a low-cost depth sensor called Kinect in 2010. Since
then, Kinect has been extensively explored in the field of
body scanning. A Kinect sensor uses an infrared light pattern
and achieves depth estimation through light coding [8]. [TC]?
(Cary, NC) released a Kinect-based body scanner KX-16
which was a first whole body scanner claimed under $10,000.
KX-16 uses 16 Kinect sensors for whole-body coverage.
A similar system is available from Size Stream (Cary, NC),
which can be configured with a choice of either 14 or
20 Kinect sensors. Other Kinect-based body scanners include
Styku (Los Angeles, CA) and Bodymetrics (London, UK),
both of which utilize fewer sensor unites. Because Kinect’s
internal calibration does not correct depth distortion intro-
duced by the lens geometry [9], [10], Kinect has a limited
accuracy which does not satisfy the needs of many applica-
tions.

Apart from active lighting, a passive 3D imaging
technology-stereovision has been maturing over the past
decade. The robustness and accuracy of stereovision systems
are greatly benefited from the availability of high-resolution
digital cameras. Canfield Scientific, Inc (Parsippany, NI)
developed a family of VECTRA® 3D imaging systems for
face and partial body surface acquisition. The VECTRA
HI1 uses a camera with a split-optical path stereo lens for facial
imaging, while the VECTRA XT uses three pairs of stereo
sets for frontal upper torso imaging. A stereovision system
requires a well-illuminated environment for the best image
quality. The VECTRA systems are built with light panels to
eliminate specular reflection on skin surfaces. A whole-body
stereovision system requires multiple stereo units to be placed
around the body for a full coverage. A twelve-camera body
imaging system was reported in [11], in which cameras
were placed on four posts around a scanned subject, and
LED lightings were used to improve image quality. However,
the reported system relied on a commercial software for 3D
computation, thus details about the 3D computation was not
discussed in the report. The Infinite-Realities (London, UK),
a 3D scanning and character creation studio, was reported to
have 115 Canon DSLR cameras deployed and synchronized
around a scanned subject. Although a better resolution can be
achieved, the cost prohibits it from large scale deployment.

Our previous work on 3D anthropometry reported how to
construct a practical stereovision system for body composi-
tion assessment [12]. In that reported system, a total of four
pairs of video cameras (640 x 480 pixels) were used and
placed 3.6 m apart for the whole body coverage. A digital
projector was used with each stereo unit to provide artificial
textures on the scanned subject to facilitate stereo matching.

The study to be reported in this article was a continued
effort in improving the capability of a stereovision system by
utilizing high-resolution, consumer-grade cameras, and state-
of-the-art stereo matching algorithms. With high-resolution
images, active lighting devices were no longer needed
because the richness of surface (skin or garment) textures
provided adequate matching primitives for reliable stereo
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computation. The cameras can be placed closer to a sub-
ject due to a larger viewing angle, effectively reducing the
system footprint while maintaining the same view cover-
age. The stereo matching algorithm used in this new system
implemented a multi-scale, coarse-to-fine strategy, virtual
interface concept and hybrid approach to combat the time
complexity and the matching ambiguity when processing
paired high-resolution images.

Il. SYSTEM DESIGN

Image quality is crucial for accurate depth computation.
Stereo images must be taken in a controlled lighting condition
in which the scene is well illuminated and is free from specu-
lar reflection. The image should be corrected to remove lens
distortion, and rectified to satisfy the epipolar geometry. This
section presents the setup of our stereovision system and the
calibration technique we developed in order to capture high
quality pictures for dense stereo matching.

A. SETUP

Our hardware setup is illustrated in FIGURE 1. To form a
stereo unit, two digital SLR cameras were fastened on an
aluminum plate in a way that the optical axes of these two
cameras were roughly in parallel. The baseline of the stereo
unit was set to be 150 mm. Two identical stereo units were
mounted on a stainless steel stand to cover one side of a
body. The stand was placed 1.1 m away from the target to
cover a height up to 1.9 m. Another stand with the same setup
was placed at the same distance on the back side, giving the
system a footprint of 2.4 x 1.5 m?. The main reason why only
two stands were used was the simplicity of the system, which
in turn impacted its dimension, cost and maintenance. It also
helped to increase the flexibility of the system for fast and
easy field deployment.

Stereo camera unit

FIGURE 1. Schematic illustration of the system setup. The stereovision
system consists of four stereo units, and has eight cameras in total.

The cameras used in our system were Canon EOS Rebel
T3i (Canon Inc., Japan) cameras with an 18-megapixel sensor
and an 18-mm focal length lens. Camera’s built-in flash
with a diffuser was used for image capture in a controlled
environment where there is no strong ambient light (e.g., top
lighting or window lighting). To avoid the interference of
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multiple flashes firings at the same time, a 300 ms delay was
added between the two flashes of each stereo pair, but was no
delay introduced between the front units and back units. The
total time of whole-body imaging was around one second.
All cameras were connected to a computer via USB cables.
It took about five seconds to transfer all eight stereo images
back to the computer from one single shot. The total hardware
cost of the entire sytsem was approximately $5000. TABLE 1
breaks down the total cost to each individual component.

TABLE 1. Cost breakdown of the proposed 3D body imaging system.

Items Quantity Unit price ($)
Canon DSLR Cameras 8 550
Posts and stands 2 250
USB cables 8 5

B. CALIBRATION

System calibration involved two stages: camera calibration
and 3D registration. The camera calibration determined the
intrinsic and extrinsic parameters of two cameras in a stereo
unit, while the 3D registration calculated the pose of each
stereo unit in a user-defined world coordinate system. With
3D registration, the 3D surface computed from each stereo
unit can be merged into a common coordinate system.

1) CAMERA AND STEREO CALIBRATION

Our camera calibration followed the technique originally pro-
posed by Zhang [13], in which a planar chessboard pattern
was used to establish feature point correspondences. The
pattern included 17 x 11 blocks, and the size of each block
was 40 x 40 mm. The fabrication error of the pattern was
controlled under 0.2 mm. The typical calibration errors were
between 0.4 and 0.8 pixel. Once each camera was calibrated
individually, the stereo pair could be calibrated. All the cam-
era calibration procedures were implemented with OpenCV.

2) 3D REGISTRATION
The 3D registration was a process to compute the transfor-
mation between the reference camera’s 3D coordinate system
to a common world coordinate system. This is usually done
by using a 3D target with feature points that can be easily
measured. Since the registration target was visible to all stereo
units, the transformation matrix, containing the rotation,
translation and scaling coefficients, of each stereo unit can be
computed to position the units in the world coordinate system.
Because this transformation did not change the Euclidean
distance between the feature points, it involved rotation and
translation only (no scaling) and the unit acted as a rigid body
model. As demonstrated by Horn’s solution to the absolute
orientation problem [14], three non-collinear (i.e., coplanar)
points were needed to determine this transformation.
Because locating feature points through image processing
techniques was prone to errors, the registration could be
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inaccurate if the transformation matrix was determined only
by three coplanar feature points. To increase the accuracy
of the registration, we adopted a solution by running Horn’s
method multiple times over combinations of more feature
points. As shown in FIGURE 2a, a registration target with
eight circles was designed to allow the top five circles to
be visible to the top stereo unit, which covered the upper
body, and the bottom five circles visible to the lower stereo
unit. The two circles lying in the middle were shared by
both the upper and lower stereo units. The centers of the
circles, i.e., the feature points, were determined via image
segmentation and center-of-weight calculation. Three out of
the five feature points in a unit could be selected to calculate
the transformation matrix, giving 7 combinations with more
global representations that allowed multiple matrixes to be
averaged for an optimized solution. Some combinations of
the feature points are illustrated in FIGURE 2b.

it

13

(a) The target for 3D (b) The combinations of three feature points
registration. (in red) selected out of five for each absolute
orientation computation.

%

FIGURE 2. The 3D registration target and the feature points attached on
the surface of the target.

Ill. DEPTH COMPUTATION

Even at a high resolution, the contrast of human skin texture
was not on par with artificial patterns found in an active
system. Thus, a major challenge in this work was to resolve
the stereo matching ambiguities for dense depth computa-
tion. A practical stereo-matching algorithm has to deal with
matching ambiguity resulted from various situations, such as
inconsistent lighting, sensor noise, homogeneous or repetitive
texture, and unmatchable pixels due to occlusion. A robust
stereo matching strategy must be able to accommodate for all
these circumstances.

With eight cameras used in our system, there were roughly
144 megapixels to be processed to generate a 3D model.
High-resolution stereo matching had to deal with excessive
computations and heavy memory consumption. The time
complexity for an algorithm is O(W xH xD), where W and
H are the width and the height of an image, and D is the range
of disparity. This also applies to the memory consumption in
the algorithm. We implemented a novel strategy to improve
both time and memory efficiencies, as illustrated in the fol-
lowing sections.
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FIGURE 3. Generating disparity search ranges from the guide computed from a previous resolution scale. Left: the
disparities of one row of elements within a disparity map. Right: the search ranges at each pixel location based on the

confidence from a previous match.

A. MULTI-SCALE MATCHING

A multi-scale, coarse-to-fine strategy was implemented to
address the stated challenges by assigning the matching result
obtained from a previous (lower) resolution scale to be an
initial guess in the next (higher) resolution scale. This strategy
prevented unnecessary search for a possible match in the
whole disparity space, and thus could greatly reduce the
time complexity. It was also helpful for minimizing matching
ambiguity because both localized textures and texture gradi-
ents at each feature point were taken into account. As a result,
it enforced a non-localized optimization during the matching.

Within this multi-scale framework, an image pyra-
mid was constructed by successive Gaussian filtering and
down-sampling by a factor of two from the original images.
The number of scales was configurable in the stereo match-
ing. The criterion for selecting the number of scales was
that the images at the lowest resolution still retained major
textures of a body surface. In our experiments, it was chosen
to be four.

Given a pyramid of stereo images, the matching started
from the top of the pyramid, and was referred to as ini-
tial matching or coarse match, in which large-scale features
were matched and a disparity map in the low resolution was
generated. In the coarse match, a full disparity range search
was performed for every pixel in the image, allowing a 3D
surface to be formed at any depth within the predetermined
depth-of-interest.

The disparity map computed from a lower resolution scale
was then used as a guide in the next higher resolution scale
to constrain the disparity search range. Thus, the subsequent
matches at higher resolution scales were referred to as guided
matches. The lower-resolution map (or, the guide) was first
up-sampled by a factor of two with nearest-neighbor inter-
polation, and then the value of each element in the map was
scaled by a factor of two. To constrain the search range for
the new match, we took a strategy to differentiate pixels
that were matched with a high confidence from pixels that
were originally mismatched but interpolated in the previous
scale. FIGURE 3 illustrates the concept of generating the
disparity search range from a disparity map of the previ-
ous resolution scale. For high-confidence pixels (e.g., passed
left-right check in the previous scale), their new disparity
values in the current scale should be close to their estimates
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with errors only from the up-sampling step. Thus, a 1
relaxation was applied to these pixels. For those pixels that
failed the left-right check in the previous scale, their disparity
values were interpolated from their neighbors whose texture
information was similar. Even though we applied various
constraints as described in Section I1I-C.4, it was still possible
that an interpolated disparity deviated from its true value.
For these pixels, the full disparity range corresponding to
the depth of the scene was assigned. In our experiments,
the percentage of interpolated pixels varied across different
scales. We noticed that it was common to have 2-3% of the
total foreground pixels interpolated at lower resolution scale,
while less than 1% of pixels interpolated at higher resolution
scale. This can be explained that more robust matching can
be achieved at higher resolution because of better texture.

In the coarse match, a 3D matching cost volume was
computed with its base matching the size of image and its
height corresponding to the disparity range. The complexity
of the coarse match in big O notation is O(W,H /Dj), in which
J denotes the resolution scale, W; and H; are the width and
height of stereo images at scale j, and D is the disparity range
at scale j. In the subsequent matches, disparity searching was
only performed on the fixed ranges, i.e., [estimate — 1, esti-
mate + 1] for pixels matched with a high confidence. Since
these pixels were the majority of a 3D surface, the complexity
of the subsequent matches decreased to O(W;H;), reducing
computation by an order of magnitude. The cost volume in
the subsequent matching was irregular in shape due to the
variable disparity range at each pixel location. The memory
footprint for the cost volume was also saved in an order of
magnitude. The workflow of our multi-scale stereo matching
framework is illustrated in FIGURE 4.

At each resolution scale, our stereo matching algorithm
followed a four-step procedure presented in Section III-C in
more details. Once the matching at the highest resolution
scale was done, a sub-pixel enhancement process based on
quadratic polynomial interpolation was performed to reduce
the errors caused by discrete disparity steps.

B. VIRTUAL INTERFACE

To further simplify computation and to reduce matching
errors, we adopted the concept of a virtual interface [15]
for foreground and background segmentation in the disparity
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(a) Multiscale Stereo Matching
Lower rear unit
Upper rear unit

Lower front unit

Upper front s . ot
. Q8 &

(b) Point cloud generation (c) Meshing

Match with full disparity
range search

Up-sample

Update disparity search
range from estimates

Rematch

Background
segmentation

= Sub-pixel refinement

FIGURE 4. The workflow of the multi-scale stereo matching and 3D model generation. (a) A pyramid of images at different scales are shown on
the left, and their corresponding disparity maps are shown on the right; (b) The dense 3D point clouds generated from the four stereo units; and

(c) The final 3D mesh after mesh simplification and subdivision.

space. A virtual interface is a combination of surfaces in the
disparity space that correspond to surfaces in the 3D space
and segment a target from the rest of the environment. With
the virtual interface, we computed and refined the depth maps
that contained only the foreground, and avoided unnecessary
computation on the background. To construct the virtual
interface, we defined four virtual planes that were placed at
the front, rear, top and bottom of the space where a person
would be standing (FIGURE 5). The procedure to compute
the virtual interface was detailed in [15], which addressed the
virtual interface for the left image only. In order to be able to
perform left-right check in the coarse match, we extended the
virtual interface to the right image as well in the procedures
provided below.

1200 mm———»

N
oS

2000 mm:

FIGURE 5. The virtual interface that defines the 3D region of interest.
Four virtual planes are utilized: front (Plane 2), rear (Plane 3), top
(Plane 1) and bottom (Plane 0).

The origin of the world coordinate system, Ow, is at the
zero elevation of the floor, and is centered at the spot where
a target stands. The positive Zy-axis points to the frontal
stereo units. To divide the 3D space into foreground and
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background, three of the four planes were applied in each
stereo unit. For example, the bottom, top and rear planes
were used for the frontal stereo units, and the bottom, top and
frontal planes were used for rear stereo units.

FIGURE 6 shows a 3D plane, I, being viewed by a pair of
rectified stereo cameras configured in a parallel-axis setup.
O and O, are focal points, with their baseline distance being
b. The normal of the plane ITis n = [n, ny nZ]T. Without
loss of generality, the plane is defined in the left camera’s
coordinate system with the normal being r and the perpen-
dicular distance from the origin O; being s. Let X; and X, be
the left and right camera coordinates of an arbitrary point P
on IT. Thus, X; and X, satisfies

X, =HX,, (D
with
1 7
H=R+ —tn". 2)
s

R and ¢ are the relative rotation and translation of the right
camera with respect to the left camera. H is the homography

FIGURE 6. The homography that is induced by a 3D plane observed by a
pair of stereo cameras.
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Roof plane
Rear plane
Rear plane
-+
Floor plane
4 Let

(a) Upper frontal stereo unit.

(b) Lower frontal stereo unit.

FIGURE 7. The background disparity maps computed for the two frontal stereo units. A light pixel indicates a near range,
and a dark pixel indicates a far range. The roof plane and the rear plane are visible to the upper unit, while the floor

plane and the rear plane are visible to the lower unit.

related with IT. Specifically, for rectified stereo geometry,
R=1,t=[-b00]7,and thus we have

b b b
l—-n, —-ny —;nz
_ s K
H = 0 1 0o |- 3
0 0 1
and its inverse
1 %ny n;
H! — 1-— l—’nx 1— gnx 1-— gnx ) )
0 1 0
0 0 1

Denote ¥; = [x; y; f17 and %, = [x, y, f17, which are
the homogeneous coordinates of the images of point P in the
left and right image planes, respectively. f is the focal dis-
tance. Then according to the perspective projection, we have
MX; = X; and A,X, = X,, where A; and A, are scalar
values. In addition, A; = A, stands for the parallel-axis stereo
geometry. Then by replacing X; and X, in (1), we obtain

X, = Hx;, )
and
¥ =H '%,. (6)

By combining (3) and (5) and rearrange, we can compute the
disparity by

b
dy=x, —x; = ——n'%y, @)
S
for the left reference, and similarly

1 b b |
L [1 b, —nzi| wl—x  ®
I—Enx s s f

dr=x; — X =

for the right reference.
In practice, it is easier to define the plane IT in the global
world coordinate system, so it is necessary to transform it
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into the camera’s coordinate system for background segmen-
tation. We can obtain that

n=hn!R*, 9)
and
s=5—nlt*, (10)

in which 7 is the plane normal defined in the world coordinate
system, and § is its distance to the world coordinate system
origin. R* and ¢* are the camera coordinate systems’ rotation
and translation with respect to the world coordinate system
and obtained through 3D registration.

TABLE 2 shows the four planes that defined the virtual
interfaces for foreground and background segmentation. The
floor plane had been slightly lifted off the ground by 2 mm to
separate the body from the ground. Examples of the computed
background disparity maps are shown in FIGURE 7. The
grayscale values of these maps were scaled up to enhance
the variations within each map. Pixels of a light gray indicate
they were close to the stereo unit, while pixels of a dark gray
indicate they were far away. From these disparity maps, it can
be seen that the rear plane was visible to both the upper and
lower stereo units, while the roof plane was only visible to
the upper unit and the floor plane was only visible to the
lower unit. The right camera in the upper unit covered more
roof plane than the left camera, because the right camera was
mounted higher in elevation than the left camera. The same

TABLE 2. Planes of virtual interface. Plane parameters are defined in the
world coordinate system.

n § (mm)
Plane 0 (floor) o 1 0T 2
Plane 1 (roof) o 1 oTf 2000
Plane 2 (front) o o 1T 400
Plane 3 (rear) o o -yT 400
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phenomenon was observed on floor plane in the lower unit.
An interesting feature revealed by these background disparity
maps is that the variation of surface depth of the rear plan
shows a diagonal gradient pattern in the upper unit, while the
pattern in the lower unit is uniform. This was caused by the
fact that our upper stereo unit had slight rotations around both
the Y- and Z-axis with respect to the world coordinate system,
but the lower unit had nearly zero rotation around the Z-axis.

C. DENSE STEREO MATCHING

Based on the stereo matching algorithms presented by
Scharstein and Szeliski [16], our stereo matching consisted
of four steps: matching cost computation, cost aggregation,
disparity computation, and disparity refinement.

1) COST COMPUTATION

As a general practice, an important consideration in select-
ing a cost function is the size and shape of the matching
window which is placed at each pixel. The robustness of
match increases with window size. However, the implicit
assumption, that disparities are constant within the matching
window, usually does not hold. As a result, large windows
may lead to matching errors or blurring surfaces. To take a
trade-off, we applied a hybrid cost function that consisted of
three terms: cost of normalized cross-correlation Cncc(p, d),
cost of background-suppressed absolute difference in colors
Cap(p, d), and cost of census transform Cct(p, d). The com-
bined cost function is in the form of

C(p.d) = p(Cnces Ance)+p(Cap, Aap)+po(Cer, AcT),
(11)

where p(C., A[7) is a robust function on variable Cpj:
Crip, d)
p(Cry, Apy) =1 —exp [_[])»T} : (12)

Rather than using a matching window that is fixed in
size and shape, our NCC cost was defined on an adaptive
neighborhood region, in which only pixels that belonged to
the same texture were selected in the NCC computation [17].
The cost of AD was a pixel-wise RGB color difference.
It was leveraged by an edge-preserving bilateral filtering and
was more robust to noise than its original form. The cost of
census [18] had superior performance at texture boundaries,
so we also included it in our cost function. The purpose of
(12) is twofold: firstly, it maps different cost measures to the
range [0, 1], such that (11) would not be severely biased by
any one of the measures; secondly, it allows customizable
control over outliers with the parameter A. This computation
was done for every pixel p of the reference image and at every
possible disparity d. C(p, d) is referred to as the matching
cost volume.

2) COST AGGREGATION
Pixelwise cost calculation is generally unreliable, and a
wrong match may have a lower cost than a correct one, due
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to noise, weak texture, or surface reflection. Therefore, addi-
tional constraints should be added to enhance smoothness
by penalizing changes of neighboring disparities. Our cost
aggregation strategy adopted the method originally proposed
by Hirschmiiller [19] that utilized multiple paths around a
pixel to approximate global optimization. By refining the
parameters along the aggregation path, this method pro-
duced aggregated results comparable to the adaptive weight
method [20], [21] with much less computation. This cost
aggregation resulted in a 3D cost volume, S(p, d), in which
each voxel represented the aggregated cost at (p, d).

3) DISPARITY COMPUTATION

Cost aggregation minimized a global energy function so
that an optimal disparity map could be found by selecting
a disparity value for each pixel that yielded the minimal
cost at that location. This procedure was implemented with
a winner-takes-all (WTA) strategy. The disparity map, Dy,
which corresponds to the base image (i.e. the Left image in
our case), I;,, was determined by selecting disparity d for each
pixel p that had the lowest cost, that is

Dy(p) = argmin S(p, d). (13)
d

The disparity map, Dp,, which corresponds to the match
image (i.e. the Right image), Iy, was generated in the similar
way by taking the match image, Iy, as the reference and
matched to Iy,.

Dy and Dy, were then used to determine occlusions and
mismatches by performing a left-right consistency check.
In the left-right check, if p in the base image I, matched
to ¢ in the match image Ip,, then ¢ must also match to p,
that is, Dp(p) = —Dpn(g) in the mathematical form. To take
different foreshortening into account, we tolerated a disparity
mismatch of up to one disparity step in our implementation.
A disparity was set to be invalid (i.e., Djpy = 0, which
represents infinite distance in the 3D space), if Dy(p) and
—Dn,(q) differed by more than one:

Dy(p), if|Dy(p) + Dm(@)| = 1
Diny, otherwise

D(p) = (14)

The consistency check enforced the uniqueness constraint
by permitting one-to-one match only. The disparity com-
putation and consistency check required visiting each pixel
at each disparity for a constant number of times, thus was
linear in complexity. With the consistency check, our proce-
dures in generating a validated disparity map was complete.
A summary of the processes is given in FIGURE 8.

4) DISPARITY REFINEMENT

Even with the left-right consistency check, a disparity map
could still include small areas of wrong disparities. The dis-
parity refinement was the last stage of the stereo matching
pipeline to correct any errors with such constraints as surface
smoothness and color consistency. These constraints were
enforced by certain rules in validating a disparity value:
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FIGURE 8. Processing steps for matching cost computation, aggregation,
and disparity computation.

1) disparity discontinuity cannot occur within textureless
regions, and 2) the surface of a textureless area can be approx-
imated by a plane on which some visible texture may present
elsewhere on the same plane. Firstly, the disparity refinement
procedure identified the occlusion regions on a disparity map,
because the occluded pixels and mismatched pixels needed
to be handled differently. Then, the mismatched areas and
the occluded areas underwent an iterative region voting and
depth-consistent extrapolating [18], which allowed reliable
disparity values from a neighborhood region to propagate into
problematic areas. Finally, disparity edges were checked and
made consistent to the texture map.

D. SURFACE RECONSTRUCTION

Once a disparity map is computed, a dense 3D point cloud
can be generated with calibrated camera parameters. We uti-
lized a sub-division surface algorithm [22] for 3D surface
reconstruction. The basic idea of the method can be described
in three steps. First, the original 3D points were re-sampled
to reduce the density for 3D meshing. The explicit neigh-
borhood information of the re-sampled data was then used
to create an initial dense mesh. Secondly, the initial dense
mesh was simplified by collapsing triangle edges. It pro-
duced an estimate of the control mesh. Finally, the control
mesh was optimized by fitting its sub-division surfaces to
the original data. The final mesh would be the reconstructed
body model. In the surface reconstruction process, the upper
and lower meshes from the same side of the subject were
blended together at the overlapped region between the waist
and hip lines, smoothening the transition between the upper
and lower surfaces captured by two different stereo units. The
gaps along the side of a body model due to the occlusion to
cameras were closed by connecting the edges of the surface
point cloud.

The original raw point cloud computed from the disparity
map was at a resolution of 0.5 mm/vertex. Given that human
body surface is mostly smooth and continuous, it would
be unnecessary to sample the point cloud for 3D surface
reconstruction at the original resolution. In addition, it would
be computationally cost-prohibitive to work with the raw
point cloud on the PC computer used in the project and
would prolong the total processing time. Through our exper-
iments, by down-sampling the point cloud to 2-3 mm/vertex,
we did not notice a significant decrease in the final volumetric
and circumference measurements. Thus, the 2mm sampling
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interval was utilized for all the 3D body models. The final
result of the surface reconstruction was a closed triangle mesh
approximating the original 3D point cloud. The number of
vertices on the surface mesh was greatly reduced from the
original point cloud, and they represented a simplified form
of a 3D body model, which was more suitable for efficient
measurements.

FIGURE 9b shows a collection of reconstructed body mod-
els for circumference and volume measurements. It can be
observed that surfaces are smooth due to the re-sampling and
sub-division mesh simplification. Up to this point, the com-
plete workflow for 3D computation has been presented.
FIGURE 10 sumarizes all the procedures used to generate
body dimensional measurement from stereo images.

E. COMPUTATIONAL COMPLEXITY ANYLYSIS

Stereo matching is a computationally intensive task, and
the complexity of a stereo matching algorithm may be an
essential metric in quality and performance evaluation. Here,
the complexity of each of the four components in the stereo
matching framework is summarized in TABLE 3.

Direct Computation of NCC is computationally intensive
due to its convolutional nature. Assume the average size of the
support region is S, the computational complexity to match
two images with image size of M and disparity range D is
O(MSD). We accelerated the NCC over the adaptive match-
ing region with the orthogonal integral image technique [18],
which decreased the computational complexity to O(MD).
In the census transform, a 63-bit binary code was computed
on a 9 x 7 support window, and thus its complexity is
O(MSD). The cost of color absolute difference is a pixel-wise
computation and its complexity is proportional to the size
of image M. However, since we applied an edge-preserving
bilateral filtering in the preprocess, the overall complexity
became O(MSD), in which S represents a 15 x 15 support
region.

In the cost aggregation, which followed the multipath
method [19], we avoided the 2D global energy minimiza-
tion problem by computing the aggregated cost only along
16 pre-defined directions passing through each pixel. This
reduced the complexity to O(CMD), in which C was a con-
stant representing the total number of paths. The disparity
computation had the O(MD) complexity, since it was the
winner-takes-all approach. In the disparity refinement step,
a histogram of disparity values in a support region was
computed, and the most voted value was picked to be the
new disparity. The iterative region voting was an O(CSM )
procedure, in which C was the count of iterations and S was
the support size. The procedure was set to repeat six times
in our case. The depth-consistent extrapolation was an O(H )
procedure, and its complexity was dependent on the size of
disparity map holes denoted as H.

We benchmarked the performance of our stereo com-
putation on a hex-core computer. It took 2.5 minutes to
process a pair of stereo images of 5184 x 3456 pixels,
with our multi-scale matching framework and the left-right
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(a) Mannequins of size 8, 10 and 12
from left to right.

FIGURE 9. Examples of reconstructed 3D body models.

TABLE 3. Complexity analysis of stereo matching.

(b) Reconstructed body models of subjects with various body shapes and sizes.

Cost computation

Disparity refinement

Operations NCC Census trans. Color AD Cost agg. Disp. comp. Region voting Depth-const. extraplation
Complexity O(MD) O(MSD) O(MSD) O(C’MD) o(D) O(CSM) O(H)
Notes S=9X7 px S=15x15 px C=16 C=6

Symbols: M denotes the size of an image, .S represents the support size, D is the range of disparity, C' is a constant, H is the size of a hole in the disparity map.

Dense 3D point
cloud

dimension data

FIGURE 10. Flowchat of data in generating 3D body models out of stereo
images.

consistency check. The computation time was recorded
with a code level parallel acceleration technique through
OpenMP. We parallelized operations including adaptive sup-
port region computation, bilateral filtering, census transform
with Hamming distance, fast NCC, absolute color distance
and path-wise cost aggregation. We observed a 6.5 x speedup
for the bilateral filtering (the most parallel-friendly opera-
tion), and a 1.7x gain on the cost aggregation (the least
parallel-friendly operation). The overall speedup of the par-
allel computing was 2.5x of non-parallel computing on the
hex-core computer.

IV. SYSTEM EVALUATION

A. EXPERIMENTS

To evaluate the accuracy and repeatability of the developed
body imaging system, both industrial mannequins, whose
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precise body dimensions are known, and human subjects
were used as objects to be imaged by the system. For each
object, a 3D body model was generated by converting the
3D point cloud into a triangular mesh, from which surface
circumferences at different body landmarks and the whole
body volume could be readily measured.

1) MEASUREMENTS ON MANAQUINES

Three standard mannequins of different sizes (Wolf Form
Company, Englewood, NJ) for apparel draping design were
used for evaluation. The manufacturer-defined sizes of these
mannequins are 8, 10 and 12. The reconstructed 3D mod-
els of these mannequins are shown in FIGURE 9a. Mod-
els were displayed in the same scale to show their size
differences. A MyoTape body tape measure (AccuFitness
LLC, Greenwood Village, CO) was used for circumferential
measurements. Each mannequin was imaged five times with
a repositioning each time. Chest, waist and hip circumfer-
ences, and total body volume were measured on 3D models
automatically. The coefficient of variance of each measure-
ment was computed to estimate the repeatability of such
measurement. The accuracies of circumference and volume
measurements were evaluated by comparing them to those
obtained with the tape measure and a handheld 3D scanner,
Go!SCAN (Creaform Inc., Quebec, Canada). Go!SCAN is an
active lighting device and has a working depth range about
20-50 cm.

2) MEASUREMENTS OF HUMAN SUBJECTS
Twenty adults (twelve males and eight females) were
recruited as human subjects for this study. A subject was
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asked to wear tight-fit underwear for body imaging. During
the imaging, he/she stood still in a posture with the legs
slightly spread and the arms abducted from the torso. Ten
sets of stereo images were captured for each subject. Since
these body pictures were personally identifiable, they were
encoded with a special procedure so that pixel colors in
each picture were scrambled before they were saved onto
the computer. Subjects’ body dimensions, including chest
circumference, waist circumference and hip circumference
were measured and compared to MyoTape measurements.

B. STATISTICAL ANALYSIS
The repeatability of the system was evaluated by computing
the coefficient of variance (CV) and the intra-class correla-
tion coefficient (ICC) from the results of one-way random
effects ANOVA. Based on the between- and within-group
mean errors available from ANOVA, CV was computed as the
ratio of within-group standard deviation (SDw) to the global
mean, and is presented in percentage format. The ICC was
determined as follows

MSy — MS,,
T MS,+ (n—1) x MS,,’
where MS; and MS,, are the between- and within-group
mean square errors (MS), respectively. n is the number of
samples per group. The comparisons of measurements using
tape and stereo imaging were performed with #-tests and
linear regression analysis. The comparisons were conducted
on human subjects but not on the mannequins, due to limited
number of samples (only three different sizes of mannequins
were available).

Icc

15)

C. RESULTS

1) EVALUATION ON MANAQUINES

The results of the repeatability test on the three mannequins
were computed from ANOVA in which repeated scans of each
mannequin were treated as multiple tests in one group. Each
mannequin was imaged five times, and thus five tests were
available for each group. TABLE 4 shows the results from the
ANOVA analysis, i.e., the within-subject standard deviation
(SDy) and CV. It should be noted that the between-subject
mean square errors (MSy) and the P-value reported by
ANOVA were ignored for this evaluation, because we had
already known that significant differences existed among the
three groups.

TABLE 4. Repeatability test on mannequins of three different sizes.

Circ. / Vol. Mean MSy SDyw CV (%)
Chest (mm) 902.8 5.2 2.3 0.25
Waist (mm) 672.2 1.9 1.4 0.20
Hip (mm) 941.6 2.0 1.4 0.15
Volume (L) 50.789 0.0022 0.047 0.09

Symbols: MSy, within-subject mean square error (MS); SDy, within-
subject standard deviation; CV, coefficient of variance.
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The CVs for our multi-group analysis were presented as
percentage values. The CVs were < 0.2% for waist and hip
circumferences, and < 0.1% for volume. A low CV value
indicates small variation in measurements. The CV increased
to 0.25% for chest circumference due to the rapid variation
of the circumference sampled at different vertical locations
that were above or below chest line. A small change at the
vertical location close to chest line could result in a larger
circumference than in the waist and hip regions. This pattern
has been observed on both mannequins and female human
subjects, because their waist circumferences are significantly
shorter than their chest circumferences.

As to measurement precision, TABLE 5 shows the com-
parison of circumference measurements between the stere-
ovision and manual tape methods on the size-12 mannequin.
The measurement data are presented in the format of (Mean=+
SEM). The standard error of the mean (SEM) was com-
puted by the standard deviation divided by the square root
of samples, which was five for both stereo imaging and tape
measure. The comparison results were generated by a paired
two-sample 7-test with one variable being the stereo mea-
surement and the other being the tape measurement. Because
all P-values were > 0.05, the measurements between these
two methods were not considered to be significantly differ-
ent. However, since the P-values were still relatively low,
noticeable differences could be expected. The ‘“Difference”
column indicates that the system may result in slightly higher
measurements than the tape measure.

TABLE 5. Circumferences of the size-12 mannequin measured by stereo
imaging and tape.

Circ. Stereo Tape Difference P-value
Chest (mm)  925.6+0.9 923.6+0.4 2.0+0.8 0.09
Waist (mm)  702.2£0.8 699.1+£0.5 3.0%1.1 0.06
Hip (mm) 972.3+£0.5 965.2+0.5 21+£1.0 0.13

Measurement data are presented in (Mean = SEM) format. The man-
nequin was imaged and tape measured five times. The P-values were
obtained from paired two sample ¢-tests.

TABLE 6 shows the whole body volumes of the three
mannequins measured by the stereovision and the handheld
scanner. The mannequins were imaged five times by the stere-
ovision, but they were only scanned once by the Go!SCAN
because a great amount of difficulty was experienced in

TABLE 6. Whole body volumes of the three mannequins measured by
stereo imaging and Go!SCAN.

Mannequins Stereo imaging Go!SCAN Difference
Size 8 (L) 48.324 +£0.018 48.077 0.247
Size 10 (L) 51.418 +0.026 51.138 0.280
Size 12 (L) 52.626 4+ 0.009 52.349 0.277

Volumes measured by stereo imaging are presented in (Mean + SEM)
format. The mannequins were hand-scanned by Go!SCAN only one
time, due to the inability to close body surface mesh on small body
parts, e.g., the end of legs.
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getting the complete surface of the mannequins with the
Go!SCAN. It had trouble aligning body patches in some
regions, such as the end of the legs, when it performed
real-time data fusion. Manual editing was needed to complete
non-scanned portions of body meshes. As a result, certain
errors should be expected in Go!SCAN’s measurements. The
difference in body volume measurements between these two
methods were about 0.3 L for a 50+2 L body. The ratio of the
difference with respect to the measurement value was around
0.6%. A t-test was not performed on these two methods
because of the limited number of scans from Go!SCAN.

2) EVALUATION ON HUMAN SUBIJECTS

The repeatability of the circumference measurements and
body volume measurements is shown in TABLE 7. All the
ICCs were > 0.99, and the CVs were < 1.0%. The highest
precision was recorded in the body volume which had the
lowest CV. This was mainly because there was no body
landmark identification in calculating the whole body vol-
ume from a 3D model. However, locating the chest, waist
and hip lines could differ in different attemps. Compared to
the repeatability tests of circumferences on the mannequins,
the CVs of the human subject measurements were higher.
This was a sign that a higher variation existed in the mea-
surements from the multiple scans of the same human subject,
partially because finding the landmark (chest, waist, etc.) pre-
cisely on a human subject was harder than on a mannequin.
Subject’s body moving and breathing could add errors to the
measurements. Breathing affected the chest circumference
measurement most, as noticed in TABLE 7.

TABLE 7. Repeatability test on 20 human subjects.

Circ. / Vol. Mean MSyw MSy SDy Ccv ICC

Chest (mm) 914.3 31.0 27255.6 5.6 0.61 0.9966
Waist (mm) 767.2 12.6 26409.2 35 046  0.9986
Hip (mm) 956.6 20.9 18916.2 4.5 048  0.9967
Raw vol. (L) 62.408  0.047 718290  0.218 035  0.9998

Symbols: MSy,, within-subject mean square error (MSE); MSy,, between-
subject MSE; SDy, within-subject SD; CV, coefficient of variance; ICC,
intra-class correlation coefficient.

The accuracy of the stereovision measurements with
respect to the tape measurements is shown in TABLE 8.
The P-value was computed by paired ¢-tests. The P-value for
chest circumference was > 0.05, indicating that there was no

TABLE 8. Comparison of circumferences measured by stereo imaging and
tape on human subjects.

Circ. Stereo Tape Difference P

Chest (mm) 914.3 £20.8 912.3 +£20.4 2.0+£09 0.053
Waist (mm) 767.2 +£20.4 764.6 + 20.4 26+09 0.012
Hip (mm) 934.4 +14.2 930.4 £+ 13.8 4.0+15 0.017

Measurement data are presented in (Mean + SEM) format. The P-values
were from paired-sample ¢-tests.
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significant differences between the two sets of measurements
at a significance level of 0.05. However, the P-values for waist
and hip circumferences were < 0.05 for the same reason as
given above.

It should be noticed that the biases on circumference mea-
surements were all positive values for human subjects. This
is caused by the difference in measuring approaches between
3D body models and real bodies. On a 3D body model,
the measurement was taken by fitting a curve precisely on the
surface of a 3D mesh, and by tracing the exact geometrical
changes along the landmark line. On the human subject,
on the other hand, the tape measure usually could not touch
the concave surface areas when it was tensioned. Thus, a tape
measurement would be shorter than the fitted curve on the
corresponding 3D body model.

V. CONCLUSION

In this article, we reported the work in developing a dense
stereo-matching algorithm for a more affordable, reliable
and deployable system for body imaging. Eight off-the-shelf
digital SLR cameras were used to construct four stereo
units, and each unit was calibrated and registered with a
specially-designed target, which significantly reduced the
time needed to deploy such a system for field testing. To take
advantage of high-resolution stereo images for depth calcu-
lation, a multi-scale stereo matching framework was devel-
oped to accelerate depth search while retaining the quality
of the depth map. The overall performance of the system
was evaluated with both mannequins and human subjects.
Body dimension measurements, such as chest, waist, and hip
circumferences were found to be accurate and reliable.
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