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ABSTRACT  

MANIPULATING SINGLE POLYMER MOLECULES FOR APPLICATIONS IN 

NANOMATERIALS 

by 

Ruiwen Chen 

University of New Hampshire 

Polymeric nanoparticles have been utilized in an increasing number of fields over the past two 

decades due to their unique properties such as design flexibility and good biocompatibility. Despite 

various techniques available to produce polymer nanoparticles, the preparation of small 

nanoparticles with customized functions in the sub 20 nm dimension remains challenging. Inspired 

by the self-organizing behavior of natural biomacromolecules, a class of single-chain nanoparticles 

(SCNP) are synthesized featuring biomimicry and ultrafine size. These nanoparticles are prepared 

from self-folding of polymer precursors bearing reactive pendant groups by intramolecular cross-

linking reactions. A variety of cross-linking chemistries are available including covalent, dynamic 

covalent and non-covalent chemistries. Among these methods intramolecular polymerization is of 

particular importance as it allows for easy control of an SCNP’s degree of cross-linking, and lead 

to SCNP with tunable level of compaction. 

The aim of this dissertation is to 1) provide a comprehensive overview of recent advances in the 

field of single-chain folding; 2) investigate the synthesis of SCNP by intramolecular 

polymerizations, and 3) study the synthetic variations relating to the efficiency of a polymer’s self-

folding by intramolecular polymerization.   



xviii 

 

Chapter 2 of this work discusses the synthesis of poly(oxanorbornene imide) single-chain 

nanoparticles by intrachain radical polymerization of pendant methacryloyl units. Structure/ 

property relationships related to methacryloyl pendant length and percent incorporation were 

studied. Chapter 3 investigates the synthesis of an epoxide-maleimide bifunctional monomer, and 

its ring-opening polymerization to afford polyethyleneglycol based polymer precursor. The 

polymer precursor could undergo intramolecular radical polymerization to afford SCNP, and the 

cross-linked moiety could potentially be isolated for the study of degree of intrachain 

polymerization. Chapter 4 expands the scope of intrachain polymerization and explores the 

synthesis of SCNP by intramolecular ring-opening metathesis polymerization (ROMP). A series 

of poly(pentafluoro-methacrylate)s containing pendant norbornene imide groups was synthesized 

and subjected to intrachain ROMP. The efficiency of chain folding was explored relating to 

norbornene content on the polymer precursor, species and feed ratio of Grubbs catalysts, as well 

as doping effects of fluorinated aromatic comonomer. 



1 

 

Chapter 1. Introduction 

1.1 Nanoparticles based on single polymer molecules 

Since the emergence of nanotechnology in the past decades, the development of nanomaterials has 

become an important field of research. An emerging component in this field is polymeric 

nanoparticles (PNPs) which provide a broad range of medical, mechanical and electronic 

applications due to their unique properties including design flexibility, good biocompatibility, bio-

mimetic characters, etc.1-4 Although PNPs with sizes ranging from 50 nm to several micrometers 

are commercially available, these PNPs are mainly in the form of multi-chain nanostructures, e.g., 

micelles and polymersomes.5-7 The preparation of smaller PNPs with customized functions in the 

sub 20 nm dimension, however, remains a challenging research goal. An effort toward this goal 

involves the manipulation of polymers on a single molecule level and gives access to PNPs with 

ultrafine size. These nano sized objects originate from cross-linking of single polymer molecules 

and exhibit novel properties and functions.  

Single-polymer PNPs can be divided into two categories based on the preparation methods. Those 

synthesized from direct polymerization of multi-functional monomers are named single-chain 

cyclized/knotted polymeric nanoparticles or nanogels (SCKNPs, SCKPs or SCNGs), and those 

taking advantage of preformed polymer precursors are termed single-chain nanoparticles (SCNP 

or SCPN). 

1.1.1 Single-chain cyclized/knotted polymeric nanoparticles/nanogels  

Single-chain cyclized/knotted polymeric nanoparticles or nanogels (SCKNPs, SCKPs, SCNGs) 

are prepared from kinetically controlled homopolymerization of multivinyl monomers (MVMs). 

8-10(Figure 1.1) 
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Figure 1.1 Illustration of the formation process of SCKPs. The intramolecular cyclization is 

promoted due to the small kinetic chain length and the high local vinyl concentration near the 

active center.9 Reprinted with permission from Ref. 9. Copyright 2015 American Chemical Society. 

Direct homopolymerization of MVMs is very challenging since each MVM is a potential 

crosslinker. According to the classical Flory-Stockmayer theory, the polymerization of MVMs 

would inevitably lead to gelation even at low monomer conversion due to significant 

intermolecular cross-linking reactions.8-11 Recent development of controlled radical 

polymerization (CRP) including RAFT polymerization and Cu0 mediated CRP allows 

unprecedented kinetic and spatial manipulation of chain propagation and can promote 

intramolecular cyclization while suppressing intermolecular cross-linking under proper conditions. 

These methods allow significant delay in reaching the gel point, and a single-chain 

cyclized/knotted nanoparticle can be achieved from one-pot in situ intramolecular reaction and 

self-cyclization of the propagating MVM polymer chain.8-11  

SCKPs prepared by this approach contain large numbers of residual vinyl groups within the 

cyclized nanoparticles and can be further functionalized via Michal additional. Zheng and 

coworkers8 synthesized SCKPs from RAFT polymerization of ethylene glycol dimethacrylate 

(EGDMA) and successfully functionalized the SCKPs through thiol-Michael addition with 2-

mercaptoethanol. Huang et al12 showed that SCKPs with multiple pendant vinyl groups can be 

used as a core to prepare star polymers via a grafting-onto approach. When an acid cleavable 
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divinyl monomer was used, the resulting SCKPs were degradable in acidic conditions. The 

degraded product was highly branched but showed little reduction in the hydrodynamic volume, 

confirming the internal cyclized architecture.8 SCNGs can also be made from supramolecular 

divinyl monomers, assembled via host-guest complexation of vinyl-adamantane and vinyl-β-

cyclodextrin, as demonstrated by Chen and coworkers.13 These SCNGs undergo stimuli-induced 

cleavage of intra-chain crosslinks and can be unfolded by adding free competitive guest agent. 

1.1.2 Single-chain nanoparticles (SCNP or SCPN) 

Single-chain polymeric nanoparticles (SCNP) are another category of PNPs synthesized from 

single polymer molecules. Unlike SCKPs which are prepared from one pot in situ intramolecular 

cyclization of multivinyl monomers, SCNP take advantage of preexisting polymer precursors that 

are functionalized in the side chains with cross-linking sites. (Figure 1.2A)14 After intramolecular 

cross-linking, the polymer folds into a well-defined nanosized object with potential functions such 

as catalysis and sensing. In that sense, SCNP partially mimic the folding of biomacromolecules, 

but can be made using a variety of monomers and polymerization techniques available. An 

immense number of synthetic methodologies have been applied to the formation of SCNP, 

including covalent, dynamic covalent and noncovalent cross-linking.14-17 The main approaches to 

achieve chain folding can be classified into homofunctional cross-linking, heterobifunctional 

cross-linking and cross-linker mediated chain collapse. (Figure 1.2B)18 
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Figure 1.2 (A) Schematic representation of SCNP synthesis;14 (B) Modes for intramolecular cross-

linking of a polymer chain.18 Adapted with permission from Ref. 18. Copyright 2015 American 

Chemical Society. 

The history of intramolecular crosslinking of polymer molecules dates back to the 1950s.19 Early 

work involving both experimental and theoretical studies of the process set the ground for the rapid 

development of SCNP.20-24 Over the past decade, due to the advancement of controlled 

polymerization techniques as well as utilization of efficient synthetic strategies such as photo-

mediated reactions and organometallic reactions, the scientific community has witnessed a surge 

in the studies of SCNP. New characterization methods also contribute significantly to the 

expansion of SCNP studies: triple-detection  size exclusion chromatography (SEC), dynamic light 

scattering (DLS) and diffusion ordered nuclear magnetic resonance (DOSY-NMR) offer more 

accurate size evaluation;14, 25-26 High-resolution mass spectroscopy and matrix-assisted laser 

desorption/ionization-time of flight (MALDI-TOF) show chemistries of intramolecular cross-

linking;27-28 Small-angle X-ray scatter (SAXS) and small-angle neutron scattering (SANS) reveal 

the inner structure of SCNP;29-32 Scanning tunneling microscope (STM) and atomic force 

microscopy (AFM) provide direct visualization of the molecular structures and folding process of 

single polymer chains;33-34 Other instrumentations are also available depending on the specific 
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chemistry and end use of SCNP. The synthesis, characterization, and potential use of SCNP were 

extensively covered in a handful of review articles15, 17-18, 35-42 and will not be the focus of this 

chapter. The rest of this chapter will highlight a selection of recent SCNP examples involving 

programmed folding of single polymer precursors, intramolecular cross-linking of non-linear 

polymer precursors, and novel topologies of SCNP. 

1.2 Programmed folding of linear polymer precursors 

Programmed folding of macromolecules is a phenomenon frequently encountered in living process, 

such as protein formation. Remarkably, Nature manipulates the process creating numerous 

proteins, each with unique function with only 20 different amino acids. Synthesizing SCNP by 

intramolecular cross-linking of synthetic polymers is seen as a rudimentary model of the chain 

folding process of biomacromolecules. Despite the vast number of synthetic techniques available, 

it remains a formidable challenge to manipulate polymers on a single molecule level and fold them 

into designated conformations equally complex as a biomacromolecule. The process requires a 

high level of precision control in the intramolecular cross-linking process between reactive groups 

along the same chain. 

1.2.1 Selective point folding 

The simplest case of selective point folding is the synthesis of single ring polymers: Binding 

partners are installed at each end of the linear polymer chain and are connected via ring closure 

reactions. Cyclization of linear polymers by this approach is well-known in the polymer chemistry 

field and a lot of highly efficient linking reactions have been exploited, such as copper(I)-catalyzed 

alkyne-azide cycloaddition (CuAAC)43 and olefin metathesis condensation reactions44. The 

synthesis of cyclic polymers by ring closure usually becomes less efficient as chain length 

increases, since the probability of an individual chain’s end groups having sufficient proximity to 
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react and cyclize decreases.45 This problem was addressed in a recent example reported by 

Konomoto and coworkers.46 They synthesized zwitterionic polystyrene and poly(THF) telechelics 

having a pair of cyclic ammonia groups and a carboxylate end groups. Unimolecular electrostatic 

self-assembly under dilution and subsequent covalent fixation (ESA-CF) transforms the linear 

precursor to a cyclic polymer. (Figure 1.3A) Because the ionic chain-ends were brought together 

by electrostatic association prior to covalent fixation, local concentration of reactive chain end 

units becomes higher, and the inherent kinetic suppression of the conventional ring closure process 

under dilution could be circumvented. 

 

Figure 1.3 Examples of selective-point folding of single polymer molecules. (A) Cyclization of 

zwitterionic telechelic polymer precursors by unimolecular electrostatic self-assembly and 

covalent fixation;46 (B) Ring-close metalation within open-form repeat units of a metallo-

polymer.34 Adapted with permission from Ref. 46 and Ref. 34. Copyright 2019 and 2020 American 

Chemical Society. 

Internal cyclization can also occur within repeat units of a single polymer chain. As shown in 

Figure 1.3B, Li et al 34 synthesized a copolymer of polyethylene glycol with supramolecular 

metallo-monomers. The hexameric monomer consists of six pairs of terpyridine ligands and five 
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of them were strongly coordinated with Ru(II). The open-form monomeric units could be ring-

closed via further coordination with Fe(II) in diluted solution (0.2 mg/mL). It was found that the 

polymer not only underwent ring-closure within each repeat unit and formed hexagons, it also 

formed linear chains by coordination with the ligand on neighboring repeat unit. Apart from 

hexameric metallo-monomers, the researchers also synthesized copolymers with trimeric metallo-

monomers, and those exclusively underwent intramolecular coordination within repeat units under 

the same conditions. The different results were attributed to the size and rigidity of the repeat units 

(tri- vs hexa-). These results showed that reactive groups on a single polymer chain prefer to react 

with those in closer proximity instead of bending over to find a binding partner with larger spatial 

distance. In the meantime, the exclusive intramolecular ring-closure of trimetric monomers 

suggests that in the synthesis of SCNP, intramolecular cross-linking could potentially be controlled 

by tuning the size and rigidity of internal cycles since each intramolecular cross-linking reaction 

can be viewed as a ring-close reaction. This study also provides a new strategy to visualize single 

polymer molecules by STM: The random coil conformation of amorphous single polymer chains 

is often hard to address due to the variability and low atomic resolution. However, by introducing 

metal ions with high electron density into the polymer chains as “staining reagent”, the single 

polymer chains could be directly visualized by STM. 

Selective-point folding of linear-chain single polymers becomes more complicated with an 

increased number of reactive sites since the different combinations of these reactive sites lead to a 

variety of constitutional isomers. For polymers with two reactive sites located on the chain ends, 

the only topology resulting from intramolecular folding is single ring. The number of constitutional 

isomers drastically increases when four reactive sites are installed along the polymer chain. Figure 

1.4A shows possible topologies originated from folding a linear polymer precursor having four 
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linking units.47 Harnessing the folding process of such a polymer and understanding the 

conformations of the resulting constitutional isomers is a joint subject of both synthetic and 

topological polymer chemistry. 

 

Figure 1.4 (A) Single (left) and double (right) polymer folding with a linear polymer precursor 

having four nodal units (two blue nodal points are linking together to form a red nodal point by 

the polymer folding)47; Reprinted with permission from Ref. 47. Copyright 2020 Elsevier. (B) 

Construction of dicyclic polymer topologies (manacle-form, 8-form and θ-form through the folding 

of a tetrafunctional telechelic precursor.48Adapted with permission from Ref. 48. Copyright 2019 

American Chemical Society. 

Recently, programmed folding of a pair of linear polymer precursors having four linking units was 

reported by Kyoda and coworkers.48 (Figure 1.4B) The first polymer contains four linking units 

with equal reactivity. By adding two equivalents of the difunctional crosslinker, the linear polymer 

folds into dicyclic isomers of manacle-, 8-, and θ-forms with a ratio of 60:33:7. This composition 

indicates that although reactive sites along a polymer chain are of identical chemical reactivity, 

they don’t undergo random combination. Rather, cross-linking between two adjacent positions of 

the spatially closer distance is preferred. This finding is consistent with early theoretical studies of 

intramolecular cross-linking reaction,22, 49-50 as well as simulations by Pomposo et al51. Another 

linear polymer precursor was studied with end groups exhibiting higher chemical reactivity than 

the internal reactive sites. Folding of this polymer lead to a dominant formation of the 8-shaped 
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isomer, resulting from initial coupling of the chain ends due to their higher reactivity, followed by 

subsequent coupling of the two residual reactive sites at interior positions. The results indicated 

that the polymer folding process is directed either by spatial distance between functional points, 

or by the chemical reactivity of the functional points in the telechelic precursor. These findings 

provide insight into the bottom up synthesis of topologically controlled single-chain nanoparticles, 

and are crucial for the structure design and property tuning of SCNP. 

The idea of selective point folding is also extensively applied in the field of synthetic peptide 

chemistry. Topologically controlled folding of synthetic linear peptides into multicyclic peptides 

has received significant interest since they are promising candidates as drug compounds with a 

wide therapeutic window. Recently, topologically controlled bicyclic and tricyclic peptide 

scaffolds were reported to be fabricated from linear peptides through intramolecular selenoether 

cyclization followed by disulfide or thioether cyclization.52 Isomerically pure tricyclic peptides 

were also synthesized from one-pot ligation/cyclization of linear peptides.53 Kale and coworkers54 

made a library of macrocyclic peptides through two chemical bridges that connect two pairs of 

cysteines of a peptide chain. The linear precursors in these examples are all synthetic peptides with 

a precise sequence of amino acids. Programmed folding of these molecules, although more 

synthetically challenging, largely mimics the behaviors of natural biomacromolecule and are 

promising biomimetic nanomaterials.  

1.2.2 Protein-mimetic folding 

The synthesis of SCNP is often seen as the development of simplified tertiary protein mimics. 

Tertiary protein structures originate from intramolecular folding single peptide chains among 

secondary structural elements, such as α-helices and β-sheets. Apart from random intramolecular 
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cross-linking of reactive groups to afford SCNP, a new direction emerges that simultaneous 

incorporates secondary structural elements into SCNP.  

Nishimura and coworkers55 demonstrated a water-soluble multiblock copolymer that folds into an 

SCNP with internal β-sheet domains. (Figure 1.5) The copolymer consists of hydrophobic and β-

sheet forming tetra-lecune (Leu) blocks equally distributed within a thermo-responsive and water-

soluble glycine (Gly)-derived vinyl polymer PNAGMe. The polymer exhibits lower critical 

solution temperature (LCST) behavior in water and transforms from an extended chain to a 

collapsed conformation upon heating. The repeated conformational transition induced by thermal 

cycles promoted the non-covalent interaction among the hydrophobic tetra-Leu peptide block, 

which self-assembles to isolate themselves from the hydrophilic PNAGMe blocks to minimize 

contact with water.  As a result, the polymer folds into a single-chain nanoparticle with interior β-

sheet domains.  

 

Figure 1.5 Chemical structure of a multiblock hybrid polymer composed of an alternating aligned 

tetraleucine β-sheet and a thermo-responsive glycine-derived vinyl polymer (top), and schematic 

illustration of the folding process to form single-chain nanoparticles via intramolecular cross-

links among the peptide multiblocks (bottom).55 Reproduced with permission from Ref. 55 from 

The Royal Society of Chemistry. 
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The formation of SCNP with internal helical substructures was achieved by the incorporation of a 

benzene-1,3,5-tricarboxamide (BTA) moiety. This approach was first reported, and then 

extensively studied by the Meijer group. BTA exhibits three-fold hydrogen bonding and could 

self-assemble into helical supramolecules. (Figure 1.6) Therefore, using BTA to induce the folding 

of a polymer chain will result in SCNP with internal helical structure.56 This approach was first 

carried out in organic media on poly(isobornyl methacrylate) carrying o-nitrobenzyl-protected 

BTA groups.56 Removal of the photo-label protecting group allowed BTA to self-assemble into 

their helical stacks and fold the polymer to SCNP. A later study revealed that the folded polymer 

chain does not contain a single BTA stack, but instead it’s composed of multiple segregated 

stacks.57 Incorporating other cross-linking motifs together with BTA in the polymer backbone such 

as 2-ureido-pyrimidinone (UPy),58 Hamilton wedges with cyanuric acids,59 or coumarins60 allows 

orthogonal folding of polymers. Other parameters relating to the BTA-directed folding process 

were also explored, including the sequence distribution61 and graft composition of the polymer,62 

structural constraints by covalent cross-links and order of cross-linking events in an orthogonal 

regime.60 These studies show that SCNP with internal helical structure are accessible via 

intramolecular H-bonding of BTA, and the resulting nanostructures can be tuned by synthetic 

variations. 

 

Figure 1.6 Self-folding and self-assembly of BTA-functionalized copolymers with different 

sequence distribution.61 Reprinted with permission from Ref. 61. Copyright 2016 American 

Chemical Society. 
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The compartmentalized nanostructure inside SCNP can be functionalized and utilized as catalytic 

pockets for enzyme-mimetic applications. Enzymes are efficient biocatalysts that regulate a broad 

variety of reactions in aqueous environments. Their catalytic capability originates from the guided 

folding of single protein molecules which brings amino acid residues together, forming the inner 

compartments that act as “active sites”.63 The controlled single-chain folding of synthetic polymers 

leads to SCNP with compartmentalized nanostructures around crosslinking points. When catalytic 

functional groups are placed in these polymeric pockets, SCNP can exhibit features that resemble 

natural enzymes. This idea is widely applied in the synthesis of metal-containing SCNP that mimic 

biological metallo-enzymes. Two approaches have been developed to incorporate metal complexes 

in SCNP matrix.38 Coordination-driven self-folding is based on a polymer precursor with ligand-

functionalized side chains. The addition of metal ions collapses the polymer through intra-

molecular metal-ligand coordination, and simultaneously imparts catalytic functions to the 

polymeric architecture. Another approach is to fold the polymer into an SCNP first, then 

incorporate the metal-ions in a separate step. 

Studies have shown that metallo-folded SCNP catalysts are advantageous over their molecular 

catalyst counterparts that are not immobilized in a polymer matrix. Metallo-folded SCNP’s inner 

compartment results from polymer folding, that creates shielded catalytic pockets with a specific 

local environment and will allow selective substrates to enter the cavity, increasing selectivity of 

the catalyst.64 The small size of SCNP enables relatively high local concentration of the catalytic 

sites, leading to high efficiency of the catalyst. Having too many catalytic sites in SCNP may lower 

the efficiency of the catalyst due to dense packing of metal complexes and lower flexibility of the 

folded polymer. But the number of catalytic sites per polymer can be easily tuned synthetically.65 

The polymer backbone, side chains, and metal centers are also adjustable depending on 
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applications of the catalyst. Metals including Cu, Ru, Pd, Ti, Pt, Rh, Ag and Ir ions were 

successfully employed in the synthesis of artificial metal-enzymes targeting catalysis of a variety 

of reactions including reduction, oxidation, coupling and click reactions.38, 66-73 Some SCNP 

catalysis reactions were performed in organic media while some were able to function in aqueous 

media which more closely mimic the biological environment. Activity of SCNP catalysts were 

also studied in living cells and showed excellent biocompatibility and catalytic activity.74-75  

 

Figure 1.7 (A) Illustration of RuSCNP preparation and dual catalysis with βGal. (B) Illustration 

of SCNP-enzyme codelivery and dual catalysis.76 Reprinted with permission from Ref. 76. 

Copyright 2020. American Chemical Society. 

A recent study by Chen and coworkers76 codelivered an SCNP catalyst and an exogenous enzyme 

into cells and performed bioorthogonal reactions intracellularly. They prepared a water-soluble 

polymer and intramolecularly cross-linked it with Ru(bpy)3 diyne to form SCNP that was able to 

catalyze reduction of azido groups and produce highly fluorescent rhodamine. (Figure 1.7A) β-

Galactosidase (βGal) was chosen as a model exogenous enzyme that catalyzes the hydrolysis of β-

galactosides. The SCNP catalyst was bound to βGal enzyme surface through electrostatic and 

hydrophobic interactions. The SCNP-enzyme pair was then delivered across cell membranes and 

performed concurrent and tandem intracellular catalysis. (Figure 1.7B) 
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1.2.3 Sequential folding 

Sequential folding of polymer precursors with orthogonal linkers lead to smaller and more 

spherical SCNP.51 Liu et al 77 reported a method to form SCNP with denser cores through 

sequential intrachain photodimerization of anthracene groups. The first irradiation partially folded 

the polymer chain. By adding a poor solvent for the anthracene groups, the unreacted 

functionalities were brought closer together. A subsequent irradiation enables further cross-linking 

of the anthracene groups and lead to SCNP with a more compact core. Frisch and coworkers78 

reported the stepwise folding of a single polymer chain by two photocycloaddition reactions 

initiated by different colors of visible light (Figure 1.8) The polymer carries styrylpyrene and 

anthracene pendants that undergo [2+2] and [4+4] photocycloaddition respectively. Irradiation 

with blue light selectively triggers the intramolecular cross-linking of styrylpyrene, whereas 

subsequent irradiation with violet light induces the photoreaction of anthracene, fully compacting 

the dual photoreactive polymer into an SCNP. Both styrylpyrene and anthracene groups undergo 

photocycloaddition when irradiated with violet light, hence an SCNP was synthesized by direct 

irradiation of violet light, which triggers cross-linking of both groups in a parallel manner. It was 

found that SCNP synthesized by stepwise folding was smaller compared to the parallel folded 

SCNP. Such differences could result from the overall faster folding of parallel folding or from the 

loss of the strict separation of both cross-linking steps. Other chemistries were also employed to 

sequentially fold a linear polymer precursor into an SCNP, including sequential photo- and radical 

coupling,79 orthogonal photoreaction and supramolecular interactions,60 etc.58-60, 71, 80 
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Figure 1.8 (A) Schematic representation of the wavelength selective SCNP folding, induced by the 

[2+2] photocycloaddition of styrylpyrene (blue) and [4+4] photocycloaddition of anthracene 

(violet); (B) Chemical structure of the dual photoreactive polymer.78 Reprinted with permission 

from Ref. 78. Copyright 2020 Wiley. 

1.3 SCNP from cyclic, brush/comb and star polymer precursors 

1.3.1 Cyclic polymer precursor 

Conventional SCNP from random intramolecular cross-linking of linear polymer precursors often 

exhibit a sparse, non-globular conformation in solution, as revealed by both SAXS, SANS data 

and computer simulations.81 A recent molecular dynamics simulation study by Formanek and 

Moreno82 predicted that using cyclic polymers as precursors would enhance intramolecular cross-

linking of distant functional groups and lead to SCNP with more compact and globular 

conformation. Experimental work by Rubio-Cervilla and coworkers83 validated this prediction. As 

shown in Figure 1.9, a linear polymer was first folded to a single ring polymer via hetero Diels-

Alder reaction of chain ends. The resulting cyclic polymer was subsequently activated by azidation, 

then subjected to collapse via CuAAC in the presence of an external dialkyne crosslinker. As a 

comparison, an SCNP from direct cross-linking of the linear polymer precursor was synthesized 
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using the same reaction sequence without the ring-closing step (Step II). It was found that the 

SCNP from ring polymer precursor had a higher compaction degree than the SCNP from linear 

precursor. This phenomenon was attributed to the conformation of the polymer precursors:  In the 

case of linear polymer precursor, cross-linking of functional groups pre-aligned within the chain 

contributes little to the level of compaction. By cyclization, the chain conformation has a distinct 

rearrangement, resulting in a higher degree of compaction upon collapse. The synthesis of SCNP 

from cyclic polymer precursors also introduced new strategies for the preparation of artificial 

cyclotide mimetics exploiting the versatility of synthetic polymers and orthogonal collapse 

chemistries. 

 

Figure 1.9 Schematic illustration of the synthetic route toward single-ring nanoparticles as 

cyclotide mimetics by a stepwise folding-activation-collapse process.83 Reprinted with permission 

from Ref. 83. Copyright 2018 Wiley. 
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1.3.2 Brush/comb/graft polymer precursor 

Some SCNP were synthesized from linear polymer precursors with long side chains, i.e., polymer 

grafts. Polymer grafts carrying cross-linkable functional groups may aid the intramolecular 

reaction, since the increased length and flexibility of side chains allows cross-linking of sites 

separated by long contour distance. This design is widely found in literature but a quantitative 

evaluation of graft length on polymer folding is not yet available. A recent study in our group84 

(detailed in Chapter 2) explored the length of methacryloyl-functionalized side chain in relation to 

the folding of a poly(oxanorbornene) polymer precursor. Our results showed that within the length 

scales we synthesized, side chain length does not significantly affect polymer folding by 

intramolecular radical polymerization. 

 

Figure 1.10 Examples of polymer precursors with grafted side chains that promote solubilities. (A) 

polyisobutylene side chains soluble in THF and hexanes;77 (B) water soluble linear PEG grafts;85 

(C) water soluble alkyl side chains containing imidazolium groups;68 (D) water soluble dendritic 

polyglycerol side chains.86 
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Polymer grafts that are not functionalized with cross-linkable groups can contribute to the overall 

solubility of SCNP. During the synthesis of SCNP, intramolecular cross-linking of the functional 

groups leads to collapsed inner compartments. Polymer grafts not carrying functional groups could 

be made solvophilic or hydrophilic. They exhibit an extended conformation in solution, shielding 

the core of SCNP and stabilize the SCNP solution by repulsive forces between coronas. A study 

by Liu and coworkers77 reported intramolecular cross-linking of comb polymers with large 

aliphatic polyisobutylene grafts, which have affinity for non-polar aliphatic solvents. (Figure 

1.10A) They found that switching the solvent from THF to hexanes has pronounced effect on the 

chain collapse, indicating that disparate solvency could be a choice to tune chain collapse of a 

single comb copolymer. Besides hydrophobic polymer grafts, hydrophilic grafts are widely applied 

in the synthesis of water soluble SCNP. These hydrophilic grafts on the polymers could be water 

soluble PEG chains,85 or ionic species embedded in an alkyl chain.68 (Figure 1.10B,C) A study by 

ter Huurne and coworkers86 substituted the linear PEG grafts with dendritic polyglycerol grafts on 

an amphiphilic heterograft copolymer (Figure 1.10D) and found that branching of the hydrophilic 

pendants affected the local structure of the folded polymer but does not influence the overall 

conformation and single-chain character of the folded copolymers in solution. The hydrophilic 

grafts can also provide steric stabilizing effect to efficiently isolate the cross-linking groups, 

preventing interparticle coupling events. As a result, the synthesis of SCNP could be carried out 

at concentrations as high as 100 mg/mL.87 
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Figure 1.11 (A) Single-chain folding of amphiphilic copolymer in water;88 (B) Reversible and 

thermo-responsive folding properties of the copolymers in water, DMF and 2H,3H-perfluoro-

pentane (2HFP).89Adapted with permission from Ref. 88 and 89. Copyright 2014 and 2016 

American Chemical Society. 

Comb-like amphiphilic random copolymers can undergo single-chain self-folding in water by 

purely hydrophobic interaction without any additional covalent or H-bonding of functional groups 

on the polymer precursor.90 The resulting nanoparticles are commonly referred to as unimer 

micelles. The synthesis of unimer micelles by this approach is well studied by Sawamoto and 

Terashima. As shown in Figure 1.11A,88 a series of graft polymers were synthesized consisting of 

PEG and hydrophobic alkyl pendant groups. The hydrophobic segments avoid contacting water, 

residing in the interior of a self-folded structure and thereby creating hydrophobic 

nanocompartments. They found that single-chain folding occurs with 20-40 mol% of hydrophobic 

units where relatively long and/or large alkyl groups (e.g., R = C12H25, C18C37) are especially 

effective. The folded-unfolded transition is reversible and occurs upon addition of methanol or by 

elevating solution temperature. In several follow-up studies, they showed that the intra- and 

intermolecular self-assembly could be tuned by a few parameters, including hydrophilic 

/hydrophobic balance,91 degree of polymerization,91 sequence distributions of the polymer 

precursor,92 length of hydrophilic PEGs and hydrophobic alkyl pendants,93 etc. Substituting the 
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alkyl pendants with perfluorinated pendants allows various self-assembly modes by changing 

solvents.89 In water or DMF, the polymer self-fold into unimer micelles with fluorous/hydrophobic 

cores while in perfluoropentane they form reverse unimer micelles with hydrophilic PEG cores. 

(Figure 1.11B)89 

 

Figure 1.12 Synthesis of PEG nanotubes with inner functionalities from tricomponent bottlebrush 

copolymers.94 Reprinted with permission from Ref. 94. Copyright 2017 Wiley. 

Another advantage of using graft polymers as precursors for intramolecular cross-linking is that 

they could be used as templates for the preparation of nanotubes. Comb-like polymer precursors 

with densely grafted polymeric branches adopt a persistent cylindrical shape in solution, when the 

polymeric side chains are much shorter than the backbone.95-96 The Rzayev group developed a 

series of core-shell bottlebrush copolymers that exhibit cylindrical shape in solution and used them 

as single molecule templates.94, 97-101 The polymer precursors were subjected to intramolecular 

cross-linking of the shell layer followed by selective removal of the core. The size and shape of 

the polymer precursor was preserved after these transformations, leading to organic nanotubes. 
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The polymer backbone could be methacrylate or norbornene-based, and a variety of cross-linking 

chemistries have been utilized, including photodimerization of coumarin functionalities,94, 97 

oxidative coupling of mercapto groups,98 cross metathesis of olefin groups,99, 101 and oxidative 

polymerization of pyrrole groups.100 Figure 1.12 shows an example of nanotube preparation by 

this approach.94 The bottlebrush copolymer template was synthesized from ROMP of the shown 

macromonomer and served as a cylindrical template. Cross-linking of the coumarin groups in the 

outer shell was performed under UV irradiation in dilute chloroform solution. SEC analysis of the 

shell-cross-linked product exhibited a small shift toward higher elution volume without any high 

molecular weight shoulders, indicating intramolecular reactions. The PLA core was subsequently 

etched out by treatment with methanolic NaOH, leading to cylindrical nanoparticles. 

1.3.3 Star and dendritic polymer precursor 

Intramolecular cross-linking of star-shaped polymer precursors was first reported by Van 

Renterghem and coworkers in 2008.102 They synthesized star-shaped poly(isobornyl acrylate) 

precursors with methacrylate end groups and converted them to unimolecular nanoparticles by 

intramolecular polymerization. The nanoparticles were used as viscosity modifiers in the 

polymerization of acrylate monomers and changed the visco-elastic properties of the polymer by 

noncovalent chain entanglements. Ding and colleagues103 synthesized polymer nanoparticles from 

intramolecular cross-linking of reactive azo-containing star polymer precursors. The nanoparticles 

show circular transformations when the azo chromophores undergo trans-cis isomerization cycles. 

A porphyrin-cored four-arm star polymer was synthesized by Rodriguez et al104 and transformed 

to a nanoparticle by intramolecular anthracene dimerization. The resulting porphyrin-cored 

polymer nanoparticle displayed redox and ligand-binding reactivity and was used as a 

macromolecular model for heme proteins. 
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Figure 1.13 Construction of a K3,3 graph polymer topology and its isomeric ladder-form topology 

carrying six reactive end groups.105 Reprinted in part with permission from Ref. 105. Copyright 

2014 American Chemical Society.* 

Topologically controlled folding of a dendritic polymer precursor having six reactive end groups 

was demonstrated by Suzuki and coworkers.105 Reacting the polymer with two equivalents of the 

trifunctional cross-linkers led to nanoparticles of K3,3 graph topology and another constitutional 

isomer having a tetracyclic ladder form. (Figure 1.13) The K3,3 graph isomer was found to be 

remarkably contracted in comparison with the ladder form isomer in solution. 

Dendrimers with a high degree of branching adopt a three-dimensional globular conformation with 

a large number of functional groups at the periphery.106 Intramolecular cross-linking of high-

generation (g ≥ 3) dendronized polymer precursor was scarcely reported in the literature. In 2002 

Zimmerman and coworkers107 reported the synthesis of macromolecular hosts for porphyrin guests 

based on dendrimer precursors. (Figure 1.14A) An allyl-functionalized dendrimer was synthesized 

containing a porphyrin core as the templating agent. The dendrimer was subjected to 

intramolecular ring-closing metathesis of the peripheral allyl groups, leading to a cross-linked 

unimolecular nanoparticle. Subsequent removal of the porphyrin template from the rigid 

nanoparticle left behind spatially arranged functional groups that act as recognition sites for 

porphyrin derivatives. A subsequent study by Lemcoff et al108 showed that a dendrimer’s size 

 

*Link to the article: https://pubs.acs.org/doi/10.1021/ja504891x. Request for further reuse of this figure should go to 

the ACS for permission. 

https://pubs.acs.org/doi/10.1021/ja504891x
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reduction is linearly dependent on the extent of intramolecular cross-linking, irrespective of the 

number of dendrons used. Encapsulating a hydrophobic, fluorescent dye inside the core of a water-

soluble shell-crosslinked dendrimer provides solubility of the dye in aqueous media.109 The cross-

linked dendritic shell of the small and rigid nanoparticle enhanced the photostability of the 

fluorescent dye in water. A similar approach of solubilizing and stabilizing fluorophores was 

applied on linear dendronized polymers.110 (Figure 1.14B) Linear dendronized polymers contain 

densely packed dendrons along the polymer backbone and adopt a semi-rod-like structure, hence 

intramolecular cross-linking occurs primarily on short range, leading to lower degree of 

compaction. The fluorophores embedded in the cross-linked dendronized polymer exhibited high 

aqueous solubility and improved brightness and photostability. (Figure 1.14C) 

 

Figure 1.14 (A) Schematic illustration of the preparation of imprinted dendrimer;107 Adapted with 

permission from Ref. 107. Copyright 2002 Springer. (B) Schematic illustration of crosslinked 

dendronized polyols incorporated with fluorophores;110 (C) Synthesis of the crosslinked 

dendronized polymer pX.110 Adapted with permission from Ref. 110 from The Royal Society of 

Chemistry. 
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1.4 SCNP with novel topologies 

1.4.1 Tadpole 

Tadpole-shaped SCNP are composed of a flexible polymer attached to an intramolecularly folded 

SCNP. They are commonly synthesized from diblock linear polymer precursors containing a 

reactive block and an inert block. A mathematical study by Asenjo-Sanz and coworkers111 

demonstrated that the size of a tadpole-shaped SCNP is related to its tail length and could be 

predicted prior to the synthesis of SCNP. Tadpole-shaped SCNP exhibit surfactant-mimicking 

structures and have been used as nano building blocks to self-assemble to higher ordered 

structure.112-117   

 

Figure 1.15 (A) Synthesis of the tadpole-like SCNP from intramolecular cross-linking of 1,2-diol 

pendants;118Reprinted in part with permission from Ref. 118 from The Royal Society of Chemistry. 

(B) Preparation of tadpole-shaped SCNP by intramolecular photo-cross-linking reaction of 

cinnamoyl groups.119 Reprinted with permission from Ref. 119. Copyright 2019 American 

Chemical Society. 
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Zhang and coworkers118 synthesized linear diblock copolymers with diol pendants, and used a 

boronic acid crosslinker to afford tadpole-shaped SCNP. (Figure 1.15A) The crosslinker exhibited 

an isoelectric point so the head of the tadpole undergoes hydrophobic/hydrophilic transition based 

on pH. The SCNP self-assembled into spherical multimeric morphology and the assembly could 

be dissociated by varying the environmental pH or adding glucose. Thanneeru et al119 prepared 

amphiphilic diblock copolymers poly(PDMA-b-PS) from N,N’-dimethylacrylamide and styrene 

monomers. (Figure 1.15B) Photo-crosslinkable cinnamoyl groups reside in either the hydrophilic 

PDMA block or the hydrophobic PS block. Intramolecular photo-cross-linking of cinnamoyl 

groups led to the formation of tadpole-shaped SCNP containing either a hydrophobic or 

hydrophilic self-collapsed head. It was found that in both cases, the size and morphology of the 

self-assembled SCNP are related to the degree of intramolecular cross-linking and could be 

controlled from a single polymer precursor. A systematic study on the self-assembly behavior of 

tadpole-shaped SCNP consisting liquid crystalline (LC) properties was reported by Wen and 

coworkers.120 By varying  the UV irradiation time or hydrophilic block chain length, a library of 

assembled morphologies were afforded, including tubular assemblies, bowl-like particles, saddle-

shaped lamellae and spheres. (Figure 1.16) 

 
Figure 1.16 Synthesis of SCNP with tunable liquid crystalline properties via intrachain photo-

cross-linking stilbene-containing amphiphilic block copolymers, and the self-assembly behavior 

of SCNP in solution.120 Reprinted with permission from Ref. 120. Copyright 2019 American 

Chemical Society. 
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Another pathway to tadpole-shaped SCNP is to synthesize a self-cross-linked nanoparticle first, 

then attach a tail in a separate step. Recently, a set of photoligations that can be carried out 

orthogonally either by a sequence of decreasing or increasing wavelengths was reported by the 

Barner-Kowollik group.121 As shown in Figure 1.17, the polymer precursor contains 9-

triazolylanthracene units distributed along the backbone and a styrylpyrene chain end. The 

polymer can be ligated with a PEG chain through [2+2] cycloaddition of styrylpyrene at the chain 

ends and folded into an SCNP through [4+4] cycloaddition of the anthracene units along the 

polymer backbone. The two sets of reactions could occur in either order controlled by irradiation 

wavelength, and both lead to tadpole shaped SCNP. 

 

Figure 1.17 Schematic representation of the light-induced intrachain crosslinking and single-

chain ligation pathways of P1 (A). The dual photoreactive parent polymer P1 can be ligated with 

a PEG chain through [2+2] cycloaddition of styrylpyrene (B) and folded into an SCNP through 

the [4+4] cycloaddition of 9-triazolylanthracene units distributed along the backbone (C).121 

Reprinted with permission from Ref. 121. Copyright 2019 Wiley. 

1.4.2 Compartmentalized/Dumbbell 

Orthogonal self-folding of a diblock copolymer bearing reactive groups within each block leads to 

a double compartment SCNP. Matsumoto and coworkers122 synthesized an amphiphilic random 

block copolymer containing PEG and hydrophobic dodecyl, benzyl and olefin pendants. The 
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copolymer undergoes orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in 

water, followed by covalent crosslinking, forming an SCNP carrying double yet distinct 

hydrophobic nanocompartments. (Figure 1.18A) Another study by Kozawa and coworkers123 used 

amphiphilic ABA random triblock copolymers as precursors bearing PEG and hydrophobic 

dodecyl pendants as the A-segments, and a hydrophilic poly(ethylene oxide) (PEO) as the middle 

B-segment. It was found that the copolymers could self-assemble into PEO-linked double core 

unimer micelles, PEO-looped unimer or dimer micelles, or multimeric micelles, depending on the 

composition of the polymer precursor. (Figure 1.18B) 

 

Figure 1.18 (A) Nanocompartment polymers created via the self-folding and cross-linking of 

amphiphilic random/block copolymers in water;122 Reprinted in part with permission from Ref. 

122. Copyright 2017 American Chemical Society. (B) Self-assembly and self-folding of 

amphiphilic ABA random block copolymers into micelles linked with poly(ethylene oxide) (PEO) 

in water.123 Reprinted in part with permission from Ref. 123. Copyright 2019 Wiley. 
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Claus and coworkers124 employed a PMMA-based ABC triblock copolymer precursor to form dual 

compacted SCNP. The middle B-block was a nonfunctional spacer block. The outer A- and C-

blocks carry phenacyl sulfide and α-methylbenzaldehyde moieties respectively and could be 

sequentially compacted with external dithiol or diacrylate cross-linkers within each block. It was 

found that the hydrodynamic diameter of the polymer was significantly reduced after the first 

compaction. The second compaction revealed a far less pronounced reduction in size, due to the 

reduced degrees of freedom available after the first compaction. A dumbbell-shaped SCNP was 

synthesized by Cui and coworkers125 using an ABC triblock copolymer bearing protonated 

imidazolium motifs in the A- block, NH3
+ motifs in the C-block, and hydroxyl motifs in the B-

block. The outer blocks underwent stepwise coordination to copper ions, taking advantage of the 

difference in the basicity and coordination of imidazole and NH2 motifs. (Figure 1.19A) In a 

follow-up study126, the dumbbell-shaped SCNP was subjected to ascorbic acid reduction and air 

oxidation. Unidirectional molecule shuttling between discrete double heads was found, leading to 

dumbbell-to-tadpole-to-dumbbell configurational transition and the intake of oxidized ascorbic 

acid into as-reassembled heads. (Figure 1.19B) 
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Figure 1.19 (A) Schematic illustration of the formation of dumbbell-shaped SCNP-1; (B) 

Suggested molecular shuttling mechanism and TEM images of SCNP.126 Adapted with permission 

from Ref. 126. Copyright 2018 American Chemical Society. 

Multi-block SCNP were synthesized by Zhang and coworkers127 using a stepwise folding-chain 

extension-folding process. As shown in Figure 1.20, a multi-block copolymer was polymerized by 

RAFT polymerization containing hydroxyl pendants. The hydroxyl groups were cross-linked 

using isocyanate cross-linkers, leading to compaction of the block. Subsequent chain extension 

added a spacer block and a further hydroxyl-decorated block, and folding was repeated to generate 

SCNP with segregated compacted domains. A pentablock copolymer was synthesized by this 

approach bearing three individually folded subdomains with an overall dispersity of 1.21. 
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Figure 1.20  Schematic representation of the synthesis of the multiblock single-chain nanoparticles 

by a repeated folding-chain extension-folding process.127 Reprinted with permission from Ref. 127. 

Copyright 2016 American Chemical Society. 

1.4.3 Janus 

Janus SCNP are prepared from double cross-linking of A-b-B diblock polymer precursors. They 

are a type of compartmented SCNP with distinct hydrophilicities between the compartments. Ji 

and coworkers128 reported the synthesis of an amphiphilic Janus twin SCNP by two-step 

intramolecular cross-linking reactions including anthracene photodimerization and atom transfer 

radical coupling reaction. (Figure 1.21) The amphiphilic nanoparticles possess surfactant 

properties and reduced the surface tension of water. In aqueous solution, the nanoparticles self-

assemble into vesicles with hydrophobic moieties in the inner walls and hydrophilic parts on the 

surface. Self-assembly behavior of the double cross-linked Janus SCNP was different from its 

linear precursor polymer.  
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Figure 1.21 Synthesis of poly(OEGMA-co-AnMA)-block-poly(OCLMA-co-BIEMA) block 

copolymer, and Janus twin SCNP by two-step intramolecular cross-linking reactions.128 Reprinted 

with permission from Ref. 128. Copyright 2018 Wiley. 

The fabrication of pure Janus-type SCNP is reported by Jiang et al.129 They synthesized a diblock 

copolymer A-b-B containing alkyne and tertiary amine pendants within the A- and B-blocks. Two-

step intramolecular cross-linking via Glaser coupling and amine quaternization led to a mixture of 

single chain Janus nanoparticles, multichain particles and irregular single-chain particles. Under 

appropriate conditions, the single-chain Janus nanoparticles in the mixture exclusively self-

assembled to form regularly structured macroscopic assemblies that crystallized out of the 

suspension. The exclusive self-assembly behavior of pure Janus SCNP is rationalized by the highly 

uniform size, shape and surface structures matching those of the surrounding SCNP. (Figure 1.22) 
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Figure 1.22  Fabrication of pure single-chain Janus particles through their exclusive self-assembly 

in mixtures with their analogues.129 Reprinted with permission from Ref. 129. Copyright 2018 

American Chemical Society.† 

Another type of Janus SCNP was reported by Xiang and coworkers130 and contains a cross-linked 

core with hydrophilic and hydrophobic tails on the opposite sides of the core. As shown in Figure 

1.23, a linear polymer of polyethylene oxide-block-poly(2-vinylpyridine)-block-polystyrene 

(PEO-b-P2VP-b-PS) was first pretreated with Co2(CO)8 to introduce positive charges to the P2VP 

chain. It is crucial to introduce of electrostatic interaction along the polymer chain to allow 

intramolecular cross-linking at high polymer concentration.131 The pretreated polymer was then 

cross-linked by metal complexation (step 1), followed by thermolysis to afford Janus SCNP 

containing cobalt within the core (step 2). The amphiphilic Janus nanoparticles worked as 

functional emulsifiers that could deliver metallic cobalt toward emulsion interfaces. They also 

 

† Link to the article:  https://pubs.acs.org/doi/10.1021/acsmacrolett.8b00503. Request for further reuse of this figure 

should go to the ACS for permission. 

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facsmacrolett.8b00503&data=02%7C01%7Crc1033%40wildcats.unh.edu%7Cf9ce4306acbf4a6f17c708d81ad28e71%7Cd6241893512d46dc8d2bbe47e25f5666%7C0%7C0%7C637288838934831489&sdata=AzrcmH%2FRhPqRn%2Bc7nzvQM9VIRZMWWQVm0Ri8w5SvAjc%3D&reserved=0
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exhibit high catalytic capability and recyclability in the reduction of nitrobenzene to aniline at the 

oil-water emulsion interface.  

 

Figure 1.23 Intramolecular crosslinking of PEO-b-P2VP-b-PS by cobalt complexation and 

thermolysis forming single-chain Janus Composite Nanoparticle.130 Reprinted in part with 

permission from Ref. 130. Copyright 2020 American Chemical Society. 

1.5 Summary and outlook 

Back in 2016, Hanlon et al16 published a perspective article titled “What is next in single-chain 

nanoparticles?”. The paper covered key challenges of the field including complex synthetic design 

of SCNP, obtaining folding control of polymers, SCNP functionalization, scalability, hierarchical 

self-assembly, characterization, and need for in-depth computer simulations. Over the past few 

years, we have witnessed a great amount of work devoted in these directions and significant 

advancement has been made in the field. In this chapter we highlighted recent examples of SCNP 

synthesis that afford controlled folding of linear polymer precursors, complex non-linear polymer 

precursors for intramolecular cross-linking, and novel conformations of SCNP. The programmed 

intramolecular cross-linking of polymers led to SCNP with ordered internal structure that mimic 

those of natural biomaterials. When catalysts were embedded in SCNP, they could be used as 

nanoreactors targeting a variety of reactions. SCNP with novel conformations were studied as 

nanostructured building blocks for higher ordered structures. New characterization techniques 

helped to unveil the polymer collapse process as well as the morphology of the final SCNP. And 
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a great number of computational studies were reported targeting the physical aspects of polymer 

folding. The rapid development of SCNP has shown that manipulation of single polymer 

molecules not only mimics the complexity of natural biomacromolecules, but also generates 

promising candidates for nanomaterials with practical applications.  

So far, the scalability of SCNP synthesis is still a challenge requiring attention from researchers. 

Some new strategies have been developed targeting intramolecular cross-linking at higher 

concentrations such as continuous addition strategy,132 steric stabilization by polymer brushes,87 

introducing electrostatic interaction along polymer chains,131 and internalizing the cross-linking 

groups.133 These approaches allow SCNP synthesis at higher concentrations but they are case-

specific. More often SCNP synthesis still requires ultra-dilute condition which limits the scalability 

of SCNP. Generalized methods for efficient SCNP synthesis at higher concentration is still 

required. Topological purity of SCNP is another topic of concern. Due to the random conformation 

of polymer chains in solution and the kinetically controlled cross-linking process129, 134, there are 

large structural and conformational deviations among SCNP produced in the same cross-linking 

system. The mixture of SCNP of different size and morphology may lead to unpredictable 

properties of the material. Characterization and purification of the topologically impure SCNP is 

needed to achieve the same level of precision and complexity as natural biomacromolecules.  
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Chapter 2.  Assessing structure/property relationships and 

processing conditions in the fabrication of poly(oxanorbornene 

imide) single-chain nanoparticles‡ 

2.1 Introduction 

Biomacromolecules have been a source of inspiration to polymer chemists in the design of well-

defined materials with advanced functionalities. Perhaps the most fundamental and universal 

example is protein structure, where linear polypeptide chains fold into specific three-dimensional 

structures with precision and fidelity. This intricate process requires both a precise amino-acid 

sequence and self-assembly of its component molecular structures, and results in nanomaterials 

with unique biological activities such as recognition and catalysis.17, 135 Progress in controlled 

radical polymerization has enabled the synthesis of polymers with narrow dispersity and diverse 

functionalities.136-139 However, construction of materials with structural hierarchies comparable to 

those in nature remains a challenging research goal. A technique that represents a step towards 

these ends is the self-folding of single polymer chains in dilute solution to create globular 

nanoparticles, referred to as single-chain nanoparticles (SCNP).16-18, 25, 33, 36, 40, 104 The concept is 

simple: synthesize linear polymers decorated with pendant groups that are able to form covalent 

or supramolecular bonds. Following intra-chain cross-linking of these pendant groups, the 

individual polymer chains compact into polymeric nanoparticles smaller than dimensions of the 

 

‡ This chapter is published in European Polymer Journal. Reproduced with permission from Elsevier. 

Chen, R.; Benware, S. J.; Cawthern, S. D.; Cole, J. P.; Lessard, J. J.; Crawford-Eng, I. M.; Saxena, R.; Berda, E. B., 

Assessing structure/property relationships and synthetic protocols in the fabrication of poly(oxanorbornene imide) 

single-chain nanoparticles. European Polymer Journal 2019, 112, 206-213. 
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solvated coil, usually less than 20 nm in size and controllable based on the molecular weight of 

the parent chain.15 SCNP offer a simplified route to crudely mimic protein tertiary structure41 and 

show promise for applications in catalysis,38, 68-69, 71, 75, 140 nanomedicine,141-142 nanoreactors,143-144 

sensors,145 etc. 

A variety of crosslinking chemistries have been reported on the synthesis of SCNP, including 

covalent,146-150 dynamic covalent 151 and noncovalent bonding.16, 39, 152 High-yielding reactions 

with minimal side products are preferred as this promotes more efficient folding and simplified 

purification. Intrachain polymerization of reactive pendant groups is therefore an attractive 

crosslinking strategy since 1) it produces little or no byproduct, and 2) it offers a possibility to 

easily tune the compactness of an SCNP by controlling the degree of intrachain polymerization. 

Several groups have demonstrated this strategy: Miller and coworkers reported the synthesis of 

acrylic-functionalized poly(caprolactone). These pendant acrylic groups were initiated with AIBN 

under ultra-dilute conditions resulting in self-crosslinked nanoparticles.153 Jiang and 

Thayumanavan prepared amine-functionalized polystyrene with pendant styryl moieties which 

were subsequently intrachain polymerized to yield SCNP.154 Dirlam and coworkers used 

intramolecular oxidative polymerization of styrenic functional propylenedioxythiophene to afford 

SCNP.155 Another example recently reported by Zhou et al displayed the synthesis of SCNP by 

intrachain ring-opening metathesis polymerization (ROMP) using polymers bearing furan-

protected maleimides.156 These methods, although involving intricate multi-step syntheses, 

highlight the versatility of intrachain polymerization techniques in the efficient fabrication of 

SCNP. 

Our group recently investigated the use of ROMP of norbornene imides (NBI) to create linear 

chains that are functionalized for post-ROMP intrachain radical polymerization.157 ROMP was 
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chosen as it is highly functional group tolerant, proceeds rapidly, and leads to easy access of 

functional materials. While simple in design, the intrachain crosslinking was more complicated 

than expected, presumably because the rigidity of the polymer backbone might inhibit pendant 

groups from finding nearby partners. This work also revealed that the ROMP of these monomers 

was sometimes plagued with side reactions leading to unwanted high molecular weight branched 

materials. Further, crosslinking under ambient conditions gave some ambiguous results due to the 

role of oxygen. We present a follow up to this study here, examining the effect of increasing the 

spacing between polymer backbone and pendant reactive groups. We prepared methacryloyl-

functionalized oxanorbornene imide (ONBI) monomers with 2 carbon and 6 carbon spacers 

between ONBI and methacryloyl groups.  These monomers were then subjected to ROMP 

conditions. We found that the presence of a radical inhibitor was necessary to ROMP 

methacryloyl-containing ONBI monomers in order to achieve well-defined linear polymers. The 

poly(ONBI) were then initiated with AIBN under ultra-dilute conditions with strict exclusion of 

oxygen to afford SCNP. We studied the length and flexibility of pendant groups in relation to the 

folding efficiency of poly(ONBI). 

2.2 Results and discussion 

2.2.1 Polymer design 

We surmised it likely that due to the persistence length of poly(ONBI) backbone, coupling of 

reactive pendant groups is hindered by short contour distances. Increasing pendant lengths and 

flexibility will presumably increase the folding efficiency of this semi rigid polymer chain. In this 

work, we sought to demonstrate structural parameters of pendant groups, including pendant length 

and amount incorporation in relation to SCNP synthesis of poly(ONBI) via intrachain radical 

polymerization. Scheme 2.1 illustrates the chemical structures of our monomers and polymers. We 
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prepared methacryloyl-functionalized ONBI monomers with 2 carbons (n = 1, M2) and 6 carbons 

(n = 3, M3) as spacers between ONBI and methacryloyl groups. N-hexyl-ONBI (M1) was 

synthesized as a comonomer. Linear copolymers that contain various incorporations of M2 and 

M3 were obtained via ROMP. Subjecting the linear methacryloyl-containing copolymer to AIBN 

in dilute solution initiates intra-chain radical polymerization of pendant methacryloyl groups, 

leading to SCNP. 

 

Scheme 2.1 (A) Synthetic route to poly(ONBI) SCNP by intrachain radical polymerization; (B) 

Proposed pendant effect on the efficiency of chain folding. 

2.2.2 ROMP of methacryloyl-functionalized ONBI 

ROMP is extensively used in the preparation of functional polymers since it allows for direct 

incorporation of a wide variety of functional groups into polymers with narrow dispersity and 

defined molecular weights.158-159 While some reports show that methacryloyl groups can undergo 

cross metathesis in presence of Grubbs catalysts,160-161 cross metathesis of electron deficient 

methacryloyl groups generally requires heating and long reaction time, 160-161 typically heating to 
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reflux in DCM or toluene for at least 12 hours. In this study, we are using the fast initiating Grubbs 

3rd catalyst which leads to quantitative conversion of monomers in 3 minutes at room temperature. 

This design should have allowed for direct ROMP of methacryloyl-containing ONBI monomers 

to afford poly(ONBI) with pendant methacryloyl groups.  

 

Figure 2.1 (A) Synthesis of methacryloyl-containing copolymers by ROMP; (B) SEC trace of 

copolymers polymerized without BHT, and (C) with BHT.   

ROMP of M2 and M3 gave polymers that showed unimodal trace by RI detection when 

characterized with SEC. However by MALS detection a shoulder peak with shorter retention time 

often existed (Figure 2.1A, B). Since MALS detectors are sensitive to high molecular weight 

species while RI detectors are concentration-related, we attributed this shoulder peak to some 

byproduct with a high molecular weight but low concentration, presumably from interchain 

crosslinking.162  We hypothesized that undesirable interchain reactivity during ROMP could be 

explained in one of three ways (Scheme 2.2). Option A is that the poly(ONBI) backbone undergoes 
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autoxidation/peroxidation, generating hydroperoxyl radicals that could result in interchain 

crosslinking via reactions with unsaturation sites on other chains. Option B is that cross metathesis 

of the methacryloyl units with ONBI groups is interfering with the linear ROMP reaction and 

forming branches and crosslinks in the polymer. Finally, option C is that radical oligomerization 

of the methacryloyl units is happening concurrently with ROMP, and that because the chains are 

in a relatively high concentration, interchain reactions occur. 

 

Scheme 2.2 Possible crosslinking side reactions during ROMP: (A) autoxidation on 

poly(oxanorbornene imide) backbone, (B) cross metathesis of pendant methacryloyl group, (C) 

interchain radical polymerization of pendant groups. 

To test hypothesis A, we synthesized homopolymers of M1, M2 and M3. Although the three 

polymers shared the same poly(ONBI) backbone, we found that high MW shoulders only showed 

up in homopolymers of M2 and M3. This implies that the polymer backbone is not the cause of 

high MW shoulder, and that the presence of pendant methacryloyl group is the reason for high 

MW species. To test if methacryloyl groups interfere with ROMP by olefin metathesis, we added 

ethylene dimethacrylate during ROMP of M1. The dimethacrylate would act as a crosslinker 
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between two ONBIs if it participates in the metathesis, and lead to poor control of molecular 

weight. However, SEC results revealed that the presence of dimethacrylate during ROMP did not 

affect homopolymerization of M1. This leaves us with hypothesis C, a small amount of 

oligomerization of pendant methacryloyl groups. Since this is a radical side reaction, we simply 

added a radical inhibitor BHT during ROMP to prevent it. In this experiment the high MW 

shoulder peak did not show up (Figure 2.1C). It is now clear that the high MW shoulder peak was 

induced by interchain radical polymerization of pendant methacryloyl groups during ambient 

ROMP, and it can be prevented by adding a radical inhibitor such as BHT. 

Using the BHT-modified ROMP procedure, we prepared a series of polymers with approximately 

10, 20, and 50% incorporations of M2 and M3. P1-P3 were synthesized from copolymerization of 

M1 and M2. P4-P6 were made from copolymerization of M1 and M3. All polymers exhibited 

narrow molecular weight distributions with dispersities ranging from 1.03 to 1.10 and similar 

molecular weights of 45-55 kDa. 1H NMR spectroscopy was used to determine the composition 

of each polymer. The mole fraction of methacryloyl-ONBI monomers were calculated from the 

ratio of the peak area around 3.79 ppm, corresponding to the methylene protons adjacent to oxygen 

on M2 and M3, to the area of peak at 0.87 ppm, which is attributed to the three methyl protons in 

M1 (Figure 2.7). 

2.2.3 Synthesis of SCNP 

We adopted a systematic nomenclature to describe these systems as follows: each parent linear 

polymer is assigned a number and given the prefix P. The corresponding nanoparticles obtained 

are labeled NP with the following number indicating which polymer precursor was used. 

Single-chain nanoparticles were formed by subjecting the polymers to a radical initiator AIBN. 

We used 0.1 eq of AIBN to the amount of pendant methacryloyl groups on corresponding polymers. 
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The process was carried out in dilute solutions (1 mg/mL) to prevent intermolecular reaction and 

favor intrachain crosslinking. Freeze-pump-thaw cycles were performed to thoroughly exclude 

oxygen in the system, as autoxidation on allylic carbons generate peroxyl radicals that could 

crosslink the polymer through oxygen bridging or cause oxidative degradation of the backbone. 

Formation of each SCNP was confirmed by SEC, with a shift to longer retention time compared 

to its linear precursor, as well as a decrease in hydrodynamic radius (Rη) and intrinsic viscosity 

(η), indicating a more compact conformation.  

As a control experiment, we prepared a homopolymer of M1, which contains no methacryloyl 

pendant group. When subjected to SCNP synthesis conditions, this polymer exhibited no change 

in its SEC trace (Figure 2.2), indicating that the poly(ONBI) backbone is not involved in the 

crosslinking reaction, and any change in SEC results could be attributed to reactions 

occuoccurringrred on pendant methacryloyl groups.  

 

Figure 2.2 SEC traces of homopolymer M1 after exposed to SCNP synthesis condition. 

Figure 2.3A shows an example of a successful SCNP synthesis. P2 contains around 20% 

incorporation of the functional monomer M2. When exposed to AIBN in dilute solution, the 

resulting NP2 shows an obvious shift to longer retention time in SEC, indicating the transition to 

a nanoparticle. A decrease in Rη from 5.9 nm to 4.5 nm, as well as a decrease in intrinsic viscosity 
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from 28.9 to 9.8 mL/g were also observed. (Table 2.1). The crosslinking chemistry was confirmed 

by 1H NMR spectroscopy. As seen from Figure 2.3B, the peak labeled a at 5.6 ppm corresponds 

to a proton on the pendant methacryloyl group on P2. The intensity of peak “a” drastically 

decreased when the chain is folded into a nanoparticle. This indicates successful initiation and 

propagation of methacryloyl groups in parent polymers. 

 

Figure 2.3 (A) SEC-MALS trace showing the transition from P2 to NP2; (B) 1H NMR spectra of 

P2 and NP2 with olefin regions zoomed in. 
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The characteristic methacryloyl signals at 5.6 ppm and 5.8 ppm in 1H NMR spectra partially 

overlap with the olefin peaks on the polymer backbone at 5.8 ppm and 6.1 ppm. Meanwhile, after 

chain folding, the resulting nanoparticles’ peaks are broadened in 1H NMR spectra and are 

sometimes difficult to interpret.  To further corroborate that crosslinking took place on the pendant 

methacryloyl groups, we added styrene in the intrachain polymerization of methacryloyl groups. 

The resulting nanoparticles were labeled NP7. Styrene can copolymerize with methacryloyl groups, 

and with its distinguishable peaks, will be easily observed in 1H NMR spectra. As seen in Figure 

2.4, the yielded NP7 exhibits a broad peak at 7.0 -7.5 ppm, which belongs to the protons on styrene. 

SEC-UV traces of NP7 did not show any response that could be attributed to homopolymer of 

styrene, indicating that the styrene responses from 1H NMR spectrum were solely from 

copolymerization with methacryloyl groups. These results confirmed that the SCNP formed under 

our reaction conditions were indeed from intrachain radical polymerization of pendant 

methacryloyl groups.  

 

Figure 2.4 (A) Intrachain copolymerization of pendant methacryloyl group with styrene; (B) 1H 

NMR spectra of P6 and NP6 with aromatic region zoomed in; (C) SEC-UV trace of P6 and NP7. 
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To study structural parameters in relation to chain folding, we initiated intrachain radical 

polymerizations on P1-P6. P1-P3 contains a shorter pendant group, with 2 carbons as a spacer 

between the methacryloyl group and poly(ONBI) backbone. We found that with around 10% 

incorporation of methacryloyl group, there was a shift to longer retention time in SEC, indicating 

a more compact structure upon chain folding (Figure 2.5). The decrease in hydrodynamic radius 

and intrinsic viscosity further confirms this finding (Table 2.1). When the incorporation of 

methacryloyl group is increased to around 20%, a more pronounced shift in retention time was 

observed as well as a greater extent of reduction in radius and intrinsic viscosity. When we 

continue to increase the incorporation of methacryloyl groups to 50%, the SEC-MALS trace of the 

resulting nanoparticle NP3 broadened and slightly shifted to shorter retention time. We attributed 

this observation to intermolecular reactions due to a higher concentration of methacryloyl groups.  

 

 

Figure 2.5 SEC-MALS of P1-P3 and corresponding NP1-NP3. y is percent incorporation of 

methacryloyl groups. 
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Table 2.1 SEC data for polymers P1-P6 and corresponding nanoparticles NP1-NP6 

 

a. Obtained using triple detection SEC. See experimental section for more details. b. Calculated from MALS 

detector trace.  

P4-P6 consist of a longer pendant group, with 6 carbons between the polymer backbone and 

pendant methacryloyl group. When subjecting P4-P6 to intrachain folding, a similar trend was 

found with P1-P3: Increasing the incorporation of methacryloyl units from 10% to 20% results in 

what we interpret as more efficient chain folding, but with 50% methacryloyl groups, a broadened 

MALS trace was found with a shift to shorter retention time, which is likely due to interchain 

reactions (Figure 2.6). When comparing NP1-NP3 with NP4-NP6, we found that increasing the 

space between polymer backbone to methacryloyl group from 2 carbons (n=1) to 6 carbons (n=3) 

did not make an observable difference in the efficiency of chain folding. 

 Sample 
Methacryloyl 

% incorp. 

Mn 
a 

(kDa) 

Mw
 a 

(kDa) 
Ð a 

Rη
 a 

(nm) 

η a 

(mL/g) 
dn/dc a 

Peak 

retention 

time(min) 

n = 1 

P1 7.2 45.5 46.8 1.03 5.4 22.5 0.116 11.5 

NP1   46.0 50.4 1.10 4.8 15.8 0.109 11.6 

P2 17.3 45.7 47.5 1.04 5.9 28.9 0.119 11.4 

NP2   62.2 70.3 1.13 4.5 9.8 0.114 11.7 

P3 50.0 41.8 42.6 1.02 4.1 10.1 0.129 11.9 

NP3   123 141 1.15 4.7 6.6 0.076 11.8 

n = 3 

P4 6.6 59.4 65.4 1.10 6.1 26.1 0.119 11.3 

NP4   60.5 71.1 1.18 5.4 17.8 0.110 11.5 

P5 17.6 43.4 45.1 1.04 5.9 28.0 0.121 11.4 

NP5   53.9 59.6 1.11 4.2 9.0 0.113 11.8 

P6 45.5 55.3 57.4 1.04 4.0 7.9 0.121 11.8 

NP6   90.1 103 1.14 4.2 5.5 0.107 11.7 
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Figure 2.6 SEC-MALS of P4-P6 and corresponding NP4-NP6. y is percent incorporation of 

methacryloyl groups. 

2.3 Conclusions 

We have shown that synthesizing well-defined poly(ONBI) with methacryloyl-containing 

monomers in ambient environment through ROMP requires a radical inhibitor to prevent 

interchain crosslinking. Based on these findings we developed a method for fabricating single-

chain nanoparticles through intrachain radical polymerization of pendant methacryloyl groups on 

poly(ONBI). Our results indicate that increasing pendant group length did not noticeably affect 

the efficiency in folding of a polymer chain at the length scales we synthesized. We also 

demonstrated that by changing the percent incorporations of pendant polymerizable unit in the 

parent polymer, the size of the resulting nanoparticles could be controlled consistent with our 

previous work.  
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2.4 Experimental 

2.4.1 Materials 

Reagents were obtained from the indicated commercial suppliers and used without further 

purification unless otherwise stated: exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (TCI), 

hexylamine (Sigma-Aldrich), triethylamine (TEA, Fisher Scientific), 2-aminoethanol (TCI), 6-

amino-1-hexanol (Sigma-Aldrich), methacryloyl chloride (Sigma-Aldrich), hexanes (Fisher 

Scientific), ethyl acetate (Fisher Scientific), Grubbs catalyst 2nd generation (Sigma-Aldrich), 3-

bromopyridine (Fisher Scientific), ethyl vinyl ether (Acros Organics), 2,2’-azobis(2-

methylpropionitrile) (AIBN, Sigma-Scientific, recrystallized from methanol), butylated 

hydroxyltoluene (BHT, Sigma-Aldrich), styrene (Sigma-Aldrich, passed through a plug of basic 

alumina), silica gel (230 – 400 mesh, SiliCycle), THF (HPLC grade, Fisher Scientific, inhibited 

with BHT), sodium bicarbonate (Fisher Scientific), chloroform-d (CDCl3, Cambridge Isotope 

Laboratories). Dry toluene, dichloromethane (DCM) and methanol (MeOH) were obtained from 

an Innovative Technology solvent purification system model SPS-400-.5. 

2.4.2 Instrumentation 

1H and 13C NMR spectra were acquired with a Varian Unity INOVA or Bruker Biospin 500 MHz 

or Varian Mercury 400 MHz spectrometer. Chemical shifts (δ) were reported in parts per million 

(ppm) relative to tetramethylsilane (TMS). Solvent (CDCl3) contained 0.03% v/v TMS as an 

internal reference. Peak abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet, br = broad, Ar = Aryl).  

SEC was performed on a Tosoh EcoSEC dual detection (RI and UV) SEC system coupled to an 

external Wyatt Technologies miniDAWN Treos multiangle light scattering (MALS) detector and 

a Wyatt Technologies ViscoStar II differential viscometer. Samples were run in THF at 40 °C at 
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a flow rate of 0.35 mL/min. The column set contained one Tosoh TSKgel SuperHM-M (6.0 mm 

ID × 15 cm) column, one Tosoh TSKgel SuperH2500 (6.0 mm ID × 15 cm) column and a Tosoh 

TSKgel SuperH5000-7000 guard column (4.6 mm ID ×  3.5 cm). All polymer solutions 

characterized by SEC were 1.0 mg/mL in THF, stirred magnetically for at least 5 hours and filtered 

through 0.45 μm PTFE syringe filters before analysis.  

2.4.3 dn/dc calculation 

To calculate refractive index increment values (dn/dc), at least 3 injections were performed for 

each polymer sample with various injection mass. dn/dc values were calculated based on the slope 

of linear regression when plotting RI area versus injection mass. 

The response from RI detector is proportional to instrument constant KRI, sample concentration c 

(mg/mL), and dn/dc value of the sample. In the following equations (Eq 2.1, Eq 2.2) minj represents 

injected mass (μg), Vinj is the injection volume (μl). 

𝑅𝐼𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐾𝑅𝐼 ∗ 𝑐 ∗
𝑑𝑛

𝑑𝑐
                                                                                                (Eq 2.1) 

𝑅𝐼𝑎𝑟𝑒𝑎 = 𝐾𝑅𝐼 ∗ 𝑐 ∗ 𝑉𝑖𝑛𝑗 ∗
𝑑𝑛

𝑑𝑐
= 𝐾𝑅𝐼 ∗ 𝑚𝑖𝑛𝑗 ∗

𝑑𝑛

𝑑𝑐
                                                           (Eq 2.2) 

When plotting RI area versus injected mass, and perform a linear regression, the slope was found 

to be: 

𝑆𝑙𝑜𝑝𝑒 = 𝐾𝑅𝐼 ∗
𝑑𝑛

𝑑𝑐
                                                                                                          (Eq 2.3) 

We first calculated KRI with a narrow-dispersed polystyrene standard with known dn/dc (Mn = 30K, 

dn/dc = 0.185), then use the resulting KRI to calculate the dn/dc of another PS standard (Mn=49K) 

using the abovementioned method. An expected dn/dc value was retrieved (calculated 

dn/dc=0.1850), proving that this is a reliable method to calculate dn/dc values. 
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2.4.4 Determination of copolymer composition 

The mole fraction of methacryloyl-ONBI monomers M2 was calculated from the ratio of the NMR 

peak area of c to the area of peak f, as the equation shown in Figure 2.7.  

 

Figure 2.7 1H NMR spectrum of P2 with peak assignment. 

2.4.5 Experimental procedures 

2.4.5.1 Synthesis of N-hexyl oxanorbornene imide (M1) 

 

Exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (5 g, 30.1 mmol, 1 eq), hexylamine (4.37 mL, 

33.1 mmol, 1.1 eq) and triethylamine (0.46 mL, 3.31mmol, 0.1 eq) were added to a round bottom 

flask with 50 mL of dry methanol. The mixture was stirred at reflux for 24 h and cool to room 

temperature. Methanol was removed through rotary evaporation. Crude product was dissolved in 
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30 mL of DCM, washed with 0.1 M HCl (50 mL × 2), Brine (50 mL × 2), and purified by column 

chromatograph using a 1:1 hexanes:ethyl acetate eluent to obtain pure product. (1.63 g, 21.73% 

yield) 1H NMR (400 MHz, CDCl3, δ, ppm): 6.50 (t, 2H), 5.25 (t, 2H), 3.45 (m, 2H), 2.82 (s, 2H), 

1.47-1.57 (m, 2H), 1.20-1.33 (q, 6H), 0.79-0.90 (m, 3H). See appendix page 115 for full spectra. 

2.4.5.2 Synthesis of OH-functionalized oxanorbornene imide (M2-0, M3-0) 

 

M2-0: Exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (5 g, 30.1 mmol, 1 eq) and 2-

aminoethanol (1.82 mL, 30.1 mmol, 1 eq) were added to a round bottom flask with 10 mL of dry 

methanol and brought to reflux. After 16 hours the mixture was cooled to room temperature then 

stored in freezer overnight to allow crystallization. Product was collected by vacuum filtration. 

(3.05 g, 48.41% yield) 1H NMR (400 MHz, CDCl3, δ, ppm): 6.53 (s, 2H), 5.29 (s, 2H), 3.78 (t, 

2H), 3.71 (t, 2H), 2.90 (s, 2H), 2.22 (br, 1H). See appendix page 116 for full spectra. 

 

M3-0: Exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (5 g, 30.1 mmol, 1 eq), 6-

aminohexanol (3.88 g, 33.1 mmol, 1.1 eq) and triethylamine (0.46 mL, 3.31mmol, 0.1 eq) were 

added to a round bottom flask with 25 mL of dry methanol. The mixture was stirred at reflux for 

24 and then cool to room temperature. Methanol was removed in vacuo. Crude product was 



52 

 

dissolved in 30 mL of DCM, washed with 0.1 M HCl (50 mL × 2), Brine (50 mL × 2) and purified 

by column chromatography. (Hex: EtOAc = 1:4, 2.06 g, 25.78% yield) 1H NMR (400 MHz, CDCl3, 

δ, ppm): 6.52 (s, 2H), 5.26 (s, 2H), 3.61 (t, 2H), 3.48 (t, 2H), 2.84 (s, 2H), 1.65 (br, 1H), 1.25-1.59 

(m, 6H); 13C NMR (400 MHz, CDCl3, δ, ppm): 176.35, 136.50, 80,89, 62.55, 47.35, 38.76, 32.41, 

27.43, 26.14, 25.02. See appendix page 117 for full spectra. 

2.4.5.3 Synthesis of methacryloyl-functionalized oxanorbornene imide (M2, M3) 

 

M2-0 or M3-0 (1 eq) was dissolved in dry DCM and added TEA (1.2 eq). The mixture was cooled 

over an ice bath and methacryloyl chloride (1.2 eq) was added dropwise. The mixture was stirred 

over ice for an additional 10 min before warmed up to room temperature. After 5 hours the reaction 

was quenched with saturated sodium bicarbonate (50 mL). Organic layer was washed with sodium 

bicarbonate (50 mL × 2) and Brine (50 mL  × 2). Crude product purified by column 

chromatography. (Hex: EtOAc = 1:1, 60-90% yield) M2: 1H NMR (400 MHz, CDCl3, δ, ppm): 

6.52 (s, 2H), 6.07 (s, 1H), 5.56 (s, 1H), 5.26 (s, 2H), 4.25-4.36 (m, 2H), 3.75-3.88 (m, 2H), 1.90 

(s, 3H); M3: 1H NMR (400 MHz, CDCl3, δ, ppm): 6.51 (s, 2H), 6.09 (s,1H), 5.55 (s, 1H), 5.26 (s, 

2H), 4.12 (t, 2H), 3.47 (t, 2H), 2.84 (s, 2H), 1.94 (s, 3H), 1.24-1.67 (m, 8H). See appendix page 

118 and 119 for full spectra. 

2.4.5.4 Synthesis of poly(oxanorbornene imide) via ROMP (P1-P6) 

In a glovebox, monomers were dissolved in dry DCM in a scintillation vial. Grubbs’ 3rd generation 

catalyst was dissolved in dry DCM in another scintillation vial. The monomer solution was added 
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to the catalyst solution while stirring. The reaction was run in the glovebox at room temperature 

for 3 min before quenched with excess ethyl vinyl ether, moved out of glovebox and added BHT 

(around 50 mg). After 12 hours the polymer was precipitated into methanol and isolated as a white 

solid with quantitative yield. The polymers were dried in the vacuum oven at 35 °C for 12 hours 

and stored in the freezer under Argon. See appendix page 120 through 125 for 1H NMR spectra 

and GPC chromatograms of P1-P6. 

2.4.5.5 SCNP synthesis via intra-chain radical polymerization (NP1-NP6) 

Methacryloyl-decorated poly(oxanorbornene imide) (30 mg) was dissolved in dry toluene in a 

Schlenk flask to a concentration of 1 mg/mL. AIBN (0.1 eq to the methacryloyl groups) was added 

to the flask. The mixture was subjected to freeze-pump-thaw cycles until no visible bubble before 

being heated to 80 °C and stirred for 24 h. The solution was cooled to room temperature and BHT 

(around 10 mg) was added. Toluene was removed via rotary evaporation. Product was dissolved 

in a minimum amount of DCM, precipitated into cold hexanes, and dried in a vacuum oven at 

40 °C overnight. Product was retrieved as a white solid with quantitative yield. See appendix page 

126 through 131 for 1H NMR spectra and GPC chromatograms of NP1-NP6. 

2.4.5.6 Intra-chain copolymerization of methacryloyl pendants with styrene (NP7) 

P6 (50mg) and styrene (20 μL, 2 eq to methacryloyl groups on P6) was dissolved in 50 mL of dry 

toluene in a Schlenk flask. AIBN (1.42 mg, 0.1 eq) was added. The mixture was subjected to free-

pump-thaw cycles until no visible bubble before being heated to 80 °C and stirred for 24 h. Solution 

was cooled to room temperature and BHT (around 10 mg) was added. Toluene was removed via 

rotary evaporation. Product was dissolved in a minimum amount of DCM, precipitated into cold 
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hexanes, and dried in a vacuum oven at 40 °C overnight. (Yield: 49.42 mg) See appendix page 

132 for for 1H NMR spectra and GPC chromatograms of NP7. 
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Chapter 3.  Fabrication of SCNP via intrachain radical 

polymerization:  DP of intra-chain cross-links 

3.1 Introduction 

The creation of polymeric nanoparticles has been extensively studied over the past decade with 

appealing applications in drug delivery,37, 163-164 nanoreactors,144, 165-166 catalysis68, 140 and so on. A 

number of different techniques have been developed for the synthesis of these polymer 

nanoparticles depending on the size, functionality and topology of the targeted materials, including 

emulsion-based polymerizations,167-168 self-assembly of amphiphilic polymers,123, 169-170 

lithography,171-172 etc. However, the preparation of well-defined globular polymeric nanoparticles 

with a sub-20 nm diameter remains challenging. Inspired by the self-organizing behavior of 

biomacromolecules, self-folding of single polymer chains was established to access nanoparticles 

of ultrafine size. These single-chain nanoparticles (SCNP) were synthesized via intramolecular 

crosslinking of linear polymer precursors and are generally in the size range of <20 nm.15-16 A 

myriad of crosslinking chemistries has been reported utilizing covalent, dynamic covalent and 

noncovalent interactions.17-18 Among these methods intramolecular polymerization of linear 

polymers carrying polymerizable pendants is of growing interest since it led to SCNP with tunable 

level of compaction.173 A variety of intramolecular polymerization methods have been employed, 

including radical polymerization of methacrylate84, 102, 157/acrylate153/styryl149, 154 groups, oxidation 

polymerization of thiophene,155 ROMP of oxanorbornene,156 ring-opening polymerization (ROP) 

of caprolactone173-174/glycidyl175 groups, etc. These methods successfully transformed linear 

polymers to SCNP. However, the number of repeating units within each intra-chain linkage (i.e. 

degree of intra-chain polymerization) is yet to be explored. 
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Figure 3.1 Synthesis of an SCNP by intra-chain polymerization and subsequent isolation of intra-

chain cross-links. 

Inspired by the templated polymerization technique where polymerization occurs in presence of a 

template which is removed at a later stage,176-178 we aim to synthesize an SCNP via intramolecular 

polymerization and then isolate the intra-chain crosslinks from the linear precursor. (Figure 3.1) 

Direct characterization of these intra-chain crosslinks will provide insight into the degree of intra-

chain polymerization that occurs in a sterically demanding environment. The strategy requires a 

monomer that could undergo two non-interfering polymerizations in a sequential fashion, one for 

the synthesis of a liner polymer chain, the other for the intra-chain polymerization that affords an 

SCNP. A cleavable unit must be present in order to efficiently separate the intra-chain cross-links 

(daughter polymer) from the linear chain (parent polymer).  

 

Scheme 3.1 Overall synthetic plan. 

The overall synthetic plan is depicted in Scheme 3.1. Monomer M3.5 contains an epoxide 

functional group that undergoes ring-opening polymerization (ROP), a maleimide group for 

radical polymerization, as well as an ester group as the cleavable linkage. ROP of the monomer 
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leads to a linear polymer with pendant maleimide groups. Under dilute conditions these maleimide 

groups copolymerize intramolecularly with external stilbene monomers and result in SCNP. The 

two polymers (parent and daughter) could be separated through hydrolytic cleavage of the ester 

linkage which has been successfully employed in previous reports.176-177 After hydrolysis, the 

carboxylic acid derived polyethylene glycol linear polymer will likely be water soluble while the 

intra-chain cross-linked daughter polymer remains neutral and insoluble in water, resulting in easy 

separation. 

3.2 Results and discussion 

3.2.1 Monomer design 

Quantitative cleavage and efficient separation of the intra-chain cross-links from the linear 

polymer is of particular importance as it allows for an accurate evaluation of the molecular weight 

and distributions of the daughter polymer. Bearing this in mind, we first attempted to synthesize 

M3.0a (Scheme 3.2A). This monomer, after intra-chain polymerization, forms an N-

hydroxysuccinimide (NHS) active ester linkage between the parent and daughter polymers. NHS-

esters have proved to be highly reactive toward nucleophilic attack as indicated by the relatively 

high acidity of NHS (pKa ~6 179), leading to efficient hydrolysis under mild conditions. 

Incorporating such NHS-ester linkages could potentially improve the separation of the intra-chain 

cross-links from the linear parent polymer. 
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Scheme 3.2 (A) Formation of NHS active ester after intra-chain polymerization from M3.0a; (B) 

synthesis of M3.0a. (Blue arrows: ideal pathway; red arrows: side reaction) 

The synthetic route to M3.0a begins with synthesis of N-hydroxyl maleimide from maleic 

anhydride (Scheme 3.2B), followed by esterification with bromoacetyl bromide, and a subsequent 

Williamson etherification to afford M3.0a. It is surprising that very few reports covered the 

synthesis of N-hydroxyl maleimide without substituents on the C=C double bond.180 Similar 

compounds were found that contain either alkyl or phenyl substituents, or furan protecting 

groups.181-183 Unfortunately following the literature procedures did not lead to successful synthesis 

of N-hydroxyl maleimide. In all cases the solutions turned black without formation of the desired 

compound. The Williamson etherification of glycidol is also envisioned to be problematic in 

presence of a carbonyl group. As shown in Scheme 3.2B, the alkyl bromide ideally undergoes SN2 

reaction and forms M3.0a (blue arrows). However the ester group is also highly susceptible to 

nucleophilic attack (red arrows) in presence of a strong R-O- nucleophile, leading to decomposition 

of the compound. Based on these results and hypothesis, we switched to synthesize monomer 

M3.0b instead (Scheme 3.3A). 
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Scheme 3.3 (A) Synthesis of M3.0b; (B) Decarboxylation of glycidic acid. 

The synthetic consideration of M3.0b differs from M3.0a in two major aspects: i) It begins with 

the synthesis of an acid-functionalized epoxide fragment. This avoids the use of bromoacetyl 

bromide and further prevents Williamson etherification in presence of a carbonyl group; ii) It 

replaces N-hydroxyl maleimide with N-hydroxyl ethyl maleimide (M3.2). Adding an ethyl spacer 

between maleimide and hydroxyl groups no longer leads to active esters after polymerization, 

which is negative for the separation of daughter and parent polymers. This presents a dilemma 

here: active esters are better choices for post-polymerization separations, but the highly reactive 

nature makes them difficult to survive the early stage multi-step monomer synthesis. 

The oxidation of glycidol to glycidic acid using ruthenium tetroxide went smoothly with 

quantitative yield following the literature procedure.184 Subsequent Steglich esterification of 

glycidic acid with M3.2, however, gave the desired product with a low yield (< 10%) with a dark 

red byproduct stuck on the top of the column during purification. Steglich esterification is very 

widely used in organic synthesis. It proceeds under mild conditions and is generally high yielding 

both found in the literature and from our previous work. We attributed the surprisingly low yield 

of this specific reaction to the stability of glycidic acid (Scheme 3.3B). It was reported that glycidic 

acid is not particularly stable even at room temperature.185 It undergoes self-decarboxylation to 
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release CO2 and generates an enol which tautomerize to its keto form in the presence of an acid or 

base catalyst. It is obvious that adding extra carbons between the epoxide ring and the carbonyl 

group would prevent decarboxylation and increase stability of the molecule. Therefore, we set out 

to synthesize M3.5. The added carbon spacers to the epoxide fragment will prevent the synthetic 

intermediate from undergoing decarboxylation, while keeping all structural requirements for the 

monomer: maleimide and epoxide as polymerizable groups and connected with an ester linkage. 

3.2.2 Synthesis of monomer M3.5 

As discussed above, Monomer M3.5 contains three functionalities that need to be attached 

(Scheme 3.4): a maleimide group (blue); an ester group (green) and an epoxide group (red). These 

functional groups can be added in different orders. Scheme 3.4A is a convergent/branched 

synthesis that requires the syntheses of maleimide and epoxide functionalized precures separately, 

then bring them together with an ester group. Scheme 3.4B and C are both linear syntheses in the 

order of maleimide→ester→epoxide and ester→maleimide→epoxide, respectively. 
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Scheme 3.4 Synthetic routes to monomer M3.5 

We first adopted the convergent synthetic strategy aiming to increase the overall efficiency of the 

multi-step synthesis (Scheme 3.4A).  This includes independent synthesis of hydroxyl ethyl 

maleimide M3.2 and a pentafluoroester masked epoxide fragment M3.4. A final transesterification 

step combines the two to afford the target molecule M3.5. M3.2 was synthesized according to 

literature procedures.186-187 M3.4 was successfully made from Steglich esterification of 

pentafluorophenol with 4-pentenoic acid, followed by mCPBA epoxidation. All steps went well 

except for the final transesterification reaction: the yield was less than 20%, making the overall 

yield less than 10%, which is unacceptably low for a monomer synthesis since large quantities of 

monomers are required for the following polymerization steps. The inefficiency of this reaction 

was unexpected due to the high reactivity of pentafluoroesters as reported by several groups.188-189 

The reaction uses 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a base catalyst. The solution 
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turned dark red immediately upon addition of DBU but this phenomenon was not found reported 

in literature.   

Linear synthesis shown in Scheme 3.4B was then adopted. The Steglich esterification of M3.2 

with 4-pentenoic acid produced again a dark red byproduct with only 10% yield of the target 

molecule M3.6. So far we have encountered three reactions that were haunted with the red 

byproduct along with a low yield (recall the Steglich esterification in Scheme 3.3A and the 

transesterification in Scheme 3.4A). It is not hard to find that these reactions all contain maleimide 

groups on the reagents, and those could be responsible for side reactions that lead to the colored 

species. The nature of this byproduct will be discussed in detail in the next section. 

Based on the abovementioned observation and hypothesis, we adopted a synthetic route that kept 

the maleimide functionality protected with furan (M3.1) and subjected it to Steglich esterification 

with 4-pentenoic acid (Scheme 3.4C). This reaction proceeded well and yielded M3.7 

quantitatively. The maleimide functionality was unmasked through subsequent retro Diels-Alder 

reaction by heating to reflux in toluene resulting in M3.6. Radical inhibitor BHT was added during 

the process to prevent polymerization. mCPBA treatment with M3.6 selectively oxidized the 

electron rich terminal olefin to an epoxide group and left the electron deficient maleimide olefin 

intact. This 4-step synthesis to M3.5 gave an overall yield of 45% and is highly scalable.   

3.2.3 Side reaction of maleimide groups 

During the synthesis of M3.5 we found that compounds with a maleimide group were sensitive to 

some organic bases even in catalytic amount, such as 4-dimethylaminopyridine (DMAP) and DBU. 

As shown in Scheme 3.5A, hydroxylethyl maleimide M3.2 undergoes Steglich esterification with 

glycidic acid and 4-pentenoic acid with only 10% yield of the coupling products. In these reactions, 

some dark red byproduct was generated that stuck on the top of silica columns during purification. 
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The furan-protected counterpart M3.1, however, when subjected to the exact same reactants under 

the same conditions, led to the coupling products with 82% and 97% yield (Scheme 3.5B) and no 

sign of the colored species.  

 

Scheme 3.5 Steglich esterifications of glycidic acid and 4-pentanoicacid with (A) M3.2 and (B) 

M3.1. 

Steglich esterification is an ester forming reaction between a carboxylic acid and an alcohol using 

DMAP as a catalyst and N,N’-dicyclohexylcarbodiimide (DCC) as a coupling agent. DMAP is a 

common catalyst for the activation of carbonyl groups – it acts as a good nucleophile to attack the 

carbonyl producing the acetylpyridium ion and becomes a good leaving group which lowers the 

reaction barrier for weaker nucleophiles such as alcohols. This allows the reaction to proceed at 

milder conditions. The coupling agent DCC first serves as an electrophile and then transforms into 

a good leaving group, producing a stable dicyclohexylurea (DCU) as byproduct. This makes the 

overall reaction thermodynamically favorable and can proceed to a higher extent. Compared with 

the classical acid-catalyzed Fisher esterification which features an unfavorable equilibrium that 

requires either excess of one of the reagents or removal of water, Steglich esterification occurs at 
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room temperature with high conversion, hence it has been frequently used by organic chemists. 

Given the fact that maleimides and esters are both key elements in our research plan, it is important 

to understand what side reactions they undergo under Steglich esterification conditions. 

In order to confirm that the colored species was a result of treating maleimide compounds with 

base, we performed Steglich esterification of M3.2 with 4-pentenoic acid without the addition of 

DMAP (Scheme 3.5A-box). Mechanistically this reaction could still proceed, but because of the 

low nucleophilicity of the hydroxyl group and hence slow addition to the O-acylurea intermediate, 

the intermediate undergoes a Mumm type rearrangement to the more thermodynamically stable N-

acylurea which is no longer active toward nucleophilic addition, resulting in low yields. As 

expected, we observed the rearranged product (structure shown in Scheme 3.5A-box) with 40% 

yield and M3.6 with 28% yield. More importantly, the dark red species was not observed without 

the addition of DMAP, which confirmed the incompatibility of maleimide group with DMAP. 

A series of base tests were then performed on a model compound N-phenylmaleimide (NPhMI). 

When adding potassium carbonate (K2CO3), diisopropylethylamine (DIPEA), and triethylamine 

(TEA) to a solution of NPhMI in DCM at room temperature, no color change was observed. The 

solution turned red upon addition of DMAP, DBU and potassium tert-butoxide (tBuOK). This 

color disappeared after treatment with acetic acid. When treating NPhMI with sodium hydride 

(NaH) in dry THF under argon, no reaction was observed. However, NaH treatment in air using 

THF from the wash bottle resulted in red solution with bubbles evolved. 1H NMR of the red 

product showed disappearance of the maleimide H-C=C-H protons at 7.2 ppm, as well as slight 

broadness of the peaks, suggesting polymerization of the maleimide groups.  

Maleimide groups are better known to undergo radical polymerizations. Base-catalyzed anionic 

polymerization of maleimides is barely reported in the past two decades due to the lack of control 
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in the polymerizations. Early studies on base-catalyzed polymerization include the use of strong 

nucleophiles such as organolithium190, organozinc191 and Grignard reagent192 as initiators, as well 

as milder initiators like tert-butoxides193, alkylamines, even anilines194. These polymerizations 

typically proceed rapidly at -78°C except for the cases where amine initiators were used and those 

were reported to occur at 30°C. Since DMAP exhibits better nucleophilicity than amines, it is 

reasonable to assume that polymerization of M3.2 is highly possible at room temperature under 

Steglich esterification condition and gave the red colored byproduct. 

Poly(maleimides) were reported to exhibit a reversible color changes based on acid-base switching  

not only in solution195 but also in the solid state when exposed to amine vapor196. These polymers 

are red colored in basic solvents and turned colorless in acidic solvents. The color change was 

considered to arise from the enolate anion tautomerization of the maleimide groups in basic solvent 

and/or in the presence of a basic reagent195-197. 

 

Scheme 3.6 Proposed mechanism of maleimide anionic polymerization with DMAP 

Based on these findings we conclude that the side reactions that led to the dark red byproduct 

mentioned in Section 3.2.2 originated from the base-catalyzed anionic polymerization/ 

oligomerization of maleimide groups. The proposed mechanism of the reaction is sketched in 

Scheme 3.6. The initiation of the polymerization is a Michael addition of the nucleophilic base 

catalyst to the activated alkene to generate an enolate zwitterionic adduct. Propagation continues 

by enolate addition to another equivalent of the maleimide monomer. The base catalyst is 

recovered through elimination shown in blue arrows. The polymer/oligomer product undergoes 



66 

 

tautomerization that gave rise to the red colored byproduct. Based on our findings, maleimide 

groups are highly susceptible to this type of reaction. Attention needs to be paid when derivatizing 

molecules with maleimide groups, either by avoiding exposure to basic nucleophiles or by using 

protecting groups.  

3.2.4 Ring-opening polymerization of M3.5 and M3.8 

The selective ring-opening polymerization of glycidol methacrylate was previously reported by 

Carlotti and coworkers198. This technique uses tetraoctyammonium bromide (i-Bu3Al)/ 

triisobutylaluminum (NOct4Br) initiating system to selectively polymerize the epoxide groups 

while leaving the methacrylate polymerizable groups unscathed, which is potentially promising 

for polymerizing M3.5. However, attempts to polymerize M3.5 following the reported procedure 

led to a crosslinked gel, with red byproduct forming in solution (Scheme 3.7A,B) 

 

Scheme 3.7 (A) Ring-opening polymerization of M3.5 using the monomer-activated anionic 

approach; (B) Direct polymerization of M3.5 led to an insoluble gel and red colored byproduct; 

(C) M3.8 synthesis by Diels-Alder reaction of M3.5 with furan, and subsequent polymerization 

and post-polymerization deprotection. 
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The crosslinking reaction was attributed to maleimide groups participating in the polymerization. 

The Lewis acidic alkyl aluminum not only activated the epoxide oxygen but also activated 

maleimide carbonyls, which made them excellent Michael acceptors for the propagating anions to 

attack. Basicity of the aluminum species enabled the enolate tautomerization of the polymerized 

maleimides, which explains the red color. In order to prevent the crosslinking reaction from taking 

place, we sought to protect the maleimide functional group with furan (M3.8, Scheme 3.7C), and 

subject the monomer to ring-opening polymerization followed by a post-polymerization 

deprotection step. 

 

Figure 3.2 1H NMR spectra of M3.8 and P3.1. 

The polymerization of epoxides by this approach requires the ratio of alkylaluminum to initiator 

to exceed unity ([i-Bu3Al]/[NOct4Br ]>1) to ensure activation of the epoxide ring. 199-201 Monomers 

with more than one coordination sites require higher amount of the catalyst to overcome the strong 

interactions with the Lewis acid.200 For example,  [R3Al]/[initiator] of 1.5 is reported to 
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successfully polymerize ethylene and propylene oxide.202 But [R3Al]/[initiator] as high as 3.4 is 

required to polymerize furfuryl glycidyl ether because all three oxygens on the monomer are able 

to coordinate with aluminum.203 M3.8 contains six oxygens capable of coordination with i-Bu3Al, 

hence a large amount of i-Bu3Al is needed for the reaction to take place. Polymerization of M3.8 

with [R3Al]/[initiator]=12 went smoothly and gave product P3.1. 1H NMR spectrums of the two 

are shown in Figure 3.2. P3.1 exhibited all signals of the protected maleimide side chain, as well 

as peaks corresponding to the polyether backbone. The epoxide C-H proton of M3.8 (peak h at 2.9 

ppm) shifted downfield to 4.2 ppm after polymerization. This can be used to calculate monomer 

conversion of the polymerization.  

Table 3.1 Polymers P3.1-P3.5 synthesized from ring-opening polymerization of M3.8 a 

 [R3Al]/[initiator] 
Monomer 

conversion(%) b 

Mn 

(kDa) c 

Mw 

(kDa) c 
Ð c 

P3.1 12 100 5.0 16.2 3.24 

P3.2 10 100 7.8 12.3 1.58 

P3.3 8 85 10.2 13.7 1.35 

P3.4 6 70 ----------- not isolated  ---------- 

P3.5 4 0 ------- no polymerization ------- 

a. DCM, Ar, rt, 4 hr; b. Calculated from 1H NMR; c. Obtained using triple detection GPC. 

The polydispersity index of P3.1 is 3.24. This is consistent with previous reports where broader 

distributions were seen with higher [R3Al]/[initiator] ratios.204-206 A series of polymerizations with 

smaller ratio of [R3Al]/[initiator] (10, 8, 6 and 4, P3.2-P3.5) were performed to optimize the 

condition for narrower distribution of the polymers. The results are summarized in Table 3.1. 

Polymerization of M3.8 successfully proceeded in the presence of i-Bu3Al and NOct4Br at a ratio 

between 6 and 12. At a ratio of 4 no polymerization was observed. P3.1 and P3.2 reached full 

conversion within 4 hours at room temperature, P3.3 and P3.4 were 85% and 70% converted. The 
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polymers exhibited narrower distribution with smaller [R3Al]/[initiator] ratio. P3.3 shows a Mw/Mn 

value of 1.35. Unfortunately, we were unable to isolate P3.4 for GPC analysis as it did not 

precipitate from methanol like other polymers did. 

3.2.5 Post-polymerization deprotection 

P3.1 – P3.3 were subjected to post-polymerization retro Diels-Alder reaction to deprotect the 

maleimide groups. The polymers were not soluble in toluene which is the most common solvent 

for retro D-A of similar structures. Stirring the polymer at reflux in chloroform for 2 days led to 

~12.5% deprotection. Dissolving the polymer in DMF and heated at 130 °C resulted in a brown 

oil after workup. 1H NMR of the product shows disappearance of the furan protons at 6.6 and 5.3 

ppm, but the expected deprotected maleimide proton (~7 ppm) was missing, likely due to radical 

crosslinking of the deprotected maleimide group. Repeated the process in presence of a radical 

inhibitor (~4%wt BHT) shows disappearance of the furan protons and appearance of the maleimide 

protons as expected, but a lot of new peaks were present which might be degradation of the 

polyether backbone. (Figure 3.3) Lowering the temperature to 115 °C and increasing the amount 

of radical inhibitor to 20%wt BHT led to red polymers likely due to polymerization of the 

maleimide groups.  Increasing the amount of BHT to 40%wt and heated at 115 °C gave the same 

result. Due to the susceptibility of maleimide groups to polymerization, the retro D-A condition 

needs to be further optimized, including simultaneous deprotection and intrachain crosslinking in 

one pot.  
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Figure 3.3 1H NMR spectra of P3.1(bottom) and its post-polymerization deprotection product (top). 

3.2.6 Intramolecular cross-linking model reaction 

SCNP are to be synthesized from intramolecular polymerization of pendant maleimide groups with 

external stilbene monomers. The reaction needs to run at ultra-dilute condition so that polymer 

coils are independent of each other and prefer intramolecular reaction. Calculating the critical 

concentration crossing over from dilute to concentrated solution regime will help the 

understanding of the physical aspects of SCNP synthesis. Additionally, despite the overall low 

concentration of polymer solution, maleimide groups are located within each solvated polymer 

coil and have a much higher local concentration than the overall polymer solution. Identifying the 

local concentration of maleimide groups and running a model polymerization reaction at that 

concentration will provide insight into the self-crosslinking process and the internal structure of 

SCNP. 
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The equilibrium concentration where intra- and inter-molecular reactions are equally probable is 

given by equation Eq 3.1.207 

𝑐∗ =
(1 𝑁𝐴)∗𝑀⁄

𝑉ℎ
=

𝑀

𝑁𝐴∗𝑉ℎ
                                                       (Eq 3.1) 

Where c* represents the critical concentration from dilute to semidilute regimes. Polymer coils are 

independent of each other below c* and start to touch each other above c*. M is the molecular 

weight of the polymer. Vh represents the hydrodynamic volume of a polymer coil. NA is 

Avogadro’s number. 

C* can be related to the intrinsic viscosity of the polymer solution [𝜂] through Einstein’s viscosity 

equation (Eq 3.2) if the polymer coils are treated as hard spheres.208 

𝜂 = 𝜂𝑠(1 + 2.5∅ + 4∅2 + ⋯ )                                             (Eq 3.2) 

𝜂 and 𝜂𝑠  are viscosities of the polymer solution and the solvent, respectively. ∅ is the volume 

fraction of the polymer solute, and can be derived from the concentration of the polymer solution 

through Eq 3.3. 

∅ = (𝑐 𝑀⁄ ) ∗ 𝑁𝐴 ∗ 𝑉ℎ =
𝑐∗𝑁𝐴∗𝑉ℎ

𝑀
                                            (Eq 3.3) 

Plotting Eq 3.3 into Eq 3.2: 

𝜂 = 𝜂𝑠(1 + 2.5 ∗
𝑐∗𝑁𝐴∗𝑉ℎ

𝑀
)                                                 (Eq 3.4) 

Combining Eq 3.4, Eq 3.1 with calculation of intrinsic viscosity [𝜂]: 

[𝜂] = lim
𝑐→0

𝜂 𝜂𝑠−1⁄

𝑐
= lim

𝑐→0

𝜂−𝜂𝑠

𝑐∗𝜂𝑠
= lim

𝑐→0

2.5𝜂𝑠
𝑐∗𝑁𝐴∗𝑉ℎ

𝑀

𝑐∗𝜂𝑠
= 2.5

𝑁𝐴∗𝑉ℎ

𝑀
=

2.5

𝑐∗
                  (Eq 3.5) 
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Based on Eq 3.5 and intrinsic viscosity of P3.2 from GPC, we calculated the overlap concentration 

c* of P3.2, as well as the local concentration of maleimide groups under c*. (Table 3.2) 

Table 3.2 Overlap concentration 𝑐∗ of P3.2 

 
Mn 

(kDa) 

N (degree of 

polymerization) 

[𝜼] a 
(mL/g) 

𝒄∗ Local [c] of 

maleimide (mol/L) d (mg/mL) b (mol/L) c 

P3.2 7.76 25 5.67 441 0.06 M 1.5 M 

a. Obtained from GPC viscometer using THF as eluent at 40°C; b. Calculated from 𝑐∗ = 2.5 [𝜂]⁄ ; c. Calculated from 

2.5 ([𝜂]⁄ 𝑀𝑛); d. Calculated from 𝑁 ∗ 𝑐∗. 

A model reaction of maleimide-stilbene copolymerization was run at the calculated local [c] of 1.5 

mol/L, targeting 25 repeating units of each monomer. The polymerization was performed in THF 

at 70°C using AIBN as an initiator. (Figure 3.4A) The reaction was quenched after 4 hours since 

the stir bar stopped working due to the high viscosity of the polymer solution. The copolymer 

showed broad distribution (Ð = 1.7) and much higher molecular weight than targeted. (Figure 3.4C) 

 

Figure 3.4 (A) Radical copolymerization of N-cyclohexylmaleimide and trans-stilbene; (B) 1H 

NMR spectrum and (C) GPC chromatograms of the copolymer. 

Apparently, this oversimplified model reaction performed at the calculated overlap concentration 

of P3.2 cannot represent the real case of intramolecular radical polymerization. The real process is 
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much more complicated and requires deeper understanding of polymer-solvent interaction and 

polymerization kinetics/thermodynamics in a confined space. Future work would require more 

viscometric studies to understand the conformation of polymers in ultra-dilute solution, as well as 

advanced characterization techniques to evaluate the internal structure of SCNP. 

3.3 Conclusion 

Monomers bearing an epoxide group and a maleimide group connected via an ester linkage were 

synthesized from a four-step reaction sequence. Some special care is required when synthesizing 

these monomers due to the sensitivity of maleimides to nucleophilic base. Although the monomer 

was proposed to undergo two mechanistically distinct polymerizations, the maleimide group 

turned out to interfere with the ring-opening polymerization of epoxides when using the activated 

monomer method. Having the maleimide group protected with furan led to the successful synthesis 

of polymers. The polymers exhibited lower molecular weight distribution when smaller 

[R3Al]/[initiator] ratio was applied. Post-polymerization deprotection released the maleimide 

functionality but the polymer backbone may undergo degradation. Future work with this project 

includes the optimization of polymerization and post-polymerization deprotection steps, as well as 

intramolecular radical polymerization, and separation of the intra-chain cross-links from the linear 

polymer for further characterization. 

3.4 Experimental 

3.4.1 Materials 

Reagents were obtained from the indicated commercial suppliers and used without further 

purification unless otherwise stated: exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (TCI), 2-

aminoethanol (TCI), pentafluorophenol (Oakwood Products, Inc), 3-chloroperbenzoic acid 

(Sigma-Aldrich), 1,8-diazabicyclo[5.4.0]undec-7-ene (Acros Organics), 4-pentenoic acid (Sigma-
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Aldrich), N,N’-dicyclohexylcarbodiimide (Sigma-Aldrich), 4-dimethylamino pyridine (Oakwood 

Products, Inc), glycidol (Sigma-Aldrich), ruthenium (IV) oxide (Acros Organics), sodium m-

periodate (Sigma-Aldrich), triisobutylaluminum (1.0 M in hexanes, Sigma-Aldrich), 

tetraoctylammonium bromide (Sigma-Aldrich), hexanes (Fisher Scientific), ethyl acetate (Fisher 

Scientific), 2,2’-azobis(2-methylpropionitrile) (AIBN, Sigma-Scientific, recrystallized from 

methanol), butylated hydroxyltoluene (BHT, Sigma-Aldrich), silica gel (230 – 400 mesh, 

SiliCycle), N-phenyl maleimide (TCI), N-cyclohexyl maleimide (TCI), trans-stilbene (Acros 

Organics), THF (HPLC grade, Fisher Scientific, inhibited with BHT), sodium bicarbonate (Fisher 

Scientific), chloroform-d (CDCl3, Cambridge Isotope Laboratories). Dry toluene was obtained by 

heating to reflux with sodium in presence of benzophenone as indicator. Dry dichloromethane 

(DCM) was obtained from heating to reflux with calcium hydride.  

3.4.2 Instrumentation 

1H and 13C NMR spectra were acquired with a Varian Unity INOVA or Bruker Biospin 500 MHz 

or Varian Mercury 400 MHz spectrometer. Chemical shifts (δ) were reported in parts per million 

(ppm) relative to tetramethylsilane (TMS). Solvent (CDCl3) contained 0.03% v/v TMS as an 

internal reference. Peak abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet, br = broad, Ar = Aryl).  

SEC was performed on a Tosoh EcoSEC dual detection (RI and UV) SEC system coupled to an 

external Wyatt Technologies miniDAWN Treos multiangle light scattering (MALS) detector and 

a Wyatt Technologies ViscoStar II differential viscometer. Samples were run in THF at 40 °C at 

a flow rate of 0.35 mL/min. The column set contained one Tosoh TSKgel SuperHM-M (6.0 mm 

ID × 15 cm) column, one Tosoh TSKgel SuperH2500 (6.0 mm ID × 15 cm) column and a Tosoh 

TSKgel SuperH5000-7000 guard column (4.6 mm ID ×  3.5 cm). All polymer solutions 
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characterized by SEC were 1.0 mg/mL in THF, stirred magnetically for at least 5 hours and filtered 

through 0.45 μm PTFE syringe filters before analysis.  

3.4.3 Experimental procedures 

3.4.3.1 Synthesis of hydroxylethyl maleimide M3.2 

 

M3.1 was synthesized following the same procedure described in section 2.4.5.2. Hydroxylethyl 

oxanorbornene M3.1 (5g, 23.9 mmol) was stirred at reflux in toluene (15 mL) overnight. The 

mixture was cooled to room temperature and toluene removed by rotary evaporator. Crude product 

was purified by column chromatography. (Hex: EtOAc = 1:2, 1.56 g, 46.3%) ); 1H NMR (400 

MHz, CDCl3, δ, ppm): 6.75 (s, 2H), 3.79 (t, 2H), 3.73 (t, 2H), 2.20 (br, 1H); 13C NMR (400 MHz, 

CDCl3, δ, ppm): 170.78, 134.64, 59.86, 40.63. See appendix page 133 for full spectra. 

3.4.3.2 Synthesis glycidic acid and M3.0b 

 

Glycidic acid:184 To a 50 mL 3-neck flask was added glycidol (0.9 mL, 13.5 mmol, 1 eq), 

tetrachloromethane (7.5 mL), acetonitrile (7.5 mL) and water (1 mL). Ruthenium dioxide (55 mg, 

0.41 mmol, 0.03 eq) was added and the mixture was stirred under argon for 5 min. Sodium 

periodate (11.57 g, 54.1 mmol, 4 eq) was added in small portions over 15 min. The mixture was 
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stirred at room temperature for another 2.5 hours then filter through celite. The filtrate was dry 

loaded with silica and elute through a short silica plug with EtOAc. (1.28 g, 100%);1H NMR (400 

MHz, CDCl3, δ, ppm): 11.09 (br, 1H), 3.50 (t, 1H), 3.03 (d, 2H); 13C NMR (400 MHz, CDCl3, δ, 

ppm): 176.12, 46.89, 46.66. See appendix page 134 for full spectra. 

M3.0b: Dissolve hydroxylethyl maleimide (M3.2, 1 g, 7.09 mmol, 1 eq), glycidic acid (0.75 g, 8.5 

mmol, 1.2 eq), DCC (2.19 g, 10.63 mmol, 1.5 eq) and DMAP (95 mg, 0.71 mmol, 0.11 eq) in 

DCM (30 mL) and stir overnight. DCU byproduct was filtered off. Crude product was purified by 

column chromatography. (Hex: EtOAc = 1:1, 57 mg, 12.7%); 1H NMR (400 MHz, CDCl3, δ, ppm): 

6.75 (s, 2H), 4.40 (m, 1H), 4.31 (m, 1H), 3.84 (m, 2H), 3.41 (dd, 1H), 2.96 (m, 2H); 13C NMR 

(400 MHz, CDCl3, δ, ppm): 170.75, 169.08, 135.57, 62.61, 47.97, 46.38, 36.67. See appendix page 

135 for full spectra. 

3.4.3.3 Synthesis of perfluorophenyl pent-4-enoate M3.3 

 

Pentafluorophenol (5g, 27.1 mmol, 1.2 eq), 4-pentenoic acid (2.31 mL, 22.6 mmol, 1 eq), DCC 

(7.0 g, 33.96 mmol, 1.5 eq), and DMAP (276 mg, 2.26 mmol, 0.11 eq) was dissolved in DCM 

(100mL) and stirred overnight. DCU salt was filtered off. Crude product was purified by column 

chromatography. (Hex: EtOAc = 7:1, 5.37 g, 89.2%); 1H NMR (400 MHz, CDCl3, δ, ppm): 5.86 

(m, 1H), 5.13 (m, 2H), 2.80 (m, 2H), 2.52 (m, 2H); 13C NMR (400 MHz, CDCl3, δ, ppm): 168.85, 

141.55, 140.57, 139.81, 139.11, 138.17, 136.25, 135.35, 116.45, 32.17, 27.21. See appendix page 

136 for full spectra. 
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3.4.3.4 Synthesis of perfluorophenyl 3-(oxiran-2-yl)propanoate M3.4 

 

Perfluorophenyl pent-4-enoate (5g, 18.8 mmol, 1 eq) was dissolved in DCM (20 mL) in a 500 mL 

3-neck flask. mCPBA (8.4 g, 48.8 mmol, 2 eq) was dissolved in 100 mL of DCM and added to the 

flask through an addition funnel over an ice bath. The mixture was warmed up to room temperature 

and stirred for 24 h. The benzoic acid byproduct was filtered off and the filtrate was washed with 

saturated sodium bisulfite, saturated NaHCO3 until no bubbles, and Brine. Crude product was 

purified by column chromatography. (Hex: EtOAc = 7:1, 4.82 g, 91%); 1H NMR (400 MHz, 

CDCl3, δ, ppm): 2.97 (dtd, 1H), 2.75 (m, 3H), 2.49 (dd, 1H), 2.07 (dtd, 1H), 1.82 (m, 1H); 13C 

NMR (400 MHz, CDCl3, δ, ppm): 167.06, 142.28, 140.67, 139.77, 139.10, 138.19, 136.56, 50.55, 

45.10, 28.49, 25.87. See appendix page 137 for full spectra. 

3.4.3.5 Synthesis of M3.5 by transesterification of M3.2 and M3.4 

 

Perfluorophenyl 3-(oxiran-2-yl)propanoate (M3.4, 1 g, 3.53 mmol, 1 eq) and hydroxylethyl 

maleimide (M3.2, 1 g, 7.06 mmol, 2 eq) was dissolved in MeCN (40 mL), DBU (0.53 mL, 3.5 

mmol, 1 eq) was added. The mixture was heated at 50 °C overnight. Crude product was purified 

by column chromatography. (Hex: EtOAc = 2:1, 160 mg, 20%); 1H NMR (400 MHz, CDCl3, δ, 
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ppm): 6.74 (s, 2H), 4.25 (t, 2H), 3.80 (t, 2H), 2.97 (m, 1H), 2.76 (m, 1H), 2.50 (dd, 1H), 2.43 (td, 

2H), 1.96 (m, 1H), 1.74 (dq, 1H); 13C NMR (400 MHz, CDCl3, δ, ppm): 172.54, 170.40, 135.35, 

62.17, 51.10, 46.96, 37.64, 30.09, 27.31. See appendix page 138 for full spectra. 

3.4.3.6 Synthesis of M3.6 from Steglich esterification of M3.2 

 

Hydroxylethyl maleimide (M3.2, 0.75 g, 5.3 mmol, 1 eq), 4-pentenoic acid (0.65 mL, 6.4 mmol, 

1.2 eq), DCC (1.6 g, 7.9 mmol, 1.5 eq), and DMAP (65 mg, 0.5 mmol, 0.11 eq) was dissolved in 

DCM (35 mL) and stirred overnight. DCU byproduct was filtered off. Crude product was purified 

by column chromatography. (Hex: EtOAc = 3:1, 144 mg, 12.1%); 1H NMR (400 MHz, CDCl3, δ, 

ppm): 6.75 (s, 2H), 5.79 (m, 1H), 5.03 (m, 2H), 4.24 (t, 2H), 3.80 (t, 2H), 2.36 (m, 4H); 13C NMR 

(400 MHz, CDCl3, δ, ppm): 174.70, 169.67, 136.53, 134.21, 114.50, 61.93, 36.86, 33.14, 28.04. 

See appendix page 139 for full spectra. 

The rearrangement product was observed with 40% yield when the reaction was repeated without 

the addition of DMAP. 1H NMR (400 MHz, CDCl3, δ, ppm): 6.98 (br, 1H), 5.84 (m, 1H), 5.06 (m, 

2H), 3.92 (tt, 1H), 3.69 (dddd, 1H), 2.51 (m, 4H), 1.99-1.58 (m, 12H), 1.45-1.08 (m, 8H); 13C NMR 

(400 MHz, CDCl3, δ, ppm): 154.39, 137.63, 116.29, 49.77, 35.75, 32.72, 31.72, 29.34, 26.88, 

25.55, 25.30, 24.70. See appendix page 140 for full spectrum. 

3.4.3.7 Synthesis of M3.7 
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Hydroxylethyl oxanorbornene (M3.1, 1.5 g, 7.17 mmol, 1 eq), 4-pentenoic acid (0.88 mL, 8.6 

mmol, 1.2 eq), DCC (2.22 g, 10.76 mmol, 1.5 eq), and DMAP (96 mg, 0.79 mmol, 0.11 eq) was 

dissolved in DCM (50 mL) and stirred overnight. DCU byproduct was filtered off. Crude product 

was purified by column chromatography. (Hex: EtOAc = 1:2, 2.03 g, 97%); 1H NMR (400 MHz, 

CDCl3, δ, ppm): 6.51 (s, 2H), 5.79 (m, 1H), 5.25 (m, 2H), 5.00 (m, 2H), 4.22 (t, 2H), 3.74 (t, 2H), 

2.86 (d, 2H), 2.35 (m, 4H); 13C NMR (400 MHz, CDCl3, δ, ppm): 177.39, 172.74, 136.64, 136.54, 

114.29, 80.90, 59.08, 48.24, 39.80, 33.21, 29.07. See appendix page 140 and 141 for full spectra. 

3.4.3.8 Synthesis of M3.6 from M3.7 

 

M3.7 (1.8 g, 6.18 mmol) was dissolved in toluene (30 mL) and stirred at reflux overnight. The 

condenser was removed and continued boiling for an additional 30 min. Toluene was removed on 

a rotary evaporator. Crude product was collected without further purification. (1.26 g, 91.3%); 

NMR characterization refer to section 3.4.3.6. 

3.4.3.9 Synthesis of M3.5 from M3.6 
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M3.6 (1.2 g, 5.38 mmol, 1 eq) was dissolved in DCM (10 mL) in a 3-neck flask. mCPBA (1.45 g, 

6.45 mmol, 1.2 eq) was dissolved in DCM (20 mL) and added to the flask through an addition 

funnel over an ice bath. The mixture was warmed up to room temperature and stirred for 24 h. 

White precipitate was filtered off and filtrate was washed with sat. sodium bisulfite, sat. sodium 

bicarbonate and brine. Crude product was purified by column chromatography. (Hex: EtOAc = 

1:1, 0.89 g, 69.0%); NMR characterization refer to section 3.4.3.5. 

3.4.3.10 Synthesis of M3.8 from M3.5 

 

M3.5 (1 g, 4.18 mmol, 1 eq) and furan (3.0 mL, 8.36 mmol, 10 eq) was dissolved in toluene (30 

mL) and stirred at reflux for 3 days. Solvent and excess furan was removed on a rotary evaporator. 

Crude product was purified by column chromatography. (Hex: EtOAc = 1:2, <50%, mixture of 

isomers); 1H NMR (400 MHz, CDCl3, δ, ppm): 6.52 (t, 2H), 5.28 (m, 2H), 4.25 (dd, 2H), 3.76 (dd, 

2H), 2.97 (m, 1H), 2.87 (s, 2H), 2.76 (m, 1H), 2.50 (dd, 1H), 2.42 (td, 2H), 1.95 (m, 1H), 1.74 (m, 

1H); 13C NMR (400 MHz, CDCl3, δ, ppm): 176.01, 172.54, 135.68, 81.48, 60.74, 51.17, 47.45, 

47.00, 37.83, 30.97, 27.32. See appendix page 141 and 142 for full spectra. 

3.4.3.11 Synthesis of P3.1 – P3.5 

In a glovebox, M3.8 (500 mg) and NOct4Br was dissolved in dry DCM (2 mL) in a vial equipped 

with a stir bar. A solution of i-Bu3Al was added while stirring and the solution turned orange. The 

mixture was stirred in the glovebox for 4 hrs before being moved out of the glovebox and quenched 

with 0.5 mL of ethanol. The solvents were removed on a rotary evaporator. The residual white 
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solid was dissolved in a small amount of DCM and precipitated from cold methanol. The solid 

was collected, redissolved in DCM and eluted through a plug of neutral alumina with DCM. 

Polymers were collected after removing DCM as a light yellow porous solid.  

3.4.3.12 Post-polymerization deprotection 

The polymer (P3.1 and P3.2) was dissolved in dry DMF in a vial capped with a septum, BHT (4-

20%wt) was added. The mixture was heated to 115 °C under argon and stirred for 24 hrs. The 

solution slowly turned red upon heating. DMF was removed under vacuum. The residual solid was 

dissolved in a small amount of DCM and precipitated from cold methanol. Product was collected 

as a red powder. 

3.4.3.13 N-cyclohexyl maleimide and trans-stilbene radical copolymerization 

N-cyclohexyl maleimide (250 mg), trans-stilbene (250 mg) and AIBN (0.5 mg) was dissolved in 

dry THF (1.5 M) in a 10 mL Schlenk flask. The mixture was sparged with argon over an ice bath 

for 20 min. The flask was heated to 70 °C in an oil bath. After 4 hrs the stir bar stopped moving 

and the reaction was quenched by opening to air. The viscous product was diluted with THF and 

the polymer precipitated from hexanes. (0.32 g, Mn 23.0 kDa, Mw 38.4 kDa, Ð 1.7) 
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Chapter 4.  Fabrication of SCNP via intra-chain ring-opening 

metathesis polymerization (ROMP) 

4.1 Introduction 

Single-chain nanoparticles are a class of nanoparticles obtained from self-folding of single 

polymer molecules. Linear polymer precursors bearing reactive pendant groups undergo 

intramolecular cross-linking when the solution concentration is below the polymer’s overlap 

concentration c*.15-17 This method mimics the natural folding process of peptide chains to afford 

complex hierarchical protein structures. It also provides a way to produce polymeric nanoparticles 

of ultrafine size. A variety of cross-linking chemistries have been explored, including covalent, 

dynamic covalent and non-covalent chemistries, among which intramolecular polymerization is of 

particular importance as it allows for easy control of an SCNP’s degree of cross-linking.173 

Intramolecular radical polymerization, oxidation polymerization and ring-opening polymerization 

have been reported to successfully fold linear polymer precursors into SCNP. 149, 153-155, 157 

 

Figure 4.1 Schematic illustration of intramolecular ROMP of polymers bearing norbornene 

pendant groups. 



83 

 

The purpose of this project is to expand the scope of intramolecular polymerizations and fabricate 

SCNP from ROMP of norbornene pendants on linear polymers. (Figure 4.1) ROMP was chosen 

as it is highly functional group tolerant and proceeds rapidly, leading to fast access of nanoparticles. 

Intramolecular ROMP of a polymer bearing furan-protected maleimide moieties was recently 

reported by Zhou and coworkers.156 Herein we provide a more detailed study on chain folding by 

ROMP. Our results showed that the efficiency of chain folding was related to norbornene content 

on the polymer precursor, species and feed ratio of Grubbs catalysts, as well as doping effects of 

fluorinated aromatic comonomers. 

4.2 Results and discussion 

 

Scheme 4.1 Synthesis of norbornene-containing copolymers by (A) direct RAFT copolymerization 

and (B) post-polymerization transesterification. 

We sought to synthesize a series of poly(MMA-co-NBIMA) polymers with various amount of 

norbornene incorporations. (Scheme 4.1A) Comonomer NBIMA was synthesized according to 

literature procedures.157 Direct copolymerization of MMA and NBIMA by RAFT polymerization 

led to well-defined polymers only when low NBIMA incorporations were targeted. At higher 

NBIMA incorporation (≥40%) the polymers started to show higher molecular weight and broader 

distribution because of interchain cross-linking. The cross-linking reaction was attributed to 
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radical addition on the alkene functionality of norbornene during RAFT polymerization, or it may 

be caused by the retro Diels-Alder reaction of norbornene imide followed by radical 

polymerization of the maleimide group. In order to synthesize copolymers with higher NBIMA 

incorporation we adopted a post-polymerization functionalization strategy which was to attach 

NBIOH to the polymer after RAFT polymerization of PFPMA via a transesterification reaction. 

(Scheme 4.1B) Transesterification of polypentafluoroesters was previously reported using DMAP 

as a catalyst in DMF at 80 °C.209 However, applying the referenced procedure to our reactants only 

led to ~15% transesterification of polyPFPMA when 100% was targeted. Meanwhile the DMAP 

catalyst was found to cause nucleophilic aromatic substitution of fluorobenzene under the 

employed condition.210-212  

 

Figure 4.2 (A) Synthesis of poly(PFPMA-co-NBIMA) by amine-pentafluoroester substitution; (B) 

Stack of 19F NMR spectrum showing various degree of substitution. 



85 

 

An amine-functionalized norbornene imide NBI-NH2 was then synthesized and subjected to 

nucleophilic substitution of polyPFPMA. (Figure 4.2A) Due to the superior nucleophilicity of 

primary amine, the reaction proceeded at mild conditions and the degree of substitution could be 

monitored by 19F NMR. (Figure 4.2B) The polyPFPMA homopolymer contained three broad peaks 

at -151, -157 and 162 ppm corresponding to the meta, para and ortho fluorine. The substitution 

produced pentafluorophenol which showed three new peaks in 19F NMR and the degree of 

substitution could be calculated based on the ratio of peak integration. As shown in Figure 4.2B, 

the polymer peaks became smaller with higher degree of substitution while the pentafluorophenol 

peaks became larger. A homopolymer of polyNBIMA could be synthesized based on this method 

when the degree of substitution reached 100%. As seen from Figure 4.3, the broad fluorine peaks 

on polyPFPMA completely disappeared and all transformed to pentafluorophenol. After workup 

to remove pentafluorophenol, no fluorine peak was present indicating all pentafluoroesters 

substituted with NBI-NH2. 

 

Figure 4.3 Synthesis of polyNBIMA from polyPFPMA and 19F NMR spectrum of the polymers 

before and after complete substitution with NBI-NH2. 



86 

 

A series of poly(PFPMA-co-NBIMA) were synthesized based on this method targeting 20%, 50%, 

70% and 100% incorporation of NBIMA. It is worth mentioning that polyPFPMA was not soluble 

in room temperature DMF even after 72 hours of stirring, so we were not able to collect GPC data 

of this polymer using DMF as mobile phase. The molecular weight of polyPFPMA could be 

estimated from monomer conversion calculated from 19F NMR, assuming each chain transfer agent 

constitutes the chain ends of a polymer molecule. The polymers became soluble in DMF after 

substitution with NBI-NH2 and they were characterized by GPC using DMF containing 0.1%wt 

LiBr as a mobile phase. (Table 4.1) 

Table 4.1 Molecular weight data of polymers P4.1-P4.4 and nanoparticles NP4.1-NP4.4 

 NBIMA% a 
Mn 

(kDa) b 

Mw 

(kDa) b 
Ð b dn/dc c 

P4.1 100% 47.8 75.0 1.56 0.130 

NP4.1-DP5  57.0 140.0 2.46 0.136 

NP4.1-DP30  109.6 6238.1 57.76 0.078 

P4.2 76% 49.3 75.9 1.54 0.107 

NP4.2-DP5  50.0 82.0 1.64 0.099 

NP4.2-DP30  56.4 127.0 2.25 0.099 

P4.3 56% 54.8 82.6 1.51 0.083 

NP4.3-DP5  49.2 77.4 1.57 0.061 

NP4.3-DP30  49.9 80.7 1.62 0.078 

P4.4 22% 54.1 69.5 1.29 0.059 

NP4.4-DP5  38.6 52.8 1.37 0.062 

NP4.4-DP30  40.2 57.9 1.44 0.051 

a. Calculated from 19F NMR; b. Obtained from conventional calibration based on polystyrene standards; c. 

Obtained using triple detection GPC. 

Polymers P4.1-P4.4 were treated with Grubbs 3rd generation catalyst to initiate intra-chain ROMP 

of pendant norbornene groups. (Figure 4.4A) Two series of reactions were attempted for each 

polymer, targeting intra-chain degree of polymerization of 5 and 30. The corresponding 

nanoparticles were denoted NP4.x-DP5 and NP4.x-DP30. In order to promote intra-chain 
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polymerization over inter-chain crosslinking, the reactions were run at a low concentration of 0.75 

mg/mL before being quenched with vinyl ether. The nanoparticles obtained were analyzed by GPC 

and the results are summarized in Table 4.1 and Figure 4.4. 

 

Figure 4.4 (A) Intra-chain ROMP of P4.1-P4.4; (B) GPC-MALS traces of P4.1-P4.4 and 

corresponding NP4.1-NP4.4. 

The synthesis of SCNP by intra-chain cross-linking reactions is always in competition with inter-

chain reactions which lead to a high molecular weight, cross-linked network. The two reactions 

are chemically equivalent, and the ratio of intra- versus inter- depends solely on the probability of 

pendant norbornene groups finding each other. When the polymers are dissolved in an ultra-dilute 

solution, each polymer coil is proposed to be independent. Reactive pendant groups have higher 
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probability of finding a reacting partner along the same chain, so intra-chain reactions within the 

solvated coil is enhanced. The conformation of a linear polymer precursor becomes denser as a 

result of intra-chain cross-linking reaction, leading to a nanoparticle with smaller hydrodynamic 

volume. Hence an SCNP shows longer retention time than its linear precursor when eluted in GPC. 

When inter-chain cross-linking reactions occur, the molecular weight of a polymer will grow by 

orders of magnitute. A light scattering detector is good at detecting inter-chain reactions because 

of its sensitivity to high molecular weight fractions. Compared with its linear polymer precursor, 

inter-chain cross-linked product often exhibits shorter retention times or a shoulder peak on the 

high molecular weight end. As shown in Figure 4.4B, when polymers P4.1 through P4.4 were 

subjected to intra-chain ROMP targeting 5 norbornene units per Grubbs catalyst, only P4.4 gave 

an SCNP NP4.4-DP5. The nanoparticle shows longer retention time than its polymer precursor, 

indicating smaller hydrodynamic volume resulting from intra-chain ROMP. Polymers with high 

incorporations of NBIMA including P4.1 and P4.2 encountered significant inter-chain cross-

linking. The retention times of the resulting nanoparticles NP4.1-DP5 and NP4.2-DP5 were shorter 

than their linear precursors, indicating larger hydrodynamic volume. The GPC traces of P4.3 and 

NP4.3-DP5 were largely overlapped, except that the nanoparticle trace has a small shoulder peak 

with high molecular weight. This represents a small amount of inter-chain crosslinking during 

intra-chain ROMP. When the target degree of intra-chain polymerization is 30, similar results were 

found – only P4.4 gave single-chain nanoparticles while P4.1-P4.3 showed signs of high molecular 

weight product from inter-chain cross-linking. The degree of inter-chain cross-linking is more 

significant when the target intra-chain DP is 30, evidenced by the larger shift to short retention 

time in NP4.1-DP30 and NP4.2-DP30. This is attributed to the small feed amount of Grubbs 

catalyst and fewer propagating chains in the process of polymer folding. The relationship between 



89 

 

reactive group incorporation and single chain folding of linear polymer precursors is consistent 

with our previous findings: high incorporation of reactive pendant groups leads to inter-chain 

crosslinking and lowers the efficiency of SCNP synthesis. This is because polymer coils in dilute 

solutions are free to move, and collisions between polymer chains are unavoidable. When 

collisions occur between two polymer coils, those bearing less reactive groups have a smaller 

chance of having reactive groups in the correct orientation to react. A polymer containing more 

reactive groups is more likely to react with a coupling partner on another polymer chain during 

collision and form a dimer. This phenomenon is especially prominent for fast reactions such as 

radical coupling and ROMP. 

 

Figure 4.5 1H NMR spectra of P4.1 and NP4.1-DP5 in d6-DMSO. 

The polymers and nanoparticles were characterized by 1H NMR. (Figure 4.5) Amide protons on 

the polymers appear at 7.1-7.9 ppm. Olefin groups on pendant norbornene show up at 6.1-6.6 ppm. 

After ROMP of norbornene groups, some unreacted norbornene peaks remained. New peaks 
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showed up at a broad range of 4.9-6.2 ppm corresponding to the polymerized norbornene units, as 

well as vinyl end groups from quenching agent ethyl vinyl ether. Phenyl end groups from Grubbs 

initiator are overlapped within amide proton peaks. Although the degree of ROMP cannot be 

quantified from integration due to the broadness and overlap of peaks after crosslinking, the 

emergence of polymerized norbornene peaks confirms successful polymerization of pendant 

norbornene groups on linear polymer precursors. 

We compared the efficiency of 1st, 2nd and 3rd generation Grubbs catalyst in the self-folding of 

polymer P4.4 by intra-chain ROMP. (Figure 4.6) Grubbs 3rd gen catalyst is the most used for 

ROMP of cyclic olefins. The dissociation of electron-deficient bromopyridine ligands is extremely 

rapid and rebinding is slow, leading to fast initiation of polymerization and narrow distribution of 

the resulting polymers. The N-heterocyclic carbene ligand on the catalyst improves the complex’s 

selectivity for binding olefinic substrates in the presence of free phosphine ligands, hence increases 

the turnover of the intermediate. To investigate whether Grubbs 3rd gen catalyst exhibit superior 

behavior for intra-chain ROMP of norbornene pendants on linear polymer precursors, we subjected 

polymer P4.4 to 1st, 2nd and 3rd gen Grubbs catalysts under the same conditions. A shrinking factor 

defined as [G] = Mn(SCNP) /Mn(polymer) was used to evaluate the level of compaction.83 It was found 

that all three catalysts successfully initiated intra-chain ROMP and folded the linear polymers to 

smaller single-chain nanoparticles. The GPC peak retention and peak shape of the nanoparticles 

were about the same. The shrinking factors of the three SCNP were 0.74, 0.71 and 0.71, 

respectively. The nanoparticle synthesized from 1st gen Grubbs catalyst is slightly less compacted 

than the other two, but overall, the level of compaction from the linear polymer precursor were 

similar for all 3 catalysts.  
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Figure 4.6 Intra-chain ROMP of P4.4 by Grubbs 1st, 2nd and 3rd gen catalyst (A, B); GPC-MALS 

traces (C) and molecular weight data (D) of P4.4 and corresponding nanoparticles. 

Researchers have found that fluorinated aromatic hydrocarbons (FAH) exhibit doping effects on 

second and third generation Grubbs’ catalyst.213-215 When a pentafluoroester moiety was attached 

to a sufficiently long spacer unit on a ROMP active monomer, Grubbs 2nd and 3rd gen catalysts 

demonstrated extremely fast and uncontrolled rates of propagation while Grubbs 1st gen catalyst 

gave well-controlled polymers. The actual mechanism of this phenomenon is under debate, but it 

is widely accepted that the doping effects of FAH on ruthenium centers is caused by strong, 

stabilizing π-π interactions. Since the norbornene-bearing copolymers we used contain 

pentafluoroesters, intra-chain ROMP might be affected by doping effects as well. The comparison 

between 3 generations of Grubbs catalysts on single chain folding of P4.4 revealed that all 3 

catalysts led to SCNP with shrinking factors of around 0.7. Specific doping effects of FAH on 2nd 

and 3rd gen Grubbs catalysts were not obvious when performing ROMP intramolecularly. We 

further substituted the residual pentafluoesters on polymer P4.4 with n-hexylamine to afford 
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polymer P4.5. (Figure 4.7A) P4.5 was folded with 3rd gen Grubbs catalyst and the results were 

compared with P4.4. As shown in Figure 4.7B, from P4.5 to NP4.5 there was a very small shift to 

longer retention time indicating successful intramolecular folding of the linear polymer precursor 

by ROMP. Although P4.4 and P4.5 contain the same molar incorporation of the ROMP-active 

norbornene pendants, and the two polymers were subjected to the exact same procedures 

synthesizing SCNP, the resulting nanoparticles NP4.4 and NP4.5 showed different levels of 

compaction. The shrinking factor of NP4.5 was 0.94, larger than NP4.4 which was 0.71, indicating 

NP4.5 less compacted than NP4.4. This could be caused by the doping effects of pentafluoroesters 

on P4.4 to the 3rd gen Grubbs catalyst, causing a faster intra-chain propagation which led to a more 

compacted single-chain nanoparticle. 

 

Figure 4.7 (A) Synthesis of P4.5 and NP4.5-DP5; (B) GPC-MALS traces of P4.5 and NP4.5-DP5; 

(C) 1H NMR spectra of P4.5 and NP4.5-DP5. 
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4.3 Conclusion 

A series of linear polymers containing various amount of norbornene pendant groups were 

synthesized by post-polymerization amine-pentafluoroester substitution reaction. The polymers 

were subjected to intramolecular ROMP with Grubbs catalysts in a dilute solution of 0.75 mg/mL 

(~1.5×10-5M). It was found that when the polymer precursors contain high amount of norbornene 

groups (>50%mol), intermolecular reactions tend to take place and afford intermolecular cross-

linked products. Polymers with low incorporations of pendant norbornene groups prefer 

intramolecular reactions and lead to SCNP. Grubbs 1st, 2nd and 3rd generation catalysts all 

successfully folded the 22% norbornene-containing polymer precursor into SCNP. Substituting 

the pentafluoroesters on the polymer with alkyl amine led to a polymer which after intrachain 

ROMP, afforded an SCNP less compacted than the pentafluoroester containing polymer. The 

difference is likely caused by the doping effect of pentafluoesters on the catalyst.  

4.4 Experimental 

4.4.1 Materials 

Reagents were obtained from the indicated commercial suppliers and used without further 

purification unless otherwise stated: cis-5-Norbornene-endo-2,3-dicarboxylic anhydride, 97% 

(Sigma-Aldrich), 2-aminoethanol (TCI), pentafluorophenol (Oakwood Products, Inc), N,N’-

dicyclohexylcarbodiimide (Sigma-Aldrich), 4-dimethylamino pyridine (Oakwood Products, Inc), 

methyl methacrylate (Sigma-Aldrich, eluted through basic alumina), methacryloyl chloride 

(Sigma-Aldrich), ethylenediamine (Acros Organics), Grubbs catalyst 1st generation (Materia), 

Grubbs catalyst 2nd generation (Materia), 3-bromopyridine (Sigma-Aldrich), 1,4-dichlorobenzene 

(Sigma-Aldrich), hexanes (Fisher Scientific), ethyl acetate (Fisher Scientific),  2,2’-azobis(2-

methylpropionitrile) (AIBN, Sigma-Scientific, recrystallized from methanol), silica gel (230 – 400 
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mesh, SiliCycle), N,N’-dimethylformamide (HPLC grade, Fisher Scientific), dimethyl sulfoxide-

d6 (Cambridge Isotope Laboratories), chloroform-d (CDCl3, Cambridge Isotope Laboratories). 

Dry dichloromethane (DCM) were obtained by heating to reflux with calcium hydride.  

4.4.2 Instrumentation 

1H and 13C NMR spectra were acquired with a Varian Unity INOVA or Bruker Biospin 500 MHz 

or Varian Mercury 400 MHz spectrometer. Chemical shifts (δ) were reported in parts per million 

(ppm) relative to tetramethylsilane (TMS). Solvent (CDCl3) contained 0.03% v/v TMS as an 

internal reference. Peak abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet, br = broad, Ar = Aryl).  

GPC was performed on a Tosoh EcoSEC dual detection (RI and UV) SEC system coupled to an 

external Wyatt Technologies miniDAWN Treos multiangle light scattering (MALS) detector. The 

mobile phase was HPLC grade DMF containing 0.1%wt LiBr and filtered through 0.2 μm PTFE 

membrane filters. Samples were run at 50 °C at a flow rate of 0.45 mL/min. The column set 

contained one Tosoh TSKgel SuperH4000 (6.0 mm ID × 15 cm) column, one Tosoh TSKgel 

SuperH2500 (6.0 mm ID × 15 cm) column and a Tosoh TSKgel SuperH5000-7000 guard column 

(4.6 mm ID × 3.5 cm). All polymer solutions characterized by SEC were 1.0 mg/mL in DMF with 

0.1%wt LiBr, stirred magnetically for at least 5 hours and filtered through 0.45 μm PTFE syringe 

filters before analysis.  

4.4.3 Experimental procedures 

4.4.3.1 Synthesis of exo-norbornene dicarboxylic anhydride 
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Carbic anhydride (170 g, 1.05 mol) was heated to reflux in 1,2-dichlorobenzene (170 mL) at 

180 °C overnight. The brown solution was cooled to room temperature and further cooled over ice. 

Precipitate was collected by vacuum filtration and recrystallized from benzene 6 times. (33g,white 

crystals, 19.7%) ); 1H NMR (400 MHz, CDCl3, δ, ppm): 6.35 (s, 2H), 3.45 (s, 2H), 3.01 (s, 2H), 

1.66 (s, 1H), 1.44 (s, 1H);13C NMR (400 MHz, CDCl3, δ, ppm): 171.58, 137.95, 48.77, 46.87, 

44.01. See appendix page 142 and 143 for full spectra. 

4.4.3.2 Synthesis of NBI-NH2  
216 

 

Exo-norbornene dicarboxylic anhydride (3 g, 18.27 mmol) was dissolved in toluene (100 mL). 

Ethylenediamine (12.21 mL, 182.7 mmol) was added dropwise with vigorous stirring. The mixture 

was heated to reflux with a Dean-Stark trap overnight under argon. The solvent and excess 

ethylenediamine was removed on a rotary evaporator. Crude product was purified by column 

chromatography. (5% MeOH in DCM, 2.58 g, 68.4%); 1H NMR (400 MHz, CDCl3, δ, ppm): 6.29 

(s, 2H), 3.52 (t, 2H), 3.27 (s, 2H), 2.88 (t, 2H), 2.69 (s, 2H), 1.50 (d, 1H), 1.35 (d, 1H), 1.13 (br, 

1H); 13C NMR (400 MHz, CDCl3, δ, ppm): 179.75, 137.80, 47.85, 45.19, 42.82, 41.45, 39.95. See 

appendix page 143 and 144 for full spectra. 

4.4.3.3 Synthesis of PFP-MA 
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Pentafluorophenol (3 g, 16.30 mmol), triethylamine (2.73 mL, 19.56 mmol) and butylated 

hydroxytoluene (~10 mg) was dissolved in dry DCM (80 mL) and cooled over an ice bath. 

Methacryloyl chloride (1.91 mL, 19.56 mmol) was added dropwise. The mixture was stirred at 

room temperature overnight. TEA salt was filtered off and the filtrate and washed with 0.1 M HCL 

and Brine. Crude product was purified by column chromatography to afford a clear liquid. (5% 

ethyl acetate in hexanes, 2.53 g, 62%); 1H NMR (400 MHz, CDCl3, δ, ppm): 6.45 (s, 1H), 5.90 (s, 

1H), 2.09 (s, 3H); 13C NMR (400 MHz, CDCl3, δ, ppm): 165.95, 142.79, 140.71, 138.90, 137.43, 

133.71, 129.52, 20.07; 19F NMR (400 MHz, CDCl3, δ, ppm): -152.87, -158.29, -162.62. See 

appendix page 144 and 145 for full spectra. 

4.4.3.4 Synthesis of polyPFPMA by RAFT polymerization 

PFPMA, CTA and AIBN were dissolved in dry Toluene in a Schlenk flask and sparged with argon 

over an ice bath for 30 min. The mixture was heated to 80 °C and stirred for 24 hrs. Monomer 

conversion was calculated from 19F NMR of the mixture. (Figure A 63) The product was 

precipitated from cold methanol and collected by vacuum filtration. The obtained polymers were 

purified by dissolving in THF and reprecipitating from cold methanol.  

4.4.3.5 Synthesis of poly(PFPMA-co-NBINH2) by amine-pentafluoroester substitution 

PolyPFPMA and NBI-NH2 were dissolved in THF and stirred at 50°C. The reaction was monitored 

by 19F NMR and shut off when the target degree of substitution was reached. The mixture was 



97 

 

concentrated and precipitated from cold methanol. The product was further washed by methanol a 

few times and collected by vacuum filtration. 

4.4.3.6 General procedure of intrachain ROMP 

Grubbs 3rd generation catalyst was synthesized following reported procedure.217 The linear 

polymer precursor (30 mg) was dissolved in dry DMC (30 mL) in a round bottom flask under 

argon and stirred at room temperature for 2 hrs to ensure full dissolution. Grubbs catalyst was 

dissolved in 10 mL of dry DCM and added quickly to the polymer solution over an ice bath. The 

solution turned orange upon addition of the 3rd gen Grubbs catalyst solution. The mixture was 

stirred over ice for an additional hour before quenched with ethyl vinyl ether (1mL) and stirred at 

room temperature overnight. The solvent was removed on a rotary evaporator. Product was 

dissolved in a small amount of DCM and precipitated from methanol. This step was repeated 3-4 

times for purification.   
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Figure A 1. 1H NMR spectrum of M1.  

 

Figure A 2. 13C NMR spectrum of M1.  
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Figure A 3. 1H NMR spectrum of M2-0 

 

Figure A 4. 13C NMR spectrum of M2-0 
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Figure A 5. 1H NMR spectrum of M3-0. 

 

Figure A 6. 13C NMR spectrum of M3-0 
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Figure A 7. 1H NMR spectrum of M2. 

 

Figure A 8. 13C NMR spectrum of M2. 
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Figure A 9. 1H NMR spectrum of M3. 

 

Figure A 10. 13C NMR spectrum of M3.  
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Figure A 11. 1H NMR spectrum of polymer P1.  

 

Figure A 12. GPC trace of polymer P1.  
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Figure A 13. 1H NMR spectrum of polymer P2.  

 

Figure A 14. GPC trace of polymer P2.  
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Figure A 15. 1H NMR spectrum of polymer P3.  

 

Figure A 16. GPC trace of polymer P3.  
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Figure A 17. 1H NMR spectrum of polymer P4.  

 

Figure A 18. GPC trace of polymer P4.  
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Figure A 19. 1H NMR spectrum of polymer P5.  

 

Figure A 20. GPC trace of polymer P5.  
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Figure A 21. 1H NMR spectrum of polymer P6.  

 

Figure A 22. GPC trace of polymer P6.  
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Figure A 23. 1H NMR spectrum of nanoparticle NP1.  

 

Figure A 24. GPC trace of nanoparticle NP1.  
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Figure A 25. 1H NMR spectrum of nanoparticle NP2.  

 

Figure A 26. GPC trace of nanoparticle NP2.  
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Figure A 27. 1H NMR spectrum of nanoparticle NP3.  

 

Figure A 28. GPC trace of nanoparticle NP3.  
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Figure A 29. 1H NMR spectrum of nanoparticle NP4.  

 

Figure A 30. GPC trace of nanoparticle NP4.  
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Figure A 31. 1H NMR spectrum of nanoparticle NP5.  

 

Figure A 32. GPC trace of nanoparticle NP5.  
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Figure A 33. 1H NMR spectrum of nanoparticle NP6.  

 

Figure A 34. GPC trace of nanoparticle NP6.  
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Figure A 35. 1H NMR spectrum of nanoparticle NP7. 

 

Figure A 36. GPC trace of nanoparticle NP7. 
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Figure A 37. 1H NMR spectrum of M3.2. 

 

Figure A 38. 13C NMR spectrum of M3.2. 
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Figure A 39. 1H NMR spectrum of glycidic acid. 

 

Figure A 40. 13C NMR spectrum of glycidic acid. 
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Figure A 41. 1H NMR spectrum of M3.0b. 

 

Figure A 42. 13C NMR spectrum of M3.0b. 
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Figure A 43. 1H NMR spectrum of M3.3. 

 

Figure A 44. 13C NMR spectrum of M3.3. 
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Figure A 45. 1H NMR spectrum of M3.4. 

 

Figure A 46. 13C NMR spectrum of M3.4. 
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Figure A 47. 1H NMR spectrum of M3.5. 

 

Figure A 48. 13C NMR spectrum of M3.5. 
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Figure A 49. 1H NMR spectrum of M3.6. 

 

Figure A 50. 13C NMR spectrum of M3.6. 
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Figure A 51. 1H NMR spectrum of the rearrangement product during Steglich esterification of 4-

pentenoic acid and M3.2. 

 

Figure A 52. 1H NMR spectrum of M3.7. 
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Figure A 53. 13C NMR spectrum of M3.7. 

 

Figure A 54. 1H NMR spectrum of M3.8. 
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Figure A 55. 13C NMR spectrum of M3.8. 

 

Figure A 56. 1H NMR spectrum of exo-norbornene dicarboxylic anhydride. 
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Figure A 57. 13C NMR spectrum of exo-norbornene dicarboxylic anhydride. 

 

Figure A 58. 1H NMR spectrum of NBI-NH2. 
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Figure A 59. 13C NMR spectrum of NBI-NH2. 

 

Figure A 60. 1H NMR spectrum of PFP-MA. 
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Figure A 61. 13C NMR spectrum of PFP-MA. 

 

Figure A 62. 19F NMR spectrum of PFP-MA. 
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Figure A 63. Calculation of PFP-MA monomer conversion from 19F NMR spectrum. 
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