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ABSTRACT 

 

THESIS TITLE: A BIOGEOCHEMICAL-ECONOMIC MODEL FOR THE VALUATION OF 

COVER CROPS ECOSYSTEM SERVICES UNDER CLIMATE CHANGE 

By 

Karen Margarita Morán Rivera 

University of New Hampshire 

 

Cover crop (CC) adoption is a promising conservation practice that provides multiple 

ecosystem services, such as reduced nitrate pollution and increased soil health. These CC 

ecosystem services have been demonstrated in the biogeochemistry literature. However, 

widespread adoption of CC in the Midwestern U.S. is still low, in part because there continues to 

be a debate about whether adopting CC is privately optimal for farmers and how climate change 

might affect the private incentives to adopt. Economic analyses of CC adoption are complicated 

by the difficulty to account for the economic benefits of CC ecosystem services, in a changing 

climate. 

In this thesis, we developed a biogeochemical-economic model that estimates the 

ecosystem service benefits provided by CC under different climate scenarios on a corn-soybean 

farm and contrasts them with CC costs over 10 years. We used the DeNitrification-DeComposition 

(DNDC) model as the ecological production function in the biogeochemical-economic model. 

DNDC simulated changes in three non-market ecosystem services, namely soil water storage, soil 

organic matter accumulation, and N retention, with and without cover crops, and linked them to 

changes in corn yields and nitrogen fertilizer input. 



xiii 

 

The biogeochemical-economic model simulation results suggest that under most climate 

scenarios, and except for the case of constant extreme droughts, CC adoption does not generate a 

sizable difference in farm net present values (NPVs). Under historical Iowa weather (2004-2013), 

adopting CC reduces a farm’s NPV by 4%, relative to no CC adoption. However, if two years of 

drought occur in the 10 years, the difference in NPVs goes down to 0.5%. The ranking of NPVs is 

reversed in the most likely scenario where precipitation increases in the spring and decreases in 

the summer: adopting CC increases a farm’s NPV by 1.1%, relative to no CC adoption. This 

difference increases sizably when the farmer experiences a greater number of drought years. Under 

frequent extreme droughts, adopting CC increases a farm’s NPV by 15%, relative to no CC. This 

difference is explained by higher corn yields in the CC treatment, where corn yields were 15% 

higher under frequent extreme droughts. DNDC simulation results show that this yield increase is 

due to an increase in the following three ecosystem services in the CC system: improved soil water 

storage, soil organic matter accumulation, and N retention. 

Finally, using the certainty equivalent measure, we found that the baseline results for a 

risk-neutral farmer do not change in the case of a moderately risk-averse farmer. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

A wide body of research has been conducted to analyze different aspects of climate change. 

This literature review focuses on the impact of climate change on agricultural production and 

nitrogen pollution. Additionally, strategies to increase resilience while reducing nitrogen pollution 

in agroecosystems were explored, including literature on cost-benefit analysis for these strategies. 

A breadth of scholarship and knowledge about how climate change affects nitrogen pollution, crop 

production, and management in the Midwestern United States were explored. 

 

1.1 Climate change impacts on agriculture 

Agriculture will face enormous challenges over the next century. In addition to the 

increasing food demand to feed the rapidly growing global population and the need to increase 

environmental sustainability of agricultural systems, climate change is expected to reduce 

agricultural productivity (Foley et al., 2011). Higher temperatures and changing precipitation 

patterns are expected to reduce mean global crop yields and increase year to year variability by 

30% (Lobell & Field, 2007). These effects have already been observed. For example, climate 

change reduced global maize (Zea mays L.) yields by 3.8% from 1980 to 2008 (Lobell et al., 2013). 

Climate projections show that the Midwestern U.S. will experience changes in precipitation 

patterns including intense but shorter rainfall events, and longer periods of drought (Deser et al., 

2012). Climatic impacts on Midwestern agriculture have global implications, as the region 

produces one-third of the world’s maize. Under a high-carbon emissions scenario, maize yields 

will be reduced by up to 30-40% by the end of the 21st century. These projections hold even when 
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accounting for the ameliorating effect of higher atmospheric CO2 concentration, which increases 

carboxylation and transpiration efficiency in some crops (Jin et al., 2017). 

Warmer climates will also increase the frequency of extreme weather events, resulting in 

increased agricultural variability (Trenberth et al., 2014). Greater frequency of severe rainfall and 

intense periods of drought are likely to increase yield variability by altering soil moisture dynamics 

(Mishra et al., 2010). Projections show that precipitation will increase during winter and spring, 

resulting in excessive soil moisture early in the season (Tomasek et al., 2017; Urban et al., 2012). 

During summer, rising temperatures combined with increased evapotranspiration will decrease 

soil moisture, leading to increased onset of drought (Trenberth et al., 2014; Zipper et al., 2016). 

Both extremes (too much water or too little water) can wreak havoc in crop production systems. 

Excessive soil moisture can damage crops directly and indirectly, with different magnitudes over 

the growing season (Urban et al., 2015). Direct effects depend on the crop growth stage and the 

risk associated with each stage. For example, excessive soil moisture during the juvenile stage can 

directly increase the risk of seedling diseases. Indirect effects depend on crop management 

activities and seasonal risks (Urban et al., 2015; Lobell et al., 2014; Mishra et al., 2010). For 

example, a delay in spring planting because of saturated fields can push the reproductive stage into 

the late summer, when drought risk is expected to increase (Tomasek et al., 2017).  

Since 2000, drought and excess moisture have increased the risk of crop failure and yield 

variability (Lobell et al., 2014). Severe rainfall can cause flood conditions, which add costs if 

affected areas need to be replanted. At worst, flooding can result in total crop loss if the farmer is 

unable to plant. In 1993, flooding damage near the Mississippi River resulted in more than 11 

million acres of crop losses and cost  $3 billion in damages (Rosenzweig & Tubiello, 2007). At 

the other extreme, short-term drought can cause substantial yield losses, and prolonged drought 
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may cause total crop failure (Zipper et al., 2016). For example, the drought of 2012 caused 

agricultural losses of $30 billion, where nearly two-thirds of the U.S was affected by drought 

(Rippey, 2015). Faced with this possibility, farmers may opt to plant shorter-season varieties with 

lower grain yield potential. It can also spur the growth of weeds, insects, and damaging pathogens 

(Walthall et al., 2012). Further, extreme weather can affect yield in ways not typically captured in 

modeling studies. For example, current models do not account for climate impacts such as 

flooding, anaerobic soil conditions, and catastrophic erosion (Hunter, 2018). Because of the 

enhanced crop production challenges due to climate change, there is a clear need for new and more 

comprehensive strategies to maintain high and stable yields in the face of climate change. 

 

Climate change adaptation in agriculture 

Agricultural systems are human-dominated ecosystems that are vulnerable to climate 

change. This vulnerability depends on both the biophysical effects of climate and the response 

taken by humans to moderate these effects (Walthall et al., 2012). To reduce agricultural 

vulnerability, effective adaptation strategies are needed. Adaptation is the process of adjustment 

to present or future climate and its effects, which reduce vulnerability and capitalize on beneficial 

opportunities (Smit & Skinner, 2002). Four agricultural adaptation strategies have been identified: 

1) technological advances, 2) farm production practices, 3) farm financial management, and 4) 

government programs and insurance.  

Technological advances can substantially reduce the negative effects of climate change 

(Cassman et al., 2010). Historically, technology has played an important role in reducing some of 

the agricultural risks related to weather variability (Smithers & Blay-Palmer, 2001). However, 

these risks are not limited to the effect of average weather conditions on plant growth. It also 
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includes the effect of extreme weather events and yield response to pathogen pressure. To close 

the 30% production gap, yield improvements will have to keep pace with a rapidly changing 

climate (Edmeades et al., 2004). Until today, technological advances alone have not offset the risk 

associated with weather variability.  

Modifying production practices can increase resilience, however, only a few farmers are 

willing to adopt them (Roesch-Mcnally et al., 2017). Some of these changes increase crop 

diversity, alter planting dates, increase pesticide and fertilizer use, plant different crop varieties, 

and reduce tillage. For example, diverse crop rotation can increase the average maize yield over 

time and reduce yield losses under drought years (Bowles et al., 2020). Another example is to 

increase the use of soil conservation practices such as eliminating tillage, this can improve soil 

water storage during punitive drought years. Because these practices require farmers to change 

their status quo, only a small group has made changes to reduce risk exposure (Harvey et al., 2014; 

Mase et al., 2017). Further, some of these adaptation practices are expensive and require technical 

knowledge.  

Governments have multiple mechanisms to reduce risk from agricultural production. One 

way is to promote farm-level adaptation strategies by providing technical and financial support 

that allows farmers to adopt new strategies that otherwise they wouldn’t have adopted. Another 

way to reduce income uncertainty from annual production is to allow farmers to remove sensitive 

lands from production in exchange for annual payment (Lohmann & Van der Hamsvoort, 1997). 

The government can also provide financial management support by subsidizing crop insurance, 

reducing the risk of catastrophic financial losses due to poor yields and/or revenue. 

In future climate scenarios, farmers will face ecological-economic trade-offs when 

adopting climate-resilient strategies. Emerging insights from soil and agricultural systems show 
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that ecological, system-based approaches can enhance agroecosystem resilience to extreme 

weather events. 

 

1.2 Agriculture, climate change and nitrogen pollution 

 Nitrogen (N) pollution is among the most critical environmental problems stemming from 

agriculture. Agricultural production has doubled the amount of N added to terrestrial ecosystems 

compared to natural sources (anthropogenic 120 Tg N yr-1 and natural 63 Tg N yr-1), mainly 

through the use of synthetic fertilizers and the management of biological fixation (Fowler et al., 

2013). This widespread anthropogenic alteration of the global N cycle comes with both benefits 

and costs. Nitrogen has substantially increased crop production needed to meet the food, fuel, and 

fiber needs of the growing population. However, the excess of N is also associated with the 

pollution of surface and groundwater, loss of wild habitat, soil acidification, stratospheric ozone 

depletion, and increased greenhouse gas emissions (Rabalais et al., 2001; Swinton et al., 2007; 

Robertson & Vitousek, 2009; Zhang et al., 2015). 

Future climate is expected to magnify the trade-offs between crop production and N 

pollution (Deser et al., 2012; Sinha et al., 2017). Extensive evidence suggests that N cycling is 

highly dependent on precipitation and soil moisture (Austin et al., 2004; Bowles et al., 2018). 

Projections show that the Midwestern U.S will experience changes in precipitation patterns with 

more intense but shorter rainfall events and longer periods of drought (Deser et al., 2012). The 

Midwestern Corn Belt is known for its high agricultural productivity and as a global leader in the 

production of corn and soybean. However, this high productivity has come at a cost; for example, 

it is estimated that 65% of the total N delivered to the Gulf of Mexico each year comes from the 

upper Mississippi River Basin, primarily from the Corn Belt agricultural fields (Rabalais et al., 
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2001; Robertson & Saad, 2013). Given future climate projections, the total N loaded to the Gulf 

of Mexico is expected to increase by 19%, and offsetting this increment would require a 33% 

reduction in N inputs (Sinha et al., 2017). In the context of climate change, achieving this reduction 

requires a deep understanding of the agronomic, environmental, and economic trade-offs between 

crop production and N pollution in all its forms. 

Additional to the damages caused by eutrophication in the Gulf of Mexico, N pollution can 

cause other forms of N-related damages. For example, the effects of N pollution can cause a 

reduction in air quality (NOx, NH3, NH4NO3), and  can contribute to greenhouse gas emissions 

(N2O) (Robertson & Vitousek, 2009; Vitousek et al., 2009). Further, reactive forms of N can have 

multiple transformations and can have a cascade effect over space and time (Robertson & 

Vitousek, 2009). A recent study shows that the magnitude of the damage depends on the location, 

vulnerability, and preferences of the populations affected by N (Keeler et al., 2016). The 

quantification of these damages remains a big challenge because the N cycle is messy, complex, 

and dynamic (Keeler et al., 2016).  

 

U.S. Agro-environmental policy approach to N pollution 

For the last decade, the U.S policy approach to environmental issues has been slow and 

ineffective (Dowd et al., 2008). The current policy heavily favors crop production by providing 

crop insurance and subsidy payments for commodity crops. These programs have minimal 

environmental requirements, which fail to target nutrient loss, air quality, GHG emissions, and 

other environmental damages. Moreover, many environmental regulations currently exempt 

agricultural activities. For example, the Clean Water Act does not require agricultural producers 

to apply for a National Pollution Discharge Elimination System permit nor regulates farming 
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activities (Adler, 1994), mainly because implementing this policy would require sums of money 

larger than the budgets of local regulatory agencies (Dowd et al., 2008). Instead, the policy 

approach is to provide funding for voluntary programs.  

In order to maintain crop yields while minimizing N pollution, the USDA promotes the 

voluntary adoption of conservation practices (Dowd et al., 2008). The Environmental Quality 

Incentives Program (EQIP) and the Cost Share Program (CSP) provides cost-share and technical 

assistance to encourage farmers to adopt conservation practices on productive land, both edge-of-

field and in-field (Reimer & Prokopy, 2014). Edge-of-field practices usually require farmers to 

make a long-term commitment and reduce the area of farmland to implement physical structures 

and/or perennial vegetation (Roley et al., 2016). Edge-of-field practices are designed to capture or 

treat sediments and nutrients runoff (Mahl et al., 2015). In contrast, in-field practices require a 

short-term commitment by integrating conservation into daily management decisions (Hansen et 

al., 2012). In-field practices can minimize erosion or nutrient transport without sacrificing 

farmland. One important in-field conservation practice is the adoption of cover crops. 

 

1.3 Cover crops: an innovative agroecosystem solution 

Cover crops may play an important role in adapting agriculture to climate change while 

also reducing N pollution. In annual cropping systems, cover crops increase plant diversity and 

replace bare fallows where the soil is left without living plants. Cover crops can reduce nutrient 

leaching by taking nitrogen (N) that otherwise would be lost in the environment (Carpenter-Boggs 

et al., 2010; Tonitto et al., 2006).  Other benefits of cover crops include mitigation of weed, insects, 

and pathogens pressure, and increased soil health (Schipanski et al., 2014; Kaspar et al., 2011; 

Mcdaniel et al., 2014). Further, shoots and roots inputs of cover crops residues can be efficiently 
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transformed into soil organic matter (SOM) (Austin et al., 2017). Increased SOM leads to greater 

stability of soil aggregates, nutrient retention, water availability, and boosts root association with 

beneficial microbes (Six et al., 2000; Tiemann et al., 2015; Basche et al., 2016a; Bowles et al., 

2017).  

Employing cover crops can help buffer yields against increased weather variability by 

improving soil water dynamics (Williams et al., 2016). Cover crops can enhance soil water storage 

and can reduce the risk of flooding during spring, allowing farmers to plant on time (Tomasek et 

al., 2017). Cover crops can increase available water for plants by improving infiltration rate and 

storage capacity in the short term by slowing overland water flow and in the long term by 

increasing macro-porosity, aggregation, and field capacity (Basche et al., 2016a; Blanco-Canqui 

et al., 2015). Cover crop residues can act as mulch and substantially reduce evaporation from the 

soil surface (Wang et al. 2018). In a long-term experiment, rye cover crop increased soil water 

availability by 21% (Basche et al., 2016a; Wang et al., 2018). Further, survey evidence also 

suggests that cover crops may provide adaptation strategies: farmers reported 10- 15% higher 

yields in cover-cropped fields of maize and soybean in Midwest states affected by drought 2012 

(NRDC, 2015). Additionally, cover crops can reduce evaporative and transpiration losses if they 

disrupt weed life cycles (Baraibar et al., 2018). While these benefits are promising, the continued 

provision of ecosystem services provided by cover crops can be limited by several factors. 

Cover crops ecosystem services vary by cropping systems, management practices, and 

climate. For example, a global meta-analysis showed that the effects of cover crops on SOM 

accumulation strongly differ depending on cover crop species, fertilization rates, mean annual 

temperature, and soil carbon stock (Austin et al., in review). Another study showed that N released 

from cover crops residue is highly influenced by climatic conditions, residue C:N ratio, and 
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management practices (Jahanzad et al., 2016). Additionally, reducing N leaching depends on cover 

crops establishment, species, and biomass production (Cates et al., 2018; Finney et al., 2016; 

Tonitto et al., 2006). Other studies have shown that the effects of cover crops on soil C, water 

retention, and nutrient status are heavily influenced by N fertilization rates (Snapp & Surapur, 

2018). Since cover crops ecosystem services vary across climate, management practices, and 

region, cash crop response to cover crops varies significantly. 

Accumulating research indicated that cover crops have positive (legume) or at least non- 

negative (non-legume) effects on cash crops yields (Marcillo & Miguez, 2017; Snapp & Surapur, 

2018; Austin et al., in review; Seifert, Azzari, & Lobell, 2019). Legume cover crops, commonly 

clover and vetch,  can fix atmospheric N2, contributing to additional N and reducing fertilizer 

application (Blanco-Canqui et al., 2015). Legume residues have similar C:N ratios (25:1) 

compared to soil microbes (5:12), hence can increase soil C by promoting microbial efficiency and 

SOM formation (Kirkby et al., 2016; USDA, 2011). Yield increases due to greater residue quality 

and N production of legume cover crops have been well documented (Marcillo & Miguez, 2017; 

Tonitto et al., 2006). On the other hand, yield response to non-legume cover crops is less 

understood. Non-legume cover crops are good at scavenging N and have the potential to contribute 

additional N to subsequent crops (Krueger et al., 2011). However, N release from non-legume 

cover crops is usually not synchronized with cash crop peak demand (Jahanzad et al., 2016). 

Further, the dynamic nature of soil N pools makes it difficult to predict synchrony between soil N 

mineralization and crop N demand. Timing of N immobilization is important in crop production, 

as the synchrony of N release relative to plant demand N has consequences for yield and N 

fertilizer efficiency (Snapp & Surapur, 2018; White et al., 2017). Non-legume cover crops, such 

as cereal rye, oats, and wheat, have higher C:N ratios (37:1) than soil microbes, therefore, 
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microbial efficiency might be reduced, and SOM formation lowered (Austin et al., in review). 

Despite these limitations, research showing that non-legume cover crops provide soil benefits is 

accumulating. 

Because of the documented benefits, and the cost-share programs, cover crops acreage has 

doubled nationally from 2012 to 2017 (SARE-CTIC, 2016). In Iowa, cover crops acres have 

increased beyond cost-shared programs (Rundquist & Carlson, 2017). The most widely grown 

cover crop in Iowa is cereal rye (Secale cereale L.) because of its N scavenging capacity and 

adaptability to the soils and climates in the region. However, recent satellite imagery reported that 

only 2.6% (591,880 acres) of Iowa cropland incorporated cover crops into corn-soybean rotations 

in 2015 (Rundquist & Carlson, 2017). Although this study accounted for failures in match imagery 

such as late cover crop emergence or early termination, the adoption rate of cover crops continued 

to be low. Nationally, only 3.2% of the total cropland production in the U.S was planted with cover 

crops (Basche & Roesch-McNally, 2017). These estimates are similar to Iowa, where farmers 

planted 760,000 acres (3.3% of corn-soybean cropland) of cover crops during 2017 (ILF 2019). 

This small increment in cover crop adoption doesn’t come as a surprise, because multiple 

constraints inhibited adoption (Survey, 2018).  

 

1.4 Costs of cover crop adoption 

Obstacles to cover crop adoption include farmers’ status-quo and economic constraints 

(Roley et al., 2016; Snapp et al., 2006). Status quo refers to the behavioral barrier to adopt cover 

crops, as this practice require farmers to alter their seasonal management practices in a system with 

an already short management window for planting and harvesting cash crops (Roesch-Mcnally et 

al., 2018). This short management window increases uncertainty regarding opportunity costs, e.g. 
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delayed operation for sowing and planting the cash crop. The need to alter seasonal management 

practices can discourage adoption. Additionally, farmers have consistently expressed that the 

economic returns on cash crop production are low given the high cost of inputs (e.g. seeds, 

fertilizer, chemicals), hence the additional costs of cover crops may be too high for producers 

(Dunn et al., 2016; Roesch-Mcnally et al., 2018; Plastina et al., 2018). Here we have identified 

five main cost categories of cover crops:  

Seed cost, which depends on local seed source supply and demand, therefore, varies 

regionally and year to year (Roley et al., 2016). In a regions where conventional farming (i.e. corn- 

soybean rotation followed by bare fallow during winter) governs, the lack of knowledge and 

infrastructure to produce small grains is a major barrier in the supply chain of cover crops seeds. 

Previous work by Longbucco & Porter, (2019) identified the major barriers in the value 

chain of cover crop seeds. The value chain starts from seed producers, seed dealers, and 

agricultural retailers until it reaches the farmers and landowners (Longbucco & Porter, 2019). 

Cover crop seed producers face a lack of specialized agronomy, equipment, storage facilities, and 

technical knowledge (Longbucco & Porter, 2019). Seed dealers’ challenges are lack of 

understanding of seed rules and regulations, lack of secondary markets for leftover seeds, and 

limited capacity to forecast supply and demand. Until today, there is no entity that provides 

information about cover crop seeds rules and regulations such as quality, shipping regulations, and 

protected varieties (Longbucco & Porter, 2019). Retailers cannot forecast demand because farmers 

treat cover crops as extraneous during crop year planning. Retailers forecast demand through pre-

payment, but farmers do not include cover crops in this process (Longbucco & Porter, 2019). These 

barriers have a big impact on the direct costs of cover crop adoption, as farmers tend to buy seed 

when the price is high (Longbucco & Porter, 2019). Helping farmers to make decisions early in 
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the season and pre-pay for cover crops seed while supply is high have the potential to considerably 

reduce the direct cost of seeds (Longbucco & Porter, 2019). 

Planting costs consist of the labor, material, and fuel costs of planting through either aerial, 

broadcast, inter-seeding, or drilling methods (Roley et al., 2016). Most farmers use drilling to plant 

cover crops, however, farmers that face shorter planting windows tend to aerially seed cover crops 

into soybeans and cornstalks (Survey, 2018). Additionally, farmers have consistently expressed 

the challenge to plant and establish cover crops following cash crops in wet springs (Plastina et 

al., 2018). Low temperatures and excessive soil moisture during fall can result in poor cover crop 

establishment. For example, the probability of favorable conditions for establishing and growing 

cereal rye cover crops in Minnesota was 25% based on historical weather data of 41 years (Strock 

et al., 2004).  

Termination costs  include the labor, material, and fuel costs of either herbicide 

applications, crimping, cutting, rolling, or tillage (Roley et al., 2016). Most farmers terminate 

cover crops using herbicides (Survey, 2018). However, the amount of herbicide varies among 

farmers and depends on weather conditions (Arbuckle & Roesch-McNally, 2015; Plastina et al., 

2018). The perceived risk of cereal rye becoming a weed during cash crop growth can lead farmers 

to increase herbicide spraying rates (Plastina et al., 2018). Additionally, high precipitation and low 

temperatures during spring can limit the efficiency of the herbicide used to terminate cover crops 

and therefore delay cash crop planting (Arbuckle & Roesch-McNally, 2015). Unsuccessful 

termination of cover crops can be perceived as high risk with negative impacts on cash crops yield. 

Additional costs are associated with the changes in cropping system management and can 

be group in three categories (e.g. hiring extra labor, purchasing new equipment, increasing cash 

crop input use) (Roley et al., 2016).  
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The first category of additional costs is related to changes in labor. Hiring extra labor 

consist of custom hire planting and harvesting cash crop. Some farmers reported to custom hire 

planting and harvesting cash crops so that they can focus on planting and terminating the cover 

crops (Plastina et al., 2018). Other farmers reported to increase labor hours to assess cover crop 

growth in order to prevent unexpected circumstances or monitoring weather around planting and 

termination (Plastina et al., 2018).  For example, it is important to avoid cold weather during 

herbicide application to properly terminate cover crop.  

 The second category of additional costs relates to buying machinery to manage cover crop 

residues. Cover crop residues can interfere with the contact between seed and soil bed leading 

farmers to adjust or buy new equipment. For example, some farmers have reported buying new 

attachments for soybean planters because of cover crop residues (Plastina et al., 2018). Others have 

bought tractors or drills for cover crop planting.  

 The third category of additional costs consists of increased cash crop inputs such as 

fertilization, seeding, and herbicide rates due to the perceived unintended consequences  of cover 

crops (Plastina et al., 2018). Farmers reported using higher cash crop seeding rates because cover 

crop residues reduce soil temperatures. Further, N immobilization due to cover crops is a big 

concern for most farmers (Arbuckle & Roesch-McNally, 2015). For example, farmers have 

reported applying extra N because of the perceived risk of cover crops tiding up N. 

Opportunity costs are those associated with forgone cash crop yields (Roley et al., 2016). 

Farmers who perceive higher levels of uncertainty associated with climatic conditions and cover 

crops are less likely to use them. For example, if the farmer perceives that cover crops will cause 

water stress to the subsequent cash crop during a dry year, then the farmer will not adopt cover 

crops. Additionally, low water availability after cover crop use is a major concern for farmers, as 
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this can also have unintended consequences of cash crop yield reduction (Arbuckle & Roesch-

McNally, 2015). The uncertainty of the effect of cover crops in cash crop yields is a major obstacle 

to cover crop adoption, therefore it is important to provide farmers with a better understanding of 

the costs and uncertainty associated with cover crop use. 

These additional costs of cover crops conflict with the thin profit margins that farmers are 

facing due to the high input costs and low commodity prices. Farmers need information about 

cover crop benefits, in order to decide whether it’s worth incurring these additional costs. 

 

1.5 Cost-benefit analysis of cover crop adoption 

Most economic analyses of cover crops have resulted in negative net returns, which 

depended on the time frame of the analysis (Plastina et al., 2018; Roth et al., 2018; Pratt et al., 

2014). These negative returns are explained by whether cover crop benefits are considered in the 

short or long-term. For example, Plastina et al. (2018) accounted for the short-term benefits of 

payments received through cost-share programs and changes in cash crop yields. On average, 

cover crop adoption resulted in a negative net return of $56 ha-1 (Plastina et al., 2018). Roth et al. 

(2018) also quantified the short-term benefits of cover crops but included some ecosystem 

services, such as the reduction of N leaching, N credit provided by cover crop residues, and 

reductions in soil erosion. These short-term benefits were not enough to recover the annual cost of 

adopting cover crops, resulting in a negative net return of $93 ha-1 (Roth et al., 2018). Other studies 

evaluated the long-term benefits of cover crops, including increased SOM and reduced 

compaction. Including these long-term benefits resulted in a positive net return of $22 ha-1 (Pratt 

et al., 2014). These studies highlight the need to combine the short-term and long-term benefits 

provided by cover crops regarding reduced N leaching, N credits, and increased SOM. 
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In support of long-term economic analyses, qualitative analyses of cover crops confirm 

that the perceived long-term benefits incentivize adoption and continued use. Using data from the 

national survey on cover crops,  Dunn et al., 2016 found that despite the negative net returns from 

cover crops, many farmers continue to expand their cover cropped land even without the use of 

cost-share funding. In a focus group discussion of the cost-benefit analysis of cover crops, farmers 

expressed that the long-term benefits of improving soil health and reduced erosion were 

undervalued in these analyses (Basche & Roesch-McNally, 2017). Further, in-depth interviews 

with farmers highlighted that the motivation to adopt cover crops is driven by the long-term 

sustainability of the farm operation given the emerging challenges of weather variability (Roesch-

McNally et al., 2018). Therefore, in order to make informed cover crop adoption decisions, farmers 

need to know the trade-offs between short-term production goals and long-term goals of building 

soil health and increased resilience (Roesch-McNally et al., 2018). 

While several studies have focused on the short-term and long-term benefits of cover crops, 

fewer studies have estimated the net returns of cover corps (Pratt et al., 2014; Plastina et al., 2018). 

For example, Pratt et al. (2014) evaluated the potential trade-off between cover crops and an 

additional 4.01 metric ton ha-1 corn stover removal. Corn stover is defined as the above-ground 

biomass left in the field after corn grain harvest. This biomass is usually linked to SOM and 

removing it causes a decline in soil health. However, if farmers use cover crops to offset the 

reduction of SOM and sell the corn stover as a forage, a cost-benefit analysis suggests that net 

benefits could range between $158 and $249 ha-1 , assuming a farm-gate price of $88 metric ton-1 

(Pratt et al., 2014). In another example, Plastina et al. (2018) used partial budgets based on survey 

data and found that farmers that use cover crops for livestock grazing and forage have a positive 

net return of $21 and $36 ha-1 (Plastina et al., 2018). These analyses suggest that cover crops have 
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the potential to provide enough additional income to cover any additional cover crop costs, 

resulting in positive net returns. Both analyses included the cost-share program payments and 

highlighted the critical role of these programs on supporting farmers who wish to use this practice. 

Cost-share programs facilitate cover crop adoption by alleviating financial hurdles while 

not covering all the private costs. The implementation of cover crops results in a private cost to 

farmers, often resulting in negative returns. At the same time, the use of cover crops produces a 

significant public benefit by reducing N pollution. For this reason, cover crop adoption is eligible 

for cost-share funds from the United States Department of Agriculture (USDA). Previous 

economic analyses focused on the additionality of cost-share programs: Plastina et al. (2018) found 

that farmers who received cost-share payments planted 18% more of their land with cover crops 

compared to farmers that did not receive cost share. Other studies have focused on the USDA 

program cost-effectiveness in terms of cost per kilogram of N removed (Roley et al., 2016). 

Compared to other conservation practices, cover crops had the highest cost and lowest N removal 

(Roley et al., 2016). From the USDA perspective, the cost  of N removal through cover crops was 

$4.6 kg N-1 higher than wetlands and two-stage ditches conservation practices (Roley et al., 2016).  

Cover crops provide public benefits by improving soil health. Healthy soils increase 

biodiversity, prevent erosion, improve water quality, reduce flood risk, sequester carbon, and 

reduce pest and disease outbreaks (Amundson et al., 2015; Stevens, 2015). Most of these benefits 

are not exclusively captured by farmers who adopt cover crops and are considered to be positive 

externalities enjoyed by society at large (Amundson et al., 2015; Stevens, 2015). However,  soil 

health is difficult to incorporate into existing economic and policy frameworks, mainly because 

soil health is hard to measure (Stevens, 2015). Even natural scientists have different approaches to 

soil health. Soil health is defined as a holistic system that incorporates chemical, biological, and 
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physical characteristics (Kibblewhite et al., 2008.). Chemical soil characteristics affected by 

management include nutrient availability, redox potential, and pH; physical characteristics include 

aggregate stability, soil compaction, and water storage; and biological characteristics are SOM, 

mineralizable N, and microbial activity. These characteristics are dynamic and interact with each 

other. Cover crops particularly influence soil water storage, mineralizable N, and SOM.  

In ecosystem-based strategies, ‘non-marketed’ ecosystem services might be a major driver 

for cost-effectiveness. Because cover crops benefits are ‘non-marketed’, their benefits are not 

considered in most cost-benefit analyses. For example, the excessive loss of soil health is related 

to the failure to measure explicitly the values of ecological regulatory functions such as climate 

regulation, water regulation, and nutrient regulation. Consequently, these benefits have been 

largely ignored or underpriced in agricultural policy decisions. This is mostly due to 

methodological challenges in non-market valuation methods.  

 

1.6 Ecosystem service valuation 

Economic valuation of ecosystem services (ES) is typically done using stated preferences 

and production function methods (Barbier, 2007). Stated preference methods involve surveying 

individuals who benefit from (or produce) an ecosystem service and analyze the responses to 

estimate individual total and marginal willingness to pay (or accept payment) for hypothetical 

changes in the service. This method must meet two conditions, (1) the information to describe the 

change in a natural ecosystem must be available in terms of services that people care about; and 

(2) the change in the natural ecosystem must be explained in the survey instrument in a manner 

that people will understand and not reject the valuation scenario (Barbier, 2007). Because the stated 

preference method relies on explanations of hypothetical changes in ecosystem provision in survey 
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instruments, the individual’s response is likely to yield inaccurate measures of their willingness to 

pay for ecological services (Barbier, 2007). The production function (PF) approach is preferred in 

the context of ES because does not rely on survey-based scenario descriptions (Barbier, 2007).  

The production function approach consists of measuring the aggregate willingness to pay 

for ES by estimating their value using a production function of a marketed output where the ES is 

considered as an input (Barbier, 2007). In other words, the PF approach depends on scientific 

knowledge and the existence of ecological functions that link changes in ES to changes in 

economic outputs (Barbier, 2007). Barbier (2007) describes it as follows: “if changes in the 

regulatory and habitat functions of ES affect the marketed production activities of an economy, 

then the effects of these changes will be transmitted to individuals through the price system via 

changes in the cost and prices of final goods and services” and any resulting improvement due to 

enhanced ES that results in lower costs and prices and increased quantities of marketed goods, can 

lead to market surplus (Barbier, 2007). The market surplus provides a measure of the willingness 

to pay for the improved quality or increase quantity of an ES.  

The PF approach requires modelling the production of the ES and estimating its value as 

an environmental input (Barbier, 2007). A major limitation of the PF approach is that it requires a 

decisive characterization of the relevant ecological production functions. Without it, ecosystem 

service provision cannot be incorporated into resource decision-making (Daily & Matson, 2008). 

For example, Atallah et al. (2018) used this method to value the ES of pest control provided by 

shade trees by linking shade level to temperature reduction and reduced pest infestation. In another 

study, Wu and Atallah (2019) valued the losses of pollination ES by linking yield reductions due 

to herbicide effects on bee’s pollination level.  
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In the case of cover crops, there are no simple mathematical functions that can link cover 

crop adoption to changes in soil characteristics and ES that are inputs in crop production. Soil 

physical, chemical, and biological characteristics are complex and dynamic. The nitrogen and 

carbon cycle are just two examples of complex dynamics systems affecting soils. To value the ES 

provided by soils we need to use biogeochemical models that capture the soil response to cover 

crops. The DeNitrification-DeComposition model (DNDC; described in Chapter 2) can be used as 

the production function that incorporates soil organic matter, soil water storage, and N retention.  

Using the PF approach, the value of ES provided by cover crops to the farmer and to society 

can be quantified in economic terms. The PF in this case is the DNDC model which relates cover 

crop planting to changes in SOM, soil water storage, and N retention. By incorporating the DNDC 

simulation model in a cost-benefit analysis, cover crop planting can be linked to changes in SOM, 

water storage, and N retention, which in turn are linked  to changes in the yields of marketed goods 

(e.g. cash crop yields) and quantities of inputs (e.g., N fertilizer rate). 

 

1.7 Valuation of risk reduction benefits of non-marketed ecosystem services  

Many of the non-market benefits provided by increased SOM, water storage, and N 

retention might affect the fluctuation of yields, rather than yield averages only. Increased weather 

variability with higher probability of extreme weather events (e.g. drought) is likely to increase 

crop production variability, putting farmers at a financial risk. Therefore, in addition to assessing 

the average effect of cover crops on yields and profits, it is important to evaluate the effect of cover 

crops on the economic risk for farmers, defined as year-to-year variation of profits, through the 

regulating effect of the ecosystem services such as soil water storage, N retention, and SOM 

accumulation. 
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While most ecological-economic models assume that farmers are risk neutral, analyses that 

seek to assess the benefits of cover crops under climate change should consider the effect of risk 

aversion on a farmer’s valuation of ES benefits. Analyses of the economic risk of agricultural 

production is typically done using survey-based econometric models or simulation models. 

Survey-based econometric models are used to provide an empirical estimate of the effect of 

marketed or non-marketed inputs (e.g. agrobiodiversity) on production risk (e.g. measured though 

the variance and/or skewness of yields), using cross sectional or longitudinal grower surveys (Di 

Falco & Chavas, 2006, 2009). On the other hand, simulation models are used to mechanistically 

simulate the effect of changes in inputs on the distributions of yields and profit. Then, financial 

risk assessment measurements are used to rank distributions based on some measure of risk 

(Abadie et al., 2016; Gloy & Baker, 2001).  

 Despite the attractiveness of the empirical nature of a survey-based, econometric model 

approaches they cannot be used to recommend optimal strategies for farmers that involve changes 

in practices outside of the range of those reported in a survey. On the other hand, because 

simulation models are mechanistic, they can be integrated with optimization or cost-benefit 

analyses frameworks to determine optimal management strategies for different ecological, 

economic, and risk preference parameters. However, these models require the availability of an 

ecological production function that can represent how changes in farm practices drive ecosystem 

service provision.   

Crop and biogeochemical models have been widely used to generate the distribution of 

yields and/or profits. For example, models such as DNDC, APSIM (Agricultural Production 

System Simulator), and HERMES have been used to assess the risk faced by farmers under climate 

change scenarios (Graß, Thies, Kersebaum, & Wachendorf, 2015; Iqbal et al., 2018; Luo et al., 



21 

 

2007; Yu et al., 2014). Another crop model used in previous risk assessment is CropSyst, Finger 

(2012) used this model to simulate maize yields for different levels of water and N application 

under different climate scenarios. Using the mean and variance of crop yields, they calculated the 

risk premium, which is the amount a grower is willing to pay to eliminate risk exposure due to 

changes in crop market prices (Finger, 2012).  

 

1.8 Research questions and hypotheses 

Helping farmers to assess the benefits and costs associated with cover crop adoption in a 

changing climate might allow them to make informed decisions about cover crops use. The goal 

of this study is to evaluate the economic and environmental benefits provided by cover crops 

against the monetary and opportunity costs of adoption. Among the benefits of cover crops,  this 

study focused on the value provided by cover crops through the provision of three ecosystem 

services: improved soil water storage, soil organic matter accumulation, and N retention, in four 

climate scenarios that include historical weather, no-drought scenario, drought scenario, and a 

hybrid scenario. 

The research questions and related hypotheses were:  

1. Do cover crops provide economic net benefits to farmers? 

Hypothesis 1: In a no-drought year, cover crops provide a positive net benefit to the farmers. 

Hypothesis 2: Cover crop positive benefits are larger in extreme droughts. 

2. Do cover crops reduce economic risk to farmers? 

Hypothesis 3: In extreme droughts, cover crops reduce economic risk to farmers (i.e. year-to-year 

fluctuations in profits), through the regulating ecosystem services of soil water storage, N 

mineralization, and SOM accumulation. 
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I used a simulation modeling approach to answer these research questions and test the 

hypotheses. I used the DNDC (DeNitrification-DeComposition) model as the ecological 

production function in my biogeochemical-economic model. The DNDC simulates water storage, 

soil organic matter accumulation, and reduction of nitrogen leaching, with and without cover 

crops, and generates yields. By doing so, it satisfies the production function approach method 

where changes in non-market ES need to be linked to changes in a marketed output (e.g. corn and 

soybean yields) and the marketed inputs (e.g. fertilizer rates). However, the DNDC needs to be 

calibrated and validated before being integrated with an economic model. Therefore, the specific 

objectives are as follows: 

 

Specific objectives 

1) Calibrate and validate the DNDC 

2) Use the DNDC to generate yields with and without cover crop adoption, under four climate 

scenarios. 

3) Integrate the DNDC yields with a profit (utility) maximization economic model, 

representing the point of view of a risk-neutral and a risk-averse farmer, with and without 

cover crop adoption, under four climate scenarios. 
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CHAPTER II 

BIOGEOCHEMICAL MODEL DESCRIPTION 

 

The DNDC (DeNitrification-DeComposition) model acts as the ecological production 

function of the biogeochemical-economic model. This chapter provides a general overview of the 

model, followed by a description of the most relevant DNDC sub-models. The inputs, outputs, and 

assumptions of the model are discussed at the end of this chapter. 

 

2.1 Overview of the DNDC model 

The DNDC (DeNitrification-DeComposition) is a computer simulation model of water, 

carbon, and nitrogen cycles occurring in agro-ecosystems. The DNDC model was first used to 

simulate N2O, CO2, and N2 emissions from agricultural soils in the U.S. (Li et al., 1992). The 

DNDC integrates ecological drivers, soil environmental variables, and biogeochemical reactions 

in one framework to predict soil trace gases.  Li (2000) described the model as a spatio-temporal 

assembly of different environmental variables, especially soil moisture, that drive biogeochemical 

reactions in an ecosystem. The DNDC consists of two components that incorporates six sub-

models (Fig. 1). The first component links ecological drivers to soil environmental variables and 

consists of: soil climate, crop growth, and decomposition sub-models. The second component links 

soil environmental factors to trace gases and consists of denitrification, nitrification, and 

fermentation sub-models (DNDC, 2019). In the DNDC, soils are represented as of discrete 

horizontal layers, down to 50 cm depth. Some soil properties are assumed to be uniform across all 

layers. For example, bulk density, porosity and hydraulic conductivity are assumed to be constant 

through depth of a soil profile. Other soil properties such as pH, soil moisture, soil temperature, 
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carbon and nitrogen pools are calculated in each soil layer using a daily time step. Often, 

researchers re-parameterize the soil and crop properties for local conditions based on empirical 

information and sometimes modify the model equations to better match dependent variables of the 

specific system (Giltrap et al., 2010).  

Since its creation, the DNDC has been modified and adapted to include different scenarios 

and ecosystems. In 1994, a simple plant growth sub-model was added to the original version (Li 

et al., 1994). Later, a Crop-DNDC was developed to simulate the interactions between crops and 

C, N, and water cycles. In the Crop-DNDC model, crop growth is simulated by tracking 

physiological processes (phenology, leaf area index, photosynthesis, respiration, assimilation 

allocation, rooting processes, and N uptake) along with water and nitrogen stress (Zhang et al., 

2002). The new algorithms introduced to the crop sub-model act as an alternative approach to the 

simple crop sub-model of the original version (Li et al., 1994). As result, the Crop-DNDC was 

superseded by the DNDC (version 9.5) (Gilhespy et al., 2014). Further improvements to the model 

include: modification of the soil evaporation equation to simulate the effect of different levels of 

surface residue cover, enhanced capacity for simulating exchangeable NH4
+, NO3

- leaching, 

surface runoff, and soil erosion (Steiner, 1989; Deng et al., 2011; Li et al., 2012; Gilhespy et al., 

2014). Additionally, the DNDC has improved the simulation of crop growth and alternative 

management practices such as slow release fertilizers, irrigation, and cover crops. Because of these 

improvements the DNDC is well-suited to predict the effect of alternative management strategies 

and the impact of climate change on agricultural production. 
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Figure 1. Schematic diagram of DNDC model structure (Li et al., 1994). 

 

In the next sections, the most relevant processes in each of the four DNDC sub-models are 

summarized, including soil climate, crop growth, decomposition, and nitrification. These four sub-

models are described in detail because they simulate the provision of our ES of interest: soil water 

storage, soil organic matter accumulation, and N retention. Further details about the model 

processes and mathematical equations are described in Li et al. (1992; 2006), and Zhang et al. 

(2002). 
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Simulating soil water storage: DNDC soil climate sub-module 

In the DNDC, soil moisture is calculated based on vertical water flow through each 

horizontal soil layer. The rooted soil profile has a default depth of 50 cm with 25 horizontal layers. 

The water sub-model time step is 30 min, but output variables are reported as a daily average. 

Water inputs to the sub-model are precipitation, surface inflow, and ice/snow melting. Water 

withdrawal from the soil profile is calculated based on transpiration, evaporation, and percolation 

to deeper soil depths. The model assumes moisture and texture are uniform through the soil layers. 

Another assumption is that all rain events have a constant intensity (0.5 cm/h) and start at midnight. 

If the rain intensity is higher than the soil saturated hydraulic conductivity, water will pond on the 

soil surface. Surface runoff is calculated based on the soil slope. 

At the beginning of each time step, water flow is calculated in the soil layer by layer. 

Discharge rates in each layer are influenced by field capacity, porosity, water content, and two 

constant coefficients defining initial discharge flow and retention rate. The magnitude of these 

coefficients is related to soil texture, porosity, field capacity, and wilting point. For example, heavy 

soils with rich clay content tend to have higher field capacity, which translates into lower initial 

discharge flow and longer recession process. As soil water content decreases, discharge rate 

decreases. Drainage rate reaches its maximum when the soil is saturated during a rainfall event, 

and gradually decreases as soil water approaches field capacity (Tallakse’s 1995). The water 

discharge rates are essential for modeling the water storage difference with and without cover 

crops. 

The model includes a deeper water pool to capture drainage flow from tile lines. The deep-

water pool is a function of soil porosity and the distance between the bottom of the soil profile and 

the drainage tiles. The discharge flow of the deep-water pool is divided into two fractions. A 
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fraction of the water flow is stored in the deep-water pool, and the rest is released from the pool to 

the tile drainage flow. The initial water volume in the deep-water pool is equivalent to the field 

capacity. If the water content in the deep-water pool is higher than the field capacity, a fraction of 

the excess water is released from the pool to the tile drainage flow. Both fractions were defined as 

functions of soil texture with clay content as an indicator (Tonitto et al., 2007). 

Evapotranspiration (ET) is calculated using the Thornthwaite formula, in which potential 

ET is determined by monthly mean air temperature and then adjusted for daylight length relative 

to 12 hours (Dunne and Leopold, 1978). Potential transpiration is determined by daily crop water 

demand, which is based on the modeled daily crop increment biomass. Actual transpiration is 

determined by potential transpiration and soil water content. Potential evaporation is calculated as 

the difference between potential ET and actual transpiration. Evaporation is assumed to occur only 

for the top 20 cm of the soil profile. The major constraints for water movement are soil freezing 

and compaction.  

 

Simulating plant growth: DNDC plant growth sub-module 

The DNDC simulates plant growth with four major state variables and eight processes, 

where the state variables (stocks) are expressed as mass per unit area or as fractions and the 

processes are the representation of mechanistic processes describing the evolution of state 

variables over time. In the DNDC, the state variables include phenological development, Leaf Area 

Index (LAI), biomass, and N content of crop organs. The processes include phenological 

development, photosynthesis, respiration, assimilate allocation, rooting processes, water and N 

uptake. First, the crop assimilates atmospheric carbon through photosynthesis, then carbon 

assimilation produces N demand. The actual N uptake depends on the availability of inorganic N 
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in the soil. Carbon allocation and N demand is influenced by the phenological stages and water 

and N stress factor. The DNDC plant growth processes are as follows: 

Phenological development is based on thermal time units. Thermal time is the summation 

of temperature that predicts plant growth. There are nine crop growth stages from emergence to 

maturity. The thermal time needed from sowing to emerge is calculated based on sowing depth. 

The thermal time needed for other stages are variety specific parameters or are estimated based on 

the thermal time of the former stages (Hanks et al., 1991; Jones, 1986; Ritchie et al., 1998). 

Leaf Area Index is simulated as the difference between leaf area growth (associated with 

assimilate allocation) and leaf senescence (associated with phenological development and stress). 

Leaf Area Index growth is simulated using an exponential function of leaf number or thermal time 

units. Growth is then simulated according to the allocation of assimilates. Leaf senescence is 

estimated based on phenological stages and water and N stress factors (Brown, 1987; Ritchie et 

al., 1998) 

Photosynthesis is simulated considering the direct and diffuse light separately (Spitters, 

1986; Spitters et al., 1986). The response of photosynthesis to light is expressed as an exponential 

function with two parameters. The effect of temperature on photosynthesis is simulated as 

influencing the photosynthesis rate at light saturation and initial light use efficiency (Penning de 

Vries et al., 1988). The effect of atmospheric CO2 concentration on photosynthesis rate is 

considered based on Goudriaan (1986). Photosynthesis is also influenced by water and N stress 

factors. 

Plant respiration is simulated considering growth and maintenance respiration separately 

(McCree, 1970). Growth respiration is estimated based on the amount of assimilates available for 
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growth; and maintenance respiration is estimated based on temperature and biomass of crop organs 

(Svirezhev, 1992).  

The difference between photosynthesis and respiration is the amount of assimilate available 

for allocation among crop organs. Assimilate allocation is simulated based on phenological stages 

(Brown, 1987; Svirezhev, 1992). First, the DNDC model estimates the partitioning of assimilate 

between roots and shoots. Then the model calculates the partitioning of shoots among leaf, stem, 

and grain. 

Rooting process include the increase of root front depth, the distribution of root length 

density, and biomass in soil profile. The depth of the root front is limited to a maximum of one 

meter and is proportional to the thermal time before flowering. Root length density in a layer 

depends on new root growth and root senescence. New root growth is determined by the assimilate 

partitioned to root. Root senescence is assumed as 1-2% of the total root biomass. Root biomass 

is estimated based on root length distribution, follows an exponential pattern in soil profile, and is 

subject to constraint factors (Allan Jones et al., 2015). In each layer there are 5 rooting constraint 

factors, one is static and four are dynamic. The static factor is a direct input parameter for the effect 

of toxicity, coarse fragments, pan layers, and deficiency of other nutrients. The dynamic factors 

include the effect of soil strength, aeration, temperature, and N. Soil strength factor is based on 

soil bulk density, texture, and water content (Allan Jones et al., 2015). The aeration factor depends 

on soil moisture and sensitivity of plant to water saturation. The N factor is simulated based on 

Ritchie (1987). 

Crop water uptake depends on potential transpiration, uptake capacity, and soil water 

availability. Transpiration is determined by LAI and climate. Uptake capacity is determined by 

soil moisture, root length, and root distribution. The major assumption in this process is that roots 
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are uniform sinks with a specific uptake capacity. Soil moisture influences the actual uptake 

capacity. Water stress factor is based on the ratio of actual water uptake and potential transpiration 

demand (Brown, 1987).  

Crop N uptake depends on crop demand and uptake capacity. Crop demand is based on the 

optimum daily crop growth and the plant C/N ratio. Any time the plant has low N concentration; 

plant growth will be reduced.  A similar principle is used for estimating N stress. Nitrogen demand 

includes deficiency demand and new growth demand. The actual N uptake depends on NO3
- and 

NH4
+ concentration in the root zone and water availability. Crop N pools are divided into shoots, 

grain, and roots. The major assumption in the crop N pools is that shoots and roots have the same 

relative concentration compared to their critical concentrations (Ritchie et al., 1998). 

After harvest, all root biomass is left in the soil profile and the above-ground crop residue 

remains as stubble in the field. The residues incorporation provides the inputs for the soil 

biogeochemistry sub-module (DNDC, 2019). 

 

Simulating soil organic matter accumulation: DNDC soil decomposition sub-module 

Decomposition in the DNDC model is calculated at a daily time step in each layer. The 

outputs variables of this sub-model are SOM, CO2, NH4
+, and dissolved organic carbon (DOC). 

SOM is calculated as the summation of crop residues, microbial biomass, humads (i.e. active 

humus), and passive humus (Li et al., 1994). CO2 is the product of microbial respiration during the 

decomposition process. NH4
+ is the N that was attached to the carbon lost due to microbial 

respiration and N in excess if that needed to grow microbial biomass. DOC consists of the 

decomposed microbial biomass and humads. DOC helps to recycle carbon back into microbial 

biomass and serves as an indicator of the amount of soluble carbon available in the soil (Li et al., 
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1994). The decomposition sub-model is essential to differentiate soil organic matter accumulation 

with and without cover crops. At the same time, this sub-model captures the reduction in N 

fertilization rates with the use of cover crops. 

Decomposition occurs as first order-kinetics and depends on the pool size, the specific 

decomposition rate, soil clay content, N availability, soil temperature, and soil moisture (Molina 

et. al., 1983). The pools of organic matter consist of cover crop residues, cash crop residues, 

microbial biomass, and humads. The crop residues are partitioned into three pools consisting of 

very labile, labile, and resistant. The microbial biomass and humads are partitioned into labile and 

resistant pools. During the decomposition process, each pool decomposes independently (Hunt, 

1977; Jenkinson, 1977).   

When decomposition occurs, the carbon is either released as CO2 or incorporated into other 

carbon pools. For example, as the crop residue pools decompose, the carbon release is either 

respired as CO2 or incorporated into the microbial pool. First, the model calculates the amount of 

CO2 produced. Then, 90% of the carbon is incorporated as labile microbial biomass and the other 

10% as resistant microbial biomass (Gilmour et al., 1985). The same principle applies when 

microbes die and their biomass decomposes, 20% of the carbon is respired as CO2, 60% is 

reincorporated into new microbial biomass, and 20% is transferred to the resistant humads pool 

(Molina et al., 1983). When the resistant humads pool decomposes, 40% of the carbon is 

transferred to the stable humus pool, 40% is converted as CO2, and 20% is reincorporated into 

microbial biomass (Gilmour et al., 1985; Molina et al., 1983). 

Soil moisture and temperature can delay the decomposition process (Nyhan, 1976). This is 

because of the effect of water and temperature on microbial activity. Nitrogen availability and clay 

content are also limiting factors in the decomposition (Molina et al., 1983). For example, high soil 
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clay content and low N availability reduce decomposition rates (Bouwman, 1990; Molina et al., 

1983). Decomposition only occurs in aerobic conditions. During rain events (i.e., anaerobic 

condition), the decomposition sub-model pauses, and the denitrification sub-model runs until the 

top 20 cm of the soil has an average of water content less than 40% of porosity or until 

denitrification sub-model run out of substrates (Bremner & Shaw, 1958; Li et al., 1994).  

 

Simulating soil N retention: DNDC soil nitrogen cycling sub-modules 

The DNDC model simulates nitrification and denitrification processes. The DNDC model 

includes an “anaerobic balloon” that divide soil into aerobic and anaerobic parts based on moisture 

conditions. Base on kinetics the model predicts the soil aeration status by calculating oxygen or 

other oxidants in the soil profile. The substrates located in the aerobic part are subject to 

nitrification and the substrates located in the anaerobic part are involve in denitrification (Li et al., 

1992b; Li, 2000; Li et al., 2006). 

Nitrification is the microbial oxidation of ammonium (NH4
+). The key elements controlling 

nitrification are soil temperature, soil moisture, pH, and NH4
+ concentration. The model predicts 

nitrification rates by tracking nitrifier activity and NH4
+ concentration. The turnover rate of NH4

+ 

oxidizers are calculated based on DOC concentration, temperature, and moisture (Li et al., 1992b; 

Li, 2000). 

Nitrification: NH4
+ → H2NOH → NOH → NO2

- → NO3
- 

         

NO     N2O 

Denitrification is the sequential reduction of nitrate (NO3
-) to dinitrogen (N2) driven by 

denitrifying bacteria under anaerobic conditions. Denitrification rates are controlled by soil 
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moisture, redox potential, temperature, pH, and substrate concentration (e.g. DOC, NO3
-, NO2

-, 

NO and N2O). The model simulates the growth rates of denitrifiers based on soil DOC and nitrogen 

oxides. The growth rate of denitrifiers is independent for different substrates. DOC generates 

competition among bacteria. The death rates of denitrifiers are a constant fraction of the total 

biomass.  

Denitrification: NO3
- → NO2

- → N2O → N2 

Nitrogen leaching is part of the N biogeochemical sub-model. The N concentration in the 

leachate depends on several buffering mechanisms. These mechanisms include N 

assimilation/dissimilation by soil microbes and N adsorption/desorption in clay mineral or/and 

organic matter. The NH4
+ ions are easily assimilated or adsorbed. The assimilated NH4

+ in the 

microbial pools can be released back into the soil when the microbes die or during SOM 

decomposition. The adsorbed NH4
+ in the clay particles can be released through chemical 

equilibrium. The NH4
+ released into the soil liquid phase can be quickly transformed to NO3

- by 

nitrifiers. Although, NO3
- can be reused by microbes, the anion does not have affinity to the soil 

adsorbents. This creates a better chance for NO3
- to move to the leaching water flow. Because NO3

- 

is highly soluble, when a rainfall occurs it is leached into deeper layers with the soil drainage flow 

(Li et al., 1992b; Li, 2000; Li et al., 2006). This process captures the difference on N retention 

with and without cover crops. 

 

Input requirements  

The main input parameters required by the DNDC are divided in four major categories: 

location, climate and weather, soil, and farming management practices. The DNDC provide some 

default soil parameters based on average values for U.S. soils (Giltrap et al., 2010). The mandatory 
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input parameters for which defaults values are not provided are location, climate weather data, soil 

bulk density, pH, and SOC at the surface (0-10 cm) and management practices. Selecting land use, 

crop type, soil texture, and management practices alongside with the main required inputs, provide 

sufficient detail to run the model (Gilhespy et al., 2014). 

 

Output variables 

The DNDC generates outputs with daily time steps. The daily outputs include soil climate, 

soil water, soil C and N pools/fluxes, crop growth, and field management. The annual reports 

include crop growth/yield, soil C and N pools/fluxes, and water balance for the simulated site. 

Finally, the multi-year summary presents the major annual pools or fluxes across the simulated 

years (Gilhespy et al., 2014). 

 

DNDC limitations and assumptions 

Because models are a simplification of the real world and by the tradeoffs that occur when 

trying to represent more complexity in a model, mechanistic models such as the DNDC are limited 

by incomplete scientific understanding of key processes. Therefore, the full mechanistic 

complexity of the real world is not accurately represented in ecosystem models and several 

assumptions are made. Here we listed the most relevant assumptions and limitations of the DNDC 

model related to our study: 

• In the DNDC all rain events have constant intensity (0.5 cm/h). In the real-world rain 

intensity can vary. If rain intensity is higher, more water pond in the soil surface and higher 

erosion occurs. This means that DNDC might be underpredicting soil erosion rates without 

cover corps and therefore, underpredicting the benefits of cover crops use, 
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• The plants in the DNDC don’t die. If in the real-world plants die due to water deficit, in 

the DNDC model plants stop growing only for the days that the plant experienced water 

deficit and the model allows the plant to re-grow after a rain event occurred. This optimistic 

view of the model is common in most agricultural models. However, it is still possible to 

make inference about the soil processes and yields lost due to water stress. This indicates 

that during extreme droughts the soil water storage benefits of cover crops might be 

underpredicted. 

• Most crop and biogeochemical models have limited ability to simulate long-term, 

management-induced changes in soil hydraulic properties. In the DNDC, infiltration rate 

and available water are determined by soil structural characteristics such as bulk density 

and texture. These are fixed input parameters that don’t change over the simulation period. 

This limits our ability to account for cover crop soil water storage benefits in the short-

term. Therefore, in our study we evaluated soil water storage benefits after 10 years of 

cover crop use (long-term effect of cover crop use). 

• The mechanistic controls on soil organic carbon stabilization and destabilization remain 

incomplete. As a result, the full mechanistic complexity of SOC accumulation is not 

accurately represented in any biogeochemical model, including the DNDC.  
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CHAPTER III 

METHODS: BIOGEOCHEMICAL-ECONOMIC MODELING DESCRIPTION 

 

This chapter describes the biogeochemical-economic model. Focus is put on the impact of 

cover crops on the DNDC sub-models’ processes. The economic model with its mathematical 

representation is included.  

 

3.1 Biogeochemical modeling: DNDC 

The DNDC sub-models influenced by cover crops 

In this study, the DNDC model was used as the biogeochemical model to simulate how 

changes in soil organic matter, soil water dynamics, and N leaching affect crop yields when a 

farmer adopts cover crops. Although the denitrification and fermentation sub-models can capture 

the effects of cover crops in greenhouse gas emissions, the outputs of these sub-models are not 

related to our research questions. Therefore, we focused only on four sub-models: soil climate, soil 

N cycling, decomposition, and crop growth.  

The effect of cover crops on processes in the soil climate sub-model is driven by increased 

wilting point and field capacity values via the improvement of soil structure. The soil climate sub-

model provided information on soil water dynamics including daily soil moisture. The main 

processes simulated by the soil climate sub-model are transpiration, evaporation, water run-off, 

and infiltration (Fig. 2). These processes are influenced by input parameters such as wilting point, 

clay content, and field capacity. Cover crops can increase the water retained in the soil by reducing 

the net evapotranspiration in the short-term and by increasing wilting point and field capacity 

values in the long-term. Cover crop residues in the top layers reduce evaporation rates by reducing 
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soil exposure to solar radiation. At the same time, higher wilting point and field capacity values, 

decrease infiltration rates in each soil layer. Mechanistically, this allows the soil to retain more 

water (DNDC, 2019; Changsheng Li et al., 1992; Li, 2000; Zhang et al., 2002; Basche et al., 

2018a).  

 

Figure 2. Main processes of the DNDC soil climate sub-model. Asterisk (*) represents the 

processes that are reduced under the influence of cover crops. Source: Li et al. 1992. 

 

Cover crops have a direct effect on the N sub-model. In the DNDC model, the amount of 

NO3
- that is available in the soil is immediately leached during a rain fall event. At the same time, 

the model predicts the nitrification process by tracking nitrifier activity and NH4
+ concentration. 

The NH4
+ ions are easily assimilated by microbes or adsorbed in clay particles. The assimilated 

NH4
+ in the microbial pools can be released back into the soil when the microbes die or during 

SOM decomposition. The adsorbed NH4
+ in the clay particles can be released through chemical 

equilibrium. The NH4
+ released into the soil liquid phase can be quickly transformed to NO3

- by 

nitrifiers. Although, NO3
- can be reused by microbes, the anion does not have affinity to the soil 



38 

 

adsorbents. This creates a better chance for NO3
- to move to the leaching water flow (Fig. 3). Cover 

crops reduce the amount of NO3
- and NH4

+ that is left in the field after the harvest of cash crops. 

Cover crops incorporate this inorganic N into their biomass, increasing soil organic nitrogen. 

During decomposition, the N contained in the cover crops recycles back into the soil thru 

mineralization and has the potential to contribute additional N to subsequent cash crops, thereby 

reducing the N fertilization need for these crops (Li et al., 1992b; Li, 2000; Li et al., 2006). 

 

Figure 3. Main processes of the DNDC soil nitrogen sub-model. Asterisk (*) represents the 

processes and stocks that are reduced during cover crop growth. Source: Li et al. 1992. 

 

Cover crops have direct and indirect effects on processes in the decomposition sub-model. 

Cover crop residues serve as inputs to the decomposition sub-model, directly increasing SOM. In 

the DNDC model, SOM is defined as the summation of crop residues, microbial biomass, humads, 

and humus (Fig. 4). Therefore, adding shoots and roots of cover crops increase SOM. The indirect 

effect of cover crops in this sub-model is through water retention. Soil moisture can delay 

decomposition rates due to the effect of excess water on soil microbes. For example, high soil 
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moisture can cause anaerobic conditions in the soil, resulting in decomposition delay. Additionally, 

cover crops provide a source of N. During the decomposition processes, N that was attached to 

respired carbon (CO2) is partially mineralized to ammonium (NH4
+). Thus, cover crops provide 

multiple benefits by increasing SOM and serve as a source of N for the subsequent crop (DNDC, 

2019; Li et al., 1992; Li, 2000; Zhang et al., 2002).  

 

Figure 4. Soil organic matter pools and their transformation processes considered in the DNDC 

model. These SOM pools increase with the use of cover crops. Asterisk (*) represents the 

decomposition processes indirectly influenced by cover crops. Source: Li et al. 1992. 

 

Cover crops also influence the crop sub-model, mainly by improving soil water, SOM, and 

by reducing N leaching (Fig. 5). Cover crops indirectly affect the leaf area index, photosynthesis, 

rooting process, water uptake, and N uptake. First, the leaf area index, photosynthesis, and rooting 

process are influenced by limiting factors of soil water and N content. Since cover crops increase 

water retention, water may be less of a limiting factor in the cash crop growth processes. Second, 

the crop water uptake process depends on the root growth and the availability of water in the soil. 
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Because cover crops increase both the rooting process and the water retained in the soil, the cash 

crop water uptake capacity also increases. Finally, the N uptake process is influenced by N 

concentration and water availability in the root zone. Cover crops increase cash crop N uptake by 

providing additional mineralized N from cover crop residues and by improving soil moisture.  

Therefore, overall cover crops have a positive effect on the cash crop processes (DNDC, 2019; 

Changsheng Li et al., 1992; Li, 2000; Zhang et al., 2002).  

 

Figure 5. Scheme of the crop sub-model. Rectangles are for state variables and circles for 

processes; solid lines are for matter flow and dash lines are for information flow. Asterisk (*) 

represents the processes influenced by cover crops thru water retention ecosystem services. 

Source: Zhang et al. 2002. 
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3.2 Economic model 

The DNDC sub-models described above were used to simulate cash crop (i.e. corn and 

soybean) yields, with and without cover crops. When simulated with cover crops, these sub-models 

explicitly account for the ecosystem services provided by cover crops, namely water retention, soil 

organic matter, and reduction of N leaching. This section incorporates the simulated cash crop 

yields in a risk-neutral farmer’s profit function that includes the price of corn and soybean, the 

costs of corn and soybean production, the costs and benefits of adopting cover crops, and a discount 

factor (Eq. 1). Using historical weather and price data, the simulated yearly profits and standard 

deviation across 10 years were used to calculate the expected utility of a risk-averse farmer, that 

is a farmer who is averse to year-to-year fluctuation in profits.  

 

Risk-neutral farmer’s profit function 

The objective function of a risk-neutral farmer is to maximize the farm’s Expected Net 

Present Value (ENPV), that is the NPV average over 10 years. The decision variables for the 

farmer in this model are whether to adopt cover crops and the amount of N fertilizer used for corn 

production. Both decisions occur at the beginning of the simulation and are fixed over the years. 

The amounts of N fertilizer available to the farmer to choose from are 90, 100 and 110 kgN/ha and 

application occurs every other year. We used historical corn and soybean prices, N fertilizer cost, 

herbicide cost, and cover crop seed costs. The risk-neutral farmers’ objective function can be 

represented mathematically as follow: 

𝑚𝑎𝑥
{𝑛𝑓,0; 𝑢0}

ENPV ∑ 𝜌𝑡 ∙ [(𝑝𝑡 ∙ 𝑌𝑡 − 𝑛𝑓,0 ∙ 𝑐𝑁,𝑡 − 𝐶𝑌,𝑡) − 𝑢0 ∙ (𝐸𝑄𝐼𝑃𝑡 −   𝑐𝑢,𝑡 − E(𝑐𝑢,𝑡))]10
𝑡=0   (1) 

Subject to:  𝑌𝑡 = 𝑓(𝑆𝑊𝐶𝑡 , 𝑆𝑂𝑀𝑡 , 𝑁𝑡) 
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where 𝑛𝑓,0 is the quantity of fertilizer applied at 𝑡 =0, which takes the values of 90,100, 

and 110 kgN/ha; 𝑢0 is a binary variable that equals 1, if the farmer decides to plant cover crops at 

𝑡 =0 and 0 otherwise; ENPV denotes the expected value, over 10 years, of the net present values 

for the famer; t denotes years; 𝜌𝑡 is the discount factor applied to the profit values in each year 𝑡; 

𝑝𝑡 is the cash crop output price, which alternates every year between corn and soybean prices and 

fluctuates over years; 𝑌𝑡 = 𝑓(𝑆𝑊𝐶𝑡 , 𝑆𝑂𝑀𝑡, 𝑁𝑡) is the cash crop yield simulated by the DNDC 

model, which is a function of soil water content (𝑆𝑊𝐶𝑡), soil organic matter (𝑆𝑂𝑀𝑡), and N 

retained by the cover crop (𝑁𝑡); 𝑐𝑁,𝑡 is the unit N fertilizer cost, which fluctuates across years 𝑡; 

𝐶𝑌,𝑡 is the total cost of cash crop production, excluding fertilization costs, which also fluctuate 

across years; (𝐸𝑄𝐼𝑃) is a yearly revenue term representing the revenues a farmer generates from 

planting cover crops in the form of a the cost share program payments (𝐸𝑄𝐼𝑃𝑡); 𝑐𝑢,𝑡 is the direct 

cost of adopting cover crops, which include seed, planting, and termination costs; E (𝑐𝑢,𝑡) is the 

expected value of cover crop maintenance, computed based on the probability of the cover crop 

becoming a weed and requiring maintenance. All total costs are assumed to be linear in input 

quantities (i.e., calculated by multiplying unit costs with quantity). 

Risk-averse farmer’s utility function 

To represent the utility function of a risk-averse farmer, we used the certainty equivalent 

(CE) measure. The CE is the sure amount of money that has the same utility as the expected utility 

of a risky alternative. Based on Expected Utility Theory and as in Finger (2012), we assumed that 

a risk-averse farmer seeks to maximize the CE, as follow: 

𝐶𝐸 = 𝐸𝑁𝑃𝑉 − 𝜋          (2) 

where 𝐸𝑁𝑃𝑉 is the expected net present value (Eq. 1); and 𝜋 is the risk premium. In the 

case of a risk-averse farmer, 𝜋 > 0. 
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According to Pratt (1964), a risk premium is the amount of money the farmer is willing to 

pay to eliminate risk exposure and can be approximated as follows: 

𝜋 =  
𝛾∙𝜎𝑁𝑃𝑉

2

2 ∙ 𝐸𝑁𝑃𝑉
           (3) 

where 𝛾 is the coefficient of relative risk aversion; 𝜎𝑁𝑃𝑉
2  is the year-to-year variance of the 

NPV over a time horizon of 10 years. The year-to-year NPV variance is due to the variation in soil 

water, N retention, and SOM dynamics and therefore yields over the years 𝑡 = 0, … , 10.  

We generated NPV data over 10 years and computed the expected value over the 10 years 

and the variance across years. We then computed the CE measure for a moderately risk-averse 

farmer (𝛾 = 2). Combining the Equations (3) and (4), we get the following CE expression: 

𝐶𝐸 = 𝐸𝑁𝑃𝑉 −  
𝛾∙𝜎𝑁𝑃𝑉

2

2 ∙𝑁𝑃𝑉
         (4) 

where 𝐸𝑁𝑃𝑉 is the expected NPV; and 𝜎𝑁𝑃𝑉
2  is the variance of the NPVs observed over 10 

years. 
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CHAPTER IV 

MODEL APPLICATION 

 

4.1 Study site for model application 

Iowa was selected as a representative state to study the economic and environmental 

benefits of cover cropping. Iowa is a major producer of maize and soybean in the Midwest. Since 

2000, Iowa corn and soybean production has been higher than the national average except in 2003 

and 2012, when major droughts occurred (Fig. 6). Iowa also represents a region of high N pollution 

and is a member of the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force that aims 

to reduce nutrients leaching into watershed and ultimately, the Gulf of Mexico (Iowa Department 

of Agriculture & land stewardship, 2018).  

 

Figure 6. Average corn and soybean production in Iowa compared the U.S. national average 

(kg/ha) from 2000 to 2018. Source: USDA Survey data from 2000-2019. 
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4.2 Field data  

In this section, we briefly explain the methods used for data collection at the field site 

needed to parameterize the DNDC, as reported by Kaspar et al., 2007; and Kaspar et al., 2012; 

Basche et al., 2016a; Basche et al., 2016b.  

The site used in this study is located Boone County, IA (ISUAG; 42.05˚N, 93.71˚W). The 

two predominant soils on this site are Canisteo (fine-loamy, mixed, super-active, calcareous, mesic 

Typic Endoaquolls) and Nicollet (fine-loamy, mixed, super-active, mesic Aquic Hapludoll) 

(USDA Soil Conservation Service, 1991). This site has a long history of corn-soybean rotations 

dating back to 1999. Maize was planted in the spring of even-numbered years and soybeans in the 

spring of odd-numbered years. In 2000, a treatment of cereal rye cover crop with no-tillage was 

established. Plots sizes of 30.5 x 42.7 m were arranged in a randomized complete block design 

with four replicates. The cereal rye cover crop was established by drilling or aerial seeding after 

cash crop harvest in the fall and was terminated with glyphosate prior to cash crop planting (Basche 

et al., 2016a; Basche et al., 2016b; Kaspar et al., 2007; Kaspar et al., 2012).  

At the field site, subsurface drainage tiles of 7.62 cm diameter were installed at 1.2 m depth 

in 1999. Soil moisture sensors were installed in three of the four replicates in 2008. Two treatment 

were selected based on data availability on management, soil characteristics, and N leaching. 

These treatments included a no-tillage corn-soybean rotation either without cover crops (noCC) or 

with cereal rye cover crop (CC). Empirical data was collected from published studies. These data 

consisted of crop and soil measurements. Crop measurements included biomass, total N and C for 

cover crop, and yields for maize and soybeans. Soil measurements included soil water content, 

water flow in tile drainage and nitrate leaching (NO3
-). Information about agronomic management 

is summarized in table 1. 
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Table 1. Agronomic management practices used at the field site during the study period 

(month/day). 

Year Cash 

crop 

Cash 

crop 

planting 

Cash 

crop 

harvest 

Cover 

crop 

planting 

Cover crop 

termination 

Total N 

applied 

(kgN/ha) 

Cover crop 

seeding method 

2004 Maize 4/28 10/4 10/6 4/16 246 Drilled after harvest 

2005 Soybean 5/6 9/30 9/30 4/25  0 Drilled after harvest 

2006 Maize 5/4 10/20 10/24 4/21 225 Drilled after harvest 

2007 Soybean 5/22 9/26 9/28 5/10 0 Drilled after harvest 

2008 Maize 5/14 10/28 10/29 4/29 198 Drilled after harvest 

2009 Soybean 5/22 9/28 9/28 5/21  0 Drilled after harvest 

2010 Maize 4/29 9/16 9/17 4/19 198 Drilled after harvest 

2011 Soybean 5/18 9/29 9/30 4/23 0 Drilled after harvest 

2012 Maize 5/4 9/19 9/4 5/13 197 Aerial seeding 

2013 Soybean 5/23 10/20 9/4 4/10 0 Aerial seeding 

Source: Basche et al., 2016a; Basche et al., 2016b; Kaspar et al., 2007; Kaspar et al., 2012.  

 

Crop measurements 

Corn and soybean yields were determined to evaluate the effect of cover crops. Grain 

weight was converted to yield per area by standardizing to 15.5% moisture basis for corn and 13% 

moisture basis for soybean. Cover crop biomass sampling was done prior to termination. Frames 

of 0.76 x 0.50 m were used to define the sample area. Two representative samples per plot were 

collected. The rye cover crop was cut by hand using grass clippers, dried, and weighed for dry 
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biomass calculation. Subsamples were grounded for total C and N analysis (Kaspar et al., 2007, 

2012).  

 

Soil measurements 

Soil moisture was measured to determine the effects of cover crops on soil water content. 

Soil moisture was measured at a soil depth of 5 cm from 2008 to 2014. Hourly soil moisture was 

measured using a Theta Probe soil moisture sensor (Model Type ML2x, Delta-T Devices, 

Cambridge, United Kingdom). Voltage measurements were converted to a dielectric constant then 

to volumetric water, using the calibration equation for Des Moines Lobe soils (Kaleita et al., 2005).  

During the growing season (April-October), average daily soil water content was reported in 

mm3/mm3 (Basche et al., 2016a). 

Field capacity and permanent wilting point were measured to determine the long-term 

impacts of cover crops on soil water properties. Field capacity is defined as the water retained in 

the soil at -33 kPa pressure, which represents the ability of the soil to retain water after internal 

drainage ceased and is also considered the upper limit of plant available water (Basche et al., 

2016a; Hillel, 1992; Veihmeyer & Hendrickson, 1927). Permanent wilting point is defined as the 

water retained at -1500 kPa, which represents the soil wetness at which point a plant cannot recover 

turgidity and is also considered the lower limit of plant available water (Basche et al., 2016a; Hillel, 

1992; Veihmeyer & Hendrickson, 1927). These measurements were analyzed using intact soil 

cores of 7.6 x 7.6 cm at 4-11.6 cm depth. Cores were analyzed at the Soil, Water and Plant Testing 

Laboratory at Colorado State University using a Decagon WP4C Water Potential Meter (Decagon 

Devices, Inc, Pullman, WA) (Basche et al., 2016). 
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Nitrate leaching (NO3
-) was measured from the drainage water. Water samples were 

measured on a weekly basis using Lachat Autoanalyzer (Zellweger Analytics, Lachat Instrument 

Division, Milwaukee, WI). The method’s lower detection limit for NO3
- was 0.3 mg N L-1. Mass 

of NO3
- in drainage water was calculated by multiplying the NO3

- concentration of each 

proportional water sample by the volume of water discharged during the time the sample was 

collected (Kaspar et al., 2007, 2012). 

 

4.3 Biogeochemical model initialization and parametrization 

In this study, the DNDC model was used to simulate crop yields, soil water content (SWC), 

soil organic carbon (SOC), and nitrogen leaching (NO3
-) under a corn-soybean rotation with cover 

crops (CC) and without cover crops (noCC) in an Iowa farm.  

The parameter values used to initialize the model were based on site-specific field 

measurements supplemented with information from the literature (Table 2). The values reported 

by Basche et al. (2016a, 2016b) and Parkin & Kaspar (2004) were chosen as they demonstrate the 

effects of cover crops on soil properties and are from the same experimental plots located at the a 

research farm in Boone County, IA.  

To better capture mineralization from cover crop residues, we increased decomposition 

rates by 15% in the CC treatment. This modification allows the transformation of recalcitrant pools 

(humus) to more available pools (microbial), allowing us to incorporate the new theories of SOM 

decomposition, were SOM pools are based on microbial residues with faster turn-over-times rather 

than chemically recalcitrant pools with slower turn-over times (Grandy & Neff, 2008; Kallenbach 

et al., 2015; Schimel & Schaeffer, 2012). While there are multiple unknows about SOM 
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decomposition, this modification was conservative enough to not overpredict cover crop benefits 

in terms of C and N cycling (according to our sensitivity analysis; Appendix).  

 

Table 2. DNDC model initialization and parametrization. 

Parameter Unit 

Cover crop 

estimate 

Control 

estimate Reference 

Soil pH Unitless 6.60 6.60 Basche et al., 2016a 

Bulk density g/cm3 1.30 1.30 Basche et al., 2016a 

Field capacity wfps 0.65 0.60 Basche et al., 2016b 

Wilting point wfps 0.36 0.35 Basche et al., 2016b 

Clay fraction % 27.00 27.00 Basche et al., 2016b 

SOC (0-10 cm) % 2.99 2.99 Basche et al., 2016a  

Bulk C/N Ratio 10.75 10.75 Parkin & Kaspar, 2004 

Slope % 1 1 Basche et al., 2016a 

SOC decomposition % 15 0 Assumed 

 

 

4.4 Biogeochemical model calibration and validation 

For model calibration and validation, we utilized field measurements collected at the field 

site (Table 3). The climate data used to initialize the model was collected from the Iowa 

Environmental Mesonet (IEM, 2020). The model simulation was started 4 years before the 

introduction of the treatments. Similar to the field site, we initialized the model with a corn-

soybean rotation and a N application rate of 250 kgN/ha applied to corn. During the fifth year of 
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simulation, in the DNDC model the cover crop was planted, and the residues were incorporated 

with a litter burying tillage method the same day of cover crop termination. This tillage method 

was included in the simulation because the cover crop residues were not incorporated in the DNDC 

model N cycling without tillage. At the same time, tillage is one of the most common practices in 

the Midwest.  The burying tillage method incorporates the N and C of cover crop residues and 

accelerates decomposition rates in the model. To separate the effects of cash crop residues from 

cover crop residues on the soil properties, all cash crop residues were removed in the model. 

Following the DNDC manual, field measurements reported as kg of dry matter were converted to 

kgC by multiplying by a factor of 0.4, assuming that 1 kg of dry matter is equal to 0.4 kgC (DNDC, 

2020).  

Model calibration included choosing parameters values that minimize the difference 

between observed and simulated corn and soybean yields, cover crop biomass, and soil water 

content. In order to assess model performance in terms of volumetric soil water content using data 

from Basche et al., 2016, we assumed that water filled pore space (wfps) is equal to the volumetric 

soil water content divided by porosity calculated from bulk density at 5 cm depth (porosity = 0.51) 

(USDA, 2012). The changes made to crop parameter values as a result of calibration are outlined 

in Table 4. 

After model calibration, corn yield response to N fertilizer was validated using the values 

reported by Sawyer & Barker, 2013. For both treatments, we used the average of corn yield 

response to 0, 45, 90, 135, 190, and 225 kgN/ha in Iowa during 2000-2013 (Sawyer & Barker, 

2013). These values were selected as they represent the typical corn-soybean rotation found across 

the Midwest. The same values were used in CC treatment because fewer field experiments are 

evaluating the corn yield response to different N fertilizer rates and non-legume cover crops. 
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 Model performance was evaluated using the Root Mean Squared Error (RMSE) and index 

of agreement (I). These indices were calculated using the equations reported in Legates & McCabe, 

1999. Other applied indicators of model performance included plotting and/or discussing 

cumulative drainage volume and N loss to drain flow; predicted and simulated yields; and 

predicted average and standard deviations compared to observed values. 

 

Table 3. Dataset used for model calibration and validation. 

Output variable Data used for 

calibration 

Data used for 

validation 

Reference 

Soil water content (wfps) 2008 (DOY 110-

250) at 5 cm depth 

2009-2013 (DOY 

110-250) at 5 cm 

depth 

Basche et al., 2016 

Cover crop biomass N and 

C (kgN/ha and kgC/ha) 

2004-2010 NA Kaspar et al., 2007, 

2012; Basche et al., 

2016. 

Corn and soybean yields 

(kgC/ha) 

2004-2013 from 

no-cover crop 

treatment. 

2004-2013 from 

cover crop 

treatment. 

Kaspar et al., 2007, 

2012; Basche et al., 

2016. 

Tile drainage (mm) and N 

leaching (kgN/ha) 

2004-2010 NA Kaspar et al., 2007, 

2012. 

Corn response to N 

fertilizer 

NA 2000-2013 from 

no-cover crop 

treatment.   

Sawyer, 2015.; 

Sawyer & Barker, 

2013 
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Table 4. Input parameters to optimize cash crop yields and crop N uptake. 

 Input parameter Unit Corn Soybean Rye 

Max biomass kgC/ha 4500 * 1500* 1000* 

Grain biomass fraction % 0.36* 0.35a 0.20* 

Leaf biomass fraction % 0.22a 0.22a 0.23a 

Stem biomass fraction % 0.22a 0.22a 0.23a 

Root biomass fraction % 0.20a 0.21a 0.34* 

Grain biomass C/N ratio % 45* 10a 10* 

Leaf biomass C/N ratio % 80a 45a 13* 

Stem biomass C/N ratio % 80a 45a 13* 

Root biomass C/N ratio % 80a 24a 50* 

Optimal temperature ˚C 22* 25a 18b 

Water demand 

g water/ g 

dry matter 90 350 250 

N demand kgN/ha 200* 230* 311* 

Superscript indicates source of the selected value: a DNDC, 2020; b Basche et al. 2016b; *obtained 

at the moment of calibration. 
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4.5 Economic model initialization and parametrization 

The cost parameter values used for economic model initialization were based on data from 

different sources (Table 5).  

Several assumptions were made when selecting the cover crops benefits and costs 

parameters (Table 5). First, it’s rational that farmers select the highest payments first, until they 

are disqualified from a program. Therefore, in the model, the farmer receives payments in the first 

three years through EQIP (fixed at 84.57 $/ha), that are higher than those received in the following 

years (fixed 37.5 $/ha; IDALS), and the last two years (fixed at 26.25 $/ha; CSP). The duration of 

enrollment in each program was based on guidelines an regulation of each government program. 

For example, farmers are only eligible to receive up to three annual payments through EQIP. 

Lastly, the farmer cover crop planting and termination methods were drilling and herbicide, 

respectively. These methods were the same over the 10-year simulation experiment.  
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Table 5. Model initialization and parametrization ($/ha). 

Parameters Value Source 

N application cost 0.60 Plastina et al. 2018 

Cover crop benefits 

  

EQUIP 84.58 Sawado & Plastina, 2017 

CSP Enhancement 26.25 Sawado & Plastina, 2017 

IDALS cost-share 37.50 Sawado & Plastina, 2017 

Saving cost of reduced compaction 16.00 Pratt et al. 2014 

Saving cost of reduced erosion 16.88 Plastina et al. 2018 

Cover crop planting costs 

  

Seeds 44.25 Plastina et al. 2018 

Drilling to standing crop 32.75 Plastina et al. 2018 

Cover crop termination costs 

  

Herbicide 20.18 Plastina et al. 2018 

Extra labor costs to apply herbicide 13.85 Plastina et al. 2018 

Other termination expenses 4.93 Plastina et al. 2018 

Weed maintenance cost 

  

Cost of maintaining cover crop in case it 

becomes a weed 3.21 Pratt et al., 2014 

 

 

The baseline discount factor per year (𝜌𝑡) selected was 0.0961, which is equivalent to a 

yearly discount rate, 𝑟, of 4%, where 𝜌 =
1

𝑟
. The cash crop prices (𝑝𝑡) of corn and soybeans were 
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based on the U.S average prices received by the farmers (Fig. 7) (USDA-NASS, 2020). The unit 

of N fertilizer cost (𝑐𝑁,𝑡) was based on average Iowa farm prices of anhydrous ammonia (Fig. 8) 

(USDA-NASS, 2020; IA Farm bureau, 2020). The total costs of cash crop production (𝐶𝑌,𝑡) were 

based on average costs for farms in Iowa (Plastina and Duffy, 2011-2020). These costs include 

cash crop seeds, herbicide and insecticide application, crop insurance, machinery (fixed and 

variable), and labor cost (Plastina and Duffy, 2011-2020). The cash crop prices, and input costs 

were based on data from 2011 to 2020 (USDA NASS 2020). We assumed that the farmer will not 

receive government payments for income losses, such as ARC-CO in any year. 

 

Figure 7. U.S average cash crop prices received by farmers from 2011 to 2019. Source: USDA-

NASS, 2020. 
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Figure 8. Average U.S. farm prices of anhydrous ammonia ($/kgN) from 2011 to 2020. Source: 

USDA-NASS, 2020; Iowa Farm Bureau, 2020. 

 

 We compared the total cost of cash production in Iowa used in this study based on data 

from Iowa (Duffy (2011-2014) and Plastina (2015-2020)), with total costs reported in Indiana 

(Dobbins and Langemeier, 2011-2020) and Illinois (Schnitkey, 2011-2020).  

The values used in this study were within the ranges reported in the literature. The highest 

production cost for corn was $1247 ha-1 and the lowest at $1087 ha-1. Soybean production costs 

ranged from $581 to $832 ha-1 (Table 6 and 7). 
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Table 6. Corn production budget in Iowa, Indiana, and Illinois reported in $/ha. 

Year Iowa Indiana Illinois 

2011 1204 993 588 

2013 1258 1155 1290 

2015 1209 1115 1455 

2017 977 1055 1403 

2019 1091 1118 1500 

Average 1148 1087 1247 

 

 

Table 7. Soybean production budget in Iowa, Indiana, and Illinois reported in $/ha. 

Year Iowa Indiana Illinois 

2012 733.2 607.5 757.5 

2014 684.6 567.5 875 

2016 637.5 507.5 852.5 

2018 615.9 637.5 787.5 

2020 635.0 587.5 887.5 

Average 661.2 581.5 832.0 

 

4.6 Climate scenarios 

To simulate potential climate scenarios impacts on yields and management decisions, we 

considered three weather scenarios that reflect the trends in historical and future climate data. Daily 

precipitation and air temperature data were collected from Iowa Environmental Mesonet from 
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2000 to 2019 (IEM, 2020). During the growing season (defined as DOY 100-250), the average 

cumulative precipitation was 624 mm and the average air temperature was 19 ˚C (Fig. 9). The 

driest and hottest year was 2012 with cumulative precipitation of 380 mm and an average air 

temperature of 20.40 ˚C. The coldest and wettest year was 2008 with cumulative precipitation of 

938 mm and an average air temperature of 17 ˚C.  

  

Figure 9. Average temperature and cumulative precipitation during the growing season (DOY 

100-250) collected from 2000 to 2019 in Boone County, IA. Red lines represent the average 

temperature and average cumulative precipitation. Reported on Iowa Environmental Mesonet 

(2019). 
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• Scenario 1: Historical weather from 2004-2013. 

• Scenario 2: Extremely dry years were created using the temperature and precipitation of 

2012. To mimic a shift in precipitation patterns with longer periods of drought, we 

alternated the rain patterns by applying the cumulative precipitation every 15 days (14 days 

of drought followed by one day of intense rain). Additionally, we increased the amount of 

precipitation during spring and reduced the amount of precipitation at the end of the 

summer by 50% (Fig. 10). The total amount of precipitation during the entire year wasn’t 

changed.  

• Scenario 3: Reflect the most likely scenario in Iowa (Baum et al., 2020). To create this 

scenario, we used weather data from 2006 (selected to represent the average year). Similar 

to scenario 2, we alternated the rain patterns by applying the cumulative precipitation every 

15 days (14 days of drought followed by one day of intense rain). Then, we increased 

precipitation by 10% in the spring and decreased 10% at the end of the summer (Fig. 11). 

Temperature was reduced by -0.5 ˚C decrease in maximum and +0.5 ˚C increase in 

minimum temperature. 

• Scenario 4: A hybrid of scenario 2 and 3where 8 years reflect the most likely scenario in 

Iowa and 2 years reflect drought during the corn growing season. 
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Figure 10. Monthly precipitation during extremely dry year (scenario 2) based on 2012 data. 

 

 

Figure 11. Monthly precipitation during of the most likely scenario in Iowa (scenario 3) based on 

2006 data. 
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4.7 Sensitivity analysis to economic parameters 

 In the Sensitivity Analysis section, we evaluated the model sensitivity to economic and 

management parameters, namely N fertilizer price, EQIP payments, cover crop adoption costs, and 

discount rates. The analysis of model sensitivity to alternative economic and management 

parameters is relevant, given the existing differences in production systems and conditions.  
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CHAPTER V 

RESULTS AND DISCUSSION 

 

5.1 DNDC model performance  

Soil water content 

In the noCC treatment, model predictions at 5 cm depth had RMSE of 0.10 wfps and index 

of agreement of 0.44 during calibration, and RMSE of 0.08 wfps and an index of agreement of 

0.69 during validation. The mean was slightly over predicted by 0.01 wfps in the noCC treatment 

(simulated mean = 0.52 wfps). The predicted standard deviation was 0.07 that differs from the 

observed by -0.02 (simulated stdev = 0.07) in the noCC treatment.  

For the CC treatment, model predictions at the 5 cm depth had RMSE of 0.07 wfps and 

index of agreement of 0.73 during calibration, and RMSE of 0.12 and an index of agreement of 

0.56 during validation. The mean was over predicted by 0.09 wfps in the CC treatment (simulated 

mean = 0.59), with a predicted standard deviation of 0.06 (simulated stdev = 0.06).  

The DNDC model captured the pattern of increased soil moisture in CC compared to noCC 

(Fig. 12). Higher field capacity and wilting point values improved infiltration rates in the CC 

treatment. At the same time, the use of cover crop decreased evaporation and water run-off. The 

CC treatment reduced soil evaporation between 1-64% with greater reductions in dry years. Cover 

crop residues served as an impediment for water run-off, reducing run-off by 28% compared to 

noCC. Despite cover crop transpiration, which ranged between 17-170 mm and was related to 

biomass levels, the CC treatment had 7% more water than the noCC treatment at 5 cm depth. Even 

in a dry year when cover crop biomass and transpiration were high, the CC treatment still captured 

greater water benefits. 
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Previous modelling and field studies have demonstrated similar cover crop effects in water 

properties. The RZWQ model simulated soil water generally 2-6% greater in CC at a depth of 15 

cm (Gillette et al., 2018). The APSIM model also predicted reduced soil evaporation and a small 

increase in soil water despite cover crop transpiration (Basche et al., 2016). Further, field studies 

also demonstrated that spring rainfall can restore soil moisture that was depleted during cover crop 

growing season (Basche, 2015). 

 

Figure 12. Simulated soil water content (wfps) at 5 cm depth during summer and spring in 2012 

in the control treatment (noCC) and cover crop treatment (CC). 
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agreement for cover crop biomass was 0.72 and 0.66 for C and N respectively (I > 0.50). On 

average, the model captures the year to year variability of cover crop growth.  

   

Figure 13. Observed (bars) and predicted (lines) cover crop biomass C (A) and N (B) from 2004-

2010 during model calibration. 
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predictions of corn yields had a RMSE of 429.9 kgC/ha and 460.5 kgC/ha during calibration and 

validation respectively. The model index of agreement was 0.68 during calibration and 0.69 during 

validation. This index confirms that the model results were satisfactory (I > 0.50). Overall, the 

DNDC model simulations for corn yields were in a good agreement with observations.  

 

Figure 14. Observed (bars) and predicted (lines) corn yields from 2004-2012 during model 

calibration (A) and model validation (B). The error bars represent the standard deviation of the 

observed data. 
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Figure 15. Observed (bars) and predicted (lines) soybean yields from 2005-2013 during model 

calibration (A) and validation (B). The error bars represent the standard deviation of the observed 

data. 
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Despite the low model performance, the model captured a reduction in N leaching under 

the cover crop treatment. This reduction in N leaching relates directly to the amount of cover crop 

N uptake during fall and spring. On average, annual N leaching in the CC was 26% lower than the 

noCC treatment. These results are within the ranges reported in the literature, were field studies 

across the U.S have reported a reduction in N leaching with cereal rye ranging from 13% to 94% 

(Kladivko et al., 2014).  

 

Figure 16. Observed and predicted annual average tile drainage (mm) (A) and N leaching (kgN/ha) 

(B) under cover crop (CC) and no cover crop (noCC) treatment. 
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Similar to a field study conducted in Central Indiana, we found that non-legume cover crop 

have the potential to reduce the quantity of applied N fertilizer while maintaining corn yields 

(Hughes & Langemeier, 2020). The N rate needed to produce the maximum corn yield in CC was 

10kgN/ha lower than the amount of N needed in noCC. This small difference was driven by higher 

mineralization rates in the CC treatment, were the input parameter of SOC decomposition rate was 

15% higher.  

 

Figure 17. Observed (bars) and predicted (lines) yield response to N fertilization rates under cover 

crop (CC) and no cover crop (noCC) treatment.  
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decrease when N fertilization rates increased. This decline is explained by the amount of N that 

cover crops can uptake from the soil given the short window for establishment and growth. Cover 

crops were terminated before achieving grain filling stages producing only 742 kg of biomass. Due 

to this short window for biomass growth and other weather limiting factors, cover crop N uptake 

was only 25 kgN/ha for all N fertilization rates. The conservative planting window utilized during 

the simulation, is likely the reason that the N fertilization rates did not influence cover crop growth 

in the early stages.  

 Previous studies have shown that increasing cover crop biomass leads to greater N 

retention. However, after producing 6,919 kg of biomass the benefits of reducing N leaching 

plateau (Finney et al., 2016). The simulation model results are consistent with these field 

observations. 

 

Figure 18. Predicted potential N leaching response to N fertilization rates under cover crop (CC) 

and no cover crop treatment (noCC). 
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Nutrient cycling under drought vs no-drought years 

 We evaluated the C and N cycling dynamics under two contrasting weather scenarios with 

and without cover crops. For this analysis, we used the extreme drought weather scenario (scenario 

2 = drought) and the most likely future scenario in Iowa (scenario 3 = no-Drought). The amount 

of N fertilizer applied was the yield maximization rate, which is 90 kgN/ha to CC and 100 kgN/ha 

to noCC. 

 The DNDC model predicted carbon declines in both treatments and weather scenarios 

relative to the initial C stocks (Fig. 19). On average, the noCC treatment generated an additional 

loss of 889 kgC/ha, relative to the CC treatment under the no-drought scenario (annual loss of 37 

kgC/ha/yr.). This represents a decline in carbon mass of 4% in the noCC treatment and 3% in the 

CC treatment over 10 years. This difference is greater in a drought year, with the noCC losing an 

additional 4,784 kgC/ha (5% decline) relative to the CC treatment (1% decline). The difference 

between CC and noCC is due the cover crop residues that served as inputs to the C cycle, whereas 

the noCC treatment had no additional inputs other than cash crop roots. Further, despite having 

higher soil organic carbon decomposition rates (15% higher), the CC treatment slow the rate of 

carbon loss. This reduction in C loss was magnified in a drought scenario, where cover crops 

produced above-ground biomass of 1,589 kg/ha or 39% higher than the biomass produced in the 

most likely scenario (no-Drought). Our results suggest that the incorporation of cover crops can 

help to slow the rate of carbon loss and more so in drought years. 

 Our results are consistent with those from other simulation models and long-term field 

studies. A 30-year field study in Montana, show that in plots with greater C input and lower tillage 

intensity slow the rates of carbon decline at depth 0-7 m (Sainju et al., 2015). Using the APSIM 

model, Basche et al., 2016 found that using cover crops can slow the rates of C decline by 3% 



71 

 

compared to bare fallows. However, other studies have shown that cover corps can increase soil C 

in the surface 0-30 cm by 17% compared to bare fallows (Austin et al., in review.). In our model 

simulation, the above-ground cash crop residues were completely removed from the field. A 

sensitivity analysis of the incorporation of cash crop residues captured a net increase in SOC with 

cover crops use (data in Appendix). Therefore, we conclude that cover crops have the potential to 

increase soil C stocks or to slow the loss in drought years. 

 

Figure 19. Soil organic carbon under two contrasting weather scenarios with and without cover 

crops. 
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cover crop biomass (~13). However, the noCC treatment increased SIN under the drought scenario. 

This slight increase is explained by the lower plant N uptake, where corn yields were 7.2% lower 

in the noCC treatment.  

As previously discussed, N leaching predictions differ from the observations due to low 

model performance. However, the predicted patterns can still be interpreted cautiously to make 

general inferences about cover crops. Under both scenarios, cover crops reduced N leaching 

despite having considerably higher SIN. Moreover, this reduction was magnified in a drought year, 

when cover crops reduced N leaching by 26% compared to noCC. In the no-Drought scenario, 

cover crops reduced N leaching only by 1.2% compare to noCC. The reduction in N leaching in 

the CC treatment is likely explained by higher soil moisture that influenced plant N uptake and 

microbial assimilation.  

 

Figure 20. Soil inorganic nitrogen (A) and N leaching under two contrasting weather scenarios 

with and without cover crops. 
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5.3 Biogeochemical-Economic model results 

We first present results of the NPV of a conventional (noCC) and a cover cropped farm 

(CC) under historical and future climate scenarios. Then, we discuss the case of a risk-averse 

farmer.  

 

 

The economics of cover crops under different climate scenarios 

Under most climate scenarios, both farmers have similar NPVs. Under historical and 

Hybrid scenarios, the farmer that adopted cover crops had an NPV of -4% and -0.5% lower than 

the farmer that did not adopt cover crops. Despite generating a yield increase of 3% in the Hybrid 

scenario, the timing of the drought years influenced the farmer’s NPVs. The discount factor of 4% 

reduced the effect of the yield increase in the NPVs, because the drought years occur on the fifth 

and ninth year of the simulation. If the drought years occur earlier in the simulation, the farmer 

that adopted cover crops would experience higher NPVs (Appendix). 

 

 The ranking of NPVs is reversed in the most likely scenario (no-Drought scenario). In the 

no-Drought scenario, the farmer that adopted cover crops had a NPV of 1.1% higher than the 

farmer that did not adopt. Further, this difference increases when the farmer experiences a greater 

number of drought years. Under frequent extreme droughts (Drought scenario), the farmer that 

adopted cover crops had a NPV of 15% higher compared to the farmer that did not adopt cover 

crops (Fig. 21). The difference was explained by higher corn yields in the CC treatment, where 

corn yields were 15% higher under the Drought scenario. This yield increase is due to the CC 

ecosystem services of improved soil water storage, soil organic matter accumulation, and N 

retention. 
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Figure 21. Farmer’s Net Present Value (NPV) over 10 years under different climate scenarios. 

Historic scenario represents historical climate; Drought represents constant extreme droughts; no-

Drought reflect the most likely scenario in Iowa (-10% precipitation during summer, +10% 

precipitation during spring); and Hybrid represents a combination of scenario 2 and 3. 

 

The farmer's NPV changes significantly without government payments (i.e., EQIP). Under 

historical and Hybrid climate scenarios, the farmers that adopted cover crops had a NPVs of -$286 

and -$39 ha-1, respectively, even when they receive EQIP payments. Only under the extreme 

drought scenario (Drought scenario), the farmer that adopted cover crops was better off by $221 

ha-1, even without receiving an EQIP payment. The biggest difference accrues when the farmer 

experienced two droughts in 10 years (Hybrid scenario). In the hybrid scenario, the farmer that 

receives EQIP payments for cover crop adoption had a NPV of -$39 ha-1 lower than the farmer 

that did not adopt. Moreover, the farmer that did not receive EQIP payments and adopted cover 

crops had a NPV of -$532 ha-1 than the farmer that did not adopt (Fig. 22). These results highlight 

the importance of EQIP payments to encourage cover crop adoption. 
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Figure 22. Difference in Net Present Value (NPV) over 10 years under different climate scenarios, 

with and without government payments (EQIP). 
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 In the case of a risk averse farmer, we found that moderate risk aversion (risk aversion = 
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Figure 23. Difference in Certainty Equivalent (CE) over 10 years under different climate scenarios 

for a risk averse farmer. 
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CHAPTER VI 

CONCLUSIONS 

In this thesis, we used an biogeochemical-economic model to evaluate the economic and 

environmental benefits provided by cover crops under different climate scenarios. The DNDC 

model acted as the ecological production function in the biogeochemical-economic model. It 

simulated changes in non-market ecosystem services (i.e., improved soil water storage, soil 

organic matter accumulation, and N retention) with and without cover crops and linked them to 

changes in marketed outputs (i.e., cash crop yields) and marketed inputs (i.e., N fertilizer). 

Under most climate scenarios, both farmers have similar NPVs. Under historical and 

Hybrid scenarios (i.e., two years of drought), the farmer that adopted cover crops had an NPV of 

-4% and -0.5% lower than the farmer that did not adopt cover crops. The ranking of NPVs is 

reversed in the most likely scenario (no-Drought) and in the constant extreme drought scenario 

(Drought). In the no-Drought scenario, the farmer that adopted cover crops had a NPV of 1.1% 

higher than the farmer that did not adopt. Further, this difference increases when the farmer 

experiences a greater number of drought years. Under frequent extreme droughts, the farmer that 

adopted cover crops had a NPV of 15% higher compared to the farmer that did not adopt cover 

crops. This difference is explained by higher corn yields in the CC treatment, where corn yields 

were 15% higher under frequent extreme droughts. This yield increase is due to the CC ecosystem 

services of improved soil water storage, soil organic matter accumulation, and N retention. 

Finally, using certainty equivalent measure to determine the expected utility of a grower 

who has moderate level of risk aversion, we found that a moderate risk aversion does not change 

the results of CC vs noCC from the baseline risk neutral case. 
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APPENDIX 

 

Appendix 1. Sensitivity analysis of SOM decomposition rates increase (in relation to the 

baseline) effect on soil organic carbon in the CC treatment. 

 

Appendix 2. Sensitivity analysis of SOM decomposition rates increase (in relation to the 

baseline) effect on soil inorganic N in the CC treatment. 
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Appendix 3. Sensitivity analysis of cash crop residues incorporation on soil organic carbon in the 

CC treatment. 

 

 

Appendix 4. Sensitivity analysis of timing of drought years effect on NPVs with a discount rate 

of 4%. Droughts occur during the corn growing season. 
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Appendix 5. Sensitivity analysis of EQIP payments under historical climate data. 

 

Appendix 6. Sensitivity analysis of cover crop adoption costs. 
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Appendix 7. Sensitivity analysis of discount factor under historical climate data. 
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