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ABSTRACT 

 

 The field of biology is becoming increasingly reliant on quantitative tools, methods, and 

techniques, driving a need for incoming biologists to have robust quantitative skills. However, 

efforts to incorporate more quantitative skills at the undergraduate level are hampered by low 

student engagement with math in biology. Students’ motivation towards quantitative biology can 

provide insight into how best to increase their engagement and thus performance with these 

topics. This thesis examines students’ motivation towards math in biology through two key 

constructs: 1) students’ self-efficacy, through the theoretical lens of Social Cognitive Theory; 

and 2) students’ task-values, through the theoretical lens of Expectancy-Value Theory.  

 In Chapter 1, I explore how students’ self-efficacy towards quantitative biology problems 

is impacted by their experiences when working together in small groups to tackle mathematical 

problems in a biological context. In two sections of an introductory biology class, I surveyed 

students about their self-efficacy before and after completing two separate group work 

assignments about evaluating Hardy-Weinberg Equilibrium and modeling population growth, as 

well as asked them to report through short responses their experiences during those assignments 

which increased or decreased their confidence towards these kinds of problems. I qualitatively 

coded students’ short responses and found that students draw from a breadth of experiences to 

evaluate their self-efficacy. In particular, students reported many mastery experiences which 

increased their self-efficacy, through opportunities to practice solving these problems, 

confirming their success with them, or even being able to teach and guide their peers through the 

problems. Students also valued how group work fostered an availability of help and support from 
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their peers which built their self-efficacy, through discussion, collaboration, and being able to 

simultaneously receive and seek help from their peers. I performed logistic regression to find that 

students’ self-efficacy level before entering each group work assignment predicted their 

likelihood of reporting mastery experiences or help availability from peers as the source of their 

increased self-efficacy, with higher self-efficacy students more likely to report mastery 

experiences and lower self-efficacy students more likely to report the availability of help from 

their peers. 

 Meanwhile, I found that while most students did not report any experiences which 

decreased their self-efficacy, those who did described a wide range of specific experiences. Most 

commonly, a lack of mastery decreased self-efficacy, ranging from simply not understanding the 

problem or making mistakes on the problem, to being unable to complete the assignments due to 

a lack of time or their group rushing ahead of them, to groups not even checking their answers or 

progress. Some students also described a lack of availability of help from their peers or 

instructors, with some groups failing to communicate openly or fully collaborate to group 

members simply being unable to help them with no one else around for support. Students also 

described a handful of experiences where they compared themselves unfavorably to their peers, 

feeling like they were falling behind or otherwise lacking in skill, as well as a general sense of 

anxiety from working in groups. I performed a logistic regression to find that students’ self-

efficacy level before entering each group work assignment also predicted their likelihood of 

reporting a lack of mastery which decreased their self-efficacy, with lower self-efficacy peers 

more likely to describe a lack of mastery than their higher self-efficacy peers. 

 In Chapter 2, I explore how an alternative, multidimensional model of task-values 

compares to a more traditional model of students’ task-values towards statistics, and how these 
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task-values relate to their statistical understanding. I surveyed life-sciences students at two 

institutions about their task-values towards statistics and measured their performance on an 

assessment of their understanding of biological variation in an experimental design context. I 

performed confirmatory factor analyses to find that students’ task-values towards statistics are 

better represented using a multi-dimensional model which differentiates the four canonical task-

values—intrinsic value, attainment value, utility value, and cost—into multiple task-value 

‘facets’, each capturing a specific aspect of each task-value, such as ‘utility for school’ or 

‘emotional cost’. After excluding attainment value due to its poor fit, my model of task-value 

facets includes: 1) intrinsic value, with no facets; utility value with five facets (‘utility for 

school’, ‘utility for daily life’, ‘social utility’, ‘utility for career/job’, ‘utility for future life’); cost 

with three facets (‘effort required’, ‘emotional cost’, ‘opportunity cost’). Using multiple linear 

regression, I found that students’ utility value for statistics for school and emotional cost of 

statistics predicted their performance on the statistical assessment; students with higher utility 

value for statistics for school performed better than their peers with lower utility value for 

statistics for school, and students with lower emotional cost of statistics performed better than 

their peers with higher emotional cost of statistics. 

My findings show how exploring students’ motivation towards quantitative biology can 

be a helpful lens for better understanding how students engage with math in biology. I reveal a 

mechanism by which in-class experiences can impact students’ confidence, highlighting a need 

for more focused work into how these specific experiences arise and how they relate to and 

interact with each other to shape students’ self-efficacy beliefs. Understanding this mechanism 

may reveal more effective and positive ways to increase students’ engagement with quantitative 

biology and reinforce their quantitative skills. Furthermore, I show how a more focused model or 
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characterization of students’ task-values can predict their performance, providing a useful tool 

for educators and instructors to develop lessons or interventions to bolster their students’ values 

to increase their performance. Future work into students’ values about statistics should center 

around exploring this multi-dimensional model of task-values in a variety of circumstances with 

students of different backgrounds and experiences to broaden our understanding of how these 

values relate to their performance and understanding. 
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INTRODUCTION 

 

 The field of biology is becoming increasingly reliant on sophisticated quantitative tools, 

methods, and techniques (NRC, 2003). These tools are required to understand and solve 

mounting problems in the environmental, agricultural, energy, and public health sectors (NRC, 

2009). However, despite this strong impetus, biology education struggles to train undergraduates 

to meet these challenges, leading to numerous national calls to reform undergraduate biology 

curricula to better integrate quantitative skills (NRC, 2003; NRC, 2009; AAAS, 2011). 

 Recent reforms to directly integrate quantitative skills into introductory biology curricula 

have demonstrated promise through a variety of approaches. Much work has been done to 

varying degrees of success, such as through quantitative literacy interventions (Speth et al., 

2010), online (Thompson et al., 2010) and in-class modules (Hoffman et al., 2016), as well as 

topic and skill related projects (Wightman & Hark, 2012; Metz, 2008). Other attempts approach 

the problem of integration from the other side of the equation by incorporating more biological 

topics and contexts such as systems modeling (Chiel et al., 2010) into mathematics courses and 

modules (Duffus et al., 2010; Rheinlander & Wallace, 2011). Dedicated ‘math for life sciences’ 

courses have also been developed to bridge the gap between biology and mathematical 

disciplines, such as calculus (Usher et al., 2010; Thompson et al., 2013b), and statistics 

(Watkins, 2010), with some approaches even developing completely integrated biology-math 

courses from the ground up in both general contexts (Depelteau et al., 2010) and specific 

applications like biological modeling (Hoskinson, 2010). The long-term success of these courses 

is still unclear, however (Marsteller et al., 2010). 
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 Instructors face many challenges towards greater adoption and success of these 

approaches (Bialek & Botstein, 2004) but a significant hurdle to further integrating quantitative 

skills in biology classrooms is students’ motivation, particularly their attitudes towards math 

(Colon-Berlingeri & Burrowes, 2011; Thompson et al., 2013a). Biology students often hold more 

negative attitudes towards math than students in other natural sciences (Wachsmuth et al., 2017), 

with some students potentially avoiding more math-intensive courses or instructors because they 

perceive them to be more difficult (Colon-Berlingeri & Burrowes, 2011; Hood et al., 2012). 

Addressing this slump in students’ motivation is critical to further improving quantitative 

biology education because motivation and in particular students’ attitudes can profoundly impact 

their willingness to engage with the curriculum (Poladian, 2013; Rheinlander & Wallace, 2011) 

as well as influence their perceptions towards biology as a career (Glynn et al., 2007; Matthews 

et al., 2013). 

Social Cognitive Theory and Self-Efficacy 

 Social Cognitive Theory is a framework which describes how individuals’ behavior is 

shaped by their environment as well as the behaviors of others (Bandura, 1986), and has been 

studied and applied in a variety of contexts including public health and education. A key 

component of this framework is the beliefs people hold about their capabilities and how these 

beliefs influence their behavior and choices, which Bandura calls self-efficacy (Bandura, 1986; 

1997). In an academic context, self-efficacy represents a students’ beliefs about their ability to 

succeed at a given task (Bandura, 1997; Bong, 2001; Bong & Skaalvik, 2003). Self-efficacy can 

strongly influence a student’s academic success, predicting students’ motivation, engagement, 

and thus performance and achievement on academic tasks (Klassen & Usher, 2010; Lee et al., 

2014). Furthermore, self-efficacy beliefs can have an amplifying effect on motivation. Students 
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who are highly self-efficacious and motivated can become even more so upon achieving greater 

success, while students who suffer repeated setbacks and low motivation frequently reinforce 

negative self-efficacy beliefs (Pajares, 2003). Self-efficacy is specific to different domains or 

subjects, with students shaping and leveraging their self-efficacy beliefs depending on what 

kinds of tasks they face (Bong & Skaalvik, 2003; Usher & Pajares, 2008). In particular, self-

efficacy has been shown to factor into students’ motivation and achievement across a variety of 

subjects and fields (Woolcock et al., 2016; Hutchison et al., 2006; Ainscough et al., 2016), 

including sub-domains like statistics (Finney & Schraw, 2003) within larger fields like 

mathematics (Pajares & Kranzler, 1995). Self-efficacy can also strongly impact identity with 

respect to science (Trujillo & Tanner, 2014), especially when students have strong or direct ties 

to an established mentor (Joshi et al., 2019), as well as feed into a student’s ability to 

academically self-regulate (Lee et al., 2014). Consequently, self-efficacy beliefs can have strong 

impacts on career aspirations both in young children and adolescents (Bandura et al., 2001) as 

well as in undergraduate students (Jones et al., 2010).  

 Bandura (1997) describes four primary sources of self-efficacy: mastery experiences, 

vicarious experiences, social persuasions, and physiological states, each of which can build or 

harm students’ self-efficacy beliefs. The most common and most impactful source of self-

efficacy is the mastery experience, when students experience either success on a task through 

their own effort, or fail at a task despite that effort (Bandura. 1997; Usher & Pajares, 2008). 

Students do not have to strictly experience success or failure, however; mastery experiences can 

also arise as a judgement of success or a judgement of failure based on their perceptions of the 

outcome of the experience (Pajares et al., 2007; Usher & Pajares, 2008). Mastery experiences are 

especially powerful when students overcome significant challenges or obstacles, especially if 
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they perceive the task to be difficult for them or for others (Usher & Pajares, 2009). 

Additionally, mastery experiences can have long-lasting effects on a student’s self-efficacy 

(Usher & Pajares, 2008), and students often draw from prior mastery experiences when 

evaluating their current self-efficacy (Butz & Usher, 2015). 

 Oftentimes, many of the tasks students face may not have immediately observable or 

absolute measures of proficiency. In these circumstances, students draw from vicarious 

experiences (also called ‘social comparisons’; Bong & Skaalvik, 2003; Butz & Usher, 2015) to 

gauge their abilities and skill in comparison to others. They are similar to mastery experiences in 

that they are a judgement of one’s success but couched in relation to another person rather than 

one’s own effort solely. Students compare themselves to a variety of others, most commonly 

their peers, friends, and classmates (Usher & Pajares, 2008; 2009), but also sometimes to the 

adults in their lives like their family or teachers (Butz & Usher, 2015). These comparisons often 

rely on a form of social modeling, where students draw heavily on the success, struggle, or 

failures of particular individuals, and the degree to which they relate to or identify with the 

model can affect how strongly their self-efficacy beliefs are shaped by those experiences 

(Schunk, 1987; Schunk & Pajares, 2002). 

 Social persuasions reflect the direct feedback from others about their abilities, skills, or 

performance on a task. This feedback can consist of encouragement or compliments directed 

towards the student, which a student can draw from to build their self-efficacy, or the feedback 

can be negative or denigrating to a student, hurting their self-efficacy (Bandura, 1997). 

Consequently, social persuasions are highly sensitive to the context of the situation and task, 

making them a more transient or fleeting influence on students’ self-efficacy (Usher & Pajares, 

2008). Additionally, social persuasions may be misinterpreted by students if they believe they 
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are not genuine, and positive social persuasions may have the ability to undermine students’ self-

efficacy or reinforce their existing negative perceptions if a student believes the persuasions are 

disingenuous or placatory (Bandura, 1997; Usher & Pajares, 2008; Butz & Usher, 2015). 

 Lastly, physiological states (also called ‘emotional’ or ‘affective states’; Bandura, 1997) 

reflect a student’s emotions and feelings towards a task, or the feelings and emotions they 

experience while performing or after performing the task. Students can interpret their 

physiological state towards a task as an indicator for their expected success or failure (Usher & 

Pajares, 2009). Typically, these emotions include anxiety over potential failure, stress from 

performing the task, or dread towards engaging with the task, but ameliorating these emotions 

and increasing students’ emotional well-being can reduce the negative impact of these stressors 

or even increase self-efficacy by re-framing students’ anxieties (Bandura, 1997; Usher & Pajares 

2008; 2009).  

 While these four sources are well-studied across a variety of subjects and domains, as 

Bandura (1997) and others (Schunk & Pajares, 2005; Usher & Pajares, 2008) have long 

suggested that the unique personal conditions and experiences which generate self-efficacy 

beliefs can manifest in more than just mastery experiences, vicarious experiences, social 

persuasions, and physiological states. These four sources have largely been studied using 

quantitative measures but may fail to capture some of the underlying complexity of the sources 

of self-efficacy (Usher & Pajares, 2008), leading to calls to study these sources through a 

qualitative lens. Recent examples of such qualitative approaches have indeed revealed the 

possibility for additional sources. Butz and Usher (2015), in a study focusing on primary- and 

secondary-school students and experiences which contributed to their self-efficacy towards math 

and reading, found that students not only described experiences reflective of the four primary 
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sources of self-efficacy but also events or circumstances which seem to fall outside the confines 

of those four sources. They described how being able to get support or help from their peers, 

teachers, or other adults influenced their self-efficacy beliefs, through the ‘availability of help 

from peers/teachers/adults/etc.,’ or how the ‘teaching style’ or pedagogical approach of their 

instructor helped shape their beliefs, or even how the classroom and ‘learning environment’ itself 

was structured could influence their self-efficacy. This window into additional sources of self-

efficacy beyond the four traditionally-described sources reveals an important avenue for further 

inquiry into how students develop their self-efficacy beliefs. 

Students also frequently draw from multiple sources to build their self-efficacy. While 

mastery experiences are typically considered the most influential, many students will rely on a 

variety of vicarious experiences and social persuasions to build their beliefs (Usher & Pajares, 

2008; Bandura, 1997). Early undergraduate engineering students’ self-efficacy beliefs were 

predominantly shaped by vicarious experiences and social persuasions when working 

collaboratively on projects or building support groups to help each other survive the major 

(Hutchison et al., 2006; Hutchison-Green et al., 2008). Furthermore, self-efficacy sources may 

have different effects in conjunction or interaction with each other: self-efficacy beliefs may be 

additive, where the more information is available to form self-efficacy beliefs, the greater the 

belief is enhanced; multiplicative, where sources interact to shape self-efficacy beliefs; or 

configurative, where sources may have varying influence depending on the presence or absence 

of other source information (Bandura, 1997).  

 The sources of self-efficacy can also affect students differently depending on a variety of 

characteristics. In, the major sources of self-efficacy have been shown to vary along gender lines. 

For example, primary- and secondary-school boys experience generally higher exposures to 
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mastery and vicarious experiences compared to social persuasions and physiological states for 

girls (Usher & Pajares, 2006; Butz & Usher, 2015). In undergraduate students, vicarious 

experiences more strongly predicted the probability of passing the course in women, while 

mastery experiences more strongly predicted the probability of passing for men (Sawtelle et al., 

2012). Self-efficacy sources can also differ by grade and experience level, with older or more 

advanced students reporting less exposure and response to sources of self-efficacy than their 

younger peers (Pajares et al., 2007; Butz & Usher, 2015). Therefore, understanding this 

complexity of self-efficacy beliefs and their sources in biology specifically could therefore 

provide insight into how undergraduate biology students experience these sources and build their 

self-efficacy, increase engagement, and achieve more in their biology courses (Gogol et al., 

2017). This insight may also lead to instructional development to facilitate and encourage the 

development of self-efficacy beliefs to further bolster students’ engagement with quantitative 

material. 

Expectancy-Value Theory and Task-Values 

 Expectancy-Value Theory (EVT) is a theory of motivation with widespread applications 

in education research, and has been studied largely in psychology (Wigfield & Eccles, 2020). In 

an educational context, EVT argues that a student’s engagement and thus performance on a 

given learning task is influenced by the combination of their expectancies of success on the task 

as well as the set of their personal values towards that task, collectively called task-values 

(Eccles et al., 1983; Wigfield & Eccles, 2000; Eccles & Wigfield, 2002). The expectancy 

component has often been related to Social Cognitive theory and characterized as a student’s 

self-efficacy (Eccles & Wigfield, 2002; Pajares, 1996). A student has four main task-value 

constructs: intrinsic value, attainment value, utility value, and cost. Intrinsic value is the 
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enjoyment a student experiences from a given task, and reflects the degree to which they 

consider the task to be an end to itself (Ryan & Deci, 2016). Intrinsic value can also be 

characterized as a student’s individual interest in the task (Wigfield & Cambria, 2010). 

Attainment value represents the importance of performing well on the task to a student’s identity, 

or the extent to which the task allows them to express or confirm important aspects of their sense 

of self (Wigfield & Eccles, 2020). Utility value is the perceived usefulness of the task to a 

student’s goals, both near and far, and in some way reflects a student’s ‘extrinsic motivations’ 

(Ryan & Deci, 2016) towards a task, as compared to intrinsic value and motivation; the task is no 

longer an end to itself but merely a means to an end. Lastly, cost reflects a student’s perception 

of the negative effects, penalties, or burden on themselves that they would incur through 

engaging with a task. 

 Task-values are extensively studied in primary and secondary-educational contexts 

(Wigfield & Cambria, 2010; Wigfield & Eccles, 2020). They develop early in childhood and 

change over time depending on academic domain (Jacobs et al., 2002), significantly impacting 

academic achievement (Lee et al., 2014; Simpkins et al., 2006). While less work has been done 

at the post-secondary level, there is evidence to suggest that task-values play a role at this level 

as well. In life-sciences students, students’ task-values towards math in biology related to their 

characteristics and their likelihood of taking further quantitative biology courses (Andrews et al., 

2017). Task-values may also impact performance and achievement at this level as well, both in 

general (Bong, 2001; Jones et al. 2010) and within domains like chemistry (Zusho et al., 2003) 

and mathematics (Elliott et al., 2001). Recent work has delved more deeply into the specific 

connection between students’ task-values and their performance, but the precise nature of this 

relationship is not clear. Through targeted interventions, some studies have found a direct 
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relationship between a single targeted task-value and performance, such as with utility value 

(Hulleman et al., 2010; Harackiewicz & Hulleman, 2010; Durik & Harackiewicz, 2007) or 

intrinsic value (Durik et al., 2015). Others found that task-values can relate to performance, but 

typically in conjunction with or moderated by other motivational constructs like self-concept or 

self-efficacy (Steinmayr et al., 2019; Bong, 2001; Guo et al., 2016). Notably, success 

expectancies in math moderate the effects of utility value on students’ performance on an 

assessment (Durik et al., 2015). This interaction between expectancies and task-values may also 

be present across all task-values, as suggested by Trautwein et al. (2012) and Nagengast et al. 

(2011), painting a complex picture of the landscape of how this component of students’ attitudes 

directly influence their performance. 

Part of this complexity may revolve around the typical characterization of students’ task-

values. Traditionally, task-values have been explored as monolithic constructs, either as simply a 

‘task-values’ component of a larger overall relationship (Steinmayr et al., 2019; Wigfield & 

Eccles, 2020), or often individually as part of a specific intervention (e.g., Hulleman et al., 2010; 

Harackiewicz & Hulleman, 2010; Durik et al., 2015), but this singular focus on individual task-

values often fails to capture the underlying complexity encompassed by that task-value. 

 In particular, utility value may describe the usefulness of a task towards many different 

short- and long-term goals. Students are able to differentiate between different ‘domains’ of 

these goals, such as their daily lives, their academics, or their careers (Peetsma & van der Veen, 

2011). Therefore, studies which examine only the ‘utility’ of a task as a single construct may not 

capture precisely what it means for students to find that task ‘useful’ to them. For example, 

students often see statistics courses as an important means to an end for their schooling (Evans, 

2007) while also failing to recognize the relevance of statistics to their careers in biology (Evans, 
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2007; Hagen et al., 2013), representing a dissonance between various facets of their overall 

utility value. Additionally, students of different cultural backgrounds express their utility for 

math in different terms, with some students focusing more on the utility of math to immediate or 

proximal goals and others focusing instead on future or distal goals (Shechter et al., 2011). 

Previous studies which included utility value as part of their investigations sometimes included 

items which pertained to some of these different flavors or domains of utility while still 

considering them as part of a single utility-value construct (Conley, 2012; Luttrell et al., 2010; 

Trautwein et al., 2012). Conley (2012) examined math task-values in middle-school students and 

used utility value items from different domains: “Being good at math will be important when I 

get a job or go to college” refers to a student’s math utility for their career or future education 

whereas “Math will be useful for me later in life” refers to a student’s general utility for future 

life. Luttrell et al. (2010), in developing the Mathematics Value Inventory designed to measure 

each of the canonical task-values, included utility items like “I do not need math in my everyday 

life”, referring to how students’ value the utility of math on a short-term, day-to-day basis. 

However, these studies did not explicitly distinguish between life-domains like academics or 

career as separate utility value facets and treated utility value only as a singular construct, 

highlighting a need to systematically explore how students evaluate their utility towards different 

aspects of their lives. 

 Cost may also have distinctive underlying dimensions, and recently has been the subject 

of much investigation. The original definition of cost by Eccles et al. (1983) described three 

components to the overall task-value: the amount of time and energy spent on the task and lost 

for other activities (opportunity cost), the anticipated negative emotions to performing a task 

(emotional/psychological cost), and the effort required to succeed on the task (effort required). 
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Similar to utility value, prior studies included items in their cost measures which captured some 

(Luttrell et al., 2010; Trautwein et al., 2012; Conley, 2012) or all of these dimensions (Chiang et 

al., 2011), but again typically characterized cost as a singular task-value construct. Recently, 

more work has been done to systematically distinguish between the dimensions of cost, 

demonstrating evidence that students do in fact identify those dimensions (Perez et al., 2014; 

Perez et al., 2019; Flake et al., 2015). Perez et al. (2014) identified the three components of cost 

as originally described. Furthermore, they found different relationships between the three cost 

components and achievement, with effort required having the strongest effect, suggesting that 

students evaluate the various cost components differently. Flake et al. (2015) extended these 

results and found not only the three original components of cost, but evidence for a fourth 

component: “outside effort cost”, representing the cost incurred by students for tasks and 

activities outside of the task of interest which impose an additional burden towards completing 

said task. Additionally, they found evidence for a relationship between effort required and 

expectancies, as well as a relationship between emotional cost and performance, suggesting that 

the specific dimensionality within cost must be considered when exploring students’ motivation. 

 Recent research has explored a model of task-values which differentiate them into more 

granular, specific dimensions, showing that students indeed distinguish between various aspects 

of their attainment value, utility value, and cost towards a task (Gaspard et al., 2015) and that 

these dimensions can vary significantly between students of different backgrounds, academic 

success, and gender (Gaspard et al., 2017). These studies suggest that examining multiple 

dimensions is a ripe avenue for developing a more complete understanding of the development 

of students’ task-values and how they impact their engagement. 
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Project Goals 

 The goal of this thesis is to better understand how biology students’ motivation towards 

math in biology influences their engagement and performance with quantitative biology. While 

there are many components to understanding motivation, this thesis will focus specifically on the 

constructs of self-efficacy and task-values as they are described by Social Cognitive Theory and 

Expectancy-Value Theory. These constructs are well-studied across educational research 

contexts, but their significance with respect to the specific challenges in biology education is less 

apparent.  

In Chapter 1, I explore how students’ math self-efficacy beliefs can be shaped through an 

instructional strategy such as group work when working on quantitative biology tasks and the 

relationship between students’ self-efficacy and what experiences they draw from to shape their 

beliefs. I survey introductory biology students both before and after they work together in groups 

to complete two different in-class quantitative biology students, asking them to report their self-

efficacy towards the problems and to describe any experiences during the group work which 

increased or decreased their self-efficacy. Through qualitative coding of their responses, I seek to 

better characterize the distinct group work experiences which contribute to self-efficacy and 

understand how they relate to the sources of self-efficacy. I also aim to relate students’ self-

efficacy towards the problems prior to working in their groups with the sources of self-efficacy 

they report, to better understand how students of different self-efficacy levels benefit or are hurt 

by their experiences during group work. I hypothesize that students with higher incoming self-

efficacy may rely more on mastery experiences to shape their self-efficacy beliefs, while students 

of lower self-efficacy may rely more on more social sources of self-efficacy to shape their self-

efficacy beliefs. Ultimately, better understanding of how group work experiences influence 
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students’ self-efficacy towards quantitative biology will provide insight into how best to design 

or implement this instructional strategy to increase students’ engagement with math in biology. 

In Chapter 2, I investigate students’ task-values towards statistics using a more multi-

dimensional model to better understand the relationship between students’ task-values and their 

understanding of statistical concepts as measured by their performance. I survey introductory 

statistics students at two different institutions about their specific task-values towards statistics as 

well as measure their understanding of statistical concepts as measured by their performance on 

an assessment. Using confirmatory factor analyses, I seek to validate a multi-dimensional model 

of task-values in comparison to a more traditional model of the four main task-values, which I 

believe will be a better representation of students’ task-value beliefs than as traditionally 

described. I also relate students’ task-values towards statistics to their performance on the 

assessment, hypothesizing that students with higher utility values towards statistics will perform 

favorably to their peers with lower utility values. Additionally, I believe that students who 

perceive lower cost to engaging with statistics will perform better on the assessment than their 

peers with higher perceived cost towards statistics. Characterizing students’ task-values on a 

more granular level may provide a more specific understanding of how students value an 

important aspect of quantitative biology such as statistics, and how these values impact their 

performance and understanding of statistical concepts. Understanding students’ motivation 

through students’ task-values and self-efficacy can provide biology educators and instructors 

insight into how best to incorporate and integrate quantitative biology into modern curricula and 

improve students’ skills for using math in biology. 
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CHAPTER 1 — WHAT HAPPENS WHEN STUDENTS WORK TOGETHER? THE IMPACT 

OF GROUP WORK ON SELF-EFFICACY TOWARDS QUANTITATIVE BIOLOGY  

 

Introduction 

 Despite numerous calls emphasizing the importance of quantitative skills in biology 

education (NRC, 2003; AAAS, 2011), educators struggle to incorporate quantitative biology into 

the undergraduate classroom. A variety of approaches to directly integrate quantitative skills into 

introductory biology curricula exists—to varying degrees of success—such as folding 

quantitative topic modules and projects into biology courses (Thompson et al., 2010; Hoffman et 

al., 2016; Metz, 2008), biological topic models into math courses (Chiel et al., Duffus et al., 

2010; Rheinlander & Wallace, 2011), and even developing fully-integrated ‘math for life-

sciences’ courses from the ground up (Usher et al.; 2010, Watkins, 2010, Depelteau et al., 2010). 

A significant challenge towards greater adoption and success of these approaches is students’ 

motivation and engagement with math in biology (Colon-Berlingeri and Burrowes, 2011; 

Thompson et al., 2013a), with many biology students expressing a strong negative perception of 

math (Wachsmuth et al., 2017), leading to their poor engagement (Poladian, 2013; Rheinlander 

and Wallace, 2011). 

 One strategy to address these issues is through active learning strategies such as group 

work. Much work has been focused around the effectiveness of group work and its impact on 

student performance and engagement (Hodges, 2018). The structured and interactive nature of 

group work can increase student performance on high-risk assessments (Haak et al., 2011). 

Working in groups provides students with a variety of social and cognitive benefits, such as 
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opportunities to learn from peers and leverage their unique knowledge and background, as well 

as practice building a consensus with their peers, which can also increase engagement (Nokes-

Malach et al., 2015). Group work is not without its limitations, however. Students frequently 

report displeasure at having to work in groups despite their increase in performance, citing issues 

of unequal participation of group members and a perception of group activities as ‘busy work’ 

(Chang & Brickman, 2018). Performance is also sensitive to how a group was formed, the 

characteristics of the students in the group, and the resulting group dynamics when working 

together (Donovan et al., 2018; Chang & Brickman, 2018). These dynamics can create stressful 

interactions between overconfident or overbearing students with their peers, stifling discussion 

and harming group cohesion, and ultimately impacting their performance (Theobald et al., 2017), 

but their underlying complexity makes the mechanism by which they impact students’ 

engagement less clear. 

Theoretical Framework 

 Social Cognitive Theory, proposed by Bandura (1986) to describe how individuals and 

their behavior are shaped by their environment and their peers, may provide a useful framework 

for examining students’ engagement through group work. Specifically, Bandura identifies the 

importance of self-efficacy, which represents a students’ beliefs and judgements about their 

ability to succeed at a given task (Bandura, 1997; Bong, 2001; Bong & Skaalvik, 2003). Self-

efficacy can strongly influence a student’s academic success in numerous ways in a wide range 

of fields (Woolcock et al 2016; Hutchison et al., 2006; Ainscough et al., 2016), and can predict 

students’ level of engagement with a task and their academic achievement (Klassen & Usher, 

2010; Lee et al., 2014; Pajares & Kranzler, 1995; Britner & Pajares, 2006). Furthermore, self-

efficacy beliefs can have a compounding effect on motivation: highly motivated students can 
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become even more so upon achieving greater and greater success, while struggling students 

frequently reinforce negative self-efficacy beliefs with every subsequent failure (Pajares, 2003). 

 Students derive their self-efficacy beliefs from a handful of sources: mastery experiences, 

vicarious experiences, social persuasions, and physiological states (Bandura, 1997). Mastery 

experiences are when students personally experience success or failure at a task through their 

own work, generating new self-efficacy beliefs after reflecting upon the outcome of their efforts 

(Bandura, 1997). Mastery experiences do not necessarily have to explicitly represent success or 

failure, only that a student judges themselves as gaining or losing mastery (Bandura, 1997; Usher 

& Pajares, 2008). Vicarious experiences (also known as ‘social comparisons’; Bong and 

Skaalvik, 2003; Butz and Usher, 2015) are when students compare their own level of success 

with that of their peers, generating self-efficacy beliefs upon determining their relative level of 

success to their peers (Bandura, 1997). Comparing one’s own success to that of one’s peers 

through a vicarious experience can depend strongly on how similar one is to the subject of the 

comparison; if a student believes that their peer is similar to them and observes them succeed on 

a task, they may feel more strongly that they can also achieve the task than if they aspire to their 

peer or look down on them (Usher & Pajares, 2008). Social persuasions occur when students 

receive direct feedback from their peers or instructors about their performance on a task, the 

evaluation of which can result in self-efficacy beliefs (Bandura, 1997). They are also sensitive to 

the tone of the feedback and context in which the feedback was given (Usher & Pajares, 2008); 

disingenuous or unwarranted feedback may have a stronger negative effect than positive. 

Physiological or affective states represent a student’s emotions and feelings towards a task, such 

as anxiety over potential failure or satisfaction of performing the task. These feelings can 

contribute or amplify existing self-efficacy beliefs (Bandura, 1997). 
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 While students predominantly express the significance of mastery experiences in 

contributing to their self-efficacy both positively and negatively, students also weigh other 

sources when forming self-efficacy beliefs. Many students also draw from vicarious experiences 

and social persuasions to build their beliefs (Usher and Pajares, 2008; Bandura, 1997). For 

instance, in engineering undergraduate students, working in teams and collaborating with each 

other produced opportunities for vicarious experiences and social persuasions, which 

significantly increased self-efficacy beliefs across the board compared to standalone mastery 

experiences (Hutchison et al., 2006; Hutchison-Green et al., 2008). When asking primary and 

secondary students faced with reading and math tasks, students reported specific aspects of 

vicarious experiences, such as distinguishing comparisons between their peers and the adults in 

their lives, as sources of self-efficacy (Butz & Usher, 2015). Additionally, this study also found 

evidence for sources of self-efficacy outside the four traditionally described by Bandura (1997) 

and self-efficacy theory. Students identified the nature of guidance and help provided by their 

peers, teachers, and other adults, such as a teacher’s instructional style or how available they 

were to the student, as salient sources of self-efficacy (Butz & Usher, 2015). This complexity in 

how students characterize and experience the various sources of self-efficacy highlights the need 

to better understand the process by which these experiences arise and how they influence 

students’ self-efficacy beliefs. 

Influencing Self-Efficacy through Group Work 

 At first glance, the interactive nature of group work lends itself to generating experiences 

which build self-efficacy (Usher & Pajares, 2008). Group work can impact students’ self-

efficacy and engagement by fostering a sense of collaboration rather than competition with their 

peers (Springer et al., 1999). When working in small groups, social work students experienced an 
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increase in self-efficacy compared to working independently (Öntaş & Tekindal, 2015). Working 

together in groups builds a sense of collective efficacy which in turn strongly relates to an 

individual student’s self-efficacy beliefs and performance (Lent et al., 2006). Specifically, 

groups with higher self-efficacy beliefs tend to not only reinforce those beliefs but also increase 

the use of high-level cognitive skills during class discussions, as well as academic performance 

(Wang & Lin, 2007). Undergraduate engineering students also frequently reported group work as 

a significant contributor to their self-efficacy beliefs and persistence in their academic career 

(Hutchison et al., 2006; 2008).   

 However, it is unclear how students experience the sources of self-efficacy through group 

work and how different sources may arise depending on specific group work interactions. For 

example, students working on a problem in class in their groups can engender mastery 

judgements by providing them opportunities to succeed or fail at the task. When working or 

discussing collaboratively, students may compare their problem-solving methods, strategies, or 

abilities and those of their peers, allowing them to leverage vicarious experiences to develop 

their self-efficacy beliefs. The nature of these discussions may also result in different outcomes, 

such as whether a conversation promotes encouraging and constructive social persuasions or 

creates a confrontational or judgmental environment where students may experience negative 

social persuasions. Working in groups may also alleviate or amplify a students’ physiological 

states or emotions towards a task, either by creating an environment where they feel supported or 

generating stress when the group fails to work together effectively. Consequently, characterizing 

what students actually experience when working together in groups specifically with respect to 

their self-efficacy and what sources it stems from may generate insight into how to better design 



 

 19 

group work activities to increase their engagement and understanding of difficult-to-wrangle 

topics like those in quantitative biology. 

Research Goals 

 Our study had two primary goals. First, we sought to better understand how self-efficacy 

beliefs arise and are influenced through the specific experiences students have when working 

together in groups. We explored what experiences introductory biology students had during 

quantitative biology group work which positively and negatively impacted their self-efficacy 

with respect to two specific mathematical tasks: calculating Hardy-Weinberg Equilibrium and 

modeling population growth. We hypothesize that group work generates experiences which 

influence students’ self-efficacy beliefs, and we expect to find a preponderance of mastery 

experiences given their significance in developing self-efficacy beliefs (Bandura, 1997; Usher & 

Pajares, 2008), but given the social nature and complex emergent dynamics of group work, we 

also anticipate a variety of experiences which draw from the more social sources of self-efficacy, 

such as availability of help or social persuasions (Butz & Usher, 2015). Second, we sought to 

understand how students of differing self-efficacy levels experience and report the sources of 

self-efficacy through group work. We hypothesize that, after controlling for students’ gender as 

well as the specific topic of the group work assignment, students’ self-efficacy level prior to the 

group work relates to their likelihood of describing a mastery experience, the availability of help 

from their peers, or a lack of mastery. We predict that students with higher self-efficacy may be 

more inclined to report mastery experiences than their lower self-efficacy peers when evaluating 

what experiences increased or decreased their self-efficacy, because their higher self-efficacy 

towards the mathematical problems may be the result of prior mastery experiences and therefore 

are more likely to draw similarities between their present and past mastery. We also predict that 
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lower self-efficacy students might rely more on more help availability, a social source of self-

efficacy, to influence their beliefs than their higher self-efficacy peers. 

 

Methods 

Participants and Setting 

 We surveyed 337 undergraduate students at a large public research university in the 

Northeast. These students were drawn from two sections of an introductory biology course held 

in the Fall of 2019, each section taught by a different instructor. This course is one of two 

required introductory biology courses for many life-science majors at this institution, although 

non-life-science students may take this course to fulfill a general education requirement. The 

course was structured as a large lecture—roughly 150 to 200 students per section—in which 

students were assigned to groups of three to five students, meeting several times per week. 

Groups were assigned according to students’ seating preferences, such as preferring to be near 

the front of the room or off to one side. These groups sat together during class sessions and 

remained together throughout the semester. Groups would frequently work together during a 

class session to complete a collaborative, low-stakes assignment based on the lecture content of 

the prior class session. These assignments consisted of several multi-part questions about the 

lecture topic within an authentic biological context. The curriculum covers a variety of topics in 

evolution, ecology, and biodiversity, such as the mechanisms and principles of evolution, 

biological speciation, ecological competition, and included specific quantitative biology topics 

such as evaluating Hardy-Weinberg Equilibrium and modeling population growth. Participants’ 

demographic information is summarized in Table 1.1. This study was approved by the 

Institutional Review Board at the University of New Hampshire, IRB # 7005. 
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Data Sources and Sampling Method  

 Our study centers around two in-class group-work assignments: one where students 

evaluated Hardy-Weinberg Equilibrium (HWE), and another where students modeled population 

growth (PG). In one section, the HWE assignment centered around a modified case study about 

the conservation of Timber Rattlesnakes, Crotalus horridus, in New England (Drott & Sarvary, 

2016), while the assignment in the other section centered around scenarios about two physical 

traits in humans, hair texture and the unibrow phenotype. For PG, the assignment for both 

sections was the same, centering around the population growth of two invasive species. In both 

course sections, the HWE assignment occurred early on in the semester (week 3 of 15 in one 

section, week 4 of 15 in the other), while the PG assignment occurred in the latter half of the 

semester (week 12 of 15 in both sections).  

 On the day of each assignment, prior to starting the group work, we provided students 

with a pre-survey, consisting of a sample problem similar to the questions on the actual 

assignment, and asked students to simply consider the problem but not actually solve it 

(Appendix A). For HWE, this example consisted of a table of genotype frequencies in a 

population of a single trait with two alleles, asking students to “calculate the predicted number of 

individuals of each genotype under the conditions of Hardy-Weinberg Equilibrium.” For PG, the 

example consisted of a short scenario describing the initial population of a fishing stock, the 

initial observed births and deaths of the population, the carrying capacity of the population, and a 

period of time over which to model the growth of the population, asking students to “calculate 

the population size in the year 2022.” We then asked students to report their confidence in their 

ability to solve the sample problem using a five-point scale, ranging from “1 - Not at all 

confident” to “5 - Completely confident.” After we collected this pre-survey, students worked 
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together in their groups over the course of the class session to complete the assignment. The 

instructors of each section as well as a number of undergraduate and graduate teaching assistants 

would circulate throughout the room to supervise students and answer any questions which arose 

during the group work. Following the end of the class session, we administered a post-survey 

using the online service Qualtrics to students, delivered via the course’s online learning 

management system. This post-survey consisted of the exact same sample problem we provided 

students on the pre-survey, once again asking them to only consider the problem and report their 

confidence in their ability to solve the problem using the same five-point scale (Appendix A). 

This combination of pre- and post-surveys provided us with students’ self-efficacy towards HWE 

and PG both before and after working with their group. Additionally, this post-survey asked 

students to “describe any experiences and/or interactions which increased your confidence in 

your ability to [solve the sample problem],” as well as “describe any experiences and/or 

interactions which decreased your confidence in your ability to [solve the sample problem].” 

These short responses provided us with a qualitative description of students’ group work 

experiences which may have increased or decreased their self-efficacy for both HWE and PG. 

Students’ self-efficacy scores for each assignment, pre- and post-, were then paired with their 

respective short responses for analysis. Students received course credit for completing the post-

survey online equivalent to one homework assignment, while participation in the research study 

was optional. 

Data Analyses 

Qualitative Coding of Short Responses 

 To explore what experiences students had during group work which affected their self-

efficacy, we qualitatively coded students’ responses. We drew heavily from Social Cognitive 
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Theory and the sources of self-efficacy described by Bandura (1997), Usher & Pajares (2008) 

and expanded upon by Butz & Usher (2015) to inform our coding choices and to provide a 

theoretical basis for this goal of our study. We relied on both deductive (theory-based, codes 

established a priori) and inductive (codes emergent from the data) strategies to code students’ 

short responses into salient experiences which influenced their self-efficacy. To capture these 

experiences, we conducted process coding, which involves using gerunds (‘-ing’ words) to 

describe events, occurrences, or ongoing action in a situation of interest (Saldaña, 2015). Process 

coding was especially useful for our study because we were interested in encapsulating specific 

moments during a student’s overall group work experience which may have impacted their self-

efficacy (Saldaña, 2015). 

 To accomplish this, students’ short responses describing their group work experiences 

were extracted from the survey results and de-identified. Students who did not complete the post-

survey for an assignment (and therefore did not provide any short responses) and students who 

declined to give consent to the use of their responses in our study were excluded from our 

analyses for each topic. This resulted in a sample of 311 students out of the 337 surveyed.  We 

compiled students’ responses to each question into four documents, one for each set of question 

topic and the direction of the experience: 230 students reported experiences which increased 

confidence in HWE, 218 students reported experiences which decreased confidence in HWE, 

231 students reported experiences which increased confidence in PG, and 230 students reported 

experiences which decreased confidence in. We started our exploration by reviewing students’ 

responses in each set to get an overall sense of what experiences students described. Three 

members of the research team parsed through all student responses to develop a preliminary 

codebook of students’ group work experiences, both those which increased their self-efficacy 
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and those which decreased their self-efficacy. Throughout this preliminary coding, the team 

relied on a process of regular introspection and reflection of students responses and how each 

researcher elected to code each response, called ‘writing analytic memos’, which helped us 

organize thoughts, identify patterns and notable responses, and develop a deeper understanding 

of the responses as a whole to ensure consistency in the codebook (Saldaña, 2015). This 

preliminary codebook included a priori codes which were intended to capture the defining 

experience of each of the sources of self-efficacy, based on theory (Bandura, 1997) and findings 

of other self-efficacy studies (Butz & Usher, 2015). Each code was then categorized by the 

source of self-efficacy to which it pertained. 

 For experiences which increased self-efficacy, two members of the research team 

independently process-coded two ‘training rounds’ of 40 responses each, drawn from both HWE 

and PG and from both sections of the course. Following each training round, we discussed the 

codes we assigned to each response and resolved any disputes or disagreements. We iteratively 

re-examined previously coded responses whenever we added new codes to the codebook or 

definitions of a priori codes changed, based on our discussions and the analytic memos we wrote 

and reflected upon. Following these two training rounds and the solidification of the codebook, 

the research team independently coded an additional third and fourth round of 40 responses each, 

following a similar pattern to the training rounds, while also assessing inter-rater reliability (IRR) 

for each of our developed codes. Per the recommendations of Xu and Lorber (2014), we 

established Holley and Guilford’s G-index (Holley and Guilford, 1964) as our metric for IRR, 

because of its general robustness with skewed responses, which we expected our data to exhibit. 

We established thresholds for achieving IRR based on the recommendations of Hruschka et al. 

(2004): index of agreement (G) > 0.80 for most (e.g., > 90%) of codes. We calculated G-indices 
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for the third and fourth rounds of coding and achieved our threshold for IRR across all of our 

codes, with a minimum G-index of 0.75, which occurred on only one code in the third round of 

coding. Following this, one member of the research team coded all of the remaining experiences 

which increased self-efficacy independently. They then shared a random selection of 30% of 

these remaining coded responses with the other member of the research team to confirm our IRR 

again. We also met our threshold for IRR for this last set of codes, with a minimum G-index of 

0.93. 

 For experiences which decreased self-efficacy, we followed a similar procedure to 

experiences which increased self-efficacy. Two members of the research team independently 

process-coded two training rounds of 40 responses each, compiled identically as before. Once 

again, we iteratively re-coded previous items as new codes were added to the codebook or as 

definitions changed. These two rounds required more revision and discussion than with the 

increased responses, so we elected to conduct a third training round of 40 responses to further 

solidify our codebook. Following these training rounds, the research team conducted a fourth and 

fifth round of coding, again 40 responses each, and calculated G-indices for all our codes. While 

we achieved our threshold for IRR across all of our codes, with a minimum G-index of 0.7 on 

one code in the fourth round of coding, the research team decided to both independently code all 

the remaining decrease experiences rather than simply a random subset as with increase 

experiences. We based this decision on our discussions during the fourth and fifth coding rounds, 

as we developed two additional codes in the fifth round of coding. For these remaining 

experiences, we also met our threshold for IRR, with a minimum G-index of 0.98. 
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Generalized Linear Mixed Models of Students’ Self-Efficacy and Reported Sources of Self-

Efficacy 

 To investigate whether students of varying math self-efficacy report different sources of 

self-efficacy during the group work, we examined several generalized linear mixed models 

(GLMM). Given the wide variety of experiences students reported and the range of sources of 

self-efficacy, we elected to model only the most commonly reported sources across both sets of 

responses to address this research goal. For experiences which increased self-efficacy, we 

modeled the relationship between students’ incoming self-efficacy towards the quantitative 

problems prior to the group work assignment and whether or not a student reported a mastery 

experience, as well as the relationship between incoming self-efficacy and whether or not a 

student reported help availability from their peers. For experiences which decreased self-

efficacy, we modeled the relationship between incoming self-efficacy and whether or not a 

student reported a lack of mastery. 

 For all our models, we included as predictors: 1) the question type—HWE or PG—about 

which the student was describing in their response, as we wanted to control for any differences in 

sources of self-efficacy reported due to the type of problem students were facing; 2) gender, as 

we wanted to control for any differences in reported self-efficacy sources between genders, as 

gender differences in self-efficacy have been previously found (Usher & Pajares, 2008; Butz & 

Usher, 2015). Our explanatory variable in each model was students’ incoming self-efficacy as 

measured by their pre-survey self-efficacy score, and our response variable was students’ 

reported self-efficacy source, expressed as a binary outcome of whether or not a student reported 

that source in their response. Because we sampled the same students from two different points in 

the semester, because students were assigned into groups which meant that some students shared 
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similar experiences, and because we sampled from multiple sections, we initially included these 

factors as random effects. However, due to lack of convergence, we instead included class 

section and assigned group as fixed effects instead (Theobald et al., 2018). Model selection and 

quantitative analyses were conducted using the standard R v. 4.0.2 packages for generalized 

linear modeling (R Core Team, 2020), ‘lme4’ (Bates et al, 2015) to test each model and evaluate 

odds ratios, and ‘effects’ (Fox & Weisberg, 2019) for plotting our results. The final models for 

each self-efficacy source are detailed below, with included random effects marked in 

parentheses. 

Mastery Experiences - Increased Self-Efficacy 

Reporting of Mastery Experiences ~ Self-Efficacy Level + Question Type + Gender + Section + 

Group + (Student) 

Help Availability (Peers) - Increased Self-Efficacy 

Reporting of Help Availability from Peers ~ Self-Efficacy Level + Question Type + Gender + 

Section + Group + (Student) 

Lack of Mastery - Decreased Self-Efficacy 

Reporting of a Lack of Mastery ~ Self-Efficacy Level + Question Type + Gender + Section + 

Group + (Student) 

 

Results and Discussion 

 We assigned a total of 1036 process codes to our 983 recorded responses: 541 codes to 

experiences which increased self-efficacy and 495 codes to experiences which decreased self-

efficacy. We identified ten distinct process codes for experiences which increased self-efficacy 

(Table 1.2) and twenty distinct process codes for experiences which decreased self-efficacy 
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(Table 1.3). We additionally included two ‘neutral’ codes which are shared between increase and 

decrease experiences: “no impact”, for when students expressed that no experiences occurred 

during group work which impacted their self-efficacy, and “non-answer”, for when students 

provided an incomplete, unintelligible, or irrelevant response. We identified and categorized our 

codes into seven sources of self-efficacy. These sources were derived from the four original 

descriptions by Bandura (1997) as well as three additional sources as identified by Butz and 

Usher (2015): help availability from peers, help availability from teachers, and learning 

environment. In this section, we discuss the overall patterns in students’ experiences which 

increased or decreased their self-efficacy, going through each source of self-efficacy within both 

sets of experiences. Within relevant sections, we also detail the results of our GLMMs exploring 

how students’ self-efficacy level relates to their likelihood of reporting a specific source, e.g., 

mastery experiences. 

Experiences which Increased Self-Efficacy 

 As we expected, a considerable proportion of experiences which increased self-efficacy 

reported by our students were mastery experiences (Figure 1.1). However, the most common 

experiences reported by students actually reflected the availability of help from their peers. A 

few students described the availability of help from their teachers/instructors. Students reported 

no vicarious experiences, social persuasions, or physiological states increased their self-efficacy. 

Encouragingly, only a small proportion of students reported no experiences increased their self-

efficacy. 

Mastery Experiences 

 We identified three salient mastery experiences (Figure 1.1) which increased students’ 

self-efficacy: 1) ‘accomplishing it’, which represents the act of succeeding at a part of all of the 
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group work, as well as a general feeling of accomplishment simply by working on the problem 

and practicing it; 2) ‘confirming their answers’, which represents confidence in their answers or 

progress through checking their work and results with their group members; and 3) ‘teaching / 

guiding others’, which represents a feeling of mastery because they were able to help explain or 

teach a part of the group work to their peers. While mastery experiences can represent moments 

where students experience success and can verify it directly, as with ‘accomplishing it’ or 

‘confirm their answers’, mastery experiences also encompass moments where students judge 

themselves as successful based on their sense of progress or accomplishment, as is the case with 

‘teaching / guiding others’ and feeling confident in their own ability because they are skilled 

enough to guide their peers. 

 The most commonly reported mastery experience was ‘accomplishing it’ (Figure 1.1). In 

general, students noted the benefit of simply being able to practice solving problems about 

Hardy-Weinberg Equilibrium and modeling population growth. Many students indicated that 

prior to starting the group work, they were apprehensive about their understanding of the topics 

and were not sure whether they could succeed at the assignment, but once they had worked 

through the problems in their groups their confidence in their ability to do so increased. While 

this particular aspect is not necessarily unique to a group work setting, as simply providing 

students with individual practice may also benefit them, there are still some ways in which group 

work is especially impactful. Some students specifically indicated that after their group had 

worked through some problems together initially, they were then able to complete later problems 

on the assignment on their own. This ‘easing into the water’ interaction in groups appears to 

allow students to overcome an initial doubt or lack of confidence with their peers and lets them 

build their own mastery, which is crucial for building salient self-efficacy beliefs (Bandura, 
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1997; Usher & Pajares, 2008). They also valued being able to work on specific parts of the 

assignment collaboratively rather than needing to navigate the entire assignment by themselves. 

These experiences highlight how the collaborative environment of group work can provide 

benefits on top of merely providing students with independent practice, by helping mitigate some 

of the cognitive load of working through problems independently (Nokes-Malach et al., 2015). 

 The second most commonly reported mastery experience was ‘confirming their answers’ 

(Figure 1.1). Students valued being able to compare their answers with their peers to get a sense 

of their success and progress, often reporting that working on a problem on their own, then 

checking their answers with their peers and getting the same result boosted their confidence in 

their own answers. Some students specifically mentioned that going into the assignments, they 

believed they understood how to evaluate Hardy-Weinberg Equilibrium or model population 

growth and had methods to approach these problems, and upon seeing their group-mates get the 

same answer as their own, they felt more confident that their method was indeed successful. This 

self-checking and reinforcing aspect of group-work is notable; in a large-lecture setting with 

hundreds of students, instructor attention is at a premium even with the help of teaching 

assistants, so this increased ability for groups to resolve small or simple misconceptions and 

mistakes is especially helpful to prevent instructor assistance from being spread too thin. 

 Lastly, some students also reported a considerable increase in confidence in their own 

ability to solve the problems because they were able to teach or guide their peers about the topic 

of the assignment (Figure 1.1). They described how being able to explain to someone else how to 

solve a part of the assignment or how to reason through a problem reflected that they fully 

understood the material themselves, which increased their confidence in solving the problem on 

their own. Some even mentioned how systematically working through problems with peers who 
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needed help reinforced their own knowledge and understanding, even if they were not fully 

confident going into the group work. While the focus of most instructors is typically on helping 

to increase the self-efficacy of less-confident students, these experiences are especially exciting 

and encouraging, as they showcase not only the best of how students are able to help each other 

learn and increase their confidence and engagement, but also how the act of teaching or guiding 

someone else is beneficial even to confident students. This also dovetails with our previous 

observation about the reinforcing and self-corrective aspects of group work, as students who are 

able to explain concepts or problems to their peers additionally serve to optimize the attention of 

the instructors to the groups which most need help. 

 To investigate our second research goal, we wanted to determine whether students of 

different incoming self-efficacy levels were more or less likely to report mastery experiences as a 

source of self-efficacy. We examined a GLMM examining students’ pre-assignment math self-

efficacy levels and their reporting of an experience which increased their self-efficacy which 

reflected a mastery experience, controlling for the question topic (HWE or PG), their gender, 

class section, and assigned group as fixed effects, with student as the only random effect. We 

checked the assumptions of this model (Theobald et al., 2019) and verified that: 1) the outcome 

variable is binary (reported a mastery experience, yes or no); 2) our observations are not 

independent, but we are accounting for this lack of independence using our random effects; and 

3) our predictor variable is linearly related to the logit of the outcome variable. We found that 

students’ math self-efficacy significantly increased the log odds of reporting a mastery 

experience (β: 0.622; standard error 0.116, p < 0.001; Table 1.4). For a one-unit increase in self-

efficacy levels, the odds of a student reporting a mastery experience are 1.9 times greater than 

the odds of a student not reporting a mastery experience (eβ = e0.622 = 1.862). Therefore, higher 
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self-efficacy levels are related to a greater probability of reporting a mastery experience when 

making a judgement about a positive group work experience (Figure 1.2). This aligns with our 

expectations that students with higher incoming self-efficacy would tend to rely more on mastery 

experiences when evaluating an increase in self-efficacy compared to their lower self-efficacy 

peers. Butz and Usher (2015) also observed this tendency with their students when asked about 

self-efficacy sources with respect to math. One reason for this tendency may be that students 

who have such high self-efficacy going into the assignment have experienced success in math 

before these quantitative group work assignments, making them more inclined to consider new 

successful experiences when further evaluating their self-efficacy (Usher & Pajares, 2008). A 

handful of our students did in fact indicate that they worked with Hardy-Weinberg Equilibrium 

problems earlier in their academic career and that working on it again and solving the problems 

correctly increased their self-efficacy further. 

Availability of Help from Peers and Teachers 

 As described by Butz and Usher (2015), the availability of help from peers represents 

how help or guidance from a student’s peers or even merely the potential for such help 

contributes to the student’s self-efficacy beliefs. Similarly, the availability of help from teachers 

reflects how the assistance or presence of instructors can affect how a student judges their self-

efficacy. We identified three distinct experiences for help from peers (Figure 1.1): 1) ‘discussing 

/ working together’, which represents the benefit of simply being able to talk to group mates, 

discuss ideas, and work through the problems together; 2) ‘being taught / guided’, which 

represents experiences where students received clarification or help from their group mates; and 

3) ‘asking questions’, which represents being able to actively ask questions and seek help from 

their peers. For help from teachers, we identified one experience: ‘consulting with a teacher’, 
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which represents experiences where students received help from an instructor or teaching 

assistant, or were able to ask an instructor for help directly. 

 The most commonly described experience of help availability from their peers was 

‘discussing / working together’ (Figure 1.1). Similarly to ‘accomplishing it’, most students 

indicated that simply being able to work in a group and talk to their peers was beneficial, as it 

allowed them to share ideas and thoughts. Some students even expressed that they communicated 

or discussed answers with people outside of their own group, revealing the possibilities for larger 

‘super groups’ to emerge in large shared spaces like a lecture hall. Many students expressed that 

discussing through a problem helped them feel better about their own answers or methods, even 

if there was no explicit checking as with ‘confirming their answers’. Some students appreciated 

that their group members had different opinions and perspectives, which allowed them to refine 

their own methods or correct misconceptions, increasing confidence in their ability to tackle the 

problems, which represents a known benefit of working in groups (Nokes-Malach et al., 2015). 

Students reported that the setting also enabled the group to collectively assist someone who was 

having difficulty, in some ways acting as a more distributed version of ‘teaching / guiding 

others’, which further demonstrates the self-guiding and adjusting element of group work. Some 

students even felt that talking with their group mates was easier and more comfortable than 

asking an instructor for help, which, while uncommon, is an important consideration for 

instructors, especially those in a large-lecture setting where students may already feel distant 

(Gill, 2011). 

 Being able to both ask questions and receive help from their peers were also important 

interactions for students (Figure 1.1). In many specific circumstances, not only did students 

report that they were able to ask their group mates questions about difficulties they were having, 



 

 34 

they also described instances where other group members stepped in to help them of their own 

accord, without the student soliciting help directly. Many students reported that even though they 

may have struggled or even gotten something incorrect, having other group members around 

them provide clarification or support enabled them to ultimately build their confidence in solving 

later problems because they now knew the correct approach. These responses are especially 

interesting as they provide a small glimpse into how experiences which could potentially harm a 

student’ self-efficacy can end up being resolved in the moment through a group interaction and 

turned into constructive judgements instead. Bandura (1997) argues that moments such as these 

may not be as impactful as achieving mastery directly through one’s own effort, but may still 

provide an avenue for students to build their self-efficacy beliefs. Several students also reported 

that receiving help from the instructors and teaching assistants was beneficial in general. Some 

valued that they were able to receive one-on-one attention from an instructor, or were able to 

resolve confusion or misunderstandings which deadlocked the student’s or their groups’ 

progress. This particular kind of experience highlights the importance of instructor interaction in 

a group-work setting, as even though groups are able to self-guide and reinforce each other, not 

all issues can be overcome by the student or group themselves, and having the fallback of 

reaching out to an instructor is still a significant component of improving students’ self-efficacy. 

 We also wanted to determine whether students of different self-efficacy levels were more 

or less likely to rely on help availability from peers to evaluate their self-efficacy. We examined 

a GLMM examining students’ post-assignment math self-efficacy levels and their reporting of an 

experience which increased their self-efficacy which reflected the availability of help from their 

peers, controlling for the question topic (HWE or PG), gender, class section, and assigned group 

as fixed effects, with student as the only random effect. We checked the assumptions of this 
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model (Theobald et al., 2019) and verified that: 1) the outcome variable is binary (reported of 

availability of help from peers, yes or no); 2) our observations are not independent, but we are 

accounting for this lack of independence using our random effects; and 3) our predictor variable 

is linearly related to the logit of the outcome variable. We found that students’ math self-efficacy 

significantly decreased the log odds of reporting the availability of help from peers, (β: -0.374; 

standard error 0.118, p = 0.002; Table 1.4). We additionally found that class section was a 

significant predictor (β: -1.467; standard error 0.448, p < 0.001; Table 1.4). For a one-unit 

increase in self-efficacy level, the odds of a student not reporting the availability of help from 

peers are 1.5 times greater than the odds of a student reporting the availability of help from peers 

(1/eβ = 1/e-0.374 = 1.453). Therefore, greater self-efficacy levels are related to a lower probability 

of reporting the availability of help from peers when making a judgement about a positive group 

work experience (Figure 1.3). This also aligned with our expectations that students of lower 

initial self-efficacy may rely more on the social sources of self-efficacy like help availability than 

their higher self-efficacy peers. Unlike some of their higher self-efficacy peers, students with 

lower self-efficacy going into the assignment may not have had experience with solving Hardy-

Weinberg Equilibrium or modeling population growth, meaning they have no prior mastery from 

which to draw a sense of confidence. These students instead may look to their peers for guidance 

and seek to ‘talk it out’ with others rather than needing to work alone, as we found in many of 

our students’ responses. 

Vicarious Experiences, Social Persuasions, and Physiological States 

 For vicarious experiences and social persuasions, we determined our codes a priori based 

on the self-efficacy literature and theory about these sources (Table 1.2). For vicarious 

experiences, we established the code “comparing themselves positively”, which reflects the 
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canonical definition of a vicarious experience where a student compare their abilities to those of 

their peers and makes a favorable or positive judgement about themselves. For social 

persuasions, we established the codes ‘getting positive feedback from peers’ and ‘getting 

positive feedback from teachers’, which similarly reflect the definition of social and verbal 

persuasions by Bandura (1997) where students receive encouragement or appraisal of their 

abilities from their group mates or instructors. Lastly, while emotional and physiological states 

are known to impact self-efficacy beliefs (Bandura, 1997), these emotions are predominantly 

described as negative influences, such as anxiety, stress, or dread related to a task. Therefore, we 

did not expect to find any responses which increased self-efficacy through a physiological state 

and established no a priori codes for these experiences. 

 We did not observe any instances of emotional or physiological states resulting in an 

increase in self-efficacy, yet we notably did not observe any responses where students compared 

themselves positively to their peers (vicarious experiences), or where students expressed that 

they received encouragement or feedback from their group mates or the instructors outside of 

simply receiving help or clarification on the problems (social persuasions). The lack of vicarious 

experiences is conspicuous for a number of reasons. As group work is transparent and 

collaborative by design, given that students are working in close physical proximity on a shared 

task, this setting would seem to provide ample opportunities for students to compare their 

abilities with that of their peers. The absence of social persuasions in the form of positive 

feedback from peers or instructors is less unusual, however and may reveal a possible 

explanation for the absence of either source in our responses. Social persuasions may be limited 

in how significant or impactful they are in improving students’ self-efficacy, and more often may 

undermine students’ self-efficacy beliefs rather than reinforce them (Bandura, 1997; Usher & 
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Pajares, 2008). Our surveys asked students to simply report any experiences which increased or 

decreased their confidence in solving the example problem in a short response, meaning that 

students were free to describe any number of the wide variety of experiences that they did. More 

often than not, students typically responded by describing only one or two salient experiences; it 

is distinctly possible that due to the relative significance or importance of other sources of self-

efficacy—such as mastery experiences or help availability—in making judgements about one’s 

own experiences, students simply did not end up reporting any vicarious experiences social 

persuasions even if they did occur. Therefore, we cannot claim that students working in groups 

do not rely on these two sources to develop their self-efficacy beliefs. 

Experiences which Decreased Self-Efficacy 

 Encouragingly, we found that the most commonly reported experience which decreased 

self-efficacy (Figure 1.3) was none at all: the majority of students who responded reported that 

group work had ‘no negative impact’ on their self-efficacy. Of the responses which did indicate a 

decrease in self-efficacy, we found that most of the experiences students reported were reflective 

of a lack of mastery, followed by a lack of availability of help or support from their peers. A 

small proportion of students also reported vicarious experiences comparing themselves 

negatively to their group mates, while marginal proportions of students expressed a lack of 

availability from teachers, social persuasions, or physiological states. Notably, a number of these 

negative experiences appeared to be ‘transient’ during the group work, in that students reported 

that an experience decreased their confidence but later events or experiences during the group 

work resolved the issue or even increased their confidence in the end. For our analyses, we coded 

the relevant parts of these responses with our decrease codes while leaving out non-negative 

experiences. 
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Lack of Mastery Experiences 

 In contrast to experiences which increased self-efficacy, we identified a considerable 

breadth of experiences in which students expressed a lack of mastery over the assignment. 

Students reported nine distinct mastery experiences (Figure 1.3). Most commonly, students 

reported that generally ‘lacking understanding’ of the content or the assignment decreased their 

confidence in solving the problem. While most of these lapses in understanding were general or 

non-descript, many students specifically noted that what decreased their confidence were 

moments when the entirety of their group were lacking understanding and unable to figure out a 

problem or part of the assignment. Ultimately, we coded such experiences as ‘lacking 

consensus’, where students felt a lack of mastery because they were unable to agree or figure out 

a solution to their misunderstanding. Related to these experiences are when students indicated 

their group ‘failed to confirm their answers’, representing how students remained unsure of their 

answers or methods because their group did not engage in cross-checking. We highlight these 

experiences because they reveal a possible deficiency in the self-corrective and guiding aspect of 

group work that we identified in the previous section. If a group is unable to or unwilling to 

collaborate in this way, students are left without the ability to create their own mastery. 

 This theme of an ‘inability’ to create their own mastery appears in other experiences as 

well (Figure 1.3). Students occasionally reported that, aside from ‘failing to accomplish’ the task 

and making mistakes, some groups decided to split up their efforts in order to complete the 

problems, meaning that some students did not actually work on all parts of the assignment, 

resulting in a feeling that they did not really engage with the material and get the practice that 
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they wanted. Students also expressed in a variety of different ways that they felt pressured for 

time when working on the assignment; many students felt that their group was ‘rushing through’ 

the problems, not allowing them to work at their preferred pace to build their understanding and 

confidence on their own terms, or even not finishing the assignment by the end of the class 

session, resulting in a lack of confidence that they can actually complete the problems. 

 Lastly, there were a small number of students who experienced a decrease in confidence 

apparently because they were unable to solve a problem on their own or with their group, 

requiring the assistance of their peers or the instructors (Figure 1.3). This particular experience is 

interesting because it relates to an important consideration for the development of self-efficacy 

beliefs, that students may interpret the same set of circumstances and make different judgements 

about their ability (Bandura 1997; Usher & Pajares, 2008). Where one student may find that 

being able to ask their peers or the instructor questions reflects an availability of help and 

leverages that support to feel more confident in themselves, other students appear to judge 

themselves negatively because they ‘required support’, perhaps feeling that a true mastery over 

the material means that they must be able to ‘accomplish it themselves’, and being able to do so 

is a failing on their part. 

 As with experiences which increased students’ self-efficacy, we wanted to determine 

whether students of different incoming self-efficacy were more or less likely to report a decrease 

in confidence from a lack of mastery. We examined a GLMM examining students’ pre-

assignment self-efficacy level and their reporting of an experience which increased their self-

efficacy which reflected a lack of mastery, controlling for the question topic (HWE or PG), 

gender, class section, and assigned group as fixed effects, with student as the only random effect. 

We checked the assumptions of this model (Theobald et al., 2019) and verified that: 1) the 
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outcome variable is binary (reported a lack of mastery, yes or no); 2) our observations are not 

independent, but we are accounting for this lack of independence using our random effects; and 

3) our predictor variable is linearly related to the logit of the outcome variable. We found that 

students’ pre-assignment self-efficacy significantly decreased the log odds of reporting a mastery 

experience (β: -0.288; standard error 0.110, p = 0.009; Table 1.4). For a one-unit increase in self-

efficacy level, the odds of a student not reporting a lack of mastery are 1.3 times greater than the 

odds of a student reporting a lack of mastery (1/eβ = 1/e-0.288 = 1.334). Therefore, greater self-

efficacy levels are related to a lower probability of reporting a lack of mastery when making a 

judgement about a negative group work experience (Figure 1.2). This is contrary to our 

expectations that students with higher incoming self-efficacy will rely more on mastery sources 

than their lower self-efficacy peers when evaluating their own self-efficacy. This expectation is 

based on Butz and Usher’s (2015) findings, where students of higher self-efficacy tended to 

evaluate their beliefs through mastery more than their lower self-efficacy peers, but as they only 

examined how their students’ self-efficacy increased and not how they decreased, this tendency 

may not be present when considering what decreased self-efficacy. Furthermore, given that many 

lower self-efficacy students may not have had prior experience with HWE or PG, it is possible 

that the group work experiences they described were their first significant exposure to these 

problems, marking these moments of a lack of mastery as particularly significant in harming 

their self-efficacy beliefs. We also found that gender was a significant predictor (β: -0.986; 

standard error 0.278, p < 0.001; Table 1.4). The odds of a female student reporting a lack of 

mastery are 2.7 times greater than a male student (1/eβ = 1/e-0.986 = 2.680). This reflects the 

gender differences found by Butz and Usher (2015) with their students. 
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Lack of Availability of Help from Peers and Teachers, Vicarious Experiences, Social 

Persuasions, and Physiological States 

 The most common expression by students of a lack of help from their peers was that their 

group suffered a breakdown of communication or were simply unwilling to work together 

(Figure 1.3). Sadly, some students indicated that their peers not only neglected to speak up or 

contribute to the group’s efforts, but also that some individuals actively discouraged discussion 

or withheld their answers from the group. This experience highlights one of the primary pitfalls 

of group work, when group dynamics break down and inhibit collaboration rather than foster it 

(Chang & Brickman, 2018; Donovan et al., 2018; Nokes-Malach, 2015).  

 Notably, in contrast to experiences which increased self-efficacy where we did not find 

vicarious experiences, social persuasions, or physiological states, students described a small 

number of experiences which reflected these sources of self-efficacy (Figure 1.3). Related to the 

sense of time pressure that other groups experienced, some students expressed that they felt like 

they were ‘falling behind’ their peers in their progress on the assignment, judging themselves 

less confident in their abilities because they felt unable to keep up with their more skilled group 

mates or even feeling like a burden on their group because they were taking longer to work 

through the problems. Some students also indicated that they felt less confident in their abilities 

because their peers were effortlessly proceeding through the assignment while they themselves 

struggled. A handful of students described how combative or overly critical peers made them 

question their abilities and decreased their self-efficacy. As with the lack of vicarious 

experiences and social persuasions in our increase responses, the relative influence of the sources 

of self-efficacy may explain why they appear in the set of decrease responses. These experiences 
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appear to describe significant moments of self-doubt, without an immediate or subsequent 

resolution as we observed across many of the decrease responses. Therefore, these specific 

experiences might have stood out more to our students than their positive equivalents. We 

additionally observed a small number of students express anxiety or stress over working in the 

group, hinting at the general dislike of group work observed by Chang and Brickman (2018). 

Teaching Implications 

 This study explored how group work may influence students’ engagement with 

quantitative biology, but our results have important implications for understanding the impact of 

group work more broadly. Crucially, there appear to be several negative experiences which 

instructors should be mindful of when designing and supervising their group work. A key 

experience is when groups are unable to come to a consensus or are otherwise confused and 

unable to figure out a problem even after working together. This sometimes went hand-in-hand 

with a failure of groups to openly communicate with each other. Instructors can try to mitigate 

these experiences by reinforcing the importance of talking through problems as a group, or 

reaching out to neighboring groups if the whole group is struggling, leveraging the potential for 

‘super groups’ to magnify the collaborative and self-guiding benefits of group work we 

observed. A strategy to enforce these internal discussions may be to assign roles to each student 

in a group. Group roles such as a group scribe or discussion leader (Bailey et al., 2012) can 

enhance students’ engagement in information sharing (Mesmer-Magnus & DeChurch, 2009) and 

can ensure collaboration and equal participation (Savadori et al., 2001). Care must be taken, 

however, to ensure that students understand the specific role they are assigned to and that each 

role is sufficiently meaningful, as sometimes groups may diminish or ignore their roles, even 

resulting in experiences similar to our students where they merely worked independently or only 
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on a discrete portion of the assignment, consolidating their work in the end (Chang & Brickman, 

2018). 

 Additionally, students often expressed some feeling of time pressure when working in a 

group, desiring more time to work with the problems and build their own understanding, or 

feeling rushed by their group mates. Instructors can take care to design their assignments and 

problems to be completable well within the time allotted for a class session, break up a group 

assignment over multiple sessions, or provide additional practice for students outside of class, 

but this may not always be possible. Instead, to alleviate the feeling of being rushed or falling 

behind during class, group work assignments can be designed to balance providing sophisticated 

problems which promote student gains (Kirschner et al., 2011) while also reducing the stakes of 

the assignment by grading charitably or not at all, instead assessing students on the assignment 

content through other means, like group quizzing or polling questions throughout class (Hodges, 

2018). 

 Encouragingly, there are also several positive experiences which arise from group work 

which instructors can foster. Instructors should lean heavily into the collaborative benefits of 

group work and provide ample opportunities for students to discuss their ideas and results 

throughout the group work assignment, as students predominantly found this aspect beneficial. 

Instructors can therefore design their assignments to include frequent checkpoints or 

opportunities for students to share and confirm their answers. For example, instructors can 

incorporate problems into a group work assignment which ask students to discuss among 

themselves and form a consensus before proceeding, or by segmenting a group work assignment 

for whole-class discussions (Gillies, 2013) or calling on students to lead or support discussions 

about the group work (Eddy et al., 2015). These structures can help provide students with 
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validation of their efforts and verification of their success and abilities, increasing their self-

efficacy. Additionally, several students expressed the advantage of being able to teach or guide 

their peers in reinforcing their own understanding and self-efficacy. Establishing group roles to 

help facilitate discussion and directed help (Bailey et al., 2012) may benefit these more confident 

students as well as their peers who need help. Lastly, and perhaps most simply, students most 

frequently reported that simply being able to work on these problems and achieve success was 

highly beneficial in increasing their self-efficacy. Instructors can design group work assignments 

to solve complex or more involved problems which require students to work together (Scager et 

al., 2016) and provide meaningful opportunities for students to succeed at a sophisticated task, 

potentially increasing the significance and endurance of that success and mastery in shaping their 

self-efficacy (Bandura, 1997; Usher & Pajares, 2008). 

Limitations and Future Directions 

 When we set out to investigate what specific experiences students have during group 

work which affect their self-efficacy, we elected to survey students using short open responses 

and a basic assessment of self-efficacy. This approach meant that we could survey a large 

number of students, allowing us to capture and characterize a broad set of distinct group work 

experiences, both positive and negative, and how those experiences feed into students’ self-

efficacy beliefs. This breadth, however, carries with it the significant trade-off of precision. 

 Short open-response questions like those on our surveys are simple for students to 

complete but are likely unable to capture the full range of students’ experiences of students in 

great detail. Our questions asked only generally about students’ group work experiences which 

increased or decreased their confidence in their ability to solve the quantitative problems, which 

represents a huge range of possibilities. Students may not have thought particularly deeply or 
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thoroughly about the experiences which were most meaningful to them; they may simply have 

reported the first group work experience that they could remember during the survey. 

 Recent research has shown that students may rely on several different sources of 

information or experiences to varying degrees when evaluating their self-efficacy beliefs (Chen 

& Usher, 2013). Our own findings, especially among experiences which decreased self-efficacy, 

revealed how many experiences appear related to each other, which is reflective of the complex 

social dynamics and interactions of group work (Nokes-Malach, 2015; Donovan et al., 2018) 

One distinct experience may contribute to the significance or salience of an entirely different 

experience on students’ self-efficacy beliefs. For some students, perhaps all that was necessary to 

increase their self-efficacy was to simply work together in groups, leveraging the availability of 

help from peers, while for another student in their same group, merely talking with their peers 

may not be enough. Additionally, the differential presence and absence of sources across 

experiences which increased or decreased self-efficacy may be due to their relative importance in 

different contexts. In our students, we observed that vicarious experiences appear to play a role 

in harming their self-efficacy, but not in helping their self-efficacy. This variability in the 

magnitude or significance of how each source of self-efficacy influences students in different 

context or valences further underscores the limited depth of analyzing short responses and 

broader questions about what experiences shaped students’ self-efficacy. 

 The highly-specific nature of experiences which influence students’ self-efficacy beliefs 

may instead be more thoroughly captured through the use of interviews with students about their 

group-work experiences. Interviews offer researchers an opportunity to explore a rich account of 

students’ individual experiences and self-efficacy judgements. Students could be asked to expand 

upon particularly salient experiences, revealing and making explicit the possible relationships 
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between that experience and others during the group work. Additionally, while we were able to 

show a relationship between students’ self-efficacy levels and their likelihood to report a given 

source of self-efficacy, more insight could be garnered through interviews about the specific 

characteristics of an individual student, such as their academic background, socioeconomic 

status, experiences relating to their race/ethnicity, and the myriad other biases which could 

further influence their self-efficacy beliefs, how they are formed, and how they interpret group 

work experiences to develop those beliefs. In particular, our sample lacks the demographic 

breadth found in other courses at other institutions (our students were predominantly female, for 

instance), further highlighting a need to capture the experiences of students from a variety of 

backgrounds and characteristics. 

 

Conclusion 

 This study found that introductory biology students working in groups to complete 

quantitative biology tasks like calculating Hardy-Weinberg Equilibrium and modeling 

population growth draw their math self-efficacy judgements from a wide variety of experiences, 

providing a window into how group work especially may foster or harm students’ self-efficacy. 

In particular, when their confidence increased, students reported a preponderance of constructive 

mastery experiences, finding that working on these problems in their groups provided them 

additional practice, the ability to verify their answers with their peers, and even opportunities to 

leverage their mastery to help their peers, reinforcing their own abilities. Students also found that 

the group work frequently allowed them to self-correct and guide each other through the 

problems, highlighting the collaborative, interactive, and supportive benefits of working in 

groups by making those experiences accessible to students. These group work benefits have been 
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shown to increase students’ engagement (Nokes-Malach et al., 2015), and may also help reshape 

students’ avoidance of math in biology by providing them with opportunities to develop their 

quantitative skills in a supportive environment. When we examined how the prevalence of these 

sources related to students’ math self-efficacy levels, we found that higher self-efficacy students 

were more likely to report mastery experiences when evaluating their self-efficacy, and lower 

self-efficacy students were more likely to report that the availability of help from their peers 

increased their self-efficacy, highlighting how experiences during group work and the sources of 

self-efficacy may be differently interpreted by students based on their existing self-efficacy 

beliefs. Instructors can design group work assignments and tasks to engage students with 

meaningful challenges and provide them opportunities to demonstrate their mastery, while also 

building in frequent discussion questions or checkpoints to reinforce and encourage groups to 

collaborate with each other and ensure that every member is contributing and understanding the 

problems. 

 Meanwhile, when considering how their confidence decreased, students reported a wide 

range of highly specific experiences in which they felt a lack of mastery, such as making 

mistakes or being rushed for time, a lack of support from their peers due to a breakdown in 

communication and collaboration, or experiences in which they compared themselves to their 

peers and were unable to keep up or fully participate with their group. In contrast to our earlier 

results, we found that lower self-efficacy students were likely to report a lack of mastery 

compared to their higher self-efficacy peers when judging experiences that decreased their self-

efficacy. Instructors should take care to structure the group work to minimize the impact of 

momentary losses in group cohesion through being active in the classroom during group work 
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and keeping a close eye on groups who appear to be struggling, intervening when necessary 

while still allowing groups to exercise their ability to self-correct. 

 While the responses we collected from students provide a window into the variety of 

experiences which influence their self-efficacy judgements, our data is limited in capturing the 

complexity of interactions and group dynamics in which these experiences arise. The breadth and 

specificity of the experiences we observed warrants a more thorough investigation into how they 

interact with each other, how students interpret these experiences, and how these interpretations 

and judgements ultimately affect students’ self-efficacy beliefs. Our hope is that biology 

educators and instructors will gain better insight into how the instructional strategy of group 

work can impact their students’ engagement with quantitative biology, and ultimately help them 

implement this strategy in their own classrooms. 
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Figures 

Figure 1.1: Percentage of Students Who Reported A Given Experience Which Increased 
Self-Efficacy. Colors correspond to the source of self-efficacy that each code was categorized 
under (ref. Table 1.2). Only students who had both consented to the research and completed the 
surveys were included (HWE: n = 273; PG: n = 249). The a priori codes ‘comparing themselves 
positively’, ‘getting positive feedback from peers’, and ‘getting positive feedback from teachers’ 
did not appear in this set and were excluded from the figure. ‘No impact’ represents responses 
where students expressed that no experiences increased their self-efficacy. ‘Non-answer’ 
represents unintelligible, incomplete, or irrelevant responses. 
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Figure 1.2: Relationship Between Students’ 
Pre-Group-Work Self-Efficacy and their 
Probability of Reporting a Given Source of 
Self-Efficacy. All models controlled for students’ 
gender, the type of problem (solving Hardy-
Weinberg Equilibrium or modeling population 
growth), class section, and assigned group, 
including student as the only random effect. The 
shaded regions represent the 95% point-wise 
confidence interval of the estimated effect. (a) n 
= 460 responses. Students with higher self-
efficacy prior to starting the group work were 
more likely to report a mastery experience which 
increased their self-efficacy than their lower self-
efficacy peers (β: 0.622; standard error 1.126, p 
< 0.001). (b) n = 460 responses. Students with 
higher self-efficacy prior to the group work were 
less likely to report that the availability of help 
from their peers increased their self-efficacy than 
their lower-self-efficacy peers (β: -0.374; 
standard error 0.118, p = 0.002). We 
additionally found a significant effect for class 
section (β: -1.467; standard error 0.448, p < 
0.001). (c) n = 447 responses. Students with 
higher self-efficacy prior to the group work were 
less likely to report that a lack of mastery 
decreased their self-efficacy than their lower self-
efficacy peers (β: -0.288; standard error 0.110, 
p = 0.009). We additionally found a significant 
effect for gender. The odds that a female student 
reported a lack of mastery were 2.7 times greater 
than the odds of a male student to report a lack of 
mastery (β: -0.986; standard error 0.278, p < 
0.001). 
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Figure 1.3: Percentage of Students Who Reported A Given Experience Which Decreased 
Self-Efficacy. Colors correspond to the source of self-efficacy that each code was categorized 
under (ref. Table 1.3). Only students who had both consented to the research and completed the 
surveys were included (HWE: n = 230; PG: n = 235). The a priori code ‘getting negative 
feedback from teachers’ did not appear in this set and was not included in the figure. ‘No impact’ 
represents responses where students expressed that no experiences decreased their self-efficacy. 
‘Non-answer’ represents unintelligible, incomplete, or irrelevant responses. 
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Tables 

Table 1.1: Demographics of Study Participants. n = 311. Some characteristics may not have 
percentages which total 100%, due to excluding students who did not or preferred not to respond 
for a given characteristic. 
 

Characteristic Percentage of Participants 
Gender  

Male 33% 
Female 66% 
Other 1% 

Year in School  
First Year 71% 
Second Year 14% 
Third Year 10% 
Fourth Year 2% 
Other 1% 

Highest Math Course Achieved  
Algebra or Geometry 11% 
Trigonometry 7% 
Pre-Calculus 46% 
Calculus 35% 
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Table 1.2: Process Codes for Group Work Experiences Which Increased Self-Efficacy. Ten 
distinct experiences which increased self-efficacy were identified. Table contains the name of the 
code, the definition of the code, the percentage of the code across all reported experiences which 
increased self-efficacy (n = 515), and the source of self-efficacy which reflects the code. 
 

Code Definition Percentage Source 

accomplishing it 
The student achieves success/progress on a 
task through their own effort, or that they 
just practice as part of the group work 
session 

45% mastery experiences 

confirming their answers 
The student checks their own answers with 
other members of the group and feels more 
confident in their own 

17% mastery experiences 

teaching / guiding others The student’s SE is impacted by teaching or 
guiding someone in their group themselves 9% mastery experiences 

discussing / working 
together 

The student describes that the group 
discussed with each other or worked together 
to solve the problem 

44% help availability - peers 

being taught / guided 
The student’s SE is impacted by someone 
else in their group or students around them 
teaching or guiding them through the 
problem 

22% help availability - peers 

asking questions The student seeks help by directly asking 
their group members 8% help availability - peers 

consulting with a teacher 
The student's SE is impacted by consulting, 
asking, or otherwise seeking OR receiving 
help from an instructor or teaching assistant 

12% help availability - teachers 

getting positive feedback 
from peers 

The student’s SE is impacted through some 
sort of encouragement from their group 
mates 

0% social persuasions 

getting positive feedback 
from teachers 

The student's SE is impacted through some 
sort of encouragement from their instructor 
or teaching assistants 

0% social persuasions 

comparing themselves 
positively 

The student compares their answers, 
methods, or abilities to those of their peers 
and judges themselves as better 

0% vicarious experiences 
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Table 1.3: Process Codes for Group Work Experiences Which Decreased Self-Efficacy. 
Twenty distinct experiences which decreased self-efficacy were identified. Table contains the 
name of the code, the definition of the code, the percentage of the code across all reported 
experiences which increased self-efficacy (n = 468), and the source of self-efficacy which 
reflects the code. 
 

Code Definition Percentage Source 

lacking understanding 
The student experiences doubt or confusion 
about the overall content or 
questions/assignment which undermines 
their SE 

22% mastery experiences 

failing to accomplish it 
The student's SE is impacted by failing at a 
task and explicitly indicates that they made 
a mistake / got something wrong, or that 
they simply didn’t do the assignment 

8% mastery experiences 

lacking consensus 

The student experiences doubt about their 
answers or their method because other 
members of their group got different 
answers, used different methods, or 
questioned the answers/methods of the 
student 

7% mastery experiences 

rushing through 
The student's SE is impacted because they 
or their group worked at a faster pace than 
they wanted or could keep up with 

5% mastery experiences 

lacking enough time 
The student's SE is impacted because they 
felt pressed for time and/or did not finish 
the assignment 

3% mastery experiences 

failing to confirm their 
answers 

The student feels less confident in their 
answers because their group did not check 
their answers or was otherwise unable to 
check their answers 

2% mastery experiences 

requiring support 
The student's SE is impacted because they 
needed to refer to their notes, ask questions, 
or receive help from others in order to 
complete a problem or the assignment 

2% mastery experiences 

being held back The student's SE is impacted because they 
felt slowed down or impeded by their group 1% mastery experiences 

failing to teach / guide 
The students’ SE is impacted by having 
difficulty or being unable to explain their 
answers or methods to their group 

<1% mastery experiences 

taking too long to 
accomplish it 

The students' SE is impacted by feeling like 
they needed more time or effort to solve a 
problem than they wanted / thought they 
should take 

<1% mastery experiences 

failing to communicate 
The student describes that the group 
neglected to, was unable to communicate 
openly, or miscommunicated about/during 
the group work 

6% help availability - peers 
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lacking support from 
peers 

The student's SE is impacted by being 
unable to seek help or guidance from their 
peers because their group members were 
unable to help them or were not 
present/unavailable 

3% help availability - peers 

lacking support from 
teachers 

The student's SE is impacted by being 
unable to seek help or guidance from a 
teacher or that no teachers were present, 
able, or willing to help them 

1% help availability - teachers 

falling behind 
The student's SE is impacted because their 
group members were ahead of them and 
they judged themselves negatively due to 
their lack of speed 

3% vicarious experiences 

comparing themselves 
negatively 

The student compares their answers, 
methods, or abilities to those of their peers 
and judges themselves as worse 

1% vicarious experiences 

observing failure 
The student's SE is impacted by observing 
others around them fail at a task or get 
something wrong, causing them to doubt 
their own ability on the task 

1% vicarious experiences 

getting negative feedback 
from peers 

The student’s SE is impacted through some 
sort of discouragement from their group 
mates 

1% social persuasions 

getting negative feedback 
from teachers 

The student's SE is impacted through some 
sort of discouragement from their instructor 
or teaching assistants 

0% social persuasions 

feeling anxious 
The student's SE is impacted by experiences 
during class which produce anxiety, stress, 
or frustration 

2% physiological states 

unproductive 
environment 

The student’s SE is impacted by the 
structural and environmental components of 
the group work assignment 

<1% learning environment 
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Table 1.4: Logistic Regression Outputs for Students’ Self-Efficacy and Reporting of a 
Source of Self-Efficacy. n = 447 for experiences which increased self-efficacy; n = 460 for 
experiences which decreased self-efficacy. Regressions were conducted on student responses 
from both Hardy-Weinberg Equilibrium (HWE) and population growth (PG) group work 
sessions. Asterisks indicate significant predictors (p < 0.05) 
 

Source of Self-Efficacy 
Unstandardized Coefficients  Odds ratio 

β S.E. p-value eβ 

Mastery Experiences - Increase     

Intercept -2.584 0.508 0.000  

Self-Efficacy Level 0.622 0.116 0.000* 1.862 
Gender - Male 0.266 0.241 0.271 1.305 
Question Type - PG -0.098 0.221 0.658 0.907 
Class Section - 2 0.003 0.382 0.993 1.003 
Assigned Group 0.006 0.007 0.390 1.006 

Help Availability from Peers - 
Increase     

Intercept 0.899 0.499 0.072  

Self-Efficacy Level -0.374 0.118 0.002* 0.688 
Gender - Male -0.516 0.274 0.060 0.597 
Question Type - PG 0.346 0.235 0.141 1.413 
Class Section - 2 -1.467 0.448 0.000* 0.231 
Assigned Group 0.011 0.008 0.170 1.011 

Mastery Experiences - Decrease     

Intercept -0.058 0.456 0.899  

Self-Efficacy Level -0.288 0.110 0.009* 0.749 
Gender - Male -0.986 0.278 0.000* 0.373 
Question Type - PG -0.395 0.235 0.093 0.674 
Class Section - 2 0.541 0.383 0.157 1.718 
Assigned Group 0.007 0.007 0.293 1.007 

 
 

 

 



 

 57 

 

CHAPTER 2 — INVESTIGATING A MULTI-DIMENSIONAL MODEL OF STUDENTS’ 

VALUES TOWARDS STATISTICS 

 

Introduction 

 One of the most important quantitative topics in biology education is statistics (NRC, 

2003; AAAS, 2011). Many new biological tools and techniques depend on a strong foundation of 

statistical understanding, and a good statistics education is fundamental to scientific literacy 

(Ben-Zvi & Garfield, 2004). In order to build such a foundation, students must be able to grasp 

key concepts and ideas but also connect between them, necessitating grounding of these concepts 

in authentic biological examples and applications (Ben-Zvi & Garfield, 2004; Colon-Berlingeri 

& Burrowes, 2011). Authentic examples can be provided through statistical problem-based 

learning curricula (Karpiak, 2011) or interactive workshops in lab-based settings (Olimpo et al., 

2018). Many approaches have attempted to better address this need for statistical education in 

biology by integrating statistical concepts such as probability (Liu & Zhu, 2016) into biology 

courses (Metz, 2008; Colon-Berlingeri & Burrowes, 2011), while others have approached 

integration from the other direction, bringing more biological contexts into statistics courses 

(Masel et al., 2015). While both approaches show promising results in building the statistical 

foundation for students in biology, one significant hurdle facing instructors is that students often 

still hold crucial misconceptions about statistics (Castro Sotos et al., 2007) and scientific 

principles in general (Gormally et al., 2012). Even after taking a course in introductory statistics, 

students struggle to evaluate probabilities, interpret visualizations such as box plots, and draw 

statistical conclusions (Delmas et al., 2007). Additionally, students may also have difficulty 
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interpreting statistical language and symbology, preventing them from building a deeper 

understanding of fundamental concepts such as sampling distributions (Kim et al., 2016). 

 A key factor in the development of these misconceptions may lie with students’ attitudes 

towards statistics. Undergraduate students tend to hold ambivalent or negative attitudes towards 

statistics (Gal & Ginsburg, 1994). In particular, students are often uninterested in statistics (Gal 

& Ginsburg, 1994) or fail to find it useful (Evans, 2007). Students also frequently exhibit anxiety 

and low confidence in their ability towards math (Chang & Beilock, 2016) and statistics 

(McKim, 2014), which can be exacerbated upon students’ first contact with statistics in an 

authentic context (Ruggeri et al., 2011). These negative attitudes can decrease students’ 

engagement and thus performance, inhibit learning of statistical concepts, and create uncertainty 

in how to apply those concepts to real-world situations (Gal & Ginsburg, 1994; García-Santillán 

et al., 2013; Garfield & Ben-Zvi, 2007). 

Theoretical Framework 

 One of the most widely-used frameworks to explore students’ attitudes is expectancy-

value theory (EVT; Eccles et al., 1983), which argues that students’ performance on a task and 

their achievement is impacted by their expectancies of success on the task as well as the values 

they hold towards the task, or “task-values”(Wigfield & Eccles, 2000). Students have four 

distinct task-values, hereby referred to as the ‘canonical task-values’: intrinsic value, attainment 

value, utility value, and cost (Wigfield & Eccles, 2000). Intrinsic value is how much a student 

enjoys performing a given task or their interest in the task. Attainment value is how important it 

is to the student to perform well on the task. Utility value is how useful the task is to the student 

towards achieving their goals. Cost is characterized by the negative effects the student perceives 
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they will incur as a result of performing the task or in order to succeed at the task (Eccles et al., 

1983; Wigfield & Eccles, 2000).  

 While the four primary task-values have each largely been examined as monolithic, 

singular constructs, Eccles (1983) and Wigfield (2000; 2002) have long suggested that certain 

primary task-values may instead encapsulate multiple, more nuanced dimensions of the overall 

construct. For example, when a student considers how costly a task may be, they may consider 

specific and distinct aspects of cost, such as the emotional burden of engaging with a task, how 

much effort they believe they need to expend to engage in the task, or consider how engaging 

with the task trades off with their other goals, representing an opportunity cost (Eccles et al., 

1983; Wigfield & Eccles, 2000; Eccles & Wigfield 2002). Much recent work has focused around 

evaluating these emerging dimensions of task-values, showing that in particular separating out 

these dimensions for cost can more effectively capture student motivation and outcomes than 

lumping them together (Conley, 2012; Perez et al., 2014, Flake et al., 2015). Utility value may 

also consist of several dimensions, each capturing a different aspect of what it means for a task to 

be useful for students; for example, students can differentiate between different domains of goals 

in their lives, such as their academic goals versus those for their career or even their daily lives 

(Peetsma & van der Veen, 2011).  

 A promising approach to accounting for this extra dimensionality may be a model which 

differentiates students’ task-values even further than just the four canonical task-values. Gaspard 

et al. (2015) investigated and established a model dividing the four canonical task-values into 

eleven task-value facets. These facets represent specific aspects or dimensions within each 

canonical task-value, such as the various life-domains for utility value, or the specific kinds of 

cost a student might perceive. Specifically, they performed confirmatory factor analyses of the 
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canonical task-values and found evidence in secondary-school math students for two facets 

within attainment value, five facets within utility value, and three facets within cost, while 

intrinsic value had no further dimensionality than what was previously described (Figure 2.1). 

Furthermore, they found that students’ task-values were better represented through 

differentiating the eleven facets than simply relying on the four canonical task-values. Empirical 

evidence suggests that these facets may be distinguishable in different domains and subjects than 

just mathematics (Nagengast et al., 2013), such as English (Trautwein et al., 2012), and various 

natural sciences like physics, chemistry, and biology (Guo et al., 2017). This highlights the need 

to examine the validity of such a model in a specific biology educational context. Here, we 

examine the validity of this multi-dimensional model for measuring task values in the context of 

statistics in biology at the undergraduate level. 

Research Goals 

 Our study had two primary goals. First, we sought to extend the model of task-value 

facets established by Gaspard et al. (2015) to a new context (statistics) and population 

(undergraduate life-sciences students). We asked whether such a model with multiple facet 

constructs more precisely represents students’ task-values than the canonical model of four task-

values as single constructs. Given the empirical evidence for task-value facets in other contexts 

and populations, we hypothesize that undergraduate life-sciences students’ task-values towards 

statistics will be better described using a model of multiple task-value facets rather than a model 

of the canonical task-values as single constructs. We predict that students’ attainment value, 

utility value, and cost will consist of multiple facets, consistent with the model established by 

Gaspard et al. (2015). Second, we sought to describe the relationship, if any, between students’ 

task-values towards statistics and their understanding of statistical concepts in an applied 
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context. We asked, after controlling for students’ overall academic achievement as measured by 

GPA and their prior exposure to statistics, how students’ intrinsic value, utility value, and cost 

relate to their performance on a statistical assessment, and we hypothesize that students’ intrinsic 

value and utility value will relate positively to students’ performance, while students’ cost will 

relate negatively to students’ performance. We predict that students with higher intrinsic value 

towards statistics will perform better on the assessment than their peers with lower intrinsic value 

towards statistics. We also predict that students with higher statistics utility for school, daily life, 

or career will perform better on the assessment than their peers with lower utility value facets 

towards statistics. Lastly, we predict that students who express lower effort required and 

emotional cost for statistics will perform better on the assessment than their peers who perceive 

high cost towards statistics. 

 

Methods 

Participants and Setting 

 We surveyed 366 undergraduate life-sciences students across two public research 

universities: a large Northeastern university (n = 286), and a large Western university (n = 80). 

These students were drawn from two introductory-level statistics courses. At their respective 

institutions, some life-science majors list the course as an explicit requirement, while other life-

science majors list it as an option towards an overall ‘math’ component of the major. At the large 

Northeastern university, the introductory statistics course is conducted as a single section per 

semester of roughly 150 students in a large-lecture format, covering topics such as: probability 

distributions, distributions of sample statistics, regression and correlation, and analysis of 

variance. Students frequently engaged with statistical examples drawn from actual biological 
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data and endeavored to produce a final project developing and testing a statistical hypothesis 

using a provided data set. We surveyed this course during the Spring of 2019 and the Fall of 

2020. At the large Western university, the introductory statistics course is conducted as two 

sections of roughly 40 students during the Spring semester, covering similar topics to the course 

at the Northeastern university. This course had a specific focus on working with data using R, 

and frequently asked students to write short metacognitive reflections about their learning as a 

component of the course. We surveyed this course during the Spring of 2020, and note that due 

to the COVID-19 pandemic, this institution had transitioned to an online instructional format 

partway through the semester; our survey was administered after this transition. Participants’ 

demographic information is summarized in Table 2.1. This study was approved by the 

Institutional Review Board at the University of New Hampshire, IRB #8077, and an IRB 

approval waiver was received at the outside institution. 

Measures  

 We administered two separate surveys to each section of students: an attitude survey, 

asking students to report their task-values towards statistics, and a knowledge assessment of 

statistical concepts in an applied biology context. We distributed these surveys to participants 

through each course’s respective online course management system as a class assignment spread 

out over two consecutive weeks, one survey per week. Students received course credit equivalent 

to one homework assignment for completing both surveys, awarded in two parts, one for each 

survey. We used the online service Qualtrics to design and administer the surveys during the 

latter third of each semester, to ensure that students had sufficiently covered the material asked 

on the surveys. From the Northeastern university, 232 students responded to the surveys, and 52 

students responded from the Western university. 
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Students’ Task-Values Towards Statistics 

 To quantify students’ task-values towards statistics, we adapted a task-value instrument 

developed by Gaspard et al. (2015). This instrument consists of 37 individual survey items 

grouped into 11 task-value facets, each of which falls under one of the four canonical task-values 

(ref. Table 2.2, Appendix B). Each task-value facet on the survey contains between two and six 

items which relate to the facet. Each item asked students to rate their agreement with a statement 

about the respective task-value facet using a seven point scale, ranging from 1 - “Strongly 

Disagree” to 7 - “Strongly Agree”. This instrument is functionally identical to that which 

Gaspard et al. (2015) developed, save for replacing all instances of the word ‘math’ with 

‘statistics’, keeping all other verbiage and survey structure intact. 

Students’ Understanding of Statistical Concepts in an Applied Biology Context 

 To evaluate students’ understanding of statistical concepts in an applied context, we used 

the Biological Variation in Experimental Design and Analysis instrument (BioVEDA, Hicks et 

al., 2020). This instrument consists of multiple-choice questions relating to sources of variation 

in biological experiments, how to control variation when designing an experiment, and how such 

variation impacts the results of statistical inferences based on these experiments. We selected this 

instrument because of the central significance of variation in statistical analysis, which represents 

a key statistical concept that students should be able to tackle as a result of their statistics training 

(Finney & Schraw, 2003; Horton & Hardin, 2015). For our study, we administered an early 

version of the instrument which had 20 items; however, subsequent validation of the instrument 

revealed only 16 items (Hicks et al., 2020). Therefore, we examined only those 16 validated 

items when conducting our analyses. 
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Data Analyses 

Confirmatory Factor Analysis for Task-Value Models 

 We conducted several Confirmatory Factor Analyses (CFA) aimed at verifying whether 

or not the model of task-value facets identified by Gaspard et al. (2015) more precisely 

represents students’ values towards statistics over simply looking at the four canonical task-

values. All task-value CFAs were conducted using the responses from all 284 of our sampled 

students. We started by first exploring each task-value and its facets, specifying single-factor 

models for each canonical task-value, and multi-factor models where each task-value facet was 

its own factor. Intrinsic value has no hypothesized dimensionality; therefore, we tested a model 

of only one factor. For attainment value, we specified a single-factor model for the canonical 

task-value, and a two-factor model for its facets: ‘importance of achievement’ and personal 

importance’. For utility value, we specified a single factor-model for the canonical task-value, 

and a five-factor model for its facets: ‘utility for school’, ‘utility for daily life’, ‘social utility’, 

‘utility for career/job’, and ‘utility for future life’. For cost, we specified a single-factor model 

for the canonical task-value, and a three-factor model for its facets: ‘effort required’, ‘emotional 

cost’, and ‘opportunity cost’. Following this, we explored and compared two combined models: a 

3-factor model with each canonical task-value as a distinct factor, and a 9-factor model with each 

task-value facet as a distinct factor (refer to Table 2.2 for all facets and items). The initial 

exploration of the factor structure for attainment value proved inconclusive; therefore, we elected 

to exclude attainment value and its facets from these combined models and our future analyses, 

as the regression models are contingent upon a clear factor structure.  

 Because of the large number of scale degrees (7) and the ordinal nature of our surveys, 

we selected the robust maximum-likelihood estimator (MLR) as our estimator of variances in the 
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data (Knekta et al., 2019). To evaluate the fit of our models, we relied on multiple fit indices: 1) 

the chi-square value from the robust MLR (MLR χ2); 2) the comparative fit index (CFI); 3) the 

Tucker-Lewis index (TLI); 4) the root-mean-square error of approximation (RMSEA); and 5) the 

standardized root-mean-square residual (SRMR). We established thresholds (Table 2.3) for each 

fit index per the recommendations of Hu & Bentler (1999). All factor analyses were conducted in 

R v. 4.0.2 (R Core Team, 2020) using the packages ‘lavaan’ (Rosseel, 2012) and ‘psych’ 

(Revelle, 2019). Additionally, when evaluating the factor loadings for each factor and its items, 

which indicate how much of the variance in the responses for each item are related to the factor 

versus the error variance unique to each item, we declared factor loadings greater than 0.7 as 

‘high’, per Knekta et al. (2019). 

Regression Analyses for Relationship Between Task-Values and Performance on BioVEDA 

 To investigate the relationship between students’ task-values and their performance on 

BioVEDA, we conducted multiple linear regression, which allowed us to control for a variety of 

extraneous factors which may affect that relationship (Theobald & Freeman, 2014). We used the 

model of students’ task-value facets we identified from Goal 1, where students’ task-values were 

represented as a single intrinsic construct, multiple utility value facets, and multiple cost facets, 

to inform the specification of our regression models. We decided to relate each set of task-value 

facets separately rather than in a single comprehensive model, to better understand the specific 

relationship between the facets of a given task-value and performance on the statistical 

assessment. We decided to relate only a subset of the five utility value facets and the three cost 

facets to students’ performance. Some facets, such as students’ social utility or utility for future 

life, had a small number of survey items which we believed were not as relevant to our 

undergraduate student population as they engage with statistics. Additionally, the items 
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representing students’ opportunity cost were similarly indistinct. Thus, we examined only the 

utility for daily life, utility for school, and utility for career/job facets within utility value, and 

only the effort required and emotional cost facets within cost. 

 For all our regression models, we started by including as predictors: 1) students’ self-

reported GPA, which serves as a reasonable proxy for their academic achievement despite their 

tendency to misreport it (Wright et al., 2009), which could impact their score on the assessment, 

and 2) students’ prior exposure to statistics, as indicated by whether or not they completed a 

statistics course prior to taking their current statistics course, which could also impact students’ 

understanding of variation. We also initially included students’ institutions/schools as a random 

effect, but due to the small number of levels within this factor, this model failed to converge on a 

solution, so we instead included school as an additional fixed effect (Theobald, 2018). Our 

explanatory variables in each model were students’ task-value facets, calculated as a mean across 

all items for each facet. In the case of intrinsic value which has no facets, we instead simply 

included the mean across all intrinsic value items as our explanatory variable in that model. Our 

outcome variable was students’ score on the BioVEDA assessment, calculate as a sum score with 

a maximum of 16, which represents students’ understanding of variation in experimental design 

and analysis. After excluding students who did not report a GPA or did not complete BioVEDA, 

and including only students from Fall 2019 and Spring 2020 due to minor modifications to our 

instruments made after Spring 2019, our sample for our regressions was 101 students across both 

institutions (Northeastern University, n = 73; Western University, n = 28). We conducted all our 

analyses using the standard R v. 4.0.2 packages for linear regression (R Core Team, 2020), 

‘lme4’ (Bates et al., 2015), and ‘effects’ (Fox & Weisberg, 2019). Equations for our regression 

models are described below. 
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Intrinsic Value 

BioVEDA Score ~ Intrinsic Value + GPA + Prior Stats Exp. + School 

Utility Value Facets  

BioVEDA Score ~ Utility for Daily Life + Utility for School + Utility for Career/Job + GPA + 

Prior Stats Exp. + School 

Cost Facets 

BioVEDA Score ~ Effort Required + Emotional Cost + GPA + Prior Stats Exp. + School 

 

Results 

Goal 1: Exploring Students’ Task-Values Towards Statistics 

Single-Factor Model for Interest Value 

 Examining a single-factor model for intrinsic value revealed a good model fit (Table 2.4). 

The chi-squared test of model fit was insignificant (MLR χ2 = 0.476, df = 2, p = 0.788), and both 

CFI and TLI were firmly above the threshold for good fit (CFI = 1.000, TLI = 1.000). RMSEA 

and SRMR were similarly indicative of good fit (RMSEA = 0.005; SRMR = 0.005). Our 

Cronbach’s α for this model was 0.94. As there is no dimensionality within intrinsic value (Table 

2.2), we maintain that with our students, the items measuring intrinsic value indeed load onto a 

single construct as previously described. 

Single-Factor Model for Attainment Value Versus a Multi-Factor Model for Attainment Facets 

 The single-factor model for attainment value indicated poor model fit (Table 2.4) by all 

measures (MLR χ2 = 244, df = 35, p < 0.000; CFI = 0.810; TLI = 0.756; RMSEA = 0.175; 

SRMR = 0.089). In comparison, the two-factor model for the attainment facets of importance of 

achievement and personal importance indicated a better model fit than attainment value as a 
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single construct (Table 2.4), yet still yielded poor model fit across nearly all measures (MLR χ2 = 

177, df = 34, p < 0.000; CFI = 0.874; TLI = 0.833; RMSEA = 0.145; SRMR = 0.076). We 

examined the factor loadings for both models to better understand their misspecification (Table 

2.2). Factor loadings for the single-factor model were mostly within the range of 0.71 - 0.78, 

with substantially lower loadings for two items in importance of achievement and one in 

personal importance, indicating that the model does not explain these three items well (Knekta et 

al., 2019). Factor loadings for the two-factor model were moderately higher (mostly within 0.75 - 

0.88), but the same items in importance of achievement and personal importance were still much 

lower. Given that most items loaded weakly and were poorly explained by the model, and that 

both the single-factor and two-factor models for attainment value appear to be misspecified, we 

decided to exclude attainment value and its facets from further analyses. 

Single-Factor Model for Utility Value Versus a Multi-Factor Model for Utility Value Facets 

 The single-factor model for utility value also indicated poor model fit (Table 2.4) by all 

measures (MLR χ2 = 662, df = 54, p < 0.000; CFI = 0.616; TLI = 0.531; RMSEA = 0.226; 

SRMR = 0.125). Factor loadings (Table 2.3) for the single-factor model of utility value were 

virtually all below 0.6, with only the factor loadings for utility - daily life items above 0.8. In 

contrast, the five-factor model for the utility value facets ‘utility for school’, utility for daily life’, 

‘social utility’, ‘utility for career/job’, and ‘utility for future life’ fared better, indicating a good 

model fit across most measures (MLR χ2 = 90, df = 44, p < 0.000; CFI = 0.972; TLI = 0.958; 

RMSEA = 0.068; SRMR = 0.050). Cronbach’s α for this multi-factor model were 0.82 for utility 

for school, 0.91 for utility for daily life, 0.84 for social utility, 0.64 for utility for career/job, and 

0.87 for utility for future life. Factor loadings for the five-factor model of utility value facets 

(Table 2.2) were all within the 0.8-0.9 range save for three items, one in utility - school (0.7), 



 

 69 

social utility (0.67) and utility - career/job (0.525). These specific items showed a moderate 

correlation to other task-value facets both within utility and different task-values (see Appendix 

C), which could explain their poorer factor loadings. Despite this, given that the model fit for 

utility value facets was good compared to a model of only utility value, we argue that our 

students were indeed differentiating between the five hypothesized facets of utility value. 

Single-Factor Model for Cost Versus a Multi-Factor Model for Cost Facets 

 The single-factor model for cost indicated poor model fit (Table 2.4) (MLR χ2 = 556, df = 

44, p < 0.000; CFI = 0.728; TLI = 0.667; RMSEA = 0.266; SRMR = 0.132). Factor loadings 

(Table 2.2) for the single-factor model of cost were all below 0.6 for items in emotional cost and 

opportunity cost, but were very high in effort required (0.90 - 0.95). In contrast, the three-factor 

model for the cost facets ‘effort required’, ‘emotional cost’, and ‘opportunity cost’ indicated a 

good model fit across most measures (MLR χ2 = 74, df = 41, p < 0.000; CFI = 0.985; TLI = 

0.980; RMSEA = 0.065; SRMR = 0.029). Cronbach’s α for this model were 0.97 for effort 

required, 0.89 for emotional cost, and 0.94 for opportunity cost. Factor loadings for the three-

factor model were all consistently high (0.81 - 0.96), indicating that the cost items were well 

explained by a model which distinguished the three cost facets. Thus, we argue that for our 

students, cost is better represented through these three facets than as a single construct. 

Three-Factor Model of Canonical Task-Values as Single Constructs 

 After removing attainment value and its facets from our model of canonical task-values, 

we additionally examined the items for the remaining three canonical task-values as part of a 

‘combined model’ with three factors, one for each task-value. The results from this CFA 

indicated a poor model fit (Table 2.4). The chi-squared test of model fit was significant (MLR χ2 

= 1739, df = 321, p < 0.000), and the CFI and TLI both indicated poor fit (CFI = 0.734; TLI = 
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0.709). Furthermore, both the RMSEA and SRMR also indicated poor fit (RMSEA = 0.140; 

SRMR = 0.103). Factor loadings (Table 2.3) for this model were mixed: while cost- effort 

required and some items from intrinsic value were high (> 0.9), most values were below 0.7, 

especially in the remaining cost facets and the utility value facets, indicating that this model 

poorly explained these items. Thus, we argue that our students’ task-values are not well-

described using only the four canonical task-values. 

Nine-Factor Model of Task-Value Facets as Distinguishable Constructs 

 Lastly, we examined the nine remaining task-value facets (after excluding the two facets 

in attainment), and the results from this CFA indicated a noticeably better fit across all measures 

MLR χ2 = 488, df = 288, p < 0.000; CFI = 0.973; TLI = 0.967; RMSEA = 0.047; SRMR = 

0.048). Factor loadings (Table 2.3) for this model were mostly high (> 0.8) indicating that this 

model well-describes most of the task-value items, although some items in intrinsic value, utility 

for school, and emotional cost were moderately lower (0.7-0.79). Only two items in utility for 

career/job and social utility were considerably low (0.51 and 0.67, respectively). Despite these 

two items, in light of the good model fit and compared to the results of the three-factor model, 

we argue that our students’ task-values as a whole are better described using these nine task-

value facets. Therefore, we decided to use this model of students’ task-value facets when relating 

them to students’ statistical understanding for the second goal of this study. 

Goal 2: Regression Analyses Relating Students’ Task-Values to BioVEDA Scores 

Intrinsic Value and Students’ Assessment Scores 

 We performed a multiple linear regression examining students’ mean intrinsic value and 

their scores on the BioVEDA assessment, controlling for GPA, prior statistics course, and school 

(Table 2.5). We checked the assumptions of linear regression for this model and found: 1) the 
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data contained no outliers (standard residual minimum = -6.02, standard residual maximum = 

5.35); 2) low multicollinearity, with VIF values ranging from 1.02 to 1.15 (O’Brien, 2007); 3) 

the Q-Q plot of standardized residuals indicated approximately normally-distributed errors; 4) 

little to no heteroscedasticity as indicated by a plot of residuals vs. fitted values. This regression 

model was not statistically significant (F(4, 96) = 2.189, p = 0.076), and accounted for less than 

5% of the variance in BioVEDA scores (Adj. R2 = 0.045). Thus, we argue that students’ intrinsic 

value does not predict their performance on the BioVEDA assessment. 

Utility Value Facets and Students’ Assessment Scores 

 We performed a multiple linear regression examining students’ mean utility for daily life, 

utility for school, and utility for career and their scores on the BioVEDA assessment, controlling 

for GPA, prior statistics course, and school (Table 2.5). We checked the assumptions of linear 

regression for this model and found: 1) the data contained no outliers (standard residual 

minimum = -6.00, standard residual maximum = 6.26); 2) low multicollinearity, with VIF values 

ranging from 1.09 to 1.95; 3) the Q-Q plot of standardized residuals indicated approximately 

normally-distributed errors; 4) little to no heteroscedasticity as indicated by a plot of residuals vs. 

fitted values. This regression model was statistically significant (F(6, 94) = 2.657, p = 0.020), 

and accounted for roughly 9% of the variance in BioVEDA scores (Adj. R2 = 0.090). We found 

two significant predictors: utility for school (β: 0.568; standard error: 0.267; p = 0.036) and self-

reported GPA (β: 1.359; standard error 0.572; p = 0.020). Therefore, we argue that students’ 

utility for school does predict their performance on the BioVEDA assessment: students with 

higher utility for school perform better on BioVEDA (Figure 2.2a). 
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Cost Facets Versus Students’ Assessment Scores 

 We performed a multiple linear regression comparing students’ mean effort required and 

emotional cost to their scores on the BioVEDA assessment, controlling for GPA, prior statistics 

course, and school (Table 2.5). We checked the assumptions of linear regression for this model 

and found: 1) the data contained no outliers (standard residual minimum = -5.37, standard 

residual maximum = 4.98); 2) low multicollinearity, with VIF values ranging from 1.12 to 2.43; 

3) the Q-Q plot of standardized residuals indicated approximately normally-distributed errors; 4) 

little to no heteroscedasticity as indicated by a plot of residuals vs. fitted values. This regression 

model was statistically significant (F(5, 95) = 4.307, p = 0.001), and accounted for slightly over 

14% of the variance in BioVEDA scores (Adj. R2 = 0.142). We found a single significant 

predictor: emotional cost (β: -0.985; standard error: 0.283; p < 0.001). Thus, we argue that 

students’ emotional cost does predict their performance on the BioVEDA assessment: students 

with lower emotional cost perform better on BioVEDA (Figure 2.2b). 

 

Discussion 

Dimensionality Within Students’ Task-Values Towards Statistics 

 For our first research goal, we sought to understand whether our students’ task-values 

could be better represented by distinguishing between specific task-value facets, or by simply 

using the four canonical task-values. The results from our factor analyses confirmed multi-

dimensional models which differentiate between task-value facets. Utility value and cost were 

both better represented using a task-value facet model than treating them as singular constructs, 

confirming and extending the findings of Gaspard et al. (2015). With respect to utility value, 

students differentiate between different ‘life-domains’ such as school, career, or everyday life 
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(Peetsma & van der Veen, 2011), and that the various items used by other surveys to investigate 

utility value in general, such as those of Conley (2012) and Luttrell et al. (2010), are 

distinguishable to students as separate facets of their overall utility value. One thing to note, 

however, was the low internal reliability of the facet ‘utility for career/job’, as indicated by a 

Cronbach’s  α of 0.64 and limited items for this facet. Closer inspection of these two items 

(Table 2.2) suggests that perhaps the item “Good grades in statistics can be of great value to me 

later on” may have been interpreted by students as relating to their academic goals instead; there 

is in fact a moderate correlation between ‘utility for school’ and ‘utility for career/job’ 

(Appendix C). Nevertheless, we argue that using these utility-value facets is a meaningful way to 

more thoroughly characterize students’ utility value towards statistics. 

 With respect to cost, students indeed differentiate between the three originally-

hypothesized dimensions: ’opportunity cost’, ‘emotional cost’, and ‘effort required [to succeed]’ 

(Eccles et al., 1983; Wigfield & Eccles, 2000). Our findings corroborate those of Perez et al. 

(2014), who assessed cost using those three dimensions or ‘sub-factors’ (referring to ‘emotional 

cost’ as ‘psychological cost’) and were able to separate them as distinct through an exploratory 

factor analysis. We also corroborate the investigation by Flake et al. (2015), and although they 

argued for a model of cost which includes an additional fourth dimension—“outside effort 

cost”— that we did not include in our model, we share the conclusion that cost can be described 

with more nuance than other previous approaches, such as “task effort cost” (effort required), 

“emotional cost”, and a “loss of valued alternatives” (opportunity cost) (Flake et al., 2015; 

Conley, 2012; Trautwein et al., 2012).  

 However, our students did not appear to distinguish facets within attainment value. 

Neither a two-factor model of ‘importance of achievement’ and ‘personal importance’ or a 
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single-factor model of attainment value achieved a good fit for our students’ responses. This is in 

contrast to the findings of Gaspard et al. (2015) where they found that students differentiated 

between the two facets of attainment value. It is possible that the misspecification of these 

models is due to underlying interactions or correlations. While the factor loadings for both the 

single-factor model and two-factor model were moderate overall, there were three attainment 

value items with very low factor loadings (Table 2.2) suggesting that the poor model fit stems 

largely from these items. Looking more closely, the poorly-loading item from ‘attainment - 

personal importance’, “Statistics is not meaningful to me”, could have be interpreted as relating 

to intrinsic value based on the wording. When examining the correlation coefficients of task-

value facets within our students, we indeed observed moderate correlations between ‘personal 

importance’ and intrinsic value, as well as ‘utility for daily life’, suggesting that this item may 

have been captured by intrinsic value or utility value. Additionally, the ‘attainment - importance 

of achievement’ items “Performing well in statistics is important to me” and “Good grades in 

statistics are very important for me” may have been interpreted similarly to items relating to 

utility facets like ‘utility for school’ or ‘utility for career/job’. We noted moderate to high 

correlations between ‘attainment - importance of achievement’ and ‘utility for career/job’, 

suggesting that like with ‘personal importance’, these items were instead captured by other task-

value facets. 

 These observations are similar to those made by Gaspard et al. (2015) with respect to 

attainment value. While their students did manage to distinguish the two facets of attainment 

value, they also noted that attainment-value facets often correlated strongly with other task-value 

facets or even an entire task-value. For example, ‘personal importance’ correlated moderately 

with ‘social utility’ in their students, perhaps reflecting a relationship between their students’ 
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math identity and their interpersonal relationships, such as “impressing others with math 

competencies” (Gaspard et al., 2015). Intrinsic value and ‘personal importance’ were also more 

highly correlated with each other than the other attainment value facet, ‘importance of 

achievement’, was with ‘personal importance’. These results highlight a potential risk with 

exploring students’ task-values through task-value facets, that the correlations between facets 

may mean that each facet cannot be treated as strictly distinct from others. A multi-dimensional 

model of task-value facets should therefore be confirmed in other educational contexts before 

using it to compare to other variables. 

Students’ Task-Values and Performance on BioVEDA 

 For our second research goal, we sought to determine whether students’ task-value facets 

as identified by our first research goal were predictive of their understanding of statistical 

concepts. We found that, after controlling for students’ academic achievement via GPA, prior 

statistics experience, and institution, students’ value of the utility of statistics for school and 

emotional cost of statistics predicted their understanding of variation in experimental design and 

analysis as measured by their performance on the BioVEDA assessment. Students with higher 

utility of statistics for school performed better than their peers with lower utility for school, with 

a one-unit increase in statistics utility resulting in a 0.568 point increase in BioVEDA scores 

(Figure 2.2a). Students with lower emotional cost towards statistics performed better than their 

peers with higher emotional cost, with a one-unit increase in emotional cost resulting in a 0.985 

decrease in BioVEDA scores (Figure 2.2.b). Intrinsic value, utility for daily life, utility for 

career/job, and effort required did not present significant linear relationships to students’ 

BioVEDA scores. 
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 The relationship between students’ statistics utility for school and their performance but 

their lack of relationships between other task-value facets may be related to the generally 

negative or apathetic attitudes students hold towards statistics (Gal & Ginsburg, 1994), in 

particular their interest (intrinsic value) towards the topic and its perceived utility for students’ 

career aspirations (Evans, 2007). Evans (2007) also identifies the importance of students’ 

individual backgrounds and experiences in influencing their task-values, especially their interest. 

While our surveyed students were all self-reported life-sciences majors, the breadth of the life 

sciences and diversity of available majors at both institutions may mean that, for an equally 

broad subject such as statistics, our students’ precise interests may misalign with the topics and 

material discussed and assessed in each respective course, obfuscating or limiting the 

relationship between those interests and their performance with the course content. In particular, 

the items for intrinsic value were very general and broad, painting interest in terms of ‘fun doing 

statistics,’ or ‘simply enjoying dealing with statistical topics,’ without capturing specific aspects 

of what it could mean to be intrinsically motivated by statistics. The breadth of student 

experiences may also explain why we did not see a relationship between utility for daily life or 

utility for career/job and performance. Our students have a wide variety of lived experiences and 

career aspirations, and similarly to their interests, the courses at the surveyed institutions simply 

may not have emphasized in a way that resonates with our students. Additionally, each utility 

value facet had only a couple of general items which described the facet; for example, utility for 

career had only two items, and only one such item explicitly mentioned the terms ‘career’ and 

‘job’. Thus, items for these facets may not have captured the utility for statistics for daily life or 

career that our students actually hold. 
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 The observed relationship between emotional/psychological cost and performance but not 

between effort required and performance is also striking. Our results reinforce the evidence from 

Flake et al. (2015) suggesting that emotional cost may be more closely related to performance 

than the other cost facets. This also reflects the findings of previous studies which found that 

students often expressed considerable anxiety towards statistics which could unduly impact their 

engagement and performance (McKim, 2014; Chang & Beilock, 2016), especially with 

unfamiliar or less-familiar contexts and applications (Ruggeri et al., 2011). Conspicuously, our 

lack of a relationship between effort required and performance contrasts with previous studies 

which found relationships between effort and performance and achievement (Perez et al., 2014; 

Perez et al., 2019). This may be partially because of the specific wording of our survey items 

describing this facet (Table 2.2). Our items centered heavily around the ‘energy’ expended by 

engaging with statistics, while the items characterizing effort required in previous studies asked 

about not only energy, but time, money, and general ‘effort’ as well (Perez et al., 2014; Flake et 

al., 2015; Trautwein et al., 2012). Therefore, it is possible that simply discussing the energy 

required to engage with statistics did not fully capture our students’ perception of their effort 

towards their statistics courses, resulting in no observable relationship between that effort and 

their performance on the assessment. 

Teaching Implications 

 Our results have important implications for instructors seeking to better understand their 

students’ motivation, engagement, and performance in biostatistics courses. In particular, 

because students distinguish between various facets of what makes a task ‘useful’, instructors 

should be careful to frame the utility of their content or material in ways which align with their 

students’ specific values, such as how statistics can be useful within a variety of scientific and 
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non-scientific careers or, more simply, in future courses. Instructors can shape their students’ 

utility values through active interventions such as having students write about their personal 

connections to and perceived utility of statistics (Canning et al., 2018), which typically produce 

more meaningful and longer-lasting impacts than directly discussing with or explaining the 

utility of the subject with students (Canning & Harackiewicz, 2015). In our sample of students 

where statistics utility for school was predictive of their performance on BioVEDA, encouraging 

students to describe how the concepts in the statistics courses relate to the subsequent life-

sciences courses in their major and drawing connections between their personal interests to 

statistics may increase their utility for statistics.  

 Additionally, instructors should pay close attention to the costs students perceive towards 

the content and material, in particular the anxiety students feel towards doing statistics. Previous 

studies have investigated math and statistics anxiety and describe interventions to address it 

(Onwuegbuzie & Wilson, 2003; Chang & Beilock, 2016; Ramirez et al., 2018). Simple 

interventions provide low-stakes activities in-class for students to ‘practice’ asking for help from 

their instructors (Pan & Tang, 2004), or increasing instructor and help availability in and out of 

the classroom by offering more individualized or personal office hours and tutoring sessions for 

students struggling with anxiety towards the task. More involved interventions have included 

training instructors in a variety of cognitive and psychosocial techniques to help students manage 

their own anxiety, such as the reappraisal and regulation of pre-performance anxiety (Chang & 

Beilock, 2016) or through activities designed to re-frame students’ mindsets about failure and 

their anxiety by giving them opportunities to experience low-stakes setbacks in authentic 

contexts (Ramirez et al., 2018). 
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Limitations and Future Directions 

 This study has several limitations to consider when interpreting our results. A significant 

limitation stems from our small sample size, both for our factor analyses and our regressions. 

While we were able to achieve good model fits with multiple factors using only a sample size of 

284 students, this is in contrast to the study by Gaspard et al. (2015) which surveyed nearly an 

order of magnitude more participants. Furthermore, because many students did not complete 

both the attitude and knowledge surveys or did not report their GPA, our sample size was further 

reduced to 101 students for our regressions, which limited our ability to model for additional 

effects. The specific characteristics of our sample also limit the generalizability of our results. 

The courses from both institutions were fairly ethnically homogenous (our sample was 

predominantly white students), and the majority of our students identified as female. Future 

studies should aim to describe task-value facets in underrepresented students and explore how 

their distinct experiences influence the relationship between their values and their performance. 

Furthermore, given that there are gender differences in task-value facets (e.g., Gaspard et al., 

2015), studies should also seek to better characterize the task-value facets in male life-science 

students. Lastly, while we aimed to survey introductory statistics courses which closely matched 

each others’ topics and content, future studies would also benefit significantly from surveying 

additional institutions outside of only public research universities, from a variety of introductory 

statistics courses with differing structure and instructional styles, to provide a broader picture of 

students’ task-values towards statistics. 

 Additional limitations arise from the implementation of our survey instruments. The 

attitude survey drew considerably from the original instrument as described by Gaspard et al. 

(2015), which was tailored specifically to their study population (secondary school students). 
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While our study replaced only the subject of ‘math’ with ‘statistics’, it is possible that several of 

the items as worded by Gaspard et al. (2015) may be insufficiently precise with respect to the 

task-values of our population of undergraduate life-sciences students. Gaspard et al. (2015) 

identified the need to test their model in different student populations but additionally warned 

that populations of a different age group or academic stage may distinguish value facets more 

finely than their students. Furthermore, some facets such as utility for career or utility for school 

were measured by only two items, which could reduce the reliability and validity of those scales. 

Further studies may find it fruitful to revisit, revise, or expand the wording of specific items to 

tailor them to the study population more closely, although this would likely require further 

analyses to validate the revisions as a suitable measure. 

 Lastly, while the BioVEDA instrument was validated for use with undergraduate life-

sciences students learning statistics, the instrument may not have been ideal for our sample. We 

selected BioVEDA for its focus on the key concept of variation in the important applied context 

of experimental design, a concept which was well-covered by the instructors of each course. 

However, the majority of the instrument’s items used developmental biology experiments as the 

context for the questions, which may have been unfamiliar to our students. In particular, while 

each course discusses concepts in relation to experimental design, it is not an explicit focus of 

either course. Furthermore, given students’ difficulty in generalizing statistical terminology and 

symbology to underlying concepts (Kim et al., 2016), slight differences in the presentation of the 

principle idea of variation and its application in experimental design between each course and the 

survey instrument may have resulted in an overall lack of understanding of the items by our 

students, impacting their performance. Future studies should carefully consider whether the 
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context of the BioVEDA is familiar enough to their students to ensure that the instrument 

adequately measures their performance with statistics. 

 

Conclusion 

 This study found that undergraduate life-science students’ task-values towards statistics 

are better described using multiple specific facets of each canonical task-value, rather than 

treating the task-values as monolithic constructs. In particular, students differentiate between five 

utility value facets and three cost facets. The two hypothesized facets of attainment value were 

not well supported by our models, in contrast to the findings of Gaspard et al. (2015) who 

initially described these facets. We additionally found that students’ statistics utility for school 

and emotional cost towards statistics were predictive of their performance on an assessment 

designed to measure their understanding of variation in experimental design. Students who found 

statistics more useful for their academic goals performed better on the assessment than their 

peers with lower utility for school, while students who expressed lower emotional costs towards 

statistics performed better on the assessment than their peers who found statistics more 

emotionally costly. Further exploration of students’ values as measured through these specific 

task-value facets may provide a clearer or more precise understanding of how they impact 

performance, and provide a basis for more targeted or tailored interventions designed to increase 

students’ performance. Ultimately, statistics instructors and educators seeking to increase 

students’ engagement with the material and their performance may benefit from content or 

interventions which more specifically target these facets as opposed to a more general approach 

to increasing students’ utility value or decreasing their cost. 
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Figures 

Figure 2.1: Canonical Task-Values and Task-Value Facets. The hypothesized breakdown of 
the four canonical task-values into their respective task-value facets. Definitions were drawn 
from Gaspard et al. (2015), Wigfield and Eccles (2000), and Eccles et al. (1983) 
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Figure 2.2: Relationship Between Task-
Value Facets and BioVEDA Score. n = 
101 for both models. Both models 
controlled for students’ self-reported GPA, 
prior statistics experience, and institution. 
The shaded regions represent the 95% 
point-wise confidence interval of the 
estimated effect. (a) The mean value for the 
utility of statistics for school versus 
BioVEDA score. Students with higher 
mean value for utility of statistics for 
school performed better on the BioVEDA 
assessment. The shaded region represents 
the 95% point-wise confidence interval of 
the estimated effect. This regression model 
was statistically significant (F(6, 94) = 
2.657, p = 0.020), and accounted for 
roughly 9% of the variance in BioVEDA 
scores (Adj. R2 = 0.090). We found two 
significant predictors: utility for school (β: 
0.568; standard error: 0.267; p = 0.036) and 
self-reported GPA (β: 1.359; standard error 
0.572: p = 0.020). (b) The mean value for 
the emotional cost of statistics versus 
BioVEDA score. Students with lower mean 
emotional cost of statistics performed better 
on the BioVEDA assessment. This 
regression model was statistically 
significant (F(5, 95) = 4.307, p = 0.001), 
and accounted for slightly over 14% of the 
variance in BioVEDA scores (Adj. R2 = 
0.142). We found a single significant 
predictor: emotional cost (β: -0.985; 
standard error: 0.283; p < 0.001). 
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Tables 

Table 2.1: Demographics of Study Participants. n = 284. Sample excludes students who were 
non-life-sciences. Some characteristics may not have percentages which total to 100% due to 
excluding students who did not or preferred not to respond for a given characteristic. 
 

Characteristic Northeastern University (n = 232) Western University (n = 52) 
Gender   

Male 33% 33% 
Female 66% 67% 
Other 1% 0% 

Year in School   
First Year 14% 23% 
Second Year 57% 25% 
Third Year 19% 37% 
Fourth Year 7% 14% 
Other 3% 1% 

Prior Statistics Course?   
Yes 27% 52% 
No 73% 48% 

Pre-Professional Status   
In a Program 44% 37% 
Not in a Program 52% 56% 

First Generation Student?   
Yes 10% 10% 
No 89% 88% 
Unsure 1% 0% 

Race / Ethnicity   
American Indian / Alaskan Native 0% 0% 
Asian 3% 10% 
Black 1% 0% 
Pacific Islander 0% 0% 
White 90% 71% 
Hispanic / Latinx 2% 6% 
Other 1% 2% 
Multiracial 3% 8% 

Mean self-reported GPA (± Standard Deviation) 3.40 ± 0.43 3.33 ± 0.44 
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Table 2.2: Standardized Factor Loadings of Survey Items. n = 284. Factor loadings for each 
survey item are listed for each set of models tested: 1) the single-factor models describing each 
canonical task-value as a single construct; 2) the multi-factor models describing each task-value 
facet within a canonical task-value as separate constructs; 3) the 3-factor model of Intrinsic 
Value, Utility Value, and Cost as single constructs; 4) the 9-factor model of all task-value facets 
for Intrinsic Value, Utility Value, and Cost as separate constructs. For the 3-factor model and the 
9-factor model, Attainment Value was excluded, indicated by ‘~’. As there are no hypothesized 
facets within Intrinsic Value, we did not test a model with facets, also indicated by ‘~’. 
 

Survey Item 
Item Means 
(Standard 
Deviations) 

Canonical 
Task-

Values as 
Single 

Constructs 

Task-Value 
Facets as 
Separate 

Constructs 

3-Factor 
Model of 

Canonical 
Task-Values 

as Single 
Constructs 

9-Factor 
Model of 

Task-Value 
Facets as 
Separate 

Constructs 

Intrinsic      

Statistics is fun to me. 4.046 
(1.525) 0.932 ~ 0.933 0.933 

I like doing statistics. 4.239 
(1.531) 0.961 ~ 0.958 0.959 

I simply like statistics. 4.060 
(1.489) 0.876 ~ 0.876 0.876 

I enjoy dealing with 
statistical topics. 

4.229 
(1.513) 0.790 ~ 0.795 0.796 

Attainment - Importance of 
Achievement      

It is important to me to be 
good at statistics. 

5.504 
(1.215) 0.778 0.856 ~ ~ 

Being good at statistics 
means a lot to me. 

4.923 
(1.340) 0.819 0.878 ~ ~ 

Performing well in 
statistics is important to 
me. 

5.799 
(1.147) 0.585 0.676 ~ ~ 

Good grades in statistics 
are very important to me. 

6.127 
(0.867) 0.244 0.320 ~ ~ 

Attainment - Personal 
Importance      

I care a lot about 
remembering the things 
we learn in statistics. 

5.201 
(1.224) 0.785 0.761 ~ ~ 

Statistics is not 
meaningful to me. 

5.025 
(1.442) 0.675 0.673 ~ ~ 

I‘m really keen on 
learning a lot in statistics. 

4.482 
(1.317) 0.761 0.806 ~ ~ 
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Survey Item 
Item Means 
(Standard 
Deviations) 

Canonical 
Task-

Values as 
Single 

Constructs 

Task-Value 
Facets as 
Separate 

Constructs 

3-Factor 
Model of 

Canonical 
Task-Values 

as Single 
Constructs 

9-Factor 
Model of 

Task-Value 
Facets as 
Separate 

Constructs 

Statistics is very important 
to me personally. 

3.975 
(1.514) 0.712 0.766 ~ ~ 

To be honest, I don't care 
about statistics. 

4.606 
(1.605) 0.754 0.777 ~ ~ 

It is important to me to 
know a lot of statistics. 

4.768 
(1.265) 0.730 0.734 ~ ~ 

Utility - School      

It is worth making an 
effort in statistics, because 
it will save me a lot of 
trouble at school in the 
next years. 

5.599 
(1.254) 0.579 0.978 0.584 0.987 

Being good at statistics 
pays off, because it is 
simply needed at school. 

5.475 
(1.271) 0.440 0.707 0.441 0.702 

Utility - Daily Life      

Understanding statistics 
has many benefits in my 
daily life. 

4.563 
(1.559) 0.820 0.889 0.822 0.893 

Statistics comes in handy 
in everyday life and 
leisure time. 

4.025 
(1.546) 0.813 0.936 0.811 0.932 

Statistics is directly 
applicable in everyday 
life. 

4.437 
(1.547) 0.737 0.823 0.736 0.823 

Utility - Social Utility      

Being well versed in 
statistics will go down 
well with my classmates. 

4.813 
(1.188) 0.577 0.665 0.576 0.665 

I can impress others with 
intimate knowledge in 
statistics. 

4.187 
(1.488) 0.552 0.859 0.552 0.859 

If I know a lot in statistics, 
I will leave a good 
impression on my 
classmates. 

4.306 
(1.343) 0.568 0.895 0.565 0.894 

Utility - Career/Job      
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Survey Item 
Item Means 
(Standard 
Deviations) 

Canonical 
Task-

Values as 
Single 

Constructs 

Task-Value 
Facets as 
Separate 

Constructs 

3-Factor 
Model of 

Canonical 
Task-Values 

as Single 
Constructs 

9-Factor 
Model of 

Task-Value 
Facets as 
Separate 

Constructs 

Good grades in statistics 
can be of great value to 
me later on. 

5.708 
(1.114) 0.330 0.525 0.329 0.517 

Learning statistics is 
worthwhile, because it 
improves my job and 
career chances. 

5.849 
(1.092) 0.596 0.895 0.599 0.909 

Utility - Future Life      

Statistics contents will 
help me in my life. 

5.359 
(1.183) 0.730 0.884 0.730 0.889 

I will often need statistics 
in my life. 

4.961 
(1.410) 0.761 0.877 0.759 0.871 

Cost - Effort Required      

Doing statistics is 
exhausting to me. 

4.056 
(1.514) 0.913 0.910 0.914 0.910 

I often feel completely 
drained after doing 
statistics.  

3.739 
(1.555) 0.953 0.959 0.952 0.959 

Dealing with statistics 
drains a lot of my energy. 

3.746 
(1.572) 0.945 0.959 0.943 0.960 

Learning statistics 
exhausts me. 

3.729 
(1.538) 0.934 0.939 0.934 0.939 

Cost - Emotional Cost      

I'd rather not do statistics, 
because it only worries 
me. 

3.077 
(1.387) 0.656 0.841 0.661 0.845 

When I deal with 
statistics, I get annoyed. 

3.856 
(1.585) 0.669 0.764 0.674 0.775 

Statistics is a real burden 
to me. 

3.162 
(1.461) 0.690 0.895 0.694 0.897 

Doing statistics makes me 
really nervous. 

3.116 
(1.523) 0.660 0.808 0.662 0.791 

Cost - Opportunity Cost      

I have to give up other 
activities that I like to be 
successful at statistics. 

3.102 
(1.603) 0.568 0.873 0.570 0.873 
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Survey Item 
Item Means 
(Standard 
Deviations) 

Canonical 
Task-

Values as 
Single 

Constructs 

Task-Value 
Facets as 
Separate 

Constructs 

3-Factor 
Model of 

Canonical 
Task-Values 

as Single 
Constructs 

9-Factor 
Model of 

Task-Value 
Facets as 
Separate 

Constructs 

I have to give up a lot to 
do well in statistics. 

2.824 
(1.462) 0.614 0.954 0.615 0.955 

I'd have to sacrifice a lot 
of free time to be good at 
statistics. 

3.099 
(1.607) 0.638 0.915 0.638 0.914 
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Table 2.3: Thresholds of Model Fit Indices for All Confirmatory Factor Analyses. These 
thresholds were established based on the recommendations of Hu and Bentler (1999). Thresholds 
without recommendations are indicated by ‘~’ 
 

Threshold MLR χ2 p-value CFI TLI RMSEA SRMR 
Acceptable Fit > 0.05 0.90 0.90 0.08 0.10 
Good / Excellent Fit ~ 0.95 0.95 0.06 0.08 

 
 
Table 2.4: Fit Summary for Confirmatory Factor Analyses. n = 284. Model fit indices for 
analyses where each canonical task-value was examined as a single construct (1-factor models) 
compared to analyses which distinguished each of the facets as separate constructs (multi-factor 
models). “Combined models” describe where all canonical task-values as single constructs (3-
factor model) were conducted in one analysis compared to all task-value facets for Intrinsic 
Value (1 ‘facet’), Utility Value (5 facets) and Cost (3 facets) were conducted in one analysis. 
Thresholds for ‘acceptable’ fit for CFI and TLI, and ‘good fit’ for RMSEA and SRMR are 
indicated in parentheses. 
 

Analysis χ2 df p (>0.05) CFI (>0.90) TLI 
(>0.90) 

RMSEA 
(<0.06) 

SRMR 
(<0.08) 

Intrinsic Value        

1 Factor 0.476 2 0.788 1 1 0.005 0.005 

Attainment Value        

1 Factor 244 35 0.000 0.810 0.756 0.175 0.089 
2 Factors 177 34 0.000 0.874 0.833 0.145 0.076 

Utility Value        

1 Factor 663 54 0.000 0.616 0.531 0.226 0.125 
5 Factors 91 44 0.000 0.972 0.958 0.068 0.050 

Cost        

1 Factor 556 44 0.000 0.728 0.667 0.266 0.132 
3 Factors 75 41 0.001 0.985 0.980 0.065 0.029 

Combined Models        

All Canonical 
Task-Values 
(3-factor) 

1739 321 0.000 0.724 0.698 0.140 0.103 

Task-Value 
Facets (9-
Factor) 

488 288 0.000 0.973 0.967 0.047 0.048 
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Table 2.5: Regression Outputs for Task-Value Facets and BioVEDA Scores. n = 101. 

Asterisks indicate significant predictors. 

Task Value / Facet β S.E. t p F df p Adj. R2 

Intrinsic Value     2.189 96 0.076 0.045 

Intercept 2.045 2.043 1.001 0.319     

Intrinsic 0.288 0.176 1.638 0.105     

Prior Stats Exp. 0.103 0.555 0.186 0.853     

GPA 1.233 0.577 2.135 0.035*     

School 0.262 0.578 0.453 0.651     

Utility Value     2.657 94 0.02* 0.090 

Intercept 0.108 2.207 0.049 0.961     

Utility - School 0.568 0.267 2.128 0.036*     

Utility - Daily 
Life 0.238 0.221 1.077 0.2843     

Utility - 
Career/Job -0.244 0.305 -0.801 0.425     

Prior Stats Exp. 0.030 0.556 0.054 0.957     

GPA 1.359 0.572 2.374 0.012*     

School 0.240 0.610 0.393 0.6949     

Cost     4.307 95 0.001* 0.142 

Intercept 6.660 2.159 3.085 0.003*     

Cost - Effort 
Required 0.373 0.249 1.500 0.137     

Cost - Emotional 
Cost -0.985 0.284 -3.475 0.001*     

Prior Stats Exp. 0.151 0.527 0.287 0.775     

GPA 0.787 0.562 1.399 0.165     

School 0.015 0.552 0.027 0.978     
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CONCLUSION 

 

 In this thesis, I explored two key aspects of students’ motivation towards quantitative 

biology in different scenarios: characterizing the specific experiences of students when working 

together in groups and how those experiences shape their math self-efficacy beliefs; and 

investigating students’ task-values towards statistics and how they relate to their understanding 

of a statistical concept in an applied context. My findings show that these constructs, widely 

studied in other educational contexts and fields, are useful in understanding biology 

undergraduates’ engagement towards math in biology and provide an avenue for future 

investigation into how better to integrate quantitative skills into modern biology curricula. 

 In Chapter 1, I explored how, when working together in small groups to complete 

quantitative biology tasks like evaluating Hardy-Weinberg Equilibria and modeling population 

growth, students draw from their experiences in group work, which in turn reflect different 

sources of self-efficacy, to build or diminish their self-efficacy beliefs. We also asked how 

students’ math self-efficacy related to the sources of self-efficacy they reported which increased 

or decreased their self-efficacy. When building their self-efficacy, many students reported 

experiences which reflected a mastery experience, such as succeeding at a problem on the group 

work assignment, being able to verify their success with their peers, or even teach or guide their 

struggling peers which reinforced their own confidence in their abilities. These findings support 

the theory and literature which argue that mastery experiences are a critical source of self-

efficacy (Bandura, 1997; Usher & Pajares, 2008; Butz & Usher, 2015). We also found that most 

students drew confidence from the discussion of different ideas and approaches to problems, and 
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the ability for group members to help one another and ask each other questions in a large-lecture 

environment. These specific experiences highlight how the unique social dynamics of working in 

groups can positively impact students’ confidence (Nokes-Malach et al., 2015; Felder & Brent, 

2016; Lent et al., 2006). We also found relationships between students’ self-efficacy levels when 

entering the group work assignment and the sources of self-efficacy they reported increased their 

confidence: students with higher self-efficacy tend to experience more mastery and rely less than 

their lower self-efficacy peers. This reinforces evidence that students of varying self-efficacy 

levels may develop their self-efficacy beliefs through different sources (Usher & Pajares, 2008; 

Butz & Usher, 2015) and highlights the importance of providing opportunities for multiple 

sources of self-efficacy when designing interventions which target it. Additionally, our findings 

may help explain how students working in diverse or heterogenous groups tend to perform better 

(Donovan et al., 2018), as the ability to work with others benefits lower self-efficacy students 

through the availability of help, while also providing opportunities for higher self-efficacy 

students to demonstrate their mastery. 

 A more complex story emerges from the experiences which decreased students’ 

confidence, however. While most students encouragingly expressed that group work did not 

decrease their confidence, those who did experience a decrease reported a huge breadth of 

negative experiences reflecting a wide range of self-efficacy sources. Once again, mastery 

experiences—or, rather, a lack thereof—were most prevalent in hurting students’ confidence 

(Bandura, 1997), but the specific experiences of students ranged from simply making mistakes 

on a problem, to being unsure of their success because their group failed to verify their answers 

or collaborate with each other, to feeling pressured for time and being unable to keep up with 

their group mates. Additionally, students frequently expressed that their groups failed to 
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communicate openly or consistently, feeling also that their group mates were unable to provide 

the support they needed to build their confidence in solving the problems. Some students felt so 

pressured by their relative progress or success compared to their peers that their confidence in 

their own abilities diminished. While studies have found negative impacts to engagement and 

performance when groups become dysfunctional or ineffective (Chang & Brickman, 2018; 

Donovan et al., 2018; Nokes-Malach et al., 2015), our findings suggest an explanation for how 

these negative impacts manifest, by shaping students’ self-efficacy beliefs. Additionally, we 

found that students with lower self-efficacy tended to report a lack of mastery more frequently 

than their higher self-efficacy peers, further highlighting the importance of mastery experiences 

as a source of self-efficacy but also underscoring the importance for instructors to target lower 

self-efficacy students given the breadth and variety of negative experiences we observed in our 

students during group work. Further qualitative work is necessary to dive more deeply into these 

experiences, both positive and negative, to better understand how they emerge through group 

work and how they relate to other experiences as students form their self-efficacy beliefs. 

Interviewing students can provide a focused and individual lens through which to examine these 

relationships to better understand what is going on when students report their experiences, as our 

findings show that what students tell us about their confidence provides a unique window 

through which educators can understand their students’ motivation, engagement, and 

performance, and help them create more effective interventions to support the development of 

students’ self-efficacy towards quantitative biology. 

 In Chapter 2, I investigated how to better represent and characterize students’ task-values 

towards statistics, and the relationship of their task-values to their understanding of biological 

variation in experimental design as measured by their performance. We found that students’ task-
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values are better described using a model which differentiates the four canonical task-values—

intrinsic value, attainment value, utility value, and cost—into multiple dimensions or ‘task-value 

facets.’ While intrinsic value is not typically described with multiple facets, our model 

distinguished between multiple utility value facets and multiple cost facets. These findings 

extend those of other studies which focused on a specific task-value, cost especially (Perez et al., 

2014; Flake et al., 2015) by revealing similar dimensionality within our students’ task-values, 

and reflect those of Gaspard et al. (2015) who investigated math task-value facets in secondary-

school students. In their conclusion, they called for others to examine their model of multiple 

task-value facets in other populations and other contexts. Our findings represent a step in that 

direction by exploring the model in biology students and suggest a model of several task-value 

facets can be a more focused tool for understanding the task-values of biology undergraduates 

towards math in biology. 

 We also found that these task-value facets may individually predict students’ 

performance and understanding. In our students, the utility of statistics for school / academics 

related positively to students’ performance on the statistical assessment, while the emotional / 

psychological cost of statistics related negatively to performance on the statistical assessment. 

Our results emphasize the importance of utility value (Conley, 2012; Luttrell et al., 2010) by 

revealing how it encompasses a variety of different aspects or domains in students’ lives to 

different degrees (Peetsma & van der Veen, 2011). They also add to the mounting evidence of 

the significant influence of cost in students’ motivation and achievement (Flake et al., 2015). 

Further exploration of task-value facets and how they may affect students of varying 

backgrounds in different contexts or domains can provide instructors with insight into their 
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students’ motivation and benefit them towards developing more targeted or personal 

interventions to improve engagement and performance in their students. 

 Overall, these findings highlight how exploring student motivation is a useful and 

meaningful lens through which to examine both students’ performance in using and 

understanding math in biology as well as how to reinforce the development of their quantitative 

skills. The constructs of self-efficacy, both in the context of social cognitive theory and 

expectancy-value theory, and task-values frame a window into how and why students engage 

with the quantitative lessons we present them as well as how to shape their beliefs about their 

ability to tackle these problems. These insights into students’ motivation reveal promising leads 

in the investigation of how best to incorporate quantitative biology into new curricula, and how 

biology educators and instructors can better help their students meet the challenges of modern 

biology. 
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APPENDICES 

 

Appendix A: Survey Instruments for Chapter 1 

Hardy-Weinberg Equilibrium Pre-Survey 

Name: ___________________________ 
 

Please consider the following problem about Hardy-Weinberg Equilibrium. You do not have to 
solve it. 
 
A gene has two alleles: A and B. The number of 
individuals in a population with each genotype is 
shown in the table to the right. 
 
Please rate your confidence (circle the number) in your ability to successfully do the following: 
 
 Not at all 

confident 
A little 

confident 
Fairly 

confident 
Very 

confident 
Completely 
confident 

Calculate the predicted number 
of individuals of each genotype 
under the conditions of Hardy-
Weinberg Equilibrium. 
 

1 2 3 4 5 

Justify whether the population is 
evolving or not using the Hardy-
Weinberg Equilibrium model. 
 

1 2 3 4 5 

 
 

 

 

 

 

 

AA AB BB 

42 96 62 
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Hardy-Weinberg Equilibrium Post-Survey 

Name: ___________________________ 
 

Please consider the following problem about Hardy-Weinberg Equilibrium. You do not have to 
solve it. 
 
A gene has two alleles: A and B. The number of 
individuals in a population with each genotype is 
shown in the table to the right. 
 
Please rate your confidence (circle the number) in your ability to successfully do the following: 
 
 Not at all 

confident 
A little 

confident 
Fairly 

confident 
Very 

confident 
Completely 
confident 

Calculate the predicted number 
of individuals of each genotype 
under the conditions of Hardy-
Weinberg Equilibrium. 
 

1 2 3 4 5 

Justify whether the population is 
evolving or not using the Hardy-
Weinberg Equilibrium model. 
 

1 2 3 4 5 

Describe any experiences and/or interactions during group work today that increased your 
confidence in your ability to calculate the predicted number of individuals of each genotype 
under the conditions of Hardy-Weinberg Equilibrium. 
 

Describe any experiences and/or interactions during group work today that decreased your 
confidence in your ability to calculate the predicted number of individuals of each genotype 
under the conditions of Hardy-Weinberg Equilibrium. 
 

Describe any experiences and/or interactions during group work today that increased your 
confidence in your ability to justify whether the population is evolving or not using the Hardy-
Weinberg Equilibrium model. 
 
Describe any experiences and/or interactions during group work today that decreased your 
confidence in your ability to justify whether the population is evolving or not using the Hardy-
Weinberg Equilibrium model. 
 

AA AB BB 

42 96 62 
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With which gender do you identify? 

o Male  (1)  

o Female  (2)  

o Other  (3) ________________________________________________ 

o Prefer not to respond  (4)  
 
 
What year are you in college? 

o First year  (1)  

o Second year  (2)  

o Third year  (3)  

o Fourth year  (4)  

o Other  (5) ________________________________________________ 

o Prefer not to respond  (6)  
 
 
What is your major? 

________________________________________________________________ 
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Of the following, which is the highest mathematics course you took in high school? 

o Algebra or Geometry  (1)  

o Trigonometry  (2)  

o Pre-calculus  (3)  

o Calculus  (4)  

o Prefer not to respond  (5)  
 
 

Population Growth Pre-Survey 

Name: __________________________ 
 

Please consider the following problem about population growth. You do not have to solve it. 
 
Cod is an economically important fish species in the fishing industry. Unfortunately, overfishing 
has depleted cod populations in some areas. A group of fisheries biologists is monitoring one 
particular cod population that is currently closed to fishing. The biologists estimated that the 
population size at the beginning of 2019 was 150 cod. Over the course of the year, they 
recorded 240 births and 60 deaths in the population. Assume the per capita population growth 
rate is the same every year, the carrying capacity of the population is 1000 cod, and the 
population can be modeled with the logistic growth model:	

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 '

𝐾 −𝑁
𝐾 * 

The fisheries biologists have agreed to re-open the population for fishing once the population 
surpasses its maximum growth rate.  Will the population size in 2022 be large enough to allow 
fishing? 
 
Please rate your confidence (circle the number) in your ability to successfully do the following: 
 
 Not at all 

confident 
A little 

confident 
Fairly 

confident 
Very 

confident 
Completely 
confident 

Predict the population size in the 
year 2022 1 2 3 4 5 
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Population Growth Post-Survey 

Name: __________________________ 
 

Please consider the following problem about population growth. You do not have to solve it. 
 
Cod is an economically important fish species in the fishing industry. Unfortunately, overfishing 
has depleted cod populations in some areas. A group of fisheries biologists is monitoring one 
particular cod population that is currently closed to fishing. The biologists estimated that the 
population size at the beginning of 2019 was 150 cod. Over the course of the year, they 
recorded 240 births and 60 deaths in the population. Assume the per capita population growth 
rate is the same every year, the carrying capacity of the population is 1000 cod, and the 
population can be modeled with the logistic growth model:	

𝑑𝑁
𝑑𝑡 = 𝑟𝑁 '

𝐾 −𝑁
𝐾 * 

The fisheries biologists have agreed to re-open the population for fishing once the population 
surpasses its maximum growth rate.  Will the population size in 2022 be large enough to allow 
fishing? 
 
Please rate your confidence (circle the number) in your ability to successfully do the following: 
 
 Not at all 

confident 
A little 

confident 
Fairly 

confident 
Very 

confident 
Completely 
confident 

Predict the population size in the 
year 2022 1 2 3 4 5 

 
Describe any experiences and/or interactions during group work today that increased your 
confidence in your ability to predict the population size in the year 2022. 
 

Describe any experiences and/or interactions during group work today that decreased your 
confidence in your ability to predict the population size in the year 2022. 
 
With which gender do you identify? 

o Male  (1)  

o Female  (2)  

o Other  (3) ________________________________________________ 

o Prefer not to respond  (4)  
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What year are you in college? 

o First year  (1)  

o Second year  (2)  

o Third year  (3)  

o Fourth year  (4)  

o Other  (5) ________________________________________________ 

o Prefer not to respond  (6)  
 
 
What is your major? 

________________________________________________________________ 
 
 
Of the following, which is the highest mathematics course you took in high school? 

o Algebra or Geometry  (1)  

o Trigonometry  (2)  

o Pre-calculus  (3)  

o Calculus  (4)  

o Prefer not to respond  (5)  
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Appendix B – Survey Instruments for Chapter 2 
 
Task-Value Facets 
 
Intrinsic Value 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

Statistics 
is fun to 
me. (1)  

o  o  o  o  o  o  o  
I like 
doing 

statistics. 
(2)  

o  o  o  o  o  o  o  
I simply 

like 
statistics. 

(3)  
o  o  o  o  o  o  o  

I enjoy 
dealing 

with 
statistical 

topics. 
(4)  

o  o  o  o  o  o  o  
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Attainment Value – Importance of Achievement 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

It is 
important 
to me to 

be good at 
statistics. 

(1)  

o  o  o  o  o  o  o  

Being good 
at 

statistics 
means a 

lot to me. 
(2)  

o  o  o  o  o  o  o  

Performing 
well in 

statistics is 
important 
to me. (3)  

o  o  o  o  o  o  o  

Good 
grades in 
statistics 
are very 

important 
to me. (4)  

o  o  o  o  o  o  o  
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Attainment Value – Personal Importance 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 

(7) 

I care a lot 
about 

remembering 
the things we 

learn in 
statistics. (1)  

o  o  o  o  o  o  o  

Statistics is 
not 

meaningful 
to me. (2)  

o  o  o  o  o  o  o  
I‘m really 
keen on 

learning a lot 
in statistics. 

(3)  

o  o  o  o  o  o  o  

Statistics is 
very 

important to 
me 

personally. 
(4)  

o  o  o  o  o  o  o  

To be honest, 
I don't care 

about 
statistics. (5)  

o  o  o  o  o  o  o  
It is 

important to 
me to know a 

lot of 
statistics. (6)  

o  o  o  o  o  o  o  
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Utility Value - School 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

It is 
worth 

making 
an effort 

in 
statistics, 
because 

it will 
save me 
a lot of 
trouble 

at school 
in the 
next 

years. (1)  

o  o  o  o  o  o  o  

Being 
good at 
statistics 
pays off, 
because 

it is 
simply 
needed 

at school. 
(2)  

o  o  o  o  o  o  o  
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Utility Value – Daily Life 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 

(7) 

Understanding 
statistics has 

many benefits 
in my daily 

life. (1)  

o  o  o  o  o  o  o  

Statistics 
comes in 
handy in 

everyday life 
and leisure 

time. (2)  

o  o  o  o  o  o  o  

Statistics is 
directly 

applicable in 
everyday life. 

(3)  

o  o  o  o  o  o  o  
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Utility Value – Social Utility 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

Being well 
versed in 
statistics 

will go 
down well 

with my 
classmates. 

(1)  

o  o  o  o  o  o  o  

I can 
impress 

others with 
intimate 

knowledge 
in 

statistics. 
(2)  

o  o  o  o  o  o  o  

If I know a 
lot in 

statistics, I 
will leave a 

good 
impression 

on my 
classmates. 

(3)  

o  o  o  o  o  o  o  
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Utility Value – Career/Job 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 

(7) 

Good 
grades in 
statistics 
can be of 

great value 
to me later 

on. (1)  

o  o  o  o  o  o  o  

Learning 
statistics is 

worthwhile, 
because it 
improves 

my job and 
career 

chances. (2)  

o  o  o  o  o  o  o  
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Utility Value – Future Life 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

Statistics 
contents 
will help 
me in my 
life. (1)  

o  o  o  o  o  o  o  

I will 
often 
need 

statistics 
in my 

life. (2)  

o  o  o  o  o  o  o  
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Cost – Effort Required 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

Doing 
statistics is 
exhausting 
to me. (1)  

o  o  o  o  o  o  o  
I often feel 
completely 

drained 
after doing 
statistics. 

(2)  

o  o  o  o  o  o  o  

Dealing 
with 

statistics 
drains a 
lot of my 

energy. (3)  

o  o  o  o  o  o  o  

Learning 
statistics 
exhausts 
me. (4)  

o  o  o  o  o  o  o  
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Cost – Emotional Cost 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

I'd rather 
not do 

statistics, 
because 
it only 

worries 
me. (1)  

o  o  o  o  o  o  o  

When I 
deal with 
statistics, 

I get 
annoyed. 

(2)  

o  o  o  o  o  o  o  

Statistics 
is a real 
burden 
to me. 

(3)  

o  o  o  o  o  o  o  

Doing 
statistics 

makes 
me really 
nervous. 

(4)  

o  o  o  o  o  o  o  
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Cost – Opportunity Cost 
 
Please rate how much you agree/disagree with each statement. There are no right or wrong 
answers. 

 
Strongly 
disagree 

(1) 

Disagree 
(2) 

Somewhat 
disagree 

(3) 

Neither 
agree 
nor 

disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree (7) 

I have to 
give up 
other 

activities 
that I like 
doing in 
order to 

be 
successful 

at 
statistics. 

(1)  

o  o  o  o  o  o  o  

I have to 
give up a 
lot to do 
well in 

statistics. 
(2)  

o  o  o  o  o  o  o  

I'd have 
to 

sacrifice a 
lot of free 

time to 
be good 

at 
statistics. 

(3)  

o  o  o  o  o  o  o  
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Demographics 
 
What year are you in college? 

o First year  (1)  

o Second year  (2)  

o Third year  (3)  

o Fourth year  (4)  

o Other  (5) ________________________________________________ 

o Prefer not to respond  (6)  
 
Have you taken a statistics course prior to this course (at college, in high school, or elsewhere)? 

o Yes  (1)  

o No  (2)  

o Prefer not to respond  (3)  
Which of the following describes you with relation to pre-professional programs? 

o I am pre-medicine  (1)  

o I am pre-dental  (2)  

o I am pre-pharmacy  (3)  

o I am pre-veterinary medicine  (4)  

o I am in a pre-professional science program not listed here  (5) 
________________________________________________ 

o I am not in a pre-professional program  (6)  

o Prefer not to respond  (7)  
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What is your major? (If you prefer not to respond, please indicate that in the text box) 

________________________________________________________________ 
 
 
What is your current cumulative GPA? (If you prefer not to respond, please indicate that in the 
text box) 

________________________________________________________________ 
 
What is your gender? 

o Male  (1)  

o Female  (2)  

o Other  (3) ________________________________________________ 

o Prefer not to respond  (4)  
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With which race(s)/ethnicity do you most closely identify? Please choose all that apply. 

▢ American Indian or Alaska Native  (1)  

▢ Asian  (2)  

▢ Black or African American  (3)  

▢ Native Hawaiian or other Pacific Islander  (4)  

▢ White (not Hispanic or Latinx)  (5)  

▢ Hispanic or Latinx  (6)  

▢ Other  (7) ________________________________________________ 

▢ Prefer not to respond  (8)  
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What is the highest level of education obtained by any parents or guardians in your household? 

o Some high school  (1)  

o High school/GED  (2)  

o Some college  (3)  

o Trade/technical school degree  (4)  

o Associate's degree  (5)  

o Bachelor's degree  (6)  

o Master's degree  (7)  

o Doctorate degree  (8)  

o Professional degree  (9)  

o Other  (10) ________________________________________________ 

o I don't know  (11)  

o Prefer not to respond  (12)  
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Appendix C – Correlation Table for Survey Items 

Correlations in parentheses were not statistically significant, all other correlations reported 
significant at p < 0.05. 
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