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Abstract The oyster habitat in the USA is a valuable re-
source that has suffered significant declines over the past
century. While this loss of habitat is well documented, the
loss of associated ecosystem services remains poorly quan-
tified. Meanwhile, ecosystem service recovery has become a
major impetus for restoration. Here we propose a model for
estimating the volume of water filtered by oyster popula-
tions under field conditions and make estimates of the
contribution of past (c. 1880–1910) and present (c. 2000–
2010) oyster populations to improving water quality in 13
US estuaries. We find that filtration capacity of oysters has
declined almost universally (12 of the 13 estuaries exam-
ined) by a median of 85 %. Whereas historically, oyster
populations achieved full estuary filtration (filtering a vol-
ume equivalent or larger than the entire estuary volume
within the residence time of the water) in six of the eight
estuaries in the Gulf of Mexico during summer months, this
is now the case for only one estuary: Apalachicola Bay,
Florida. By contrast, while all five estuaries on the North
Atlantic coast showed large decreases in filtration capacity,
none were achieving full estuary filtration at the time of our
c. 1900 historic baseline. This apparent difference from the

Gulf of Mexico is explained at least in part by our North
Atlantic baseline representing a shifted baseline, as sur-
veyed populations were already much reduced by exploita-
tion in this region.

Keywords Crassostrea virginica . USA . Restoration .

Estuarine habitat . Historical ecology .Water quality

Introduction

The accelerated loss of many habitats since the industrial
revolution is widely documented (Winslow 1887; Roberts
2002; Fearnside 2005); however, the ecological and social
ramifications of this loss have only recently gained recog-
nition (Millennium Ecosystem Assessment 2005). Quanti-
fying losses and the impact of habitat alteration is
challenging, as long-term data on habitat area or condition
are rare. The vast majority of habitats represented in historic
datasets lack detailed insights beyond areal extent (e.g.,
Sommer 1976; Bromberg and Bertness 2005), yet habitat
degradation is frequently a threat in addition to habitat loss
(Lambin 1999; Turner et al. 1999; zu Ermgassen et al.
2012). In many marine environments, it is difficult, if not
impossible, to determine the nature of pristine habitats that
have been lost (Roberts 2007). This is problematic in deriv-
ing estimates of ecosystem service provision historically, as
many services are strongly dependent on species abundance
or species richness (Diaz et al. 2006; Gibbs et al. 2007). In
these cases, knowledge of the change in habitat quality may
be necessary to determine the change in ecosystem service
delivery as habitats degrade.

Oyster reefs are among the most threatened of marine
habitats having suffered substantial declines globally over
the past century (Beck et al. 2011), primarily due to overfish-
ing, hydrological changes, pollution, and disease (Winslow
1887; Mackenzie 2007; Powell et al. 2008; Wilberg et al.
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2011). These losses have been quantified for the USA, where
zu Ermgassen et al. (2012) utilized data on oyster size and
density alongside spatial extent measures to derive estimates
of a 64 % decline in oyster extent and 88 % loss of oyster
biomass between the early 1900s and the early 2000s. Such
measures underpin efforts to formulate estimates of the loss of
a critical coastal ecosystem service—water filtration.

Filtration by suspension feeders such as oysters impacts
water quality by directly removing particulate matter from
the water column, with oysters ingesting the edible particles
and binding rejected particles with mucus, then depositing
this as pseudofeces onto the sediment surface. Through this
action, both phytoplankton and suspended sediment that
would otherwise reduce water clarity are drawn from the
water column to the benthos. The eastern oyster, Crassos-
trea virginica (Gmelin, 1791), is known to filter particles
>5 μm in size with high efficiency (Riisgaard 1988) and can
have a marked effect on light penetration in shallow, calm
waters, which in turn may have positive impacts on other
important adjacent habitats, such as seagrass beds (Newell
and Koch 2004).

The physiology of oyster feeding and filtration is well
studied, and filtration rate is known from laboratory studies
to be influenced by a variety of environmental factors such
as temperature, flow rate, salinity, seston concentration, and
particle size, as well as oyster size (Loosanoff 1958; Walne
1972; Shumway et al. 1985; Riisgaard 1988). Although it is
recognized that conditions in situ may significantly affect
filtration rate (Doering and Oviatt 1986; Powell et al. 1992),
few studies have sought to quantify rates under field con-
ditions. To estimate the contribution of oyster filtration
within an estuary, one can model field-based filtration rates
by summing the effect of environmental variables, for which
the relationships have been derived and for which field
measurements are available. This has been done effectively
for Chesapeake Bay (Cerco and Noel 2005; Fulford et al.
2007); however, such methods are expensive and require the
input of a large amount of environmental data and compu-
tational capacity (Cerco and Noel 2005). While the required
environmental data are available for well-studied estuaries
such as Chesapeake Bay, they are not available for most
other estuaries, and therefore, such high-resolution models
are not widely applicable.

In addition to the challenges posed by the lack of data,
there remain concerns that oysters in situ may not respond as
predicted by models primarily based on filtration by few
oysters in the laboratory. Oyster populations in situ may
spend a different proportion of time with their valves shut,
there is the potential for synergistic population-level influ-
ences and re-filtration, and physical attributes of the reef
may influence flow dynamics and hence the uptake of
particles (Dame et al. 1984; Harsh and Luckenbach 1999).
Despite these concerns, it seems that models may be the

only means available to estimate filtration rates at large
scales.

In order to make broad, estuary-scale estimates of the
volume of water filtered by oyster populations nationally,
we derived a model of oyster filtration based on the only in
situ measurements of oyster filtration currently available
(Grizzle et al. 2006, 2008). We use this model to explore
the estimated delivery of this ecosystem service historically
versus presently across 13 US estuaries.

Methods

Of the multiple variables known to influence oyster filtration,
we determined that water temperature and oyster size (shell
height from umbo to the posterior edge; SH) were the key
variables for which we could obtain data nationally (Table 1).
Other variables included dissolved oxygen and salinity which
illicit near “all or nothing” responses (Churchill 1920; Cerco
and Noel 2005) and hence are likely to be transient features
where oysters are found in abundance. Finally, variables such
as flow rate and seston quality and concentration vary on
small spatial and temporal scales (Berg and Newell 1986;
Wilson-Ormond et al. 1997) and can therefore not be modeled
on the estuarywide and national scale used in our study, but
equally are likely to be of lesser importance in estimating
filtration rates at these large scales.

In order to account for field conditions in our model, we
used the field measurements of seston uptake over natural
oyster reefs reported in Grizzle et al. (2006, 2008) to esti-
mate filtration rates. Grizzle et al. measured seston draw-
down over reefs with a known mean oyster SH and density,
and under optimal temperature conditions. We assumed that
all seston drawdown was the result of filtration by oysters
and estimated the mean filtration rate per oyster for each reef
surveyed. We subsequently fitted a standard filtration model
(Eq. 1) to these field data. SH to dry tissue mass conversions
from the respective regions (South Carolina and Florida)
were applied. Field data were collected on intertidal reefs
during both ebb and flood tides (Grizzle et al. 2006, 2008)
and therefore captured the impact of the tidal cycle (Dame et
al. 1984, 1992). Negative values caused by waves or other
disturbances were excluded.

Filtration rates were estimated to increase nonlinearly as
a function of oyster biomass following the relationship out-
lined in Eq. 1 (Newell and Langdon 1996).

FR ¼ aWb ð1Þ
where a and b are constants and W is oyster dry tissue mass
in grams.

A recent review by Cranford et al. (2011) suggested that
the constant b could be universally written as 0.58 for filter-
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feeding bivalves. While species-specific estimates for C.
virginica are rare, they have ranged from 0.59 (Pruder et
al. 1976 cited in Epifanio and Ewart 1977) to 0.73±0.22
(Riisgaard 1988). Using the Levenberg–Marquardt nonline-
ar least squares method (Press et al. 2007) in Mathematica
version 7, we fitted Eq. 1 to the field data, once allowing
both a and b to be estimated and once setting b at the fixed
value of 0.58. We then performed an F test to determine that
we were not justified in estimating b and were justified
in using the b value from the literature (F test; F9,100.07,
P00.2; Fig. 1).

We combined the resulting equation with a function for
the effect of temperature proposed by Cerco and Noel
(2005) to give Eq. 2.

FR ¼ 8:02W 0:58e �0:015T�27ð Þ2 ð2Þ

where T is temperature in degrees Celsius.
We selected 13 estuaries for which historic (ca. 1880–

1910) and present (ca. 2000–2010) oyster data were

available from zu Ermgassen et al. (2012) (Table 2). The
motivations for mapping oyster reef habitat have remained
constant over time, the primary goal being to determine the
extent and status of oyster grounds available for fishing. The
physical nature of oyster reefs, as islands of textured hard
substrate in otherwise soft bottom, allowed for the early
accurate mapping of this subtidal habitat. In this respect,
oyster reefs provide a unique historical dataset. In the vast
majority of cases, historical surveying entailed initial sur-
veys of oystermen, followed by detailed transects of the
estuary bottom, dragging chains to detect changes in the
nature of the substrate and ground truthing through subsequent
sampling (see Moore 1910 for a detailed overview of a typical
sampling method and zu Ermgassen et al. 2012 for further
information regarding data handling and comparisons). This
methodology provides accuracy not dissimilar to modern day
side-scan sonar that is typically used to determine the present
day extent of subtidal oyster reefs. As in zu Ermgassen et al.
(2012), we therefore assume equivalence in the spatial extent
delimited by these two methods. Both modern and historic
sampling provided data on the SH and density for two oyster
size classes; those above 75 mm SH and those between 25 and
75 mm SH. Spat (oysters <25 mm SH) were excluded, as the
quantification of spat is variable between studies. In some
cases, historic density and SH data were proxied from neigh-
boring estuaries within the same ecoregion (see zu Ermgassen
et al. 2012). SH was converted to dry tissue mass in grams
using regionally specific conversions (Liddel 2008;Mann et al.
2009a, b; Harding et al. 2010; Beseres Pollack et al. 2011;
Bushek, unpublished data). Where estuary-specific conver-
sions from SH to dry tissue mass were not available, conver-
sions from the nearest available estuary within the same
ecoregion (Spalding et al. 2007) were applied. All estuaries
represented have predominantly subtidal oyster populations
(see Table 2 for a complete list of estuaries).

We collated monthly mean water temperature data for all
13 estuaries from NOAA, USGS, and the National Estuarine

Table 1 Overview of variables effecting oyster filtration rate

Variable Effect on filtration rate Reference Data description

Temperature Unimodal with optimum filtration at ~27 °C Newell and Langdon (1996) Mean available nationally

Salinity Steep decline in filtration rate between
14 and 10 ppt

Churchill (1920) Varies dramatically spatially
within estuaries

Dissolved
oxygen

Unknown. Modeled as strong decrease <2 mg/l Cerco and Noel (2005) Rare, variable at a small spatial
scale

Particle size Retain particles >5 μm at high efficiency Riisgaard (1988) Rare, varies seasonally

Seston
concentration

Maximal when seston concentration >5
and <10 mg/l

Epifanio and Ewart (1977),
Newell and Langdon (1996)

Rare, varies seasonally

Flow rate Effect poorly understood Newell and Langdon (1996),
Harsh and Luckenbach (1999)

Rare, variable at a small spatial
scale

Oyster size Increases as a function of dry mass by an
exponent of 0.58

Newell and Langdon (1996), Cranford et
al. (2011)

Mean available nationally
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Research Reserve network. We then applied our field-
based filtration model to the present and historic extent,
and the mean density of both size classes of oyster in
each estuary, to determine the change in this ecosystem
service over time. As we know of no published data
illustrating differences in filtration rate between intertidal
and subtidal oysters of the same size, we made no
alteration to the model in order to represent subtidal
reefs. We assumed no change in mean monthly water
temperature or SH–biomass relationship between time
periods. For each estuary, we estimated the filtration
capacity of the population historically and presently,
across all seasons. We summarized and examined the
change in the total volume filtered and the volume filtered
per unit area over time. We used the Sharipo–Wilk test to
determine whether data were non-normally distributed. All
statistics were run in R version 2.13.1 (2011-07-08).

We then estimated the potential ecological impact of the
change, by relating the volume filtered to the estuary vol-
ume and residence time listed in Bricker et al. (2007).
Residence time is defined as the mean transit time of fresh-
water through the estuary. We use the term full estuary
filtration to describe the situation where the oyster popula-
tion filters more than the entire volume of the estuary within
the residence time of water in that estuary. We recognize that
this does not equate to complete filtration of all estuarine
waters and does not account for phytoplankton production,
but believe that this number nonetheless provides a useful
indicator of the volume of filtration relative to water flow
(Smaal and Prins 1993; Dame 2011).

Results

We estimate that reefs with oyster densities typical of mod-
ern oyster populations would filter a median of 0.15×103m3

ha−1h−1 (range, 0.06×103 to 6.47×103m3ha−1h−1) in sum-
mer months, as compared to 0.92×103m3ha−1h−1 histori-
cally (range, 0.1×103 to 5.74×103m3ha−1h−1). An overview
of estuary-specific mean filtration rates is provided in
Table 2.

The volume of water filtered by oyster populations in the
USA has declined since c. 1900 in 12 of the 13 estuaries
examined, with nine of the estuaries undergoing declines in
mean summer filtration greater than 80 % and an 85 %
median decline over all (Table 3). Both the Atlantic coast
and the Gulf of Mexico coast were impacted (83 and 97 %
median loss, respectively), although these could be charac-
terized differently, with no significant difference in filtration
per unit area on the Atlantic coast from Wilcoxon test (W0

20, p>0.05) and a dramatic decline in mean filtration per
unit area from 4.9×103, s.e. 0.67, to 1.0×103, s.e. 0.77 m3

h−1ha−1 on the Gulf of Mexico coast (Wilcoxon test, W056,
p00.01, Table 2). The notable exception to this trend was
Apalachicola Bay, FL, which has an oyster population esti-
mated at greater than historic, both with regard to areal
extent and density (zu Ermgassen et al. 2012).

Historically, six of the estuaries contained oyster popula-
tions capable of full estuary filtration during summer months;
this number has subsequently declined to one (Table 3). The
proportion of the estuary volume filtered within its residence
time varied widely across seasons and between estuaries

Table 2 Filtration by historic and present oyster populations, and for 1 ha of oyster ground at either historic or present oyster densities

Estuary State Historic
volume filtered
(1,000 m3h−1)

Present volume
filtered
(1,000 m3h−1)

Historic area
(ha) and density
(indm−2)

Present area
(ha) and density
(indm−2)

Volume filtered
by 1 ha at
historic density
(1,000 m3h−1)

Volume filtered
by 1 ha at
present density
(1,000 m3h−1)

Hudson River/Raritan Bay NY/NJ 1,604 (0.07) 272 (0.01) 1,660 (17.5) 402 (15.5) 0.97 0.68

Delaware Bay NJ/DE 23,718 (0.36) 7,567 (0.11) 25,149 (17.5) 11,471 (15.5) 0.94 0.66

Tangier and Pocomoke Sound MD/VA 3,718 (0.31) 3,014 (0.25) 35,536 (1.5) 7,126 (11.9) 0.10 0.42

York River VA 727 (0.24) 109 (0.04) 698 (19.2) 161 (14.8) 1.04 0.68

James River VA 4,993 (0.47) 766 (0.07) 4,467 (14.5) 2,410 (8.4) 1.12 0.32

Apalachicola Bay FL 2,646 (0.24) 22,573 (2.02) 2,695 (29.2) 3,491 (157.6) 0.98 6.47

Mobile Bay AL 2,911 (0.31) 622 (0.07) 1,151 (31.4) 1,045 (11.2) 2.53 0.60

West Mississippi Sound AL/MS 7,533 (1.08) 566 (0.08) 3,391 (57.5) 6,490 (1.7) 2.22 0.09

Galveston Bay TX 73,997 (11.88) 2,313 (0.37) 12,950 (57.5) 10,795 (4.1) 5.71 0.21

Matagorda Bay TX 87,007 (50.47) 499 (0.29) 16,679 (57.5) 2,229 (5.2) 5.22 0.22

San Antonio Bay TX 13,875 (7.96) 444 (0.25) 2,590 (57.5) 2,158 (4.2) 5.36 0.21

Aransas Bay TX 20,768 (17.47) 381 (0.32) 3,885 (57.5) 482 (12.4) 5.35 0.79

Corpus Christi Bay TX 19,327 (13.89) 20 (0.01) 3,367 (57.5) 290 (1.4) 5.74 0.07

The proportion of the estuary filtered within the residence time is given in parentheses below the volume. All estimates represent mean summer
filtration (June, July, August). Also shown are historic and present areas of oyster ground (in hectares) and, in parentheses, mean oyster density (ind
per square meter)
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(Table 3). Estuaries in the western Gulf of Mexico were
typically filtered multiple times within their residence times
historically during the summer (six of eight), while estuaries
in the northeast were not (zero of five) (Fig. 2).

Discussion

Coastal systems have undergone unprecedented change over
the past century (Jackson et al. 2001). While the role that
oysters play in improving water quality is increasingly

valuable given the high incidence of eutrophication (Bricker
et al. 2007), the provision of this ecosystem service has
declined precipitously over the past century (Table 3,
Fig. 2).

We report a near universal decline of the filtering capac-
ity of oyster habitats by more than 80 %. Our results suggest
that 100 years ago, filtration by oysters was likely to have
been a major ecological function, achieving full estuary
filtration in many estuaries (Table 3, Fig. 2). This reduction
in filtration capacity is likely to have caused substantial
changes to the ecosystem function of estuaries (Newell
1988; Dame et al. 2002). While the ecological importance
of a healthy oyster population has been the focus of much
attention in the Chesapeake (e.g., Ulanowicz and Tuttle
1992; Fulford et al. 2007), the decline in the ecosystem
services provided by healthy oyster habitats in US estuaries
more generally remains poorly appreciated and understudied.
Although increases in oyster filtration alone are unlikely to
resolve the water quality concerns of many US estuaries
(Cerco and Noel 2007), it may be possible to restore this
ecosystem service to levels at which it will have some bene-
ficial ecological impact locally (Newell and Koch 2004).

The decline in filtration capacity in estuaries spanning
such a large area is striking. While the decline in filtration
capacity appears to have been greater in the Gulf of Mexico
than in the North Atlantic (Table 3, Fig. 2), this is certainly
at least in part because the surveys conducted along the
North Atlantic coast were undertaken after exploitation rates
had peaked and thus reflected an already shifted baseline
with low oyster densities (zu Ermgassen et al. 2012, Table 2).
For example, our 1887 historic baseline for Tangier and

Table 3 Proportion of the volume of each estuary that may be filtered by the historic and current populations of oysters, across seasons

Historic proportion of bay filtered
with the residence time

Present proportion of bay filtered
with the residence time

Estuary State Volume (1,000 m3) Residence
time (days)

Spring Summer Fall Winter Spring Summer Fall Winter Mean % change

Hudson River/Raritan Bay NY/NJ 4,897,870 9 0.00 0.07 0.03 0.00 0.00 0.01 0.01 0.00 −83

Delaware Bay NJ/DE 12,668,400 8 0.02 0.36 0.19 0.00 0.01 0.07 0.06 0.00 −68

Tangier and Pocomoke Sounds MD/VA 3,477,530 12 0.07 0.31 0.17 0.00 0.05 0.21 0.14 0.00 −19

York River VA 786,920 11 0.04 0.24 0.13 0.00 0.01 0.03 0.02 0.00 −85

James River VA 2,060,800 8 0.08 0.47 0.24 0.00 0.01 0.06 0.04 0.00 −85

Apalachicola Bay FL 1,073,330 4 0.17 0.24 0.20 0.02 1.48 2.10 1.69 0.19 753

Mobile Bay AL 2,060,890 9 0.21 0.31 0.24 0.02 0.04 0.07 0.05 0.00 −79

West Mississippi Sound AL/LA 3,841,830 23 0.73 1.08 0.87 0.06 0.06 0.08 0.07 0.00 −92

Galveston Bay TX 2,242,240 15 8.86 11.88 10.23 0.94 0.28 0.39 0.32 0.03 −97

Matagorda Bay TX 1,572,150 38 45.13 50.47 51.18 6.49 0.26 0.32 0.29 0.04 −99

San Antonio Bay TX 346,330 8 6.70 7.69 7.50 0.97 0.21 0.27 0.24 0.03 −97

Aransas Bay TX 513,520 18 15.97 17.47 16.74 2.49 0.29 0.35 0.31 0.05 −98

Corpus Christi Bay TX 1,535,990 46 11.12 13.89 13.94 2.42 0.01 0.01 0.01 0.00 −100

Seasons defined as: spring (March, April, May); summer (June, July, August), fall (September, October, November), and winter (December,
January, February)
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Fig. 2 Illustration of current and historic number of days until the
oyster population filtered a volume equivalent to the volume of the
estuary against the residence time of the estuary. The black line
represents the point at which the filtration time equals the residence
time. Points above the line are not filtering the full volume of the
estuary within the residence time
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Pocomoke Sound (Chesapeake Bay, Atlantic coast) docu-
mented oyster densities 2–7-fold lower than observations
from 30 years earlier (Winslow 1887), while even this earlier
1850s estimate is likely to have been dramatically lower than
precolonial densities (Newell 1988; Kirby 2004). By contrast,
the historic surveys undertaken in the Gulf of Mexico were
conducted with the caveat that many oyster reefs remained
undiscovered (Moore 1907). As such, our estimates of the
historic level of services in the northeast likely represent a
significantly shifted baseline.

All historic baselines should be considered relative to
their date of origin, as they may be shifted from pristine
conditions (Roberts 2007). This non-pristine baseline is
further supported by observations that mean SH in precolo-
nial shell deposits in South Carolina were found to be 62 %
greater than mean harvested SH in 1938 (Lunz 1938). Such
age and size truncation is typical of harvested species
(Hutchings and Reynolds 2004) and would have a marked
impact on population-level filtration rates (Mann et al.
2009a, b). If a moderate correction of assuming four-
times-higher densities (6.5 oysters/m2) and precolonial size
distributions is applied to the historic extent in Tangier and
Pocomoke Sound, this would result in approximately a 7-
fold increase in filtration capacity and the estuary being
filtered multiple times within its residence time. As such,
it is reasonable to expect that oysters in many of the north-
eastern US estuaries would have exerted full estuary filtra-
tion capacity prior to the industrial exploitation of oysters.

We concur with a number of authors who have previous-
ly asserted that oysters would historically have been domi-
nant filter feeders with significant ecological impacts
through filtration in many estuaries (Newell 1988; Cerco
and Noel 2007; Mann et al. 2009a, b). Our historical data
represent a shifted baseline, particularly in the northeastern
USA, but such quantitative historical data help to avoid
further shifts in baselines and ensure that modern manage-
ment goals are not misguided (Swetnam et al. 1999). Mod-
ern management goals should utilize such historical data,
but in a broader context. For example, ecologically relevant
restoration goals might best focus on delivery of the desired
ecosystem services (Jackson and Hobbs 2009), aided by our
understanding of their relative importance in the face of a
changing environmental landscape (Swetnam et al. 1999).
Our model and bay-specific data provide the basis for such
comprehensive goal setting.

In contrast to the situation on the Atlantic Coast, it is
noteworthy that for Apalachicola Bay in the Gulf of Mexico,
we estimate present day levels of filtration that are greater than
historic estimates. Apalachicola Bay has undergone intensive
management of the oyster resource including extensive shell
planting since the historic survey efforts which has led to
increased areal extent of oysters, in addition to the recorded
densities being higher (zu Ermgassen et al. 2012). It is

noteworthy that this is one of the few estuaries in which
harvesting is primarily by tonging, and dredging is not
allowed. It is widely agreed that tonging is a less-destructive
harvest method than dredging (Lenihan and Peterson 2004),
and further work may well reveal that this has been a critical
factor in ensuring the long-term sustainable benefits that ap-
pear to be delivered in these estuaries.

Our model of filtration rates is the first to incorporate
field measurements from in situ oyster populations, and
therefore to represent whole-reef filtration. When converted
to the same unit, the filtration rate estimated by our model is
lower than the maximum filtration rate of 11.5 lh−1 used by
Cerco and Noel (2007) in their model for the Chesapeake.
This is as would be expected if the use of field data were, as
we have assumed, a useful surrogate where the environmen-
tal data required to modify maximum filtration rate are
absent.

Considering filtration relative to residence time can be a
useful indicator of the potential for oysters to have an
ecologically significant impact on an estuary (Dame 2011).
However, even when undisturbed, estuaries exhibit high
variability in sediment load, planktonic productivity, depth,
residence time, and natural abundance of oysters (Bricker et
al. 2007; zu Ermgassen et al. 2012), all of which influence
the extent to which oyster filtration may impact water qual-
ity (Officer et al. 1982; Pomeroy et al. 2006; Cerco and Noel
2007). Temporal mismatching between phytoplankton pro-
duction and peak oyster filtration may also limit the poten-
tial for oyster populations to have a regulating influence.
Additionally, the impact of filtration on seston drawdown on
large scales cannot be directly inferred from filtration rates
due to the influences of wave action (Porter et al. 2004), the
unequal distribution of oysters (Cerco and Noel 2007), and
imperfect mixing within the estuary (Pomeroy et al. 2006).
This in turn may lead to variable impacts of oyster filtration
on nutrient cycling within the bay, as the biodeposition of
seston may stimulate enhanced denitrification and anammox
in the sediments (Dame 2011). In this context, the point at
which the population filtration rate matches the residence
time simply represents a point on a continuum, albeit one
that may provide a useful guide for estimating the ecological
impact.

While our estimates of change over time stress the ex-
treme nature of the losses of filtration by oysters, our results
also highlight that changes in management of oyster reefs,
particularly in their diminished condition, can have a signif-
icant influence on the amount of filtration provided in the
future. In particular, management decisions that lead to
higher average densities on existing reef footprint, or expan-
sions of reef area through restoration coupled with increas-
ing oyster size or density, could move a number of estuaries
toward a state where oysters can once more play a role in
supporting water quality (Table 3).
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Currently, oyster restoration efforts and goals are accounted
for by their areal extent (e.g., NOAA 2012); however, the
volume of water filtered by oysters is not solely a function of
the area of oyster habitat, but also of the density and size
frequency of the oysters. Therefore, as restoration of oyster
habitat for ecosystem services gains momentum, it will be
critical to devise appropriate metrics to assess the contribution
of restoration projects toward those target ecosystem services.
Any restoration undertaken with the goal of water filtration
needs to account for the density and size distribution of oysters
in addition to the area restored. Without these data, the con-
tribution of restoration projects and their progress toward their
ecosystem service goals will remain unknown.

This study provides a unique numerical insight into the
dramatic functional changes that can accompany the degra-
dation of an estuarine habitat. Even from “non-pristine”
historical baselines, it is clear that a significant and nearly
universal loss of ecosystem services has occurred in US
estuaries, which has gone hand in hand with the loss and
degradation of oyster reef habitat.
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