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ABSTRACT 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) mandates the development of 

a risk-based transportation asset management plan and use of a performance-based approach in 

transportation planning and programming. This research introduces a systematic element-based 

multi-objective optimization (EB-MOO) methodology integrated into a goal-driven transportation 

asset management framework to 

(1) improve bridge management, 

(2) support state departments of transportation with their transition efforts to comply with the 

MAP-21 requirements, 

(3) determine short- and long-term intervention strategies and funding requirements, and 

(4) facilitate trade-offs between funding levels and performance. 

The proposed methodology focuses on one transportation asset class (i.e., bridge) and is structured 

around the following five modules:  

1. Data Processing Module,  

2. Improvement Module, 

3. Element-level Optimization Module, 

4. Bridge-level Optimization Module, and 

5. Network-level Optimization Module. 

To overcome computer memory and processing time limitations, the methodology relies on the 

following three distinct screening processes: 

1. Element Deficiency Process, 
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2. Alternative Feasibility Process, and 

3. Solution Superiority Screening Process. 

The methodology deploys an independent deterioration model (i.e., Weibull/Markov model), to 

predict performance, and a life-cycle cost model, to estimate life-cycle costs and benefits. Life-

cycle (LC) alternatives (series of element improvement actions) are generated based on a new 

simulation arrangement for three distinct improvement types: 

1. maintenance, repair and rehabilitation (preservation);  

2. functional improvement; and  

3. replacement.  

A LC activity profile is constructed separately for each LC alternative action path. The 

methodology consists of three levels of optimization assessment based on the Pareto optimality 

concept: 

(1) an element-level optimization, to identify optimal or near-optimal element intervention 

actions for each deficient element (in a poor condition state) of a candidate bridge;  

(2) a bridge-level optimization, to identify combinations of optimal or near-optimal element 

intervention actions for a candidate bridge; and  

(3) a network-level optimization, following either a top-down or bottom-up approach, to 

identify sets of optimal or near-optimal element intervention actions for a network of 

bridges. 

A robust metaheuristic genetic algorithm (i.e., Non-dominated Sorting Genetic Algorithm II, 

[NSGA-II]) is deployed to handle the large-sized multi-objective optimization problems. A 

MATLAB-based tool prototype was developed to test concepts, demonstrate effectiveness, and 
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communicate benefits. Several examples of unconstrained and constrained scenarios were 

established for implementing the methodology using the tool prototype. 

Results reveal the capability of the proposed EB-MOO methodology to generate a high quality of 

Pareto optimal or near-optimal solutions, predict performance, and determine appropriate 

intervention actions and funding requirements. The five modules collectively provide a systematic 

process for the development and evaluation of improvement programs and transportation plans. 

Trade-offs between Pareto optimal or near-optimal solutions facilitate identifying best investment 

strategies that address short- and long-term goals and objective priorities.
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CHAPTER 1—INTRODUCTION 

1.1 Path Leading to the Proposed Research 

Managing and maintaining the nation’s transportation infrastructure has always been a challenge 

for transportation agencies as funding resources continue to diminish with increased public 

demands and expectations. Ensuring safety, serviceability and reliability of highway bridges in the 

United States has always been a priority. Bridges are one of the most visible and essential 

components of the transportation system. For instance, collapse of a bridge due to lack of 

maintenance could cause loss of lives and impact the regional transportation network and 

economy. 

State departments of transportation (state DOTs) select projects from their transportation 

improvement program/statewide transportation improvement program (TIP/STIP) documents—

drawn from and consistent with their long-range transportation plans (LRTPs)—based on specified 

prioritizations and resource allocations. Usually, allocations and prioritizations in the TIP/STIP 

documents are driven by historical precedents, funding restrictions, and investment needs 

determined by either state asset management systems, leadership discretions, political 

considerations, or priorities relative to state DOTs (Maggiore & Ford, 2016).  

Many state DOTs limit application of their bridge management systems (BMSs) to just monitoring 

conditions, identifying maintenance activities, and programming potential projects on a “worst-

first” basis. Advanced capabilities of BMSs (such as optimization, deterioration modeling, trade-

off analysis, life-cycle cost analysis, and cost-benefit analysis) are not generally being utilized to 
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support setting policies and program priorities, and recommending candidate projects and 

preservation treatments that support achievement of goals and objectives established in the LRTP 

(Cambridge Systematic 2009). The link between the LRTP and actual programmed projects and 

resource allocations in the TIP/STIP will remain elusive if existing decision-making environment 

and business practices persist (Federal Highway Administration [FHWA], 1999). 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) was enacted in 2012 to fortify 

this linkage, address needs, improve existing practices, and provide a new way of management 

and doing business. MAP-21 introduced a new decision-making environment by increasing 

emphasis on performance management, including new national performance measures, mandating 

the development of a risk-based transportation asset management plan (TAMP), and requiring the 

use of a performance-based approach in transportation planning and programming to support 

national goals and improve accountability and transparency. MAP-21 established new national 

goals to address the many challenges facing the nation transportation system. Challenges include 

improving safety, reliability and efficiency of the system and freight movement while protecting 

the environment, maintaining infrastructure condition in a “state of good repair,” reducing traffic 

congestion, and streamlining project development and delivery process. The Fixing America’s 

Surface Transportation Act (FAST Act) was enacted in 2015 and continued MAP-21’s overall 

performance management and performance-based planning and programming.  

To implement the new performance provisions of MAP-21 and FAST Act, several rulemakings 

were developed in multiple phases by FHWA and finalized within the past years establishing 

regulations for compliance. The final rules established national performance measures within 

specific areas and mandated use of measures in the performance-based planning and programming 

process. A performance-based LRTP provides enough details, criteria and strategies to support 
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investment decision making and identify TIP/STIP projects—contributing to the established goals, 

objectives and targets. The final rules structured the mandated TAMP to include objectives and 

measures, pavement and bridge conditions, performance gaps, investment strategies leading to 

achievement of performance targets, risk management analysis, life-cycle planning process, and 

financial plan. In addition, states DOTs are required to integrate their TAMPs into their statewide 

transportation planning process.  

To satisfy these performance measurement final rules, state DOTs started developing goals, 

objectives, performance measures, and targets as guiding criteria to drive the overall new decision-

making environment throughout all stages of project and program development—from the long-

range planning to implementation and delivery. Efforts are increasing to support the transition, 

especially after the mandate TAMP development: (1) developing frameworks allowing the 

integration of these criteria into existing transportation asset management (TAM) practices, and 

(2) providing decision makers with useful procedures, methodologies, set of data, techniques, and 

analytical tools are also increasing. 

As part of such frameworks, methodologies based on multi-criteria decision-making (MCDM) or 

multi-objective optimization (MOO) became apparent to support the prioritization and resource 

allocation efforts. For instance, in 2014, the California DOT (Caltrans) developed a multi-objective 

decision analysis (MODA) tool (Caltrans, 2016) using a compensatory technique (based on multi-

attribute value theory). The MODA tool applies a value function to identify an optimized portfolio 

of projects from a pool of candidate projects that align with the agency’s goals and objectives. The 

tool was utilized in the development process of Caltrans’ TAMP.  
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This research introduces a systematic bridge element-based multi-objective optimization (EB-

MOO) methodology integrated into a goal-driven TAM framework to  

(1) improve bridge management, 

(2) support state DOTs with their transition efforts to comply with the MAP-21 requirements, 

(3) determine short- and long-term intervention strategies and funding requirements, and 

(4) facilitate trade-offs between funding levels and performance. 

The proposed methodology focuses on one transportation asset class (i.e., bridge). It is structured 

around the following five modules:  

1. Data Processing Module 

2. Improvement Module 

3. Element-level Optimization Module 

4. Bridge-level Optimization Module 

5. Network-level Optimization Module 

1.2 Research Objectives 

The main objectives of this research can be summarized as follows: 

Conducting a Literature Review 

• Conduct a comprehensive literature review to identify relevant studies and best practices 

to support the research objectives, refine the focus, and ensure no duplication of efforts 

• Explore different investment decision-making and project prioritization methods used by 

state DOTs and other transportation agencies and recognize their capabilities and 

limitations 
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Proposing a Goal-Driven TAM Framework 

• Transfer previous work on TAM and best practices to refine the conceptual TAM 

framework introduced in the research proposal 

• Discuss the different steps of the proposed framework including its benefits and practical 

challenges 

• Identify future research aiming to expand the proposed framework capabilities to 

accommodate other transportation asset classes or modes 

Proposing an EB-MOO Methodology 

• Examine various optimization techniques, analytical and decision support tools, 

forecasting and cost models, and MCDM methods used by state DOTs and other 

transportation agencies  

• Incorporate previous work on bridge decision making involving multiple criteria or 

objectives into the proposed MOO methodology—permitting decision makers to transfer 

preferred preferences and decision criteria or objectives 

• Develop a systematic EB-MOO methodology based on a quantitative process able to 

identify optimal or near-optimal intervention actions and funding needs—supporting the 

development of short- and long-term investment strategies, and trade-offs between 

investment levels and performance 

• Develop a flexible EB-MOO methodology able to support the TIP/STIP development and 

amendment process—by identifying candidate bridge projects, setting program and project 

priorities, and assessing impacts of programmed types of work (i.e., preservation, 

rehabilitation and replacement) or funding allocations 
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• Develop an EB-MOO methodology that consists of three levels of optimization 

assessment:  

(1) an element-level optimization (ELO), to identify optimal or near-optimal element 

intervention actions for each deficient element (in a poor condition state) of a 

candidate bridge;  

(2) a bridge-level optimization (BLO), to identify combinations of optimal or near-

optimal element intervention actions for a candidate bridge; and  

(3) a network-level optimization (NLO), following either a top-down or bottom-up 

approach, to identify sets of optimal or near-optimal element intervention actions 

for a network of bridges. 

Implementation of the Proposed EB-MOO Methodology using a Tool Prototype 

• Develop a MATLAB-based tool prototype structured around the proposed EB-MOO 

methodology  

• Develop a tool prototype that considers decision makers’ preferences, predicts 

performance, identifies optimal or near-optimal element intervention actions, and 

determines funding requirements 

• Develop a tool prototype able to accommodate user-specified measures (objectives), inputs 

and preferences, and commonly collected data from widely-used state and national 

management systems 

• Implement the different concepts of the proposed EB-MOO methodology through 

examples of unconstrained and constrained (budget and performance) scenarios using the 

developed tool prototype to test/validate, prove effectiveness and demonstrate and 

communicate potential benefits 
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• Assess the ability of the tool prototype to recognize short- and long-term investment needs 

by examining the recommended intervention strategies, determined funding requirements, 

and predicted performance. 

1.3 Research Approach  

The research approach consists of five main tasks to accomplish. Table 1.1 lists the activities 

associated with each task. The following are brief discussions of these five tasks: 

Task 1: Conducting a Literature Review 

Task 1 of this research consists of conducting a comprehensive review of literature across multiple 

resources (such as search engines, databases, specific procedures and publications by 

transportation agencies, and library catalogs) to fully explore the availability of work related to the 

research areas and objectives, and identify state-of-the-art studies and best practices. 

Task 2: Proposing a Goal-Driven Transportation Asset Management Framework 

Task 2 further explores and refines the conceptual TAM framework introduced in the research 

proposal—transferring previous work on TAM and best practices identified throughout the 

literature review under Task 1. 

Task 3: Proposing an Element-Based Multi-Objective Methodology 

The intent of Task 3 is to transfer previous work (recognized throughout the literature review) on 

bridge decision making involving multiple criteria or objectives to develop a systematic EB-MOO 

methodology able to identify optimal or near-optimal intervention actions and funding needs, 

support the development of short- and long-term investment strategies, and facilitate trade-offs 

between investment levels and performance.  
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Task 4: Development of a Tool Prototype 

The development of a tool prototype falls under Task 4; it’s primarily for ease of use and to 

implement the proposed EB-MOO methodology. The objective is to design a tool prototype that 

consists of the five proposed EB-MOO methodology modules (detailed in the subsequent 

chapters), considers decision makers’ preferences, predicts performance, identifies optimal or 

near-optimal element intervention actions, and determines funding requirements. The designed 

tool prototype should complement common decision support tools and BMSs, and builds upon 

their existing capabilities.  

Task 5: Implementation of the Methodology through Examples of Scenarios 

The main objective of Task 5 is to implement the proposed EB-MOO concepts through several 

examples of constrained and unconstrained (budget and performance) scenarios using the tool 

prototype to test/validate, prove effectiveness, and demonstrate and communicate potential 

benefits of the methodology. The tool prototype produced under Task 4 will be used primarily for 

the implementation efforts. 

Table 1.1 Activities associated with the research tasks 

Research Activities 

Task 1: Conducting a Literature Review—Chapter 2 
Identify resources (e.g., search engines, databases, specific procedures and publications by 
transportation agencies, and library catalogs) needed to conduct a comprehensive literature review 
Identify various practices of state DOTs and other transportation agencies, and relevant studies that 
could support the research objectives 
Explore the identified work and best practices related to the research areas and objectives, and 
recognize capabilities and limitations 
Group literature review results based on the research areas and provide a high-level summary of 
findings  
Task 2: Proposing a Goal-Driven Transportation Asset Management Framework—Chapters 3 & 9 
Provide an overview of TAM principles, and how they are being applied based on the literature review 
findings 
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Transfer previous work on TAM and best practices to refine the conceptual TAM framework 
(introduced in the research proposal)  
Discuss the different steps of the proposed framework, including its benefits and practical challenges 
Discuss how can existing data and tools be used to support the proposed framework 
Recommend future research/studies aiming to advance the capabilities of the proposed EB-MOO 
methodology, and expand the TAM framework to accommodate other transportation asset classes or 
modes 
Task 3: Proposing an Element-Based Multi-Objective Methodology—Chapters 3,4,5,6,7, &8 
Identify various optimization techniques, analytical and decision support tools, forecasting and cost 
models, MCDM methods, and utility functions used by state DOTs and other transportation agencies 
Transfer the most appropriate work and best practices related to bridge decision making involving 
MOO and MCDM to develop a flexible EB-MOO methodology—structured around the different 
modules and supported by a MOO process 
Examine various deterioration and cost models used by state DOTs and other transportation agencies, 
and incorporate the most suitable ones into the EB-MOO methodology 
Examine various MOO techniques and approaches used by BMSs, discuss advantages and limitations, 
and adapt the most appropriate for each assessment level (i.e., element-, bridge-, and network-level 
optimization) 
Finalize the conceptual flow diagram of the EB-MOO methodology (introduced in the research 
proposal) and develop a framework for each of its modules  
Task 4: Development of a Tool Prototype—Chapters 4,5,6,7, &8  
Explore various investment decision-making analyses, project prioritization methods and optimization 
tools used by state DOTs and other transportation agencies, and discuss their capabilities (e.g., life-
cycle cost analysis, sensitivity analysis, and trade-off analysis) and limitations  
Develop a MATLAB-based tool prototype structured around the proposed EB-MOO modules—
transferring appropriate features found in the explored tools under Task 1 
Describe the processes and features included in the tool prototype, discuss their interactions and 
capabilities, and provide instructions on how to effectively use them 
Task 5: Implementation of the Methodology through Examples of Scenarios—Chapters 5,6,7, &8 
Implement the proposed EB-MOO concepts through examples of unconstrained and constrained 
(budget and performance) scenarios using the developed tool prototype 
Define a portfolio of sample bridges based on availability of relevant data, decision-making entity, 
geographical area, vicinity, or other characteristics 
Post-process obtained optimization solutions by verifying the recommended priorities and infographic 
depictions produced by the tool prototype 
Assess the capability of the tool to recognize short- and long-term investment needs by examining the 
recommended improvement strategies, determined funding requirements, and predicted performance 
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1.4 Organization of the Dissertation 

The reminder of the dissertation is organized as follows: 

Chapter 2 summarizes the literature search on previous work and best practices in the areas of 

TAM, risk assessment and management, MCDM, and MOO. The chapter includes brief 

descriptions of the identified significant references, and discusses the transportation planning and 

programming process and the performance-based planning and TAMP requirements of MAP 21. 

This chapter also covered various MOO approaches and methods, risk assessment, trade-off and 

multiple criteria analyses, and evolutionary algorithms. 

Chapter 3 introduces the refined goal-driven TAM framework. The chapter presents the TAM 

principles used to structure the framework and discusses the different steps of the framework and 

interactions with the long-range planning and programming process. An overview of the proposed 

EB-MOO methodology is included in this chapter. Each of the five methodology modules is 

discussed in a separate section. The examples of scenarios, the portfolio of sample bridges, and 

the developed MATLAB-based tool porotype used for the methodology implementation are 

introduced in this chapter. 

Chapter 4 describes the data processing module and its different underlying concepts. A 

framework of the module is presented. The chapter defines the improvement actions (i.e., 

maintenance, repair and rehabilitation [MRR], functional improvement [FCI], and replacement 

[REP] actions) and functional improvement needs (i.e., widening, raising, and strengthening 

needs), and discusses the two common types of bridge inspection data. It presents the independent 

deterioration model (i.e., Weibull/Markov model) used to estimate the life expectancy of an 

element and predict its performance over an analysis period. The chapter further lays out the 
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process of assessing improvement needs, and the integrated user cost models to estimate incurred 

user costs. The chapter also presents the correlation/regression formulas used to estimate major 

improvement costs to eliminate incurred user costs, relieve the bridge from restrictions, and/or 

provide the required level of service (LOS) and design standards. The three types of element life-

cycle (LC) profiles (i.e., “do-nothing,” “replacement only,” and “action effectiveness” LC profiles) 

are discussed in this chapter with illustrative examples. 

Chapter 5 presents a basic framework to visualize the modeling approach followed to generate 

LC alternatives (series of element improvement actions) and predict performance and estimate 

life-cycle costs (LCCs) and LCC benefits. It describes the novel screening process, to focus on 

potential deficient (in a poor condition state) elements, and the new simulation arrangement, to 

generate realistic (“real-life”) LC alternatives, for three distinct improvement types (i.e., MRR, 

FCI and REP) based on agency’s preservation policies and/or practices. An illustrative example 

using the tool prototype is presented in this paper to demonstrate the capability of the module in 

producing reliable LC alternative results—to be transferred to the optimization modules to serve 

as the optimization input parameters. 

Chapter 6 presents a basic framework of the ELO module illustrating the different concepts and 

processes. The chapter introduces the heuristic algorithm designed to solve the ELO problems. It 

describes the alternative feasibility screening process developed to reduce the ELO problem size 

to a manageable size and improve computational time. The ELO problem types and formulations, 

and the mapping approach of the problem decision variables are also discussed. The chapter 

includes an illustrative example using the developed tool prototype. The example consists of 

different ELO problems under unconstrained scenarios. One sample bridge is used in this example 

to demonstrate the capability of this module in producing ELO solutions (optimal or near-optimal), 
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recommending set of element intervention actions, predicting element performance, and 

determining funding requirements for the specified improvement type and program year. 

Chapter 7 introduces the BLO module and the heuristic algorithm designed to solve the BLO 

problems. The chapter presents the module framework and discusses the interaction between the 

ELO and BLO modules. The BLO problem types and formulations, and the mapping approach of 

the problem decision variables are also discussed. The chapter includes an illustrative example 

using the developed tool prototype. The example consists of different BLO problems under 

constrained (by budget and/or performance) and unconstrained scenarios. One sample bridge is 

used in this example to demonstrate the capability of the module in producing BLO solutions 

(optimal or near optimal), recommending set of element intervention actions and timings, 

predicting bridge performance, and determining funding requirements for the entire program 

period. 

Chapter 8 introduces the NLO module. It discusses the solution superiority screening process 

used to guide the optimization search toward global optimality within a reasonable computational 

time. The chapter defines the top-down and bottom-up approaches followed by the NLO. For each 

approach, the chapter lays out the optimization framework, the optimization problem types and 

formulations, the mapping approach of decision variables, and the heuristic algorithm. Two cases 

of budget- and performance-constrained scenarios can be analyzed throughout this module: Case 

A—all bridge in the portfolio must be selected, and Case B—not necessarily all bridges in the 

portfolio must be selected. Several examples of constrained (by budget and/or performance) and 

unconstrained scenarios were established for the module implementation using the tool prototype. 

The examples are defined in this chapter based on optimization goals and problem types. A small 

portfolio of 40 sample bridges (introduced in Chapter 3) is used in these examples. Results of these 
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examples are visually presented in this chapter to demonstrate the capability of the module in 

generating Pareto frontiers (fronts hosting optimal solutions), predicting network performance, 

determining investment needs, and facilitating trade-off analyses. Additionally, the diversity and 

quality of obtained NLO solutions (by either the top-down approach or the bottom-up approach), 

and the recommended intervention strategies (maintaining the desired network performance within 

the available budget) are also examined and discussed in this chapter. 

Chapter 9 summarizes the research work, highlights the contributions and lessons learned, and 

provides overall conclusions and several recommendations for future research or studies.  
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CHAPTER 2—LITERATURE REVIEW 

 Task 1: Conducting a Literature Review 

2.1 Introduction  

Task 1 of this research consists of conducting a comprehensive review of literature across multiple 

resources, such as search engines, databases, specific procedures and publications by 

transportation agencies, and library catalogs, in accordance with the Transportation Research 

Circular (E-C194) (Avni et al., 2015) to fully explore the availability of research work and findings 

related to the research areas and objectives, identify best practices, and gain answers to the 

following eleven questions: 

1) How do state DOTs, metropolitan planning organizations (MPOs) and other transportation 

agencies establish goals and objectives to guide their TAM processes?  

2) How do performance measures and targets get selected by state DOTs, MPOs and other 

transportation agencies?  

3) How are TAM frameworks structured, and what types of measures are driving the process? 

4) How are TAM frameworks being implemented and assessed for effectiveness? 

5) How can TAM frameworks support transparency, investment decisions, resource 

allocations, planning and programming, program delivery, and cost-effectiveness? 

6) What are the different types of decision-making methodologies/techniques/tools involving 

multiple criteria/objectives used by state DOTs and other transportation agencies to support 
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bridge management, economical spending decisions, and trade-offs between 

criteria/objectives or investment scenarios? 

7) What are the different risk assessment analyses/approaches/frameworks/methods/tools 

used by state DOTs and other transportation agencies? 

8) How could a quantitative risk-based decision-making process be used to support bridge 

programming (scheduling bridge intervention actions) and planning (identifying long-term 

investment strategies and supporting the TIP/STIP and TAMP development)? 

9) What are the different optimization techniques, methods, and tools and utility/value 

functions used by state DOTs and other transportation agencies to address multiple 

criteria/objectives transportation problems? 

10) What are the different performance forecasting and cost models, and economic LC analyses 

used by BMSs, state DOTs, and other transportation agencies to prioritize bridge 

intervention actions, and identify funding needs? 

11) How are inputs and preferences (from decision makers and experts) and commonly 

collected data (from state and national asset management systems) being used to support a 

MCDM process? 

The intent of the literature review is to support the research objectives and refine the focus by 

exploring various practices of transportation agencies, answering the above questions, and 

identifying relevant research—to ensure no duplication of efforts but rather build on previous 

research. The literature review focused on the following areas:  

• Bridge performance measures  

• Bridge management practice 

• Bridge maintenance and improvement activities  
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• Bridge deterioration models 

• Data collection and application tools 

• Life-cycle cost analysis 

• Cost-benefit analysis  

• Incremental-benefit cost analysis 

• Cost models 

• MCMD methods/techniques 

• MOO methods/techniques 

• Transportation asset management  

• Transportation planning and programming  

• Transportation investment strategies and allocation of resources 

• Risk assessment and management 

• Bridge- and network-level optimization methods 

• Evolutionary algorithms  

• Trade-off, sensitivity, and “What-if” scenario analyses  

This effort involved the collection of relevant domestic and international research and studies 

(journals, research reports, dissertations, conference papers or presentations, etc.) and references 

(i.e., agency’s policies and publications, procedures, manuals, specifications, standards, and 

technical reports). The result is a list of resources related to the research areas. Findings relevant 

to the research objectives from this thorough literature review were summarized and grouped based 

on the listed areas. The gathered information and practices provided the background to refine the 

conceptional TAM framework (introduced in the research proposal) and develop the EB-MOO 

methodology. 
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2.2 Significant References 

The literature review identified significant references relevant to the research objectives—

reflecting the current state-of-the-art in TAM, risk assessment, MCDM and MOO. These 

significant references were used to refine the conceptional TAM framework, and design the EB-

MOO methodology. Table 2.1 lists these significant references. Each of them is accompanied with 

a brief description. 

Table 2.1 Significant references identified in the literature review 

Name Author Year Brief Description* 
Transportation Asset 
Management Guide: A 
Focus on Implementation 

American 
Association of 
State Highway 
and 
Transportation 
Officials 
(AASHTO) 

2013b The document provides state DOTs and 
other transportation agencies guidance on 
implementing asset management concepts 
and principles within their business 
processes.  

Asset Management Primer FHWA 1999 This document explains the basics of asset 
management: What is asset management? 
Why do we need asset management? An 
overview of current practices in asset 
management and a vision into the future 
for improving the process are presented. 

Performance-based Planning 
and Programming 
Guidebook 

Grant, M., 
D’Ignazio, J., 
Bond, A., & 
McKeeman, A. 

2013 The guidebook is designed to highlight 
effective practices to help transportation 
agencies in moving toward a performance-
based approach for planning and 
programming. 

Transportation Asset 
Management Guide: 
Prepared for National 
Cooperative Highway 
Research Program (NCHRP) 
Project, 20-24(11) 

Cambridge 
Systematics, 
Inc., Parsons 
Brinckerhoff 
Quade & 
Douglas, Inc., 
Ray Jorgenson 
Associates, Inc., 
& Thompson, P. 
D. 

2002 The guide is designed to help 
transportation agencies develop and apply 
asset management principles, techniques, 
and tools that can advance the management 
of their transportation assets. 
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NCHRP Report 590: Multi-
Objective Optimization for 
Bridge Management 
Systems 

Patidar, V., 
Labi, S., Sinha, 
K. C., & 
Thompson, P. D 

2007 The report describes a MOO methodology 
driven by user-specified preferences and 
criteria proposed for the network level and 
the project level  

NCHRP Report 806: Cross-
Asset Resource Allocation 
and the Impact on 
Transportation System 
Performance 

Maggiore, M., 
& Ford, K. 

2016 The report provides transportation agencies 
guidance on allocating limited resources 
among asset classes and organizational 
units to provide optimal system 
performance.  

NCHRP Report 483: Bridge 
Life-Cycle Cost Analysis 
(BLCCA) 

Hugh, H.  2003 The report contains findings of a study to 
develop a BLCCA methodology for use by 
transportation agencies.  

NCHRP Report 706: Uses of 
Risk Management and Data 
Management to Support 
Target-Setting for 
Performance-based Resource 
Allocation by Transportation 
Agencies  

Cambridge 
Systematics, 
Inc. 

2011a The report describes how risk management 
and data management may be used by 
transportation agencies to support target-
setting for performance-based resource 
allocation. 

NCHRP Report 545: 
Analytical Tools for Asset 
Management 

Cambridge 
Systematics, 
Inc., PB 
Consult, & 
System Metrics 
Group, Inc. 

2005 This report presents new analytical tools to 
support asset management. Emphasis is 
given to the tools needed to assist 
transportation agencies in trade-off 
decisions for resource allocation. 

NCHRP Synthesis 397: 
Bridge Management 
Systems for Transportation 
Agency Decision Making. 

Markow, M. J., 
& Hyman, W. 
A. 

2009 This study gathers information on current 
practices in the network-level resource 
allocation for bridge programs. The study 
explores how BMSs of transportation 
agencies are deployed in this process. 

NCHRP Report 666: Target-
Setting Methods and Data 
Management to Support 
Performance-based Resource 
Allocation by Transportation 
Agencies 

Cambridge 
Systematics, 
Inc. 

2010 The report describes methods that state 
DOTs and other transportation agencies 
can use for setting performance targets to 
achieve multiple objectives. The report 
also discusses how data management 
systems can support performance-based 
decision making. 

NCHRP Report 551: 
Performance Measures and 
Targets for Transportation 
Asset Management 

Cambridge 
Systematics, 
Inc., PB 
Consult, & 
Texas 
Transportation 
Institute 

2006 The report describes the research effort and 
provides the current state-of-the practice 
on the use of performance measures, 
principally in the context of TAM. 
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Trade-off Analysis in Multi-
Objective Optimization for 
Transportation Asset 
Management 

Bai, Q.   2012 The dissertation introduces  
a hybrid Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) method to 
generate Pareto frontiers to conduct trade-
off analyses between investment and 
performance. 

Explicit Building Block 
Multi-Objective 
Evolutionary Computation: 
methods and Applications 

Day, R. O.  2005 The dissertation presents principles, 
techniques and performance of various 
evolutionary optimization algorithms and 
proposes a robust algorithm based on 
common evolutionary optimization 
concepts. 

Project Planning Models for 
Florida's Bridge 
Management System 

Sobanjo, J. O., 
& Thompson, P. 
D.  

2004 This study updated Florida’s user cost 
models in terms of truck weight and height 
characteristics, and moveable bridge 
openings on Florida’s roadways. 

Implementation of the 2013 
AASHTO Manual for 
Bridge Element Inspection 

Sobanjo, J. O., 
& Thompson, P. 
D.  

2016a This study developed new transition times 
for deterioration between condition states 
and revised the action effectiveness models 
based on the new AASHTO bridge 
element inspection manual. Preservation 
unit costs and other cost parameters were 
also revised for Florida’s BMS. 

Decision Support for Bridge 
Programming and Budgeting  
 

Sobanjo, J. O., 
& Thompson, P. 
D.  

2007 The report discusses a bridge decision 
support tool developed for Florida DOT to 
determine performance at any given level 
of funding over 10-year planning horizon.  

National Bridge Investment 
Analysis System (NBIAS) 
Technical Manual 

Cambridge 
Systematics, 
Inc. 

2011 The technical manual supplements the user 
manual and provides key technical features 
of version 4.0 of NBIAS. 

Enhancement of the FDOT’s 
Project Level and Network 
Level Bridge Management 
Analysis Tools 

Sobanjo, J. O., 
& Thompson, P. 
D 

2011 The research improved the deterioration, 
action effectiveness, and cost model for 
Florida DOT’s bridge management 
analysis tools. New accident models were 
formulated. 

Florida DOT’s Project Level 
Analysis Tool (PLAT) User 
Manual 

Thompson, P. 
D.& Sobanjo, J. 
O. 

2016 This manual is designed to help learn about 
the different features of the Florida DOT’s 
PLAT and how to perform a project-level 
analysis. 

Metaheuristics: From Design 
to Implementation.  

Talbi, E. G. 2009 The book covers metaheuristics applicable 
to MOO problems. It presents the main 
design questions and search components 
for all families of metaheuristics. 
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NCHRP Report 713: 
Estimating Life 
Expectancies of Highway 
Assets.  

Thompson, P. 
D., Ford, K. M., 
Armin, M. H.R., 
Labi, S., Sinha, 
K. C., & 
Shirole, A.  

2012 The guide describes current methods for 
estimating life expectancies of highway 
assets and how to apply life expectancy 
models. 

Multi-Objective 
Optimization using 
Evolutionary Algorithms 

Deb, K.,  2001 The book discusses in-depth each 
evolutionary algorithm with examples of 
real-world problems. 

A Large-Scale Optimization 
Algorithm to Support Cross-
Assets Long-Term Planning 
in Transportation Asset 
Management 

Kachua, S. G. 2012 The research develops and implements a 
large-scale linear programming 
formulation to support the long-term 
rehabilitation and maintenance resource 
allocation for road networks. 

Multi-Criteria Optimization 
in Bridge Management 
 

Patidar V. 2006 The dissertation discusses a multi-criteria 
optimization methodology developed for 
the bridge decision-making problem based 
on the utility theory concepts.  

Multi-objective 
Optimization Algorithms 
Considering Objective 
Preferences and Solution 
Clusters 

Taboada, H. 2007 The thesis presents new approaches that 
provide a balance between the 
determination of single solutions and a set 
of Pareto optimal solutions. 

A Summary and Comparison 
of MOEA Algorithms. 

Kunkle, D. 2005 The document briefly summarizes and 
compares various well-known multi-
objective evolutionary algorithms 
(MOEAs).  

Feasibility of Incremental 
Benefit-Cost Analysis for 
Optimal Allocation of 
Limited Budgets to 
Maintenance, Rehabilitation 
and Replacement of Bridges  

Farid, F., 
Johnston, D. W., 
Laverde, M.A., 
Chen, C. J. & 
Rihani, B. S. 

1988 The study investigates the applicability of 
the Incremental Benefit-Cost program 
(called INCBEN) in allocating limited 
bridge improvement budgets and compares 
results with different sufficiency rating 
methods.  

Synthesis of National and 
International Methodologies 
Used for Bridge Health 
Indices 

 Chase, S., Adu-
Gyamfi, Y., Akt
an, A., 
& Minaie, E.  

2016 The study reviews the state-of-the-art with 
respect to bridge condition indices used to 
assess performance of bridges in the 
United States and other countries. 

Development of Optimal 
Strategies for Bridge 
Management Systems. 

Mohamed, H. A. 
H. 

1995 The dissertation discussed a 
comprehensive framework developed to 
efficiency utilize available resources and 
minimize the loss of benefits for bridge 
management systems. 
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The Development of 
Optimal Strategies for 
Maintenance Rehabilitation 
and Replacement of 
Highway Bridges, Final 
Report Vol. 6: Bridge 
Performance and 
Optimization. Highway  

Jiang, Y., & 
Sinha, K. C. 

1989 This volume provides the results of the 
research conducted on the development of 
an optimization model for bridge project 
selection. It also includes a discussion on 
bridge condition deterioration 
curves and appropriate performance 
prediction models. 

* Descriptions are from the documents 

2.3 Transportation Planning Process  

The MPOs represent the multi-modal transportation interests of a specific urbanized region and 

usually made up of representatives from local governments and transportation agencies. The MPOs 

develop Metropolitan Transportation Plans (MTPs) for their regions. The state DOT develops a 

LRTP for the entire state, including both metropolitan and nonmetropolitan areas. The MTPs and 

the LRTP are the fundamental products of the initial planning process. To ensure consistency, 

these long-range plans are developed in cooperation between the state DOT and the MPOs. The 

23 United States Code (USC) 134(h) provision established the following ten factors to define the 

scope of this initial planning process: 

• Support Economic Vitality 

• Increase Safety 

• Increase Security 

• Increase Accessibility 

• Protect and Enhance the Environment 

• Enhance Integration and Connectivity 

• Promote System Efficiency 

• Emphasize System Preservation 
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• Improve Resiliency and Reliability 

• Enhance Travel and Tourism 

These plans consider existing and future transportation system needs and resources for the next 

20-year horizon—provide directions and supporting information for subsequent planning 

activities. Generally, the LRTP does not list individual projects but describes management and 

investment strategies—required to ensure preservation and improvement of the multi-modal 

transportation system statewide. The MTP specifies resources expected and recommends 

strategies for projects and programs needed in the metropolitan area. The next step in the planning 

process consists of identifying specific transportation projects for implementation in the near term, 

including funding requirements. The TIP and STIP are both short-range programs to identify 

priority transportation projects to be funded in the upcoming four years and drawn from and 

consistent with the MTPs and LRTP. These short-range programs are fiscally constrained and 

usually combined in one TIP/STIP document, capturing all transportation-related projects for the 

entire state, and approved by the Federal Transit Administration (FTA) and FHWA.  

The NCHRP Report 806: Cross-Asset Resource Allocation and the Impact on Transportation 

System Performance (Maggiore & Ford, 2016) studied various practices of resource allocation 

decision making. The study recognized four common approaches among state DOTs for making 

investment decisions and setting program/project priorities: 

(1) decisions are determined based on historical precedents and funding restrictions (past 

allocations and priorities) for a program; 

(2) decisions are driven largely by asset management systems that determine investment needs; 
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(3) decisions are driven mostly by leadership discretions, political considerations, and other 

nontechnical inputs to align available resources with priorities relative to the state DOT; 

and 

(4) decisions are based on performance determined by condition data, forecasting models, and 

analytical tools.  

2.4 Bridge Programming Process 

One of the main objectives of a BMS is to manage bridges under constrained budgets and 

resources. Many BMSs address three aspects of bridge management: (1) assessing existing bridge 

conditions, (2) forecasting deteriorations, and (3) identifying improvement needs (Elbehairy, 

2007). Twenty-six state DOTs were surveyed as part of the NCHRP Synthesis 397: Bridge 

Management Systems for Transportation Agency Decision Making (Markow & Hyman, 2009). 

The survey revealed that most of the bridge projects listed in the TIP/STIP were being developed 

using specific prioritization criteria/procedures and/or professional judgments. Few state DOTs 

use BMSs for project programming and TIP/STIP development to recommend candidate projects 

and preservation treatments. At the project programming level, asset managers prioritize bridge 

work activities based on projected budgets in the TIP/STIP—for many state DOTs, the TIP/STIP 

defines their annual bridge programs (Markow & Hyman, 2009). Saito and Sinha (1989) discussed 

common methods used by state DOTs to select bridge projects for funding. Some select projects 

based on “worst-first” basis while others rely on ranking methods or computer-based systematic 

analyses. To identify candidate projects, state DOTs generally use the bridge sufficiency ratings, 

component ratings, health indices, or other factors (such as the type of bridge, location, volume of 

traffic, level of service, functional deficiencies, detour length, number of injuries, and fatalities). 
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Most state DOTs use BMSs for collecting and managing inspection data and identifying potential 

projects or maintenance activities. BMSs are being used as repositories of bridge data without 

deploying the advanced functionalities such as prediction of future trends, optimization, trade-off 

analysis, life-cycle cost analysis (LCCA), and cost-benefit analysis (BCA) (Cambridge 

Systematics, Inc., 2009). The NCHRP Synthesis of Highway Practice 243: Methods for Capital 

Programming and Project Selection (Neumann, 1997) highlights common reasons behind not fully 

utilizing the capabilities of BMSs to support setting program priorities and establishing investment 

levels. Some of the reasons include the following: 

• Concerns that outcomes from BMSs will overtake engineering judgments and executive 

policy directions  

• Problems with system integration, limited historical data, and lack of expertise 

• Sufficiency rating, deficiency status, and other condition assessment methods continue to 

serve as the primary instruments for setting priorities 

2.5 MAP-21 and FAST Act 

On December 4, 2015, FAST Act was signed into law succeeding MAP-21, which was enacted in 

2012. The 23 USC 150(a) provision of MAP-21 created a performance-based program to 

strengthen existing transportation systems by focusing on national transportation goals, increasing 

accountability and transparency, and improving decision making through better informed planning 

and programming. FAST Act continued MAP-21’s overall performance management approach, 

which requires state DOTs to invest resources in transportation projects to collectively progress 

toward the national performance goals.  
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The following are the seven areas of the national performance goals, as established in MAP-21, 

23 USC 150(b): 

• Safety—To achieve a significant reduction in traffic fatalities and serious injuries on all 

public roads. 

• Infrastructure Condition—To maintain the highway infrastructure asset system in a state- 

of-good repair 

• Congestion Reduction—To achieve a significant reduction in congestion on the National 

Highway System 

• System Reliability—To improve the efficiency of the surface transportation system 

• Freight Movement and Economic Vitality—To improve the national freight network, 

strengthen the ability of rural communities to access national and international trade 

markets, and support regional economic development. 

• Environmental Sustainability—To enhance the performance of the transportation system 

while protecting and enhancing the natural environment. 

• Reduced Project Delivery Delays—To reduce project costs, promote jobs and the economy, 

and expedite the movement of people and goods by accelerating project completion 

through eliminating delays in the project development and delivery process, including 

reducing regulatory burdens and improving agencies' work practices 
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To implement the new performance provisions of MAP-21 and FAST Act, several rulemakings 

were developed by FHWA in multiple phases. The rules were finalized in 2016 and published in 

the Federal Register, establishing requirements for compliance. The following are the finale rules: 

• Pavement and Bridge Condition Performance Measures Final Rule 

• System Performance/Freight/Congestion Mitigation and Air Quality Performance 

Measures Final Rule 

• Highway Safety Improvement Program Final Rule  

• Safety Performance Measures Final Rule  

• Planning Final Rule 

• Asset Management Plan Final Rule 

• Transit Asset Management Final rule 

• Public Transportation Safety Program Final Rule 

2.5.1 Performance-Based Planning Requirements  

Performance measures within the areas listed below were established through several final rules 

to monitor transportation system performance and conditions, inform investment decisions, and 

increase accountability and transparency. The planning final rule requires state DOTs and MPOs 

to set aspirational targets as part of their MTPs and LRTPs. State DOTs and MPOs may elect to 

use additional performance measures; however, it’s highly recommended they be aligned with the 

following national goals, 23 USC 150(c), where applicable.  

• Pavement condition on the Interstate System and on remainder of the National Highway 

System (NHS) 

• Performance of the Interstate System and the remainder of the NHS 

https://www.federalregister.gov/documents/2017/01/18/2017-00550/national-performance-management-measures-assessing-pavement-condition-for-the-national-highway
https://www.federalregister.gov/documents/2017/01/18/2017-00681/national-performance-management-measures-assessing-performance-of-the-national-highway-system
https://www.federalregister.gov/documents/2017/01/18/2017-00681/national-performance-management-measures-assessing-performance-of-the-national-highway-system
https://www.federalregister.gov/articles/2016/05/27/2016-11964/statewide-and-nonmetropolitan-transportation-planning-metropolitan-transportation-planning
https://www.federalregister.gov/documents/2016/10/24/2016-25117/asset-management-plans-and-periodic-evaluations-of-facilities-repeatedly-requiring-repair-and
https://www.gpo.gov/fdsys/pkg/FR-2016-07-26/pdf/2016-16883.pdf
https://www.federalregister.gov/documents/2016/08/11/2016-18920/public-transportation-safety-program
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• Bridge condition on the NHS 

• Fatalities and serious injuries—both number and rate per vehicle mile traveled on all public 

roads 

• Traffic congestion 

• On-road mobile source emissions 

• Freight movement on the Interstate System 

MAP-21 mandates the use of measures to evaluate performance. These measures will be used in 

the performance-based planning and programming process. The process links the LRTP to the 

TIP/STIP. A performance-based LRTP provides enough details, criteria and strategies toward 

achieving goals, objectives and performance targets, and supports prioritization and selection 

(programming) of projects for the TIP/STIP. Figure 2.1 illustrates the performance-based planning 

and programming framework as discussed in the FHWA’s Performance-Based Planning and 

Programming Guidebook (Grant et al., 2013). The figure shows the different steps of a 

performance-based planning and programming process. Performance-based planning is led by 

goals and objectives supported by performance measures—linked to the national goals described 

in MAP-21. The LRTP is guided by goals, objectives, and performance measures to identify trends 

and targets, define strategies, and develop investment priorities. Performance-based programming 

takes place next, where specific projects and programs are identified and prioritized to be included 

in the TIP/STIP—based on contribution to attainment of targets. The entire process is monitored 

for adjustments and future planning efforts. 
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Figure 2.1 Performance-based planning framework. Adapted from Performance-Based Planning and 

Programming Guidebook (Grant, D’Ignazio, Bond, and McKeeman, 2013). 

2.5.2 Transportation Asset Management Plan Requirements 

TAM, in its broadest sense, is defined by AASHTO Subcommittee on Asset Management 

(AASHTO, 2013b) as “a strategic and systematic process of operating, maintaining, upgrading, 

and expanding physical assets effectively through their life cycles. It focuses on business and 

engineering practices for resource allocation and utilization, with the objective of better decision 

making based on quality information and well-defined objectives.” Through an effective data-driven 

asset management approach, state DOTs can improve investment decisions, asset performance, resource 

allocations, and accountability and transparency. To embrace such approach as the main business 

practice for state DOTs, MAP-21 and FAST mandated the development of a risk-based TAMP for the 

https://www.federalregister.gov/documents/2016/10/24/2016-25117/asset-management-plans-and-periodic-evaluations-of-facilities-repeatedly-requiring-repair-and
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NHS to improve or preserve asset conditions and system performance. The following seven elements, 

23 Code of Federal Regulations (CFR) 515.9, must be included in the TAMP: 

• Conditions of pavement and bridge  

• Asset management objectives and measures 

• Identification of any performance gap 

• Life-cycle planning  

• Risk management analysis 

• Financial plan 

• Investment strategies 

The TAMP is framed to include investment strategies leading to make progress toward achievement of 

performance targets. The plan should address both short- and long-term needs—to improve or preserve 

the condition and performance of the NHS. A risk management analysis is required as part of the TAMP 

development. State DOTs are required to consider various risks associated with current and future 

environmental conditions (risks due to failure, extreme weather, seismic, financing, etc.). In addition, the 

TAMP final rule directs state DOTs to coordinate with the MPOs and other stakeholders when 

establishing performance measures and targets. The planning final rule requires states DOTs to integrate 

their TAMPs into their statewide transportation planning process. State DOTs are required to submit to 

FHWA their TAMPs for approval, meeting all requirements, along with documentations to demonstrate 

implementation. On a 4-year basis, the plan is revised and resubmitted for approval.  
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2.6 Risk Assessment and Management 

The NCHRP Report 632: An Asset-Management Framework for the Interstate Highway System 

(Cambridge Systematics, Inc., 2009) classifies risks into two possible categories: internal 

programmatic and external non-programmatic. Internal programmatic risks involve state DOT’s 

internal operations (planning, budgeting, program delivery, maintenance, managing, etc.), whereas 

risks beyond the state DOT’s control such as natural-related hazards (flooding, earthquakes, 

hurricanes, sea level rising, etc.) or human actions (collisions, terrorist attacks, etc.) are classified 

as external non-programmatic.  

The NCHRP Report 632 states that “significant work has been performed on risk assessment for 

transportation in recent years.” Efforts have been made to assess the threat of natural and man-

made hazards in BMSs. Vulnerability or risk cost models quantify consequences resulting from 

natural hazards (such as earthquake, scour, and flooding). The NCHRP Project 20-07, Task 378, 

(Thompson, 2018) developed a risk assessment guideline for the LCCA in BMSs. The guideline 

is based on likelihood probability models for sixteen different hazards. The project also developed 

a process for monetizing risk. This type of LCCs can be considered in the LCCA to account for 

risk.  

As stated earlier, a TAMP must identify risks that can affect the NHS condition and performance, 

including risks associated with current and future environmental conditions (risks due to failure, extreme 

weather, seismic, financing, etc.). The FHWA publication, Incorporating Risk Management into 

Transportation Asset Management Plans (FHWA, 2017b), defines risk and provides guidance on 

how to incorporate risk into a TAMP to meet the risk-based TAMP requirements. The intent of 

the guidance is to assist state DOTs with the development of their TAMPs. However, the concepts 
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are applicable to any transportation agency responsible for managing pavements, bridges or other 

assets. 

Risks that could impact the ability to deliver planned investments or effectively manage assets, the 

performance of a network of assets or a single asset, or the achievement of performance targets are 

generally identified, prioritized and added to a risk register. Experts adjust these predefined risks 

or add new noteworthy risks for consideration. A risk assessment analysis relies on collected data 

and inputs provided by experts. Each identified risk is quantified with an overall score equals to 

the product of its likelihood of occurrence and its associated consequences. Criticality or 

vulnerability levels are also assigned to each bridge or network of bridges to determine importance 

factors as part of the analysis. The risk assessment results (qualitative or quantitative) can be used 

to inform decisions, evaluate investment strategies, or develop a risk management plan.  

Figure 2.2 illustrates an example of Minnesota DOT’s (MnDOT) risk assessment matrix as 

presented in the NCHRP Report 706: Uses of Risk Management and Data Management to Support 

Target-setting for Performance-based Resource Allocation by Transportation Agencies 

(Cambridge Systematics, Inc., 2011). Separate scaling tables and relative weights for different 

types of risk that could jeopardize the serviceability of a bridge are used to estimate its resilience 

indicator. Importance factor is also determined for each bridge based on its provided service to a 

specific network (impacts on the public). At the end, a function of combined weighted importance 

factors and resilience indicators is utilized to determine a single network resilience indicator 

(Cambridge Systematics, Inc., 2011).  
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Figure 2.2 MnDOT’s bridge risk assessment quantifying risks, impacts, and consequences. Adapted from 
the NCHRP Report 706: Uses of Risk Management and Data Management to Support Target-setting for 

Performance-based Resource Allocation by Transportation Agencies (Cambridge Systematics, Inc., 
2011). 

2.7 Optimization in Bridge Management 

The literature review revealed that empirical and non-empirical ranking methods, incremental 

benefit-cost analysis (IBCA), multiple criteria analysis (discussed later), and optimization 

techniques are widely applied for selecting projects. Ranking methods evaluate several project-

related factors and produce a ranking value corresponding to a relative order of importance to be 

used by decision makers. Though, the ranking results do not necessarily lead to optimal projects. 

Farid et al. (1988) investigated the feasibility of utilizing the IBCA for optimal allocation of limited 

budgets to maintenance, rehabilitation, and replacement of 25 bridges in North Carolina. The study 

proved that the IBCA rankings are superior to those produced by other priority rating methods and 

can be used to identify bridge improvement alternatives. However, the IBCA cannot produce 

optimal sets of bridge improvement alternatives under limited budgets. On the other hand, 
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optimization techniques produce optimal solutions by either maximizing or minimizing specified 

objectives (simultaneously or combining them into a single objective) and subject to a set of 

constraints (Saito & Sinha, 1989).  

A large variety of optimization techniques, such as mathematical programming (e.g., dynamic 

programming, linear or non-linear programming, integer or continuous programming, and goal 

programming) and metaheuristics (e.g., evolutionary algorithms, tabu search, ant colony, particle 

swarm, and shuffled frog-leading) have been applied to solve bridge optimization problems. The 

use of one technique versus another depends on the characteristics of the optimization problem. 

Krugler et al. (2007) highlighted that optimization techniques have been used for solving practical 

problems successfully in different disciplines. Resource allocation problems are treated in most 

times using different optimization techniques. However, the study acknowledged that the 

complexity associated with resource allocation problems—optimizing benefits (objectives) while 

satisfying constraints—limits the applicability of such techniques in transportation areas. The 

authors further pointed out to several studies that describe various mathematical optimization 

models for resource allocation problems; though, most of them cannot be applied directly to 

transportation decision problems.  

Krugler et al. (2007) in the same study discussed the two common approaches used for solving 

multiple criteria/objectives decision problems. One of these approaches consists of combining 

multiple criteria (or objectives) into a single criterion (or a single objective) function, after being 

ranked based on decision makers’ preferences and assigned appropriate weights. In most cases 

when this approach is considered, heuristic solution techniques are usually used, since the resulting 

function is nonlinear. The other one considers simultaneously all criteria (or objectives) in the 

mathematical formulation by applying “true” MOO techniques—permitting decision makers to 
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examine competing decision criteria/objectives—to identify optimal solutions. However, this 

approach is less common due to the extra efforts involving system integration and collection of 

extensive data, and reliance on specific expertise.  

Separate investment analysis tools or systems using optimization techniques also have been 

developed for bridge investment decision making either by state DOTs, the FHWA, or researchers. 

The most popular system is NBIAS, which was designed for modeling national bridge investment 

needs and trade-offs between funding and performance. The system is mainly used in the 

development process of the Status of the Nation's Highways, Bridges, and Transit: Conditions & 

Performance Report to Congress (U.S. Department of Transportation, 2015)—to provide the 

current condition state of bridges and projected national system performance under a set of 

different investment scenarios. NBIAS relies on a linear programming optimization and an 

analytical framework like the one in the AASHTOWare Bridge Management software (BrM).  

The NCHRP Report 590: Multi-Objective Optimization for Bridge Management Systems (Patidar 

et al., 2007) (product of the NCHRP Project 12-67) reveals that LCCAs had been integrated into 

most optimization techniques used by BMSs, including the incremental benefit-cost method to 

produce near-optimal solutions, to speed-up optimization by varying constraints without resolving 

the entire problem. The report indicated that the annual budget and performance measure 

(expressed as structural health index, sufficiency rating, or other condition-based indices) are 

typically the criteria that drive the BMS optimization process. 

(Saito & Sinha, 1989; Patidar, 2006) pointed out that the integer programming and dynamic 

programming techniques have been widely used to support decision making. In the integer 

programming technique, the decision variables have a value of either 0 or 1. A project is selected 
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if a decision variable is corresponding to 1, and it is not selected if the variable is 0. The dynamic 

programming technique transforms an “n-variable” problem into a series of “n 1-variable” 

problems. The optimization usually requires a less computational effort and produces global 

optimal solutions. Saito and Sinha (1989) developed an optimization procedure for Indiana DOT, 

using a combination of integer programming and dynamic programming techniques to identify 

optimal bridge projects. Integer programming is used to maximize the statewide bridge system 

effectiveness under a limited budget and other established constraints for each program period. 

Dynamic programming uses the results of integer programming to select the overall optimal 

strategy, maximizing the system effectiveness over the entire planning horizon. However, the 

computational time increases substantially when dealing with an increased number of decision 

variables. 

The Multi-Objective Optimization System (MOOS) is a standalone optimization tool developed 

by researchers (as part of the NCHRP Project 12-67) for bridge investment decision making. 

MOOS is a spreadsheet-based tool to help bridge program managers to visualize the performance 

of a network of bridges by showing projected investment needs, performance, and trade-offs 

between funding levels and targets. Florida DOT, back in 2007, developed a standalone application 

(to supplement its BMS) called Network Analysis Tool using MOO and an incremental benefit-

cost heuristic to predict network performance at any given level of funding for a 10-year planning 

horizon (Sobanjo & Thompson, 2016c). The application was developed in Microsoft Excel 

spreadsheet incorporating several of the MOOS concepts detailed in the NCHRP Report 590 

(Patidar et al., 2007).  
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2.8 Multi-Objective Optimization Approaches 

MOO approaches are classified based on whether the decision makers’ preferences are utilized in 

the optimization process: preferences and non-preferences approaches. In the work of Bai (2012), 

the following Figure 2.3 is presented to illustrate the classification introduced by Hwang and 

Masud (1979) and Miettinen (1999). 

 

 
Figure 2.3 Classification of MOO methods. Redrawn from the original in Trade-Off Analysis in Multi-

Objective Optimization for Transportation Asset Management (Bai, 2012). 

The non-preference approach doesn’t rely on the decision makers’ preferences or assume any 

information about the importance of objective in the optimization process. A heuristic is generally 

used to find a single optimal solution. However, in the preference approach, decision makers’ 

preferences are incorporated in the optimization process (Miettinen, 1999; Bai, 2012). The 

preference approach is divided into the following three categories based on the stage where the 

preference is articulated (Bai, 2012). 

• Priori preference articulation—prior to the optimization, transforming the MOO problem 

into a single-objective optimization problem by incorporating the preferences. 

Multi-Objective 
Optimization

Non-Preference 
Approach

Preference 
Approach

Priori Preference 
Articulation Methods

Interactive 
Articulation Methods

Posteriori Preference 
Articulation Methods



37 

 

• Interactive preference articulation—the preferences are incorporated simultaneously with 

the optimization process; the decision maker interactively participates in the optimization 

process. 

• Posteriori preference articulation—Pareto (subsequently discussed) solutions are first 

determined, then the decision maker chooses one of the Pareto solutions as the best solution 

based on preferences. 

Deb (2001) defined the MOO methods that convert multiple objectives into a single objective as 

“classical” methods. These methods form a composite objective function, weighted sum of the 

objectives in accordance to the assigned preferences. The following methods are considered 

classical MOO methods: 

• Weighted Sum Method 

• Ꜫ-Constraint Method 

•  Weighted Metric Methods 

• Rotated Weighted Metric Method 

• Benson’s Method 

• Value Function Method 

• Goal Programming Methods 

The author named this type of approach (followed by these classical methods) a preference-based 

MOO approach. The author stressed out that this approach is highly subjective, not 

straightforward, and largely sensitive to the relative preferences. A schematic of this approach is 

shown in Figure 2.4. 
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Figure 2.4 Schematic of a preference-based MOO approach. Redrawn from the original in Multi-

Objective Optimization Using Evolutionary Algorithms (Deb, 2001). 

Deb (2001) suggested the following two steps for an ideal MOO approach: 

• Step1—find a multiple trade-off optimal solutions by equally considering all objectives to 

be important 

• Step2—choose one of the obtained solution using higher-level information. 

Figure 2.5 illustrates a recommended ideal MOO approach. The author considered this approach 

is more methodical, more practical, and less subjective—it doesn’t require any relative preferences 

and provides a complete knowledge of the problem. User-supplied information is used only to 

evaluate and compare obtained trade-off solutions. The proposed EB-MOO methodology is 

structured around this ideal MOO approach.  
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Figure 2.5 Schematic of an ideal MOO approach. Redrawn from the original in Multi-Objective 

Optimization Using Evolutionary Algorithms (Deb, 2001). 

 
2.9 Multiple Criteria Analyses 

Multiple criteria (or multiple objectives) analysis is widely used to support a decision making 

involving multiple criteria (monetary and non-monetary). It consists of using preferences to guide 

project selection through weighting and scoring procedures (Maggiore & Ford, 2016). A 

representative score combining agency weighting and scaling preferences is assigned to be used 

in the prioritization or optimization process. Various methods and techniques are used in the 

assessment, including the weighted sum method (WMS), weighted product method (WPM), utility 

function method, simple multi-attribute rating technique (SMART), analytic hierarchy process 

(AHP), preference ranking organization method for enrichment evaluation (PROMETHEE), 

elimination and choice translating reality (ELECTRE), and hierarchical decision trees (Shoghli, 

2014). These methods and techniques capture and quantify decision makers’ preferences and 
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account for inherent risks and uncertainties associated with the criteria. However, predicted 

decision outcomes may vary considerably based on the chosen technique or method. 

Krugler et al. (2007) demonstrated that a decision-making problem involving multiple decision 

criteria can easily be implemented if all criteria are combined into a single criterion utility through 

the process of weighting, scaling and amalgamation—consistent with the multi-attribute utility 

theory (Keeney & Raiffa, 1993) to account for the inherent risk and uncertainty associated with 

the different criteria. Criteria can be formulated using linear or nonlinear functions; thought, a 

sensitivity analysis is generally needed to identify the most suitable models (Krugler et al., 2007). 

Labi (2014) explicitly described these three steps of the process in his book Introduction to Civil 

Engineering Systems: A Systems Perspective to the Development of Civil Engineering Facilities. 

The weighing process consists of assigning weights (importance factors) to criteria and plays a 

very influential role in the selection of treatments. Direct weighting method, Delphi method, 

regression techniques, observed-derived weighting method, AHP, etc. are used to set relative 

weights. To apply the weights, the decision criteria of different units need to be scaled. The scaling 

process provides a common scale of measurement. Scaling is a leveling technique used to convert 

criteria with different dimensions (monetary and non-monetary) or units of measurement into a 

normalized scale to be compared. Different methods and techniques have been used for scaling 

such as linear scaling functions, monetization, direct rating, mid-value splitting method, gamble 

method, and others. The amalgamation process involves combining single-criterion utility 

functions to an overall utility function, considering the established weights. Different methods and 

techniques have been used for amalgamation such as WMS, WPM, AHP of amalgamation, 

ELECTRE, goal programming method, and step method (STEM).  
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In the NCHRP Report 590 (Patidar et al., 2007), a multi-criterion (i.e. bridge condition, safety, 

traffic flow disruption, and vulnerability) approach to evaluate bridge improvement alternatives 

using an optimization heuristic process is introduced for BMSs. The report proposes a rational 

process for constructing a total utility function by  

(1) developing a single-criterion utility function for each performance measure or goal;  

(2) scaling each single-criterion utility function to a common scale, capturing decision 

makers’ preferences; and  

(3) combining the scaled single-criterion utility functions using relative weights, capturing 

decision makers’ preferences.  

The determination of relative weights requires an initial feedback from each decision maker to 

capture preferences; different weighing methods and aggregations techniques are then deployed to 

produce the best group representation. Tables 2.2 and 2.3 summarize the relative weights 

recommended for the studied goals and performance measures. 

Table 2.2 Example of relative weights: individual performance measures 

Overall Goal Performance 
Measure Relative Weight Total 

Condition 
Preservation 

NBI Ratings 0.271 
1.000 Health Index 0.507 

Sufficiency Rating 0.222 

NBI Ratings 
Deck 0.330 

1.000 Superstructure 0.340 
Substructure 0.330 

Traffic Safety 
Geometric Rating 0.570 

1.000 
Inventory Rating 0.430 

Protection 
from Extreme 
Events 

Scour 0.385 

1.000 
Fatigue 0.265 
Earthquake 0.205 
Other 0.145 

Note. Adapted from the NCHRP Report 590: Multi-Objective Optimization for Bridge Management 
Systems (Patidar et al., 2007). 
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Table 2.3 Example of relative weights: overall goals 

Overall Goal Relative Weight 
Bridge Preservation 0.360 
Safety 0.205 
Protection from Extreme Events 0.150 
Agency Cost 0.175 
User Cost 0.110 
Total 1.000 

Note. Adapted from the NCHRP Report 590: Multi-Objective Optimization for Bridge Management 
Systems (Patidar et al., 2007). 

As emphasized in Chapter 1, efforts to incorporate MODA into bridge management practice by 

state DOTs and MPOs are expected to increase, especially with the transportation performance 

measurement requirements of MAP 21 (discussed earlier). Caltrans is considered one of the 

earliest state DOTs that moved toward this transition. The State Highway Operation and 

Protection Program (SHOPP) Pilot Project Report, Phase 1: A Framework for Project 

Prioritization (Caltrans, 2015) documents Caltrans’ project prioritization process which is based 

on a customized MODA. A tool prototype that applies a value function and uses MODA was 

produced in Microsoft Excel to identify an optimized portfolio of projects from a pool of SHOPP 

projects. The tool supports the TAMP development process and increases transparency of the 

project selection process.  

AssetManager NT, discussed in the NCHRP Report 545: Analytical tools for asset management 

(Cambridge Systematics, Inc., 2005), is another spreadsheet-based tool developed by researchers 

as an investment analysis tool to integrate data from other investment analysis and management 

systems such as NBIAS and BrM. The tool explores the impacts of different levels of investment 

categories over the long term; investment categories could be defined based on asset classes 

(pavement, bridge, etc.), geographical areas (districts, regions, etc.), or sub-networks (NHS, 

primary corridors, local network of roads, etc.). 



43 

 

2.10 Trade-off Analysis and Optimization 

Kachua (2011) defined trade-off analysis as a simulation of “what if” scenarios to examine the 

long-term impacts of different investment strategies for decision making. The use of optimization 

and trade-off analysis in TAM permits decision makers to identify appropriate strategies/scenarios, 

understand relationships between different strategies/scenarios, and communicate any impacts. A 

practical approach to perform a trade-off analysis is to investigate optimal solutions, representing 

a Pareto solution set. A solution in a Pareto solution set (or Pareto solution) is superior to the rest 

of the solutions in the search space, and no Pareto solution is superior than the other Pareto 

solutions. The improvement of an objective associated with a Pareto solution results in worsening 

of another one, at least. (Konak et al., 2006; Zitzler et al., 2000; Shoghli, 2014) pointed out to the 

importance of  

(1) the best-known Pareto frontier to be as close as possible to the true Pareto frontier,  

(2) the best-known Pareto solutions to be uniformly distributed and diverse to provide the 

decision makers a true understanding of trade-offs, and  

(3) the best-known Pareto frontier to capture the whole spectrum of the true Pareto frontier.  

A diverse set of Pareto solutions cannot be obtained by transferring a MOO problem into a single-

objective optimization problem—constructing a Pareto frontier (or trade-off frontier) requires 

several independent runs by varying certain parameters; and yet, optimal solutions are not 

guaranteed. MOO techniques, consisting of a simultaneous optimization of multiple competing 

objectives subject to constraints, attempt to provide a diverse set of optimal or near-optimal 

solutions—constituting a frontier of trade-offs between objectives. They help providing a complete 

knowledge of the problem (Talbi, 2009).  
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The NCHRP Report 806: Cross-Asset Resource Allocation and the Impact on Transportation 

System Performance (Maggiore & Ford, 2016) presents Figure 2.6 as an example of trade-off 

analysis between two performance measures to inform decision makers of the impacts of moving 

from one area of the Pareto frontier to another. Performance targets are also plotted to assist in the 

decision-making process. 

 
Figure 2.6 Example of a trade-off analysis. Adapted from the NCHRP Report 806: Cross-Asset Resource 

Allocation and the Impact on Transportation System Performance (Maggiore & Ford, 2016). 

Bai (2012) proposed a trade-off-based MOO framework for TAM. A hybrid algorithm based on 

NSGA-II was developed to generate Pareto frontiers for conducting trade-off analyses between 

costs and performance measures. The proposed algorithm converges faster and generates better-

distributed Pareto frontiers when compared to traditional algorithms. The trade-off relationships 

between performance measures do vary at different budget levels. The chance-constrained 

programming was applied to incorporate performance measure uncertainties into the proposed 

MOO framework. Trade-off relationships under uncertainties do vary at different confidence 

levels—a high confidence requirement results in lower performance at the same cost level.  
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Kachua (2011) developed a large-scale linear programming algorithm to support long-term 

investment planning for transportation and municipal infrastructure. Through a case study, the 

developed linear programming algorithm demonstrated that it is feasible to implement cross-asset 

optimization and trade-off analysis to support long-term planning. The linear programming 

algorithm considers “what if” scenarios and effectiveness of individual treatments for a large-sized 

network. It also examines all possible treatment options for a given asset type and provides 

information on how to select the right treatment, at the right place, and at the right time.  

Figure 2.7 shows the front-end interface of the MOOS network-level model (discussed in the 

previous section) to help bridge program managers to visualize the performance of a network of 

bridges—showing projected investment needs and performance, and trade-offs between funding 

levels and performance. This front-end interface provides most of the controls and outputs in one 

convenient layout while reserving all complex mathematical calculations for back-end processing.  

 
Figure 2.7. Front-end interface of the MOOS network-level model. Adapted from the NCHRP Report 

590: Multi-Objective Optimization for Bridge Management Systems (Patidar et al., 2007). 
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BrM version 5.2.3 facilitates trade‐off analyses for prioritizing preservation and maintenance work 

through its scenario explorer module. Users can create multiple scenarios to evaluate impacts of 

different funding levels. They can also create scenarios for several items that may impact the 

results of the optimization (for example, scenarios for different performance targets such as the 

percent of deck area of structurally deficient bridges). Figure 2.8 is an example of program results 

displayed in BrM version 5.2.3. The green triangle on the benefit-cost frontier, which is 

constructed based on a well-known incremental benefit-cost (IBC) heuristic (discussed in Chapter 

5), shown in the upper-right graph, is selected by the user as the preferred program strategy. The 

graph also shows other program strategies with greater utility benefits (measuring the benefit of 

combined objectives) but involving higher costs (Boyle, 2017).  

 
Figure 2.8. Example of program results as displayed in BrM version 5.2.3. Adapted from AASHTOWare 

Bridge Management 5.2.3.: Conducting Trade‐off Analysis (Boyle, 2017). 
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2.11 Evolutionary Algorithms  

2.11.1 Optimization Models 

Figure 2.9 was developed by Talbi (2009) to illustrate the different families of optimization models 

used to solve decision-making problems. The most common models belong to the mathematical 

programming family such as integer programming, dynamic programming, linear programming, 

and goal programming. 

 
Figure 2.9  The different families of optimization models. Redrawn from the original in Metaheuristics: 

From Design to Implementation (Talbi, 2009). 

The author further classified the different optimization algorithms as shown in Figure 2.10 into 

two main categories: Exact algorithms and heuristics. Exact algorithms guarantee finding a single 

optimal solution but applicable to only small size optimization problems. On the contrary, 

approximate algorithms can handle large-scale optimization problems. The approximate 

algorithms are decomposed into two classes: specific heuristics and metaheuristics. Specific 

heuristics are problem-dependent, whereas metaheuristics are applicable to a large variety of 

optimization problems. Most of the metaheuristics mimic natural metaphors (based on biological 
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and animal behaviors) such as genetic algorithms (GAs) and ant colony optimization (ACO) to 

solve complex optimization problems (Talbi, 2009). Both heuristics and metaheuristics cannot 

guarantee optimal solutions but very close to the real Pareto optimal solutions (Bai, 2012). 

Different performance criteria, such as quality of solutions, computational effort (search time), 

robustness, ease of use, simplicity, flexibility, development cost, are used to evaluate 

metaheuristics (Talbi, 2009).  

 
Figure 2.10 The different classifications of optimization algorithms. Redrawn from the original in 

Metaheuristics: From Design to Implementation (Talbi, 2009). 

2.11.2 Genetic Algorithms 

Evolutionary algorithms (EAs) are population-based search metaheuristics inspired by Darwinian 

evolutionary theory. EAs produce a high quality of solutions (optimal or near-optimal) in a 

reasonable time for non-linear large-sized problems. EAs are divided into several branches such 

as GA, shuffled frog leaping (SFL), ACO, particle swarm optimization (PSO), and others. The 

literature review was devoted to study GAs and identify the most appropriate for integration—it’s 

believed that GAs are well-suited for the different complex optimization problems of this research 

(i.e., non-linear and combinatorial optimization problems). 
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GAs (Holland, 1975) are stochastic search heuristics that rely on the “survival of the fittest” 

principle from the biological sciences, and the use of evolution operators makes them very 

effective in performing global search. They are widely used (in system modeling and 

identification, planning and control, resource allocation, data mining, engineering design, machine 

learning, and other domains) and capable of handling discrete and combinatorial optimization 

problems with many decision variables (Kachua, 2011). Deb (2009) described the different 

involved genetic operators in greater detail in his book Multi-Objective Optimization Using 

Evolutionary Algorithms.  

Figure 2.11 shows a flowchart of the working principle of a GA. The cycle starts by generating a 

random population of solutions (a random set of chromosomes; each is composed of a string of 

genes). The objective function values and constraint violations are calculated for each solution. A 

performance function or relative merit using the calculated values is assigned (refer to as the 

fitness). The fitness of the population is then evaluated. If the termination condition is not satisfied, 

the population is modified through three main genetic operators (i.e., reproduction, crossover and 

mutation operators), and a better fitted population is generated. This first cycle represents the first 

generation (or first iteration). The algorithm exits the loop when the termination criterion is 

satisfied.  
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Figure 2.11 A flowchart of the working principle of a GA. Redrawn form the original in Multi-Objective 

Optimization Using Evolutionary Algorithms (Deb, 2009). 

Schaffer (1985) developed the first genetic algorithm Vector Evaluation Genetic Algorithm 

(VEGA). The second wave of genetic algorithms includes Pareto Archived Evolution Strategy 

(PAES) (Knowles & Corne, 2000), Pareto Envelope-based Selection Algorithm (PESA) (Corne et 

al., 2000), Niched Pareto Genetic Algorithm 2 (NPGA 2) (Erickson et al., 2001), Strength Pareto 

Evolutionary Algorithm 2 (SPEA-2) (Zitzler et al., 2001), NSGA-II (Deb et al., 2002), and others. 

Table 2.4 lists the advantages and disadvantages of well-known GAs as highlighted by Konak 

(2006) in the study Multi-Objective Optimization Using Genetic Algorithms: A Tutorial. 

Reliability Engineering & System Safety. 
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Table 2.4 Advantages and disadvantages of well-known GAs 

Algorithm Advantages Disadvantages 
Vector Evaluated 
Genetic Algorithm 
(VEGA) 

First multi-objective GA Straightforward 
implementation 

Converges to the extreme of 
each objective 

Multi-Objectives 
Genetic Algorithm 
(MOGA) 

Simple extension of single-objective GA 
 

Usually slow convergence 
Problems related to niche size 
parameter 

Weight-Based Genetic 
Algorithm 
(WBGA) 

Simple extension of single 
objective GA 

Difficulties in nonconvex 
objective function space 

Niched Pareto Genetic 
Algorithm 
(NPGA) 

Very simple selection process with 
tournament selection 

Difficulties in nonconvex 
objective function space 

Random Weight Genetic 
Algorithm 
(RWGA) 

Efficient and easy to implement 

Performance depends on cell 
sizes 
Prior information needed about 
objective space 

Pareto Envelope-based 
Selection Algorithm 
(PESA) 

Easy to implement  
Computationally efficient 

Not a population based 
approach 

Pareto Archived 
Evolution Strategy 
(PAES) 

Random mutation hill-climbing strategy 
Easy to implement  
Computationally efficient 

Performance depends on cell 
sizes 

Non-dominated Sorting 
Genetic Algorithm 
(NSGA) 

Fast convergence Problems related to niche size 
parameter 

Non-dominated Sorting 
Genetic Algorithm II 
(NSGA-II) 

Single parameter (N)  
Well tested 
Efficient 

Crowding distance works in 
objective space only 

Strength Pareto 
Evolutionary Algorithm 
(SPEA) 

Well tested 
No parameter for clustering Complex clustering algorithm 

Strength Pareto 
Evolutionary Algorithm 
2 (SPEA-2) 

Improved SPEA 
Makes sure extreme points are preserved 

Computationally expensive 
fitness and density calculation 

Rank-Density based 
Genetic Algorithm 
(RDGA) 

Dynamic cell update 
Robust with respect to the number of 
objectives 

More difficult to implement 
than others 

Dynamic Multi-
Objective Evolutionary 
Algorithm (DMOEA) 

Includes efficient techniques to update 
cell densities 
Adaptive approaches to set GA 
parameters 

More difficult to implement 
than others 

Note. Adapted from Multi-Objective Optimization Using Genetic Algorithms: A Tutorial. Reliability 
Engineering & System Safety (Konak, 2006). 
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2.11.3 Non-Dominated Sorting Genetic Algorithm-II  

NSGA-II is arguably the most popular for solving MOO problems. It’s a well-known non-

domination based algorithm among the GAs. The algorithm relies on a non-dominated sorting 

process. The population is sorted based on non-domination, and only the best “N” individuals are 

kept, where “N” is the population size. It is highly referenced in the literature. NSGA-II is capable 

of handling large-sized NP-hard combinatorial optimization problems (discussed later in the 

dissertation). It has the following three distinct features (Deb, 2009): 

(1) deploys an elitist principle, 

(2) deploys an explicit diversity preserving mechanism, and 

(3) emphasizes non-dominated solutions. 

NSGA-II is robust and reliable for solving MOO problems with less computational efforts. It 

ensures solution diversity and convergence to a near true Pareto frontier. NSGA-II is deployed as 

the main optimizer for the three optimization modules proposed in this research. It’s easy to 

substitute this chosen optimizer by any other metaheuristic algorithm with similar capabilities such 

as SPEA-2, PESA, and MOGA. However, the quality of obtained solution sets should be evaluated 

using experimental tests or performance metrics (e.g., hypervolume, generational distance, epsilon 

indicator, and inverted generational distance metrics). Performance metrics generally consider the 

following three aspects of a solution set, discussed in the study of Okabe and Sendhoff (as cited in 

Riquelme et al., 2015): 

(1)  convergence, i.e., closeness to the theoretical Pareto frontier; 

(2)  diversity, i.e., distribution as well as spread; and 

(3)  number of solutions. 
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2.12 Summary and Conclusions 

In this chapter, a review of the previous work, studies, and best practices related to the research 

areas and objectives is presented. The chapter summarized the literature search on TAM, risk 

assessment and management, MCDM, and MOO. The chapter included brief descriptions of the 

identified significant references. The gathered information and best practices from these references 

provided the background to refine the conceptual TAM framework and shape the EB-MOO 

methodology. The chapter discussed the transportation planning and programming process and the 

new performance-based planning and TAMP requirements of MAP 21. Risk could impact the 

delivery of investment strategies or the performance of a network of assets or a single asset. Several 

best practices and studies on risk assessment and management were also highlighted in this 

chapter. However, the integration of a risk assessment model into the proposed EB-MOO 

methodology is beyond the research scope.  

The literature review revealed that empirical and non-empirical ranking methods, IBCA, multiple 

criteria analyses are widely applied for selecting bridge projects. A large variety of optimization 

techniques such as mathematical programming, metaheuristics, and optimization algorithms have 

been applied to solve bridge optimization problems. The use of one technique versus another 

depends on the characteristics of the optimization problem. Optimization techniques generally 

produce optimal or near-optimal solutions by either maximizing or minimizing preferred 

objectives subject to a set of constraints. Various investment analysis tools and systems using 

optimization techniques for bridge investment decision making either by state DOTs, FHWA, or 

researchers were discoursed in this chapter.  

The chapter discussed the different MOO approaches, methods and techniques, and analytical tools 

commonly used to support investment decision making involving multiple criteria (or objectives).  
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The importance of carrying out a trade-off analysis in TAM has been emphasized in this chapter. 

Obtained set of optimal solutions (representing a Pareto solution set) can be further examined 

through trade-off analyses to identify appropriate strategies/scenarios, understand relationships 

between them, and communicate any impacts. EAs produce a high quality of solutions (optimal or 

near-optimal) in a reasonable time for non-linear large-sized optimization problems. The literature 

review was devoted to investigate this family of population-based search metaheuristics, 

specifically focusing on GAs to identify the most appropriate for integration. It was determined 

that the metaheuristic NSGA-II is well-suited for solving the different complex optimization 

problems of this research (i.e., non-linear and combinatorial optimization problems) in less 

computational efforts—it guarantees solution diversity and convergence to a near true Pareto 

frontier. NSGA-II is deployed as the main optimizer for the three optimization modules proposed 

in this research. 
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CHAPTER 3—TRANSPORTATION ASSET MANAGEMENT 
FRAMEWORK & ELEMENT-BASED MULTI-OBJECTIVE 

OPTIMIZATION METHODOLOGY 

 Task 2: Proposing a Goal-Driven Transportation Asset Management Framework 
 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 

3.1 Introduction 

This chapter introduces the proposed goal-driven TAM framework applying the principles of the 

Transportation Asset Management Guide: Prepared for NCHRP Project, 20-24(11) (Cambridge 

Systematics, Inc. et al., 2002) (hereinafter referred to as “Guide”) to state DOTs with their 

transition efforts to performance management and performance-based planning and programming. 

The framework focuses on one transportation asset class (i.e., bridge) and relies on quality data 

and agency established policies, goals, performance measures and targets, anticipated funding 

levels, and customer expectations to guide the management process of assets. The framework can 

be expanded to accommodate other asset classes or modes. The framework is designed to be 

integrated into the long-range planning and programming process—to provide more transparency, 

address public needs, and support the development and evaluation of the LRTP, TIP/STIP, and 

TAMP. Previous work on TAM and best practices were identified throughout a comprehensive 

literature review (refer to Chapter 2). The framework is structured around a continuing 

performance monitoring to assess effectiveness, identify gaps, and adjust as needed.  

Little research work has been focused on systematic element-based optimization methodologies 

for bridge project selection. This research was also undertaken to develop a novel MOO 
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methodology to assess element improvement needs of existing bridges and recommend near-

optimal or optimal investment strategies for an effective management of bridge activities in both 

short- and long-term planning horizons. This chapter provides an overview of the proposed 

methodology and its five modules (i.e., data processing, improvement, ELO, BLO, and NLO 

modules). The methodology relies on three distinct screening processes (i.e., element deficiency, 

alternative feasibility, and solution superiority screening processes) to overcome computer 

memory and processing time limitations. It’s designed to support the development of short- and 

long-term investment strategies, TIP/STIP development/amendment process, setting of 

performance targets and program/project priorities, and trade-offs between investment scenarios 

and performance. The methodology is integrated into the framework, serving as a decision support 

tool, to support identifying candidate bridge projects, setting project priorities, revaluating funding 

allocations, or assessing impacts of programmed types of bridge work (i.e., preservation, 

rehabilitation, and replacement) in the TIP/STIP on system performance.  

A MATLAB-based tool prototype structured around the proposed five EB-MOO modules was 

developed to be utilized for the implementation of the methodology. Several examples of 

unconstraint and constraint (budget and performance) scenarios were established to test concepts, 

prove effectiveness, and demonstrate and communicate potential benefits. Results reveal the 

capability of the methodology to recognize short- and long-term investment needs for bridge 

programming and planning process. The EB-MOO methodology produces reliable LC alternative 

results, generates optimal or near-optimal solutions, predicts performance, and determines long-

term intervention strategies and funding requirements. The methodology facilitates trade-offs 

between funding scenarios and performance. It can be expanded to accommodate other asset 

classes or modes. 
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3.2 Proposed Transportation Asset Management Framework  

The intent of Task 2 of this research is to transfer previous work on TAM and best practices 

identified throughout the comprehensive literature review (under Task 1) into a relevant TAM 

framework. A goal-driven TAM framework is introduced as part of this research to support state 

DOTs with their transition efforts to performance management and performance-based planning 

and programming. The framework is founded based on the following principles of TAM as defined 

in the Guide:  

• Policy goals and objectives, including the role of policy formulation in asset management 

and ways in which policy guidance can benefit from improved asset management; 

• Planning and programming, focusing on best practices in reaching decisions on resource 

allocation for investments in transportation infrastructure; 

• Program delivery, looking at options in resource utilization and management methods to 

deliver programs and services; and 

• Information and analysis, including use of information technology (IT) at each stage of 

asset management; monitoring of asset performance and feedback of this information to 

improve decision processes in the future, and reporting and communication of key 

information and results (Cambridge Systematics, Inc. et al., 2002). 

The Guide envisions these principles to be applied throughout key business processes using the IT 

support as shown in Figure 3.1.  
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Figure 3.1 Asset management framework recommended by the Guide. Redrawn from the original in the 

Transportation Asset Management Guide (Cambridge Systematics, Inc. et al., 2002). 

The proposed framework focuses mainly on one major transportation asset class (i.e., bridge)—

state DOTs have been collecting bridge data for years. Though, the framework can expand to 

accommodate other asset classes (e.g., pavement, sign structures, retaining walls, state DOT’s 

facilities, and intelligent transportation system installations) or even other modes. The framework 

is driven by policy goals and objectives for better planning and programming, and program 

delivery. The integrated EB-MOO methodology relies on quality data information, well-

established performance measures and targets to produce reliable investment strategies 

progressing toward the defined goals and objectives—trade-offs among asset classes, programs, 

types of investments, and funding levels to produce informed funding allocations and project 

prioritizations.  
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performance targets—to assess effectiveness of different programs and determine the necessary 
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integrated into the long-range planning process to assist in the development and evaluation of the 

TIP/STIP; for instance, screening projects or setting project priorities in the TIP/STIP based on 

long-term goals and feedback from public outreach. As stated in Chapter 2, MAP-21 includes a 

requirement for state DOTs to develop “a risk-based transportation asset management plan for the 

National Highway System to improve or preserve the condition of the assets and the performance 

of the system.” This risk-based TAMP documents current asset conditions, decision-making 

practices about allocating resources and managing assets, and progress toward performance targets 

and national goals. The proposed framework supports the development of the six elements 

(discussed in Chapter 2) required to be included in the plan. The proposed framework is illustrated 

in Figure 3.2.  
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Figure 3.2 The proposed goal-driven TAM framework 
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3.2.1 Policy Goals and Objectives  

As discussed previously, the framework is driven by policy goals and objectives guiding the state 

DOT’s asset management process for investment decisions, resource allocations, and program 

delivery, considering anticipated funding levels and customers’ needs as determined during public 

outreach in the planning process. State DOTs share a high level of consistency in their choice of 

policy goals and objectives, despite the great differences in their asset management practices 

(FHWA, 1999). Goals and objectives are often established to address safety, infrastructure 

preservation, mobility and congestion, economic development, environmental stewardship, and 

organizational effectiveness; however, priorities among these goals vary between state DOTs 

(FHWA, 1999). Most state DOTs had established goals and objectives linked to the national 

performance goals. MAP-21 requires state DOTs to invest resources in transportation projects, 

progressing toward the national goals—the current FAST Act continues MAP-21’s performance 

management approach (discussed in Chapter 2). The following Figure 3.3 illustrates the hierarchy 

of objectives used in the SHOPP Report Phase 2: Application of a Project Prioritization 

Framework to the 2016 SHOPP (Caltrans, 2016) to represent the Caltrans’ fundamental objectives, 

sub‐objectives, and the relationships to the department’s mission, vision, and goals. A similar 

objectives hierarchy should also be developed to support the framework. 
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Figure 3.3 Hierarchy of Caltrans’ objectives. Redrawn from the original in the SHOPP Report Phase 2: 

Application of a Project Prioritization Framework to the 2016 SHOPP (Caltrans, 2016). 
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3.2.2 Performance Measures 

Establishing practices of performance measures and targets vary considerably among state DOTs. 

Most state DOTs have similar capabilities for tracking performance measures and targets related 

to safety and conditions of pavements and bridges (Cambridge Systematics, Inc., 2006); Table 3.1, 

as an example, shows the New York State DOT’s (NYSDOT) established condition performance 

targets for pavements and bridges. NYSDOT demonstrates that both pavement and bridge 

conditions are expected to worsen over the next ten years if existing investment strategies are kept 

the same.  

Table 3.1 NYSDOT’s pavement and bridge performance targets and gaps 

 Performance Measure Baseline 
2013 

State of 
Good 
Repair 

Target 
2023 

Performance 
Gap 

Pa
ve

m
en

ts 

% of VMT on Good and Excellent 71% 88% 59% 29% 

% of Poor 10% 10% 36% 26% 

B
rid

ge
s 

% of Deficient 49% 25 % 50.5% 25.5% 
% of Poor 23% 10% 29% 19% 
% of Preservation 
(Good and Fair Protective) 56% 75% 53% 22% 

% of Correctable (Fair Corrective) 21% 15% 18% 3% 
Note. Adapted from Transportation asset management plan draft v 05-02-14 (NYSDOT, 2014). 

Performance measures and targets for goal areas related to economic development, congestion, 

mobility, system operations, livability, energy efficiency, climate change, environment, and 

sustainability have not been widely considered in the decision-making process or are still immature 

(lack of well-developed measures with quantifiable targets). Performance measures are not used 

only for investment decision making but also for funding advocacy and transparency—to convey 

current system performance and what has been accomplished with existing tax dollars. There is a 

wide body of literature on transportation performance measures—used by state DOTs, MPOs, 
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county and municipal governments, transit agencies, and international transportation agencies. The 

framework relies on well-defined performance measures to track progress toward established goals 

and objectives.  

3.2.3 TAMP and TIP/STIP 

As explained in Chapter 2, state DOTs are responsible for the development of the LRTP to identify 

improvement needs of their multi-modal transportation system in the next 20-year planning 

horizon. This step of the planning process is so essential for resource allocation decisions. The 

LRTP sets the stage for the development of a financially constrained TIP/STIP that identifies 

priority improvement projects for the next 4 years. The TAMP is designed to be a living document. 

The described processes and estimated funding levels in the TAMP are revised and improved on 

a biennial cycle to reflect current asset conditions, TIP/STIP updates, or new policy goals, 

objectives, performance measures and targets, or identified risks. The TAMP, like the LRTP, can 

be considered as a business plan that reveals the level of investments needed to meet the state 

DOT’s policy goals, objectives, and performance targets related to the transportation system. The 

proposed goal-driven TAM framework supports the TIP/STIP development or amendment 

process—or other methods of optimizations, prioritizations, and trade-offs. The integrated EB-

MOO methodology serves as a decision support tool to 

(1) identify candidate bridge projects for inclusion in the LRTP or TIP/STIP; 

(2) set project/program priorities, revaluate funding allocations, or assess impacts of 

programmed types of bridge work (i.e., preservation, rehabilitation, and replacement) in 

the TIP/STIP on system performance; and  

(3) evaluate different investment strategies and set targets through scenario analyses. 
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Established objectives, performance measures and targets, budget allocations and constraints, and 

identified risks are presented in these plans and need to be transferred to the integrated EB-MOO 

methodology. For instance, specified budget constraints should be aligned with the financial plan 

included in the TAMP—historical and current bridge budgets, anticipated revenues, and long-term 

preservation investment strategies (identified funding allocations in the TIP/STIP over the next 4 

years for the bridge projects). Figure 3.4 shows historical budget levels of the Colorado DOT 

(CDOT) by asset class from 2008 to 2014. At a minimum, objectives and bridge performance 

measures and targets identified in the TAMP should be the basis for driving the framework. Setting 

additional measures and targets must be well-defined, linked to the state DOT’s goals and 

objectives, and trackable with quantifiable and reachable targets.  

 
Figure 3.4 CDOT’s historical budget levels by asset class. Adapted from the 2013 CDOT’s Risk-Based 

Asset Management Plan (Cambridge Systematics, Inc., 2013). 
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3.3 Proposed Element-Based Multi-Objective Methodology 

The intent of Task 3 of this research is (1) to transfer previous work on bridge decision making 

involving multiple criteria/objectives (identified throughout the literature review of Task 1); and 

(2) to develop a flexible decision-making methodology, accompanying the proposed goal-driven 

TAM framework, relying on a “true” MOO technique—permitting decision makers to examine 

competing decision criteria/objectives (performance measures). The methodology improves 

bridge management and supports the development of the 20-year LRTP—identifying 

improvement needs for their multi-modal transportation system, and a financially constrained 4-

year TIP/STIP (listing high-priority improvement projects). The proposed EB-MOO methodology 

identifies optimal or near-optimal element intervention actions and determines anticipated funding 

needs through a robust MOO algorithm and several quantitative processes driven by decision 

makers’ preferences and inputs. The methodology focuses on one transportation asset class (i.e., 

bridge). It is structured around five modules (i.e., data processing, improvement, ELO, BLO, and 

NLO modules). A flow diagram illustrating the interactions between these different modules is 

shown in Figure 3.5.  
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Figure 3.5 The proposed EB-MOO methodology flow diagram 
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The proposed EB-MOO methodology relies on three distinct screening processes (i.e., element 

deficiency, alternative feasibility, and solution superiority screening processes) to overcome 

computer memory and processing time limitations. Leading-edge forecasting and up-to-date cost 

models were integrated. An independent deterioration model is incorporated to predict 

performance and a LCC model to estimate LCCs and LCC benefits. LC alternatives (series of 

element improvement actions) are generated based on a new simulation arrangement for three 

distinct improvement types: MRR, FCI, and REP. These improvement types consist with the 

defined work types of the TAMP. The requirement of 23 CFR 515.5 specifies the following five 

work types to be considered in the TAMP life-cycle planning (LCP), financial planning, and 

investment strategy analysis processes. 

1. Initial Construction (i.e. new construction) 

2. Maintenance 

3. Preservation 

4. Rehabilitation 

5. Reconstruction (i.e. replacement) 

A LC activity profile is constructed separately for each LC alternative action path. LC alternative 

results are produced for further evaluation. The methodology consists of three levels of 

optimization assessment based on the Pareto optimality concept:  

(1) ELO, to identify optimal or near-optimal element intervention actions for each deficient 

element (in a poor condition state) of a candidate bridge;  

(2) BLO, to identify combinations of optimal or near-optimal element intervention actions for 

a candidate bridge; and  
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(3) NLO, following either a top-down or bottom-up approach, to identify sets of optimal or 

near-optimal element intervention actions for a network of bridges. 

The methodology depends on a quantitative process driven by decision makers’ preferences 

(derived from agency polices, objectives and constraints) and bridge-related data. Various 

optimization techniques, decision support tools, forecasting and cost models, and MCDM methods 

used by state DOTs and other transportation agencies were examined; the appropriate processes 

and concepts in bridge management and decision making involving multiple objectives were 

incorporated in the methodology. A genetic MOO algorithm is adapted due to the stochastic nature 

of the optimization problems and the large number of variables involved in the selection of 

intervention actions. A robust metaheuristic algorithm (i.e., NSGA-II; discussed in Chapter 2) is 

deployed to handle the large-sized MOO problems. The subsequent chapters are devoted to these 

modules. The proposed five modules are overviewed in the following subsections. 

3.3.1 Data Processing Module 

A portfolio of candidate bridges or programmed bridges in the TIP/STIP is introduced in the data 

processing module to be considered throughout the different processes and examined at the 

element, bridge, and network levels. The module relies on decision makers’ preferences and inputs, 

quality data from state and national data management systems or external sources, and information 

provided in the TAMP and TIP/STIP. Deterioration modeling is the main driver of the element LC 

condition required in an optimization analysis. Leading-edge forecasting and up-to-date cost 

models were integrated in this module. The adapted independent deterioration model (i.e., 

Weibull/Markov model) is used to estimate the life expectancy of an element and predict its 

performance over an extended LC period. Improvement needs based on functional deficiencies are 

assessed at this stage of analysis. An integrated cost models are used to estimate incurred user 
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costs due to existing functional deficiencies. Proven correlation/regression formulas are used to 

estimate major improvement costs required to eliminate incurred user costs or relieve the bridge 

from all its restrictions, and provide the required LOS and design standards. A “do-nothing” (DN) 

LC profile is constructed for each element as part of this module. 

3.3.2 Improvement Module 

The module can be deployed independently to support the development of LRTP, TIP/STIP and 

TAMP. Improvement model results can be used with common economic analyses (i.e., LCCA, 

BCA and IBCA) and optimization techniques to identify short- and long-term bridge investment 

needs, and recommend bridge programs and implementation schedules. The FHWA LCP 

Guidance Using a Life-Cycle Planning Process to Support Asset Management (FHWA, 2017a) 

recommends the following five steps: 

1. Select asset classes and networks to be analyzed 

2. Define LCP strategies 

3. Set LCP scenario inputs 

4. Develop and run the LCP scenarios 

5. Provide input to financial planning 

The module supports the implementation of these five steps. It generates LC alternatives, estimates 

LCCs and LCC benefits, and predicts performance (health indices). A program period is specified 

based on existing programming practice. Throughout the modeling approach, each bridge in the 

portfolio is evaluated separately for each program year. Results are organized per program year 

for further processing. The LC economic analysis extends beyond the programming phase. The 
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total LC period (including the program period) is referred to as “analysis period.” The length of 

this period depends on the agency’s preservation policies and preferences.  

Each bridge in the portfolio is screened for candidacy through a screening process referred to as 

“element deficiency screening process.” A bridge identified with at least a deficient element is 

considered a candidate for improvement. A “replacement only” (RO) LC profile is constructed for 

each identified deficient element. The DN and RO LC profiles represent the “baseline” against 

which the LC alternative economic benefits (i.e., LCC benefits) are compared. DN and base agency 

costs are computed and discounted to present value for each deficient element. An “action 

effectiveness” (AE) LC profiles is constructed separately for each deficient element. An AE LC 

profile of an element is allied with one of the three improvement types (i.e., MRR, FCI and REP). 

It’s represented by a series of actions following a unique LC alternative action path. A LC 

alternative is defined by a program year, a path of improvement actions, and an improvement type. 

Different types of LCCs (incurred during the entire analysis period) and residual values (applied 

at the end of the analysis period) are estimated for each LC alternative. Also, element health indices 

at different points in time are determined.  

3.3.3 Element-Level Optimization Module  

For each program year, as stated earlier, the improvement module identifies the potential deficient 

elements and estimates the bridge initial agency costs, user costs, and major improvement costs. 

These LC results are transferred to this module for further processing and use in the optimization 

phase. A screening process referred to as “alternative feasibility screening” is deployed to identify 

a set of LC alternatives for each identified deficient element per improvement type and per 

program year. Using this process, the optimization problem size is reduced by eliminating 

economically unattractive LC alternatives. Best feasible LC alternatives are recognized and set 
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aside to be used in the optimization phase. Results associated with the identified best LC 

alternatives are grouped and reorganized per improvement type and per program year in single 

matrices. Each matrix includes one type of results per improvement type and per program year, 

encompassing all deficient elements. The optimization process relies on these preset matrices as 

input parameters, including the bridge user and initial agency costs, to direct the search of Pareto 

optimal or near-optimal LC alternatives. The optimization solution results per improvement type 

are produced for each program year. The optimization results contain the recommended LC 

alternatives for all deficient elements, initial agency costs, bridge health indices at different points 

in the analysis period, and optimized element-level objective values.  

3.3.4 Bridge-Level Optimization Module  

The module has two main purposes: (1) supporting the development of bridge improvement or 

preservation programs, and (2) producing bridge-level input parameters for the bottom-up 

approach NLO. The module identifies best (optimal or near-optimal) sets of improvement actions 

and timings for future work on a candidate bridge. The BLO module addresses one bridge at a 

time, recommending a set of optimal or near-optimal element improvement strategies. BLO results 

are stored to serve the NLO process.  

ELO results from the preceding module are grouped and expressed in summation formulas over 

the entire program period and all deficient elements. The grouped ELO solutions compete for 

minimum bridge LCCs, maximum bridge LCC benefits, and/or maximum bridge health indices 

(bridge-level objectives). As discussed earlier, the ELO module focuses on finding optimal or near-

optimal solutions (Pareto solutions) per program year and per improvement type for each deficient 

element of a given bridge in the portfolio. These ELO results per improvement type and per 

program year for each element are transferred to this module as input parameters. They are grouped 
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and reorganized in single matrices—covering the entire program period and the three improvement 

types. This arrangement allows to unite all recommended ELO solutions to compete at the BLO. 

The BLO results contain the recommend LC alternatives associated with the BLO solutions (each 

element is assigned to an optimal or near-optimal LC alternative, an improvement type and a 

program year), initial agency costs, bridge health indices at different points in the analysis period, 

and the optimized bridge-level objective values. 

3.3.5 Network-Level Optimization Module  

The module is designed to identify funding needs and short- and long-term investment strategies 

for each deficient element of a bridge in the portfolio (network) and facilitate trade-offs between 

funding scenarios and performance. There are two NLO approaches among BMSs: (1) top-down 

approach, optimization determines network-level goals, and then improvement needs for 

individual bridges; and (2) bottom-up approach, where bridge improvement needs are determined 

first. The top-down and bottom-up approaches are defined differently in this research. Basically, 

a top-down approach is followed when ELO solutions are used in determining network-level 

investment needs. ELO solutions, associated with the three improvement types and all program 

years, for each bridge in the portfolio compete at this level. Only one ELO solution per bridge is 

selected. A screening process referred to as “solution superiority screening” is deployed to reduce 

the computational time for the top-down-approach optimization. The screening also guarantees the 

inclusion of superior ELO solutions. Improvement rules or triggers can be established at this higher 

level to substitute the adapted screening process or complement it. The bottom-up approach is 

followed when BLO solutions are chosen as the optimization input parameters instead. No more 

than one BLO solution per bridge is selected.  
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The optimization problem is either constrained (by budget and/or performance) or unconstrained 

(involving only the selection criterion). The unconstrained problem can be used to estimate the 

budget required to address identified improvement needs, or determine whether a program is 

under- or over-funded. Usually, this information is used to justify budget requests through the 

legislative process. The budget-constrained problem can be used to anticipate short- and long-term 

network improvement strategies under limited funds—supporting the development of bridge 

programs or TIPs/STIPs. The module outcomes involve the recommended LC alternatives 

associated with the NLO solutions (each bridge element is assigned to an optimal or near-optimal 

LC alternative, an improvement type, and a program year), initial agency costs, network health 

indices at different points in the analysis period, and optimized network-level objective values.  

3.4 User Interaction 

The methodology relies on inputs and preferences from experts and decision makers to support the 

implemented processes and different analyses (i.e., LCCA, optimization process, sensitivity 

analysis, trade-off analysis, and adjustment of measures and targets). Due to the large variation 

among bridge management and maintenance practices and preservation policies adapted by state 

DOTs, inputs should come from experts familiar with the state DOT’s internal procedures and 

practices and with experience and knowledge of design features, different damage modes and 

deterioration mechanisms, and performance history of bridges within their operational 

environments. Preferences should be provided by asset managers or program planners involved in 

asset management, planning and programming, development of policy objectives and performance 

measures, or resource allocations. Asset managers can validate optimized priorities, funding 

requirements, and produced infographic depictions. They can also run sensitivity/scenario analysis 

for funding uncertainty by manipulating budget constraints, discount rates, or other factors.  
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A priori articulation of preference approach (discussed in Chapter 2) is often followed when 

multiple objectives are aggregated into one, as in the weighted sum or utility function method. 

Decision makers provide preferences (relative weights) prior the optimization process. The 

methodology follows a different approach referred to as posteriori articulation of preference 

approach—Pareto solutions are first determined, and then presented to the decision makers to 

select the best one based on preferences. This approach helps providing a complete knowledge of 

the problem and exploring the whole set of Pareto solutions (Talbi, 2009). The multiple criteria 

analyses discussed in Chapter 2 facilitate the selection of the best solution.  

Optimization results can be further explored by a trade-off or “what-if” scenario analysis (covered 

in Chapter 2) between obtained Pareto solutions. The analysis allows decision makers to trade-off 

between sets of LC alternatives or optimization objectives. This type of analysis is essential for 

identifying the appropriate course of actions, adjusting preferences and funding levels, and 

communicating resulting impacts. Pareto solutions are indispensable for this type of analysis. 

Pareto solutions from different scenarios, in alignment with the long-term goals, are evaluated for 

possible implications on resource allocations and performance.  

The NCHRP Report 666: Target-Setting Methods and Data Management to Support Performance-

Based Resource Allocation by Transportation Agencies identifies targets as “a quantifiable point 

in time at which an organization achieves all or a portion of its goals,” and emphasizes “the 

importance of tracking and assessing the impacts of measures and targets on actual investments” 

(Cambridge Systematics, Inc., 2010). It’s important to periodically revisit measures and targets to 

ensure their effectiveness in the actual decision making and the development of long-term 

investment strategies. Asset managers through the proposed EB-MOO modules will be able to 

perform this kind of assessments and recommend adjustments to targets or measures over time—
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for example, based on trends of actual investments and separate analyses, measures that were 

proven to be irrelevant or ineffective, or targets believed to be unachievable (set too high).  

A broad range of risk events could impact achievement of bridge-related performance targets and 

the ability to deliver planned investments or manage assets effectively, and the performance of a 

network of assets or a single asset. Considering risk in the decision-making process supports 

achieving a reasonable informed decision—by assessing likelihoods of occurrence and associated 

consequence. Risk events can have impacts on system levels in various terms—impacting 

performance and ability to deliver recommended investments or effectively manage assets. At a 

minimum, experts are encouraged to identify risks that could impact the serviceability and 

achievement of performance targets. Bridge-related risk events addressed by the TAMP’s risk 

management element can be included for consistency and completeness. The optimized timing of 

interventions over the analysis period should be explored considering any identified relevant 

risks—usually based on bridge or network attributes such as location, environmental, traffic 

volume, etc.  

Considering the risk aspect is beyond the scope of this research. Nevertheless, the EB-MOO 

methodology is well-suited to accommodate any risk assessment models. Incorporating a risk 

assessment model into the proposed EB-MOO methodology is recommended for future research. 

The inclusion of risk assessment models allows to factor risk into the LCC calculations. As 

mentioned in Chapter 2, the risk assessment guideline developed as part of the NCHRP Project 

20-07, Task 378, (Thompson et al., 2018) includes likelihood probability models for sixteen 

different hazards and a process for monetizing consequences of service distribution (risk costs) 

well-suited for the LCCA in BMSs. These guideline models can be incorporated to add the risk 

aspect in the recommended investment strategies. 
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3.5 Implementation  

3.5.1 Tool Prototype 

As part of Task 1, various available BMSs and investment decision-making and project 

prioritization tools used by state DOTs, MPOs and other transportation agencies were explored 

in terms of their capabilities and limitations. A standalone tool complementing common decision 

support tools and builds upon their existing capabilities was designed under Task 4. The tool 

prototype accommodates user-specified performance measures, inputs and preferences, and 

commonly collected data from widely-used state and national data management systems (such as 

National Bridge Inventory [NBI] System, Highway Performance Monitoring System [HPMS], 

BrM, Highway Safety Information System [HSIS], Fatality Analysis Reporting System [FARS], 

and Long-Term Bridge Performance [ LTBP] InfoBridge).  

The tool prototype was produced in MATLAB, primarily for ease of use and to implement the 

EB-MOO methodology through several examples of scenarios. The tool prototype should be 

considered as a “proof of concept” rather than a complete rigorous software ready for operational 

implementation. The tool is structured around the five EB-MOO methodology modules 

discussed in earlier. Each module is executed independently. Module output files are saved in 

one location and accessible for use by the different processes and the main optimizer. The tool 

consists of multiple MATLAB-coded scripts that provide most of the controls while reserving all 

complex mathematical calculations for back-end processing. Figure 3.6 shows the tool’s 

hierarchical structure in the form of directories (folders) and their subdirectories (subfolders), 

hosting most of the MATLAB-coded scripts and functions. An illustration of the tool produced 

results is presented in Figure 3.7.  
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Figure 3.6 Hierarchical structure of the MATLAB-based tool prototype 
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Figure 3.7 Example of results as displayed in the MATLAB-based tool prototype 
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3.5.2 Illustrative Examples 

The main objective of Task 5 is to implement the proposed EB-MOO methodology through 

examples of different scenarios. Task 5 provides an opportunity to evaluate the effectiveness of 

the proposed methodology. The tool prototype produced under Task 4 is primarily used for this 

purpose. Several examples of unconstraint and constraint (budget and performance) scenarios were 

established to test/validate concepts, prove effectiveness, and demonstrate and communicate 

potential benefits—by predicting investment needs and performance.  

The data needed for the tool prototype vary considerably based on the optimization technique and 

approach (bottom-up or top-down approach) being applied, and the demanded level of assessment 

and analysis. A sample set of existing bridges (portfolio) was carefully chosen for all these 

examples based on relevant data availability/completeness, common features, attributes, and other 

factors—required to carry out the tool prototype’s optimization, deterioration forecasting, LC 

economic analysis, and other processes of the different modules—to ensure a high reliability of 

outcomes. The tool prototype can handle a portfolio of many bridges. The selected portfolio 

consists of 40 bridges from the same network—sharing the same decision-making entity, 

geographical area, vicinity, or other characteristics. Table 3.2 includes the inspection data, major 

attributes and characteristics of each bridge in the portfolio. The portfolio provided an excellent 

opportunity to implement all stages of the EB-MOO methodology.  

Example results are validated by verifying optimized priorities, funding requirements, and 

infographic depictions produced by the tool prototype. Results proved the capability of the 

methodology to recognize short- and long-term investment needs for bridge programming and 

planning. Sample bridges were examined at different assessment levels. The tool produced reliable 

LC alternative results, generated Pareto optimal or near-optimal solutions, predicted performance, 
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and determined long-term intervention strategies and funding requirements. The implementation 

proved that the tool can facilitate performing trade-off analyses between funding scenarios and 

performance—where specific criteria and constraints are imposed to determine the required levels 

of investment to meet performance targets—or to evaluate the impact of resource allocation 

decisions. As stated earlier, the tool can serve as a framework to carry out a sensitivity analysis on 

obtained results for funding uncertainty or other uncertainties to make any necessary adjustments. 

Throughout this dissertation, results from the EB-MOO methodology implementation using the 

tool prototype are summarized and displayed in tabulations and graphs to help 

visualize/communicate assessment outcomes and demonstrate effectiveness and benefits. 
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Table 3.2 Inspection data, major attributes and characteristics of each sample bridge in the portfolio 

 
Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents the existence of the functional deficiency, otherwise the value of 0. 
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1 [0,0,0] 1035.6 2015 1956 1992 4 3 2 12 7 7 7 7 9 9 8 92.1
2 [0,0,0] 7168 2015 1999 0 6 3 16 14 5 7 8 5 6 5 6 82.2
3 [0,0,0] 7168 2015 1999 0 6 3 16 14 5 7 8 5 6 6 8 83.2
4 [0,0,1] 2858.4 2015 1987 2011 5 5 2 11 8 7 8 7 7 78 9 93.1
5 [1,0,0] 805.68 2015 1948 0 5 3 16 14 6 7 7 6 4 78 8 52.5
6 [0,0,1] 2492.8 2016 1986 0 1 6 21 11 7 7 7 7 6 5 8 91.7
7 [0,0,1] 7016.9 2015 2013 0 1 4 6 11 8 8 8 8 9 3 9 96
8 [0,0,0] 6901.4 2017 2006 0 1 4 6 14 8 8 7 8 9 9 7 98.9
9 [0,1,0] 2759.4 2016 1964 2004 1 5 2 11 7 7 6 7 4 3 9 83.9
10 [0,1,0] 2259.9 2016 1964 2004 1 5 2 11 5 7 5 5 6 3 8 72.4
11 [1,0,0] 1210.6 2017 1957 0 5 3 2 2 7 7 6 6 3 78 8 74.3
12 [1,0,0] 1210.6 2017 1957 0 5 3 2 2 7 7 6 6 3 78 8 74.3
13 [1,0,0] 1149.1 2016 1927 2005 5 3 17 2 6 5 7 5 2 78 3 59.9
14 [0,0,1] 11598 2016 1955 0 4 3 12 11 6 7 5 6 9 3 8 66
15 [0,0,1] 23317 2015 1967 0 6 4 10 12 5 7 5 4 9 8 43.8
16 [0,1,0] 909.51 2015 1953 0 1 3 2 12 7 6 6 6 2 3 8 61
17 [1,0,1] 39791 2016 1953 0 6 4 10 12 5 6 5 5 2 3 8 44.1
18 [1,0,1] 6913.4 2016 1941 0 5 3 15 14 5 5 6 5 2 78 6 46.5
19 [1,0,0] 1051.6 2016 1963 2011 6 3 16 14 6 6 6 6 3 3 9 68.5
20 [1,1,0] 472.94 2015 1958 0 1 3 2 14 7 7 7 7 2 3 8 74.9
21 [1,1,0] 472.94 2015 1958 0 1 3 2 14 7 7 6 7 2 3 8 74.9
22 [1,0,1] 63.3 2017 2005 0 5 3 0 9 6 6 6 5 2 78 6 62.8
23 [1,0,1] 20731 2015 1938 1998 5 4 10 2 5 6 5 5 2 78 8 57.7
24 [0,0,0] 13202 2015 1993 0 6 4 2 6 6 7 7 6 9 78 8 99.7
25 [0,0,1] 17003 2016 1965 0 5 5 2 14 5 6 6 5 5 78 8 65.5
26 [1,0,0] 678.4 2015 1952 0 5 3 2 2 7 6 7 6 5 78 8 77.2
27 [1,0,0] 229 2016 1948 0 5 1 1 2 7 7 7 7 3 78 8 80
28 [0,1,0] 630.89 2015 1958 0 1 1 1 14 7 7 7 7 5 3 8 77.9
29 [0,0,0] 4312.5 2015 2003 0 6 3 16 14 7 7 7 7 4 3 8 83.6
30 [0,0,0] 4312.5 2015 2004 0 6 3 16 14 7 7 7 7 4 3 8 83.6
31 [1,0,0] 138.37 2015 1927 1950 5 1 1 14 6 6 6 6 3 78 9 79.7
32 [0,0,0] 3726.5 2016 2006 0 1 4 6 14 8 8 8 8 7 6 9 98.1
33 [0,0,0] 4470.1 2016 2007 0 1 4 6 14 8 8 8 8 7 6 9 96.2
34 [0,0,0] 446.04 2015 1941 0 5 3 15 14 5 7 6 5 4 78 9 56.4
35 [1,0,0] 2337.2 2016 1913 1995 5 3 16 14 6 6 7 5 2 78 8 55
36 [1,0,1] 1979 2015 1953 1966 5 3 2 2 7 5 6 5 4 78 7 60.1
37 [1,0,1] 1727.8 2015 1959 0 6 3 16 14 5 7 6 5 4 5 8 42.5
38 [1,0,1] 1727.8 2015 1959 0 6 3 16 14 5 7 6 5 4 5 8 42.5
39 [0,0,1] 181.8 2016 1949 1957 5 1 1 2 7 6 7 5 4 78 9 69.5
40 [1,0,1] 119.21 2016 1941 1954 5 1 1 2 7 7 7 5 3 78 9 59.6
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3.6 Summary and Conclusions 

The intent of Task 2 is to transfer previous work on TAM and best practices, identified throughout 

the literature review under Task 1, to refine the conceptual TAM framework introduced in the 

research proposal. This chapter presented the refined goal-driven TAM framework, applying the 

principles of the Guide and discussed the different framework steps and interactions with the 

TAMP and the long-range planning and programming process. A comprehensive overview of the 

proposed EB-MOO methodology integrated into this refined TAM framework is included in this 

chapter. Each of the five modules of the methodology is presented separately. The methodology 

serves as a decision support tool for identifying optimal or near-optimal intervention actions and 

funding needs, and aiding the development of short- and long-term investment strategies, and 

trade-offs between investment levels and performance. 

The chapter elaborated on the posteriori articulation of preference approach followed by 

methodology—Pareto solutions are first determined, and then presented to the decision makers to 

select the best based on preferences. The chapter touched on the different types of analyses (i.e., 

sensitivity, “what-if” scenario, and trade-off analyses) that can be performed to explore the whole 

set of Pareto solutions and communicate resulting impacts of limited resources and needs to 

achieve performance goals. Although the risk aspect is beyond the scope of this research, the 

chapter emphasized on the importance of considering it in the decision-making process to attain a 

reasonable informed decision. The proposed EB-MOO methodology is well-suited to incorporate 

a risk assessment model in the future.  

The development of a tool prototype structured around the five modules of the EB-MOO 

methodology falls under Task 4—a tool prototype that complements common decision support 

tools and BMSs, and builds upon their existing capabilities. This chapter discussed the developed 
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MATLAB-based tool prototype used to implement the EB-MOO methodology. Several examples 

of unconstrained and constrained scenarios were established as part of Task 5 to test/validate 

concepts, prove effectiveness, and demonstrate and communicate potential benefits using the tool 

prototype. A sample set of existing bridges (portfolio) chosen for all these examples is introduced 

in this chapter. The tool was capable to produce reliable LC alternative results, generate Pareto 

optimal or near-optimal solutions, predict performance, and determine long-term intervention 

strategies and funding requirements. 
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CHAPTER 4—DATA PROCESSING MODULE 

 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 
 Task 4: Development of a Tool Prototype  

4.1 Introduction 

The main objective of the proposed EB-MOO methodology is to determine short- and long-term 

investment needs and support recommending programs and implementation schedules. The 

methodology is structured around five modules (i.e., data processing, improvement, ELO, BLO, 

and NLO modules). It consists of three levels of optimization assessment based on the Pareto 

optimality concept: element level, bridge level, and network level (following either a top-down or 

bottom-up approach). It relies on three distinct screening processes (i.e., element deficiency, 

alternative feasibility, and solution superiority screening processes). A separate chapter is 

dedicated to discuss each of these modules and their processes in greater detail.  

This chapter discusses the modeling approach used for data processing. A portfolio of candidate 

bridges or programmed bridges in the TIP/STIP is introduced in the data processing module to be 

considered throughout the different processes of the different modules and examined at the 

element, bridge and network levels. The module relies on decision makers’ preferences and inputs, 

quality data, and information provided in the TAMP and TIP/STIP. Leading-edge forecasting and 

up-to-date cost models are integrated into this module. Deterioration modeling is the main driver 

of the element LC condition required in the optimization analysis. The chapter discusses the 

independent deterioration model used to estimate the life expectancy of an element and predict its 



 

86 

 

performance over an analysis period. The chapter also lays out the process of assessing 

improvement needs based on functional deficiencies. It discusses the cost models adapted to 

estimate incurred user costs due to existing functional deficiencies. The chapter presents the 

different correlation/regression formulas used to estimate major improvement costs—to eliminate 

incurred user costs or relieve the bridge from all restrictions, and provide the required LOS and 

design standards. The three types of element LC profiles (i.e., DN, RO, and AE LC profiles) are 

introduced in this chapter with illustrative examples. 

4.2 Module Framework  

Effectively implementing a decision support tool based on multiple criteria/objectives is a 

challenge for most state DOTs: many of the stumbling blocks are associated with the data quality 

and availability, data collection methods and costs, outdated databases, and lack of comprehensive 

inventories and trained data analysts. A sound MOO methodology requires a complete high quality 

of data to support its involved analyses and processes (e.g., deterioration and cost modeling, 

screening processes, BCA, LCCA, and trade-off analysis). The proposed methodology is a data-

driven process that relies on accurate “good” data to produce reliable results. Quality data from 

state and national data management systems or external sources, user’s preferences and inputs, and 

information retrieved from the TAMP and TIP/STIP are processed in this module.  

Data are being collected by state DOTs and MPOs—data related to location-related information, 

attributes, inspection, maintenance, costs and funding, average daily traffic, truck traffic, 

congestion, mobility and safety, environment, etc. The data processing module is designed to 

accommodate user-specified performance measures and commonly collected data from widely-

used state and national data management systems (e.g., BrM, NBI system, HPMS, and LTBP 

InfoBridge) to ensure a high reliability of outcomes. The needed data vary considerably based on 



 

87 

 

the optimization technique and approach (e.g., bottom-up or top-down approach) being applied, 

and the demanded levels of assessment and analyses. Established objectives, performance 

measures and targets, budget allocations, and any constraints need to be transferred into this 

module in a consistent way.  

The TAMP, like the LRTP, can be considered as a business plan that reveals the level of 

investments needed to meet the state DOT’s policy goals, objectives, and performance targets 

related to its transportation system. For example, the specified budget constraints in the 

optimization module should be aligned with the financial plan included in the TAMP—historical 

and current bridge budgets, anticipated revenues, and long-term preservation investment strategies 

(identified funding allocations in the TIP/STIP over the next 4 years for the bridge projects).  

Deterioration modeling is the main driver of the element LC condition required in the optimization 

process. The data processing and improvement modules rely on an independent deterioration 

model to predict bridge improvement needs. Different deterioration forecasting models were 

compared in previous research, and the Weibull/Markov (hybrid) model is overwhelming 

recommended for modern BMSs (Thompson et al., 2012). This hybrid model is used to forecast 

conditions of individual elements (e.g., deck, girders, floor beams, pins, hangers, and bearings). 

The model is used in BrM and Florida DOT’s PLAT (Sobanjo & Thompson, 2016b). This same 

hybrid model is adapted for element deterioration prediction. Florida DOT’s transition 

probabilities and Weibull parameters (Sobanjo & Thompson, 2016a) are used by default. 

Figure 4.1 represents a flow diagram to visualize the data processing approach for each bridge in 

the portfolio. A set of bridges (portfolio) is introduced in this module to be considered throughout 

the subsequent modules, and examined at the element, bridge, and network levels. In this module, 
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each bridge in the portfolio is evaluated separately. The stored data are located and processed at 

this initial stage to determine the estimated service life (ESL), DN condition states, and health 

indices for each bridge element. 

For a comprehensive LCCA, state DOTs use different cost models based on operational, 

maintenance, preservation and rehabilitation, and replacement costs and other influential costs 

such as user, detour, or crash costs (Hugh, 2003). Improvement needs based on existing functional 

deficiencies are assessed, and major improvement costs and user costs are also determined in this 

module for each bridge in the portfolio. A set of feasible treatments are defined for each element 

condition state. Treatments classified as MRR or preservation treatments (these two terms “MRR” 

and “preservation” are used interchangeably throughout this dissertation) are committed mainly to 

preserve the element or restore it to a better condition. Each element condition state is associated 

with up to five treatments. One of these treatments is always the DN option to represent taking no 

action. These treatments are grouped into five main actions (i.e., MRR Actions 0, 1, 2, 3, and 4). 

Unit costs are assigned to each of these defined treatments. Each of these treatment is discussed in 

the subsequent section. Only MRR Action 0, which represents the DN option, is used in this 

module. Florida DOT’s AE models (Sobanjo & Thompson, 2016a) are adapted after being slightly 

modified to agree with these definitions.  

The module distinguishes functional improvement needs from preservation needs. Preservation 

needs (as assessed in the improvement module) are identified for each element condition state, 

while functional improvement needs are resulting from functional deficiencies associated with the 

entire bridge. All bridges listed in the portfolio are assessed for functional improvement needs. 

The module follows a common approach used by BrM (licensed to numerous state DOTs), NBIAS 
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(used by FHWA), and other state DOT’s BMSs to assess the economic consequences in terms of 

user costs due to functional deficiencies—possibly affecting the LOS provided to the users.  

The major cost of improvement needed to eliminate the functional deficiencies is estimated. 

Widening, raising, and/or strengthening (symbolized by FCI Action 5) improvement needs are 

assessed for each bridge based on several mathematical models. Each of these models rely on 

proven correlation/regression formulas, LOS and design standards, and unit costs. A functional 

improvement relieves the bridge from certain restrictions and reduces or eliminates any incurred 

user costs; however, a replacement (symbolized by REP Action 6) is assumed to relieve the bridge 

from all its restrictions, provide the required LOS and design standards, and eliminate all incurred 

user costs. The module assesses the replacement option of the entire bridge regardless of its 

element condition states or restrictions—assuming the replacement option is always feasible; and 

therefore, it’s eligible to compete. These estimated bridge costs are transferred to the improvement 

module for consideration in the LCCA. NBIAS’s and Florida DOT’s user cost models (Cambridge 

Systematics, 2011b; Sobanjo & Thompson, 2004) are adapted for assessing functional 

improvement and replacement needs. These default models can be substituted or customized as 

appropriate.  

The total LC period is referred to as “analysis period.” The length of this period depends on the 

agency’s preservation policies and preferences. A fixed long analysis period (usually around 50 

years) produces realistic LC alternatives (discussed in Chapter 5) covering most of the anticipated 

element service life. An analysis period of 54 years is used by default. Three types of LC profiles 

(i.e., DN, RO, and AE LC profiles) are constructed for each element to predict bridge and element 

health indices at different points in time, and estimate remaining service lives and LCCs. In this 

module, only the DN LC profiles are constructed to determine the element ESL, DN condition 
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states, and DN health indices at different points in time. The DN LC profile represents the “base” 

scenario of predicting condition of an untreated element (no actions are performed to extend the 

element ESL). This scenario simulates the element declining condition when no action (i.e., MRR 

Action 0) is ever taken until reaching its end-of-life threshold. The element deficiency screening 

process of the improvement module (discussed in the following chapter) relies on the DN LC 

profile produced results to evaluate the extent of element deterioration. Some elements (classified 

as “deficient elements”) may have deteriorated to a level where major repairs or proactive 

preservation efforts are necessary, and others may show no sign of deterioration. The subsequent 

sections are devoted to overview these underlying concepts. The module approach is based on the 

following concepts:  

1. Retrieve the different types of stored data associated with each bridge in the portfolio 

2. Construct the DN LC profile for each element of each bridge in the portfolio 

3. Predict the ESL, DN condition states, and DN health indices for each element at different 

points in the analysis period  

4. Predict the DN health indices for each bridge at different points in the analysis period 

5. Organize the produced DN LC profile results by element for each bridge in the portfolio 

6. Assess the functional improvement needs based on existing functional deficiencies for 

each bridge in the portfolio 

7. Estimate the economic consequences in terms of user costs due to existing functional 

deficiencies for each bridge in the portfolio 

8. Estimate the major improvement cost (i.e., FCI Action 5) required to relieve existing 

functional deficiencies for each bridge in the portfolio 
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9. Estimate the major improvement cost (i.e., REP Action 6) required to relieve each bridge 

in the portfolio from all its existing restrictions, provide the required LOS and design 

standards, and eliminate all incurred user costs  

10. Store the estimated major improvement and user costs for each bridge in the portfolio 
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Figure 4.1 Data processing module framework 
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4.3 Bridge Inspection Data 

As stated earlier, the proposed EB-MOO methodology is a data-driven process that relies on 

accurate “good” data from state and national data management systems or external sources to 

produce reliable results. Most state DOTs use BMSs to host NBI data (i.e., inventory, appraisal 

and condition data) and element-level inspection data, as well as maintenance management 

systems for maintenance-related data. These systems are used to inventory new structures, update 

conditions, track work accomplishments and costs, measure performance, predict deterioration 

trends, and recommend maintenance activities, preservation treatments and candidate bridge 

improvement (preservation, rehabilitation or replacement) projects. Other systems are also widely 

used by state DOTs to collect different types of data such as pavement condition data, mobility 

data, safety data, and environmental data. Along with these different state systems, a handful of 

national systems (i.e., NBI system, HPMS, NBIAS, HSIS, FARS, and LTBP InfoBridge) exist to 

provide national data in a consistent format. State DOTs are required to annually collect and submit 

most of these national data to comply with the federal data collection requirements and support 

the development of the Status of the Nation's Highways, Bridges, and Transit: Conditions & 

Performance Report to Congress (U.S. Department of Transportation, 2015), the national 

performance measurement, and the federal resource allocation (Cambridge Systematics, Inc., 

2009).  

4.3.1 National Bridge Inspection Standards 

The National Bridge Inspection Standards (NBIS) (23 USC 151) established in 1971. The core 

requirement of the NBIS is the periodic inspection of bridges carrying public traffic and greater 

than 20 ft. in length. Approximately, bridge inspection data from over 600,000 of the nation's 

bridges carrying public roads are annually being reported and maintained in the NBI system, since 
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1983. State DOTs annually report their inspection data to FHWA to be stored in the NBI system. 

To ensure consistent reported NBI data, state DOTs collect the data in accordance with the 

inspection procedures and format outlined in the FHWA’s Recording and Coding Guide for the 

Structure Inventory and Appraisal of the Nation's Bridges (FHWA, 1995). The recording and 

coding guide specifies 116 NBI coding items (structure inventory and appraisal items), describing 

a bridge location, geometrics, age, traffic, load capacity, structural condition, and other relevant 

features. Table 4.1 represents a complete list of these items. 
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Table 4.1 A complete list of NBI coding items 

 
Note. Adapted from the FHWA’s Recording and Coding Guide for the Structure Inventory and Appraisal 
of the Nation's Bridges (FHWA, 1995). 

1 State Code 22 Owner 43A
Kind of 
Material/Design 62 Culverts 96 Total Project Cost

8 Structure Number 26 Functional Class Of 
Inventory Rte.

43B Type of 
Design/Construction

63 Method Used To Determine 
Operating Rating

97 Year Of Improvement 
Cost Estimate

5 Inventory Route 27 Year Built 44
Structure Type, 
Approach Spans 64 Operating Rating 98 Border Bridge

5A Record Type 28
Lanes On/Under 
Structure 44A

Kind of 
Material/Design 65

Method Used To Determine 
Inventory Rating 98A Neighboring State Code

5B Route Signing Prefix 28A Lanes On Structure 44B
Type of 
Design/Construction 66 Inventory Rating 98B Percent Responsibility

5C
Designated Level of 
Service 28B Lanes Under Structure 45

Number Of Spans In 
Main Unit 67 Structural Evaluation 99

Border Bridge Structure 
Number

5D Route Number 29 Average Daily Traffic 46
Number Of Approach 
Spans 68 Deck Geometry 100

STRAHNET Highway 
Designation

5E Directional Suffix 30
Year Of Average Daily 
Traffic 47

Inventory Rte Total 
Horz Clearance 69

Underclear, Vertical & 
Horizontal 101

Parallel Structure 
Designation

2
Highway Agency 
District 31 Design Load 48

Length Of Maximum 
Span 70 Bridge Posting 102 Direction Of Traffic

3
County (Parish) 
Code 32

Approach Roadway 
Width 49 Structure Length 71 Waterway Adequacy 103

Temporary Structure 
Designation

4 Place Code 33 Bridge Median 50 Curb/Sidewalk Widths 72
Approach Roadway 
Alignment 104

Highway System Of 
Inventory Route

6 Features Intersected 34 Skew 50A
Left Curb/Sidewalk 
Width 75 Type of Work 105 Federal Lands Highways

6A Features Intersected 35 Structure Flared 50B
Right Curb/Sidewalk 
Width 75A Type of Work Proposed 106 Year Reconstructed

6B
Critical Facility 
Indicator 36 Traffic Safety Features 51

Bridge Roadway 
Width Curb-To-Curb 75B Work Done By 107 Deck Structure Type

7
Facility Carried By 
Structure 36A Bridge Railings 52

Deck Width, Out-To-
Out 76

Length Of Structure 
Improvement 108

Wearing Surface/
Protective System

9 Location 36B Transitions 53
Min Vert Clear Over 
Bridge Roadway 90 Inspection Date 108A Type of Wearing Surface

10
Inventory Rte, Min 
Vert Clearance 36C Approach Guardrail 54

Minimum Vertical 
Underclearance 91

Designated Inspection 
Frequency 108B Type of Membrane

11 Kilometerpoint 36D
Approach Guardrail 
Ends 54A Reference Feature 92 Critical Feature Inspection 108C Deck Protection

12
Base Highway 
Network 37 Historical significance 54B

Minimum Vertical 
Underclearance 92A Fracture Critical Details 109

Average Daily Truck 
Traffic

13
Inventory Route, 
Subroute Number 38 Navigation Control 55

Min Lateral Underclear 
On Right 92B Underwater Inspection 110

Designated National 
Network

13A
LRS Inventory 
Route 39

Navigation Vertical 
Clearance 55A Reference Feature 92C Other Special Inspection 111

 Pier or Abutment 
Protection

13B Subroute Number 40
Navigation Horizontal 
Clearance 55B

Minimum Lateral 
Underclearance 93

Critical Feature Inspection 
Dates 112 NBIS Bridge Length

16 Latitude 41
Structure 
Open/Posted/Closed 56

Min Lateral Underclear 
On Left 93A Fracture Critical Details Date 113 Scour Critical Bridges

17 Longitude 42 Type Of Service 58 Deck 93B Underwater Inspection Date 114
Future Average Daily 
Traffic

19
Bypass/Detour 
Length 42A

Type of Service On 
Bridge 59 Superstructure 93C Other Special Inspection Date 115

Year of Future Average 
Daily Traffic

20 Toll 42B
Type of Service Under 
Bridge 60 Substructure 94 Bridge Improvement Cost 116

 Minimum Navigation 
Vertical Clearance, Vertical 
Lift Bridge

21
Maintenance 
Responsibility 43 Structure Type, Main 61

Channel/Channel 
Protection 95 Roadway Improvement Cost

NBI Coding Items
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The NBI condition rating reflects the range of the physical condition of the major bridge structural 

components: deck, superstructure, substructure, and culvert. The recording and coding guide 

defines condition ratings on a scale of 0 to 9. Turner and Richardson stated that this scale indicates 

the overall structural integrity but a little information about the type and location of the defect 

and/or damage (as cited in Elbehairy, 2007). For example, an NBI condition rating of 3 (serious 

condition) is used to describe a bridge component failure. This low condition rating signals to a 

serious deterioration that could compromise the structural capacity, safety, and serviceability of 

the bridge; however, in most cases, the extent of the deterioration is limited to a local element and 

not the entire component of the bridge. Table 4.2 provides a description of each of these NBI 

condition ratings. 
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Table 4.2 Descriptions of NBI condition ratings 

Code Condition Description 
N Not Applicable  
9 Excellent Condition  

8 Very Good 
Condition 

No problems noted. 

7 Good Condition Some minor problems. 

6 Satisfactory 
Condition 

Structural elements show some minor deterioration. 

5 Fair Condition 
All primary structural elements are sound but may have 
minor section loss, cracking, spalling or scour. 

4 Poor Condition Advanced section loss, deterioration, spalling or scour. 

3 Serious Condition 

Loss of section, deterioration, spalling or scour have 
seriously affected primary structural components. Local 
failures are possible. Fatigue cracks in steel or shear cracks 
in concrete may be present. 

2 Critical Condition 

Advanced deterioration of primary structural elements. 
Fatigue cracks in steel or shear cracks in concrete may be 
present or scour may have removed substructure support. 
Unless closely monitored it may be necessary to close the 
bridge until corrective action is taken. 

1 Imminent Failure 
Condition 

Major deterioration or section loss present in critical 
structural components or obvious vertical or horizontal 
movement affecting structure stability. Bridge is closed to 
traffic but corrective action may put back in light service. 

0 Failed Condition Out of service - beyond corrective action. 
Note. Adapted from the FHWA’s Recording and Coding Guide for the Structure Inventory and 
Appraisal of the Nation's Bridges (FHWA, 1995). 

The recording and coding guide classifies a bridge as “structurally deficient” if at least one of its 

NBI condition ratings (deck, superstructure, and substructure) is rated 4 or less, or at least one of 

its NBI appraisal ratings (structural condition or waterway adequacy) is rated 2 or less. FHWA (23 

CFR 490.409—Calculation of National Performance Management Measures for Assessing Bridge 

Condition) classifies these condition ratings as follows: 7, 8, or 9 represents “Good” condition; 5 

or 6 means “Fair” condition; and 4 or less indicates “Poor” condition. The intent of this 

classification is to develop condition targets for NHS bridges in these defined conditions, 

expressed as the percentage of bridge deck area. 
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4.3.2 Element-Level Bridge Inspection Data 

The NBI condition ratings describe the overall bridge component conditions but not individual 

elements as the element-level bridge inspection data. The ratings are susceptible to subjective 

interpretation by inspectors. Moreover, the ratings provide information on the levels of severity 

but lack to quantify the extent of the deterioration and/or damage (Adams et al., 2009). On the 

other hand, for example, instead of rating the condition of the entire superstructure component, an 

element-level bridge inspection looks at the condition of the individual elements, such as girders, 

floor beams, pins and hangers, and bearings, and captures the severity and extent (percentage) of 

the defects.  

Several state DOTs have been collecting this type of element-level data since the ‘90s. MAP-21, 

23 USC 144(d)(2), mandated to begin collecting the element-level bridge inspection data starting 

from October 1, 2014, for each NHS bridge in accordance with 23 CFR 650 Subpart C.  Since this 

requirement, all state DOTs have been collecting the element-level data. The use of this type of 

element-level data provides a thorough and objective assessment of the bridge condition. The 

element-level data permit to adequately assess the damage modes experienced in different 

elements. Table 4.3 lists the national bridge elements (NBEs) specified in the AASHTO Manual 

for Bridge Element Inspection (AASHTO, 2013a). NBEs are intended to facilitate and standardize 

the collection of bridge element conditions across the country. NBEs represent the primary 

structural components of bridges needed to determine the overall condition and safety of the 

primary load carrying members (i.e., material and construction types of decks/slabs, bridge 

railings, superstructures, substructures, bearings, joints, and culverts). 
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Table 4.3 A complete list of NBEs 

 
 Note. Adapted from the FHWA Training Course: Introduction to Element-Level Bridge Inspection (FHWA, 2015).

El. No.
12
13
15
16
28
29
30
31
38
54
60
65

Decks / Slabs (NBEs)
Element  Name Units

Reinforced Concrete Deck AREA (sq. ft.)
Prestressed Concrete Deck AREA (sq. ft.)
Prestressed Concrete Top Flange AREA (sq. ft.)
Reinforced Concrete Top Flange AREA (sq. ft.)
Steel Deck—Open Grid AREA (sq. ft.)
Steel Deck—Concrete Filled AREA (sq. ft.)
Steel Deck—Corrugated/Orthotropic/Etc. AREA (sq. ft.)
Timber Deck AREA (sq. ft.)
Reinforced Concrete Slab AREA (sq. ft.)
Timber Slab AREA (sq. ft.)
Other Material Deck AREA (sq. ft.)
Other Material Slab AREA (sq. ft.)

El. No.
330
331
332
333
334

Bridge Rails (NBEs)
Element  Name Units

Metal Bridge Railing LENGTH (ft.)
Reinforced Concrete Bridge Railing LENGTH (ft.)
Timber Bridge Railing LENGTH (ft.)
Other Bridge Railing LENGTH (ft.)
Masonry Bridge Railing LENGTH (ft.)

El. No.
320
321

Approach Slabs (BMEs)
Element  Name Units

Prestressed Concrete Approach Slab AREA (sq. ft.)
Reinforced Concrete Approach Slab AREA (sq. ft.)

El. No.
310
311
312
313
314
315
316

Bearings (NBEs)
Element  Name Units

Elastomeric Bearing EACH
Movable Bearing (roller, sliding, etc.) EACH
Enclosed/Concealed Bearing EACH
Fixed Bearing EACH
Pot Bearing EACH
Disk Bearing EACH
Other Bearing EACH

El. No.
240
241
242
243
244
245

Culverts (NBEs)
Element  Name Units

Culvert, Steel LENGTH (ft.)
Culvert, Reinforced Concrete LENGTH (ft.)
Culvert, Timber LENGTH (ft.)
Culvert, Other LENGTH (ft.)
Culvert, Masonry LENGTH (ft.)
Culvert, Prestressed Concrete LENGTH (ft.)

El. No.
510
515
520
521

Wearing Surface and Protective Systems (BMEs)
Element  Name Units

Wearing Surface AREA (sq. ft.)
Steel Protective Coating AREA (sq. ft.)
Concrete Reinforcing Steel Protective System AREA (sq. ft.)
Concrete Protective Coating AREA (sq. ft.)

El. No.
300
301
302
303
304
305
306

Joints (BMEs)
Element  Name Units

Strip Seal Expansion Joint LENGTH (ft.)
Pourable Joint Seal LENGTH (ft.)
Compression Joint Seal LENGTH (ft.)
Assembly Joint/Seal (Modular) LENGTH (ft.)
Open Expansion Joint LENGTH (ft.)
Assembly Joint without Seal LENGTH (ft.)
Other Joint LENGTH (ft.)

El. No.
202
203
204
205
206
207
208
210
211
212
213
215
216
217
218
219
220
225
226
227
228
229
231
233
234
235
236

Substructures (NBEs)
Element  Name Units

Columns, Steel EACH
Columns, Other EACH
Columns, Prestressed Concrete EACH
Columns, Reinforced Concrete EACH
Columns, Timber EACH
Column Tower (Trestle), Steel LENGTH (ft.)
Column Tower (Trestle), Timber LENGTH (ft.)
Pier Wall, Reinforced Concrete LENGTH (ft.)
Pier Wall, Other LENGTH (ft.)
Pier Wall, Timber LENGTH (ft.)
Pier Wall, Masonry LENGTH (ft.)
Abutment, Reinforced Concrete LENGTH (ft.)
Abutment, Timber LENGTH (ft.)
Abutment, Masonry LENGTH (ft.)
Abutment, Other LENGTH (ft.)
Abutment, Steel LENGTH (ft.)
Pile Cap/Footing , Reinforced Concrete LENGTH (ft.)
Pile, Steel EACH
Pile, Prestressed Concrete EACH
Pile, Reinforced Concrete EACH
Pile, Timber EACH
Pile, Other EACH
Pier Cap, Steel LENGTH (ft.)
Pier Cap, Prestressed Concrete LENGTH (ft.)
Pier Cap, Reinforced Concrete LENGTH (ft.)
Pier Cap, Timber LENGTH (ft.)
Pier Cap, Other LENGTH (ft.)

El. No.
102
104
105
106
107
109
110
111
112
113
115
116
117
118
120
135
136
141
142
143
144
145
146
147
148
149
152
154
155
156
157
161
162

Superstructures (NBEs)
Element  Name Units

Closed Web/Box Girder, Steel LENGTH (ft.)
Closed Web/Box Girder, Prestressed Concrete LENGTH (ft.)
Closed Web/Box Girder, Reinforced Concrete LENGTH (ft.)
Closed Web/Box Girder, Other LENGTH (ft.)
Open Girder/Beam, Steel LENGTH (ft.)
Open Girder/Beam, Prestressed Concrete LENGTH (ft.)
Open Girder/Beam, Reinforced Concrete LENGTH (ft.)
Open Girder/Beam, Timber LENGTH (ft.)
Open Girder/Beam, Other LENGTH (ft.)
Stringer, Steel LENGTH (ft.)
Stringer, Prestressed Concrete LENGTH (ft.)
Stringer, Reinforced Concrete LENGTH (ft.)
Stringer, Timber LENGTH (ft.)
Stringer, Other LENGTH (ft.)
Truss, Steel LENGTH (ft.)
Truss, Timber LENGTH (ft.)
Truss, Other LENGTH (ft.)
Arch, Steel LENGTH (ft.)
Arch, Other LENGTH (ft.)
Arch, Prestressed Concrete LENGTH (ft.)
Arch, Reinforced Concrete LENGTH (ft.)
Arch, Masonry LENGTH (ft.)
Arch, Timber LENGTH (ft.)
Cable – Main, Steel LENGTH (ft.)
Cable – Secondary, Steel EACH
Cable – Secondary, Other EACH
Floor Beam, Steel LENGTH (ft.)
Floor Beam, Prestressed Concrete LENGTH (ft.)
Floor Beam, Reinforced Concrete LENGTH (ft.)
Floor Beam, Timber LENGTH (ft.)
Floor Beam, Other LENGTH (ft.)
Pin, Pin and Hanger Assembly, or both EACH
Gusset Plate EACH
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Each element has a unit of measure and four defined condition states (denoted as CS1, CS2, CS3, 

and CS4). A higher condition state indicates a higher severity of the damage and/or deterioration 

of the element. The general definitions of the condition states are as follows: CS1–Good, CS2–

Fair, CS3–Poor, and CS4–Severe. Table 4.4 shows the specific condition state definitions for 

Element 12—Deck Reinforced Concrete. The bridge inspector records the quantity or percentage 

of each element found in each condition state. Table 4.5 presents an example of quantities assigned 

to the four condition states for Element 107 (Steel Open Girder/Beam) and its steel protective 

coating (Element 515). 

Table 4.4 Condition state definitions for Element 12—Deck Reinforced Concrete 

Condition State Definitions: Element 12 - RC Deck 
Defect CS1 CS2 CS3 CS4 

Delamination / Spall / 
Patched Area  
(1080) 

None Delaminated. 
Spall 1 in. or less 
deep or 6 in. or 
less in diameter. 
Patched area that 
is sound. 

Spall greater than 1 in. 
deep or greater than 6 
in. diameter. Patched 
area that is unsound or 
showing distress. Does 
not warrant structural 
review. 

The condition 
warrants a 
structural 
review to 
determine the 
effect on 
strength or 
serviceability 
of the element 
or bridge; OR a 
structural 
review has 
been completed 
and the defects 
impact strength 
or 
serviceability 
of the element 
or bridge. 

Exposed Rebar 
(1090) 

None Present without 
measurable 
section loss. 

Present with 
measurable section 
loss, but does not 
warrant structural 
review. 

Efflorescence / Rust 
Staining (1120) 

None Surface white 
without build-up 
or leaching 
without rust 
staining. 

Heavy build-up with 
rust staining. 

Cracking 
 (1130) 

Width less than 
0.012 in. or 
spacing greater 
than 3.0 ft. 

Width 0.012–0.05 
in. or spacing of 
1.0–3.0 ft. 

Width greater than 0.05 
in. or spacing of less 
than 1 ft. 

Note. Adapted from the FHWA Training Course: Introduction to Element-Level Bridge Inspection 
(FHWA, 2015). 
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Table 4.5 Example of condition state quantities assigned to Element 107—Steel Open Girder/Beam 

Element Total 
Qty Units CS1 

Qty 
CS2 
Qty 

CS3 
Qty 

CS4 
Qty 

107 - Steel Open Girder/Beam 1098 ft. 1018 80 0 0 
515 - Steel Protective Coating 13931 sq. ft. 0 13851 0 80 

Note. Adapted from the FHWA Training Course: Introduction to Element-Level  
Bridge Inspection (FHWA, 2015). 

4.4 Preservation Actions  

A set of feasible treatments is defined for each element condition state. Treatments classified as 

MRR (or preservation) treatments are committed mainly to preserve the element or restore it to a 

better condition. Each element condition state is associated with up to five treatments. One of these 

treatments is always the DN option to represent taking no action. These treatments are grouped 

into five main actions: MRR Action 0, MRR Action 1, MRR Action 2, MRR Action 3 and MRR 

Action 4. MRR Action 0 includes only the DN option. The other actions involve special treatments, 

minor and/or major repairs, and/or entire or partial element replacement.  

Unit costs are assigned to each of these treatments. The total unit cost includes the direct and 

indirect costs. Table 4.6 shows an example of the different feasible treatments assigned to Element 

207 (Steel Column Tower Element). The table is organized by MRR action, element condition 

state, treatment name, treatment key, total unit cost, and direct unit cost. In this example, MRR 

Action 4 can only be performed when the element is in CS3 or CS4. Only one feasible treatment 

under MRR Action 4 is assigned to each of these condition states:  

• For CS3, MRR Action 4—Mitigate settlement or scour 

• For CS4, MRR Action 4—Replace unit 
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Table 4.6 Example of the feasible treatments assigned to Element 207—Steel Column Tower Element 

MRR 
Action 

Element 
CS Treatment Name Treatment 

Key 
Total Unit 
Cost ($) 

Direct Unit 
Cost ($) 

1 2 Spot blast 319 102.74 11.42 
1 3 Spot blast and minor repair 302 102.74 11.42 
1 4 Spot blast and major repair 202 2054.63 228.29 
2 2 Spot blast and minor repair 302 102.74 11.42 
2 3 Spot blast and major repair 202 2054.63 228.29 
2 4 Repair distortion 248 2054.63 228.29 
3 3 Repair distortion 248 2054.63 228.29 
3 4 Mitigate settlement or scour 247 9702.47 1078.05 
4 3 Mitigate settlement or scour 247 9702.47 1078.05 
4 4 Replace unit 144 38809.88 4312.21 

Note. Retrieved from Implementation of the 2013 AASHTO Manual for Bridge Element Inspection 
(Sobanjo & Thompson, 2016a). 

4.5 Element Preservation Action Costs  

An element preservation action costs (symbolized by PACelm) is the cost of implementing a 

preservation action. The cost is made up of the direct and indirect costs and applied at the end of 

the implementation year. The direct cost is the sum of all costs involved to preserve, repair, or 

replace the element. The other component is the sum of all costs indirectly incurred (e.g., costs of 

maintaining traffic, and engineering design). Florida DOT’s AE models (Sobanjo & Thompson, 

2016a) are incorporated in the improvement module (discussed in this Chapter 5) to estimate these 

preservation action costs—slightly modified to agree with the defined actions for this research.  

4.6 Functional Improvement Action 

The proposed EB-MOO methodology distinguishes functional improvement needs from 

preservation needs. Preservation needs are identified for each element condition state, while 

functional improvement needs are resulting from functional deficiencies associated with the entire 

bridge. All bridges in the portfolio are assessed for functional improvement needs. A functional 

improvement (symbolized by FCI Action 5) relieves the bridge from certain restrictions and 
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reduces or eliminates any incurred user costs. Widening, raising, and/or strengthening 

improvement needs are assessed for each bridge based on several mathematical models. Each of 

these models rely on proven correlation/regression formulas, LOS and design standards, and unit 

costs. NBIAS’s and Florida DOT’s user cost models (Cambridge Systematics, 2011b; Sobanjo & 

Thompson, 2004) are adapted for assessing functional improvement needs. 

4.6.1 Widening Improvement Need 

Bridge Roadway Width Deficiency  

Widening improvement need is assessed when the bridge roadway width is less than the required 

width. The bridge roadway width is specified by NBI coding item 51 for the roadways on the 

structure, and NBI coding item 47 for roadways under the structure. However, only NBI coding 

item 51 is accepted—it’s assumed that it is infeasible to widen the roadway under a bridge. To 

determine if the bridge carries a highway traffic, the module examines the coded value of NBI 

coding item 42A. If NBI coding item 42A is coded as either 1, 4, 5, 6, 7, or 8, then the bridge is 

deemed to be carrying a highway traffic, and the recorded value of NBI coding item 51 is accepted 

for the assessment. Required width is calculated by Equation (4.1) as follows:  

(Cambridge Systematics, 2011b) 

Required Width = 2 × LOS Shoulder Width + Number of Lanes × LOS Lane Width  (4.1) 

where 

Required Width = roadway width required for the bridge; 

Number of Lanes = number of lanes of the roadway, specified by NBI coding item 28;  

LOS Lane Width = LOS standard for lane width, specified by the agency’s roadway legal 
standards; and  

LOS Shoulder Width = LOS standard for shoulder width, specified by the agency’s roadway 
legal standards. 
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4.6.2 Raising Improvement Need 

Vertical Clearance Deficiency  

Raising improvement need is assessed when the recorded minimum vertical clearance over the 

roadway (NBI coding item 10) fails to meet the agency’s LOS standard for vertical clearance. 

Hence, the bridge vertical clearance is presumed deficient and forcing a percentage of truck traffic 

(based on truck height) to use alternative routes. The module uses the following Equation (4.2) to 

examine the recorded minimum vertical clearance over the roadway. 

(Cambridge Systematics, 2011b) 

Vertical Clearance < LOS Vertical Clearance (4.2) 

where 

Vertical Clearance = 

minimum vertical clearance over the roadway, specified by NBI coding 
item 28 (if the value is missing or invalid, then NBI coding item 53 is used 
for the roadway on the bridge, and NBI coding item 54 is used for roadways 
under the bridge); and  

LOS Vertical 
Clearance = LOS standard for vertical clearance, specified by the agency’s roadway 

legal standards. 

 
4.6.3 Strengthening Improvement Need 

Load Capacity deficiency 

Strengthening improvement is assessed when the recorded bridge operating load rating (NBI 

coding item 46) fails to meet the agency’s LOS standard for bridge operating load rating. Hence, 

the bridge load rating is presumed deficient and creating certain truck traffic (based on truck 

height) to use longer detour routes. The module uses the following Equation (4.3) to examine the 

recorded operating load rating. 
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(Sobanjo & Thompson, 2004). 

Operating Load Rating < LOS Operating Load Rating (4.3) 

where 

Operating Load 
Rating = current bridge operating load rating, specified by NBI coding item 46; and 

LOS Operating 
Load Rating = LOS standard for bridge operating load rating, specified by the agency’s 

bridge load rating and posting legal standards.  

 
4.6.4 Functional Improvement Cost 

Two types of bridge-level major improvement costs (denoted by MICbrg) are determined by the 

module: functional improvement and replacement costs. Functional improvement cost is the cost 

of improvement needed to eliminate incurred user costs. Functional improvement cost includes 

widening cost (required to eliminate the bridge width deficiency), raising cost (required to 

eliminate the bridge vertical clearance deficiency), and/or strengthening cost (required to eliminate 

the bridge load capacity deficiency). Replacement cost is the cost incurred to relieve the bridge 

from all its restrictions (discussed in the subsequent section). Major improvement cost needed to 

eliminate any existing functional deficiencies is estimated. Bridges identified with multiple 

functional improvements needs, the highest of the calculated improvement costs is used. The 

module determines the major cost of a functional improvement action (FCI Action 5) performed 

in a program year by Equation (4.4) as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑊𝑊𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 ,𝑅𝑅𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 , 𝑆𝑆𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘�      (4.4) 

where 

𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝐹𝐹I  = major cost of a functional improvement action (FCI Action 5) performed on bridge 

k in a program year; 

𝑊𝑊𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   = cost of a widening improvement performed on bridge k in a program year; 
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𝑅𝑅𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = cost of a raising improvement performed on bridge k in a program year; and 

𝑆𝑆𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = cost of a strengthening improvement performed on bridge k in a program year. 

 
4.6.4.1 Widening Improvement Cost 

The cost of widening improvement is always incurred within the program period to eliminate the 

bridge roadway width deficiency. It is possible a widening improvement won’t eliminate all 

accident costs, but it substantially reduces them. For simplicity and consistency, the module 

assumes a functional improvement action (FCI Action 5) eliminates all incurred user costs. The 

cost of a widening improvement performed on a bridge in a program year is calculated by Equation 

(4.5) as follows: 

𝑊𝑊𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  =  𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝑊𝑊𝑊𝑊𝑀𝑀 (4.5) 

where 

𝑊𝑊𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   = cost of a widening improvement performed on bridge k in a program year; 

𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = roadway width required for bridge k, determined by Equation (4.1);  

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = length of bridge k, specified by NBI coding item 49; and  

𝑊𝑊𝑊𝑊𝑀𝑀 = unit cost of widening per square meter of bridge deck area, specified by the agency 
(Florida DOT’s unit costs are used by default). 
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4.6.4.2 Raising Improvement Cost 

The cost of raising improvement is the incurred cost to eliminate the bridge vertical clearance 

deficiency. It’s possible a raising improvement won’t eliminate all user costs due to the vertical 

clearance deficiency, but it substantially reduces them. For simplicity and consistency, the module 

assumes a functional improvement eliminates all incurred user costs. The cost of a raising 

improvement performed on a bridge in a program year is calculated by Equation (4.6) as follows: 

𝑅𝑅𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  =  𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝑅𝑅𝑊𝑊𝑀𝑀 (4.6) 

where 

𝑅𝑅𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   = cost of a raising improvement performed on bridge k in a program year; 

𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = roadway width required for bridge k, determined by Equation (4.1);  

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = length of bridge k, specified by NBI coding item 49; and  

𝑅𝑅𝑊𝑊𝑀𝑀 = unit cost of raising per square meter of bridge deck area, specified by the agency 
(Florida DOT’s unit costs are used by default). 
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4.6.4.3 Strengthening Improvement Cost 

The cost of strengthening improvement is the incurred cost to eliminate the bridge operating load 

rating deficiency. It’s possible a strengthening improvement won’t eliminate all user costs due to 

this load rating deficiency, but it substantially reduces them. For simplicity and consistency, the 

module assumes a functional improvement eliminates all incurred user costs. The cost of a 

strengthening improvement performed on a bridge in a program year is calculated by Equation 

(4.7) as follows: 

𝑆𝑆𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  =  𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘× 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘× 𝑆𝑆𝑊𝑊𝑀𝑀 (4.7) 

where 

𝑅𝑅𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   = cost of a strengthening improvement performed on bridge k in a program year; 

𝑅𝑅𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = roadway width required for bridge k, determined by Equation (4.1);  

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = length of bridge k, specified by NBI coding item 49; and  

𝑆𝑆𝑊𝑊𝑀𝑀 = unit cost of strengthening per square meter of bridge deck area, specified by the 
agency (Florida DOT’s unit costs are used by default). 

 
4.7 Replacement Action  

A functional improvement relieves the bridge from certain restrictions and reduces or eliminates 

any incurred user costs; however, a replacement action (REP Action 6) is assumed to relieve the 

bridge from all its restrictions, provide the required LOS and design standards, and eliminate all 

incurred user costs. The module assesses the replacement option for a candidate bridge regardless 

of its element condition states or restrictions—assuming the replacement option is always feasible; 

and therefore, it’s eligible to compete. NBIAS’s and Florida DOT’s user cost models Cambridge 

Systematics, 2011b; Sobanjo & Thompson, 2004) are adapted for the assessment of replacement 

needs.  
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4.7.1  Replacement Cost  

The module calculates the bridge replacement cost same as BrM, NBIAS and Florida DOT’s 

PLAT. The cost of replacing a bridge is determined by Equation (4.8) as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  × 𝑆𝑆𝑆𝑆 (4.8) 

where 

𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑅𝑅𝑅𝑅𝑅𝑅  = major cost of replacing bridge k in a program year; 

𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   = new deck area of bridge k, meeting design standards for lane and shoulder widths, 
determined by Equation (4.9); 

𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = 
unit cost of reconstructing bridge k per square meter of bridge deck area, meeting 
design standards, specified by the agency (Florida DOT’s unit costs are used by 
default); and 

𝑆𝑆𝑆𝑆 = cost increase coefficient, specified by the agency (1 is the default). 
 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 =  𝑅𝑅𝐷𝐷𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘× 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  (4.9) 

where 

𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = new deck area of bridge k, meeting design standards for lane and shoulder widths; 

𝑅𝑅𝐷𝐷𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = design width required for bridge k, determined by Equation (4.10); and 

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = length of bridge k, specified by NBI coding item 49. 
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(Sobanjo & Thompson, 2004). 

Required Design Width = 2 × Design Shoulder Width + Number of Lanes × Design Lane  (4.10) 

where 

Required Design Width  = design width required for the bridge; 

Number of Lanes = number of lanes of the roadway, specified by NBI coding item 28;  

Design Lane Width = design standard for lane width, specified by the agency’s roadway 
legal standards; and  

Design Shoulder Width = design standard for shoulder width, specified by the agency’s 
roadway legal standards. 

 
4.8 Bridge User Cost 

The bridge user cost is the sum of all costs incurred by users over the bridge LC. It is important to 

use the same type of user costs and most significant in the LCC calculation to ensure consistency 

and no bias. User costs associated with work zones include delays, vehicle operating costs, and 

costs related to vehicle crashes. While these costs are important to consider in a LCCA to truly 

reflect the overall LCC, they are often omitted due to their similarity (FHWA, 2002). The non-

work zone-related user costs are generally associated with the bridge functional deficiencies—

vehicles must take detours due to a narrow bridge width, or restricted vertical clearance or load 

capacity.  

These functional deficiencies may increase vehicle operating costs (due to detours) or reduce 

safety (increase in accident rates). Several models exist in estimating these user costs. Generally, 

these models are based on regression formulas taking into consideration the traffic growth over 

time. The NCHRP Synthesis of Highway Practice 494: Life-cycle Cost Analysis for Management 

of Highway Assets (Flannery et al., 2016) discuses a study conducted for South Carolina DOT in 

2008. The study revealed that 60% of the 33 surveyed state DOTs don’t include user costs in their 



 

111 

 

LCCAs. The data processing module provides an avenue to incorporates these substantial costs 

into a LCCA of the improvement module.  

As stated earlier, the module assesses each bridge independently for functional improvement 

needs. When improvement needs are warranted, the economic consequences, in terms of user 

costs, are estimated for each analysis year. For the identified deficiency, a user cost for each 

analysis year is calculated, including action implementation years. Accident risk, vertical 

clearance, and load capacity costs (each of them is subsequently defined) are the only user costs 

computed by the module. The sum of these three types of user costs constitutes the total bridge 

user cost. The following Equation (4.11) is applied to compute the total user cost for an analysis 

year. 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 =  𝐷𝐷𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑦𝑦 +  𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 + 𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑦𝑦  (4.11) 

where 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k total user cost for analysis year y; 

𝐷𝐷𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k accident risk cost for analysis year y; 

𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k vertical clearance cost for analysis year y; and 

𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k load capacity cost for analysis year y. 

 

Total user costs for all analysis years are discounted to present values and added to the LCC. To 

provide a uniform basis for assessing alternatives, no user costs are recognized prior to analysis 

year 1. Element deterioration and traffic growth are assumed to contribute to the increase of user 

costs over time. No additional user costs are considered beyond the end of the analysis period— 

pass this point, only the residual value (covered in Chapter 5) is added to LC profile. The module 
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follows a common approach used by BrM, NBIAS, and other state DOT’s BMSs to assess the 

economic consequences in term of user costs due to functional deficiencies—possibly affecting 

LOS provided to the users.  

4.8.1 Traffic Volume Growth 

The traffic volume growth is considered in the user cost calculations. The module assumes traffic 

volumes change over the analysis period. For each roadway on and under the bridge, the traffic 

volume is estimated for each analysis year. Traffic volume is forecasted using an exponential 

interpolation between two average daily traffic (ADT) points: observed and future. The same 

interpolation approach as Florida DOT’s PLAT, NBIAS and BrM is used. However, if any 

required variable to compute the traffic volume growth is missing, the module relies on the latest 

available traffic volume and ignores the proportional effect. The forecast ADT of a given analysis 

year is evaluated by Equation (4.12) as follows: 

(Cambridge Systematics, 2011b) 

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 = 𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦0 �
𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦1
𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦0

�

𝑦𝑦−𝑦𝑦0
𝑦𝑦1−𝑦𝑦0

 (4.12) 

where   

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 = the forecast ADT for analysis year y;  

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦0 = the recent ADT (NBI coding item 29);  

𝑦𝑦0 = the year of recent ADT (NBI coding item 30);  

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦1 = the future ADT (NBI coding item 114);   

𝑦𝑦1 = the year of future ADT (NBI coding item 115); and  

𝑦𝑦 = the analysis year of forecast ADT.   
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4.8.2 Accident Risk Cost  

NBIAS assumes the accident risk rate is affected by the bridge roadway width deficiency. NBIAS 

calculates the annual reduction in accident risk costs using the following Equation (4.13) 

(Cambridge Systematics, 2011b). 

𝐷𝐷𝑅𝑅𝐷𝐷𝑀𝑀 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴 × 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 × (𝐷𝐷𝑅𝑅𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 − 𝐷𝐷𝑅𝑅𝑏𝑏𝑟𝑟𝑟𝑟) (4.13) 

where 

𝐷𝐷𝑅𝑅𝐷𝐷𝑀𝑀 = annual reduction in accident risk costs; 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = accident risk cost weight, specified by the agency; 

𝐷𝐷𝐷𝐷𝐴𝐴 = average daily traffic on the bridge;  

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = average cost per accident, specified by the agency; 

𝐷𝐷𝑅𝑅𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 = current accident rate based on the bridge width, determined by Equation (4.14); and  

𝐷𝐷𝑅𝑅𝑏𝑏𝑟𝑟𝑟𝑟 = required accident rate based on design standards; 

  

𝐷𝐷𝑅𝑅𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 = 𝐾𝐾 × 𝑊𝑊−𝐷𝐷 × �1 + 0.5
𝐵𝐵 − 𝑅𝑅𝑎𝑎
𝐵𝐵 − 𝑀𝑀

� (4.14) 

where 

𝐾𝐾 = roadway width in feet; 

𝑊𝑊 = improvement model scaling coefficient (default value is 200); 

𝐷𝐷 = improvement model parameter (default value is 6.5); 

𝐵𝐵 = improvement model parameter for the maximum approach alignment rating (default 
value is 9); 

𝑀𝑀 = 
improvement model parameter for the minimum approach alignment rating (default 
value is 2); and 

𝑅𝑅𝑎𝑎 = approach alignment rating on the bridge (NBI coding item 72). 
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Equation (4.13) is used to estimate the accident risk cost incurred by the bridge roadway width 

deficiency for a given analysis year. The equation is slightly modified by eliminating the term of 

𝐷𝐷𝑅𝑅𝑏𝑏𝑟𝑟𝑟𝑟 and considering an accident risk cost weight factor, 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 . Agencies often assign weight 

factors, less than 1, to different user costs to reduce their effect on the analysis—by default, a 

constant weight factor equals to 1 is chosen. The module assumes a widening improvement 

restores the required bridge roadway width (by design standards), and the required accident rate 

equals to 0—to some extent, results are more conservative than Equation (4.13). The following 

Equation (4.15) is the derived equation applied to calculate the bridge accident risk cost for an 

analysis year. 

𝐷𝐷𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 × 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐷𝐷𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏  (4.15) 

where 

𝐷𝐷𝑅𝑅𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k accident risk cost for analysis year y; 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = accident risk cost weight, specified by the agency; 

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 = forecast ADT for analysis year y, determined by Equation (4.12); 

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = average cost per accident, specified by the agency; and 

𝐷𝐷𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏  = current accident rate based on bridge k width, determined by Equation (4.14); 
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4.8.3 Vertical Clearance Cost 

Florida DOT’s user cost model assumes that user costs due to vertical clearance restrictions occur 

when the bridge vertical clearance is determined deficient. For simplicity and consistency, the 

module eliminates all user costs after performing a functional improvement action (FCI Action 5). 

The annual reduction in vertical clearance costs is calculated using the following Equation (4.16) 

(Sobanjo & Thompson, 2016b). 

𝐷𝐷𝑉𝑉𝑀𝑀𝑀𝑀 = 𝑊𝑊𝑣𝑣𝑡𝑡𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴 × 𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 × 𝐴𝐴𝑅𝑅 × �𝐴𝐴𝐷𝐷𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 − 𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖� (4.16) 

where 

𝐷𝐷𝑉𝑉𝑀𝑀𝑀𝑀 = annual reduction in vertical clearance costs; 

𝐷𝐷𝐷𝐷𝐴𝐴 = average daily traffic on the bridge;  

𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 = detour cost per truck, determined by Equation (4.18); 

𝐴𝐴𝑅𝑅 = fraction of trucks in the ADT, specified by NBI coding item 109; 

𝐴𝐴𝐷𝐷𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 = percent of trucks detoured by the current bridge (Figures 4.2 and 4.3); 

𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 = percent of trucks detoured by the improved bridge; and 

𝑊𝑊𝑣𝑣𝑡𝑡𝑎𝑎 = vertical clearance cost weight, specified by the agency; 

Equation (4.16) is used to estimate the cost incurred by the bridge vertical clearance deficiency for 

an analysis year. The equation is slightly modified by eliminating the term of  𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖. Agencies 

often assign weight factors, less than 1, to different user costs to reduce their effect on the 

analysis—by default, a constant vertical clearance cost weight factor, 𝑊𝑊𝑣𝑣𝑡𝑡𝑎𝑎, equals to 1 is chosen. 

The module assumes a raising improvement restores the bridge vertical clearance required by 

design standards, and the percentage of trucks detoured by the improved bridge equals to 0— to 
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some extent, results are more conservative than Equation (4.16). The following Equation (4.17) is 

the derived equation applied to calculate the bridge vertical clearance cost for an analysis year. 

𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 = 𝑊𝑊𝑣𝑣𝑡𝑡𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 × 𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 ×  𝐴𝐴𝑅𝑅 × 𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (4.17) 

where 

𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k vertical clearance cost for analysis year y; 

𝑊𝑊𝑣𝑣𝑡𝑡𝑎𝑎 = vertical clearance cost weight, specified by the agency; 

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 = forecast ADT for analysis year y, determined by Equation (4.12); 

𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 = detour cost per truck, determined by Equation (4.18); 

𝐴𝐴𝑅𝑅 = fraction of trucks in the ADT, specified by NBI coding item 109; and  

𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = percent of trucks detoured by bridge k (Figures 4.2 and 4.3). 
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Detour Cost per truck  

Florida DOT’s user cost model is adapted to calculate the detour cost per truck. The cost is a 

combination of vehicle operating costs (due to the detour distance) and travel time costs (due to 

the detour time). Similar approach is used by BrM and NBIAS to determine the detour cost per 

truck. The following Equation (4.18) is used for bridges with either vertical clearance or load 

capacity deficiency (Sobanjo & Thompson, 2016b). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝐷𝐷𝐶𝐶𝐷𝐷 𝑝𝑝𝐷𝐷𝐷𝐷 𝐴𝐴𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 = 𝑉𝑉𝐿𝐿𝑀𝑀 × 𝐵𝐵𝑦𝑦𝑝𝑝𝑚𝑚𝐶𝐶𝐶𝐶 𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿𝐷𝐷ℎ +  𝐴𝐴𝐴𝐴 × 
𝐵𝐵𝑦𝑦𝑝𝑝𝑚𝑚𝐶𝐶𝐶𝐶 𝐿𝐿𝐷𝐷𝐿𝐿𝐿𝐿𝐷𝐷ℎ
𝐵𝐵𝑦𝑦𝑝𝑝𝑚𝑚𝐶𝐶𝐶𝐶 𝑆𝑆𝑝𝑝𝐷𝐷𝐷𝐷𝑒𝑒

 (4.18) 

where 

Detour Cost per 
Truck = detour cos per truck for the bridge; 

VOC = unit vehicle operating cost per km of detour, specified by the agency; 

Bypass Length  = detour distance for the bridge, specified by NBI coding item 19; 

TT = unit travel time cost per hour of detour, specified by the agency; and 

Bypass Speed = speed on the detour route, product of default speed value (based on functional 
class specified by the agency) and bypass speed factor (default set as 0.9). 

Percent of Trucks Detoured 

Sobanjo and Thompson (2004) developed the truck height histograms in Figures 4.2 and 4.3 to 

estimate the percent of trucks detoured by any given vertical clearance restriction for Interstate 

(top) and Non-Interstate roadways. The percentage of trucks detoured by a bridge, 

𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘, is determined by one of these two histograms. 
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Figure 4.2 Truck height histogram for Florida’s Interstate roadways. Adapted from Project Planning 

Models for Florida's Bridge Management System (Sobanjo & Thompson, 2004). 

 
Figure 4.3 Truck height histogram for Florida’s Non-Interstate roadways. Adapted from Project Planning 

Models for Florida's Bridge Management System (Sobanjo & Thompson, 2004). 
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4.8.4 Load Capacity Cost 

Florida DOT’s user cost model assumes that user costs due to load capacity restrictions occur when 

the bridge operating load rating is determined inadequate. For simplicity and consistency, the 

module eliminates all user costs after performing a functional improvement action (FCI Action 5). 

The annual reduction in load capacity costs is calculated using the following Equation (4.19) 

(Sobanjo & Thompson, 2016b). 

𝐷𝐷𝐿𝐿𝑀𝑀𝑀𝑀 = 𝑊𝑊𝑙𝑙𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴 × 𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 × 𝐴𝐴𝑅𝑅 × �𝐴𝐴𝐷𝐷𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 − 𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖� (4.19) 

where 

𝐷𝐷𝐿𝐿𝑀𝑀𝑀𝑀 = annual reduction in load capacity costs; 

𝐷𝐷𝐷𝐷𝐴𝐴 = average daily traffic on the bridge;  

𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 = detour cost per truck, determined by Equation (4.18); 

𝐴𝐴𝑅𝑅 = fraction of trucks in the ADT, specified by NBI coding item 109;  

𝐴𝐴𝐷𝐷𝑎𝑎𝑐𝑐𝑏𝑏𝑏𝑏 = percent of trucks detoured by the current bridge (Figures 4.4 and 4.5); 

𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 = percent of trucks detoured by the improved bridge; and 

𝑊𝑊𝑙𝑙𝑎𝑎 = load capacity cost weight, specified by the agency. 

Equation (4.19) is used to estimate the cost incurred by the bridge load capacity deficiency for an 

analysis year. The equation is slightly modified by eliminating the term of 𝐴𝐴𝐷𝐷_𝑖𝑖𝑚𝑚𝑝𝑝. Agencies 

often assign weight factors, less than 1, to different user costs to reduce their effect on the 

analysis—by default, a constant load capacity cost weight factor, 𝑊𝑊𝑙𝑙𝑎𝑎, equals to 1 is chosen. The 

module assumes a strengthening improvement restores the bridge load capacity required by design 

standards, and the percentage of trucks detoured by the improved bridge equals to 0—to some 
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extent, results are more conservative than Equation (4.19). The following Equation (4.20) is the 

derived equation applied to calculate the bridge load capacity cost for an analysis year. 

𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 = 𝑊𝑊𝑙𝑙𝑎𝑎 × 365 × 𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 × 𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 × 𝐴𝐴𝑅𝑅 × 𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 (4.20) 

where 

𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = bridge k load capacity cost for analysis year y; 

𝑊𝑊𝑙𝑙𝑎𝑎 = load capacity cost weight, specified by the agency; 

𝐷𝐷𝐷𝐷𝐴𝐴𝑦𝑦 = forecast ADT for analysis year y, determined by Equation (4.12); 

𝑀𝑀𝑑𝑑𝑟𝑟𝑡𝑡 = detour cost per truck, determined by Equation (4.18); 

𝐴𝐴𝑅𝑅 = fraction of trucks in the ADT, specified by NBI coding item 109; and 

𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = percent of trucks detoured by bridge k (Figures 4.4 and 4.5). 

Percent of Trucks Detoured 

Truck weight histograms were developed by Sobanjo and Thompson (2004) to determine the 

percent of trucks detoured by any given operating load restriction for Interstate and Non-Interstate 

roadways. The percentage of trucks detoured by a bridge, 𝐴𝐴𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘, is determined by one of the 

following histograms (Figures 4.4 and 4.5) based on the bridge roadway classification.  
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Figure 4.4 Truck weight histogram for Florida’s Interstate roadways. Adapted from Project Planning 

Models for Florida's Bridge Management System (Sobanjo & Thompson, 2004). 

 
Figure 4.5 Truck weight histogram for Florida’s Non-Interstate roadways. Adapted from Project Planning 

Models for Florida's Bridge Management System (Sobanjo & Thompson, 2004). 
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4.9 Element Deterioration Modeling  

Deterioration modeling is the main driver of the element LC condition required in the optimization 

process. Deterioration models are used to forecast conditions of key bridge components (i.e., deck, 

superstructure, and substructure) or their individual elements (e.g., decks, girders, floor beams, 

pins, hangers, and bearings) based on current and historical NBI and element-level bridge 

inspection data. These data are sampled and analyzed based on deterministic or probabilistic 

models to develop deterioration curves. 

Over the past several decades, deterioration models have matured from purely deterministic 

models to probabilistic models using Markov decision process assumptions in estimating transition 

probabilities—assuming transition probabilities of future state depends only on the present state. 

Markov-based deterioration models improved the accuracy of prediction and allowed to capture 

the stochastic nature of the deterioration; however, they can result in incorrect decision making 

due to the independency between future and past state histories. This limitation is well-recognized 

by state DOTs; it is expected that the FHWA’s LTBP Program will ultimately lead to the 

development of improved deterioration models. In the meantime, several state DOTs have taken 

the initiative to develop more accurate deterioration models based on parametric models that 

follow theoretical distribution defined by set of parameters or a combined parametric and Markov 

model. The hybrid model provides the most accurate modeling of deterioration that is possible 

(Thompson et al., 2012).  

Elements deteriorate at different rates in different natural environments. The concept of bridge 

environment is incorporated in many deterioration models. A bridge is assigned to an environment 

based on the climate zone definitions of HPMS. Likewise, the different effects of protective 

elements (such as coatings, wearing surfaces, cathodic protections, joints, and drainage systems) 
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are considered in deterioration models by introducing the concept of deterioration refinements. 

BrM and Florida DOT’s PLAT include features to account for these refinements. These concepts 

are ignored in the module deterioration modeling. The inclusion of any deterioration refinements 

is beyond the scope of this research. Though, the module is well-suited to accommodate any 

deterioration refinements that quantify effects of different protections or environments. The 

module assumes the predicted condition occurs at the end of the analyzed year, and the recorded 

inspection date reflects the most recent inspection date. 

4.9.1 Weibull/Markov Deterioration Model  

Various deterioration models used by state DOTs were examined in the literature under Task 1. 

Their advantages and limitations were studied. Different deterioration forecasting models were 

compared in previous research, and the hybrid (Weibull/Markov) model is overwhelming 

recommended for use in modern BMSs. The Weibull model estimates the time of a bridge element 

remains in “good” condition—tracking progression through time without lowering the condition 

state because much of the element’s life is spent in the “good” condition state. Once the element 

moves to the “fair” condition state, the Markov model predicts deterioration based on history.  

Markov models have rapid decline in condition from CS1 to CS2—in reality, this effect is not 

observed. Sobanjo and Thompson (2010) provided a solution by using a Weibull age-dependent 

function to model the probability of remaining in condition state. In Markov models, probabilities 

of transition from CS1 to CS2 are constant; therefore, this enhancement will make them age-

dependent variables. The Weibull survival function can slow the initial deterioration, providing a 

more realistic prediction. Subsequent condition states are still modeled using Markov models. It is 

possible to develop a completely age-dependent Weibull survival probability deterioration model 

if all the individual state transitions are analyzed independently—each asset is in only one 
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condition state at a time and can move to only one other state between inspections (Thompson et 

al., 2012). 

Florida DOT’s PLAT and BrM use this hybrid (Weibull/Markov) model. The module relies on 

this same independent hybrid model for predicting element conditions. The Weibull model is used 

only to model the transition of an element from CS1 to CS2. The other transitions (i.e., CS2 to 

CS3 and CS3 to CS4) are modeled using the Markov model. Florida DOT’s transition probabilities 

and Weibull parameters (Sobanjo & Thompson, 2016a) are used by default. The Weibull/Markov 

model is expressed by the following Equation (4.21). 

(Thompson et al., 2012). 

𝑌𝑌𝑘𝑘 = 𝑌𝑌𝑘𝑘−1 × 𝑃𝑃𝑘𝑘−1,𝑘𝑘 + 𝑌𝑌𝑘𝑘 × 𝑃𝑃𝑘𝑘,𝑘𝑘 (4.21) 

where 

𝑌𝑌𝑘𝑘 = forecasted percentage of the element in condition state k; 

𝑌𝑌𝑘𝑘−1 = current percentage of the element in condition state k-1; 

𝑌𝑌𝑘𝑘 = current percentage of the element in condition state k; 

𝑃𝑃𝑘𝑘−1,𝑘𝑘 = probability of the element changes from condition state k-1 to k in the next year 
determined by Equation (4.22); and  

𝑃𝑃𝑘𝑘,𝑘𝑘 = 
probability of the element stays in state k in the next year, determined by Equation 
(4.23). 

The deterioration model can also be expressed by a matrix of transition probabilities. This 

expression is convenient to predict condition for any future point in time by just matrix 

multiplication. Each element has a transition probability matrix. Each matrix cell represents the 

probability of making a transition from one condition state to another, depending only on the initial 

condition state. Each cell of the matrix is the probability that, in one year, an element in the row’s 



 

125 

 

condition state (i.e., CS1, CS2, CS3, or CS4) will deteriorate into the column’s condition state 

(i.e., CS1, CS2, CS3, or CS4). All rows must sum to 100%. Therefore, the deterioration of an 

element can be represented by a vector, with one value for each condition state. Table 4.7 

represents an example of such matrix.  

Table 4.7 Example of a matrix of transition probabilities 

 CS1 CS2 CS3 CS4 
CS1 92 % 8 % 0 % 0 % 
CS2 0 % 89 % 11 % 0 % 
CS3 0 % 0 % 85 % 15 % 
CS4 0 % 0 % 0 % 100 % 

The example includes DN (no improvement action is performed) transition probabilities. If the 

element is in CS1, it has 8% chance of moving to CS2 in one year and 92% chance of staying in 

CS1. If the element is in CS3, it has 85% chance to remain in the same condition sate and 15% 

chance to move to CS4 in one year. 

As stated earlier, Markov model doesn’t depend on past condition information and is used to 

predict transition probabilities for CS2, CS3, and CS4 of an element in the next year. Transition 

probabilities can be derived from the median number of years between known transitions. It is an 

appropriate way to develop a deterioration model from expert judgments and mining historical 

inspection data (Thompson et al., 2012). The Markov model uses the following formulas (4.22) 

and (4.23) to estimate the transition probabilities. 
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(Thompson et al., 2012). 

𝑃𝑃𝑘𝑘,𝑘𝑘 = 0.5
1
𝑇𝑇𝑘𝑘 (4.22) 

𝑃𝑃𝑘𝑘−1,𝑘𝑘 = 1 − 𝑃𝑃𝑘𝑘−1,𝑘𝑘−1 (4.23) 

where 

𝑃𝑃𝑘𝑘,𝑘𝑘 = probability of the element changes from condition state k-1 to k in the next year; 

𝑃𝑃𝑘𝑘−1,𝑘𝑘 = probability of the element stays in state k in the next year; and 

𝐴𝐴𝑘𝑘 = 
median number of years that the element stays in condition state k, before transition to 

the next condition state. 

The Weibull model applies the following formulas (4.24) and (4.25) to estimate the transition 

probabilities for CS1 in the next year. 

(Thompson et al., 2012). 

𝑃𝑃1,1 = 𝐷𝐷𝑚𝑚𝑝𝑝 �−�
𝐿𝐿
𝛼𝛼
�
𝛽𝛽

+ �
𝐿𝐿 − 1
𝛼𝛼

�
𝛽𝛽

� (4.24) 

𝑃𝑃1,2 = 1 − 𝑃𝑃1,1 (4.25) 

where 

𝑃𝑃1,1 = probability of the element stays in CS1 in the next year; 

𝑃𝑃1,2 = probability of the element changes from CS1 to CS2 in the next year; 

α = scaling factor, estimated by Equation (4.26); 

β = shaping parameter that controls the initial slowing effect on deterioration, specified by 
the agency; and 

g = age of the element, estimated by Equation (4.27) 

 



 

127 

 

The scaling factor is estimated using the following Equation (4.26). 

𝛼𝛼 =
𝐴𝐴1

𝑙𝑙𝐿𝐿2
1
𝛽𝛽

 (4.26) 

α = scaling factor; 

β = shaping parameter; and 

𝐴𝐴1 = median number of years the element stays in CS1, before transition to CS2. 

The age of the element is initially (year 0) estimated using the following Equation (4.27). For the 

consecutive years, the age of the element is incremented by 1. 

𝐿𝐿 = 10 𝛼𝛼 
𝑙𝑙𝐷𝐷𝐿𝐿 (− 𝑙𝑙𝐿𝐿(𝑌𝑌1))

𝛽𝛽
 (4.27) 

𝐿𝐿 = estimated age of the element; 

α = scaling factor; 

β = shaping parameter; and 

𝑌𝑌1 = initial percentage of the element in CS1. 

 
4.9.2 Action Effectiveness Models  

The effect of an action on condition can be expressed by a matrix of probabilities. Each condition 

state has zero to multiple feasible actions. Each action results in a distribution of condition states 

immediately following its implementation. The distribution is expressed in transition probabilities. 

A study for Florida DOT (Sobanjo & Thompson, 2011) estimated transition probabilities when a 

preservation action is taken for different groups of bridge elements based on an inventory of more 

than 19,000 structures and inspection data history of 14 years. These transition probabilities 

institute the AE models used in Florida DOT’s PLAT. These models were refined in 2016 to align 
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with the new AASHTO elements (AASHTO, 2013; Sobanjo & Thompson, 2016a). Similar AE 

models were developed for use in BrM, NBIAS, and several state DOT’s BMSs. The module relies 

on the Florida DOT’s AE models to predict conditions of the different elements when an action is 

taken. The following Table 4.8 presents the AE models assigned to Element 207—Steel Column 

Tower.  

Table 4.8 Example of AE models for Element 207—Steel Column Tower 

Action 
Initial 

Condition 
State 

Treatment Name Treatment 
Key 

Probability after Performing Action 
(%) 

CS1 CS2 CS3 CS4 
1 2 Spot blast 319 70.84 29.16 0 0 
1 3 Spot blast and minor repair 302 70.84 29.16 0 0 
1 4 Spot blast and major repair 202 76.89 23.10 0 0 
2 2 Spot blast and minor repair 302 70.84 29.16 0 0 
2 3 Spot blast and major repair 202 76.89 23.11 0 0 
2 4 Repair distortion 248 76.89 23.11 0 0 
3 3 Repair distortion 248 76.89 23.11 0 0 

3 4 Mitigate settlement or 
scour 

247 68.62 31.34 0.04 0 

4 3 
Mitigate settlement or 
scour 247 68.62 31.34 0.04 0 

4 4 Replace unit 144 100 0 0 0 
Note. Retrieved from Implementation of the 2013 AASHTO Manual for Bridge Element Inspection 
(Sobanjo & Thompson, 2016a). 

Table 4.8 is organized by action, condition state, treatment name, treatment key, and probability 

into a condition state. To explain the table, for instance, if the element is initially in CS3, and 

Action 2 (Treatment Key 202—Spot blast and major repair) is performed, then 76.89% of the 

element will be in CS1 and 23.10% in CS2 immediately after the action. All rows must sum to 

100%.  
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4.10 Bridge and Element Health Indices 

Bridges are essential parts of the nation transportation infrastructure. Collapse of a critical bridge 

due to its deteriorating condition can be devastating—it could cause loss of lives, disrupt the 

regional transportation network, and impact the regional economy. State DOTs use a variety of 

performance measures and indices to assess the structural or functional health of a bridge, the 

performance of a network, or support their decision-making process. The structurally deficient 

status, NBI condition rating, and sufficiency rating are commonly used performance measures to 

support the bridge programming process. Bridge health indices are likewise useful for structural 

health comparisons and resource allocation for a network of bridges. They are generally applied 

at the network level and used as performance measures to track conditions over time and evaluate 

the LC performance (Adams et al., 2009). BMSs rely on element-level inspection data to compute 

bridge and element health indices (Chase et al., 2016).  

Caltrans’ bridge and element health indices are used by BrM, Florida DOT’s PLAT, and several 

state DOT’s BMSs. The presented module uses these same condition measures to assess the extent 

of deterioration and effectiveness of actions. Element and bridge health indices are computed by 

the following Equations (4.28) and (4.29), respectively. Element health indices are first determined 

by Equation (4.28), and then weighted, aggregated and divided by the sum of all their weighs in 

Equation (4.29), constituting an overall bridge health index.  



 

130 

 

𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = �𝑃𝑃1𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖� +
2
3
�𝑃𝑃2𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖� +

1
3
�𝑃𝑃3𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖� (4.28) 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 =
∑ �𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖×𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖×𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖�𝑖𝑖∈𝑅𝑅𝑘𝑘 

∑ 𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖∈𝑅𝑅𝑘𝑘 

 (4.29) 

where   

𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = health index of element i; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = health index of bridge k; 

𝑃𝑃1𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = percentage of element i in CS1; 

𝑃𝑃2𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = percentage of element i in CS2; 

𝑃𝑃3𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = percentage of element i in CS3; 

𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = health index weight for element i; 

𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = quantity of element i; and 

𝐸𝐸𝑘𝑘  = set of bridge k elements.  

A change in the overall bridge health index is generally minuscule. Element health indices are 

weighted, aggregated and divided by the sum of all their weighs to constitute this overall 

percentage. Improving few element health indices (after factoring their weights) won’t 

dramatically change the overall percentage. It takes substantial improvement efforts to alter the 

overall bridge health index. Despite this drawback, these adapted health indices still provide an 

appropriate measure to assess the performance of a single element and the overall bridge; however, 

they are not a complete measure of the value of the agency’s investment (Chase et al., 2016).  

4.11 Estimating Life Expectancy  

Asset life expectancy is defined as the length of time until the asset is replaced or removed from 

service. Estimating life expectancies of an asset provides the ability to realistically assess 
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performance and investment strategies. Incorporating asset life expectancy into a LCC model 

and/or decision-making process allows agencies to develop bridge improvement programs with 

greater confidence. Methods for estimating life expectancy can be either empirical or mechanistic. 

Physical-based methods are considered mechanistic because they generally involve field or 

laboratory testing using destructive or non-destructive techniques to measure certain asset physical 

properties. However, methods developed based on Makov chains, machine learning algorithms, 

Weibull distributions, or duration and regression models are classified as empirical (Thompson et 

al., 2012). These methods can be simple or more involving. In this research, one of the empirical 

methods recommended in the NCHRP Report 713 (Thompson et al., 2012) is considered. 

4.11.1 End-of-Life Threshold  

A replacement alternative is generally triggered when the condition reaches an unacceptable level 

of performance. A minimum performance threshold (or trigger) reflects the point at which 

intermediate maintenance actions are no longer cost-effective (Thompson et al., 2012). The 

definition of end of service life depends on agency’s LOS standards, maintenance practices and 

program policies—The AASHTO Manual for Bridge Element Inspection (AASHTO, 2013a) 

provides useful “end-of-life” definitions. There may be more than one performance measure or 

trigger defining the end of life of asset or its components. NBI condition ratings serve as simplistic 

triggers to set preservation priorities. For instance, a bridge end of service life can be defined when 

its superstructure condition rating drops to 4 or less—a preservation is no longer a viable option, 

and only a major rehabilitation or replacement can be considered. The worst-defined condition 

state of an element is generally presumed as the optimal level for replacement. It’s convenient to 

define an element end of service life when there is a 50% chance the element is in its worst-defined 

condition state. A bridge end of service life (or end-of-life) could be defined when 50% of all its 
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elements reach their worst-defined condition states (Thompson et al., 2012). In this research, the 

element end-of-life threshold is defined as the worst-defined condition equals to 50%. The worst-

defined condition state of an element is taken as CS4.  

4.11.2 Estimated Service Life  

The NCHRP Report 713 (Thompson et al., 2012) states that no published sources of accurately 

estimating life expectancies of bridges or elements exist; Markov transition probabilities are 

commonly used to estimate element life expectancies. It further lays out a simplified approach to 

determine an element life expectancy from a matrix of Markov transition probabilities. The 

Markov prediction formula is used iteratively, extending the forecast until the end-of-life threshold 

is reached. The module follows this same approach to estimate the service life of an element (ESL). 

The computation is based on the hybrid (Weibull/Markov) prediction formula, Equation (4.21). 

The calculation begins with an element in perfect condition (CS1=100%) and iterates for each year 

until reaching the end-of-life threshold (CS4=50%). Table 4.9 illustrates a computational example 

of ESL for Element 110—Open Girder/Beam, Reinforced Concrete. In this example, the end-of-

life threshold (CS4=50.95%) is reached in year 75. Accordingly, the module assigns an ESL of 75 

years to Element 110. 
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Table 4.9 Example of ESL calculations for Element 110 (ESL=75 years) 

 Condition Sates (%) 
Year CS1 CS2 CS3 CS4 

0 100.00 0.00 0.00 0.00 
1 99.93 0.07 0.00 0.00 
2 99.74 0.26 0.00 0.00 
3 99.41 0.58 0.01 0.00 
4 98.95 1.01 0.04 0.00 
5 98.36 1.55 0.08 0.00 
6 97.65 2.20 0.14 0.01 
7 96.82 2.94 0.23 0.01 
8 95.86 3.77 0.35 0.02 
9 94.79 4.67 0.50 0.04 

10 93.61 5.65 0.68 0.06 
- - - - - 
- - - - - 
- - - - - 

70 3.93 24.18 26.96 44.93 
71 3.58 23.49 26.78 46.15 
72 3.26 22.79 26.58 47.37 
73 2.96 22.11 26.36 48.57 
74 2.69 21.43 26.12 49.77 
75 2.44 20.75 25.86 50.95 
76 2.21 20.09 25.58 52.12 
77 1.99 19.43 25.29 53.29 
72 2.69 19.50 24.01 53.80 

Hybrid Deterioration Model 
Shaping  Transition Times (years) 

β T1-2 T2-3 T3-4 
2.00 32.40 15.69 14.93 

Note. β = Weibull shaping parameter;  
T1-2 = Transition time from CS1 to CS2;  
T2-3 = Transition time from CS2 to CS3;  
T3-4 = Transition time from CS3 to CS4. 

4.11.3 Estimated Remaining Service Life 

When no actions are considered in the entire LC of an element, the remaining service life (RSL) 

is easily computed by subtracting the element current age from its ESL. However, if an action 

takes place at any point in time, then it is more accurate to use a condition-based approach—taking 
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advantage of the deterioration and equivalent age models (Thompson et al., 2012). Alike the 

computational approach of the ESL, the hybrid prediction formula, Equation (4.21), is used 

iteratively until a known condition state is reached as long as the element did not reach its end-of-

life threshold. The known condition can be converted to an equivalent age from the deterioration 

curve. This equivalent age is then subtracted from the element ESL to determine its RSL (refer to 

Figure 5.7 in Chapter 5). 

4.12 Element Life-Cycle Profiles 

Three types of LC profiles (i.e., DN, RO, and AE LC profiles) are constructed for each element to 

predict bridge and element health indices at different points in time, and estimate RSLs and LCCs.  

4.12.1 Do-Nothing Life-Cycle Profile 

Constructing a DN LC profile for each element as part of the data processing phase permits to 

predict the bridge and element DN health indices at the end of each analysis year and estimate the 

element RSLs. The DN transition times, Weibull model parameters, and recent condition states 

associated with each element are organized and stored in this module to be used by the hybrid 

deterioration model. An example of DN LC profile is illustrated in Figure 4.6. The schematic 

represents a “base” scenario of predicting condition of an untreated element (no actions performed 

to extend its ESL). This scenario simulates the element declining condition when no action is ever 

taken until reaching its end-of-life threshold. Element deficiency screening process (discussed in 

Chapter 5) relies on the DN LC profile. The element doesn’t experience any improvement actions 

at any point in time.  



 

 

 

135 

 
Figure 4.6 Example of DN LC profile for Element 110—Open Girder/Beam, Reinforced Concrete 
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4.12.2 Replacement Only Life-Cycle Profile  

Constructing a RO LC profile for each element as part of the data processing phase permits to 

predict the bridge and element health indices at the end of each analysis year, estimate the element 

RSLs beyond the analysis period and ESLs for the RO scenario. The DN transition times, Weibull 

model parameters, and recent condition states associated with each element are organized and 

stored in this module to be used by the hybrid deterioration model. Figure 4.7 illustrates an example 

of RO LC profile. The schematic represents another “base” scenario of predicting condition of an 

element that experiences only replacement actions. The schematic mimics the “worst-first” 

strategy: the element gets entirely replaced as it deteriorates to a poor condition without 

experiencing any treatments (no actions). The element is replaced whenever its worst-defined 

condition (i.e., CS4) reaches the end-of-life threshold (CS4=50%). Every time the element is 

replaced to extend its ESL, CS1 is restored to 100% (CS1=100%).  
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Figure 4.7 Example of RO LC profile for Element 202—Column, Steel 
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4.12.3 Action Effectiveness Life-Cycle Profile 

An AE LC of an element is represented by a series of actions separated by an inaction period. The 

module assumes that a preservation policy is followed throughout the LC of the bridge and a major 

improvement work on the bridge fully restores all its elements. Preservation actions are considered 

the most cost-effective actions for the long term. Preservation actions extend the service life of an 

element by slowing down deterioration. Thus, they always subsequent a major improvement work 

on the bridge for the remaining analysis period. Preservation actions account for the large portion 

of the AE LC profile.  

An AE LC profile for each possible combination of actions for each element is constructed by the 

improvement module to predict the AE conditions, determine the bridge and element health indices 

at the end of specified analysis year, and estimate the element RSLs beyond the analysis period. 

The DN transition times, Weibull model parameters, and recent condition states associated with 

each element are organized and stored in this module to be used by the improvement module—the 

hybrid deterioration model is used to forecast conditions within the inaction periods; whereas, the 

AE models, within the action implementation years. An example of AE LC profile is illustrated in 

Figure 4.8. represents an “improvement” scenario of predicting condition of a treated element 

(experiencing various actions separated by a waiting period). When an action is taken, an 

immediate change in condition happens according to the AE model, while subsequent forecasting, 

up to the next action, relies on the hybrid deterioration model—using the improved condition as 

the starting point. This scenario simulates a preservation strategy approach. The element 

experiences preservation actions that extend its service life—reaching the end-of-life threshold 

within the analysis period is deferred. 
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Figure 4.8 Example of AE LC profile for Element 215—Abutment, Reinforced Concrete 
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Point 2 64.37 32.80 2.73 0.11
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Point 5 2.36 75.66 20.13 1.84
Point 6 69.86 27.30 2.79 0.06

Condition Sates (%)
Action 1 CS1 CS2 CS3 CS4 Action 2 CS1 CS2 CS3 CS4

CS1 100 0 0 0 CS1 100 0 0 0
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CS3 45.85 48.11 6.04 0 CS3 45.85 48.11 6.04 0
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Action 3 CS1 CS2 CS3 CS4 Action 4 CS1 CS2 CS3 CS4
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4.13 Summary and Conclusions 

This chapter introduced the data processing module framework and described its different 

underlying concepts. The module relies on decision makers’ preferences and inputs, quality data, 

and information provided in the TAMP and TIP/STIP, and leading-edge forecasting and up-to-

date user cost models. The chapter discussed the two common types of bridge inspection data (i.e., 

NBI and NBE inspection data), the Weibull/Markov deterioration model used to predict the 

performance of an element over an analysis period and determine its ESL and RSL, the adapted 

AE models to forecast element conditions when actions are taken, and the performance measures 

(i.e., Caltrans’ bridge and element health indices) used to assess the extent of deterioration and 

effectiveness of actions. 

The chapter defined the preservation, functional improvement and replacement actions (i.e., MRR 

Actions 0 to 4, FCI Action 5, and REP Action 6). It laid out the process of assessing function 

improvement needs (i.e., widening, raising, and strengthening improvement needs) and revealed 

the user cost models used to estimate incurred user costs. The chapter presented the different 

equations used to estimate major improvement costs to eliminate any incurred user costs, relieve 

the bridge from any restrictions, and/or provide the required LOS and design standards. The three 

types of element LC profiles representing the “base” and “improvement” scenarios (i.e., DN, RO, 

and AE LC profiles) were introduced in this chapter. The module assumes that a preservation 

policy is followed throughout the LC of the bridge, and a major improvement work on the bridge 

fully restores all its elements. 
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CHAPTER 5—IMPROVEMENT MODULE 

 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 
 Task 4: Development of a Tool Prototype  
 Task 5: Implementation of the Methodology through Examples of Scenarios 

5.1 Introduction 

State DOTs are responsible for the LRTP development to identify improvement needs of their 

multi-modal transportation system in the next 20-year planning horizon. As stated in Chapter 2, 

the LRTP sets the stage for the development of a financially constrained transportation TIP/STIP 

that identifies high-priority improvement projects for the next 4 years. State DOTs are required to 

include a financial plan in their risk-based TAMPs that identifies the required annual costs to 

implement their asset improvement strategies over a minimum of 10-year period. All these plans 

are essential for resource allocation decisions. The improvement module was developed taking 

into consideration this planning and programming process and TAMP’s financial plan 

requirements.  

As funding resources continue to diminish, state DOTs continue to face the challenge of effectively 

prioritizing bridge interventions and making informed and economical investment decisions as 

well as anticipating future funding needs. BMSs can be utilized to help objectively make such 

decisions at the bridge and network levels. The primary objective of a BMS is to assist agencies 

in managing bridge data, performing economic analysis at the bridge and network levels, and 

recommending work programs. At the bridge level, LCCA is performed, and interventions over 
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the bridge remaining life are selected; whereas at the network level, bridges that yield the 

maximum network benefits are identified from a list of candidate bridges.  

A comprehensive BMS provides a systemic approach for prioritizing and selecting bridge 

improvement alternatives (O’ Connor & Hyman, 1989). Not all possible combinations of 

improvement actions and timings over an extended analysis period get considered in the LC 

economic analyses—capturing incurred costs due to each possible alternative and any effect on 

performance leads to tremendous computational efforts and processing time. Thus, the 

recommended alternatives do not necessarily guarantee the optimal allocation of resources 

(Kachua, 2012). The improvement module is designed to overcome most of these limitations. 

This chapter presents a basic framework to visualize the modeling approach followed to generate 

LC alternatives (series of element improvement actions). It summarizes the underlying processes 

and concepts. The module relies on a novel screening process to focus on potential deficient 

elements, and a simulation arrangement to generate realistic (“real-life”) LC alternatives for MRR, 

FCI and REP improvement types based on agency’s preservation policies and/or practices. The 

module relies on an independent deterioration model (covered in Chapter 4) to predict 

performance, and a LCC model to estimate LCCs and LCC benefits. A LC activity profile is 

constructed separately for each LC alternative action path and each program year. The module was 

implemented through a sample of bridges to test concepts, and demonstrate effectiveness and 

potential benefits. An illustrative example using the tool prototype is presented in this chapter. 
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5.2 Module Framework  

As mentioned in the introduction, the improvement module was designed taking into consideration 

the planning and programming process and TAMP’s financial plan requirements. The module can 

be deployed independently to support the development of LRTP, TIP/STIP, and TAMP. 

Improvement module results can be used with common economic analyses and optimization 

techniques to identify short- and long-term bridge investment needs, and recommend bridge 

programs and implementation schedules.  

Figure 5.1 introduces a basic flow diagram to visualize the modeling approach for generating LC 

alternatives, estimating LCCs and LCC benefits, and predicting performance (health indices). A 

program period of 10 years is considered by default. The period could be shortened to improve the 

processing time or agree with existing programming practice. A program period should at least 

cover the time horizon of a fiscally constrained TIP/STIP (i.e., 4 years). Though, a longer period 

extended to the TAMP financial plan time horizon allows to support monitoring of performance 

targets and resource allocations. Throughout the improvement module, each bridge in the portfolio 

is evaluated separately for each program year. Results are organized per program year for further 

processing. Although the initial agency intervention always performed within the program 

timeframe, the LC economic analysis extends beyond this short-term of programming phase. As 

mentioned in Chapter 3, the length of the analysis period depends on the agency’s preservation 

policies and preferences. A consistent period of analysis allows to fairly compare the generated 

LC alternatives. A fixed long analysis period (usually around 50 years) produces realistic LC 

alternatives covering most of the anticipated element service life. An analysis period of 54 years 

is used by default.  



 

144 

 

Each bridge in the portfolio is screened for candidacy through the element deficiency screening 

process. The screening process uses the forecasting results of the DN LC profiles constructed in 

the data processing module (discussed in Chapter 4). A bridge identified with at least a deficient 

element is considered a candidate for improvement. A RO LC profile is constructed for each 

identified deficient element. The DN and RO LC profiles represent the “baseline” against which 

the LC alternative economic benefits (i.e., LCC benefits) are compared. For each candidate bridge, 

DN and base user costs covering the entire analysis period are computed and discounted to present 

value. DN and base agency costs are computed and discounted to present value for each deficient 

element. Similarly, relying on the hybrid deterioration model discussed in Chapter 4, DN and base 

bridge and element health indices at different points in time are determined.  

As illustrated in Figure 5.1, each program year (initial agency intervention) is associated with 

various LC profiles. Each LC profile is constructed separately and allied with one of the three 

improvement types: MRR, FCI, and REP. A LC alternative is defined by a program year, a path 

of actions, and an improvement type. AE LC profiles (discussed in Chapter 4) are constructed 

separately for each deficient element. An AE LC profile (or LC activity profile) of an element is 

represented by a series of actions following a unique LC alternative action path. Different types of 

LCCs (incurred during the entire analysis period) and residual values (applied at the end of the 

analysis period) are estimated for each LC alternative. Element health indices at different points 

in time are determined. The module framework exemplified in Figure 5.1 is based on the following 

concepts: 

1. Separate LC profiles by improvement type: MRR, FCI, and REP 

2. Locate the DN LC profile results (from the data processing module) associated with each 

element of a bridge in the portfolio  
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3. Construct the RO LC profiles (base LC profiles) for each element of a bridge in the 

portfolio 

4. Compute and discount to present value all base costs and residual values for each element 

of a bridge in the portfolio 

5. Determine base health indices at different points in the analysis period for each element 

of a bridge in the portfolio 

6. Identify the candidate bridges and their potential deficient elements through the element 

deficiency screening process 

7. Construct all possible LC alternative profiles per improvement type and per program year 

for each identified deficient element  

8. Join LC profiles of each identified deficient element with their corresponding LC 

alternatives 

9. Compute and discount to present value all LCCs and residual values relevant to each LC 

alternative 

10. Use LCCs, residual values, and base LCCs to compute LCC benefits 

11. Predict element health indices at different points in the analysis period relevant to each LC 

alternative 

12. Organize LC alternative results by element, improvement type, and program year for each 

candidate bridge 
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Figure 5.1 Improvement module framework
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5.3 Element Deficiency Screening 

The proposed module depends on a screening process that evaluates the extent of element 

deterioration. Some elements may have deteriorated to a level where major repairs or proactive 

preservation efforts are necessary, and others may show no sign of deterioration. The FHWA’s 

Bridge Preservation Guide (FHWA, 2018) provides examples of established agency’s rules for 

preservation programs. Agency’s rules or criteria for bridge preservation strategies prevent or 

delay deterioration, extend serviceability, and maintain a “state of good repair.” The following 

Figure 5.2 is borrowed from the guide, representing the three common bridge improvement 

programs, and how they interact over time. A preservation program can extend the service life of 

a bridge in “good” or “fair” condition. Preservation actions are no longer effective when the bridge 

enters the “poor” condition zone. The bridge becomes a candidate for rehabilitation or replacement 

to restore its “good” or “fair” condition. 

 
Figure 5.2 Bridge condition over time. Redrawn from the original in the FHWA’s Bridge Preservation 

Guide (FHWA, 2018). 
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A preservation policy contains information on the element deterioration rates, and costs and 

benefits of feasible preservation improvement actions. Simulation rules or triggers are driven from 

these preservation policies. Improvement interventions are recommended based on these triggers 

(e.g., condition state level or health index). A higher percentage in CS3 or CS4 indicates the 

severity of the damage or advanced deterioration of the element. Table 5.1 shows the preservation 

action triggers used by MnDOT for the different groups of elements.  

Table 5.1 Preservation action triggers used by MnDOT 

Elements Preservation Action Triggers 
Steel elements More than 15% in Condition State 3 or 4 
Steel protective coatings More than 20% in Condition State 3 or 4 
Reinforced concrete elements More than 10% in Condition State 3 or 4 
Prestressed concrete elements More than 10% in Condition State 3 or 4 
Timber elements More than 10% in Condition State 3 or 4 
Concrete deck or slab elements More than 15% in Condition State 3 or 4 
Wearing surface elements More than 15% in Condition State 3 or 4 
Joints elements More than 10% in Condition State 3 or 4 
Bearing elements More than 10% in Condition State 3 or 4 

Note. Adapted from the MnDOT Bridge Preservation and Improvement Guidelines (MnDOT, 2015). 

To support this concept, the module identifies preservation needs for each bridge included in the 

portfolio. Each bridge is screened for candidacy. This process is referred to as “element deficiency 

screening.” A bridge with or expected to acquire deficient elements is considered a candidate for 

improvement. The focus is to ensure vulnerable bridges are being elevated in the programming 

process. A bridge identified with no potential deficient elements is excluded from consideration—

the “state of good repair” is assumed to be maintained in the entire analysis period. As mentioned 

earlier, bridge and element health indices are common performance measures used by agencies for 

prioritizing preservation and improvement projects. NBI condition and appraisal ratings, 

sufficiency ratings, load capacities, etc. are also among common performance measures. Element 

health index is the only performance measure used to assess preservation needs in this module. 
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Users set minimum element health index limits at different points in the analysis period. Element 

health indices at the end of analysis years 10, 20, 30, 40, and 50 are predicted for each element. A 

health index lower-frontier is constructed for each element (joining minimum limits). Elements 

with health indices falling under this lower-frontier are classified as “deficient.” 

Figure 5.3(a) illustrates a screening example for potential preservation needs. The same set of 

identified potential deficient elements is considered for all program years. The DN health index 

curve (denoted by MRR LC Alternative 1) starting from the last inspection date is considered in 

the determination. Figure 5.3(b) illustrates another screening example of identifying potential 

deficient elements. In this example, preservation needs are assessed for the period succeeding the 

element replacement year. All elements are replaced (restoring CS1 to 100%) in program year 4 

because of a major improvement (i.e., FCI Action 5 or REP Action 6) performed on the entire 

bridge. For each element, the DN health index curve (denoted by FCI or REP LC Alternative 1) 

starting from the end of program year 4 (initial intervention; CS1=100%) is considered in this 

example. A separate screening is performed for each of the other program years.  
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Figure 5.3 Example of element deficiency screening for (a) preservation only; (b) post-major 

improvement 

Tables 5.2 and 5.3 presents examples of screened results (i.e., ESLs, RSLs, and DN health indices) 

for a bridge with 12 elements. Table 5.2 values relate to the preservation only screening, and Table 

5.3, to the post-major improvement screening. 
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Table 5.2 Example of preservation only screening results for all program years  

Element 
ESLelm 

(years) 
RSLelm 
(years) 

HI1elm 
(%) 

HI10elm 
(%) 

HI20elm 
(%) 

HI30elm 
(%) 

HI40elm 
(%) 

HI50elm 
(%) 

HI54elm 
(%) 

12 129 66 71.70 62.73 57.07 52.52 48.26 44.22 42.67 
107 77 20 95.18 73.12 57.88 49.52 42.45 36.06 33.71 
205 200 143 99.77 97.58 92.64 85.76 77.96 70.18 67.22 
215a 75 18 99.95 99.48 98.37 96.69 94.49 91.86 90.71 
220 123 57 80.19 64.64 54.84 49.47 44.72 40.35 38.70 
226 141 63 63.03 58.20 53.16 48.47 44.13 40.12 38.61 
234a 408 351 99.98 99.81 99.38 98.70 97.76 96.56 96.00 
301 24 0 86.90 58.64 33.16 17.49 8.92 4.48 3.40 
311 58 0 62.10 47.87 36.22 28.15 21.74 16.64 14.92 
313 58 0 63.51 48.26 36.14 28.08 21.69 16.60 14.89 
330 28 0 96.52 71.70 38.84 17.63 7.27 2.85 1.94 
331a 151 91 98.37 97.25 94.88 91.31 86.60 80.92 78.44 

Bridge HI1brg HI10brg HI20brg HI30brg HI40brg HI50brg HI54brg 
    11  78.14 66.14 57.73 51.91 46.88 42.31 40.59 

Note. A health index lower-frontier of 80% (deficiency screening thresholds, a minimum  
health index of 80% every 10 years). 
a Non-deficient element. 

Table 5.3 Example of post-major screening results for program year 4 

Element ESLelm 

(years) 
RSLelm 
(years) 

HI1elm 
(%) 

HI10elm 
(%) 

HI20elm 
(%) 

HI30elm 
(%) 

HI40elm 
(%) 

HI50elm 
(%) 

HI54elm 
(%) 

12 129 79 71.70 82.20 64.69 58.19 53.55 49.24 47.58 
107 77 27 95.18 90.91 67.29 55.16 47.40 40.52 37.97 
205 200 162 99.77 99.49 96.35 90.73 83.47 75.59 72.47 
215a 75 69 99.95 99.89 99.21 97.92 96.08 93.74 92.69 
220 123 73 80.19 91.27 67.15 57.70 52.23 47.27 45.39 
226 141 91 63.03 96.88 82.00 67.03 57.82 52.03 50.08 
234a 408 393 99.98 99.96 99.71 99.20 98.45 97.43 96.94 
301 24 0 86.90 83.91 52.80 29.32 15.33 7.79 5.92 
311 58 8 62.10 90.75 63.57 48.50 38.35 29.99 27.10 
313 58 8 63.51 90.75 63.57 48.50 38.35 29.99 27.10 
330 28 0 96.52 92.78 61.29 31.11 13.63 5.52 3.79 
331a 151 126 98.37 99.81 98.56 96.03 92.21 87.21 84.93 

Bridge  HI1brg HI10brg HI20brg HI30brg HI40brg HI50brg HI54brg 
    11 78.14 84.89 66.12 57.81 52.14 47.17 45.30 

Note. A health index lower-frontier of 80% (deficiency screening thresholds, a minimum  
health index of 80% every 10 years). 
a Non-deficient element. 
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Figure 5.4(a) displays the predicted health indices (at different analysis years) for each element of 

a bridge screened for preservation needs within a 54-year analysis period. The horizontal dashed 

line represents a health index lower-frontier (deficiency screening thresholds, a minimum health 

index of 80% every 10 years). The dashed curves above this frontier distinguish the non-deficient 

elements from the deficient ones. For MRR improvement type and all program years, the three 

identified non-deficient elements (i.e., Elements 215, 234, and 331) won’t be processed by the 

module, only the deficient ones. The thick connected lines in black represent the overall DN bridge 

health indices. Figure 5.4(b) shows the predicted health indices for each element of the same bridge 

screened for preservation needs succeeding a major bridge improvement in program year 4. The 

same three elements were identified non-deficient for FCI and REP improvement types with a 

major improvement in program year 4. 

 
Figure 5.4 Example of predicted health indices for (a) preservation needs; (b) preservation needs 

succeeding a major bridge improvement in program year 4 
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5.4 Life-Cycle Alternatives 

Three types of LC profiles (i.e., DN, RO, and AE LC profiles) are constructed for each element to 

predict bridge and element health indices at different points in time, and estimate RSLs and LCCs. 

Chapter 4 discusses these three types of LC profiles in more detail—Examples of the three LC 

profiles are illustrated in Figures 4.7, 4.8, and 4.9. An AE LC profile represents an “improvement” 

scenario of predicting condition of a treated element. An AE profile of an element is represented 

by a series of improvement actions. When an action is taken, an immediate change in condition 

happens per the AE model, while subsequent forecasting up to the next action is based on the 

hybrid model. The module assumes that a preservation policy is followed throughout the LC of 

the bridge, and a major improvement work on the bridge fully restores all elements. Preservation 

actions (discussed in Chapter 4) are considered the most cost-effective actions for the long term. 

Thus, they always subsequent a major improvement work on the bridge for the remaining analysis 

period. Preservation actions account for the large portion of the AE LC profile. 

To generate LC alternatives for each element, all possible AE LC profiles must first be constructed. 

A LC alternative is defined by a path of actions and an improvement type. Each AE LC profile is 

laid out in a cash-flow diagram following a LC alternative action path. A waiting period separates 

these actions. Each program year (initial intervention) is associated with multiple LC profiles. 

Each LC profile is allied with an improvement type (i.e., MRR, FCI or REP). Each MRR LC 

alternative calls for a specific path of MRR actions covering the entire analysis period. Each FCI 

LC alternative calls for a specific path of MRR actions covering the remainder period succeeding 

the initial intervention action (i.e., FCI Action 5)—which is assigned separately to the entire 

bridge. The same concept does apply for defining a REP LC alternative except the initial 

intervention action is a complete bridge replacement (i.e., REP Action 6).  
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All possible alternatives can be generated; however, the number will be unmanageable. Given 

there are five groups of MRR actions (MRR Actions 0, 1, 2, 3, and 4) that can be performed in any 

year, for a 54-year analysis period, approximately 5.55 E73 (554) LC alternatives for each element. 

It’s impractical to manage this huge number of LC alternatives due to the problem complexity—

solving a problem with this size through an optimization algorithm would be beyond the capability 

of most computers due to memory limitation and processing time. Thus, a realistic (“real-life”) 

arrangement providing a dramatic reduction in number of LC alternatives is vital.  

A waiting period (referred to as inaction or deferment period) is introduced to significantly reduce 

the number of LC alternatives. The longer the waiting period, the less LC alternatives can be 

generated, but deterioration will likely increase, and preservation actions become less feasible. 

This inaction period should reflect maintenance and preservation practices. The period should be 

defined as part of the agency’s preservation policies. Deferment rules can also be developed based 

these preservation policies. Variable inaction periods can be specified for different actions when 

applied. However, inconsistent inaction periods will complicate the LC modeling. The following 

rules are considered when generating LC alternatives:  

• Action effectiveness profile consists of 5 cycles 

• First cycle falls always after a program year 

• Preservation action selection is made at the end of each inaction period (referred to as 

decision point) 

• Ten years of inaction period between decision points (based on common practice) 

• Action is implemented in one year 
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Based on these rules, 3125 MRR, 625 FCI, and 625 REP LC alternatives per program year are 

generated for each deficient element. Thus, for a 10-year program period, a total of 31,250 of 

unique MRR LC profiles, 6,250 FCI LC profiles, and 6,250 REP LC profiles are constructed for 

each deficient element. Figure 5.5(a) illustrates an example of an action path defining a specific 

MRR LC alternative. The initial intervention (for this example, MRR Action 4) takes place in 

program year 4, followed by MRR Action 0, MRR Action 3, MRR Action 3, and MRR Action 2 

spaced by 10-year of inaction period. This action path 4-0-3-3-2 is unique to MRR LC Alternative 

2593. Figure 5.5(b) shows a path of actions for an FCI LC alternative. The initial intervention (for 

this example, FCI Actions 5) takes place in program year 4 and performed on the bridge followed 

by a series of preservation actions (MRR Actions 2, 4, 1, and 1, in that order, spaced by 10-year 

of inaction period) performed on a deficient element. As well, this action path 5-2-4-1-1 is unique 

to FCI LC Alternative 357.  
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Figure 5.5 Simulation of (a) MRR LC Alternative 2593 (action path 4-0-3-3-2); (b) FCI LC Alternative 

357 (action path 5-2-4-1-1)  
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5.5 Economics Analysis of Alternatives 

The LC economic analysis is one of the most common decision support tools used by 

transportation agencies for planning and programming. The analysis assesses the total economic 

worth of an asset by evaluating the initial agency costs and all costs anticipated over its service 

life. MAP-21 (23 CFR 515.9) requires state DOTs to incorporate a LCP process into their TAMPs, 

at a minimum, for pavements and bridges on the NHS and recommends a similar process for other 

transportation assets. To support transportation agencies with this requirement, FHWA (2017a) 

published a guidance on how to develop a LCP process. The guidance discusses the following to 

be included in a LCP process and focusses mainly on the LC economic analysis aspect covered in 

item 4. 

1. The state DOT’s asset condition targets for each asset class or asset sub-group;  

2. Identification of deterioration models for each asset class or asset sub-group, assets other 

than NHS pavements and bridges are optional;  

3. Potential work types across the whole life of each asset class or asset sub-group with their 

relative unit costs; and  

4. A strategy for managing each asset class or asset sub-group by minimizing its LCCs, while 

achieving the state DOT’s asset condition targets for NHS pavements and bridges under 

23 USC 150(d).55 (FHWA, 2017a). 

LCCA is a technique founded on the principles of economic analysis to help in the evaluation of 

the overall long-term economic efficiency between competing alternatives of investment options 

(AASHTO, 1986). LCCA allows agencies to assess the total economic worth of an asset by 

analyzing discounted initial agency costs and all expected costs over the life of the asset. The 

literature (under Task 1) revealed that multiple LCCA methods are being used to support the 
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decision making. The NCHRP Report 483: Bridge Life-Cycle Cost Analysis (Hugh, 2003) provides 

a commonly accepted bridge LCCA approach to support agencies in selecting appropriate bridge 

improvement alternatives. The approach is incorporated in the LCC model of this module. The 

NCHRP Synthesis of Highway Practice 494: Life-Cycle Cost Analysis for Management of 

Highway Assets (Flannery et al., 2016) discusses the results of a survey on LCCA tools used by 

agencies, completed for Caltrans in 2011. Among the seventeen states participated in the survey, 

five reported using the FHWA’s Real Cost Tool, three developed their own LCCA tools, three use 

custom spreadsheets, one uses both AASHTOWare products and custom software, and the 

remaining did not specify the tool being used. The survey identified two common tools for bridge 

LCCA: Bridge LCC and BLCCA. Bridge LCC developed in 2003 based on the American Society 

for Testing and Materials (ASTM) practice for measuring the LCCs of buildings and building 

systems and is primarily used to compare project alternatives. BLCCA (mentioned in Chapter 2) 

was developed under the NCHRP Project 12-43 (Hugh, 2003), including agency, user and 

vulnerability cost models.  

As emphasized in Chapter 2, efforts have been made to assess the threat of natural and man-made 

hazards in BMSs. Vulnerability or risk cost models quantify consequences resulting from natural 

hazards (such as earthquake, scour, and flooding). The NCHRP Project 20-07, Task 378, 

(Thompson, 2018) developed a risk assessment guideline for the LCCA in BMSs based on 

likelihood probability models for sixteen different hazards and a process for monetizing risk. The 

guideline can be considered in the LCCA to account for risk. The module LCC model doesn’t 

consider risk costs. Only agency and user costs are considered in the LCC model. The risk aspect 

is beyond the scope of this research. Nevertheless, the module is well-suited to admit the 

recommended guideline concepts or other risk models. 
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The FHWA’s Life-Cycle Cost Analysis Primer (FHWA, 2002) distinguishes between LCCA and 

BCA. The latter compares benefits as well as costs in selecting the superior alternatives. It can be 

applied to alternatives with different level of services because it considers all types of costs and 

benefits. However, LCCA can be used to compare only alternatives providing the same LOS, and 

the most cost-effective is selected. The proposed EB-MOO methodology deviates from both these 

common approaches for selecting alternatives. In most cases, other non-economic preferences 

(objectives), targets, and restrictions (constraints) contribute in the decision making. Generated 

LC alternatives won’t be compared in this module, only LCCs and LCC benefits are determined 

and discounted to the current year (present time). The recommendation of optimal or near-optimal 

alternatives, accounting for all these conflicting objectives, takes place in the optimization 

modules. 

5.5.1 Discounting and Present Value  

Comparing costs incurred at different times in a LC profile is achieved by a net present value 

analysis. All future cash flows are discounted to present values. This conversion provides a 

common ground for comparison. No standard value for discount rate exists. The rate is usually 

specified based on experience or current practice. It is important that the same discount rate is used 

when comparing LCCs or benefits. Only the real interest rate without inflation is considered in the 

module LCC model. Including inflated unit costs at every point in the LC profile complicate the 

analysis. Inflation is less predictable and does not affect results unless costs are modeled to inflate 

at different rates (Sobanjo & Thompson, 2016b).  
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After omitting inflation, the discount factor is determined by Equation (5.1) as follows: 

𝑒𝑒𝐷𝐷 =
1

1 + 𝐷𝐷𝑖𝑖
 (5.1) 

where 

𝑒𝑒𝐷𝐷 = discount rate; and  

𝐷𝐷𝑖𝑖 = 
real interest rate, usually it’s specified by the agency as part of the asset management 
policy. 

The present value of a future cost/benefit is calculated by Equation (5.2) as follows: 

𝑃𝑃𝑉𝑉 =
𝑆𝑆𝑉𝑉𝑁𝑁

(1 + 𝑒𝑒𝐷𝐷)𝑁𝑁
 (5.2) 

where 

𝑃𝑃𝑉𝑉 = present value of a one-time future cost/benefit; 

𝑆𝑆𝑉𝑉𝑁𝑁 = future value of the cost/benefit estimated at time N; 

𝑒𝑒𝐷𝐷 = discount rate, determined by Equation (5.1); and 

𝑁𝑁 = 
time interval between the base year (usually the current year or the first year of the 
analysis period) and the analysis year. 

 
5.5.2 Life-Cycle Cost Model 

At the bridge level, most BMSs estimate the LCCs associated with different intervention strategies 

for a given bridge. Thus, the most feasible alternative is recommended—suggesting an 

intervention scope at the appropriate timing with the expected performance and condition. The 

LCC model integrated in this module assumes that a preservation policy is followed throughout 

the bridge LC, and a major improvement work on the bridge fully restores all its elements 

(CS1=100%). Preservation actions account for a large portion of the element LC profile. They are 

considered the most cost-effective actions for the long-term, extending the element service life by 
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slowing down deterioration. Accordingly, as defined in Chapter 4, preservation actions always 

follow a major improvement work on the bridge for the remainder of the analysis period. For each 

element, a LC profile is constructed and present values are determined for relevant agency and 

user costs, residual values, and benefits. Figures 5.6(a), (b), and (c) illustrate three examples of 

MRR, FCI, and REP LC alternative profiles. Diagrams include the typical types of incurred LCCs 

and residual values. LCC model is expressed by Equations (5.3) and (5.4) as follows: 

𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝐷𝐷𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝  (5.3) 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑖𝑖𝑝𝑝 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝 + � 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖∈𝑅𝑅𝑘𝑘 

 (5.4) 

where   

𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 = improvement type p LC alternative r with an initial intervention in program year j; 

𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = total preservation LCCs incurred in element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile; 

𝑃𝑃𝐷𝐷𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 
sum of all discounted preservation action costs incurred in element i LC alternative 
𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile;  

𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 
discounted residual value applied at the end of element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile, 
refer to Equation (5.5); 

𝑀𝑀𝑖𝑖𝑝𝑝𝑘𝑘 = bridge k combination of improvement type p LC alternatives with an initial 
intervention in program year j; 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘  = total LCC of combination 𝑀𝑀𝑖𝑖𝑝𝑝𝑘𝑘 for bridge k; 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = 

sum of all discounted user costs incurred due to bridge k (user cost for an analysis 
year is determined by Equation (4.11) in Chapter 4; for FCI and REP improvement 
types, only user costs between beginning of program year 1 and end of program year 
j are considered, otherwise from the entire analysis period); 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = 

discounted major cost of improvement type p performed on bridge k in program year 
j (for FCI and REP improvement types, the cost is determined by Equations (4.4) 
and (4.8) in Chapter 4, respectively; for MRR improvement type, the cost is always 
equals to zero); and 

𝐸𝐸𝑘𝑘  = set of bridge k elements.  

 
Figure 5.6 Example of LC profile showing different LCCs and residual values for (a) MRR LC 

Alternative 2215; (b) FCI LC Alternative 28; (c) REP LC Alternative 54 
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5.5.3 Agency costs 

Agency costs represent the combination of all costs incurred by the agency over time. These costs 

are incurred to implement preservation and improvement actions. Agency costs are classified into 

three cost categories: element preservation, bridge major improvement, and initial agency costs. 

Element Preservation Action Costs  

Preservation cost (discussed in Chapter 4) is an element-level cost (symbolized by PACelm in the 

LCC model) of implementing a preservation action. The cost is made up of direct and indirect 

costs and applied at the end of the implementation year. The direct cost is the sum of all costs 

involved to preserve, repair, or replace the element. The other component is the sum of all costs 

indirectly incurred such as costs of maintaining traffic and engineering design.  

Bridge Major Improvement Costs 

Two types of bridge-level major improvement costs (symbolized by MICbrg in the LCC model) are 

considered as major improvement costs: functional improvement and replacement costs, defined 

in Chapter 4 by Equations (4.4) and (4.8), respectively. Functional improvement cost includes 

widening cost (required to eliminate the bridge width deficiency), raising cost (required to 

eliminate the bridge vertical clearance deficiency), and/or strengthening cost (required to eliminate 

the bridge load capacity deficiency). Replacement cost is the cost incurred to relieve the bridge 

from all its restrictions, provide required LOS and design standards, and eliminate all incurred user 

costs. These costs depend on different factors such as the bridge size, type and material, location, 

feature being crossed, and other attributes.  
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Initial Agency costs 

The initial intervention cost is referred to as initial agency cost (or IAC) in a LC profile. The cost 

is always incurred in a program year. The element- and bridge-level IACs are defined as follows: 

• Element-level IAC (denoted by IACelm) is the cost of implementing the first preservation 

action on an element. The cost appears only in MRR LC profiles—FCI or REP LC profiles 

do not assume any perseveration actions in the program period.  

• Bridge-level IAC (denoted by IACbrg) is an initial cost incurred for the entire bridge. For 

MRR LC profiles, IACbrg is the sum of all deficient element IACs; whereas for FCI or REP 

LC profiles, IACbrg is the combination of the bridge major improvement costs (i.e., MICbrg) 

and all its deficient element IACs. 

5.5.4 User costs 

Chapter 4 discusses the different types of user costs being modeled. Equation (4.11) in Chapter 4 

defines the total bridge user cost for an analysis year. User cost (USCbrg in the LCC model) is the 

sum of all costs incurred by users over the bridge LC (analysis period). It is important to use the 

same type of user costs and most significant in the LCC calculation to ensure consistency and no 

bias. The LCC model computes three types of user costs: accident risk, vertical clearance, and load 

capacity costs, defined in Chapter 4 by Equations (4.15), (4.17), and (4.20), respectively. A user 

cost due to a functional deficiency is calculated for each analysis year, including action 

implementation years. All user costs are discounted to present values and added to the bridge LCC 

(denoted by LCCbrg in the LCC model). To provide a uniform basis for assessing alternatives, no 

user costs are recognized prior to year 1. Element deterioration and traffic growth are assumed to 

contribute to the increase of user costs over time. No further user costs are considered beyond the 

end of the analysis period.  
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5.5.5 Residual Value 

LC alternatives produce different RSLs (defined in Chapter 4) or none for the same analysis period. 

Residual value (RV) is the economic value of RSL applied at the end of an analysis period. For a 

fair comparison, each element RV for each LC alternative is estimated, discounted, and subtracted 

from the LCCbrg. A few methods exist to estimate RVs. The Life-Cycle Cost Analysis in Pavement 

Design—Interim Technical Bulletin (Walls & Smith, 1998) considers the RV as a product between 

the asset cost and the percentage design life remaining at the end of the analysis period. A different 

approach based on bridge condition ratings for estimating RVs is presented in the NHCRP Report 

483 (Hugh, 2003). The RV of an element (denoted by RVelm in the LCC model) is estimated using 

the proportional approach.  

Figure 5.7 assists in visualizing the RV modeling approach. A straight line is constructed joining 

the element replacement cost and the end-of-life threshold (dashed line) over its projected ESL 

(defined in Chapter 4). The RSL beyond the analysis period is determined. The RV is then 

identified as the proportional side to the element replacement cost side. No other costs are 

considered beyond the end of the analysis period. It’s assumed that operation continues beyond 

the analysis period in the indefinite future, and no salvage values are realized. The RV modeling 

approach is expressed by Equation (5.5) as follows: 

𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐸𝐸𝑆𝑆𝐿𝐿𝑟𝑟𝑙𝑙m𝑖𝑖

𝑅𝑅𝑆𝑆𝐿𝐿𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝  × 𝑅𝑅𝑊𝑊𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 × 𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖         (5.5) 

where   

𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 = improvement type p LC alternative r with an initial intervention in program year j; 

𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = discounted residual value applied at the end of element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile; 
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𝐸𝐸𝑆𝑆𝐿𝐿𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = ESL of element i; 

𝑅𝑅𝑆𝑆𝐿𝐿𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝  = RSL of element i as a result of LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏; 

𝑅𝑅𝑊𝑊𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = replacement unit cost of element i; and 

𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = quantity of element i. 
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Figure 5.7 Residual value determination 
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5.5.6 Defining Benefit 

Benefit should be carefully defined to capture the effect of an alternative on strategic objectives 

and performance targets. The NCHRP Report 590 (Patidar et al., 2007) defines benefit as the 

savings in LCC of “doing something” relative to the “do-nothing” alternative, or the increase in 

utility of “doing something” rather than “doing nothing.” Benefits can be either positive or 

negative depending on whether the discounted “doing something” LCC exceeds the discounted 

“do-nothing” LCC or not. Positive benefit is generally desirable. The benefit is calculated for each 

element LC alternative and transferred to the ELO module. The total benefit of a set of element 

LC alternatives for a bridge constitutes one of the objectives to be optimized.  

The economic benefit of an element LC alternative is calculated by subtracting the alternative LCC 

from its base LCC. Both costs are discounted to present values. For each bridge, a base user cost 

covering the entire analysis period is computed and discounted to present value. The DN and RO 

LC profiles are constructed for each element (covered in Chapter 4). These two base LC profiles 

define the “baseline” alternative against which the economic benefits (LCC benefits) of 

improvement alternatives are compared. The base LCC (sum of all user costs plus any element 

replacement costs) may be zero or negative if the element RSL extends beyond the analysis period. 

Figures 5.8(a) and (b) illustrate two examples of DN, and RO LC profiles. The diagrams include 

the typical types of incurred LCCs and RVs. 
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Figure 5.8 Example of baseline LC alternative profile of (a) DN; (b) RO 
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constitutes the bridge-level LCC benefit (symbolized by BNTbrg).  
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The following Equations (5.6) through (5.9) are developed around these definitions to compute 

the base LCCs and LCC benefits. 

𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏 =  𝐷𝐷𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑏𝑏 − 𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏  (5.6) 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑏𝑏 = 𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑏𝑏 + � 𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏

𝑖𝑖∈𝑅𝑅𝑘𝑘 

 (5.7) 

𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏 − 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝  (5.8) 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘 =  𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑏𝑏 − 𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘  (5.9) 

where 

𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 = improvement type p LC alternative r with an initial intervention in program year j; 

𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏  = total base LCC for element i;  

𝐷𝐷𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏  = sum of all discounted agency costs incurred in element i base LC profile; 

𝑅𝑅𝑉𝑉𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏  = discounted residual value applied at the end of element i base LC profile; 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑏𝑏  = total base LCC for bridge k; 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑏𝑏  = sum of all discounted base user costs incurred over the entire analysis period for 

bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = LCC benefit of LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 for element i; 

𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 
discounted preservation LCCs incurred in element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile, refer 
to Equation (5.3); 

𝑀𝑀𝑖𝑖𝑝𝑝𝑘𝑘 = combination of improvement type p LC alternatives with an initial intervention in 
program year j for bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘  = total LCC benefit of combination 𝑀𝑀𝑖𝑖𝑝𝑝𝑘𝑘 for bridge k; and 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐹𝐹𝑝𝑝𝑝𝑝𝑘𝑘  = total LCC for bridge k combination 𝑀𝑀𝑖𝑖𝑝𝑝𝑘𝑘 , refer to Equation (5.4). 
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5.5.7 Comparing LC Alternatives  

Three common economic decision analyses are used to compare alternatives in BMSs: LCCA, 

BCA, and IBCA. The FHWA’s Life-Cycle Cost Analysis Primer (FHWA, 2002) distinguishes 

between BCA and LCCA. Not all types of costs need to be explored in a LCCA, only costs that 

significantly differ among alternatives. LCCA identifies the most cost-effective alternative among 

alternatives providing the same LOS. BCA compares benefits as well as costs to identify the best 

alternative; it can be applied to alternatives with different LOSs. Alternatives are prioritized by 

sorting their ratios of benefit to cost—ratios equal to or greater than 1 are considered acceptable. 

When the budget is constrained, alternatives with the highest benefit-cost ratios are selected 

following a priority. BCA is desirable for comparing independent alternatives. However, ranking 

alternatives based on their benefit-cost ratios usually yields misleading results. The IBCA analysis 

is considered a superior to BCA (Farid et al., 1988).  

IBCA is based on the well-known economic law of Diminishing Marginal Return—incremental 

increase of investment produces smaller benefits. IBC ratio is defined as “the ratio of the extra 

benefits of advancing from one improvement level to the next, divided by the corresponding extra 

cost” (O’ Connor, 1989). The alternative IBC ratio is determined by calculating the difference in 

benefit divided by the difference in cost of the alternative compared to the next less costly 

alternative. The ratio is calculated for each alternative, and the one that produces the maximum net 

of benefit (i.e., the highest IBC ratio) is selected.  

Robert (2017) describes how IBCA is used in NBIAS to provide a near-optimal solution for a 

budget-constrained problem rather than exact optimization methods—due to their limitations for 

large-sized problems. NBIAS relies on an IBC heuristic called “MINBEN,” described in (Robert 

et al., 2009), for sorting alternatives. The heuristic provides a near-optimal solution within 
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acceptable running time. Alternatives that do not follow the Law of Diminishing Marginal Return 

are eliminated from consideration. Under this law, more expensive alternatives produce smaller 

IBC ratios—an incremental cost produces a less proportionate increase in benefit. Accordingly, 

the alternative that satisfies the available budget and produces the highest benefit per additional 

cost is selected (Patidar et al., 2007). 

BrM uses a multi-criteria decision analysis based on the utility theory. Each criterion for a bridge 

is associated with a utility value determined through weighting, scaling and amalgamation 

techniques (discussed in Chapter 2). Four criteria are involved in the analysis: condition, LCC, 

mobility, and risk. BrM defines benefit as the change to a bridge as a result of work. BrM generates 

bridge and network actions based on user-specified preservation and network policies, 

respectively. The benefit of an action is calculated from the incremental increase in the overall 

utility of the bridge (referred to as Δ Utility). A Δ Utility ratio is determined for each action. The 

system selects actions with the highest Δ Utility ratios. A cutoff is reached when the performance 

and budget constraints are met (Johnson & Boyle, 2017).  

Any of these discussed analyses can be utilized to compare the module produced LC alternatives. 

A given bridge with just few elements can be associated with an enormous number of possible 

combinations of LC alternatives. For example, taking a bridge with only 9 elements, the 3125 

MRR LC alternatives per program year for each element generates 2.84 E31 (31259) of possible 

combinations of MRR LC alternatives per program year. At the element level, superior LC 

alternatives per program year and per improvement type can be identified for each element using 

either one of the discussed analyses. These superior alternatives constitute feasible combinations 

of LC alternatives for the entire program period and the three improvement types.  
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The bridge LCCs and LCC benefits, Equations (5.4) and (5.9), are determined for each of these 

feasible combinations to be compared through an economic analysis. Again, either BCA or IBCA 

can be applied to find the ultimate combination. In most cases, other non-economic preferences 

(objectives), targets and restrictions (constraints) contribute in the decision making. Optimization 

methodologies are effective in optimizing multiple competing objectives (such as minimizing the 

LCC, and maximizing the benefit and performance) subject to constraints (e.g., limited available 

budget and minimum level of acceptable performance). As explained in Chapter 2, optimization 

methodologies guarantee a diverse set of optimal or near-optimal solutions—constituting a frontier 

of trade-offs (i.e., Pareto frontier). The optimization problem size can be reduced by eliminating 

economically unattractive LC alternatives (generally, alternatives with negative LCC benefits or 

other specified criteria) associated with the deficient elements. The remainder alternatives 

represent the feasible LC alternatives to be transferred to the optimization.  

The proposed EB-MOO methodology deviates from these common approaches (i.e., BCA and 

IBCA) used by most BMSs for selecting alternatives. LC alternatives won’t be compared at this 

stage, only the LCCs and LCC benefits are determined and discounted to present time. The module 

LC alternative results are transferred to the optimization modules. The results will be processed at 

the ELO to obtain optimal or near-optimal combinations of LC alternatives per program year for 

each analyzed bridge. 
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5.6 Example of Module Results  

The module was implemented through a sample set of bridges to prove effectiveness and 

demonstrate potential benefits. The MATLAB-based tool prototype was used for the 

implementation. Bridges were selected based on common features, attributes, and data 

completeness. For each sample bridge, the tool successfully identified potential deficient elements, 

predicted performance, generated LC alternatives, constructed LC profiles, and determined all 

incurred LCCs and LCC benefits. Table 5.4 presents the NBI condition ratings of one of the sample 

bridges (i.e., Bridge 11; Table 3.2 in Chapter 3 lists all sample bridges used for the different 

illustrative examples). Table 5.5 shows the latest condition states of the 12 elements of this sample 

bridge. Three of the 12 elements (i.e., Elements 215, 234 and 331) were identified as non-deficient 

by the element deficiency screening process.  

Table 5.4 NBI condition ratings of Bridge 11 

Bridge 11 
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Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents to the existence of the functional deficiency, otherwise the value of 0. 
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Table 5.5 Condition states of the 12 elements of Bridge 11 

  
Elements of Bridge 11 

12 107 205 215 220 226 234 301 311 313 330 331 
CS1 (%) 29.4

 
99.3

 
100 100 58.78 0 100 93.1

 
32 40 99.8

 
95.9

 CS2 (%) 70.4
 

0.53 0 0 33.11 95.8
 

0 6.86 36 24 0 3.93 
CS3 (%) 0.07 0.11 0 0 8.11 4.17 0 0 32 36 0.13 0.13 
CS4 (%) 0 0 0 0 0 0 0 0 0 0 0 0 
Qt (sq.ft) 13,0

 
1,91 8 79 148 24 112 204 25 25 764 764 

Welm (%) 25 49 40 13 10 17 13 12 12 12 16 14 
ESL (years) 129 77 200 75 123 141 408 24 58 58 28 151 
RSLa (years) 66 20 143 18 57 63 351 0 0 0 0 91 
RU ($) 54 2,06 38,8

 
1,5

 
194,0

 
38,8

 
1,1

 
72 9,0

 
9,0

 
296 212 

a RSL is estimated from program year 1 (2020). 

Table 5.6 includes the module LC alternative results obtained using the tool prototype for this 

sample bridge. The analysis period is set for 54 years, including a 10-year program period. The 

discount rate is 4% over 56 years (analysis period plus the period from current year, 2018, to 

program year 1, 2020). The table section under “Elements” header includes the LCCs incurred by 

the two base LC alternatives (i.e., DN and RO LC Alternatives) and other improvement type LC 

alternatives sharing the same program year 4. MRR, FCI and REP LC alternatives are assigned to 

each element. FCI LC Alternative 1 and REP LC Alternative 1 simulate the scenario of performing 

a major bridge intervention with no subsequent preservation actions. The section under “Bridge” 

header includes the overall bridge LCCs for each improvement type combination—combining all 

element LC alternatives of the same improvement type. Each of these combinations represents a 

unique bridge alternative for program year 4. This unique combination is one of the many possible 

combinations for a bridge with 9 deficient elements. As explained earlier, the number of possible 

combinations is overwhelming; the best combination can be efficiently identified using either 

BCA, IBCA, or optimization heuristics.  
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Table 5.6 Module LC alternative results produced using the tool prototype for Bridge 11 

Ek 12 107 205 215 220 226 234 301 311 313 330 331
Qelm 13030 (sq.ft) 1903 (ft) 8 (each) 79 (ft) 148 (ft) 24 (each) 112 (ft) 204 (ft) 25 (each) 25 (each) 764 (ft) 764 (ft)
RUC ($) 54 2,062 38,810 1,591 194,049 38,810 1,186 72 9,009 9,009 296 212
ESLelm (years) 129 77 200 75 123 141 408 24 58 58 28 151
RSLelm (years) 66 20 143 18 57 63 351 0 0 0 0 91 USCbrg ($) 753,711
RVelm ($) 39,924 113,334 24,687 3,355 1,480,051 46,282 12,703 0 0 0 0 10,835 LCCbrg ($) -977,460
ACelm ($) 0 0 0 0 0 0 0 0 0 0 0 0
LCCelm ($) -39,924 -113,334 -24,687 -3,355 -1,480,051 -46,282 -12,703 0 0 0 0 -10,835
RSLelm (years) 66 20 143 18 57 63 351 16 45 44 0 91 USCbrg ($) 753,711
RVelm ($) 39,924 113,334 24,687 3,355 1,480,051 46,282 12,703 1,082 19,434 19,002 0 10,835 LCCbrg ($) -848,273
ACelm ($) 0 0 0 0 0 0 0 8,146 41,707 43,375 75,478 0
LCCelm ($) -39,924 -113,334 -24,687 -3,355 -1,480,051 -46,282 -12,703 7,063 22,273 24,373 75,478 -10,835
Alt. Reference 1 1 1 1 1 1 1 1 1 1 1 1 USCbrg ($) 77,673

RSLelm (years) 79 27 162 69 73 91 393 0 8 8 0 126 MICbrg ($)
(FCI/REP)

2,089,162
3,769,103

RVelm ($) 47,787 153,002 27,967 12,862 1,895,504 66,851 14,223 0 3,455 3,455 0 15,002 LCCbrg ($)
(FCI/REP)

-73,272
1,606,668

ACelm ($) 0 0 0 0 0 0 0 0 0 0 0 0 BNTbrg (DN) ($)
(FCI/REP)

-904,188
-2,584,128

LCCelm ($) -47,787 -153,002 -27,967 -12,862 -1,895,504 -66,851 -14,223 0 -3,455 -3,455 0 -15,002 BNTbrg (RO) ($)
(FCI/REP)

-775,000
-2,454,941
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Table 5.6 Module LC alternative results produced using the tool prototype for Bridge 11 (continued) 

Ek 12 107 205 215 220 226 234 301 311 313 330 331
Alt. Reference 392 2172 3071 1 1132 895 1 2001 481 3120 471 1 USCbrg ($) 753,711
Action Path 0-3-0-3-1 3-2-1-4-1 4-4-2-4-1 0-0-0-0-0 1-4-0-1-1 1-2-0-3-4 0-0-0-0-0 3-1-0-0-0 0-3-4-1-0 4-4-4-3-4 0-3-3-4-0 0-0-0-0-0 MICbrg ($) 0
RSLelm (years) 117 69 185 18 115 103 351 0 36 0 0 91 IACbrg ($) 501,406
RVelm ($) 70,774 391,004 31,938 3,355 2,986,068 75,667 12,703 0 15,547 0 0 10,835 LCCbrg ($) -866,476
PACelm ($) 187,965 1,428,367 336 0 301,668 44,623 0 6,394 8,352 0 0 0 BNTbrg (DN) ($) -110,984
IACelm($) 0 243,917 0 0 212,905 44,584 0 0 0 0 0 0 BNTbrg (RO) ($) 18,203
PLCCelm ($) 117,191 1,037,363 -31,602 -3,355 -2,684,400 -31,044 -12,703 6,394 -7,195 0 0 -10,835
BNTelm (DN) ($) -157,115 -1,150,697 6,915 0 1,204,349 -15,238 0 -6,394 7,195 0 0 0
BNTelm (RO) ($) -157,115 -1,150,697 6,915 0 1,204,349 -15,238 0 669 29,468 24,373 75,478 0
Alt. Reference 68 365 509 1 146 279 1 622 601 381 444 1 USCbrg ($) 77,673
Action Path 5-0-2-3-2 5-2-4-2-4 5-4-0-1-3 5-0-0-0-0 5-1-0-4-0 5-2-1-0-3 5-0-0-0-0 5-4-4-4-1 5-4-4-0-0 5-3-0-1-0 5-3-2-3-3 5-0-0-0-0 MICbrg ($) 2,089,162
RSLelm (years) 94 61 190 18 84 116 351 16 14 36 2 91 IACbrg ($) 2,089,162
RVelm ($) 56,861 345,670 32,801 3,355 2,181,128 85,217 12,703 1,082 6,046 15,547 1,798 10,835 LCCbrg ($) 976,447
PACelm ($) 10,109 1,452,933 672 0 49,101 7,824 0 2,141 0 9,195 30,681 0 BNTbrg (DN) ($) -1,953,907
PLCCelm ($) -46,753 1,107,262 -32,129 -3,355 -2,132,026 -77,393 -12,703 1,059 -6,046 -6,352 28,883 -10,835 BNTbrg (RO) ($) -1,824,720
BNTelm (DN) ($) 6,829 -1,220,597 7,442 9,506 651,975 31,112 1,520 -1,059 6,046 6,352 -28,883 4,167
BNTelm (RO) ($) 6,829 -1,220,597 7,442 0 651,975 31,112 0 6,004 28,319 30,725 46,595 0
Alt. Reference 3 18 398 1 327 224 1 459 549 624 112 1 USCbrg ($) 77,673
Action Path 6-0-0-0-2 6-0-0-3-2 6-3-0-4-2 6-0-0-0-0 6-2-3-0-1 6-1-3-4-3 6-0-0-0-0 6-3-3-1-3 6-4-1-4-3 6-4-4-4-3 6-0-4-2-1 6-0-0-0-0 MICbrg ($) 3,769,103
RSLelm (years) 93 69 185 18 112 118 351 6 29 17 18 91 IACbrg ($) 3,769,103
RVelm ($) 56,256 391,004 31,938 3,355 2,908,170 86,686 12,703 406 12,524 7,342 16,181 10,835 LCCbrg ($) 2,382,381
PACelm ($) 8,670 1,841,285 592 0 117,995 5,100 0 3,189 10,388 0 43,034 0 BNTbrg (DN) ($) -3,359,841
PLCCelm ($) -47,587 1,450,281 -31,346 -3,355 -2,747,424 -81,586 -12,703 2,783 -2,136 -7,342 26,854 -10,835 BNTbrg (RO) ($) -3,230,653
BNTelm (DN) ($) 7,663 -1,563,616 6,659 9,506 1,267,373 35,305 1,520 -2,783 2,136 7,342 -26,854 4,167
BNTelm (RO) ($) 7,663 -1,563,616 6,659 0 1,267,373 35,305 0 4,280 24,409 31,715 48,625 0
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Figures 5.10(a) through (f) illustrate the element health indices at different analysis years produced 

by the LC alternatives in Table 5.6. The horizontal dashed line represents a health index lower-

frontier (deficiency screening thresholds, a minimum health index of 80% every 10 years). The 

dashed curves above this frontier distinguish the non-deficient elements from the deficient ones. 

The thick connected lines in black represent the overall bridge health indices for the different 

combinations of LC alternatives in Table 5.6. 
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Figure 5.9 Health indices predicted for Bridge 11 under (a) DN LC Alternative; (b) Combination of MRR 

LC Alternatives; (c) RO LC Alternative (d); Combination of FCI LC Alternatives; (e) FCI/REP LC 
Alternative 1; (f) Combination of REP LC Alternatives 
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5.7 Summary and Conclusions 

This chapter presented a basic framework to visualize the modeling approach followed to generate 

LC alternatives (series of element improvement actions) and estimate LCCs and LCC benefits. 

The chapter introduced a novel screening process, to focus on potential deficient elements, and a 

new simulation arrangement, to generate realistic (“real-life”) LC alternatives, for the three 

improvement types (i.e., MRR, FCI, and REP). The module relies on two independent models (i.e., 

deterioration and LCC models) to predict conditions and estimate LCCs and LCC benefits. The 

LCC and benefit modeling approaches are expressed in this chapter. An illustrative example of 

module results using the MATLAB-based tool prototype is also included. The implementation 

proved the capability of the module in producing reliable LC alternative results. The tool 

successfully identified potential deficient elements, predicted performance, generated LC 

alternatives, constructed LC profiles, and determined incurred LCCs and LCC benefits.  

The module results can be used independently to determine bridge investment needs for bridge 

programming and planning. BCA, IBCA, or optimization heuristics can be deployed to identify 

bridge combinations of LC alternatives representing the proper intervention strategies. The 

proposed EB-MOO methodology deviates from common economic decision analyses (i.e., BCA 

and IBCA) used by BMSs for selecting alternatives. LC alternatives won’t be compared at this 

stage, only LCCs and LCC benefits are determined and discounted to present time. The module 

LC alternative results are transferred to the ELO module (discussed in the subsequent chapter) to 

be used in the optimization process. 
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CHAPTER 6—ELEMENT-LEVEL OPTIMIZATION MODULE 

 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 
 Task 4: Development of a Tool Prototype  
 Task 5: Implementation of the Methodology through Examples of Scenarios 

6.1 Introduction 

The main objective of the EB-MOO methodology is to determine short- and long-term investment 

needs and support recommending programs and implementation schedules. The methodology 

consists of five modules (i.e., data processing, improvement, ELO, BLO, and NLO modules). The 

discussion up to this point has largely focused on the data processing and improvement modules. 

Chapters 4 and 5 introduced the different processes and models incorporated in these two modules: 

a novel screening process to identify potential deficient bridge elements, an independent 

deterioration model to predict performance, a LCC model to estimate LCCs and LCC benefits, and 

a simulation arrangement to generate realistic LC alternatives for MRR, FCI and REP 

improvement types. Chapters 6,7, and 8 are devoted to the three optimization modules. This 

chapter discusses the ELO module framework and its different processes, introduces the proposed 

heuristic optimization algorithm, and includes an illustrative example using the developed tool 

prototype. 

For each program year, LC alternatives of a deficient element—generated as part of the 

improvement module—are independently screened. The module screening process recognizes the 

best feasible LC alternatives for each program year based on the specified criteria and optimization 
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goals. Sorting outcomes are rearranged and grouped to capture all deficient elements. Module 

results associated with these best feasible LC alternatives drive the optimization process. 

The literature review revealed that MOO methodologies, aiming to produce optimal or near-

optimal sets of long-term intervention strategies, are less common. Most of the MOO methods 

used in modern BMSs reduce the problem to a single-objective optimization problem by scaling, 

weighting, and aggregating all competing objectives. The recommended long-term needs are 

determined only at the higher levels (i.e., bridge level or network level). This chapter introduces a 

“true” MOO methodology that relies on results from the data processing and improvement 

modules. The module optimization requires a simultaneous optimization of multiple competing 

objectives (e.g., minimize the LCC and maximize the LCC benefit and/or health indices at different 

points in time for a candidate bridge) and seeks to arrive at the best trade-off between them. The 

aim is to obtain a diverse set of ELO solutions per improvement type and per program year as 

close as possible to the true Pareto frontier. 

This module focuses on finding a set of Pareto optimal or near-optimal ELO solutions per program 

year for each improvement type. A set of LC alternatives is derived from each solution. Each 

recommended LC alternative represents a set of best actions for a deficient element over the 

analysis period—associated budgets, LCCs, and LCC benefits, and conditions are subsequently 

retrieved. Results associated with these element-level LC alternatives (or solutions) serve as the 

fundamental inputs for the subsequent optimization modules. 

The optimization problem is formulated as a “Multi-Choice Knapsack Problem” (MCKP) in terms 

of discrete decision variables (binary values), involving only the selection criterion. A LC 

alternative is selected for an element when the corresponding decision variable is 1, and not 
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selected, when the variable is 0. This type of optimization problem is referred to as combinatorial 

optimization problem. It’s considered difficult to solve combinatorial problems in a reasonable 

time—generally near-optimal rather than optimal solutions are obtained. ELO objectives and 

constraints are expressed in terms of these decision variables. Because of the stochastic nature of 

the optimization problem and the large number of variables involved in the selection of 

intervention strategies; a genetic algorithm was chosen for the optimization. A robust metaheuristic 

algorithm (i.e., NSGA-II, covered in Chapter 2) is deployed as the main optimizer to solve the 

computational complexity of the module optimization problems. 

6.2 Module Framework  

A framework of the ELO module is illustrated in Figure 6.1. As discussed in Chapter 5, each bridge 

in the portfolio is evaluated separately for each improvement type and each program year: the LCC 

model estimates bridge initial agency, user, and major improvement costs; the screening process 

identifies bridge deficient elements; and the simulation arrangement generates all possible LC 

alternatives for each identified deficient element—their corresponding preservation LCCs 

(PLCCelms) and LCC benefits (BNTelms), and health indices are determined. These output data are 

transferred to this module for further processing at this optimization level. The module framework 

exemplified in Figure 6.1 is based on the following concepts: 

1. A screening process referred to as “alternative feasibility screening,” discussed in the 

subsequent section, is deployed to identify a set of best feasible LC alternatives for each 

identified deficient element per improvement type and per program year. For illustration, 

Figure 6.1 shows an alternative feasibility screening linked to MRR improvement type and 

program year 4. The screening is specific to Element 107 of Bridge 47. Using this screening 

process, the optimization problem size is reduced by eliminating the economically 
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unattractive LC alternatives—associated results are sorted based on the preferred screening 

criteria and/or optimization goals.  

2. Best feasible LC alternatives are recognized and set aside to be used in the optimization 

process. Results (i.e., PLCCelms, IACelms, BNTelms, and element health indices) associated 

with these identified LC alternatives are grouped and reorganized per improvement type 

and per program year in single matrices as shown in Figure 6.1. 

3. Each matrix includes one type of LC alternative results per improvement type and per 

program year, encompassing all deficient elements. The optimization process relies on 

these preset matrices as input parameters, including bridge user and initial agency costs, to 

direct the search toward optimal or near-optimal LC alternatives. 

4. Three optimization solution output matrices are produced for each improvement type and 

each program year. As shown in Figure 6.1, the first matrix (bottom, far-left) contains the 

recommended LC alternatives for all deficient elements, the second matrix, the resulted 

initial agency costs and health indices, and the third matrix, the optimized element-level 

objective values.  
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Figure 6.1 Element-level optimization module framework 
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6.3 Alternative Feasibility Screening 

Chapter 5 discusses the three common economic decision analyses used in BMSs to compare 

alternatives: LCCA, BCA, and IBCA. Any of these analyses can be utilized to compare the 

produced LC alternatives. However, prioritizing LC alternatives based on their economic 

preferences usually yields misleading results. Other non-economic preferences (objectives), 

targets and restrictions (constraints) are not being considered in the search of best sets of LC 

alternatives. The module optimization problem deals with multiple competing objectives (e.g., 

minimizing the bridge LCC, and maximizing the bridge LCC benefit and health indices at different 

points in time) subject to constraints (e.g., available budget and/or minimum acceptable 

performance). MOO techniques are considered the most effective for these types of optimization 

problems. They guarantee a diverse set of optimal or near-optimal solutions—constituting a 

frontier of trade-offs (i.e., Pareto frontier). The module relies on a robust MOO technique to obtain 

these optimal or near-optimal solutions.  

A given bridge can be associated with a large number of possible combinations of LC alternatives. 

For example, taking a bridge with only 9 elements, the 3125 MRR LC alternatives per program 

year for each element generate 2.84 E31 (31259) of possible combinations of MRR LC alternatives 

per program year. This huge number makes the optimization problem very challenging and costly 

to solve in terms of computational time and computer memory. This large-scale optimization 

problem becomes extremely difficult to manage. Achieving heuristic solutions as close as to the 

Pareto frontier requires a tremendous computational effort. The need for a strategy that guides the 

optimization search toward global optimality within a reasonable computational time became 

indispensable.  
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A screening process referred to as “alternative feasibility screening” is introduced to make the 

problem more tractable without affecting the quality of solutions—attaining a manageable problem 

size dramatically improves the optimization computational time. To achieve a reasonable problem 

size and guarantee inclusion of most suitable LC alternatives, the process relies on two independent 

stages of screening:  

(1) an initial screening stage—feasible LC alternatives are identified after eliminating the 

economically unattractive ones, and  

(2) a final screening stage—feasible LC alternatives producing results in alignment with the 

optimization goal are further identified and classified as the “best” feasible LC alternatives 

for consideration.  

The following subsections discuss both stages in more detail. 

6.3.1 Initial Screening Stage 

Figure 6.2 illustrates the initial stage of the screening process. To identify the preliminary set of 

feasible LC alternatives for each deficient element, all possible LC alternatives, generated as part 

of the improvement module, are sorted through this initial stage. Each of them is screened for 

feasibility. A LC alternative is classified as feasible if the following two screening criteria are 

satisfied. 

• Criteria 1—Element health indices produced by the LC alternative outdo the element health 

index thresholds. Users set element health index thresholds (minimum acceptable limits) 

at the end of analysis years 10, 20, 30, 40, and 50. For each improvement type and each 

program year, predicted element health indices at these specified analysis points in time 

are compared to their corresponding thresholds. A health index lower-frontier is 
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constructed for each deficient element (joining the specified thresholds as indicated in 

Figure 6.2). Any produced health indices falling below this lower-frontier is classified as 

“unfeasible” and eliminated from further screening or consideration. 

• Criteria 2—Element LCC benefit (BNTelm) of the LC alternative is positive. If LC 

alternatives produce only negative BNTelms, then the sorting follows an ascending order. 

LC alternatives producing the largest BNTelms are considered—starting from the top (the 

largest LCC benefit) to a specified cutoff in ascending order (refer to Figure 6.2 for 

illustration). The remaining LC alternatives beyond the cutoff are deemed unfeasible. 
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Figure 6.2 Illustration of the initial stage of the alternative feasibility screening process
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Results associated with all possible LC alternatives for each deficient element are transferred to 

this module and arranged by improvement type and program year. The results are sorted through 

this initial stage based on the established screening criteria. Table 6.1 is a representation of the 

3125 MRR LC alternatives generated by the improvement module for a deficient element (i.e., 

Element 226). The table includes the associated results which are unique for Element 226, MRR 

improvement type, and program year 4. 

Table 6.1 Representation of the 3125 MRR LC alternatives (with an initial intervention in program year 
4) generated by the improvement module for Element 226 

 Alt. 
Ref. 

HI10elm 
(%) 

HI20elm 
(%) 

HI30elm 
(%) 

HI40elm 
(%) 

HI50elm 
(%) 

BNTelm 
($) 

PLCCelm 
($) 

IACelm 
($) 

31
25

 M
R

R
 L

C
 A

lte
rn

at
iv

es
  

(E
le

m
en

t 2
26

, P
ro

gr
am

 Y
ea

r 4
) 

1 58.20 53.16 48.47 44.13 40.12 -46,282 -46,282 -46,282 
2 58.20 53.16 48.47 44.13 85.05 -92,563 -46,282 -46,282 
3 58.20 53.16 48.47 44.13 73.52 -67,718 -46,282 -46,282 
4 58.20 53.16 48.47 44.13 56.76 -48,719 -46,282 -46,282 
5 58.20 53.16 48.47 44.13 40.51 -25,641 -46,282 -46,282 
6 58.20 53.16 48.47 85.87 76.17 -87,421 -46,282 -46,282 
7 58.20 53.16 48.47 85.87 95.46 -96,971 -46,282 -46,282 
8 58.20 53.16 48.47 85.87 83.64 -88,624 -46,282 -46,282 
- - -  - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

864 89.47 94.90 87.53 84.47 78.23 -80,740 -46,282 -46,282 
865 89.47 94.90 87.53 84.47 77.83 -82,062 -46,282 -46,282 
866 89.47 94.90 87.53 81.29 72.32 -80,151 -46,282 -46,282 
867 89.47 94.90 87.53 81.29 94.35 -92,640 -46,282 -46,282 
868 89.47 94.90 87.53 81.29 81.66 -82,009 -46,282 -46,282 

- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

3120 58.72 54.14 49.84 55.60 51.08 2,010 -46,282 5,007 
3121 58.72 54.14 49.84 45.83 41.69 5,301 -46,282 5,007 
3122 58.72 54.14 49.84 45.83 85.49 -38,042 -46,282 5,007 
3123 58.72 54.14 49.84 45.83 73.13 -13,350 -46,282 5,007 
3124 58.72 54.14 49.84 45.83 56.43 4,119 -46,282 5,007 
3125 58.72 54.14 49.84 45.83 42.09 23,431 -46,282 5,007 
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Table 6.2 presents an example of sorting results. LC alternative results from Table 6.1 were 

processed through the initial screening stage. For program year 4, the initial screening stage 

identified 644 out of the 3125 MRR LC alternatives meeting both Criteria 1 and 2. 644 MRR LC 

alternatives with positive BNTelms and element health indices above the specified thresholds (60% 

as the minimum acceptable health index every 10 years) were identified. These 644 MRR LC 

alternatives are classified as feasible for program year 4. The remaining 2481 MRR LC alternatives 

are disregarded. 

Table 6.2 Representation of the 644 feasible MRR LC alternatives (with an initial intervention in program 
year 4) identified through the initial screening stage for Element 226 

 
Alt. 
Ref. 

 Criteria 1  
(Element Health Index ≥ 60 %) 

Criteria 2 
(BNTelm ≥ 0)  

HI10elm 
(%) 

HI20elm 
(%) 

HI30elm 
(%) 

HI40elm 
(%) 

HI50elm 
(%) 

BNTelm 
($) 

PLCCelm 
($) 

IACelm 
($) 

64
4 

Fe
as
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le

 M
R

R
 L
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 A

lte
rn

at
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es
  

(E
le

m
en

t 2
26

, P
ro

gr
am

 Y
ea

r 4
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631 89.47 76.62 63.77 89.94 79.53 44,078 -90,359 -46,282 
632 89.47 76.62 63.77 89.94 96.34 51,424 -97,706 -46,282 
633 89.47 76.62 63.77 89.94 85.93 44,878 -91,160 -46,282 
634 89.47 76.62 63.77 89.94 83.21 42,695 -88,976 -46,282 
635 89.47 76.62 63.77 89.94 82.80 43,547 -89,828 -46,282 

- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

878 89.47 85.05 74.19 62.62 70.91 21,317 -67,598 -46,282 
881 89.47 85.05 74.19 92.17 81.36 36,108 -82,389 -46,282 
882 89.47 85.05 74.19 92.17 96.80 42,719 -89,001 -46,282 
883 89.47 85.05 74.19 92.17 87.28 36,704 -82,985 -46,282 
884 89.47 85.05 74.19 92.17 85.14 35,925 -82,207 -46,282 

- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

1785 65.07 60.08 88.98 95.81 88.18 8,278 -54,559 -46,282 
1787 65.07 60.08 88.98 85.22 95.54 6,844 -53,125 -46,282 
1792 65.07 60.08 88.98 82.41 94.62 8,021 -54,303 -46,282 
1797 65.07 60.08 88.98 81.99 94.54 10,549 -56,831 -46,282 
1798 65.07 60.08 88.98 81.99 82.08 165 -46,446 -46,282 
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6.3.2 Final Screening Stage 

The initial stage of the screening process focuses on recognizing the feasible LC alternatives for 

each deficient element. This final stage improves the computational time by imposing additional 

screening criteria. The aim is to further reduce the optimization problem size without affecting the 

solution quality. However, this step can be omitted if the computational time is not a concern. This 

stage seeks to identify the feasible LC alternatives producing results in alignment with the 

optimization goal. For a given program year, feasible LC alternative results pertaining to each 

deficient element are sorted and arranged in accordance to each objective to be optimized. This 

sorting approach intents to direct the optimization search toward global optimality within a 

reasonable computational time. The approach reduces the dimensionality of the optimization 

search space (i.e., the space of all feasible solutions) by emphasizing on the best feasible LC 

alternatives. It allows to efficiently explore the search space toward the optimal frontier.  

For each program year, feasible LC alternatives producing the best objective values are 

distinguished. This additional screening assures inclusion of the best feasible LC alternative results 

to serve as input parameters in the optimization process. These best LC alternatives are compatible 

with the ELO goal. Thus, solutions producing maximum or minimum objective values, depending 

on the optimization goal, are guaranteed. Obtained solutions are considered superior to all other 

solutions in the search space. A screening example for a bridge with 9 deficient elements is used 

for illustration in Figure 6.3. A cutoff value is established to limit the total number of best feasible 

LC alternatives to be considered. The example optimization goal is to simultaneously minimize 

the bridge LCC and maximize the bridge LCC benefit and health index in year 20. In this example, 

feasible element LC alternatives results (i.e., PLCCelms, BNTelms, and HI20elms) are sorted 

independently. PLCCelms are arranged in descending order; whereas BNTelms and HI20elms, in 
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ascending order. A cutoff value is set as “50” for this example—the 50 smallest PLCCelms, and the 

50 highest BNTelms and HI20elms are chosen. Feasible LC alternatives associated with these selected 

150 values are clustered, and any duplicate is eliminated. The final set includes the best feasible 

LC alternatives for consideration. 

 
Figure 6.3 Illustration of the final stage of the alternative feasibility screening process 

Feasible MRR, FCI, or REP LC alternatives matrix of a 
deficient element for a given program year resulted from the 
alternative feasibility screening process (refer to Figure 6.2)
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HI20_elms of the 99 best feasible LC alternatives

HI20_elms of the 28 best feasible LC alt.

HI20_elms of the 80 best feasible LC Alt.

HI20_elms of the 25 best feasible LC alt.

Best feasible Objective 4 (HI20_brg) matrix of
Bridge 47 for program year 4

Best feasible objective matrices to be used in the 
module optimization phase for program year 4
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Table 6.3 shows an example of final stage screening results. The same 644 feasible MRR LC 

alternatives of Table 6.2 are used in this example. A cutoff value of 50 was considered. Three 

objectives to be optimized—minimizing LCCbrg, and maximizing BNTbrg and HI20brg. By 

following the sorting steps described earlier, the number was reduced to 86 feasible MRR LC 

alternatives. They are all regarded as the best feasible MRR LC alternatives with an initial 

intervention in program year 4 for Element 226. 

Table 6.3 Representation of the best feasible 86 MRR LC alternatives (with an initial intervention in 
program year 4) identified through the final screening stage for Element 226 

 
Alt. 
Ref. 

 Criteria 1  
(Element Health Index ≥ 60%) 

Criteria 2 
(BNTelm ≥ 0)  

HI10elm 
(%) 

HI20elm
a 

(%) 
HI30elm 

(%) 
HI40elm 

(%) 
HI50elm 

(%) 
BNTelm

a 
($) 

PLCCelm
a 

($) 
IACelm 

($) 

86
 B

es
t F

ea
si

bl
e 

M
R

R
 L

C
 A

lte
rn

at
iv

es
  

(E
le

m
en

t 2
26

, P
ro

gr
am

 Y
ea

r 4
) 

632 89.47 76.62b 63.77 89.94 96.34 51,424 -97,706 -46,282 
652 89.47 76.62b 92.31 80.49 93.56 49,955 -96,236 -46,282 
656 89.47 76.62b 92.31 96.50 84.88 47,016 -93,298 -46,282 
657 89.47 76.62b 92.31 96.50 97.67 52,159 -98,440 -46,282 

- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

792 89.47 94.90 96.56 89.05 96.15 50,323b -96,604 -46,282 
793 89.47 94.90 96.56 89.05 85.38 42,832b -89,113 -46,282 
794 89.47 94.90 96.56 89.05 82.43 40,674b -86,956 -46,282 
795 89.47 94.90 96.56 89.05 81.99 42,392b -88,674 -46,282 

- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 
- - - - - - - - - 

1162 89.47 82.64 93.94 88.34 96.14 47,246 -93,527c -46,282 
1167 89.47 82.64 93.94 86.75 95.62 47,456 -93,737c -46,282 
1172 89.47 82.64 93.94 86.55 95.58 48,930 -95,211c -46,282 
1232 89.47 82.64 76.22 92.83 96.92 46,703 -92,985c -46,282 

a ELO objective. b Highest values. c Smallest values. 
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Table 6.4 presents an example of input matrices for use in the ELO process. Four input matrices 

are displayed in this table. Each of them captures a specific type of results allied with the best 

feasible MRR LC alternatives with an initial intervention in program year 4. The matrices have 

the same size or dimension. Each row is assigned to a deficient element (a total of 9 deficient 

elements for this example). Columns are dedicated to the corresponding best feasible LC 

alternative results. The total number of columns is the highest number of best feasible LC 

alternatives, comparing all deficient elements (96 for this example). The zeros represent no 

associated LC alternatives or results.  
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Table 6.4 Example of input matrices for use in the ELO process 

  
a Matrices have one same size of (D × n), where D is the total number of deficient elements, and n is the highest total number of best feasible LC 
alternatives considering all deficient elements. 

1 2 3 4 - 44 45 46 - 91 92 93 94 95 96
12 132 152 157 160 - 1047 1152 1157 - 0 0 0 0 0 0

107 131 132 133 152 - 907 908 911 - 0 0 0 0 0 0
205 7 32 132 152 - 782 783 784 - 2672 2682 2707 2732 2907 3032
220 132 137 152 157 - 791 792 793 - 0 0 0 0 0 0
226 632 652 656 657 - 785 786 787 - 0 0 0 0 0 0
301 782 2032 2657 0 - 0 0 0 - 0 0 0 0 0 0
311 777 781 782 783 - 1042 1043 1047 - 0 0 0 0 0 0
313 777 781 782 783 - 1037 1038 1042 - 0 0 0 0 0 0
330 157 158 160 162 - 0 0 0 - 0 0 0 0 0 0

12 80.52 80.52 80.52 80.52 - 66.32 66.32 66.32 - 0 0 0 0 0 0
107 85.56 85.56 85.56 85.56 - 88.27 88.27 88.27 - 0 0 0 0 0 0
205 92.64 92.64 98.87 98.87 - 99.37 99.37 99.37 - 99.27 99.27 99.27 99.27 97.55 97.54
220 85.97 85.97 85.97 85.97 - 89.99 89.99 89.99 - 0 0 0 0 0 0
226 76.62 76.62 76.62 76.62 - 94.90 94.90 94.90 - 0 0 0 0 0 0
301 82.04 81.66 81.66 0 - 0 0 0 - 0 0 0 0 0 0
311 80.18 80.18 80.18 80.18 - 62.70 62.70 62.70 - 0 0 0 0 0 0
313 80.50 80.50 80.50 80.50 - 63.58 63.58 63.58 - 0 0 0 0 0 0
330 76.22 76.22 76.22 76.22 - 0 0 0 - 0 0 0 0 0 0

12 33,270 32,665 33,270 27,826 - 31,440 32,665 33,270 - 0 0 0 0 0 0
107 221,002 277,669 226,445 272,003 - 152,207 109,139 35,156 - 0 0 0 0 0 0
205 8,632 8,805 8,632 8,632 - 8,805 8,392 8,425 - 8,625 8,638 8,716 8,794 8,640 8,783
220 1,506,017 1,396,110 1,480,051 1,506,017 - 1,048,483 1,463,936 1,267,894 - 0 0 0 0 0 0
226 51,424 49,955 47,016 52,159 - 48,379 42,157 49,503 - 0 0 0 0 0 0
301 1,150 710 1,150 0 - 0 0 0 - 0 0 0 0 0 0
311 19,866 16,411 20,729 13,744 - 14,611 5,464 16,375 - 0 0 0 0 0 0
313 19,866 16,411 20,729 14,010 - 10,554 792 14,757 - 0 0 0 0 0 0
330 16,181 9,584 8,090 4,362 - 0 0 0 - 0 0 0 0 0 0

12 -73,194 -72,589 -73,194 -67,749 - -71,364 -72,589 -73,194 - 0 0 0 0 0 0
107 -334,337 -391,004 -339,780 -385,337 - -265,541 -222,473 -148,490 - 0 0 0 0 0 0
205 -33,319 -33,492 -33,319 -33,319 - -33,492 -33,080 -33,112 - -33,312 -33,325 -33,403 -33,481 -33,327 -33,470
220 -2,986,068 -2,876,161 -2,960,102 -2,986,068 - -2,528,534 -2,943,987 -2,747,944 - 0 0 0 0 0 0
226 -97,706 -96,236 -93,298 -98,440 - -94,661 -88,439 -95,785 - 0 0 0 0 0 0
301 -1,150 -710 -1,150 0 - 0 0 0 - 0 0 0 0 0 0
311 -19,866 -16,411 -20,729 -13,744 - -14,611 -5,464 -16,375 - 0 0 0 0 0 0
313 -19,866 -16,411 -20,729 -14,010 - -10,554 -792 -14,757 - 0 0 0 0 0 0
330 -16,181 -9,584 -8,090 -4,362 - 0 0 0 - 0 0 0 0 0 0

12 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
107 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
205 0 0 0 0 - 0 0 0 - 0.79 0.79 0.79 0.79 0.79 0.79
220 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
226 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
301 0 556.35 0 0 - 0 0 0 - 0 0 0 0 0 0
311 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
313 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0
330 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0

PLCCelms Produced by the  Best Feasible MRR LC Alternativesa ($)

IACelms Produced by the Best Feasible MRR LC Alternativesa ($)

Deficient
 Element

Best Feasible LC MRR Alternativesa

 HI20elms Produced by the Best Feasible MRR LC Alternativesa (%)

BNTelms Produced by the  Best Feasible MRR LC Alternativesa ($)
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6.4 Element-Level Optimization Problem Formulation 

A MOO attempts to provide a set of solutions that defines the best trade-off between multiple 

objectives. Each solution is represented by a vector of decision variables that satisfies constraints 

and optimizes various competing objectives. An optimal solution for one of the objectives is 

usually non-optimal for the remaining objectives. In a single-objective optimization problem, the 

superiority of a solution over other solutions is easily determined by comparing their objective 

values. In a MOO problem, the goodness of a solution is determined by the dominance. The 

product of a MOO is generally a set of non-dominated solutions. The solutions are described as 

Pareto optimal solutions (or non-dominated solutions), shaping a boundary referred to as Pareto 

frontier. Each solution on the Pareto frontier is not dominated by any other feasible solution (refer 

to Chapter 2 for more discussion). A typical MOO problem consists of several objectives subject 

to inequality and equality constraints. The problem can be formulated as follows: 

Objectives 

Minimize/maximize fm(x)           ∀ m = 1, 2, … M 

Subject to 

gj(x) ≥ 0              ∀ j = 1, 2, … J 

hk(x) = 0                      ∀ k = 1, 2, … K 

xiL ≤ xi ≤ xiU                  ∀ i = 1, 2, … n 

where   

fm(x) = objective function m; 

gj(x)  = inequality constraint j; 

hk(x)  = equality constraint k; 

x = vector of n decision variables, x = (x1, x2, …. xn); 
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xi = decision variable i; 

xiL = lower xi bound; and 

xiU = upper xi bound. 

Objective functions {f1(x), f2(x), … fM(x)} constitute a multi-dimensional objective space. Decision 

variable space is constituted by variable bounds that restrict each variable xi to take a value within 

a lower xiL bound and an upper xiU bound. A solution x that satisfies all constraints and variable 

bounds is a feasible solution; otherwise, it is called an infeasible solution. A feasible solution space 

hosts all feasible solutions and is defined by the constraints. The solution space size is generally 

linked to the number of decision variables (n). 

Optimization problems are divided into two categories: those with continuous decision variables 

and those with discrete decision variables (Taboada, 2007). The latter are referred to as 

combinatorial optimization problems—they are difficult to solve in a reasonable time and require 

excessive computer memory (Chinneck, 2006). The module optimization problem falls under this 

combinatorial category. It’s defined in terms of discrete decision variables. ELO objectives are 

functions of these discrete decision variables. The binary variables were found to be suitable for 

this type of combinatorial optimization problem. A LC alternative is selected for an element if the 

corresponding decision variable is 1, and not selected if the variable is 0. 

The module focuses on finding a set of Pareto solutions per improvement type and per program 

year. In this research, Pareto solutions encompass the optimal or near-optimal (very close to 

optimal) solutions. The solutions serve as the fundamental inputs for the subsequent optimization 

modules. The module optimization problem requires a simultaneous optimization of multiple 

competing objectives and seeks to arrive at the best trade-off between them. The aim is to obtain 
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a diverse set of ELO solutions as close as possible to the Pareto frontier. For a giving candidate 

bridge, the optimization problem goal is to simultaneously minimize the bridge LCC and maximize 

the bridge LCC benefit and/or health indices at different points in time subject to a restricted 

decision variable space; only one LC alternative (one choice) must be picked from a set of best 

feasible LC alternatives (multiple choices) for each deficient element. The alternative feasibility 

screening process discussed in the previous section identifies the best feasible LC alternatives per 

improvement type and per program year for each deficient element. Results associated with these 

best feasible LC alternatives are grouped and rearranged to capture all deficient elements and cover 

the entire program period. These arranged results are used as the optimization input parameters.  

One common application of the knapsack problem is in capital budgeting (Patidar, 2006). A simple 

knapsack problem can be explained using this analogous situation. For instance, a problem 

involves a set of items and a specified knapsack of capacity, where each item is associated with a 

certain profit and weight. The objective is to find a subset of items such that the sum of these 

weighted items does not exceed the specified knapsack capacity and yields a maximum combined 

profit. This simple knapsack problem has many variations in the operations research literature. The 

problem is considered a MCKP due to the set of choices for each class (Patidar, 2006). Generally, 

a MCKP involves a set of different classes, each class contains multiple items, and the objective 

is to pick exactly one (restricting the decision variable space) and maximize the overall profit 

without exceeding the specified knapsack capacity.  

A MCKP is considered as an NP-hard (non-deterministic polynomial-time hardness) optimization 

problem—required time to achieve optimal solutions grows exponentially with the size of decision 

variable space. Typically, MCKPs are solved using heuristics or metaheuristics to achieve an 

approximate (near-optimal rather than optimal) solutions within a reasonable computational effort 
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(Thompson et al., 2008). The next section covers the heuristic optimization algorithm developed 

for this purpose. The module MCKP can be mathematically expressed as follows: 

Objectives 

Minimize 𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  

∀ 𝑝𝑝 ∈ 𝑀𝑀 

∀ 𝑗𝑗 ∈ 𝐴𝐴 

∀ 𝑦𝑦 ∈ 𝐻𝐻  

Maximize 𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  

Maximize 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝  

Subject to 

� 𝑋𝑋𝑙𝑙𝑏𝑏
𝑏𝑏∈𝐴𝐴𝑘𝑘𝑘𝑘

𝑝𝑝𝑝𝑝

= 1 ∀ 𝑙𝑙 ∈ 𝐷𝐷𝑘𝑘
𝑖𝑖𝑝𝑝 (6.1) 

where 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝 = 𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑖𝑖𝑝𝑝 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝 + � 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝1

𝑖𝑖∈𝑅𝑅𝑘𝑘 

+ � � �𝑋𝑋𝑙𝑙𝑏𝑏 �𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑣𝑣𝑝𝑝𝑝𝑝1��
𝑏𝑏∈𝐴𝐴𝑘𝑘𝑘𝑘

𝑝𝑝𝑝𝑝𝑙𝑙∈𝐷𝐷𝑘𝑘
𝑝𝑝𝑝𝑝

 (6.2) 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝 = 𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑏𝑏 − 𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑖𝑖𝑝𝑝 + � 𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝1

𝑖𝑖∈𝑅𝑅𝑘𝑘 

+ � � �𝑋𝑋𝑙𝑙𝑏𝑏 �𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑣𝑣𝑝𝑝𝑝𝑝1��
𝑏𝑏∈𝐴𝐴𝑘𝑘𝑘𝑘

𝑝𝑝𝑝𝑝𝑙𝑙∈𝐷𝐷𝑘𝑘
𝑝𝑝𝑝𝑝

 

(6.3) 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝 =

∑ �𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝1�𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖��𝑖𝑖∈𝑅𝑅𝑘𝑘 +∑ ∑ �𝑋𝑋𝑙𝑙𝑏𝑏�𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑙𝑙𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘� �𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑦𝑦𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑦𝑦𝑣𝑣𝑝𝑝𝑝𝑝1��𝑏𝑏∈𝐴𝐴𝑘𝑘𝑘𝑘
𝑝𝑝𝑝𝑝𝑙𝑙∈𝐷𝐷𝑘𝑘

𝑝𝑝𝑝𝑝

∑ �𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖�𝑖𝑖∈𝑅𝑅𝑘𝑘 

 

(6.4) 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = total LCC of improvement type p with an initial intervention in program year j performed 

on bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = 

total LCC benefit of improvement type p with an initial intervention in program year j 
performed on bridge k; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝  = total health index at the end of year y of improvement type p with an initial intervention in 

program year j performed on bridge k; 
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𝑋𝑋𝑙𝑙𝑏𝑏 = 
binary decision variable (𝑋𝑋𝑙𝑙𝑏𝑏 = 1 if a LC alternative r of a deficient element l is selected, 
otherwise 𝑋𝑋𝑙𝑙𝑏𝑏 = 0); 

𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 = improvement type p LC alternative r with an initial intervention in program year j; 

𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = total preservation LCCs incurred in element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 
sum of all discounted preservation action costs incurred in element i LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 
profile;  

𝐻𝐻𝑀𝑀𝑟𝑟𝑙𝑙𝑖𝑖𝑘𝑘

𝑦𝑦𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = element l health index at the end of year y in LC alternative 𝑣𝑣𝑖𝑖𝑝𝑝𝑏𝑏 profile; 

𝑊𝑊𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = health index weight for element i; 

𝑄𝑄𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖 = quantity of element i; 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = 

sum of all discounted user costs incurred due to bridge k (for FCI and REP improvement 
types, only user costs between beginning of program year 1 and end of program year j are 
considered, otherwise from the entire analysis period); 

𝑊𝑊𝑆𝑆𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑏𝑏  = sum of all discounted base user costs incurred over the entire analysis period for bridge k; 

𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝  = 

discounted major cost of improvement type p performed on bridge k in program year j (for 
MRR improvement type, the cost is equals to zero); 

𝐸𝐸𝑘𝑘  = set of bridge k elements;  

𝐷𝐷𝑘𝑘
𝑖𝑖𝑝𝑝 = 

set of bridge k deficient elements for improvement p with an initial intervention in program 
year j;  

𝐷𝐷𝑘𝑘𝑙𝑙
𝑖𝑖𝑝𝑝 = set of best feasible LC alternatives of deficient element l of bridge k for improvement p 

with an initial intervention in program year j; 

I = set of the three improvement types (i.e., MRR, FCI, and REP); 

T = set of all program years (i.e., the program period); and 

H = set of specified years in the analysis period. 

Formulating the problem correctly is so essential to achieve high-quality solutions. Different 

formulations for overcoming the size of the problem were investigated. The proposed formulation 

is flexible enough to accommodate various ELO goals with one common constraint (i.e., picking 
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only one LC alternative for each deficient element) for an improvement type and a program year. 

The formulation is suitable for the three improvement types (i.e., MRR, FCI, and REP) and any 

analyzed program year. For example, an ELO goal may involve minimizing the bridge LCC, 

Equation (6.2), maximizing the bridge LCC benefit, Equation (6.3), and maximizing the bridge 

health indices at the end of years 20 and 40, Equation (6.4). In this example, four objectives subject 

to one picking criterion will be optimized for the specified improvement type and program year.  

This generalized formulation calls for an individual optimization for each program year. This year-

by-year optimization strategy decomposes the optimization problem and further reduces the 

number of decision variables. A multi-year strategy generates a large number of decision variables. 

The computational time to reach convergence is significant, especially when dealing with a large 

network of bridges. To explain, deploying a multi-year optimization strategy generates 20,000 

decision variables over a program period of 10 years for a bridge with 20 deficient elements, where 

each of them is associated with 100 LC alternatives. However, the year-by-year strategy generates 

only 2,000 decision variables. This reduced number of decision variables is considered practicable 

even for a large network of bridges. 

In this module, the different ELO objectives (bridge LCC, LCC benefit, and health index) are 

mathematically formulated. Only one constraint (i.e., picking criterion) is incorporated. 

Constraints that guarantee performance and satisfy the budget limitation are not being considered 

at this level. At the bridge level and network level, these constraints are integrated in the problem 

formulation. A set of Pareto solutions (each solution is a combination of best feasible LC 

alternatives identified for all deficient elements) per improvement type and per program year is 

recommended for each bridge in the portfolio. Making the optimization problem as an 

unconstrained problem (except for the picking criterion) at this level increases the search effort 



 

203 

 

and generates unwanted element-level Pareto solutions—that can’t satisfy either the budget or 

performance constraint at the bridge level or network level. The elimination of unwanted ELO 

solution is basically delayed at this level. Nevertheless, this approach permits to explore enough 

areas of the search space, and therefore increasing diversity of ELO solutions. 

As explain earlier, the decision in the module optimization problem is a binary choice—one of the 

best feasible LC alternatives is either selected or rejected for each deficient element. A unique 

feasible solution in the solution space is represented by a vector of binary decision variables called 

“chromosome.” The encoding of decision variables is illustrated and discussed later in this chapter. 

The non-dominated solutions of the entire feasible solution space constitute the Pareto solution 

set. Equation (6.1) restricts the decision variable space. This constraint equation guarantees the 

selection of only one best feasible LC alternative for each deficient element. LC Alternative 1 is 

always assigned to the non-deficient elements. For MRR improvement type, the non-deficient 

elements don’t experience preservation actions; MRR LC Alternative 1 (representing the DN LC 

Alternative) is assigned to each of them. For FCI and REP improvement types, the non-deficient 

elements still get replaced, but no preservation actions will follow; FCI/REP LC alternative 1 is 

assigned to mimic this scenario. In contrasts, the deficient elements undertake the recommended 

LC alternatives.  

Each element regardless of its deficiency status always contributes to the bridge LCC, LCC 

benefit, and health indices calculations. The element-level objectives, Equations (6.2), (6.3), and 

(6.4), are interdependent on the decision variable, Xlr. The overall bridge LCC, benefit, or health 

index consists of three distinct contributors: deficient elements, non-deficient elements, and bridge 

itself. The contributions of deficient elements are summed over all deficient elements, 𝐷𝐷𝑘𝑘
𝑖𝑖𝑝𝑝, and all 

best LC alternatives, 𝐷𝐷𝑘𝑘𝑙𝑙
𝑖𝑖𝑝𝑝, after applying their corresponding decision variables. However, the 
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bridge and its non-deficient elements do not associate with any decision variables; their 

contributions are configured separately.  

Equation (6.2) defines the bridge LCC per improvement type and per program year. The equation 

is derived from Equation (5.4) in Chapter 5. The different components of this equation are 

explicitly defined in Chapter 5. The equation factors the different types of LCCs associated with 

the deficient and non-deficient elements—combining preservation LCCs incurred by the best 

feasible LC alternatives of all deficient elements. 𝐷𝐷𝑘𝑘𝑙𝑙
𝑖𝑖𝑝𝑝  is the set of best feasible LC alternatives of 

deficient element l of bridge k for improvement p (MRR, FCI, or REP) with an initial intervention 

in program year j. The set is determined by the alternative feasibility screening process (as 

discussed earlier in this chapter). LC Alternative 1 is always assigned to the non-deficient 

elements. Thus, only the LCCs incurred by these LC alternatives are factored in the overall bridge 

LCC expression. The equation incorporates any incurred total user cost and major improvement 

cost performed on the entire bridge. These costs per improvement type and per program year are 

separately computed by the LCC model of the improvement module (refer to Chapter 5 for the 

LCC model).   

Equation (6.3) defines the bridge LCC benefit per improvement type and per program year. The 

equation is originated from Equation (5.8) in Chapter 5. Basically, the bridge LCC benefit per 

improvement type and per program year is the LCC savings—the difference between its total base 

LCC, Equation (5.7) in Chapter 5, and its LCC defined by Equation (6.2). Equation (6.4) defines 

the overall bridge health index per improvement type and per program year. It’s expressed in 

element health indices. Equation (4.29) in Chapter 4 was used to arrive to this expression of 

Equation (6.4). In a similar way, weighted element health indices at the end of the analysis year 

specified in set T for deficient and non-deficient elements are combined and divided by the sum of 
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the element health index weights. Again, the deficient element health indices are associated with 

the best feasible LC alternatives of 𝐷𝐷𝑘𝑘𝑙𝑙
𝑖𝑖𝑝𝑝, and the non-efficient elements with the LC Alternative 1. 

6.5 Heuristic Element-Level Optimization Algorithm  

The simplest approach to solve this large size of optimization problem is through  

(1) the utility function, constructing a single-objective utility function representing all 

objectives by deploying a process of weighting, scaling, and amalgamation; or 

(2) the weighted sum method, computing the sum of weighted objectives (where each 

objective is multiplied by a weight representing its relative importance).  

The approach transfers the MOO problem to a single-objective problem that could be easily solved 

by mathematical programming algorithms/methods such as Branch and Bound algorithm, Simplex 

method, and Lagrange-Multiplier method. Although the approach is straightforward and 

guarantees global optimality, it’s sensitive to the selected weights, requires advance knowledge of 

relative importance of each objective, and limits solution diversity. It requires several independent 

runs by varying weights to achieve the desired diversity. Thus, the computational cost will be more 

significant. This approach is deemed not effective for a “true” MOO problem (Talbi, 2009) (see 

Chapter 2 for more discussion). Deb (2009) specified two main goals of a “true” MOO algorithm: 

(1) Able to obtain a set of solutions close to the optimal solutions 

(2) The obtained set of solutions should be diverse to represent the spread of a true set of 

optimal solutions 

In the literature review as part of Task 1, several MOO algorithms were evaluated based on these 

two goals, and in terms of computational speed, accuracy and robustness. The literature review 

revealed that EAs are well-suited for this type of problems. EAs are population-based search 
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metaheuristics inspired by Darwinian evolutionary theory. The ability of a population to evolve 

into the Pareto frontier in a single run makes EAs attractive for solving MOO problems. As stated 

earlier, mathematical programming algorithms/methods require repetitive runs to find a set of 

Pareto solutions; and yet, these repetitive runs do not necessarily guarantee convergence to 

optimality. However, EAs permit to obtain a high quality of Pareto solutions in a single run 

(Taboada, 2007). EAs are divided in several branches such as GA, SFL, ACO, and PSO (refer to 

Chapter 2 for more discussion on EAs). GAs are stochastic search that rely on the “survival of the 

fittest” principle from the biological sciences, and the use of evolution operators makes them very 

effective in performing global search. They are widely used and capable of handling problems 

with many decision variables (Kachua, 2011). NSGA-II is a well-known metaheuristic algorithm 

among the GAs. An overview of GAs and the metaheuristic NSGA-II is provided in Chapter 2. 

NSGA-II is capable of handling large-sized NP-hard combinatorial optimization problems. It 

includes the following three features (Deb et al., 2002): 

(1) deploys an elitist principle, 

(2) deploys an explicit diversity preserving mechanism, and 

(3) emphasizes non-dominated solutions. 

NSGA-II is robust and reliable for solving MOO problems with less computational efforts. For 

optimization problems with a manageable size, it guarantees diversity of obtained solutions and 

convergence to a near true Pareto frontier. Because of all these advantages, NSGA-II is used as 

the main optimizer for the three optimization modules. NSGA-II was customized to accommodate 

the optimization problem characteristics for each these modules. Though, the optimizer algorithm 

can be substituted by any other metaheuristic algorithm with similar capabilities such as SPEA-2, 

PESA and MOGA.  
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Figure 6.4 presents the flowchart of the heuristic algorithm designed to solve the module 

optimization problem. NSGA-II is integrated within the presented algorithm to handle 

optimization tasks. The brute-force (or exhaustive) search technique is deployed to enumerate and 

examine obtained solutions. For each program year, the brute-force search technique 

systematically assesses every single solution after several evaluations (for NSGA-II, the product 

of population size and total number of generations equals to the total number of evaluations). If all 

solutions of this total number of evaluations satisfy the constraints, they are then considered 

feasible, and the algorithm moves on to the next program year. Otherwise, if any solution violates 

a constraint, the whole set of solutions is rejected, the total number of evaluations is increased by 

an increment, and new solutions are obtained to be assessed for the same program year. This simple 

search technique controls the number of runs per program year, efficiently manages the 

computational time, and guarantees the feasibility of every single produced solution. 

Users set the population size, initial evaluations, evaluation increment, maximum evaluations, 

number of bridges to be evaluated, program period, and improvement type. The initial evaluations, 

population size, including other optimizer default parameters (such as crossover and mutation 

probabilities) must be carefully chosen. These genetic algorithm parameters and inputs are 

essential to ensure a high quality of obtained solutions. The quality of obtained solution sets should 

be evaluated using performance metrics or through experimental tests. Performance metrics can 

be used to examine the performance of the genetic optimizer. As mentioned in Chapter 2, Okabe 

and Sendhoff (as cited in Riquelme et al., 2015) stated that performance metrics (such as 

hypervolume, generational distance, epsilon indicator, and inverted generational distance metrics) 

generally consider the following three aspects of a solution set: 

(1) the convergence, i.e., closeness to the theoretical Pareto optimal frontier; 
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(2) the diversity, i.e., distribution as well as spread; and 

(3) the number of solutions. 

The convergence, optimality of the solutions, diversity along the Pareto frontier, computational 

time, computer memory use, etc. can also be assessed by conducting different experiments. The 

best combination of parameters, initial evaluations, and population size can be identified by trial 

and error. For instance, a consistent Pareto frontier is an indication of convergence or a high quality 

of solutions. Any observed difference in the Pareto frontier shape when increasing the total number 

of initial evaluations or population size requires adjustment of certain inputs or parameters. The 

key steps of the designed heuristic algorithm are as follows: 

1. The algorithm starts with the first bridge (i=1), and a total number of evaluations (Eval) 

equals to the total number of initial evaluations (Eval_inc). 

2. For each program year j, best feasible matrices associated with bridge i and improvement 

type p are located from the improvement module output data (refer to Chapter 5). 

3. A random initial population of size N1 is generated following the chromosome structure 

(discussed in the subsequent section). 

4. While the total number of evaluations (Eval + Eval_inc) is less than the specified 

maximum value (Eval_max), the brute-force search technique is deployed. 

5. The optimizer NSGA-II is called to solve the optimization problem for these evaluations. 

6. The obtained ELO solution results of these evaluations are saved. 

7. Feasibility of the obtained solution set is verified. 

8. If all constraints are met, the algorithm exits the while loop of brute-force search technique; 

otherwise, the total number of evaluations (Eval) is increased by an increment (Eval_inc), 
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the population is taken as the population of this number of evaluations, and steps 5, 6 and 

7 get repeated. 

9. The algorithm advances to the next program year (j=j+1) and repeats the whole process 

again (the above steps). 

10. Once the entire program period is covered, the algorithm progresses to the next bridge 

(i=i+1), and so on. 

11. The algorithm terminates after all nb bridges being considered for each program year. 
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Figure 6.4 Heuristic element-level optimization algorithm 
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6.6 Mapping of Decision Variables 

There is a considerable literature on GAs. Chapter 2 overviews the basics in greater detail. GAs 

generate a set of chromosomes (a population of solutions). Each of them is made of a series of 

genes. Each of these genes represents a decision variable (controlling features of the chromosome). 

The entire chromosome represents a solution to the problem. A selection/fitness operator is 

commonly used to evaluated the “fitness” of a chromosome. It is intended to improve the 

population quality by mimicking the “survival of the fittest.” The less fitted ones are eliminated. 

There are many methods in selecting the best chromosomes, such as roulette wheel selection, 

stochastic universal sampling selection, rank selection, tournament selection, and steady-state 

selection. 

The module genetic optimizer (i.e., NSGA-II) relies on an elitism operator for chromosome 

selection. The best (elite) chromosomes are copied to a new population. The elitism operator 

increases the performance of GA; it ensures the best chromosomes remain in the population. For 

each generation, new chromosomes are created by two mating operators: crossover and mutation. 

Crossover operator mimics the biological reproduction. The fittest chromosomes are mixed to form 

new chromosomes. The process is repeated until the entire offspring population is formed. Since 

these chromosomes survived the selection, the crossover operator preserves features of the two 

best chromosomes—crossover between chromosomes is implemented by a single/multi-point 

crossover or a uniform binary crossover. Mutation operator adds randomness to the chromosomes 

of the offspring population. The randomness introduces diversity in the population; and therefore, 

it improves the search space exploration for superior solutions.  

Once a new generation is produced using these three genetic operators, the process of selection 
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and mating is repeated until finding the optimal or near-optimal solutions to the problem. The 

iteration continues until the predetermined number of generations or a certain termination criterion 

is reached. However, the process requires an effective mapping mechanism (refer to as 

“encoding”) of chromosomes. Binary, permutation, value, and tree encoding are among the most 

popular encoding schemes in GAs. The key of achieving better performance and truthful 

representation of the problem lies in the chromosome structure—ability to encode a solution to a 

series of genes to form a chromosome. Frangopol and Liu (as cited in cited in Kachua, 2012) 

emphasized that the problem encoding demands most of the effort, comparing to the problem itself. 

GAs can process a large number of chromosomes per iteration (representing one population). 

Although a very large population size increases the search space, the large number of 

chromosomes adversely impact the computer memory and computational time (Taboada, 2007). 

The larger the population size, the more computational efforts will take. Hence, it’s essential to 

control the population size in terms of number of chromosomes. Similarly, the number of genes 

(i.e., decision variables) per chromosome affects the GA performance. The alternative screening 

process and the year-by-year optimization strategy (described earlier) both combined make the 

problem tractable. As demonstrated previously, considering only the best feasible LC alternatives 

and calling for an individual optimization under each program year considerably reduces the 

number of decision variables per chromosome. 

Figure 6.4 illustrates the chromosome encoding used to represent an ELO solution. A chromosome 

encompasses a total number of D.n genes, where D is the total number of deficient elements, and 

n is the largest total number of feasible LC alternatives considering all deficient elements. A binary 

encoding scheme is adapted because of its simplicity and the allocation characteristics of the 

problem. Each chromosome has one binary string of genes (composed of either 0 or 1), and each 
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gene represents a characteristic of the ELO solution. The figure illustrates the process of assigning 

decision variables to a feasible MRR LC alternative matrix of size (D × n) of a sample bridge 

(Bridge 47) for a program year (program year 4). In this illustrative example, the first n genes 

represent the first deficient element (Elm_12), the next n genes represent the next element 

(Elm_107), and so on until the last element (Elm_330). A gene with a value of 1 signifies a LC 

alternative is selected for the element; in contrast, a value of 0 signifies no selection. This encoding 

ensures the representation of all deficient elements and their corresponding feasible LC 

alternatives. A population of size N1 simply includes N1 chromosomes with different random 

binary values. For any program year, each chromosome is structured in the same manner. 
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Figure 6.5 Illustration of the chromosome encoding of an ELO solution 
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6.7 Example of Module Results  

The methodology was implemented through different examples to test concepts, prove 

effectiveness, and demonstrate potential benefits. These examples provided an excellent 

opportunity to apply the EB-MOO methodology. The examples include detailed tables and charts 

to communicate outcomes from the different modules. A portfolio of 40 sample bridges 

(introduced in Chapter 3) is used to implement the different stages of the EB-MOO methodology. 

These sample bridges were selected based on common features, attributes, and data completeness. 

Table 3.2 in Chapter 3 provides more information related to the characteristics of these sample 

bridges.  

As discussed in Chapter 3, the MATLAB-based tool prototype, structured around the five EB-

MOO modules, was mainly developed for the implementation. The tool prototype is considered as 

a “proof of concept” rather than a complete rigorous software ready for operational 

implementation. Using the tool prototype, the preliminary outcomes associated with these sample 

bridges produced by the improvement module were transferred to this ELO module. For each 

improvement type and each program year, the tool produced ELO solutions, recommended set of 

intervention actions, predicted performance, and determined budget requirements.  

As stated earlier, the year-by-year optimization strategy is adapted to decompose the ELO problem 

and further reduce the number decision variables. An ELO run is independently performed for 

each program year. Through the example presented herein, only one program year (i.e., program 

year 6) is examined for illustration. One of the sample bridges in the portfolio (i.e., Bridge 26) is 

used in this example. Table 6.5 presents the NBI condition ratings of this sample bridge and other 

related attributes. Table 6.6 shows the latest condition states of the 11 elements of this sample 
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bridge. The bridge was built in 1952. It’s a steel multi-girder bridge and has a sufficiency rating 

of 77.2%. The bridge was identified with one functional deficiency: bridge roadway width. 

Table 6.5 NBI condition ratings of Bridge 26 
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FU
N

C
TI

O
N

A
L_

 
D

EF
IC

IE
N

C
Y

[W
R

,V
C

,L
C]

a  

O
U

T-
TO

-O
U

T_
 

D
EC

K
_A

R
EA

 (S
Q

.F
T)

 

IN
SP

EC
TI

O
N

_Y
EA

R
_9

0 

Y
EA

R
_B

U
IL

T_
27

 

Y
EA

R
_R

EC
O

N
_1

06
 

SE
R

V
EC

E_
U

N
D

_4
2B

 

ST
R

U
C

TU
R

E_
K

IN
D

_4
3A

 

ST
R

U
C

TU
R

E_
TY

PE
_4

3B
 

FU
N

C
TI

O
N

A
L_

C
LA

SS
_2

6 

SU
PE

R
_C

O
N

D
_5

9 

SU
B

_C
O

N
D

_6
0 

D
EC

K
_C

O
N

D
_5

8 

ST
R

U
C

_E
V

A
L_

67
 

D
EC

K
_G

EO
_E

V
A

L_
68

  

U
N

D
C

L_
EV

A
L_

69
 

A
PP

R
_R

O
A

D
_E

V
A

L_
72

 

SU
FF

_R
A

TI
N

G
 (%

) 

[1,0,0] 678.4 2015 1952 0 5 3 2 2 7 6 7 6 5 78 8 77.2 
Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents to the existence of the functional deficiency, otherwise the value of 0. 
 
 

Table 6.6 Condition states of the 11 elements of Bridge 26 

  
  

Elements of Bridge 26 
12 107 215 225 234 301 311 313 330 331 510 

CS1 (%) 95 93.81 100 75 0 92.45 0 0 100 97.14 95 
CS2 (%) 5 2.50 0 0 93.68 7.55 100 100 0 2.62 5 
CS3 (%) 0 3.69 0 25 6.32 0 0 0 0 0.24 0 
CS4 (%) 0 0 0 0 0 0 0 0 0 0 0 
Qt (sq.ft) 7303 840 72 20 174 318 24 24 420 420 7303 
Welm (%) 25 49 13 10 13 12 12 12 16 14 5 
ESL (years) 129 77 75 20 408 24 58 58 28 151 126 
RSLa (years) 69 16 16 0 180 0 0 0 0 90 67 
RU ($) 54 2,062 1,591 38,810 1,186 72 9,009 9,009 296 212 21 

a RSL is estimated from program year 1 (2020). 

Table 6.7 specifies the goals and types of the different ELO problems under the unconstrained 

scenarios of the example. The analysis period is set for 54 years, including a 10-year program 

period. The discount rate is 4% over 56 years (the analysis period plus the period from current 

year, 2018, to program year 1, 2020).  
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Table 6.7 Defining the different ELO problems of the example 

 Sample Type Optimization Goals Scenario 
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with 
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MCKP • maximize the bridge 
health index in year 20 
(denoted by HI20brg) 

• minimize the bridge 
LCC (denoted by 
LCCbrg) 

Scenario a: unconstrained 
 MRR, program year 6, 

unconstrained budget and 
performance, Figure 6.6(a) 

Scenario b: unconstrained 
 FCI, program year 6, 

unconstrainted budget and 
performance, Figure 6.6(b) 

Scenario c: unconstrained 
 REP, program year 6, 

unconstrainted budget and 
performance, Figure 6.6(c) 
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Table 6.8 shows the results associated with the 41 ELO solutions obtained for the 2-objective ELO 

problem, Scenario a (unconstrained budget under MRR improvement type). The optimization goal 

is to maximize the bridge health index in year 20 (HI20brg) and minimize the bridge LCC (LCCbrg) 

for MRR improvement type with an initial intervention in program year 6. In addition to these two 

main ELO objectives, the bridge initial agency cost (IACbrg), LCC benefit (BNTbrg), and health 

indices at the ends of years 1, 10, 30, 40, 50, and 54 were also determined as part of the module 

optimization results. 
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Table 6.8 Results associated with the 41 solutions obtained for the 2-objective ELO problem, Scenario a 

 
a Optimized objective. 

Solution IACbrg

 ($)
LCCbrg

a

($)
BNTbrg

 ($)
HI1brg 

(%)
HI10brg 

(%)
HI20brg

a 

(%)
HI30brg 

(%)
HI40brg 

(%)
HI50brg 

(%)
HI54brg 

(%)
1 1,004,525 1,298,060 -1,072,572 84.29 85.62 86.93 73.35 65.33 63.62 60.90
2 331,868 1,128,022 -902,535 84.29 74.61 86.25 72.99 65.05 62.99 60.22
3 269,591 812,601 -587,114 84.29 74.35 85.66 72.74 64.90 63.53 60.79
4 268,755 663,091 -437,603 84.29 74.23 68.90 84.93 70.00 63.57 60.95
5 347,149 717,100 -491,612 84.29 74.74 69.47 85.19 70.15 63.03 60.38
6 347,985 1,140,047 -914,560 84.29 74.86 86.25 72.99 65.05 62.99 60.22
7 1,716,793 2,085,502 -1,860,015 84.29 86.15 87.52 73.60 65.49 63.07 60.32
8 1,066,802 1,613,481 -1,387,993 84.29 85.88 87.51 73.61 65.49 63.07 60.32
9 1,713,135 2,080,609 -1,855,122 84.29 86.15 87.52 73.60 65.49 63.07 60.32
10 269,591 816,457 -590,969 84.29 74.35 85.77 72.83 64.98 63.50 60.76
11 268,755 666,946 -441,459 84.29 74.23 69.00 85.02 70.08 63.54 60.93
12 1,004,525 1,308,717 -1,083,229 84.29 85.62 87.29 73.48 65.34 63.03 60.28
13 268,755 673,748 -448,261 84.29 74.23 69.26 85.07 70.00 62.98 60.34
14 335,526 851,071 -625,584 84.29 74.61 86.21 73.01 65.05 62.99 60.22
15 1,079,260 1,620,613 -1,395,125 84.29 86.13 87.51 73.60 65.49 63.07 60.32
16 1,004,525 1,301,915 -1,076,428 84.29 85.62 87.03 73.44 65.42 63.59 60.87
17 331,032 696,668 -471,180 84.29 74.49 69.44 85.20 70.15 63.03 60.38
18 269,591 817,880 -592,393 84.29 74.35 86.01 72.82 64.97 63.50 60.76
19 331,868 839,059 -613,571 84.29 74.61 86.19 73.02 65.06 62.99 60.22
20 1,004,525 1,316,260 -1,090,773 84.29 85.62 87.41 73.56 65.42 63.00 60.25
21 268,755 689,699 -464,211 84.29 74.23 69.40 85.12 70.08 62.95 60.31
22 1,082,919 1,352,068 -1,126,581 84.29 86.13 87.50 73.60 65.48 63.07 60.32
23 1,004,525 1,303,338 -1,077,851 84.29 85.62 87.27 73.43 65.41 63.59 60.87
24 347,985 866,610 -641,123 84.29 74.86 86.23 72.99 65.05 62.99 60.22
25 269,591 817,456 -591,968 84.29 74.35 85.91 72.73 64.89 63.53 60.79
26 1,066,802 1,331,636 -1,106,149 84.29 85.88 87.47 73.62 65.49 63.07 60.32
27 268,755 668,370 -442,882 84.29 74.23 69.24 85.02 70.07 63.54 60.93
28 268,755 681,292 -455,804 84.29 74.23 69.38 85.14 70.08 62.95 60.31
29 334,690 701,561 -476,073 84.29 74.49 69.44 85.20 70.15 63.03 60.38
30 268,755 663,515 -438,028 84.29 74.23 69.00 85.02 70.08 63.54 60.93
31 335,526 1,132,915 -907,428 84.29 74.61 86.25 72.99 65.05 62.99 60.22
32 1,066,802 1,324,517 -1,099,030 84.29 85.88 87.45 73.64 65.49 63.07 60.32
33 268,755 667,945 -442,458 84.29 74.23 69.14 84.93 69.99 63.57 60.96
34 1,004,525 1,309,141 -1,083,654 84.29 85.62 87.39 73.57 65.42 63.00 60.25
35 1,070,461 1,336,529 -1,111,042 84.29 85.88 87.47 73.62 65.49 63.07 60.32
36 1,004,525 1,302,914 -1,077,427 84.29 85.62 87.17 73.34 65.33 63.62 60.90
37 268,755 674,172 -448,685 84.29 74.23 69.36 85.16 70.08 62.95 60.31
38 1,082,919 1,625,506 -1,400,018 84.29 86.13 87.52 73.60 65.49 63.07 60.32
39 1,004,525 1,298,484 -1,072,997 84.29 85.62 87.03 73.44 65.42 63.59 60.87
40 269,591 823,683 -598,196 84.29 74.35 86.13 72.96 64.99 62.92 60.14
41 269,591 813,026 -587,538 84.29 74.35 85.77 72.83 64.98 63.50 60.76
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The recommended solutions for the ELO problems of this example are plotted in Figures 6.6(a) 

through (k). Figures 6.6(a), (b), and (c) display the 2-objective ELO solutions for MRR (Scenario 

a), FCI (Scenario b), and REP (Scenario c) improvement types, respectively. Figures 6.6(d), (e), 

and (f) show the 3-objective ELO solutions obtained for the three improvement types. The three 

radar (or spider) charts, Figures 6.6(g), (h), and (k), relate to the 7-objective ELO problems. When 

dealing with more than three conflicting objectives, the relationship between them is difficult to 

convey visually. Thus, for the 7-objective ELO problems, radar charts are used to assist with the 

representation of results. The axes of these charts represent each of the objectives. The objective 

values are normalized to share a common scale (producing a spider-web-like appearance) and for 

comparing across axes. 

The displayed solutions are the Pareto solutions obtained for the three improvement types (i.e., 

MRR, FCI, and REP) and pertain to program year 6. As emphasized previously, Pareto solutions 

in this research encompass the optimal or near-optimal (very close to optimal) solutions.  The 

approach discussed earlier to verify optimally was followed for the different examples included in 

this dissertation. The consistency of each obtained Pareto frontier was verified by increasing the 

number of iterations/generations to observe any difference in shape. The obtained solutions are 

hosted on discontinuous Pareto frontiers (good approximation of true Pareto frontiers).



 

 

 

221 

 
Figure 6.6 Obtained solutions for the 2-objective ELO problems under (a) Scenario a, (b) Scenario b, (c) Scenario c; the 3-objective ELO problems 

under (d) Scenario a, (e) Scenario b, (f) Scenario c; the 7-objective ELO problems under (g) Scenario a, (h) Scenario b, (k) Scenario c 
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The bridge health indices at the ends of years 1, 10, 20, 30, 40, 50, and 54 for each of these solutions 

are shown in Figures 6.7(a) through (k). Figures 6.7(a), (b), and (c) show the predicted bridge 

health indices (connected with straight lines) for the 2-objective ELO solutions. Figures 6.7(d), 

(e), and (f) display the predicted bridge health indices for the 3-objective ELO solutions. The 

bridge health indices associated with the 7-objective ELO solutions are shown in Figures 6.7(g), 

(h), and (k). Figures 6.7(a), (d), and (g) represent only the MRR improvement type (Scenarios a); 

Figures 6.7(b), (e), and (h), the FCI improvement type (Scenario b); and Figures 6.7(c), (f), and 

(k), the REP improvement type (Scenario c).  

The obtained ELO solutions per program year produced comparable values of bridge health indices 

despite the differences between the LCC values. As mentioned in Chapter 4, the bridge health 

index is an appropriate measure to assess performance; however, it is not a complete measure of 

the value of the agency’s investment (Chase et al., 2016). Most straight lines connecting the 

predicted health indices are superimposed in these figures. Changes to the overall health index are 

generally minuscule. Element health indices are weighted, aggregated and divided by the sum of 

all their weighs to constitute this overall index. Improving few element health indices (after 

factoring their weights) won’t dramatically change the overall index. It takes substantial 

improvement efforts to alter the overall index.  

The connected straight lines between RO LC Alternative, DN LC Alternative, or FCI/REP 

Alternative 1 health indices show a decline in bridge condition over time. For instance, the bridge 

DN health index in year 1 (84.24%) is predicted to be reduced by half (41.71%) at the end of 

analysis period if no improvement action is taken. Similarly, for FCI/REP Alternative 1, the 

scenario when no preservation actions succeed a major bridge improvement, the bridge health 

index is predicted to reach 47.18% by the end of analysis period.  
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Figure 6.7 Predicted bridge health indices for the 2-objective ELO problems under (a) Scenario a, (b) Scenario b, (c) Scenario c; the 3-objective 

ELO problems under (d) Scenario a, (e) Scenario b, (f) Scenario c; the 7-objective ELO problems under (g) Scenario a, (h) Scenario b, (k) 
Scenario c 
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Table 6.9 shows the results associated with the 2-objective ELO solutions producing the least 

bridge LCC values for the three improvement types (Scenarios a, b, and c) with an initial 

intervention in program year 6. Solutions 4, 7, and 10 produce the least bridge LCC values over 

the analysis period for MRR, FCI, and REP improvement types, respectively. Although the bridge 

is identified with a functional deficiency, Solution 4 of the preservation (MRR) improvement type 

produces the least bridge LCC ($663,091) and the highest bridge LCC benefit (-$437,603)—it’s 

expected since the bridge presently has a sufficiency rating of 77.2% (representing an overall good 

condition). A small investment of $268,755 (IACbrg) is required in program year 6 to sustain a 

bridge health index above 68.90% (based on HI20brg value) over a period of 40 years.  

Table 6.9 Results associated with the 2-objective ELO solutions producing the least bridge LCC values 
for the three improvement types 

 
a Optimized objective. 

Figures 6.8(a) through (k) show the predicted element health indices associated with the solutions 

producing the least bridge LCC values for the 2-, 3-, and 7-objective ELO problems under the 

three improvement types with an initial intervention in program year 6. As expected, the straight 

lines connecting element health indices are all situated above the health index thresholds (60% 

every 10 years, horizontal dashed lines in black) specified by Criteria 1 of the alternative feasibility 

screening process (discussed in Chapter 5). The horizontal dashed lines in red represent the health 

index lower-frontiers (deficiency screening thresholds, a minimum health index of 80% every 10 

Solution IACbrg
 ($)

LCCbrg
a 

($)
BNTbrg

 ($)
HI1brg 

(%)
HI10brg 

(%)
HI20brg

a 

(%)
HI30brg 

(%)
HI40brg 

(%)
HI50brg 

(%)
HI54brg 

(%)
4 268,755 663,091 -437,603 84.29 74.23 68.90 84.93 70.00 63.57 60.95

7 1,453,447 1,004,093 -779,714 84.29 91.20 76.12 70.08 65.29 82.90 75.77

10 2,319,632 1,637,006 -1,412,627 84.29 91.20 76.12 70.08 65.29 82.90 75.77

MRR Improvement Type

FCI Improvement Type

REP Improvement Type
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years). The dashed curves above this frontier distinguish the non-deficient elements from the 

deficient ones. The figures representing the MRR improvement type show Elements 215 and 331 

as the non-deficient elements (based on the preservation only screening covered in Chapter 5); 

however, the other figures representing the FCI or REP improvement type consider only Element 

234 as the non-deficient element (based on the post-major improvement screening covered in 

Chapter 5). The thick connected lines in black represent the overall bridge health indices. Figure 

6.8(l) includes the predicted DN element health indices over the analysis period—produced by DN 

LC Alternative. The predicted RO element health indices are shown in Figure 6.8(m)—produced 

by RO LC Alternative. Figure 6.8(n) shows the element health indices predicted for the scenario 

mimicking a major bridge improvement with no follow-up preservation actions—produced by 

FCI/REP LC Alternative 1. 
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Figure 6.8 Predicted health indices associated with the solutions producing the least bridge LCC values 
for the 2-objective ELO problems under (a) Scenario a, (b) Scenario b, (c) Scenario c; the 3-objective 

ELO problems under (d) Scenario a, (e) Scenario b, (f) Scenario c; the 7-objective ELO problems under 
(g) Scenario a, (h) Scenario b, (k) Scenario c. Predicted health indices under (l) DN LC Alternative; (m) 

RO LC Alternative; (n) FCI/REP LC Alternative 1 
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The objective of the NLO module is to produce a set of optimal or near-optimal solutions per 

improvement type and per program year for a candidate bridge. Each solution holds a set of 

recommended LC alternatives for the different elements of the bridge. Table 6.10 shows the 

recommended LC alternatives associated with Solutions 4, 7, and 10 (refer to Table 6.9). For MRR 

improvement type, element-level preservation actions (MRR Actions 0, 1, 2, 3, and 4) are assigned 

to the program year and each decision point (spaced by a 10-year inaction period). For FCI and 

REP improvement types, MRR actions are assigned only to the decision points, and the bridge-

level improvement actions (FCI Action 5 and REP Action 6) are assigned only to the program 

year. LC Alternative 1 is always assigned to the non-deficient elements. These recommended 

improvement actions provide the least bridge LCCs while maintaining element health indices 

above the minimum acceptable limits (60% every 10 years, set based on the alternative feasibility 

screening process) for program year 6. Table 6.11 shows the feasible preservation treatments 

associated with these recommended improvement actions. 
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Table 6.10 Element improvement actions associated with the 2-objective ELO solutions producing the 
least bridge LCC values for the three improvement types 

  Element 
Ref. 

LC Alt. 
Ref. 

Pro. Year 
(year 6) 

Dec. Point 1 
(year 17) 

Dec. Point 2 
(year 28) 

Dec. Point 3 
(year 39) 

Dec. Point 4 
(year 50) 

EL
O

 S
ol

ut
io

n 
4 

M
R

R
 A

ct
io

ns
 

12 2294 3 3 1 3 3 
107 800 1 1 1 4 4 
215a 1 0 0 0 0 0 
225 782 1 1 1 1 1 
234 2094 3 1 3 3 3 
301 1563 2 2 2 2 2 
311 1042 1 3 1 3 1 
313 1042 1 3 1 3 1 
330 2082 3 1 3 1 1 
331a 1 0 0 0 0 0 
510 2343 3 3 3 3 2 

EL
O

 S
ol

ut
io

n 
7 

FC
I A

ct
io

ns
 

12 462 5 3 3 2 1 
107 175 5 1 1 4 4 
215a 1 5 0 0 0 0 
225 157 5 1 1 1 1 
234a 1 5 0 0 0 0 
301 438 5 3 2 2 2 
311 457 5 3 3 1 1 
313 457 5 3 3 1 1 
330 417 5 3 1 3 1 
331a 1 5 0 0 0 0 
510 469 5 3 3 3 3 

 E
LO

 S
ol

ut
io

n 
10

 
R

EP
 A

ct
io

ns
 

12 462 6 3 3 2 1 
107 175 6 1 1 4 4 
215a 1 6 0 0 0 0 
225 157 6 1 1 1 1 
234a 1 6 0 0 0 0 
301 438 6 3 2 2 2 
311 457 6 3 3 1 1 
313 457 6 3 3 1 1 
330 417 6 3 1 3 1 
331a 1 6 0 0 0 0 
510 469 6 3 3 3 3 

a Non-deficient element. 
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Table 6.11 Feasible preservation treatments associated with the improvement actions recommended by 
the 2-objective ELO solutions producing the least bridge LCC values for the three improvement types 

  Element 
Ref. 

Element 
Name 

LC Alt. 
Ref. 

Pro.  
Year 

(year 6) 

Dec.  
Point 1 

(year 17) 

Dec.  
Point 2 

(year 28) 

Dec. 
 Point 3 

(year 39) 

Dec.  
Point 4 

(year 50) 

EL
O

 S
ol

ut
io

n 
4 

M
R

R
 A

ct
io

ns
 

12 Re. Concrete Deck 2294 PM PM MRR PM PM 
107 Steel Open Girder/Beam 800 SMMR SMMR SMMR PM PM 
215a Re. Conc. Abutment 1 DN DN DN DN DN 
225 Steel Pile 782 SMMR SMMR SMME SMMR SMMR 
234 Re. Conc. Pier Cap 2094 PM MRR PM PM PM 
301 Pourable Joint Seal 1563 RJ RJ RJ RJ RJ 
311 Moveable Bearing 1042 MMR PM MMR PM MMR 
313 Fixed Bearing 1042 MMR PM MMR PM MMR 
330 Metal Bridge Railing 2082 PM SMMR PM SMMR SMMR 
331a Re. Conc. Bridge Railing 1 DN DN DN DN DN 
510 Wearing Surfaces 2343 PM PM PM PM RU 
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12 Re. Concrete Deck 462 FCI PM PM RD MMR 
107 Steel Open Girder/Beam 175 FCI SMMR SMMR PM PM 
215a Re. Conc. Abutment 1 FCI DN DN DN DN 
225 Steel Pile 157 FCI SMMR SMMR SMMR SMMR 
234a Re. Conc. Pier Cap 1 FCI DN DN DN DN 
301 Pourable Joint Seal 438 FCI PM RJ RJ RJ 
311 Moveable Bearing 457 FCI PM PM MMR MMR 
313 Fixed Bearing 457 FCI PM PM MMR MMR 
330 Metal Bridge Railing 417 FCI PM SMMR PM SMMR 
331a Re. Conc. Bridge Railing 1 FCI DN DN DN DN 
510 Wearing Surfaces 469 FCI PM PM PM PM 
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12 Re. Concrete Deck 462 REP PM PM RD MMR 
107 Steel Open Girder/Beam 175 REP SMMR SMMR PM PM 
215a Re. Conc. Abutment 1 REP DN DN DN DN 
225 Steel Pile 157 REP SMMR SMMR SMMR SMMR 
234a Re. Conc. Pier Cap 1 REP DN DN DN DN 
301 Pourable Joint Seal 438 REP PM RJ RJ RJ 
311 Moveable Bearing 457 REP PM PM MMR MMR 
313 Fixed Bearing 457 REP PM PM MMR MMR 
330 Metal Bridge Railing 417 REP PM SMMR PM SMMR 
331a Re. Conc. Bridge Railing 1 REP DN DN DN DN 
510 Wearing Surfaces 469 REP PM PM PM PM 

Note. For more detail about these preservation treatments, refer to Implementation of the 2013 AASHTO 
Manual for Bridge Element Inspection (Sobanjo & Thompson, 2016a). PM = Preventive maintenance; 
RD = Replace deck; MMR = Minor or major repair; SMMR = Spot blast and minor or major repair; DN = 
Do-nothing; RJ = Replace joint; FCI = Bridge functional improvement; REP = Bridge replacement. 
a Non-deficient element. 
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6.8 Summary and Conclusions 

This chapter introduced a “true” element-based MOO method that relies on results from the data 

processing and improvement modules. The chapter presented the module framework illustrating 

the different concepts and processes. It described the alternative feasibility screening process 

developed to reduce the ELO problem size to a manageable size and improve the computational 

time. The screening process recognizes the best feasible LC alternatives for each program year 

based on the specified criteria and optimization goals.  

The ELO problem type and formulation, and the mapping approach of the problem decision 

variables are also discussed. The optimization problem is formulated in terms of discrete decision 

variables (binary values). The optimization formulation is shaped as a MCKP, involving only the 

selection criterion. The year-by-year optimization strategy is adapted to decompose the problem 

and further reduce the number decision variables. An ELO run is independently performed for 

each program year. The ELO problem focuses on finding a set of Pareto optimal or near-optimal 

solutions per program year for each improvement type. 

The chapter introduced the heuristic optimization algorithm designed to solve the ELO problem. 

The metaheuristic NSGA-II is deployed as the main optimizer to handle the computational 

complexity of these large-sized optimization problems. A set of LC alternatives is derived from 

each obtained solution. Each recommended LC alternative represents a series of best (optimal or 

near-optimal) actions for a deficient element over the analysis period. Performance and LCC 

results associated with these LC alternatives (or solutions) serve as the fundamental inputs for the 

bridge- and network-level (top-down approach only) optimization modules. 
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The chapter also included an illustrative example using the developed MATLAB-based tool 

prototype. The example consists of different ELO problems under unconstrained scenarios. Only 

one sample bridge is used in this example. Using the tool prototype, the preliminary outcomes for 

this sample bridge produced by the improvement module were transferred to this ELO module. 

Only optimization results for one program year are presented in this chapter. For the analyzed 

program year, under each of three improvement types, the tool produced optimal or near-optimal 

ELO solutions, recommended sets of intervention actions, predicted performance, and determined 

budget requirements.  
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CHAPTER 7—BRIDGE-LEVEL OPTIMIZATION MODULE 

 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 
 Task 4: Development of a Tool Prototype  
 Task 5: Implementation of the Methodology through Examples of Scenarios 

7.1 Introduction 

The EB-MOO methodology consists of five modules (i.e., data processing, improvement, ELO, 

BLO, and NLO modules). Chapters 4 and 5 introduced the different processes and models 

incorporated in the data processing and improvement modules: a novel screening process to 

identify potential deficient bridge elements, an independent deterioration model to predict 

performance, a LCC model to estimate LCCs and benefits, and a simulation arrangement to 

generate realistic LC alternatives for three improvement types. Chapters 6 presented the ELO 

module framework and its different processes, laid out the problem formulation and the proposed 

heuristic algorithm, and included an illustrative example.  

Analyzing each bridge individually to select the appropriate strategy is normally referred to as the 

bridge-level decision making (Abu Dabous, 2008). This chapter introduces an innovative BLO 

module that considers the ELO recommendations. The chapter discusses the module framework 

and the interaction between the element- and bridge-level modules, includes an illustrative 

example of results using the tool prototype, and demonstrates effectiveness and benefits. The 

optimization problem is either constrained or unconstrained—involving only the selection 

criterion for the unconstrained optimization problems. The module optimization requires a 



 

233 

 

simultaneous optimization of multiple competing objectives—such as minimize LCC and 

maximize the LCC benefit and/or health indices at different points in time for a candidate bridge, 

seeking the best trade-off between them. The aim is to obtain a diverse set of BLO solutions for 

the entire program period as close as possible to the Pareto frontier; a recommended BLO solution 

delivers the best feasible set of LC alternatives for all deficient elements over the entire analysis 

period. The module can be used independently to identify the best feasible sets of improvement 

actions and timings for future work on a candidate bridge. It provides a systematic process to 

develop/assess bridge improvement or preservation programs.  

Integrating bridge-level and network-level decisions and handling optimization problems of a large 

size is still a challenging task (Elbehairy, 2007). Bridge-level decisions complement network-level 

decisions. BLO results are key inputs for the bottom-up approach NLO (discussed in the 

subsequent section). The BLO module addresses one bridge at a time. Obtained results are stored 

to serve the NLO process. ELO results associated with the improvement types are grouped and 

expressed in summation formulas over the entire program period and all deficient elements. The 

grouped ELO solutions compete for minimum bridge LCCs, maximum bridge LCC benefits, 

and/or maximum bridge health indices.  

The optimization problem is formulated in terms of binary decision variables. When an ELO 

solution is selected for an improvement type and a program year, the decision variable is taken as 

1, otherwise 0. The optimization problem is an NP-hard combinatorial optimization problem. 

Generally, near-optimal rather than optimal solutions are obtained. The BLO objectives and 

constraints are expressed in terms of these decision variables. The optimization formulation is 

shaped as a MCKP if no constraints involved other than the selection criterion—only one ELO 

solution (one choice) must be picked from all solutions (multiple choices). The multi-dimensional 
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aspect is added to the problem when more than one constraint (e.g., budget or performance 

constraint) is involved. The problem is then formulated as a “Multi-Choice Multi-Dimensional 

Knapsack Problem” (MCMDKP). The literature review under Task 1 revealed that economic 

analysis, mathematical programming methods, and heuristic algorithms are the most common 

techniques to support bridge-level decisions. The module relies on the same metaheuristic NSGA-

II to solve the bridge-level NP-hard combinatorial optimization problem.  

7.2 Module Framework 

Each bridge is analyzed independently, and a set of optimal or near-optimal intervention strategies 

is identified for all its elements. The module has two main purposes:  

(1) support the development of bridge programs, and  

(2) produce bridge-level input parameters for the bottom-up approach NLO (discussed in 

Chapter 8).  

The module helps decision makers to develop a comprehensive bridge program addressing 

improvement needs of the identified deficient elements—the initial implementations are always 

performed within the program period, accompanying with a follow-up multi-year plan. It’s 

essential to achieve high-quality solutions at this optimization level—the bottom-up approach of 

the NLO module depends mainly on these BLO solutions.  

In the improvement module, overviewed in Chapter 5, each bridge in the portfolio is evaluated 

separately for each program year—generating LC alternatives, determining LCCs and LCC 

benefits, and predicting performance (health indices). As discussed in Chapter 6, the ELO module 

focuses on finding optimal or near-optimal solutions per program year and per improvement type 

for each deficient element of a bridge in the portfolio. If the MRR improvement type is 
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recommended, MRR LC Alternative 1 (representing the DN LC Alternative over the entire 

analysis period) is assigned to non-deficient elements, otherwise FCI/REP LC alternative 1 

(mimicking the DN LC Alternative over the analysis years succeeding the element replacement 

year. The module framework exemplified in Figure 7.1 is based on the following concepts: 

1. The ELO results per improvement type and per program year for each element are 

transferred to this module as input parameters. 

2. The ELO solution results (i.e., bridge LCCs, IACs, LCC benefits, and health indices) are 

grouped and reorganized in single matrices as illustrated in Figure 7.1.  

3. Each arranged matrix represents one type of solution results covering the entire program 

period and the three improvement types; this arrangement allows to unite all recommended 

ELO solutions to compete at the bridge level. 

4. No screening process is needed to further reduce the size of these arranged matrices; the 

screening process is generally unnecessary for the BLO module—the total number of 

decision variables remains manageable even for bridges with many deficient elements 

(explained later in this chapter). 

5. The last three matrices shown in Figure 7.1 represent the BLO solution outcomes for the 

bridge. The first matrix (bottom, far-left) contains the recommend LC alternatives 

associated with the BLO solutions (each element is assigned to an optimal or near-optimal 

LC alternative, an improvement type, and a program year), the second matrix, the resulted 

bridge initial agency costs (IACbrgs) and health indices at different points in the analysis 

period, and the third matrix, the values of the optimized bridge-level objectives. 
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Figure 7.1 Bridge-level optimization module framework 

Bridge-Level
Optimization

Objectives
 Constraints

Program 
Year 
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Element-Level 
Optimization 

Results
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Element-Level 
Optimization 

Results
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Element-Level 
Optimization 

Results
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Bridge 
Portfolio  

Rearranging and grouping MRR, FCI, and REP 
element-level optimization  results from all program 

years by each bridge-level optimization  objective and 
constraint in single matrices covering the entire 

program period.
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7.3 Bridge-Level Optimization Problem Formulation 

As explained in Chapter 6, the product of a MOO is generally a set of non-dominated solutions. 

Each solution is represented by a vector of decision variables that satisfies constraints and 

optimizes multiple competing objectives. An optimal solution for one of the objectives is usually 

non-optimal for the remaining objectives. The solutions are described as Pareto optimal solutions 

(non-dominated solutions). Each solution on the Pareto frontier is not dominated by any other 

feasible solution. In this research, as mentioned in the previous chapter, Pareto solutions 

encompass the optimal or near-optimal (very close to optimal) solutions.  

The module optimization problem requires a simultaneous optimization of multiple competing 

objectives, seeking the best trade-off between them. The module focuses on finding a diverse set 

of Pareto solutions for the entire program period. The module can be used independently to identify 

the optimal or near-optimal sets of improvement actions and timings for future work on a candidate 

bridge. The module optimization problem can be either constrained or unconstrained. BLO 

solutions of the unconstrainted problem serve as the input parameters for the NLO process. For a 

candidate bridge, the BLO goal is to simultaneously minimize the bridge LCC and maximize the 

bridge LCC benefit and/or health indices at different points in time subject to budget and/or 

performance constraints, where only one ELO solution (one choice) must be picked from all the 

ELO solutions (multiple choices) recommended for the three improvement types and all program 

years. 

Bridge replacement (REP) and functional improvement (FCI) are generally recommended by a 

BMS due to an existing functional deficiency or other agency’s rules or triggers (such as condition 

ratings or repair costs exceeding the replacement costs). These two REP and FCI improvement 

types usually are not directly incorporated in the optimization process alongside with the MRR 
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improvement type. The MRR optimization is usually performed independently. In this research, 

these three improvement types are considered in the BLO process. Each improvement type is 

assessed separately in the ELO module for each program year and transferred to this bridge-level 

module. ELO results associated with these three improvement types are grouped and expressed in 

summation formulas covering the entire program period. These grouped ELO solutions compete 

for minimum bridge LCCs, maximum bridge LCC benefits, and/or maximum bridge health 

indices.  

The module optimization problem falls under combinatorial category (touched on in Chapter 6). 

It’s defined in terms of binary decision variables. The binary variables were found to be suitable 

for this type of combinatorial optimization problem. A decision variable is taken as 1 if an ELO 

solution is selected, otherwise 0. A recommended BLO solution delivers the best feasible set of 

LC alternatives for all deficient elements over the entire analysis period. The DN LC Alternative 

is assigned to each non-deficient element if the MRR improvement type is recommended, 

otherwise FCI/REP LC alternative 1. 

A selection criterion is always considered for the constrained and unconstrained optimization 

problems, regardless. When no additional constraints are involved, the problem is formulated as a 

MCKP—Chapter 6 discusses the MCKP in greater detail. However, when multiple constraints 

(e.g., available budget and/or minimum acceptable performance) are considered, the multi-

dimensional aspect is added to the problem; and therefore, it is classified as MCMDKP. It 

represents one of the knapsack problems identified in the literature review. Moser, Jokanovic and 

Shiratori (as cited in Patidar, 2006) underscored the lack of studies on attempting to develop 

efficient heuristics for solving this type of problems. The multi-choice aspect in the BLO stands 

for the fact that one ELO solution must be selected per bridge; the multi-dimensional aspect of the 
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problem relates to the presence of budget and/or performance constraints (in addition to the section 

criterion one). 

Typically, this type of optimization problems is considered an NP-hard optimization problem and 

generally solved using heuristics or metaheuristics to obtain approximate (near-optimal rather than 

optimal) solutions within a reasonable computational effort (Thompson et al., 2008). The next 

section covers the heuristic optimization algorithm developed for this purpose. The same 

metaheuristic NSGA-II is used to solve this bridge-level NP-hard optimization problem. The 

formulation presented herein is based on the MCMDKP.  The problem can be mathematically 

expressed as follows: 

Objectives  

Minimize 𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  

Maximize 𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘   

Maximize 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  ∀ 𝑦𝑦 ∈ 𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝   

Subject to  

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 ≤ 𝐵𝐵𝐵𝐵𝐴𝐴 (7.1) 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧 ≥ 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚

𝑧𝑧  ∀ 𝑧𝑧 ∈ 𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 (7.2) 

�� � 𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝 = 1
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

  (7.3) 

where 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = �  � � �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 �

𝑝𝑝∈𝑂𝑂𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 (7.4) 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = �  � � �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 �

𝑝𝑝∈𝑂𝑂𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 (7.5) 
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𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦 = �  � � �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑦𝑦𝑖𝑖𝑝𝑝𝑝𝑝�
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 (7.6) 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧 = �  � � �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑧𝑧𝑖𝑖𝑝𝑝𝑝𝑝�
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 (7.6) 

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = �  � � �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 �

𝑝𝑝∈𝑂𝑂𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 (7.7) 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = total LCC for bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  = total LCC benefit for bridge k; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦  = total health index of bridge k at the end of year y; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧  = total health index of bridge k at the end of year z; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧  = minimum acceptable bridge health index at the end of year z; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 = total initial agency cost incurred for bridge k; 

𝐵𝐵𝐵𝐵𝐴𝐴 = available improvement budget per bridge;  

𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝 = 
binary decision variable (𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝= 1 if an ELO solution s of improvement type p with an initial 
intervention in program year j is selected, otherwise 𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝= 0); 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = 

total LCC of ELO solution s of improvement type p with an initial intervention in program 
year j performed on bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = 

total benefit of ELO solution s of improvement type p with an initial intervention in program 
year j performed on bridge k; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝𝑝𝑝 = total health index of bridge k at the end of year y produced by ELO solution s of 

improvement type p with an initial intervention in program year j; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝑖𝑖𝑝𝑝𝑝𝑝  = 

total health index of bridge k at the end of year z produced by ELO solution s of 
improvement type p with an initial intervention in program year j; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = total initial agency cost for bridge k incurred by ELO solution s of improvement type p with 

an initial intervention in program year j; 

𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝 = 

set of ELO solutions of improvement type p with an initial intervention in program year j 
performed on bridge k; 
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𝑀𝑀 = set of the three improvement types (i.e., MRR, FCI, and REP); 

T = set of all program years (i.e., the program period);  

𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝 = set of specified years in the analysis period for health index objectives; and 

𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 = set of specified years in the analysis period for health index constraints. 

Formulating the problem correctly is so essential to achieve high-quality solutions. Several 

formulation designs for overcoming the size of the problem were tested. The proposed formulation 

is flexible enough to accommodate different BLO goals with multiple constraints. The formulation 

accommodates ELO solutions from the three distinct improvement types (i.e., MRR, FCI, and 

REP) and all program years. For example, a BLO goal for a given bridge may involve minimizing 

the bridge LCC, Equation (7.4), maximizing the bridge LCC benefit, Equation (7.5), maximizing 

the bridge health indices at years 20 and 40, Equation (7.6), and maintaining a bridge health index 

above 70% (signifies a minimum acceptable bridge performance). In this example, four objectives 

subject to a performance constraint and a picking criterion, Equation (7.3), will be optimized for 

this bridge.  

This generalized formulation calls for an optimization for the entire program period—taking into 

account the three improvement types and all program years to compete at this level. No screening 

process is needed to further reduce the size of the optimization problem. The screening process is 

deemed unnecessary for this level of optimization. The total number of decision variables remains 

manageable. A multi-year optimization strategy was found to be appropriate to accomplish this 

task at the bridge level. The year-by-year optimization strategy adapted in the ELO module 

decomposes the ELO problem, producing a set of ELO solutions per improvement type and per 

program year. Using all these sets as input parameters for the bridge-level optimization still 

generates a manageable number of decision variables with reasonable computational efforts. For 
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instance, typically, a multi-year optimization strategy generates around 3,000 (3 × 10 × 100) 

decision variables over a program period of 10 years for a giving bridge, where each improvement 

type is associated with 100 ELO solutions per program year. This number of decision variables 

per bridge is considered practicable even for a large network of bridges. 

In this module, the BLO objectives (i.e., bridge LCC, LCC benefit, and performance) are 

mathematically formulated. Multiple constraints (i.e., selection criterion, available budget, and 

minimum desired bridge performance) are integrated in the problem formulation. A set of Pareto 

solutions per bridge for the entire program period is recommended. A BLO solution is the 

recommended ELO solution from the different sets of ELO solutions, representing a combination 

of the best feasible (optimal or near-optimal) LC alternatives identified for the bridge deficient 

elements.  

A constrained BLO problem limits the decision variable space and solution diversity. Constraints 

can be applied at the network level. Making the optimization problem unconstrained (except for 

the picking criterion) at this level increases the search effort and generates unwanted bridge-level 

solutions—unable to satisfy either the budget or performance constraint at the network level when 

following the bottom-up approach. Obtaining a diverse set of BLO solutions is essential for the 

next level of optimization (covered in the subsequent Chapter 8). The elimination of the unwanted 

BLO solutions is basically delayed at this level. Nevertheless, this approach permits to increase 

the diversity of BLO solutions and explore enough areas of the search space. 

As explain earlier, the decision in this module optimization problem is a binary choice—one of 

the ELO solutions is either selected or rejected. A BLO solution is represented by a vector of 

binary decision variables (chromosome). The encoding of decision variables is illustrated and 
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discussed later in this chapter. The non-dominated solutions of the entire feasible solution space 

constitute the Pareto solution set. Equation (7.3) restricts the decision variable space. This 

constraint guarantees the selection of only one ELO solution for the analyzed bridge. Therefore, 

among all grouped ELO solutions, only one is recommended for the bridge. For a population of 

size N2, N2 BLO solutions are recommended by the optimizer. The binary decision variable is 

symbolized by Xpjs. The variable equals to 1 when an ELO solution s of improvement type p with 

an initial intervention in program year j is assigned to bridge k, otherwise 0. 

LC Alternative 1 is always assigned to the non-deficient elements. For MRR improvement type, 

the non-deficient elements don’t experience preservation actions for the entire analysis period. 

MRR LC Alternative 1, representing the DN LC Alternative, is assigned to each of them. For FCI 

and REP improvement types, the non-deficient elements still get replaced; however, no 

preservation actions will follow. FCI/REP LC Alternative 1 is assigned to mimic this scenario. In 

contrasts, the deficient elements undertake the recommended LC alternatives.  

The bridge-level objectives, Equations (7.4), (7.5), and (7.6), are interdependent on the decision 

variable, Xpjs. These objective equations represent the bridge LCC, LCC benefit, and health indices 

at the ends of specified analysis years and involve only ELO solution results, considering the 

different sets of ELO solutions associated with the three improvement types and all program years.  

A set of ELO solutions, 𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝, is established for each improvement type and each program year. The 

contributions of the different ELO solutions within these sets are summed over the three different 

improvement types (I) and all program years (T), after applying their corresponding decision 

variables.  
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Equation (7.1) represents the inequality of budget constraint. The initial agency cost for the entire 

bridge is restricted by the available budget, BGT. Similarly, the cost is determined by summing all 

initial agency cost𝐶𝐶, 𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝐷𝐷𝐿𝐿𝑇𝑇 , produced by the different ELO solutions over the three different 

improvement types and all program years, after applying their corresponding decision variables. 

Equation (7.2) represents the inequality of performance constraint. The inequality permits to 

maintain an acceptable bridge performance (“state of good repair”) or attain a higher bridge 

performance over a certain period—health indices at the ends of specified analysis years, 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧 , 

are bounded by the minimum acceptable health indices, 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧 . Likewise, the bridge health 

indices are determined by summing all bridge health indices (at the ends of the analyzed years) 

produced by the different ELO solutions over the three different improvement types (I) and all 

program years (T), after applying their corresponding decision variables. 

7.4 Heuristic Bridge-Level Optimization Algorithm 

The objective of the BLO module is to obtain a diverse set of LC improvement actions as close as 

possible to the optimal ones. Again, as explained in Chapter 6, GAs are very effective in exploring 

the search space and reaching global optimality. They are capable of handling large-sized NP-hard 

combinatorial problems and obtaining a high quality of Pareto solutions in a single run. The same 

metaheuristic algorithm (i.e., NSGA-II) is deployed to solve this bridge-level NP-hard 

combinatorial optimization problem. However, a minor integration adjustment was required to 

accommodate the new optimization problem features. Again, like the preceding module, users can 

substitute this module optimizer algorithm by any other proven metaheuristic algorithm with 

similar capabilities such as SPEA-2, PESA, and MOGA. 
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Figure 7.2 presents the flowchart of the heuristic algorithm designed to solve the module 

optimization problem. NSGA-II is integrated within the algorithm to handle optimization tasks. 

The brute-force (or exhaustive) search technique is used in this heuristic algorithm to enumerate 

and examine obtained solutions. For each bridge in the portfolio, the brute-force search technique 

systematically assesses every single solution after certain evaluations (for NSGA-II, the product 

of population size and total number of generations equals to the total number of evaluations). If all 

solutions of this total number of evaluations satisfy the constraints, they are then deemed feasible, 

and the algorithm moves on to the next bridge. Otherwise, if any solution violates a constraint, the 

whole set of solutions is rejected, the total number of evaluations is increased by an increment, 

and new solutions are obtained to be assessed for the same bridge. This simple search technique 

controls the number of runs per bridge, efficiently manages the computational time, and guarantees 

the feasibility of every single produced solution. 

Users set the population size, initial evaluations, evaluation increment, maximum evaluations, 

number of bridges to be evaluated, program period, and available budget and performance 

thresholds. As emphasized in Chapter 6, the initial evaluations, population size, including other 

optimizer default parameters (such as crossover and mutation probabilities) must be carefully 

chosen. They are essential to ensure a high quality of obtained solutions. The best combination of 

parameters, initial evaluations, and population size can be identified by trial and error or by 

establishing different performance metrics to assess convergence, optimality of the solutions, 

diversity along the Pareto frontier, computational time, computer memory use, etc. The key steps 

of the designed heuristic algorithm are as follows: 

1. The algorithm starts with the first bridge (i=1), and a total number of evaluations (Eval) 

equals to the total number of initial evaluations (Eval_inc). 
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2. For each bridge i, the algorithm locates MRR, FCI, and REP ELO solution output 

matrices (refer to Chapter 6). 

3. The ELO solution output matrices are rearranged and grouped in single matrices 

covering the three improvement types and entire program period. 

4. A random initial population of size N2 is generated following the chromosome 

structure (discussed in the subsequent section). 

5. While the total number of evaluations (Eval + Eval_inc) is less than the specified 

maximum value (Eval_max), the brute-force search technique is deployed. 

6. The optimizer NSGA-II is called to solve the optimization problem for these 

evaluations. 

7. The obtained BLO solution results of these evaluations are saved. 

8. Feasibility of the obtained solution set is verified. 

9. If all constraints are met, the algorithm exits the while loop of brute-force search 

technique. Otherwise, the total number of evaluations is increased by the specified 

increment (Eval_inc), the population is taken as the population of this number of 

evaluations, and steps 5,6 and 7 get repeated. 

10. The algorithm advances to the bridge (i=i+1), and repeats the whole process again (the 

above steps). 

11. The algorithm terminates after all nb bridges being addressed. 
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Figure 7.2 Heuristic bridge-level optimization algorithm 
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• Set maximum evaluations (Eval_max)
• Set number of bridges (nb)
• Set number of program years (npyr)
• Set bridge-level constraint criteria

First bridge (i=1)

Is this last 
bridge? 
(i=nb)

• Locate MRR, FCI and REP 
element-level optimal or near-
optimal solution matrices of 
each program year associates 
with  bridge i 

• Rearrange and group these 
program year solution matrices 
by each bridge-level objective 
and constraint in single 
matrices, covering the entire 
program period (npyr years)

• Set Eval =Eval_int
• Generate a random 

initial population 
(refer to Figure 7.3)

• Run optimizer (NSGA-II) 
algorithm for a number of  
evaluations = Eval to solve 
the bridge-level MCKP or 
MCMDKP  

• Save the solution results of 
this number of evaluations

Check 
the feasibility of each 

solution.
Are all bridge-level 
constraint criteria 

met?

While Eval <= Eval_max, 
apply the brute-force search 
technique 

Yes

• Exit the while loop of 
the brute-force search 
technique

• Save the optimization 
solution results under 
bridge i 

• Advance to  the next 
bridge (i=i+1)

No

Set the initial population 
= the population of this 
number of evaluations 

End

Yes

No

Has the number of 
evaluations 
exceeded its 
maximum?

 Eval > Eval_max

Yes

No Set Eval = 
Eval+Eval_inc



 

248 

 

7.5 Mapping of Decision Variables 

Chapter 6 overviewed the basics process of generating a set of chromosomes (a population of 

solutions). The three main genetic operators (crossover, mutation, and selection/fitness) were 

discussed in Chapter 2. The chosen genetic optimizer, NSGA-II, relies on an elitism operator for 

selecting best (elite) chromosomes. Elitism operator increases the performance of GA, as it ensures 

the best chromosomes remain in the population. As stressed in Chapter 6, the process requires an 

effective encoding of the chromosome to maintain better performance and truthful representation 

of the problem.  

GAs are capable of processing numerous chromosomes per iteration (representing one population). 

However, the larger the population size, the more computational efforts will take. The same is true 

when dealing with a large number of genes (i.e., decision variables) per chromosome. The 

screening process and the year-by-year optimization strategy had to be introduced in the ELO 

module to manage the number of decision variables and make the problem trackable with less 

computational efforts. For the BLO module, no screening process is required to reduce the size of 

the optimization problem. The screening process is deemed unnecessary for this level of 

optimization. The total number of decision variables remains manageable, as demonstrated earlier 

in this chapter. However, it’s essential to control the population size in terms of number of 

chromosomes.  

Figure 7.3 illustrates the chromosome encoding used to represent a BLO solution. A chromosome 

encompasses a total number of N1.npyr.nimp genes, where N1 is the total number of ELO solutions 

per program year, npyr is the total number of program years, and nimp is the total number of 

improvement types. For instance, 3,000 chromosomes per bridge represents a set of 100 ELO 

solutions per program year, 10-year program period, and three improvement types (i.e., MRR, FCI, 
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and REP). Again, a binary encoding scheme is adapted because of its simplicity and the problem 

allocation characteristics. Each chromosome has one binary string of genes (composed of either 0 

or 1), and each gene represents a characteristic of the BLO solution. 

Figure 7.3 illustrates the process of assigning decision variables to an ELO solution matrix of size 

(N1 × 30) for a 10-year program period. In this illustrative example, the first N1 genes represent 

program year 1, the next N1 genes represent program year 2, and so on until the last program year 

10. All the first 10.N1 genes are assigned to MRR improvement type, and the next 10.N1genes to 

FCI improvement type, followed by another series of 10.N1 genes to REP improvement type. 

Therefore, a total of 30.N1 genes constitutes a binary chromosome. A gene with a value of 1 

signifies an ELO solution is selected; in contrast, a value of 0 signifies no selection. A gene 

position depicts a specific problem characteristic. A gene in the fourth cell (starting from the left), 

for example, represents an ELO solution for MRR improvement type and program year 4. A 

population of size N2 simply includes N2 chromosomes with different random binary values. For 

any bridge in the portfolio, chromosomes are structured similarly.
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Figure 7.3 Illustration of the chromosome encoding of a BLO solution
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7.6 Example of Module Results  

The methodology was implemented through different examples to test concepts, prove 

effectiveness, and demonstrate potential benefits. These examples provided an excellent 

opportunity to apply the different concepts of the proposed EB-MOO methodology. The examples 

include detailed tables and charts to communicate outcomes from the different modules. A 

portfolio of 40 sample bridges (introduced in Chapter 3) is used to implement the different stages 

of the EB-MOO methodology. These sample bridges were selected based on common features, 

attributes, and data completeness. Table 3.2 in Chapter 3 provides more information related to the 

characteristics of these sample bridges.  

As discussed in Chapter 3, the MATLAB-based tool prototype, structured around the five EB-

MOO modules, was mainly developed to be used for the implementation. The tool prototype is 

considered as a “proof of concept” rather than a complete rigorous software ready for operational 

implementation. Using the tool prototype, the ELO results associated with these bridges were 

transferred to this BLO module. The tool produced a diverse set of BLO solutions, recommended 

set of intervention actions and timings, predicted performance, and determined budget 

requirements for the entire program period.  

One of the sample bridges in the portfolio (i.e., Bridge 38) is used in the example presented herein. 

Table 7.1 presents the NBI condition ratings of this sample bridge and other related attributes. 

Table 7.2 shows the latest condition states of the 20 elements of this sample bridge. The bridge 

was built in 1959. It’s a steel bascule bridge and has a low sufficiency rating of 42.5% (representing 

an overall poor condition). The bridge was identified with two functional deficiencies: bridge 

roadway width and load capacity. 
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Table 7.1 NBI condition ratings of Bridge 38 

 
Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents to the existence of the functional deficiency, otherwise the value of 0. 

Table 7.2 Condition states of the 20 elements of Bridge 38 

  
a RSL is estimated from program year 1 (2020). 
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Table 7.3 specifies the goals and types of the different BLO problems used in this example. 

Scenarios are defined based on imposed restrictions (by the available budget and/or minimum 

acceptable performance). The analysis period is set for 54 years, including a 10-year program 

period. The discount rate is 4% over 56 years (the analysis period plus the period from current 

year, 2018, to program year 1, 2020).  

Table 7.3 Defining the different BLO problems of the example  

 Sample Optimization Goals Type Scenarios 
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• maximize the bridge health 
index in year 20 (denoted 
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• minimize the bridge LCC 
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MCKP Scenario a: unconstrained 
 unconstrained budget  
 unconstrained 

performance  
Figure 7.4(a) 

MCMDKP Scenario b: constrained 
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≥ bridge health index of 
70% every 10 years 
Figure 7.4(b) 
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MCKP Scenario a: unconstrained 
Figure 7.4(c) 

MCMDKP Scenario b: constrained 
Figure 7.4(d) 
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and HI50brg) 

MCKP Scenario a: unconstrained 
Figure 7.4(e) 

MCMDKP Scenario b: constrained 
Figure 7.4(f) 
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Table 7.4 shows the results associated with the 35 BLO solutions recommended for the 2-objective 

BLO problem, Scenarios b (budget constraint ≤ $2.5M; performance constraint ≥ bridge health 

index of 70% every 10 years), for the entire analysis period. The optimization goal is to maximize 

the bridge health index in year 20 (HI20brg) and minimize the bridge LCC (LCCbrg). In addition to 

these two main objectives, the bridge initial agency cost (IACbrg), LCC benefit (BNTbrg), and health 

indices at the ends of years 1, 10, 30, 40, 50, and 54 were also determined as part of the module 

optimization results. 
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Table 7.4 Results associated with the 35 solutions obtained for the 2-objective BLO problem, Scenario b 

  
a Optimized objective. 

Solution IACbrg

 ($)
LCCbrg

a

($)
BNTbrg

 ($)
HI1brg 

(%)
HI10brg 

(%)
HI20brg

a 

(%)
HI30brg 

(%)
HI40brg 

(%)
HI50brg 

(%)
HI54brg 

(%)
1 621,560 74,475,238 3,818,368 80.59 77.64 88.49 73.24 73.91 71.70 67.41
2 543,639 74,712,273 3,581,333 80.59 78.10 90.72 74.45 92.93 72.48 74.21
3 917,873 74,754,845 3,538,760 80.59 78.26 90.99 74.28 92.90 72.46 74.20
4 803,917 74,552,872 3,740,733 80.59 77.78 88.76 73.41 73.95 71.70 67.41
5 1,033,072 75,097,015 3,196,590 80.59 78.29 91.03 74.31 92.91 72.46 74.21
6 2,012,630 75,392,561 2,901,045 80.59 93.37 96.21 74.59 70.11 76.87 78.40
7 621,560 74,430,483 3,863,122 80.59 77.64 88.49 73.24 73.91 71.70 67.40
8 488,898 74,381,069 3,912,537 80.59 77.50 88.28 73.08 73.87 72.30 68.04
9 444,112 74,638,473 3,655,133 80.59 78.08 90.69 74.41 92.92 72.47 74.20

10 1,121,511 75,203,509 3,090,096 80.59 78.29 91.03 74.31 92.91 72.46 74.21
11 1,121,511 74,952,364 3,341,241 80.59 78.29 91.02 74.31 92.91 72.46 74.21
12 2,097,390 75,450,232 2,843,374 80.59 93.39 96.24 74.63 70.14 76.88 78.41
13 1,893,447 75,369,448 2,924,158 80.59 93.40 96.06 74.39 70.03 76.82 78.39
14 317,312 74,596,468 3,697,137 80.59 77.95 90.43 74.25 92.85 72.40 74.19
15 620,028 74,201,275 4,092,331 80.59 77.53 74.11 83.71 78.29 71.73 67.55
16 530,689 74,703,174 3,590,431 80.59 78.10 90.72 74.44 92.93 72.48 74.21
17 817,066 74,341,158 3,952,447 80.59 77.67 74.38 83.88 78.32 71.73 67.55
18 487,366 74,107,106 4,186,500 80.59 77.40 73.90 83.54 78.24 72.34 68.19
19 488,485 74,395,637 3,897,968 80.59 77.50 88.40 73.22 73.88 71.69 67.40
20 1,004,210 74,819,058 3,474,547 80.59 78.28 91.02 74.31 92.91 72.46 74.21
21 317,312 74,590,618 3,702,987 80.59 77.95 89.23 75.62 92.85 72.40 74.19
22 1,004,210 75,070,203 3,223,403 80.59 78.28 91.02 74.31 92.91 72.46 74.21
23 611,660 74,154,712 4,138,894 80.59 77.52 74.11 83.71 78.29 71.73 67.55
24 1,884,393 75,376,997 2,916,608 80.59 93.32 96.20 74.58 70.09 76.84 78.39
25 1,033,072 74,845,871 3,447,735 80.59 78.29 91.02 74.31 92.91 72.46 74.21
26 794,017 74,277,101 4,016,505 80.59 77.66 74.38 83.88 78.32 71.73 67.55
27 1,030,034 74,889,040 3,404,565 80.59 78.29 91.02 74.31 92.91 72.46 74.21
28 684,404 74,246,989 4,046,616 80.59 77.54 74.16 83.71 78.28 72.34 68.19
29 1,033,072 75,141,808 3,151,798 80.59 78.29 91.03 74.31 92.91 72.46 74.21
30 486,953 74,122,202 4,171,403 80.59 77.40 74.02 83.69 78.25 71.72 67.54
31 511,742 74,421,987 3,871,619 80.59 77.58 88.48 73.22 73.88 71.69 67.40
32 1,879,254 75,369,603 2,924,003 80.59 93.32 96.17 74.55 70.05 76.82 78.39
33 785,854 74,253,677 4,039,929 80.59 77.58 74.17 83.73 78.31 72.35 68.20
34 685,935 74,520,952 3,772,653 80.59 77.64 88.54 73.25 73.91 72.31 68.05
35 326,399 74,595,614 3,697,992 80.59 77.96 89.32 75.55 92.85 72.39 74.19
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The recommended solutions for the different BLO problems of the example are plotted in Figures 

7.4(a) through (f). The plotted solutions are the Pareto solutions and identified for the entire 

analysis period. Figures 7.4(a) and (b) display the 2-objective BLO solutions for Scenarios a and 

b. Figures 7.4(c) and (d) present the 3-objective BLO solutions. The two radar or spider charts, 

Figures 7(e) and 7(f), relate to the 7-objective BLO problems. The charts show the normalized 

objective values (Chapter 6 discusses the reasons for using this type of charts). 

All obtained solutions are considered non-dominated solutions (Pareto solutions). As emphasized 

previously, Pareto solutions in this research encompass the optimal or near-optimal (very close to 

optimal) solutions.  The approach discussed in Chapter 6 to verify optimally was also followed for 

this example. The consistency of each obtained Pareto frontier was verified by increasing the 

number of iterations/generations to observe any difference in shape. The obtained solutions are 

hosted on discontinuous Pareto frontiers (good approximation of true Pareto frontiers).  
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Figure 7.4 Obtained solutions for the 2-objective BLO problems under (a) Scenario a, (b) Scenario b; the 
3-objective BLO problems under (c) Scenario a, (d) Scenario b; the 7-objective BLO problems under (e) 

Scenario a, (f) Scenario b 
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The bridge health indices at the ends of years 1, 10, 20, 30, 40, 50, and 54 for each of these solutions 

are shown in Figures 7.5(a) through (f). Figures 7.5(a) and (b) show the predicted bridge health 

indices (connected with straight lines) for the 2-objective BLO solutions. Figures 7.5(c) and (d) 

display the predicted bridge health indices for the 3-objective BLO solutions. The bridge health 

indices associated with the 7-objective BLO solutions are shown in Figures 7.5(e) and (f). Figures 

7.5(a), (c), and (e) represent Scenarios a; Figures 7.5(b), (d), and (f) represent Scenario b.  

The RO health indices shown in these figures are slightly better than the predicted DN ones. The 

connected straight lines between RO or DN health indices illustrate a decline in bridge condition 

over time. The bridge DN health index is predicted to drop to 40% by year 50. However, the bridge 

RO health indices are slightly better, starting from year 20. Figures 7.5 (b), (d), and (f) indicate 

that the recommended Pareto solutions for Scenario b satisfy the imposed performance restriction. 

As expected, the straight lines connecting the predicted bridge health indices are all situated above 

the horizontal dashed lines in black, representing the performance constraints (specified by a 

minimum bridge health index of 70% every 10 years).  

Several Pareto solutions produced close values of bridge health indices despite the differences 

between the resulting LCCs. As explained in the previous chapter, changes to the overall bridge 

health index are generally minuscule. Element health indices are weighted, aggregated and divided 

by the sum of all their weighs to constitute this overall index, Equation (7.6). Preserving or 

improving few element health indices (after factoring their weights) won’t dramatically change 

the overall index. It takes substantial improvement efforts to alter the overall index.  
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Figure 7.5 Predicted bridge health indices for the 2-objective BLO problems under (a) Scenario a, (b) 
Scenario b; the 3-objective BLO problems under (c) Scenario a, (d) Scenario b; the 7-objective BLO 

problems under (e) Scenario a, (f) Scenario b 
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Table 7.5 shows the results associated with the BLO solutions producing the least bridge LCC 

values for the different BLO problems of the example. Although the 2- and 3-objective BLO 

problems have different BLO goals, it can be noticed that the presented BLO solutions (i.e., 

Solutions 18 and 23, respectively) produced the same results. The 3-objective BLO problems 

include one additional objective aimed to maximize the bridge LCC benefit (BNTbrg). Generally, 

if the benefit is defined as the savings in LCC of “doing something” alternative relative to the 

“baseline” alternative, as defined in this research, the same alternative producing the least LCC 

value delivers the most LCC benefit.  

Table 7.5 Results associated with the solutions producing the least bridge LCC values for the different 
BLO problems of the example 

 
a Optimized objective. 

 

 

 

 

Solution IACbrg

 ($)
LCCbrg

a

($)
BNTbrg

 ($)
HI1brg 

(%)
HI10brg 

(%)
HI20brg

a 

(%)
HI30brg 

(%)
HI40brg 

(%)
HI50brg 

(%)
HI54brg 

(%)
Scenario a 18 3,472,375 -6,094,001 84,352,376 100.00 78.70 72.48 79.57 72.74 70.02 65.81
Scenario b 18 487,366 74,107,106 4,186,500 80.59 77.40 73.90 83.54 78.24 72.34 68.19

Scenario a 23 3,472,375 -6,094,001 84,352,376 100.00 78.70 72.48 79.57 72.74 70.02 65.81
Scenario b 23 487,366 74,107,106 4,186,500 80.59 77.40 73.90 83.54 78.24 72.34 68.19

Scenario a 4 3,472,375 -5,639,137 83,897,513 100.00 78.70 73.01 79.80 82.38 74.30 69.30
Scenario b 22 586,817 74,150,922 4,142,684 80.59 77.47 73.93 83.50 78.45 71.94 67.77

2-Objective Optimization Problems

3-Objective Optimization Problems

7-Objective Optimization Problems
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Figures 7.6(a) through (f) show the predicted element health indices associated with the solutions 

shown in Table 7.5. As expected, the straight lines connecting element health indices are all 

situated above the health index thresholds (60% every 10 years, horizontal dashed lines in black) 

specified by Criteria 1 of the alternative feasibility screening process (discussed in Chapter 5). The 

horizontal dashed lines in red represent the health index lower-frontiers (deficiency screening 

thresholds, a minimum health index of 80% every 10 years). The dashed curves distinguish the 

non-deficient elements from the deficient ones. The thick connected lines in black represent the 

overall bridge health indices. Figure 7.6(g) includes the predicted DN element health indices over 

the analysis period—produced by DN LC Alternative. The predicted RO element health indices 

are shown in Figure 7.6(h)—produced RO LC Alternative. 
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Figure 7.6 Predicted health indices associated with the solutions producing the least bridge LCC values 
for the 2-objective BLO problems under (a) Scenario a, (b) Scenario b; the 3-objective BLO problems 

under (c) Scenario a, (d) Scenario b; the 7-objective BLO problems under (e) Scenario a, (f) Scenario b. 
Predicted health indices under (g) DN LC Alternative; (h) RO LC Alternative 
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The objective of the BLO module is to produce a set of optimal or near-optimal solutions for a 

candidate bridge. Each solution holds a recommended LC alternative for each element of the 

bridge. Table 7.6 shows the recommended LC alternatives associated with the solutions producing 

the least bridge LCC values for the 2-objective BLO problems (i.e., Solution 18, shown in Table 

7.5). These recommended improvement actions provide the least bridge LCC while sustaining the 

desired bridge performance. 

 For Scenario a (unconstrained budget and performance), the major functional improvement action 

(FCI Action 5) is assigned to program year 1 followed by a series of element preservation actions 

(MRR Actions 0, 1, 2, 3, and 4) at different decision points. For an initial investment of $3,472,375, 

the FCI improvement type eliminates the two functional deficiencies and incurred user costs and 

fully restores all bridge elements to CS1 equals 100%. However, for the constrained Scenario b 

(limiting the budget to $2.5M and sustaining a minimum bridge health index of 70% every 10 

years), the preservation (MRR) improvement type produced the least bridge LCC value. The 

recommended element preservation actions are assigned to program year 6 and each decision point 

(spaced by a 10-year inaction period). LC Alternative 1 is always assigned to the non-deficient 

elements. Elements 109, 215, 234, 310, and 331 are the non-deficient elements (based on the post-

major improvement screening covered in Chapter 5) under the FCI improvement type; however, 

Element 310 is considered as a deficient element under the MRR improvement type—only 

Elements 109, 215, 234, and 331 are the non-deficient ones based on the preservation only 

screening covered in Chapter 5. The recommended improvement actions and timings represent a 

detailed element-level work plan. The recommended actions can be grouped into a bridge project 

or included under a bridge improvement program. Table 7.7 shows the feasible preservation 

treatments associated with these recommended improvement actions. 
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Table 7.6 Element improvement actions associated with the solutions producing the least bridge LCC 
values for the 2-objective BLO problems 

  Element 
Ref. 

FCI  
LC Alt. 

Pro. Year 
(year 1) 

Dec. Point 1 
(year 12) 

Dec. Point 2 
(year 23) 

Dec. Point 3 
(year 34) 

Dec. Point 4 
(year 45) 

B
LO

 S
ol

ut
io

n 
18

 
Sc

en
ar

io
 a

 

12 418 5 3 1 3 2 
28 157 5 1 1 1 1 
29 157 5 1 1 1 1 

107 175 5 1 1 4 4 
109a 1 5 0 0 0 0 
113 625 5 4 4 4 4 
152 175 5 1 1 4 4 
210 572 5 4 2 4 1 
215a 1 5 0 0 0 0 
220 607 5 4 4 1 1 
226 157 5 1 1 1 1 
227 157 5 1 1 1 1 
231 157 5 1 1 1 1 
234a 1 5 0 0 0 0 
301 163 5 1 1 2 2 
310a 1 5 0 0 0 0 
311 417 5 3 1 3 1 
313 417 5 3 1 3 1 
330 407 5 3 1 1 1 
331a 1 5 0 0 0 0 

  Element 
Ref. 

MRR 
LC Alt. 

Pro. Year 
(year 6) 

Dec. Point 1 
(year 17) 

Dec. Point 2 
(year 28) 

Dec. Point 3 
(year 39) 

Dec. Point 4 
(year 50) 

B
LO

 S
ol

ut
io

n 
18

 
Sc

en
ar

io
 b

 

12 2294 3 3 1 3 3 
28 832 1 1 3 1 1 
29 1464 2 1 3 2 3 

107 800 1 1 1 4 4 
109a 1 0 0 0 0 0 
113 3125 4 4 4 4 4 
152 800 1 1 1 4 4 
210 2247 3 2 4 4 1 
215a 1 0 0 0 0 0 
220 1857 2 4 4 1 1 
226 2747 4 1 4 4 1 
227 782 1 1 1 1 1 
231 782 1 1 1 1 1 
234a 1 0 0 0 0 0 
301 1563 2 2 2 2 2 
310 2337 3 3 3 2 1 
311 1667 2 3 1 3 1 
313 1667 2 3 1 3 1 
330 2082 3 1 3 1 1 
331a 1 0 0 0 0 0 

a Non-deficient element. 
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Table 7.7 Feasible preservation treatments associated with the improvement actions recommended by the 
solutions producing the least bridge LCC values for the 2-objective BLO problems 

  Element 
Ref. 

Element 
Name 

FCI  
LC Alt. 

Pro. 
Year 

(year 1) 

Dec. 
Point 1 

(year 12) 

Dec. 
Point 2 

(year 23) 

Dec. 
Point 3 

(year 34) 

Dec.  
Point 4 

(year 45) 

B
LO

 S
ol

ut
io

n 
18

 
Sc

en
ar

io
 a

 

12 Re. Concrete Deck 418 FCI PM MMR PM RD 
28 Steel Deck - Open Grid 157 FCI SMMR SMMR SMMR SMMR 
29 Steel Deck – Conc. Fill Grid 157 FCI SMMR SMMR SMMR SMMR 

107 Steel Open Girder/Beam 175 FCI SMMR SMMR PM PM 
109a Pre. Open Conc. Girder/Beam 1 FCI DN DN DN DN 
113 Steel Stringer 625 FCI PM PM PM PM 
152 Steel Floor Beam 175 FCI SMMR SMMR PM PM 
210 Re. Conc. Pier Wall 572 FCI PM MSS PM MMR 
215a Re. Conc. Abutment 1 FCI DN DN DN DN 
220 Re. Conc. Sub Pile Cap/Footing 607 FCI PM PM MMR MMR 
226 Pre. Conc. Pile 157 FCI MMR MMR MMR MMR 
227 Re. Conc. Pile 157 FCI MMR MMR MMR MMR 
231 Steel Pier Cap 157 FCI SMMR SMMR SMMR SMMR 
234a Re. Conc. Pier Cap 1 FCI DN DN DN DN 
301 Pourable Joint Seal 163 FCI MMR MMR RJ RJ 
310a Elastomeric Bearing 1 FCI DN DN DN DN 
311 Moveable Bearing 417 FCI PM MMR PM MMR 
313 Fixed Bearing 417 FCI PM MMR PM MMR 
330 Metal Bridge Railing 407 FCI PM SMMR SMMR SMMR 
331a Re. Conc. Bridge Railing 1 FCI DN DN DN DN 

  Element 
Ref. 

Element 
Name 

MRR 
LC Alt. 

Pro. 
Year 

(year 6) 

Dec. 
Point 1 

(year 17) 

Dec. 
Point 2 

(year 28) 

Dec. 
Point 3 

(year 39) 

Dec.  
Point 4 

(year 50) 

B
LO

 S
ol

ut
io

n 
18

 
Sc

en
ar

io
 b

 

12 Re. Concrete Deck 2294 PM PM MMR PM PM 
28 Steel Deck - Open Grid 832 SMMR SMMR PM SMMR SMMR 
29 Steel Deck – Conc. Fill Grid 1464 SMMD SB PM SMMD PM 

107 Steel Open Girder/Beam 800 SMMR SMMR SMMR PM PM 
109a Pre. Open Conc. Girder/Beam 1 DN DN DN DN DN 
113 Steel Stringer 3125 PM PM PM PM PM 
152 Steel Floor Beam 800 SMMR SMMR SMMR PM PM 
210 Re. Conc. Pier Wall 2247 RU MSS PM PM MMR 
215a Re. Conc. Abutment 1 DN DN DN DN DN 
220 Re. Conc. Sub Pile Cap/Footing 1857 MSS PM PM MMR MMR 
226 Pre. Conc. Pile 2747 PM MMR PM PM MMR 
227 Re. Conc. Pile 782 MMR MRR MMR MMR MMR 
231 Steel Pier Cap 782 SMMR SMMR SMMR SMMR SMMR 
234a Re. Conc. Pier Cap 1 DN DN DN DN DN 
301 Pourable Joint Seal 1563 RJ RJ RJ RJ RJ 
310 Elastomeric Bearing 2337 PM PM PM RU MMR 
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Table 7.7 Feasible preservation treatments associated with the improvement actions recommended by the 
solutions producing the least bridge LCC values for the 2-objective BLO problems (continued) 

Note. For more detail about these preservation treatments, refer to Implementation of the 2013 AASHTO 
Manual for Bridge Element Inspection (Sobanjo & Thompson, 2016a). FCI = Bridge functional 
improvement; PM = Preventive maintenance; RD = Replace deck; MMR = Minor or major repair; 
SMMR = Spot blast and minor or major repair; SMMD = Spot blast and minor or major repair or replace 
deck; SMMU = Spot blast and minor or major repair or replace unit; SB = Spot blast; RU = Replace unit; 
DN = Do-nothing; RJ = Replace joint; MSS = Mitigate settlement or scour. 
 a Non-deficient element. 
 

BLO Solution 18 
Scenario b 

Element 
Ref. 

Element 
Name 

MRR 
LC Alt. 

Pro. 
Year 

(year 6) 

Dec. 
Point 1 

(year 17) 

Dec. 
Point 2 

(year 28) 

Dec. 
Point 3 

(year 39) 

Dec.  
Point 4 

(year 50) 
311 Moveable Bearing 1667 RU PM MMR PM MMR 
313 Fixed Bearing 1667 RU PM MMR PM MMR 
330 Metal Bridge Railing 2082 PM SMMR PM SMMR SMMR 
331a Re. Conc. Bridge Railing 1 DN DN DN DN DN 
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7.7 Summary and Conclusions 

This chapter introduced an innovative BLO module that considers the ELO recommendations. The 

chapter presented the module framework, capturing the different concepts and processes, discussed 

the interaction between the element- and bridge-level optimization modules, and demonstrated 

effectiveness and benefits. The chapter highlighted the different BLO problem types and 

formulations, and the mapping approach of the problem decision variables. No screening process 

is needed to further reduce the large size of the optimization problem. The total number of decision 

variables remains manageable even for a large network of bridges.  

A multi-year optimization strategy was found to be appropriate for the problem formulation. The 

BLO problem is formulated in terms of binary decision variables. The optimization formulation is 

shaped as a MCKP if no constraints involved other than the selection criterion—only one ELO 

solution (one choice) must be picked from all solutions (multiple choices). The multi-dimensional 

aspect is added to the problem when more than one constraint (e.g., available budget and/or 

minimum desired performance) are involved; the problem is then formulated as a MCMDKP.    

The chapter introduced the heuristic algorithm designed to solve the BLO problems. The module 

relies on the same metaheuristic algorithm (i.e., NSGA-II) discussed in Chapter 6 to solve this 

bridge-level NP-hard combinatorial optimization problem. The BLO process addresses one bridge 

at a time. The optimization process focuses on obtaining a diverse set of BLO solutions for the 

entire program period—a recommended BLO solution delivers an optimal or near-optimal set of 

LC alternatives for all the identified deficient elements over the entire analysis period. BLO results 

are key inputs for the bottom-up approach NLO (discussed in Chapter 8).  
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The chapter included an illustrative example of module results produced by the tool prototype. 

Only optimization results of one sample bridge are shown in this chapter. The presented example 

consists of different BLO problems under constrained and unconstrained scenarios. The tool 

prototype produced optimal or near-optimal BLO solutions, recommended sets of intervention 

actions and timings, predicted performance, and determined funding requirements for the entire 

program period. The BLO module can be used independently to provide a systematic process to 

develop/assess bridge improvement/preservation programs.  
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CHAPTER 8—NETWORK-LEVEL OPTIMIZATION MODULE 

 Task 3: Proposing an Element-Based Multi-Objective Optimization Methodology 
 Task 4: Development of a Tool Prototype 
 Task 5: Implementation of the Methodology through Examples of Scenarios 

8.1 Introduction  

The main objective of the proposed EB-MOO methodology is to determine short- and long-term 

investment needs, and support recommending programs and implementation schedules. The EB-

MOO methodology depends on a quantitative process driven by bridge-related data, decision 

makers’ preferences, and agency’s preservation polices, objectives and goals. As stated throughout 

this dissertation, three independent optimization modules were incorporated into the EB-MOO 

methodology:  

(1) an ELO, to identify optimal or near-optimal element intervention actions for each deficient 

element (in a poor condition state) of a candidate bridge;  

(2) a BLO, to identify combinations of optimal or near-optimal element intervention actions 

for a candidate bridge; and  

(3) a NLO, following either a top-down or bottom-up approach, to identify sets of optimal or 

near-optimal element intervention actions for a network of bridges.  

The two preceding chapters introduced the ELO and BLO module frameworks, concepts and 

processes, laid out the problem formulations and heuristic algorithms, and included illustrative 

examples using the tool prototype to demonstrate effectiveness and benefits. Likewise, this chapter 
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introduces the third optimization module of the methodology. The chapter discusses the NLO 

module frameworks, the top-down and bottom-up approaches, the screening process, and the 

different heuristic optimization algorithms. 

A screening process referred to as “solution superiority screening” is integrated into this module 

to reduce the computational time by restricting the decision variable space. The screening 

guarantees the inclusion of superior solutions—for each network-level objective to be optimized, 

ELO solutions yielding the best objective values per program year are embraced. Agency’s 

improvement rules or triggers can be established at this higher level to substitute the adapted 

screening process or complement it.  

The optimization problem is either constrained (by budget and/or performance) or unconstrained 

(involving only the selection criterion). The unconstrained problem can be used to estimate the 

budget required to address all predicted needs, or determine whether a program is underfunded or 

overfunded. Usually, this information is used to justify budget requests through the legislative 

process. The sum of initial agency costs of all recommended LC alternatives represents the needed 

investment. The budget-constrained problem can be used to anticipate short- and long-term 

network improvement strategies under a limited available budget—supporting the development of 

bridge programs, TAMPs, or TIPs/STIPs. Performance-constrained problem can be used to 

maintain a desired network performance. Typically, performance constraints involve setting 

network condition targets such as a percentage of bridges in a “state of good repair,” a total number 

of bridges classified as “good,” a percentage of the structurally deficient deck areas of bridges, and 

an average network health index. In this research, an overall network health index (averaging 

health indices of all bridges in the network) is used to assess the network performance. 
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The optimization formulation is shaped as a MCKP for an unconstrained network-level problem. 

For a budget-constrained problem, the formulation varies based on the scenario (i.e., annual budget 

scenario or multi-year budget scenario). Budget constraints can be imposed either annually (for 

each program year) or cumulatively (for all program years). The multi-year budget-constrained 

problem is formulated as a MCMDKP; whereas, the annual budget-constrained problem is 

formulated as a “Multiple Knapsack Problem” (MKP). The module optimization requires a 

simultaneous optimization of multiple competing objectives; for example, minimize the network 

LCC and maximize the network LCC benefit and/or health indices at different points in time, 

seeking to arrive at the best trade-off between them. The aim is to obtain a diverse set of NLO 

solutions for the entire program period as close as possible to the Pareto frontier—a recommended 

NLO solution delivers the best feasible (optimal or near-optimal) set of LC alternatives for all 

deficient elements of the identified high-priority bridges from the portfolio over the entire analysis 

period.  Both BLO and ELO solution results are key inputs for the NLO process. A bottom-up 

approach is followed when the BLO solutions are used as input parameters. On the other hand, a 

top-down approach is followed when the ELO solutions are used instead.  

The module focuses on finding a diverse set of Pareto solutions for a portfolio of bridges. Again, 

the confronted problem is an NP-hard combinatorial optimization problem. Both top-down and 

bottom-up optimization approaches are formulated in terms of binary decision variables. When 

following the top-down approach, ELO results are grouped and expressed in summation formulas 

over the entire program period for all deficient elements of each bridge in the portfolio—a selected 

ELO solution is represented by a decision variable of 1, otherwise 0. When following the bottom-

up approach, BLO results are grouped and expressed in summation formulas over all bridges in 

the portfolio— a selected BLO solution is represented by a decision variable of 1, otherwise 0. 
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Generally, near-optimal rather than optimal solutions are obtained. NLO objectives and constraints 

are expressed in terms of these decision variables. The module relies on the same metaheuristic 

algorithm (i.e., NSGA-II) discussed in Chapters 6 and 7 to solve these network-level NP-hard 

combinatorial optimization problems.  

Several examples of unconstrained and constrained (by budget and/or performance) scenarios were 

established for the module implementation using the MATLAB-based tool prototype. Results are 

presented in this chapter to demonstrate the module capabilities: generating optimal or near-

optimal solutions, predicting performance, and determining intervention strategies and funding 

requirements. The example results are also used to evaluate the effectiveness of the top-down and 

bottom-up approaches.  

8.2 Background 

Decisions are made at either the network level or bridge level. For network-level decisions, ranking 

procedures or established decision trees (discussed in Chapter 2) have been widely used by state 

DOTs and other transportation agencies, especially when dealing with a large network of bridges. 

Setting priorities by ranking or decision trees is usually subjective and inadequate in providing the 

best long-term investment strategies. LCCA, BCA, and IBCA (discussed in Chapter 5) are the 

common economic decision analyses used by BMSs. Typically, alternatives are prioritized by 

sorting their benefit-cost ratios—generally ratios equal to or greater than 1 are considered 

acceptable. When the budget is constrained, alternatives with the highest benefit-cost ratios are 

selected following a priority until the available funding is exhausted. Though, ranking alternatives 

based on their benefit-cost ratios usually yield misleading results.  
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IBCA is considered a superior to BCA (Farid et al., 1988). Robert (2017) described how IBCA is 

used in NBIAS to provide a near-optimal solution for a budget-constrained problem rather than 

exact optimization methods—due to their limitations for large-sized problems. NBIAS relies on 

an IBC heuristic called “MINBEN,” described in (Robert et al., 2009), for sorting improvement 

alternatives. The heuristic provides a near-optimal solution within acceptable running time. 

Improvement alternatives that do not follow the Law of Diminishing Marginal Return are 

eliminated from consideration. Under a limited available budget, improvement alternatives that 

produce the highest benefits per additional cost are selected.  

As stated in Chapter 5, BrM uses a multi-criteria decision analysis based on the utility theory. Each 

criterion for a bridge is associated with a utility value determined through weighting, scaling and 

amalgamation techniques. BrM uses two types of improvement actions: bridge- and network-level 

actions. A bridge-level action represents a single or small group of bridge work item(s). A network-

level action represents an entire set of actions for a network of bridges. The benefit of a network-

level action is calculated from the incremental increase in the overall utility value of the bridge 

(referred to as Δ Utility). A Δ Utility ratio is determined for each network-level action. The system 

selects network-level actions with the highest Δ Utility ratios. A cutoff is reached when all 

performance and budget constraints are met (Johnson & Boyle, 2017).  

Agency’s rules and/or triggers are used by most BMSs to limit the number of possible 

improvement actions per year. At the network level, these improvement actions are often described 

in broad terms and applied to the entire bridge or its major components. Thus, much of the element-

specific information is lost. These high-level actions reduce the total number of possible 

combinations of actions and eventually the execution time. These actions lack of details and 
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typically are not meant to produce a comprehensive bridge program. Obtained network-level 

investment strategies are generally used for high-level planning and programming purposes.  

There are two NLO approaches among BMSs: (1) top-down approach, where the optimization 

determines the network-level goals, and then the improvement needs for individual bridges; and 

(2) bottom-up approach, where the bridge improvement needs are determined first. The top-down 

approach emphasizes on planning and strategy management at the network level. The bottom-up 

approach focuses on bridge-level analysis which dictates the network strategy (Lake & Seskis, 

2013). The top‐down approach optimization produces high-level strategies (generally based on 

bridge component- or network-level actions) to meet the network goals and objectives. The 

bottom-up approach optimization uses the identified component- or element-level improvement 

strategies for each bridge as input parameters for the optimization process. The latter preserves 

bridge information and subsequently produces more refined network-level improvement 

strategies. The drawback of this approach is that a separate analysis for each bridge is required; 

and therefore, increasing the problem complexity, simulation, and computational time. For large 

networks, the top-down approach is generally the preferred approach due to the less computational 

requirements. Bridge improvement recommendations are made generally in terms of network-level 

improvement actions. Work refinements at the component or element level are generally left to the 

bridge manager judgments to compensate for the loss of bridge-specific information in the 

aggregation step (Yeo et al., 2013). 
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8.3 Module Framework 

Typically, decision makers are faced to simultaneously evaluate several differing preferences. In 

most cases, other non-economic preferences, targets and restrictions contribute in the decision 

making at the network level. True MOO methodologies are effective in optimizing multiple 

competing network-level objectives (such as minimizing the network LCC, and maximizing the 

network LCC benefit and performance) subject to constraints (such as limited available budget 

and minimum acceptable network performance). This research introduces a true network-level 

MOO procedure to overcome the limitations of existing approaches discussed in the background 

section. The proposed NLO module attempts to guarantee a diverse set of optimal or near-optimal 

solutions with a reasonable computational effort—the economically unattractive element LC 

alternatives are eliminated at the element level to produce screened sets of input parameters for 

this higher level of optimization.  

The top-down and bottom-up approaches are defined differently in this research. The NLO of this 

module follows a novel concept but keeping the same terminology. Basically, a bottom-up 

approach is followed when BLO solutions (input parameters) are used in determining network-

level needs and recommending investment strategies; however, when ELO solutions (input 

parameters) are used instead, then the top-down approach is followed. In either approach, both 

levels of solutions originate from an unconstrained optimization to increase diversity and 

ultimately the search space. Recommended network-level investment strategies (by either 

approach) are detailed at the element level.  

Figure 8.1 presents the framework of the top-down approach optimization—ELO solutions, 

associated with the three improvement types and all program years, for each bridge in the portfolio 

compete at this level. Only one ELO solution per bridge is selected. As discussed in Chapter 6, the 
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ELO module focuses on finding Pareto solutions per program year and per improvement type for 

each deficient element of a bridge in the portfolio. A set of LC alternatives is derived from each 

solution. Each recommended LC alternative represents a series of best (optimal or near-optimal) 

actions for a deficient element over the analysis period. Results associated with these ELO 

solutions serve as the key inputs for the top-down approach optimization. 

Figure 8.2 shows the framework adapted for the bottom-up approach optimization—BLO 

solutions for each bridge in the portfolio compete at this higher level. No more than one BLO 

solution per bridge is selected. The BLO module (covered in Chapter 7) independently produces a 

diverse set of Pareto solutions per program period for each bridge in the portfolio—a 

recommended BLO solution delivers an optimal or near-optimal set of LC alternatives for all 

deficient elements over the entire analysis period. Results associated with these BLO solutions 

serve as the key inputs for the bottom-up approach optimization. As mentioned throughout the 

preceding modules, if the MRR improvement type is recommended, MRR LC Alternative 1 (to 

mimic the DN LC Alternative over the entire analysis period) is assigned to the non-deficient 

elements, otherwise FCI/REP LC alternative 1 (to mimic the DN LC Alternative over the analysis 

years succeeding the element replacement year).  
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8.3.1 Top-Down Approach  

The module framework exemplified in Figure 8.1 is based on the following concepts:  

1. ELO solution results (from an unconstrained optimization) per improvement type and per 

program year for each element of each bridge in the portfolio are transferred to this module 

as input parameters.  

2. A screening process referred to as “solution superiority screening,” discussed in the 

subsequent section, is deployed to reduce the NLO problem size, guarantee the inclusion 

of the best ELO solution results (input parameters) in the optimization process, and 

improve the computational time. Solution results are sorted based on the preferred 

screening criteria and/or optimization goals. However, this screening can be bypassed for 

small networks of bridges.  

3. The screened ELO solution results (serving as the input parameters) are grouped and 

reorganized in single matrices as illustrated in Figure 8.1.  

4. Single matrices representing each type of solution results are arranged to cover the entire 

program period, the three improvement types, and the entire portfolio.  

5. The last three matrices shown in Figure 8.1 represent the NLO solution outcomes for the 

entire portfolio. The first matrix (bottom, far-left) contains the recommended LC 

alternatives associated with the NLO solutions (each bridge element is assigned to an 

optimal or near-optimal LC alternative, an improvement type, and a program year), the 

second matrix includes the resulting network initial agency costs and health indices at 

different points in the analysis period, and the third matrix contains the values of optimized 

network-level objectives. 
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Figure 8.1 Network-level optimization module framework for the top-down approach 
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8.3.2 Bottom-Up Approach  

The module framework presented in Figure 8.2 is based on the following concepts:  

1. BLO solution results (from an unconstrained optimization) per improvement type and per 

program year for each element of a bridge in the portfolio are transferred to this module as 

input parameters. A screening process is generally unnecessary for this bottom-up 

approach optimization. No need to further reduce the size of the optimization problem. The 

total number of decision variables remains manageable, even for a large network of 

bridges.  

2. These BLO solution results are grouped and reorganized in single matrices as illustrated in 

Figure 8.2.  

3. Single matrices representing each type of solution results are arranged to cover all bridges 

in the portfolio. 

4. The last three matrices shown in Figure 8.2 represent the NLO outcomes for the entire 

portfolio. The first matrix (bottom, far-left) contains the recommend LC alternatives 

associated with the NLO solutions (each bridge element is assigned to an optimal or near-

optimal LC alternative, an improvement type, and a program year), the second matrix 

includes the resulting network initial agency costs and health indices at different points in 

the analysis period, and the third matrix contains the values of optimized network-level 

objectives. 
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Figure 8.2 Network-level optimization module framework for the bottom-up approach 
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8.4 Solution Superiority Screening 

Although the improvement and ELO modules deploy several screening processes to reduce the 

problem size and improve the computational time, the problem size still represents a challenge at 

this higher level of optimization. Incorporating element- and bridge-level details into this module 

complicates the NLO process. The complexity of the problem substantially increases when the 

number of involved bridges increases, and consequently the solution space. Therefore, deploying 

a strategy to reduce the number of possible solutions is essential (Elbehairy, 2007). The module 

top-down approach could generate thousands or even millions of decision variables. For instance, 

600,000 decision variables represent a top-down approach optimization problem for a network of 

200 bridges (considering 100 ELO solutions per program year for each bridge). This large-scale 

problem becomes extremely difficult to manage, especially with common computers. Achieving 

heuristic solutions as close as to the Pareto frontier requires tremendous computational efforts and 

computer memory.  

Chapter 6 introduced a 2-stage screening process (i.e., alternative feasibility screening process) to 

guide the ELO search toward global optimality within a reasonable computational time. A similar 

concept is endorsed at this higher level of optimization. An arrangement process referred to as 

“solution superiority screening” is integrated into this module to make the problem tractable with 

a reasonable computational effort—by restricting the decision variable space without affecting the 

quality of solutions. However, the process can be avoided if the running time is not a concern. This 

process reduces the optimization problem size and guarantees the inclusion of the superior (best) 

solution results in the NLO process. The process identifies ELO solutions (input parameters) 

producing the best results in alignment with the NLO goal. For each network-level objective to be 

optimized, the ELO solutions yielding the best element-level objective values per program year 
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are embraced—generally, a cutoff value is assigned to control the number of these superior ELO 

solutions. Different cutoff values can be specified based on relative importance of network-level 

objectives, permitting acceptance of additional ELO solutions for consideration. A cutoff value of 

1 produces only the maximum or minimum values, depending on the NLO goal. Let’s reconsider 

the earlier network example for an optimization problem consisting of three network-level 

objectives. If 1 is taken as the cutoff value, the 100 ELO solutions are reduced to 3 ELO solutions 

per program year, and consequently the 600,000 decision variables are reduced to 18,000. The 

screening process is generally unnecessary for the bottom-up approach optimization. The total 

number of decision variables remains manageable even for a large network of bridges. For the 

same network of 200 bridges, considering 100 BLO solutions per bridge, the bottom-up approach 

produces 20,000 decision variables. 

Figure 8.3 illustrates an example of the solution superiority screening process. Three network-

level objectives to be optimized with a user-specified cutoff value of 10. The example optimization 

goal is to simultaneously minimizing the network LCC and maximizing the network LCC benefit 

and health index at the end of year 20. For each program year and each improvement type, the 

corresponding ELO solution results are sorted in descendant or ascendant order, aligning with the 

NLO objectives. In this example, bridge LCCs, LCC benefits, and health indices at the end of year 

20 (HI20s) are sorted independently. The 10 smallest bridge LCCs, the 10 highest bridge LCC 

benefits, and the 10 highest bridge HI20s are identified. Associated ELO solutions with these 

sorted results are classified as the superior ones and grouped in single matrices for consideration. 

These superior ELO solutions are compatible with the NLO goal. Thus, NLO solutions producing 

maximum or minimum network-level objective values are guaranteed—extending the search space 

exploration. 
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Figure 8.3 Illustration of the solution superiority screening process
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8.5 Network-Level Optimization Problem Formulations 

Constructing a trade-off frontier composed of NLO solutions requires a simultaneous optimization 

of multiple network-level objectives. The NLO goal is to minimize network LCCs, maximize 

network LCC benefits, and/or maximize network health indices at different points in time 

(averaging health indices of all bridges in the network or portfolio) subject to network budget 

and/or performance constraints. The module focuses on finding a diverse set of Pareto solutions 

for a portfolio (network) of bridges while meeting the network budget and performance 

constraints. Each NLO solution identifies a set of high-priority bridges from the portfolio for 

improvement work. Each recommended bridge is allied with the appropriate improvement type, 

program year, and LC alternatives for all its elements. The non-selected bridges (considered as 

less-priority bridges) due to a budget restriction automatically constitute the backlog. If a backlog 

is not an option, the optimization is forced to consider every single bridge in the portfolio while 

relaxing certain constraints. 

As mentioned earlier, the module top-down and bottom-up approaches are defined differently in 

this research. Basically, a bottom-up approach is followed when BLO solutions (input parameters) 

are used in determining network-level needs, and a top-down approach is followed when ELO 

solutions (input parameters) are used instead. In either approach, both levels of solutions originate 

from unconstrained optimization problems, increasing diversity and ultimately the search space. 

The solution superiority screening process identifies superior ELO solutions as input parameters 

for the top-down approach. As emphasized in the previous section, this screening process is 

deemed essential for large-sized optimization problems. The process makes the problem tractable 

with a reasonable computational effort—it reduces the problem size by focusing mainly on 

superior ELO solutions. The screening process is generally unnecessary for the bottom-up 
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approach optimization. The total number of decision variables remains manageable even for a 

large network of bridges.  

The top-down and bottom-up approaches in this research are formulated differently. Their 

formulations are defined in terms of binary decision variables. NLO objectives are functions of 

these decision variables. The binary variables were found to be suitable for these types of 

combinatorial optimization problems. A decision variable is 1 if an ELO (for the top-down 

approach) or BLO (for the bottom-up approach) solution is selected, otherwise 0. Their 

formulations are covered in the subsequent two sections. Budget and performance scenarios 

examined in this module are categorized as follows: 

• Case A—all bridges in the portfolio must be selected  

• Case B—not necessarily all bridges in the portfolio must be selected 

For Case A’s scenarios, the specified selection criterion restricts the decision variable space to one 

recommendation per bridge. Each bridge in the portfolio must be associated with only one set of 

LC alternatives for all its elements. This case is used when a backlog is not an option; every single 

bridge in the portfolio is considered—certain constraints can be relaxed to make the problem 

trackable, if necessary. For Case B’s scenarios, no more than one set of LC alternatives per bridge 

can be recommended—reducing the budget causes improvement work on some bridges to be 

postponed. Not all bridges will be programmed under a restricted budget. Case B relaxes the 

selection criterion (the selection of each bridge is no fully enforced) to focus on bridges of urgent 

improvement needs (generally in a poor condition state) and satisfy the available budget. The non-

selected bridges (the less urgent) are added to the backlog. Those low-priority bridges still require 

work to be performed, but most likely improvement needs change as they continue to deteriorate.  
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The NLO problem can be either constrained (e.g., available budget and/or minimum desired 

performance) or unconstrained. The selection criterion of Case A or Case B is always considered, 

regardless. When no additional constraints are involved (i.e., the unconstrained problem for this 

research), the problem is formulated as a MCKP (Chapter 6 discusses the MCKP in greater detail). 

However, when multiple constraints are considered (i.e., the constrained problem for this 

research), the multi-dimensional aspect is added, and the problem is classified as a MCMDKP 

(Chapter 7 covers the MCMDKP). Budget constraints can be imposed either annually (for each 

program year) or cumulatively (for the entire program period). A multi-year budget scenario is 

formulated as a MCMDKP. An annual budget scenario is formulated as a MKP. The MKP focuses 

on satisfying the capacity constraints of the multiple knapsacks. It is used in several applications 

such as bin packing, cutting stock, and financial management (Ramasamy, 2013). Mumford-

Valenzuela (2005) explained the MKP concept using the following example. 

For a simple knapsack problem, a set of n objects O = {O1, O2, O3, ... On} and a knapsack of 

capacity C are given. Each object Oi has an associated profit Pi and weight Wi. The objective is to 

find a subset S from O such the sum of weights over the objects in S does not exceed the knapsack 

capacity C and yields a maximum profit. The MKP may involves m knapsacks of different 

capacities, C1, C2, C3, ... Cm. Selected objects must be placed in all m knapsacks—neither the 

weight of an object Oi nor its profit Pi is fixed. For a demonstration, a small MKP with 10 objects 

and two knapsacks is defined in Table 8.1. A Pareto solution set for this small problem is presented 

in Table 8.2.  
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Table 8.1 Example of MKP with 10 objects and two knapsacks 

Object 
Number 

Knapsack 1 
Capacity = 38 

Knapsack 2 
Capacity = 35 

Weight  Profit Weight Profit 
1 9 2 3 3 
2 8 7 4 9 
3 2 4 2 1 
4 7 5 4 5 
5 3 6 9 3 
6 6 2 5 8 
7 1 7 4 2 
8 3 3 8 6 
9 9 7 3 1 

10 3 1 7 3 

Table 8.2 Obtained Pareto solution set for the MKP example defined in Table 8.1 

Knapsack 1 
Profit 

Knapsack 2 
Profit 

Objects in 
Knapsacks 

39 27 {2,3,4,5,7,8,9} 
38 29 {2,3,4,5,6,7,9} 
36 30 {2,3,5,6,7,8,9} 
35 32 {2,3,4,6,7,8,9} 
34 33 {2,3,4,5,6,8,9} 
32 34 {2,4,6,7,8,9,10} 
29 35 {1,2,3,4,5,6,8} 
27 36 {1,2,4,6,7,8,10} 

The module MKP formulation uses the same analogy. Each program year is assigned to a different 

knapsack to accept the maximum number of bridges until the allocated annual budget is exhausted. 

Each bridge is assigned to only one knapsack and affiliated with only one ELO solution. Each 

knapsack must at least accommodate one bridge. The MKP formulation requires input parameters 

per program year to meet the multiple knapsack capacities. Only ELO solutions produce results 

per program year. Therefore, the module MKP is always shaped as a top-down approach 

optimization problem. The MKP is an NP-hard combinatorial optimization problem. As 

emphasized in Chapters 6 and 7, this type of problems is solved using heuristics or metaheuristics 



 

288 

 

to achieve approximate (near-optimal rather than optimal) solutions within a reasonable 

computational effort (Thompson et al., 2008). The next section introduces the heuristic algorithms 

developed to solve the module NLO problems. 

8.5.1 Top-Down Approach  

The formulation presented in this section is based on the MCMDKP and MKP and limited only to 

the top-down approach. The problem can be mathematically expressed as follows: 

Objectives  

Minimize 𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡  

Maximize 𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡  

Maximize 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦  ∀ 𝑦𝑦 ∈ 𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝  

Subject to 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 ≤ 𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 Only for total budget scenarios (8.1) 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑝𝑝 ≤ 𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡

𝑝𝑝  
Only for annual budget scenarios 

∀ 𝑗𝑗 ∈ 𝐴𝐴 
(8.2) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 ≥ 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧  ∀ 𝑧𝑧 ∈ 𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 (8.3) 

�� � 𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 = 1
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 Only for scenarios of Case A 

∀ 𝑇𝑇 ∈ 𝑃𝑃 
(8.4) 

�� � 𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 ≤ 1
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹

 Only for scenarios of Case B 

∀ 𝑇𝑇 ∈ 𝑃𝑃 
(8.5) 

where 

𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡 = �𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+ ��  � � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 �𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 − 𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝐷𝐷𝑁𝑁 ��
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.6) 
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𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡 = �𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+ ��  � � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 �𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 − 𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝐷𝐷𝑁𝑁 ��
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.7) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦 =

1
𝐿𝐿𝑏𝑏

�𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+
1
𝐿𝐿𝑏𝑏

��  � � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 �𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝𝑝𝑝 − 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑦𝑦𝐷𝐷𝑁𝑁��
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.8) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 =
1
𝐿𝐿𝑏𝑏

�𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+
1
𝐿𝐿𝑏𝑏

��  � � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 �𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝑖𝑖𝑝𝑝𝑝𝑝 − 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑧𝑧𝐷𝐷𝑁𝑁 ��
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.9) 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = ��  � � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝 �

𝑝𝑝∈𝑂𝑂𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝∈𝑇𝑇𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.10) 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑝𝑝 = �� � �𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑖𝑖𝑝𝑝𝑝𝑝 �
𝑝𝑝∈𝑂𝑂𝑘𝑘

𝑝𝑝𝑝𝑝𝑖𝑖∈𝐹𝐹𝑘𝑘∈𝑅𝑅

 (8.11) 

𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡 = total network LCC;  

𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡 = total network LCC benefit;  

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦  = network health index at the end of year y; 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧  = network health index at the end of year z; 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧  = minimum acceptable network health index at the end of year z; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = network initial agency cost for the entire program period; 

𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = available total improvement budget for the entire program period; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑝𝑝  = network initial agency cost incurred in program year j; 

𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡
𝑝𝑝  = available improvement budget for program year j; 

𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝 = 
binary decision variable (𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝= 1 if bridge k ELO solution s of improvement type p with 
an initial intervention in program year j is selected, otherwise 𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝= 0); 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁  = total DN LCC for bridge k; 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = 

total LCC of ELO solution s of improvement type p with an initial intervention in program 
year j performed on bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁   total DN LCC benefit for bridge k; 
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𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = 

total LCC benefit of ELO solution s of improvement type p with an initial intervention in 
program year j performed on bridge k; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑖𝑖𝑝𝑝𝑝𝑝 = 

total health index of bridge k at the end of year y produced by ELO solution s of 
improvement type p with an initial intervention in program year j; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝐷𝐷𝑁𝑁  = total DN health index of bridge k at the end of year y; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝑖𝑖𝑝𝑝𝑝𝑝  = total health index of bridge k at the end of year z produced by ELO solution s of 

improvement type p with an initial intervention in program year j; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝐷𝐷𝑁𝑁  = total DN health index of bridge k at the end of year z; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑖𝑖𝑝𝑝𝑝𝑝  = 

total initial agency cost for bridge k incurred by ELO solution s of improvement type p 
with an initial intervention in program year j; 

𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝 = 

set of ELO solutions of improvement type p with an initial intervention in program year j 
performed on bridge k; 

I = set of the three improvement types (i.e., MRR, FCI, and REP); 

T = set of all program years (i.e., the program period);  

𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝 = set of specified years in the analysis period for health index objectives;  

𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 = set of specified years in the analysis period for health index constraints; 

P = portfolio of bridges; and 

nb = total number of bridge in portfolio P. 

Formulating the problem correctly is so essential to achieve high-quality solutions. Several 

formulation designs for overcoming the size of the problem were tested. The proposed formulation 

is flexible enough to accommodate different NLO goals with multiple constraints. The formulation 

accommodates ELO solutions from the three distinct improvement types (i.e., MRR, FCI, and 

REP) and all program years. The different module optimization objectives (i.e., network LCC, 

LCC benefit, and performance) and constraints (i.e., selection criterion, available network budget, 

and minimum desired network performance) are mathematically represented. For example, an 
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optimization goal for a network may involve minimizing the total network LCC, Equation (8.6), 

maximizing the total network LCC benefit, Equation (8.7), maximizing the network health indices 

at years 20 and 40, Equation (8.8), and maintaining the network health index above 70% (signifies 

a minimum acceptable network performance). In this example, four network-level objectives 

subject to two network performance constraints, Equation (8.4), and a picking criterion, Equation 

(8.5), will be optimized for this network-level problem.  

The multi-year optimization strategy in the formulation was found to be appropriate for this level 

of assessment under the top-down approach. As emphasized earlier, the solution superiority 

screening process is critical for the top-down approach optimization. It identifies the superior ELO 

solutions to serve as input parameters. Without this screening process, this multi-year strategy 

encounters a huge number of decision variables, and the computational time to reach convergence 

is substantial, especially when dealing with a large network of bridges—most likely, global 

optimality cannot be attained.   

A set of Pareto solutions is recommended for the entire portfolio. A NLO solution is a set of ELO 

solutions, where each represents a combination of optimal or near-optimal LC alternatives 

recommended for the deficient elements of one of the bridges in the portfolio.  LC Alternative 1 

(representing the DN LC Alternative) is always assigned to the non-deficient elements. For MRR 

improvement type, a non-deficient element doesn’t experience preservation actions for the entire 

analysis period—MRR LC Alternative 1 is assigned. For FCI and REP improvement types, a non-

deficient element still get replaced; however, no preservation actions will follow—FCI/REP LC 

Alternative 1 is assigned.  
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As explain earlier, the decision in this module optimization problem is a binary choice—one of 

the ELO solutions is either selected or rejected. A NLO solution is represented by a vector of 

binary decision variables (chromosome). The encoding of decision variables is illustrated and 

discussed later in this chapter. The non-dominated solutions of the entire feasible solution space 

constitute the Pareto solution set. For Case A’s scenarios, Equation (8.4) is added to restrict the 

decision variable space. This constraint equation guarantees the selection of only one ELO solution 

per bridge. Therefore, among all grouped ELO solutions, only one must be recommended for each 

bridge. Equation (8.5) is used instead for Case B’s scenarios; no more than one ELO solution per 

bridge is recommended by this inequality constraint. The binary decision variable is symbolized 

by 𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝. The variable equals to 1 if bridge k ELO solution s of improvement type p with an initial 

intervention in program year j is selected, otherwise 0.  

The network-level objectives, Equations (8.6), (8.7), and (8.8), are interdependent on the decision 

variable (𝑋𝑋𝑘𝑘𝑖𝑖𝑝𝑝𝑝𝑝). These equations, respectively, represent the network LCC, LCC benefit, and 

performance at the ends of specified analysis years (𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝), involving only ELO solution results 

associated with the bridges in the portfolio. A unique set of ELO solutions, 𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝, is established for 

each bridge k and performed improvement type p with an initial intervention in program year j. 

The contributions of the different ELO solutions within these sets are summed over all bridges in 

the portfolio (P), the three different improvement types (I), and all program years (T), after 

applying their corresponding decision variables.  

Equation (8.9) represents the inequality of performance constraints. This equation permits to 

maintain an acceptable network performance (“state of good repair”) or attain a higher network 

performance over a certain period; the network health indices at the ends of specified analysis 
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years, 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 , are bounded by the network health index thresholds, 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧 (minimum acceptable 

network health indices). Likewise, these network health indices are determined by summing and 

averaging health indices at the ends of specified years (𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐) of all bridges in the portfolio (P)—

produced by the ELO solutions of all sets (𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝), after applying their corresponding decision 

variables. 

Equation (8.1) represents the inequality of multi-year budget constraint. The total network initial 

agency cost for the entire program period, 𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙, is restricted by the available total budget, 

𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙. The network initial cost for the entire program period is determined by summing all 

incurred bridge initial agency costs—produced by the different ELO solutions of all sets (𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝) 

over the three different improvement types (I) and all program years (T), after applying their 

corresponding decision variables.  

Equation (8.2) represents the inequality of annual budget constraint. The optimization process aims 

to meet the available budget for each program year. The network initial agency cost for program 

year j, 𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑝𝑝 , is restricted by the available budget for the same program year j, 𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡

𝑝𝑝 .  The 

network initial cost for a program year is determined by summing only the bridge initial agency 

costs incurred in the same program year—produced by the different ELO solutions of only the sets 

(𝐿𝐿𝑘𝑘
𝑖𝑖𝑝𝑝) with the same program year (j) over the three different improvement types (I), after applying 

their corresponding decision variables.  

 



 

294 

 

8.5.2 Bottom-Up Approach  

The formulation presented in this section is based on the MCMDKP and limited only to the bottom-

up approach. The problem can be mathematically expressed as follows: 

Objectives  

Minimize 𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡  

Maximize 𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡  

Maximize 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦  ∀ 𝑦𝑦 ∈ 𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝  

Subject to 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 ≤ 𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 Only for total budget scenarios (8.12) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 ≥ 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧  ∀ 𝑧𝑧 ∈ 𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 (8.13) 

� 𝑋𝑋𝑘𝑘𝑘𝑘
𝑘𝑘∈𝑆𝑆𝑘𝑘

= 1 Only for scenarios of Case A 

∀ 𝑇𝑇 ∈ 𝑃𝑃 
(8.14) 

� 𝑋𝑋𝑘𝑘𝑘𝑘
𝑘𝑘∈𝑆𝑆𝑘𝑘

≤ 1 Only for scenarios of Case B 

∀ 𝑇𝑇 ∈ 𝑃𝑃 
(8.15) 

where 

𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡 = �𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+ � � �𝑋𝑋𝑘𝑘𝑘𝑘�𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘 − 𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝐷𝐷𝑁𝑁 ��
𝑘𝑘∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝑅𝑅

 (8.16) 

𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡 = �𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+ � � �𝑋𝑋𝑘𝑘𝑘𝑘�𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘 − 𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝐷𝐷𝑁𝑁 ��
𝑘𝑘∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝑅𝑅

 (8.17) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦 =

1
𝐿𝐿𝑏𝑏

�𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+
1
𝐿𝐿𝑏𝑏

� � �𝑋𝑋𝑘𝑘𝑘𝑘 �𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑦𝑦𝐷𝐷𝑁𝑁��
𝑘𝑘∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝑅𝑅

 (8.18) 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 =
1
𝐿𝐿𝑏𝑏

�𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝐷𝐷𝑁𝑁

𝑘𝑘∈𝑅𝑅

+
1
𝐿𝐿𝑏𝑏

� � �𝑋𝑋𝑘𝑘𝑘𝑘 �𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘

𝑧𝑧𝐷𝐷𝑁𝑁 ��
𝑘𝑘∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝑅𝑅

 (8.19) 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = � � �𝑋𝑋𝑘𝑘𝑘𝑘 𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘 �

𝑘𝑘∈𝑆𝑆𝑘𝑘𝑘𝑘∈𝑅𝑅

 (8.20) 
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𝐿𝐿𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡 = total network LCC; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡 = total network LCC benefit; 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡
𝑦𝑦  = network health index at the end of year y; 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧  = network health index at the end of year z; 

𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧  = minimum acceptable network health index at the end of year z; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = network initial agency cost for the entire program period; 

𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 = available total improvement budget for the entire program period; 

𝑋𝑋𝑘𝑘𝑘𝑘 = binary decision variable (𝑋𝑋𝑘𝑘𝑘𝑘= 1 if bridge k BLO solution w is selected, otherwise 𝑋𝑋𝑘𝑘𝑘𝑘= 
0); 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁  = total DN LCC for bridge k; 

𝐿𝐿𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘  = total LCC of BLO solution w for bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝐷𝐷𝑁𝑁  = total DN LCC benefit for bridge k; 

𝐵𝐵𝑁𝑁𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘  = total LCC benefit of BLO solution w for bridge k; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝐷𝐷𝑁𝑁  = total DN health index of bridge k at the end of year y; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑦𝑦𝑘𝑘  = total health index of bridge k at the end of year y produced by BLO solution w; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝐷𝐷𝑁𝑁  = total DN health index of bridge k at the end of year z; 

𝐻𝐻𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑧𝑧𝑘𝑘  = total health index of bridge k at the end of year z produced by BLO solution w; 

𝑀𝑀𝐷𝐷𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑘𝑘  = total initial agency cost for bridge k incurred by BLO solution w; 

𝑆𝑆𝑘𝑘 = set of BLO solutions for bridge k; 

𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝 = set of specified years in the analysis period for health index objectives;  

𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐 = set of specified years in the analysis period for health index constraints; 

P = portfolio of bridges; and 

nb = total number of bridge in portfolio P. 
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The bottom-up approach optimization formulation is flexible enough to accommodate different 

NLO goals with multiple constraints. The formulation accommodates BLO solutions. The different 

network-level objectives (i.e., network LCC, LCC benefit, and performance) and constraints (i.e., 

selection criterion, available network budget, and minimum desired network performance) are 

mathematically represented. For example, an optimization goal for a given network may involve 

minimizing the total network LCC, Equation (8.16), maximizing the total network LCC benefit, 

Equation (8.17), maximizing the network health indices at years 20 and 40, Equation (8.18), and 

maintaining the network health index above 70% (signifies a minimum acceptable network 

performance). In this example, four network-level objectives subject to two network performance 

constraints, Equation (8.14), and a picking criterion, Equation (8.15), will be optimized for this 

network-level problem.  

As demonstrated in the previous section, the screening process is generally unnecessary for the 

bottom-up approach optimization. The total number of decision variables remains manageable 

even for a large network of bridges. A set of Pareto solutions is recommended for the entire 

portfolio. A NLO solution is a set of BLO solutions, where each represents a combination of 

optimal ort near-optimal LC alternatives identified for the deficient elements of one of the bridges 

in the portfolio. LC Alternative 1 (representing the DN LC Alternative) is always assigned to the 

non-deficient elements. For MRR improvement type, a non-deficient element doesn’t experience 

preservation actions for the entire analysis period—MRR LC Alternative 1 is assigned. For FCI 

and REP improvement types, a non-deficient element still get replaced; however, no preservation 

actions will follow—FCI/REP LC Alternative 1 is assigned. 
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The multi-year optimization strategy in the formulation was also found to be appropriate for this 

level of assessment under the bottom-up approach. Again, the decision in this optimization 

problem is a binary choice—one of the BLO solutions is either selected or rejected. A NLO 

solution is represented by a vector of binary decision variables (chromosome). The encoding of 

decision variables is illustrated and discussed later in this chapter. The non-dominated solutions of 

the entire feasible solution space constitute the Pareto solution set. For Case A’s scenarios, 

Equation (8.14) restricts the decision variable space. This constraint guarantees the selection of 

only one BLO solution per bridge. Therefore, among all grouped BLO solutions, only one must 

be recommended for each bridge. For Case B’s scenarios, Equation (8.15) is used instead; no more 

than one BLO solution per bridge is recommended by this inequality constraint. The binary 

decision variable is symbolized by 𝑋𝑋𝑘𝑘𝑘𝑘. The variable equals to 1 if bridge k BLO solution w is 

selected, otherwise 0.   

The network-level objectives, Equations (8.16), (8.17), and (8.18), are interdependent on the 

decision variable (𝑋𝑋𝑘𝑘𝑘𝑘). These equations, respectively, represent the network LCC, LCC benefit, 

and performance at the ends of specified analysis years (𝐻𝐻𝑜𝑜𝑏𝑏𝑝𝑝), involving only BLO solution results 

associated with the bridges in the portfolio. A unique set of BLO solutions (Sk) is established for 

each bridge in the portfolio (P). The contributions of these different BLO solutions within these 

sets are summed over all bridges in the portfolio (P), after applying their corresponding decision 

variables.  

Equation (8.13) represents the inequality of performance constraints. This equation permits to 

maintain an acceptable network performance (“state of good repair”) or attain a higher 

performance over a certain period; the network health indices at the ends of specified analysis 

years, 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑧𝑧 , are bounded by the network health index thresholds, 𝐻𝐻𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧 (minimum acceptable 
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network health indices). Likewise, these network health indices are determined by summing and 

averaging health indices at the ends of specified years (𝐻𝐻𝑎𝑎𝑜𝑜𝑐𝑐) of all bridges in the portfolio (P)—

produced by the BLO solutions of all sets (Sk), after applying their corresponding decision 

variables. Equation (8.12) represents the inequality of multi-year budget constraint. The total 

network initial agency cost for the entire program period, 𝑀𝑀𝐷𝐷𝑀𝑀𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙, is restricted by the available 

total budget, 𝐵𝐵𝐵𝐵𝐴𝐴𝑐𝑐𝑟𝑟𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙. The network initial cost for the entire program period is determined by 

summing all incurred bridge initial agency costs—produced by the different BLO solutions of all 

sets (Sk), after applying their corresponding decision variables. 

8.6 Heuristic Network-Level Optimization Algorithms 

A Trade-off between competing objectives requires several independent runs by varying certain 

parameters; and yet, optimal or near-optimal solutions are not guaranteed. MOO methodologies 

are effective in optimizing multiple competing objectives subject to all kinds of constraints (e.g., 

budget and/or performance constraints). They help providing a complete knowledge of the 

problem (Talbi, 2009). MOO methodologies guarantee a diverse set of optimal or near-optimal 

solutions—constituting a frontier of trade-offs. The objective of the NLO module is to obtain a 

diverse set of optimal or near-optimal LC alternatives (Pareto solutions) for the entire network—

to support decision making through a trade-off or “what-if” scenario analysis between the obtained 

Pareto solutions. Again, the same metaheuristic algorithm (i.e., NSGA-II) is deployed at this 

higher level of optimization. NSGA-II is integrated as the main optimizer into the heuristic 

optimization algorithms proposed for the top-down and bottom-up approaches. A minor 

integration adjustment was required to accommodate the NLO problem features. As stated 

previously, the optimizer algorithm can be substituted by other metaheuristics with similar 

capabilities such as SPEA-2, PESA, and MOGA. 
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The brute-force search technique is also used in these heuristic NLO algorithms to enumerate and 

examine obtained NLO solutions. Every single NLO solution after certain evaluations (for NSGA-

II, the product of population size and total number of generations equals to the total number of 

evaluations) is assessed. NLO solutions for a certain number of evaluations are accepted if they all 

satisfy the problem constraints. Otherwise, if any of them violates any constraint, the whole set of 

solutions is rejected, the total number of evaluations is increased by an increment, and new 

solutions are obtained to be assessed for the same network. This simple search technique controls 

the number of runs, efficiently manages the computational time, and guarantees the feasibility of 

every single produced solution. 

Users set the population size, initial evaluations, evaluation increment, maximum evaluations, 

number of bridges to be evaluated, program period, and available budget (annual or multi-year 

budget) and performance thresholds (minimum desired network performance). Once more, the 

initial evaluations, population size, including other optimizer default parameters must be carefully 

selected to ensure a high quality of obtained solutions. As stated in Chapter 6, the best combination 

of parameters, initial evaluations, and population size can be identified by trial and error or by 

establishing different performance metrics to assess convergence, optimality of the solutions, 

diversity along the Pareto frontier, computational time, computer memory use, etc. 
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8.6.1 Top-Down Approach  

Figure 8.4 presents the flowchart of the heuristic algorithm developed to solve the module top-

down approach NLO problem. The key steps of the developed heuristic algorithm are as follows: 

1. The algorithm starts with a total number of evaluations (Eval) equals to the total number of 

initial evaluations (Eval_inc). 

2. The algorithm locates superior MRR, FCI, and REP ELO solution matrices of each program 

year for each bridge in the portfolio. 

3. The algorithm rearranges and groups these program year solution matrices of each bridge by 

network-level objectives and constraints in single matrices covering the entire program 

period. 

4. The algorithm rearranges and combines all these individual bridge solution matrices into a 

single matrix consistent with the NLO problem formulation for the top-down approach. 

5. A random initial population of size N3 is generated following the chromosome structure for 

the top-down approach (discussed later). 

6. While the total number of evaluations (Eval + Eval_inc) is less than the specified maximum 

value (Eval_max), the brute-force search technique is deployed.  

7. The optimizer NSGA-II is called to solve the optimization problem for these evaluations. 

8. The obtained NLO solution results of these evaluations are saved. 

9. Feasibility of the obtained solution set is verified. 

10. If all constraints are met, the algorithm exits the while loop of brute-force search technique, 

saves the solutions, and terminates. Otherwise, if any solution fails the feasibility check, the 

total number of evaluations is increased by the specified increment (Eval_inc), the population 

is taken as the population of this number of evaluations, and steps 6,7,8 and 9 get repeated. 
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Figure 8.4 Heuristic network-level optimization algorithm for the top-down approach  
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8.6.2 Bottom-up Approach  

Figure 8.5 presents the flowchart of the heuristic algorithm developed to solve the module bottom-

up approach NLO problem. The key steps of the developed heuristic algorithm are as follows: 

1. The algorithm starts with a total number of evaluations (Eval) equals to the total number 

initial evaluations (Eval_inc).  

2. The algorithm locates BLO solution matrices for each bridge in the portfolio. 

3. The algorithm rearranges and groups these program year solution matrices of each bridge by 

network-level objectives and constraints in single matrices covering the entire program 

period.  

4. The algorithm rearranges all these grouped individual BLO solution matrices to be 

compatible with the NLO problem formulation for the bottom-up approach. 

5. A random initial population of size N3 is generated following the chromosome structure for 

the bottom-up approach (discussed in the subsequent section). 

6. While the total number of evaluations (Eval + Eval_inc) is less than the specified maximum 

value (Eval_max), the brute-force technique search technique is deployed.  

7. The optimizer NSGA-II is called to solve the optimization problem for these evaluations. 

8. The obtained NLO solution results of these evaluations are saved. 

9. Feasibility of the obtained solution set is verified. 

10. If all constraints are met, the algorithm exits the while loop of brute-force search technique, 

saves the solutions, and terminates. Otherwise, if any solution fails the feasibility check, the 

total number of evaluations is increase by the specified increment (Eval_inc), the population 

is taken as the population of this number of evaluations, and steps 6,7,8 and 9 get repeated. 
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Figure 8.5 Heuristic network-level optimization algorithm for the bottom-up approach 
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8.7 Mapping of Decision Variables 

Chapter 6 discussed the basics process of generating a set of chromosomes (a population of 

solutions). The three main genetic operators (i.e., crossover, mutation, and selection/fitness) were 

explained in Chapter 2. The optimizer algorithm, NSGA-II, relies on an elitism operator for 

selecting best (elite) chromosomes. Elitism operator increases the performance of GA, as it ensures 

the best chromosomes remain in the population. Again, effectively encoding the chromosome for 

each approach is crucial to achieve a better GA performance and a truthful representation of the 

problem. Both approaches have two different chromosome structures. The following sections 

introduce these two structures. 

8.7.1 Top-down Approach 

As discussed earlier, the formulation encompasses the three improvement types and all program 

years. ELO solutions per bridge compete for selection at this level of optimization. This multi-year 

optimization strategy requires a vast number of chromosomes to process. This large number of 

chromosomes impacts the computer memory and computational time, especially when dealing 

with a large network of bridges—more likely, local rather than global optimality is attained. 

Similarly, the number of genes (i.e., decision variables) per chromosome affects the GA 

performance. Therefore, it’s essential to control the number of chromosomes per population.  

As emphasized earlier, the solution superiority screening process had to be introduced for the top-

down approach optimization to manage the number of decision variables and make the problem 

trackable with less computational efforts. The process reduces the number of decision variables 

per chromosome. It identifies the superior ELO solutions to serve as input parameters. As 

demonstrated in the previous section, typically, a given bridge is associated with 3,000 (3 × 10 × 

100) decision variables over a program period of 10 years and the three improvement types, 



 

305 

 

considering 100 ELO solutions per program year. So, for a network of 200 bridges, 600,000 (3,000 

× 200) decision variables are involved. When using the screening process, the 100 ELO solutions 

are reduced to 3 ELO solutions per program year, and consequently the 600,000 decision variables 

are reduced to 18,000.  

Figure 8.6 illustrates the chromosome encoding used to represent a top-down approach NLO 

solution. A chromosome encompasses a total number of cf.npyr.nimp.nb genes, where cf is the 

total number of superior ELO solution per program year, npyr is the total number of program years, 

nimp is the total number of improvement types, and nb is the total number of bridges in the 

portfolio. For instance, a total of 60,000 chromosomes represents a set of 10 superior ELO 

solutions per program year, a 10-year program period, three improvement types (i.e., MRR, FCI, 

and REP), and a portfolio of 200 bridges. Again, a binary encoding scheme is adapted because of 

its simplicity and the problem allocation characteristics. Each chromosome has one binary string 

of genes (composed of either 0 or 1), and each gene represents a characteristic of the NLO solution. 

Figure 8.6 shows an example of assigning decision variables to an ELO solution matrix of size (cf 

× 30) for the entire portfolio. In this illustrative example, the first cf genes represent program year 

1, the next cf genes represent program year 2, and so on until the last program year 10. The first 

10.cf genes are assigned to MRR improvement type, and the next 10.cf genes to FCI improvement 

type, followed by another series of 10.cf genes to REP improvement type. These first 30.cf genes 

are dedicated to the first ranked bridge in the portfolio, Brg_1, the next 30.cf genes are arranged 

in the same manner and dedicated to the second ranked bridge, Brg_2, and so on until the last 

bridge in the portfolio, Brg_92. A gene with a value of 1 signifies an ELO solution is selected; in 

contrast, a value of 0 signifies no selection. A gene position depicts a specific problem 

characteristic. A gene in the fourth cell (starting from the left), for example, represents the fourth 
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superior ELO solution (i.e., Solution 4) associated with the first bridge (Brg_1) for MRR 

improvement type and program year 4. A population of size N3 simply includes N3 chromosomes 

with different random binary values. 
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Figure 8.6 Illustration of the chromosome encoding of a top-down approach NLO solution 
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8.7.2 Bottom-Up Approach 

When following the bottom-up approach, BLO solutions per bridge produced by the BLO module 

compete for selection. As demonstrated earlier in the previous section, the screening process is 

generally unnecessary for the bottom-up approach optimization. The total number of decision 

variables remains manageable even for a large network of bridges. However, the larger the 

population size, the more chromosomes are generated. A large number of chromosomes impacts 

the computer memory and computational time. Therefore, it’s important to carefully choose the 

population size to achieve a better GA performance and a high quality of solutions (refer to 

Chapters 2 and 6 for more discussions).  

Figure 8.7 illustrates the chromosome encoding used to represent a bottom-up approach NLO 

solution. A chromosome encompasses a total number of N2.nb genes, where N2 is the total number 

of BLO solutions per bridge, and nb is the total number of bridges in the portfolio. For instance, a 

total of 20,000 chromosomes represents a set of 100 BLO solutions per bridge, and a portfolio of 

200 bridges. Each chromosome has one binary string of genes (composed of either 0 or 1), and 

each gene represents a characteristic of the NLO solution. 

Figure 8-7 shows an example of assigning decision variables to a BLO solution matrix of size (N2 

× nb) for the entire portfolio. In this illustrative example, the first N2 genes represent the first 

bridge, Brg_1, the next N2 genes represent the second ranked bridge, Brg_2, and so on until the 

last bridge in the portfolio, Brg_92. A gene with a value of 1 signifies a BLO solution is selected; 

in contrast, a value of 0 signifies no selection. A gene position depicts a specific problem 

characteristic. A gene in the fourth cell (starting from the left), for example, represents the fourth 

BLO solution (i.e., Solution 4) of the first bridge, Brg_1. A population of size N3 simply includes 

N3 chromosomes with different random binary values.  
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Figure 8.7 Illustration of the chromosome encoding of a bottom-up approach NLO solution 
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8.8 Examples of Module Results  

Chapter 3 introduced the MATLAB-based tool prototype developed for the implementation of the 

five EB-MOO modules. The tool prototype is considered a “proof of concept” rather than a 

complete rigorous software ready for operational implementation. The methodology was 

implemented through several examples using the tool prototype to test concepts, prove 

effectiveness, and demonstrate potential benefits. The examples include detailed tables and charts 

to communicate outcomes from the different modules. The NLO module can handle a large 

portfolio with hundreds of bridges. In these examples, a portfolio of 40 sample bridges (introduced 

in Chapter 3) is used to demonstrate the module produced NLO results. These sample bridges were 

selected based on common features, attributes, and data completeness. Table 3.2 in Chapter 3 

provides information related to the different characteristics of these sample bridges. These 

examples provided an excellent opportunity to apply the proposed EB-MOO methodology and 

assess the effectiveness of the tool prototype in terms of the following areas:  

• ability of finding Pareto solutions, identifying optimal or near-optimal intervention actions, 

predicting performance, and determining funding requirements with less computational 

efforts; 

• interaction between the element-, bridge-, and network-level optimization modules, along 

with the different screening processes; 

• diversity and quality of Pareto solutions obtained by either the top-down or bottom-up 

approach optimization; 

• quality of predicted investment needs and performance; and 

• ease of conducting trade-offs between funding levels and performance.  
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A priori articulation of preference approach is often followed when multiple objectives are 

aggregated into one, as in the weighted sum or utility function method. Decision makers provide 

preferences (relative weights) prior to the optimization process. As explained in Chapter 3, the 

methodology follows a different approach referred to as posteriori articulation of preference 

approach—Pareto solutions are first determined, and then presented to the decision makers to 

select the best ones based on preferences. This approach helps providing a complete knowledge of 

the problem and exploring the whole set of Pareto solutions (Talbi, 2009). The adapted posteriori 

articulation approach is tested through the examples presented herein. Different constrained (by 

budget and/or performance) and unconstrained scenarios were established to facilitate decision 

making by comparing the recommended investment strategies. Trade-offs between the NLO 

solutions obtained for these different scenarios support identifying the best investment strategies 

that address short- and long-term goals and objective priorities. The examples constitute of 

different optimization goals and problem types (defined in Tables 8.3 and 8.4). As discussed earlier 

in this chapter. Two cases of budget and performance scenarios can be analyzed throughout this 

module: 

• Case A—all bridge in the portfolio must be selected  

• Case B—not necessarily all bridges in the portfolio must be selected 

Examples 1, 2, 3 and 4 include the scenarios under Case A (defined in Table 8.3). Examples 5, 6, 

7, and 8 constitute of the scenarios under Case B (defined in Table 8.4). For the scenarios under 

Case A, the selection criterion restricts the decision variable space to one recommendation per 

bridge. Each bridge in the portfolio must be associated with one set of LC alternatives for all its 

elements. This case is used when a backlog is not an option; every single bridge in the portfolio 

must be considered—if Pareto solutions can’t be obtained, certain constraints can be relaxed to 
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make the problem trackable. For the scenarios under Case B, the selection criterion is relaxed such 

as the mandated recommendation per bridge is not fully enforced—not necessary a set of LC 

alternatives must be identified for each bridge in the portfolio. By relaxing the selection criterion, 

Case B’s scenarios direct the focus mainly toward the high-priority bridges (of urgent 

improvement needs), at the same time satisfying available budgets. The non-selected bridges (the 

less urgent) automatically constitute the backlog. 

The analysis period is set for 54 years, including a 10-year program period. The discount rate is 

4% over 56 years (the analysis period plus the period from current year, 2018, to program year 1, 

2020). Both the top-down and bottom-up approaches were examined and compared under these 

different scenarios. All obtained solutions are considered non-dominated solutions (Pareto 

solutions). As emphasized throughout this dissertation, Pareto solutions in this research encompass 

the optimal or near-optimal (very close to optimal) solutions. To verify optimally, the consistency 

of each obtained Pareto frontier was verified by increasing the number of iterations/generations 

and observing the difference between shapes. The obtained solutions are hosted on concave Pareto 

frontiers (good approximation of true Pareto frontiers).  
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Table 8.3 Defining the different NLO problems of the examples under Case A 

 Optimization Goals App. Type Scenarios Pareto 
Obtained? 

2-
O

bj
ec

tiv
e 

N
LO

 P
ro
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em

s 

Ex
am

pl
e 

1,
 F

ig
ur

e 
8.

8(
a)

 

• maximize the network 
health index in year 20 
(denoted by HI20net) 

• minimize the network 
LCC (denoted by 
LCCnet) 

Top-
Down 

MCKP Scenario 1a: 
unconstrained 
 unconstrained budget 
 unconstrained 

performance  

Yes 

MCMDKP Scenario 2a: constrained 
 total budget ≤ $80M  
 network health index 

≥ 70% every 10 years 

Yes 

Scenario 3a: constrained 
 total budget ≤ $30M  

No 

Scenario 4a: constraint 
 total budget ≤ $50M 
 network health index 

≥ 70% every 10 years 

Yes 

Bottom
-Up 

MCKP Scenario 1a Yes 
MCMDKP 

 
Scenario 2a No 
Scenario 3a No 
Scenario 4a No 

Ex
am

pl
e 

2 

• maximize the network 
health index in year 20 
(denoted by HI20net) 

• minimize the network 
LCC (denoted by 
LCCnet) 

Top-
Down 

MKP Scenario 5a: constrained 
 annual budget ≤ $3M  

No 

Scenario 6a: constrained 
 annual budget ≤ $8M 
 network health index 

≥ 70% every 10 years 

No 

3-
O

bj
ec

tiv
e 

N
LO

 P
ro

bl
em

s 
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3,
 F

ig
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e 
8.

8(
b)

 • maximize the network 
health index in year 20 
(denoted by HI20net) 

• maximize the network 
LCC benefit (denoted 
by BNTnet) 

• minimize the network 
LCC (denoted by 
LCCnet) 

Top-
Down 

 

MCKP Scenario 1a Yes 
MCMDKP 

 
Scenario 2a Yes 
Scenario 3a No 
Scenario 4a Yes 

Bottom
-Up 

MCKP Scenario 1a Yes 
MCMDKP 

 
Scenario 2a No 
Scenario 3a No 
Scenario 4a No 

Ex
am

pl
e 

4 

• maximize the network 
health index in year 20 
(denoted by HI20net) 

• maximize the network 
LCC benefit (denoted 
by BNTnet) 

• minimize the network 
LCC (denoted by 
LCCnet) 

Top-
Down 

MKP Scenario 5a No 
Scenario 6a 
 

No 
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Table 8.4 Defining the different NLO problems of the examples under Case B 

 

 

 Optimization Goals App. Problem 
Type Scenarios Pareto 

Obtained? 

2-
O

bj
ec

tiv
e 

N
LO

 P
ro

bl
em

s  

Ex
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e 

5 
 

Fi
gu

re
 8

.8
(c

) 
• maximize the network 

health index in year 20 
(denoted by HI20net) 

• minimize the network 
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MCMDKP 
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• maximize the network 
health index in year 20 
(denoted by HI20net) 
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by BNTnet) 

• minimize the network 
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Scenario 3b Yes 
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• maximize the network 
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Top-
Down 

MKP Scenario 5b Yes 
Scenario 6b Yes 
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Obtained Pareto Frontiers for the Different Scenarios 

The objective of this NLO module is to obtain a diverse set of optimal or near-optimal NLO 

solutions for the entire network, constituting a frontier of trade-offs (Pareto frontier). The 

recommended NLO solutions for the different examples are plotted in Figures 8.8(a) through (f). 

The plotted solutions represent the Pareto solutions (constituting the Pareto frontiers for the 

different scenarios) for the entire analysis period. Scenarios under Case A were initially analyzed; 

however, Pareto solutions were obtained only for the top-down approach Scenarios 1a, 2a and 4a, 

and the bottom-up approach Scenario 1a. On the other hand, Pareto solutions were obtained for all 

scenarios under Case B. The scenarios which Pareto frontiers couldn’t be obtained under Case A 

were used in the examples of Case B.  

Most BMSs start with the MRR optimization at the bridge level and use the produced results at 

the network level. To a certain extent, the module bottom-up approach resembles this common 

BMS optimization approach. For Case A, scenario results demonstrate that the top-down approach 

NLO problems are more trackable than the bottom-up approach ones. The bottom-up approach 

optimization failed to deliver Pareto solutions for the constrained scenarios under Case A 

(requiring the selection of every single bridge in the portfolio). The top-down approach 

optimization benefits from the diversity of the input parameters (ELO solutions per program year) 

along with a superiority screening process, guiding the search toward global optimality. The 

bottom-up approach optimization lacks this level of diversity as it relies mainly on the BLO 

solutions obtained for the entire program period. It’s worth mentioning that the convergence time 

increases almost exponentially with the size of the portfolio when bypassing the screening process 

for the top-down approach optimization. However, this issue wasn’t noticed for the bottom-up 

approach optimization. The benefit of the bottom-up approach optimization can be recognized for 
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most of the unconstrained scenarios or constrained scenarios under Case B: Pareto solutions are 

obtained in less computational time than the top-down approach.  

Examples 1 and 3 include the MCKPs (unconstrained scenarios) and MCMDKPs (constrained 

scenarios). Examples 2 and 4 include only the MKPs (constrained scenarios). Figure 8.8(a) 

displays the 2-objective NLO solutions for the top-down approach Scenarios 1a, 2a and 4a, and 

the bottom-up approach Scenario 1a. Figure 8.8(b) presents the 3-objective NLO solutions for 

these same scenarios. Pareto frontiers for the unconstrained scenarios of Examples 1 and 3 are 

practically superimposed—not necessarily derived from the same recommended LC alternatives.  

The displayed NLO solutions of the unconstrained scenarios in Figures 8.8(a) and (b) indicate that 

both the top-down and bottom-up approaches converge to the same Pareto frontier—though, more 

studies are needed to confirm this observation. These figures also include the Pareto frontiers for 

two constrained scenarios of Examples 1 and 3 (i.e., top-down approach Scenarios 2a and 4a). The 

figures demonstrate that Pareto frontiers for the constrained scenarios are bounded by the ones for 

the unconstrained scenarios—this finding is expected because a Pareto frontier of an unconstrained 

scenario is viewed as the ultimate optimal boundary. For Examples 1 and 3, Pareto solutions 

couldn’t be obtained for the top-down approach scenarios restricting the total budget to $30 million 

or less, and for the bottom-up approach constrained scenarios—the 40 bridges together could not 

be addressed. Similarly, for Examples 2 and 4, Pareto solutions couldn’t be obtained for the top-

down approach scenarios restricting the annual budget to $8 million or less and the network 

performance to a minimum network health index of 70% every 10 years.  

Examples 5 and 7 include the MCMDKPs (constrained scenarios). Examples 6 and 8 include only 

the MKPs (constrained scenarios). The top-down approach Scenarios 3b, 5b and 6b, and the 



 

317 

 

bottom-up approach Scenarios 2b, 3b and 4b under Case B are the scenarios of the examples under 

Case A which Pareto frontiers could not be obtained. By relaxing the selection criterion of Case 

B, Pareto solutions were obtained for all these scenarios. Figures 8.8(c) and (e) display the 2-

objective NLO solutions for these scenarios. Figures 8.8(d) and (f) present the 3-objective NLO 

solutions for these same scenarios. Pareto frontiers for the top-down approach Scenario 3b and the 

bottom-up approach Scenario 3b in Figures 8.8(c) and (d) of Examples 5 and 7 are in line to some 

extent. This observation suggests that the top-down and bottom-up approaches lead to a similar 

Pareto frontier when considering the same constrained scenario under Case B. Figures 8.8(c) and 

(d) include also the Pareto frontiers for two other scenarios of Examples 5 and 7 (i.e., bottom-up 

approach Scenarios 2b and 4b). Figures 8.8(e) and 8.8(f) show the Pareto frontiers obtained for the 

annual budget scenarios of Examples 6 and 8, i.e., Scenario 5a (restricted by an annual budget of 

$3 million) and Scenario 6a (restricted by an annual budget of $8 million and a minimum network 

health index of 70% every 10 years). 
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Figure 8.8 Obtained Pareto frontiers for the 2-objective NLO problems of (a) Example 1, (c) Example 5, 

(e) Example 6; the 3-objective NLO problems of (b) Example 3, (d) Example 7, (f) Example 8 
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 Solutions with the Maximum Network LCC Benefits for the 3-Objective NLO Problems 

Table 8.5 shows the results associated with the NLO solutions producing the highest network LCC 

benefit (BNTnet) values for the different scenarios of Examples 3, 4, 7, and 8 (3-objective NLO 

problems). The unconstrained Scenario 1a (bottom-up approach) provides the highest network 

LCC benefit of $255,943,701 for an investment of $123,431,339 (Total IACnet). For an investment 

of less than $50 million (exactly $49,798,578), the top-down approach Scenario 4a unveils that all 

40 bridges can be selected for improvement work, at the same time delivering the desired network 

performance (above the health index threshold of 70% every 10 years); however, this same 

scenario produces the least network LCC benefit (-$68,526,776). For an investment of 

$44,765,461, the annual budget scenario (i.e., Scenario 6b) provides a better network LCC benefit 

($175,351,664), improves 35 bridges, and maintains the desired network performance. 

The results of Table 8.5 are visually presented in Figures 8.9 and 8.10. Figure 8.9 shows the 

network total initial agency costs (Total IACnet), LCCs (LCCnet), and LCC benefits (BNTnet) 

associated with each scenario, and Figure 8.9 illustrates the resulting performance (network health 

indices). These visual presentations clearly assist to quickly grasp the main differences between 

these scenarios. For example, it’s easily noticed from the bar charts that the bottom-up approach 

constrained Scenario 2b has the highest network benefit and the least LCC for an initial investment 

of $79 million. However, this scenario addresses only 35 bridges versus the 40 bridges addressed 

by the bottom-up approach Scenario 2a for the same level of investment.  

The network health indices at the ends of years 1, 10, 20, 30, 40, 50, and 54 associated with the 

solutions listed in Table 8.5 are plotted (connected with straight lines) in Figure 8.9. As expected, 

the straight lines connecting the predicted network health indices for the performance-constrained 

scenarios are situated above the horizontal dashed lines in black representing the network 
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performance constraints (specified by a minimum network health index of 70% every 10 years). 

The NLO solutions associated with these performance-constrained scenarios produce close values 

of network health indices despite the differences between the investment levels. As explained in 

the previous chapter, at the bridge level, the change to the bridge health index is generally 

minuscule. Element health indices are weighted, aggregated and divided by the sum of all their 

weighs to constitute this index. Preserving or improving few element health indices (after factoring 

their weights) won’t dramatically change this index. It takes substantial improvement efforts to 

alter this bridge health index, and consequently the overall network health index—by aggregating 

all these bridge health indices and averaging them in Equation (8.8). The budget-constrained 

scenarios (i.e., Scenarios 3b, 3a, and 5b in Table 8.5) produced the worst performance. Starting 

from program year 10, the predicted network health indices continue declining below the network 

performance threshold (horizontal dashed lines in black). The connected straight lines between 

DN health indices illustrate a decline of network condition over time; the network health index is 

predicted to drop to 42% by year 50.  
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Table 8.5 Results produced by the solutions with the maximum network LCC benefits for the 3-objective NLO problems 

 
a Optimized objective. 

 
 

Sc
en

ar
io

So
lu

tio
n

To
ta

l #
 

of
 B

rid
ge

s

Total IACnet

 ($)
LCCnet

a

($)
BNTnet

a

 ($)
HI1net

(%)
HI10net 

(%)
HI20net

a

(%)
HI30net

 (%)
HI40net 

(%)
HI50net 

(%)
HI54net 

(%)

1a 1 40 122,797,455 77,501,223 255,518,628 81.76 81.41 80.19 73.09 72.18 71.05 69.27
2a 3 40 78,952,662 172,304,296 160,937,323 82.18 79.21 75.86 73.64 73.54 70.28 68.33
4a 2 40 49,798,578 401,920,691 -68,526,776 80.32 74.56 76.53 72.58 74.34 70.11 67.98

Bottom-Up App. 1a 1 40 123,431,339 77,288,472 255,943,701 81.80 80.46 80.78 71.06 73.35 71.60 69.74
Top-Down App. 3b 12 19 25,927,292 98,935,710 234,387,746 80.81 72.90 68.67 62.58 60.30 57.60 55.39

2b 4 35 79,419,639 34,945,002 298,350,021 80.87 78.62 79.41 70.65 70.16 70.23 68.17
3b 3 20 28,927,215 92,152,135 241,150,613 81.76 73.36 67.74 62.70 61.39 58.32 56.17
4b 20 35 47,602,938 122,174,527 211,127,112 79.97 78.82 81.82 70.22 70.04 70.10 68.44
5b 10 19 15,084,891 260,378,040 72,953,649 80.94 72.59 67.18 64.34 61.24 56.68 54.59
6b 22 35 44,765,461 157,935,436 175,351,664 79.98 78.61 79.06 70.32 70.33 70.01 67.36

Top-Down 
Approach

Bottom-Up 
Approach

Top-Down 
Approach
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Figure 8.9 Network costs produced by the solutions with the maximum network LCC benefits for the 3-

objective NLO problems (Table 8.5) 

 
Figure 8.10 Network health indices produced by the solutions with the maximum network LCC benefits 

for the 3-objective NLO problems (Table 8.5) 

Table 8.6 lays out the initial investment distributions over the 10-year program period provided by 

the same NLO solutions listed in Table 8.5. These annual investment levels produce the highest 

network LCC benefit values for the scenarios in Table 8.5. For each program year, the table shows 

the number of selected bridges and the estimated initial agency cost (Ann. IACnet).  
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Table 8.6 Initial investment distributions over the 10-year program period for the 3-objective NLO problems 

1 2 3 4 5 6 7 8 9 10
# of Bridges 5 3 0 0 1 7 5 2 16 1

Ann. IACnet ($) 8,647,578 41,861,524 0 0 3,072,814 34,583,466 1,205,503 11,790,365 17,141,875 4,494,330
# of Bridges 6 3 2 0 0 6 8 4 8 3

Ann. IACnet ($) 9,651,365 18,540,169 16,585,072 0 0 7,944,124 2,597,060 8,385,497 4,803,601 10,445,775
# Brg 5 2 3 1 2 7 9 0 11 0

Ann. IACnet ($) 12,791,904 5,391,934 14,405,961 1,187,519 1,252,097 5,969,196 2,671,247 0 6,128,721 0
# of Bridges 5 3 0 0 0 8 7 2 14 1

Ann. IACnet ($) 8,661,204 41,155,240 0 0 0 37,898,355 6,034,831 11,790,365 16,197,170 1,694,174
# of bridges 3 2 2 1 1 4 2 0 4 0

Ann. IACnet ($) 3,974,277 4,673,301 1,314,915 1,003,787 289,739 8,528,996 1,391,556 0 4,750,721 0
# of Bridges 3 1 1 1 0 4 8 4 13 0

Ann. IAC 7,242,253 1,200,926 1,003,787 204,399 0 45,395,540 9,178,742 3,044,707 12,149,285 0
# of Bridges 5 2 1 1 0 4 3 1 3 0

Ann. IACnet ($) 8,647,578 1,293,525 1,003,787 311,128 0 7,488,315 2,088,280 334,558 7,760,043 0
# of Bridges 1 1 1 2 0 3 7 5 15 0

Ann. IACnet ($) 3,472,375 3,472,375 289,739 1,405,326 0 11,574,863 6,295,066 3,165,749 17,927,446 0
# of Bridges 3 1 1 1 1 3 4 2 2 1

Ann. IACnet ($) 1,505,689 726,609 1,200,926 311,128 845,716 2,365,095 2,687,943 2,998,005 749,607 1,694,174
# of Bridges 1 1 3 1 3 4 7 4 10 1

Ann. IACnet ($) 3,894,783 4,494,330 7,242,253 204,399 3,592,249 6,385,036 5,010,814 4,581,903 4,979,787 4,379,906

Top-Down 
Approach

5b 10

6b 22

Top-Down 
Approach

Bottom-Up 
Approach

2b 4

3b 12

4b 20

3b 3

1

3
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Program Years
SolutionScenario
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Bottom-Up 
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1a
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Results shown in Table 8.6 are visually presented in Figures 8.11(a) and (b). The three-dimensional 

bar charts represent the distributions of selected bridges and initial agency spending over the 10-

year program period for the scenarios in Table 8.5. The distributions reveal that years 2 and 6 

receive the largest initial investment levels (mainly for the unconstrained scenarios and the bottom-

up approach constrained Scenario 2b). Most bridges are recommended for improvement work 

between years 6 and 9; a minor improvement work is assigned to either year 4 or 5. 

.  
Figure 8.11 (a) Selected bridges; (b) Initial agency spending distribution over the 10-year program period 

for the 3-objective NLO problems (Table 8.6) 
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NLO Solutions Recommended for Example 3, Scenario 2a, Top-Down Approach 

Table 8.7 shows the results associated with the 86 NLO solutions recommended for the top-down 

approach Scenario 2a of Example 3 (3-objective NLO problem constrained by a budget of $80 

million, and a minimum network health index of 70% every 10 years). The optimization goal is to 

maximize the network health index in year 20 (HI20net), maximize the network LCC benefit 

(BNTnet), and minimize the network LCC (LCCnet). In addition to these three main optimization 

objectives, the network initial agency cost (IACbrg), and health indices at the ends of years 1, 10, 

30, 40, 50, and 54 were also determined as part of the module optimization results. Solution 3 

produces the highest network LCC benefit of $160,937,323 for an investment of $78,952,662 (less 

than the available budget of $80 million) and provides the desired network performance.  
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Table 8.7 Results produced by the NLO solutions recommended for Example 3, Scenario 2a, Top-Down 
Approach 

 

Solution IACnet

 ($)
LCCnet

a

($)
BNTnet

a

 ($)
HI1net 

(%)
HI10net 

(%)
HI20net

a 

(%)
HI30net 

(%)
HI40net 

(%)
HI50net 

(%)
HI54net 

(%)
1 79,404,905 295,708,356 37,615,082 79.97 82.12 88.78 73.02 70.06 72.11 71.07
2 79,404,905 292,665,355 40,658,083 79.97 81.86 88.34 72.90 70.66 71.89 70.93
3 78,952,662 172,304,296 160,937,323 82.18 79.21 75.86 73.64 73.54 70.28 68.33
4 79,900,081 209,661,114 123,627,095 80.46 81.23 87.67 72.76 70.01 71.87 70.67
5 79,404,905 295,175,228 38,148,211 79.97 81.96 88.66 73.00 70.69 72.03 71.03
6 78,952,662 172,789,426 160,498,783 82.64 79.06 76.83 73.41 73.59 70.01 68.14
7 79,900,081 211,639,811 121,648,398 80.46 81.58 88.12 73.11 70.08 71.93 70.79
8 79,900,081 211,042,315 122,245,894 80.46 81.58 88.01 72.85 70.34 71.90 70.78
9 79,468,854 186,832,114 146,456,095 80.87 80.90 83.66 72.70 71.98 71.06 69.98

10 79,356,772 184,997,733 148,290,475 80.87 81.25 83.09 72.94 72.67 71.10 70.01
11 79,165,614 178,557,898 154,730,310 81.34 80.35 80.90 72.66 73.02 71.03 69.59
12 78,952,469 172,588,987 160,671,981 82.18 79.18 76.12 73.59 73.49 70.27 68.29
13 79,736,246 206,339,879 126,948,330 80.46 81.59 87.45 73.56 70.23 71.67 70.62
14 79,642,234 204,817,400 128,470,808 80.46 81.69 87.02 73.32 71.07 71.69 70.62
15 79,062,146 173,459,256 159,809,604 82.22 79.16 77.46 72.89 73.78 70.05 68.38
16 79,468,854 192,348,779 140,939,430 80.46 81.81 84.78 73.01 72.01 71.35 70.32
17 79,185,251 175,821,155 157,447,704 81.34 80.41 79.64 72.63 73.50 70.61 69.27
18 79,165,614 176,566,423 156,721,786 81.76 80.09 79.99 72.89 72.52 71.45 69.70
19 79,244,963 176,573,484 156,714,725 81.34 80.38 80.17 72.53 73.51 71.16 69.84
20 79,716,170 202,867,395 130,420,813 80.46 81.78 86.82 73.39 70.25 71.65 70.59
21 79,185,057 175,538,077 157,730,783 81.76 80.37 79.44 72.79 73.18 70.85 69.38
22 79,165,614 176,951,313 156,336,896 81.34 80.15 80.23 72.72 72.80 71.21 69.57
23 79,468,854 183,394,142 149,894,067 81.34 80.34 82.53 72.61 71.97 71.19 70.04
24 79,695,875 197,762,436 135,525,773 80.46 81.81 85.79 73.09 70.98 71.45 70.46
25 79,622,159 199,432,541 133,855,668 80.46 81.78 86.19 73.30 70.80 71.55 70.50
26 79,244,963 180,916,710 152,371,499 81.29 80.86 81.77 73.01 72.59 71.37 69.99
27 79,468,854 187,861,913 145,426,296 80.87 81.41 83.96 72.97 71.49 71.10 70.08
28 79,468,854 184,304,711 148,983,498 81.34 80.57 82.97 72.94 71.81 70.96 69.88
29 79,489,149 195,971,712 137,316,497 80.46 81.78 85.54 73.20 71.36 71.45 70.40
30 79,165,614 180,352,998 152,935,211 81.34 80.58 81.50 72.84 73.05 70.87 69.50
31 79,695,875 198,646,966 134,641,243 80.46 81.81 85.95 72.93 71.17 71.52 70.52
32 79,468,854 185,533,685 147,754,523 80.87 81.02 83.23 72.78 72.09 71.19 70.13
33 79,244,963 179,273,837 154,014,372 81.76 80.54 81.25 73.09 72.61 71.34 69.96
34 79,468,854 189,097,844 144,190,364 80.87 81.25 84.16 72.64 72.51 71.17 70.15
35 79,489,149 194,735,932 138,552,277 80.87 81.38 85.31 72.95 71.15 71.45 70.33
36 79,601,863 190,789,613 142,498,595 80.87 81.25 84.48 73.05 71.56 71.12 70.13
37 79,900,081 213,552,188 119,736,021 80.46 81.68 88.32 72.96 70.37 72.04 70.88
38 79,716,170 203,751,925 129,536,283 80.46 81.78 86.98 73.23 70.45 71.72 70.65
39 79,489,149 195,374,216 137,913,993 80.46 81.78 85.43 72.95 71.62 71.43 70.40
40 79,716,170 201,982,865 131,305,343 80.46 81.78 86.66 73.54 70.06 71.58 70.54
41 79,356,772 181,821,433 151,466,775 80.87 80.68 82.15 72.67 72.30 71.23 69.99
42 79,900,081 212,524,341 120,763,868 80.46 81.58 88.29 72.96 70.27 72.00 70.85
43 79,468,854 189,982,223 143,305,986 80.46 81.81 84.35 73.07 71.89 71.18 70.20
44 79,165,614 177,288,478 155,999,730 81.76 80.30 80.50 72.99 72.54 71.19 69.67
45 79,185,251 175,281,979 158,006,229 81.34 80.16 79.36 72.47 73.47 70.85 69.29
46 79,244,963 178,748,158 154,540,051 81.34 80.36 81.05 72.59 73.05 71.34 69.98



 

327 

 

Table 8.7 Results produced by the NLO solutions recommended for Example 3, Scenario 2a, Top-Down 
Approach (continued) 

 
a Optimized objective. 

 

 

Solution IACnet

 ($)
LCCnet

a

($)
BNTnet

a

 ($)
HI1net 

(%)
HI10net 

(%)
HI20net

a 

(%)
HI30net 

(%)
HI40net 

(%)
HI50net 

(%)
HI54net 

(%)
47 79,468,854 184,152,485 149,135,724 80.87 80.67 82.89 72.69 71.76 71.15 70.02
48 79,695,875 194,224,468 139,063,741 80.87 81.25 85.11 73.14 71.02 71.22 70.23
49 79,185,251 173,692,285 159,595,924 82.64 79.04 77.96 72.63 73.38 70.55 68.82
50 79,075,768 173,041,586 160,227,274 82.64 79.09 77.13 73.10 73.50 70.30 68.50
51 79,244,963 179,658,727 153,629,482 81.34 80.59 81.49 72.93 72.89 71.11 69.83
52 79,244,963 177,863,628 155,424,581 81.34 80.36 80.89 72.75 72.86 71.27 69.92
53 79,185,251 175,099,100 158,169,760 81.34 80.21 79.14 72.53 73.48 70.87 69.31
54 79,468,854 185,562,694 147,725,515 81.29 80.85 83.25 73.03 71.51 71.22 70.05
55 79,900,081 210,157,785 123,130,424 80.46 81.58 87.85 73.01 70.15 71.83 70.73
56 79,404,905 294,147,381 39,176,057 79.97 81.86 88.62 73.00 70.59 71.99 70.99
57 79,185,251 174,714,210 158,554,650 81.76 80.15 78.90 72.69 73.19 71.10 69.44
58 79,489,149 189,570,517 143,717,692 80.87 80.87 84.25 73.05 71.14 71.09 69.99
59 79,736,246 205,104,099 128,184,110 80.87 81.19 87.22 73.31 70.02 71.67 70.56
60 79,062,146 173,074,366 160,194,494 82.64 79.11 77.22 73.05 73.50 70.29 68.51
61 79,185,251 176,004,035 157,284,174 81.34 80.36 79.87 72.57 73.49 70.60 69.25
62 79,404,905 293,198,483 40,124,955 79.97 82.02 88.47 72.91 70.03 71.97 70.98
63 79,489,149 191,484,846 141,803,363 80.87 81.38 84.71 73.17 70.84 71.21 70.15
64 79,489,149 190,455,047 142,833,162 80.87 80.87 84.41 72.90 71.33 71.16 70.05
65 79,185,057 174,453,143 158,835,066 82.22 79.56 78.64 72.51 73.37 70.92 69.23
66 79,356,772 183,616,533 149,671,676 80.87 80.91 82.75 72.85 72.33 71.06 69.89
67 79,736,246 207,224,409 126,063,800 80.46 81.59 87.62 73.41 70.42 71.75 70.68
68 79,061,952 174,402,993 158,885,215 81.80 79.63 78.35 72.72 73.76 70.41 68.77
69 79,489,149 196,323,113 136,965,095 80.46 81.62 85.58 73.03 72.18 71.45 70.41
70 79,185,057 174,293,569 158,975,290 81.76 79.65 78.26 72.80 73.17 71.27 69.45
71 78,952,662 172,606,546 160,662,314 82.64 79.11 76.61 73.47 73.61 70.02 68.16
72 79,468,854 191,218,154 142,070,054 80.46 81.65 84.55 72.74 72.91 71.25 70.28
73 79,622,159 201,344,917 131,943,292 80.46 81.88 86.39 73.14 71.09 71.67 70.59
74 79,185,251 173,509,405 159,759,454 82.64 79.09 77.74 72.68 73.39 70.56 68.84
75 79,622,159 198,835,044 134,453,164 80.46 81.78 86.08 73.04 71.07 71.53 70.49
76 79,244,963 180,543,257 152,744,952 81.34 80.59 81.66 72.77 73.08 71.18 69.89
77 79,356,772 183,202,634 150,085,575 80.87 81.03 82.49 72.77 72.64 71.26 70.10
78 79,736,246 208,252,255 125,035,954 80.46 81.69 87.66 73.41 70.52 71.79 70.72
79 79,468,854 182,509,612 150,778,597 81.34 80.34 82.37 72.77 71.78 71.12 69.98
80 79,622,159 200,317,071 132,971,138 80.46 81.78 86.35 73.14 70.99 71.63 70.56
81 79,489,149 193,253,906 140,034,303 80.87 81.38 85.04 72.85 71.23 71.35 70.27
82 79,716,170 201,385,369 131,902,840 80.46 81.78 86.55 73.28 70.32 71.55 70.53
83 79,622,159 196,714,734 136,573,474 80.87 81.38 85.68 72.94 70.67 71.45 70.37
84 79,468,854 185,947,584 147,340,625 80.87 80.90 83.49 72.86 71.79 70.99 69.92
85 79,244,963 181,301,600 151,986,609 80.87 80.91 82.01 72.85 72.87 71.14 69.86
86 79,468,854 187,328,785 145,959,424 80.87 81.25 83.83 72.96 72.12 71.02 70.03
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Bridge-Level Results of the NLO Solution with the Maximum Network LCC Benefit for 
Example 3, Scenario 2a, Top-Down Approach 

Table 8.8 shows the bridge-level results associated with the NLO solution delivering the highest 

network LCC benefit for the top-down approach Scenario 2a of Example 3 (i.e., Solution 3 in 

Table 8.7). For each bridge in the portfolio, the table displays the sufficiency rating, number of 

years since the last construction or reconstruction, existing functional deficiencies, recommended 

program year and improvement type, estimated bridge initial agency cost, bridge LCC and bridge 

LCC benefit, and predicted bridge health indices at the end of years 1, 10, 20, 30, 40, 50, and 54. 

The table reveals that the MRR improvement type is assigned to the bridges with high sufficiency 

ratings—for bridges in “good” condition (high sufficiency ratings), the preservation treatments are 

generally cost-effective (high LCC benefits) for maintaining the desired performance. The highest 

initial investment ($17,032,021) is allocated to Bridge 25 for a major functional improvement in 

year 2. 
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Table 8.8 Bridge-level results of the NLO solution with the maximum network LCC benefit for Example 3, Scenario 2a, Top-Down Approach 

  
Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents to the existence of the functional deficiency, otherwise the value of 0. b Optimized objective. 

Bridge
Functional 
Deficiency

[WR,VC,LC]a

Suff.
Rating

Years Since 
Con. or 
Recon.

Pro.
Year

Imp.
Type

IACbrg

 ($)
LCCbrg

($)
BNTbrg

 ($)
HI1brg 

(%)
HI10brg 

(%)
HI20brg 

(%)
HI30brg 

(%)
HI40brg 

(%)
HI50brg 

(%)
HI54brg 

(%)

1 [0,0,0] 92.1 63 6 1 183,905 329,401 -523,953 85.12 75.21 69.47 85.94 69.76 62.74 60.26
2 [0,0,0] 82.2 20 7 1 580,189 268,682 -1,797,320 83.22 76.39 69.17 71.35 91.86 73.39 72.84
3 [0,0,0] 83.2 8 7 1 543,158 332,442 -1,771,832 83.32 75.90 68.55 70.78 91.68 72.82 72.26
4 [0,0,1] 93.1 32 6 2 2,708,267 -3,788,041 5,588,272 83.15 88.74 72.56 66.94 65.88 82.43 76.20
5 [1,0,0] 52.5 71 9 2 1,694,174 -4,630,465 2,806,724 77.00 97.96 97.24 74.32 69.85 76.03 78.38
6 [0,0,1] 91.7 33 7 1 0 278,942 -537,903 86.56 72.49 65.14 63.87 91.07 71.37 68.94
7 [0,0,1] 96 6 10 2 4,379,906 10,408,658 -11,078,065 83.60 100.00 74.31 65.11 75.19 64.91 64.14
8 [0,0,0] 98.9 15 7 1 1,029 1,688,043 -5,910,849 89.16 72.81 62.80 63.45 89.31 69.10 66.59
9 [0,1,0] 83.9 15 6 1 36,880 632,368 -1,195,086 72.06 68.93 87.56 74.29 68.26 68.20 66.10
10 [0,1,0] 72.4 55 9 1 351,974 1,651,068 -1,958,288 69.91 66.71 92.39 74.19 67.56 77.37 74.52
11 [1,0,0] 74.3 62 6 1 254,561 -1,689,337 711,877 78.14 71.39 68.07 88.21 70.55 64.79 61.92
12 [1,0,0] 74.3 14 6 1 266,182 -1,936,558 708,615 73.09 68.81 85.95 74.37 64.67 63.02 60.19
13 [1,0,0] 59.9 92 10 2 3,894,783 -2,877,501 3,503,879 80.33 100.00 75.69 71.38 73.60 69.21 74.09
14 [0,0,1] 66 64 8 1 1,665,872 36,266,635 -6,551,301 80.30 70.60 67.45 90.00 70.15 63.73 65.24
15 [0,0,1] 43.8 52 8 1 3,902,297 92,289,673 -12,316,264 82.87 70.68 66.29 90.34 70.39 63.45 64.39
16 [0,1,0] 61 66 1 2 1,200,926 1,777,238 7,634,634 100.00 77.14 68.83 78.04 66.50 61.14 58.12
17 [1,0,1] 44.1 66 3 1 11,714,650 44,284,498 -44,675,334 74.67 64.75 77.36 70.08 66.12 82.46 73.48
18 [1,0,1] 46.5 8 2 1 1,197,019 -4,079,567 -1,909,360 81.59 73.16 69.55 78.51 70.02 66.59 61.98
19 [1,0,0] 68.5 56 10 2 2,171,086 -4,654,115 2,156,118 74.18 100.00 73.92 70.37 75.66 72.47 79.26
20 [1,1,0] 74.9 61 1 2 1,003,787 1,136,764 3,156,973 100.00 78.09 70.46 78.96 67.44 61.82 58.91
21 [1,1,0] 74.9 61 8 2 1,003,787 1,793,613 2,800,360 75.39 96.07 94.67 78.47 67.33 74.63 75.40
22 [1,0,1] 62.8 21 9 2 289,739 1,217,166 2,550,120 62.44 97.03 98.85 70.39 71.05 71.32 64.82
23 [1,0,1] 57.7 81 3 1 4,870,422 13,102,974 -13,839,523 79.26 71.09 67.31 81.65 68.16 62.43 59.60
24 [0,0,0] 99.7 26 8 1 1,813,541 -2,215,366 -2,959,958 83.66 72.68 66.99 92.14 73.27 66.77 67.62
25 [0,0,1] 65.5 54 2 2 17,032,021 12,933,994 38,362,535 78.64 82.15 73.17 69.11 83.95 73.10 70.19
26 [1,0,0] 77.2 67 9 1 356,850 941,936 -716,448 84.29 73.29 90.22 70.78 65.21 73.42 72.93
27 [1,0,0] 80 71 9 2 520,061 497,529 -162,977 82.87 97.66 94.60 70.53 64.42 70.30 67.54
28 [0,1,0] 77.9 61 9 2 833,033 1,055,137 -581,272 77.95 97.17 95.82 68.55 62.24 70.56 67.28
29 [0,0,0] 83.6 16 7 1 695,013 -4,973,625 1,130,403 74.52 68.95 63.57 66.77 91.26 66.32 66.16
30 [0,0,0] 83.6 69 7 1 696,543 -4,930,835 1,104,251 74.52 68.97 63.57 67.23 91.13 66.23 66.07
31 [1,0,0] 79.7 63 2 2 311,128 492,026 2,859,277 81.58 77.20 68.16 75.38 65.28 77.31 68.84
32 [0,0,0] 98.1 63 7 1 40,212 4,163,530 -4,467,331 86.18 71.18 62.98 63.48 89.27 68.85 66.29
33 [0,0,0] 96.2 63 7 1 40,916 4,292,234 -4,628,631 86.10 71.08 62.93 63.13 89.44 68.91 66.34
34 [0,0,0] 56.4 24 9 1 236,353 227,239 -309,853 77.36 79.29 93.96 70.67 67.66 75.25 81.26
35 [1,0,0] 55 53 9 1 521,417 -4,765,372 1,002,583 78.49 77.45 93.65 70.06 65.51 73.33 77.20
36 [1,0,1] 60.1 66 6 2 4,494,330 -2,606,195 2,766,468 65.62 90.04 75.98 69.13 66.56 85.86 77.79
37 [1,0,1] 42.5 60 1 2 3,472,375 -6,094,001 84,352,376 100.00 78.70 72.48 79.57 72.74 70.02 65.81
38 [1,0,1] 42.5 62 1 2 3,472,375 -6,094,001 84,352,376 100.00 78.70 72.48 79.57 72.74 70.02 65.81
39 [0,0,1] 69.5 65 1 2 204,399 -5,141,769 16,579,971 100.00 75.19 66.57 72.79 65.03 75.47 67.68
40 [1,0,1] 59.6 78 1 2 297,502 719,254 14,701,061 100.00 74.95 73.82 65.82 73.63 64.19 60.87

Network IACnet

 ($)
LCCnet

b

($)
BNTnet

b

 ($)
HI1net 

(%)
HI10net 

(%)
HI20net

b 

(%)
HI30net 

(%)
HI40net 

(%)
HI50net 

(%)
HI54net 

(%)
78,952,662 172,304,296 160,937,323 82.18 79.21 75.86 73.64 73.54 70.28 68.33
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The investment levels shown in Table 8.8 are visually presented in Figure 8.12—a series of bar 

charts representing the annual initial agency costs by improvement type. The figure clearly assists 

in visualizing the allocation of budget between program years and improvement types specified 

by NLO Solution 3, delivering the maximum network LCC benefit for the top-down approach 

Scenario 2a of Example 3. For instance, the bar charts show that most of the budget is distributed 

among 11 bridges in the first three program years. No allocations in program years 4 and 5. The 

bar charts also show that most of the budget is allocated for functional improvement work.  

The network health indices at the ends of years 1, 10, 20, 30, 40, 50, and 54 for each of the 86 

NLO solutions (refer to Table 8.7) recommended for the top-down approach Scenario 2a of 

Example 3 are shown in Figure 8.13. As expected, the straight lines connecting these predicted 

network health indices are all situated above the horizontal dashed lines in black, representing the 

network performance constraints (a minimum network health index of 70% every 10 years). The 

thick connected lines in black represents the network performance produced by NLO Solution 3. 

These 86 NLO solutions produced close values of network health indices despite the differences 

between the resulting LCCs. As explained earlier, it takes substantial improvement efforts to alter 

the overall network health index—determined by aggregating all the bridge health indices and 

averaging them in Equation (8.8). The connected straight lines in red represent the network 

declining condition over time under the DN LC Alternative; the DN network health index is 

predicted to drop to 42% by year 50.  
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Figure 8.12 Annual initial agency costs per improvement type produced by the NLO solution with the 

maximum network LCC benefit for Example 3, Scenario 2a, Top-Down Approach 

 
Figure 8.13 Network health indices produced by the NLO solutions recommended for Example 3, 

Scenario 2a, Top-Down Approach 
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LC Alternatives Recommended by the NLO Solution with the Maximum Network LCC Benefit 
for Example 3, Scenario 2a, Top-Down Approach 

Table 8.9 shows the LC alternatives recommended by NLO Solution 3, delivering the maximum 

network LCC benefit for the top-down approach Scenario 2a of Example 3, for each sample bridge 

in the portfolio. MRR and FCI improvement types are the only ones recommended by NLO 

Solution 3 for this portfolio. The module assumes the replacement option (REP improvement type) 

is always a feasible and eligible to compete. However, preservation (MRR) and functional (FCI) 

improvement types are generally the least expensive. Moreover, both FCI and REP improvement 

types fully restore all elements providing the same level of performance. For each bridge, the table 

discloses the recommended improvement type (third column), program year (second column), and 

LC alternative for each of its elements (starting from the fourth column). LC Alternative 1 is 

always assigned to the non-deficient elements. The recommended LC alternatives collectively 

yield the maximum network benefit while maintaining the network performance above the 

minimum acceptable limits for the top-down approach Scenario 2a of Example 3. 

Bridge 17 is selected to further explore these recommended LC alternatives by NLO Solution 3. 

Table 8.10 presents the NBI condition ratings of this sample bridge and other related attributes. 

Table 8.11 shows the latest condition states of the 19 elements of this sample bridge. The bridge 

was built in 1953. It’s a large steel truss bridge and has a low sufficiency rating of 44.1% 

(representing an overall poor condition). The bridge was identified with two functional 

deficiencies: bridge roadway width and load capacity. 
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Table 8.9 LC alternatives recommended by NLO Solution 3 with the maximum network LCC benefit for Example 3, Scenario 2a, Top-Down 
Approach 

 

Bridge Pro. 
Year

Imp. 
Type

12 107 215 227 234 301 311 313 331 510
2294 800 1 782 1 1563 2167 1667 1 2343
12 28 29 38 107 109 113 152 210 215 226 227 234 300 301 304 310 313 330 331 333

2309 1032 1684 2184 800 1 3125 800 2497 1 3122 782 1 1558 1558 2338 1 2182 2082 1 2342
12 28 29 38 107 109 113 152 210 215 226 227 234 300 301 304 310 313 330 331 333

2309 1032 1059 2184 800 1 3125 800 3122 1 3122 782 1 2183 1558 2338 1 2182 2082 1 2342
12 38 109 215 220 226 227 234 301 310 331

462 438 1 1 607 157 157 1 438 1 1
12 28 29 107 110 113 152 210 215 220 225 227 231 234 301 313 330 331

209 157 159 157 194 625 300 247 1 232 282 157 282 1 158 182 282 1
12 104 215 227 234 301 303 311 313 331

2309 1 1 3107 1 2183 2184 2307 2307 1
12 102 215 227 231 234 303 314 331

418 550 1 1 157 1 438 467 1
12 102 104 215 220 227 234 300 301 303 310 314 331

1934 3050 1 1 3107 782 1 2183 1558 2184 1 2332 2344
12 109 215 227 234 301 310 311 313 331

218 1 1 782 1 938 1 2292 2292 1
12 105 109 215 227 234 301 310 311 331

208 1093 1 1 782 1 2033 1 2037 1469
12 107 205 215 220 226 234 301 311 313 330 331

2168 800 782 1 3032 1247 1 2188 1042 1042 2292 1
12 107 205 215 220 226 234 301 311 313 330 331

218 800 782 1 3032 1247 1 2188 1042 1042 2292 1
12 28 29 110 113 120 152 210 215 220 227 234 301 304 311 313 330 331 510

418 157 159 469 625 250 175 1 1 607 1 1 158 443 412 412 407 1 468
12 107 113 141 152 215 227 234 301 304 311 313 331

2168 782 3125 2735 800 1 3122 1 2158 2313 2157 1657 1
12 107 109 113 120 147 152 161 215 220 227 234 301 304 311 313 331 333

2293 782 1 3125 2675 794 800 1042 1 3032 1232 1 1533 2314 2157 2157 1094 2342
12 107 215 227 234 301 311 313 330 331

418 175 1 157 1 163 417 417 407 1
12 30 107 113 120 152 161 215 220 225 227 234 301 304 311 313 330 331 510

1462 2188 800 3122 2675 800 1592 1 3107 782 1247 2341 2188 2339 912 1457 1032 2344 1719
12 28 29 107 113 120 152 210 215 220 225 226 227 234 301 302 304 311 312 313 330 333

2293 782 2032 800 3125 2675 800 2862 1 3107 782 3122 1247 1 813 782 2188 2292 1068 2082 1032 2344
12 28 29 107 109 113 152 210 215 220 226 234 301 304 310 311 313 330 331 333

418 157 159 157 1 625 175 1 1 607 157 1 158 443 1 412 412 407 1 467
12 107 215 227 234 301 311 313 331 333

418 175 1 157 1 163 417 417 1 469

19 10 FCI

20 1 FCI

17 3 MRR

18 2 MRR

15 8 MRR

16 1 FCI

13 10 FCI

14 8 MRR

11 6 MRR

12 6 MRR

9 6 MRR

10 9 MRR

7 10 FCI

8 7 MRR

5 9 FCI

6 7 MRR

3 7 MRR

4 6 FCI

Elements
LC Alternatives

1 6 MRR

2 7 MRR
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Table 8.9 LC alternatives recommended by NLO Solution 3 with the maximum network LCC benefit for Example 3, Scenario 2a, Top-Down 
Approach (continued) 

 

Bridge Pro. 
Year

Imp. 
Type

12 107 215 227 234 301 311 313 331 333
209 157 1 157 1 158 282 282 1 219
30 102 113 152 215 311
189 350 250 300 1 282
12 107 113 120 152 161 210 215 225 227 231 234 303 311 313 331

2168 800 3125 2675 800 2292 3122 1 782 1247 782 1 2188 917 2292 1
12 38 107 109 210 215 220 226 234 300 302 304 310 331 333

2293 283 782 1 3122 1 3032 3122 1 2169 1559 1688 1 1 2342
12 109 215 220 225 234 301 311 313 331 0
434 1 1 607 157 1 188 434 432 1 0
12 107 215 225 234 301 311 313 330 331 510

2083 782 1 782 2093 1408 787 787 2032 1 2339
38 215 225 234 301 330 331 510
184 1 282 1 158 282 1 344
38 215 226 234 301 330 331
184 1 157 1 158 282 1
28 29 38 107 113 152 210 215 220 227 231 234 301 310 311 330 331 333

1032 1684 2184 800 3110 800 3122 1 3032 782 782 1 1558 1 2182 832 1 2342
28 29 38 107 113 152 210 215 220 227 231 234 301 310 311 330 331 333

1032 1684 2184 800 3050 800 3122 1 3032 782 782 1 1558 1 2182 832 1 2342
38 210 215 225 234 301 331 510
417 572 1 157 1 188 1 469
12 102 210 215 231 300 301 310 314 331

2309 3050 3122 1 782 2308 1558 1 2332 1
12 102 210 215 231 300 301 310 314 331

2309 3050 3122 1 782 2308 2183 1 2332 1
12 28 107 113 152 215 225 227 234 301 302 311 313 330

2083 782 782 3110 800 1 782 782 1 1408 1533 2037 1412 2032
12 28 107 113 144 152 210 215 220 227 300 330 331 0

2083 782 782 3125 2342 800 1872 3125 2732 782 919 2032 2344 0
12 28 107 215 220 225 226 227 231 234 301 304 310 311 313 330 331
462 207 175 1 607 157 157 157 157 1 438 468 1 457 457 417 1
12 28 29 107 109 113 152 210 215 220 226 227 231 234 301 310 311 313 330 331

418 157 157 175 1 625 175 572 1 607 157 157 157 1 163 1 417 417 407 1
12 28 29 107 109 113 152 210 215 220 226 227 231 234 301 310 311 313 330 331
418 157 157 175 1 625 175 572 1 607 157 157 157 1 163 1 417 417 407 1
38 210 215 220 226 234 301 330 510
417 572 1 607 157 1 163 407 469
38 210 215 234 301 330 510
209 247 1 1 163 282 344

39 1 FCI

40 1 FCI

37 1 FCI

38 1 FCI

35 9 MRR

36 6 FCI

33 7 MRR

34 9 MRR

31 2 FCI

32 7 MRR

29 7 MRR

30 7 MRR

27 9 FCI

28 9 FCI

25 2 FCI

26 9 MRR

23 3 MRR

24 8 MRR

21 8 FCI

22 9 FCI

Elements
LC Alternatives
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Table 8.10 NBI condition ratings of Bridge 17 

 
Note. WR = width required; VC = vertical clearance; LC = load capacity. 
a The value of 1 represents to the existence of the functional deficiency, otherwise the value of 0. 

 

Table 8.11 Condition states of the 19 elements of Bridge 17 

 
a RSL is estimated from program year 1 (2020). 
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12 30 107 113 120 152 161 215 220 225 227 234 301 304 311 313 330 331 510
CS1 (%) 69 100 54 81 98 71.61 83 100 100 0 0 63.89 99.93 93.00 2.19 22.32 98.37 81.97 100
CS2 (%) 4 0 35 6 2.28 21.46 17 0 0 0 25 35.65 0 7.00 97.81 70.64 1.63 14.41 0
CS3 (%) 27 0 11 13 0 7 0 0 0 100 75 0.46 0 0 0 0 0 3.62 0
CS4 (%) 0 0 0 0.17 0 0 0 0 0 0 0 0 0.07 0 0 7.03 0 0 0
Qt (sq.ft) 381,290 47,038 16,085 50,664 10,436 20,189 6 118 305 100 283 2,805 2,786 1,742 183 327 6,028 16,910 47,038
Welm (%) 25 49 49 18 50 17 70 13 10 10 11 13 12 12 12 12 16 14 5
ESL (years) 129 36 77 292 168 77 77 75 123 20 200 408 24 61 58 58 28 151 126
RSLa (years) 49 0 10 210 109 13 17 17 65 0 44 296 0 1 0 0 0 81 68
RU ($) 54 54 2,062 481 1,380 1,054 9,009 1,591 194,049 38,810 38,810 1,186 72 178 9,009 9,009 296 212 21

Elements of Bridge 17
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Table 8.12 shows the LC alternatives recommended by NLO Solution 3 for Bridge 17. Different 

element preservation actions (MRR Actions 0, 1, 2, 3, and 4) are assigned to the program year (i.e., 

program year 3) and each decision point (spaced by a 10-year inaction period). LC Alternative 1 

is assigned to the non-deficient element (i.e., Element 215). The recommended improvement 

actions and timings represent a detailed element-level work plan. The recommended actions can 

be grouped into a bridge project or included under a bridge preservation program. Table 8.13 

shows the feasible preservation treatments associated with these recommended improvement 

actions. 

Table 8.12 LC alternatives recommended by NLO Solution 3 for Bridge 17 

 Element 
Ref. 

MRR  
LC Alt. 

Pro. Year 
(year 3) 

Dec. Point 1 
(year 14) 

Dec. Point 2 
(year 25) 

Dec. Point 3 
(year 36) 

Dec. Point 4 
(year 47) 

N
LO

 S
ol

ut
io

n 
3 

Ex
am

pl
e 

3,
 S

ce
na

rio
 2

a,
 T

op
-D

ow
n 

A
pp

ro
ac

h 

12 1462 2 1 3 2 1 
30 2188 3 2 2 2 2 

107 800 1 1 1 4 4 
113 3122 4 4 4 4 1 
120 2675 4 1 1 4 4 
152 800 1 1 1 4 4 
161 1592 2 2 3 3 1 
215a 1 0 0 0 0 0 
220 3107 4 4 4 1 1 
225 782 1 1 1 1 1 
227 1247 1 4 4 4 1 
234 2341 3 3 3 3 0 
301 2188 3 2 2 2 2 
304 2339 3 3 3 2 3 
311 912 1 2 1 2 1 
313 1457 2 1 3 1 1 
330 1032 1 3 1 1 1 
331 2344 3 3 3 3 3 
510 1719 2 3 3 3 3 

a Non-deficient element. 
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Table 8.13 Feasible preservation treatments associated with the improvement actions recommended by 
NLO Solution 3 for Bridge 17 

 Element 
Ref. 

Element 
Name 

MRR  
LC Alt. 

Pro.  
Year 

(year 3) 

Dec.  
Point 1 

(year 14) 

Dec.  
Point 2 

(year 25) 

Dec.  
Point 3 

(year 36) 

Dec.  
Point 4 

(year 47) 

N
LO

 S
ol

ut
io

n 
3 

Ex
am

pl
e 

3,
 S

ce
na

rio
 2

a,
 T

op
-D

ow
n 

A
pp

ro
ac

h 

12 Re. Concrete Deck 1462 RD MMR MMR RD MMR 
30 Steel Deck/Orthotropic/Etc. 2188 MM SMMD SMMD SMMD SMMD 
107 Steel Open Girder/Beam 800 SB SB SB PM PM 
113 Steel Stringer 3122 PM PM PM PM SMMR 
120 Steel Truss 2675 PM SMMR SMMR PM PM 
152 Steel Floor Beam 800 SMMR SMMR SMMR PM PM 
161 Steel Pin and Pin/Hanger 1592 SMMU SMMU PM PM SMMR 
215a Re. Conc. Abutment 1 DN DN DN DN DN 
220 Re. Conc. Pile Cap/Footing 3107 PM PM PM MMR MMR 
225 Steel Pile 782 SMMR SMMR SMMR SMMR SMMR 
227 Re. Conc. Pile 1247 MMR PM PM PM MMR 
234 Re. Conc. Pier Cap 2341 PM PM PM PM DN 
301 Pourable Joint Seal 2188 PM RJ RJ RJ RJ 
304 Open Expansion Joint 2339 PM PM PM RJ PM 
311 Moveable Bearing 912 MMR RU MRR RU MMR 
313 Fixed Bearing 1457 RU MMR PM MMR MMR 
330 Metal Bridge Railing 1032 SMMR PM SMMR SMMR SMMR 
331 Re. Conc. Bridge Railing 2344 PM PM PM PM PM 
510 Wearing Surfaces 1719 RU PM PM PM PM 

Note. For more detail about these preservation treatments, refer to Implementation of the 2013 AASHTO 
Manual for Bridge Element Inspection (Sobanjo & Thompson, 2016a). PM = Preventive maintenance; RD 
= Replace deck; MMR = Minor or major repair; SMMR = Spot blast and minor or major repair; SMMD = 
Spot blast and minor or major repair or replace deck; SMMU = Spot blast and minor or major repair or 
replace unit; SB = Spot blast; RU = Replace unit; DN = Do-nothing; RJ = Replace joint. 
 a Non-deficient element. 

Figure 8.14(a) shows the predicted element health indices under NLO Solution 3 for Bridge 17. 

As expected, the straight lines connecting element health indices are all situated above the health 

index thresholds (60% every 10 years, horizontal dashed lines in black) specified by Criteria 1 of 

the alternative feasibility screening process (discussed in Chapter 5). The horizontal dashed lines 

in red represent the health index lower-frontiers (deficiency screening thresholds, a minimum 

health index of 80% every 10 years). The dashed curves distinguish the non-deficient elements 

from the deficient ones. The thick connected lines in black represent the overall bridge health 
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indices. Figure 8.14(b) includes the predicted DN element health indices over the analysis period—

produced by DN LC Alternative. The predicted RO element health indices are shown in Figure 

8.14(c)—produced by RO LC Alternative. 

 
Figure 8.14 Predicted health indices for Bridge 17 and all its elements under (a) LC alternatives 

recommended by NLO Solution 3; (b) DN LC Alternative; (c) RO LC Alternative 
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8.9 Summary and Conclusions 

This chapter introduced the NLO module of the methodology. The chapter defined the top-down 

and bottom-up approaches followed at this higher level of optimization. A bottom-up approach is 

followed when BLO results are used as input parameters. Whereas, the top-down approach is 

followed when ELO results are used instead. For each approach, the chapter laid out the 

optimization framework, the optimization problem types and formulations, and the mapping 

approaches of decision variables. The multi-year optimization strategy was found to be appropriate 

for the problem formulations. The NLO problems are formulated in terms of binary decision 

variables.  

A solution superiority screening process is used with the top-down approach to restrict the decision 

variable space and guide the optimization search toward global optimality within a reasonable 

computational time. The optimization formulation is shaped as a MCKP for an unconstrained NLO 

problem. For a constrained NLO problem, the formulation varies based on the budget constraint 

type. Budget constraints can be imposed either annually (for each program year) or cumulatively 

(for all program years). The multi-year budget-constrained problem is formulated as a MCMDKP. 

Whereas, the annual budget-constrained problem is formulated as a MKP. 

The chapter also introduced the heuristic NLO algorithms for top-down and bottom-up approaches. 

The module relies on the same metaheuristic algorithm (i.e., NSGA-II) discussed in Chapters 6 

and 7 to solve these NP-hard combinatorial NLO problems. The aim is to obtain a diverse set of 

optimal or near-optimal solutions as close as possible to the Pareto frontier—a recommended NLO 

solution delivers an optimal or near-optimal LC alternatives for the deficient elements of each 

selected bridge over the entire analysis period. The chapter included several examples of 

constrained (by budget and/or performance) or unconstrained scenarios for the module 
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implementation using the tool prototype. Two cases of budget- and performance-constrained 

scenarios can be analyzed throughout this module: Case A—all bridge in the portfolio must be 

selected, and Case B—not necessarily all bridges must be selected. The examples constitute of 

different optimization goals and problem types. A portfolio of 40 sample bridges (introduced in 

Chapter 3) is used in these examples. Example results were visually presented in this chapter to 

demonstrate the ability of this module in generating Pareto frontiers, predicting network 

performance, determining investment needs, and facilitating trade-off analyses. The diversity and 

quality of NLO solutions obtained by either the top-down or bottom-up approach, and the 

intervention strategies recommended to maintain the desired network performance within the 

available budget were examined and discussed in this chapter.  

The displayed Pareto frontiers for the unconstrained scenarios of these examples are practically 

superimposed. This observation suggests that both the top-down and bottom-up approaches 

converge to the same Pareto frontier for the same unconstrained scenario—though, more studies 

are needed to confirm this observation. Pareto frontiers for the constrained scenarios are bounded 

by the ones for the unconstrained scenarios—this finding is expected because a Pareto frontier of 

an unconstrained scenario is viewed as the ultimate optimal boundary. 

Under Case A, example results demonstrate that the top-down approach NLO problems are more 

trackable than the bottom-up approach ones. The top-down approach benefits from the diversity 

of the input parameters (ELO solutions per program year) along with a superiority screening 

process, guiding the search toward global optimality. The bottom-up approach lacks this level of 

diversity as it relies mainly on the BLO solutions obtained for the entire program period. The 

convergence time increases almost exponentially with the size of the portfolio when bypassing the 

screening process for the top-down approach optimization. However, this issue wasn’t noticed in 
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the bottom-up approach optimization. The benefit of the bottom-up approach optimization can be 

recognized for the unconstrained scenarios or the constrained scenarios under Case B: Pareto 

solutions are obtained in less computational time than the top-down approach optimization. The 

module can be used to determine funding requirements and short- and long-term investment 

strategies for a network or portfolio of bridges, and facilitate trade-offs among funding levels and 

performance to help decision makers sort through the recommended investment strategies. 
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CHAPTER 9—CONCLUSIONS, CONTRIBUTIONS AND 
RECOMMENDATIONS 

9.1 Summary and Conclusions 

MAP-21 mandates the development of a risk-based TAMP and use of a performance-based 

approach in transportation planning and programming. This research introduced a systematic EB-

MOO methodology integrated into a goal-driven TAM framework to 

(1) improve bridge management, 

(2) support state DOTs with their transition efforts to comply with the MAP-21 requirements, 

(3) determine short- and long-term intervention strategies and funding requirements, and 

(4) facilitate trade-offs between funding levels and performance. 

The proposed methodology focuses on one transportation asset class (i.e., bridge) and is structured 

around the following five modules:  

1. Data Processing Module 

2. Improvement Module 

3. Element-level Optimization Module 

4. Bridge-level Optimization Module 

5. Network-level Optimization Module  
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Table 1.1 in Chapter 1 lists the activities associated with the different research tasks. The research 

approach was structured around the following five main tasks: 

 Task 1: Conducting a Literature Review 

 Task 2: Proposing a Goal-Driven Transportation Asset Management Framework 

 Task 3: Proposing an Element-Based Multi-Objective Methodology 

 Task 4: Development of a Tool Prototype 

 Task 5: Implementation of the Methodology through Examples of Scenarios 

The literature review (under Task 1, Chapter 2) revealed that empirical and non-empirical ranking 

methods, IBCA, and multiple criteria analyses are widely applied for selecting bridge projects. A 

large variety of optimization techniques such as mathematical programming methods and 

metaheuristics have been applied to solve bridge optimization problems. The use of one technique 

versus another depends on the characteristics of the optimization problem. EAs produce a high 

quality of solutions (generally optimal or near-optimal) in a reasonable time for non-linear large-

sized optimization problems. The literature review was devoted to investigate this family of 

population-based search metaheuristics, specifically focusing on GAs to identify the most 

appropriate for integration. It was determined that the metaheuristic NSGA-II is well-suited for 

solving the different complex non-linear optimization problems (i.e., NP-hard combinatorial 

optimization problems) of this research in less computational efforts—it guarantees solution 

diversity and convergence to a near true Pareto frontier (front hosting optimal solutions). NSGA-

II is deployed as the main optimizer for the three optimization modules of the proposed EB-MOO 

methodology. 
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The intent of Task 2 is to transfer previous work on TAM and best practices, identified throughout 

the literature review under Task 1, to refine the conceptual TAM framework introduced in the 

research proposal. Chapter 3 presented the refined goal-driven TAM framework, applying the 

principles of the of the Transportation Asset Management Guide: Prepared for NCHRP Project, 

20-24(11) (Cambridge Systematics, Inc. et al., 2002) and discussed the different framework steps 

and interactions with the TAMP and the long-range planning and programming process. A 

comprehensive overview of the EB-MOO methodology (developed under Task 3) integrated into 

the refined goal-driven TAM framework is included in this chapter. The chapter elaborated on the 

posteriori articulation of preference approach followed by methodology—Pareto solutions are first 

determined, and then presented to the decision makers to select the best based on preferences. The 

chapter touched on the different types of analyses (i.e., sensitivity, “what-if” scenario, and trade-

off analyses) that can be performed to explore the whole set of Pareto solutions and communicate 

resulting impacts of limited resources and needs to achieve performance goals. The same chapter 

discussed the developed MATLAB-based tool prototype (structured around the proposed five 

modules of the EB-MOO methodology as part of Task 4). Several examples of unconstrained and 

constrained scenarios were established as part of Task 5 to test/validate concepts, prove 

effectiveness, and demonstrate and communicate potential benefits using the tool prototype. A 

sample set of existing bridges (portfolio) chosen for all these examples is introduced in this chapter.  

Chapter 4 introduced the data processing module framework and described its different 

underlying concepts. The module relies on decision makers’ preferences and inputs, quality data, 

information provided in the TAMP and TIP/STIP, leading-edge forecasting, and up-to-date cost 

models. The chapter discussed the two common types of bridge inspection data (i.e., NBI and NBE 

inspection data), the Weibull/Markov deterioration model used to predict the performance of an 
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element over an analysis period and determine its ESL and RSL, the Florida DOT’s AE models 

adapted to forecast element conditions when action are taken, and the performance measures (i.e., 

Caltrans’ bridge and element health indices) used to assess the extent of deterioration and 

effectiveness of actions. The module assumes that a preservation policy is followed throughout the 

LC of the bridge and a major improvement work on the bridge fully restores all its elements. The 

chapter defined the preservation, functional improvement and replacement actions (i.e., MRR 

Actions 0, 1, 2, 3 and 4, FCI Action 5, and REP Action 6). It laid out the process of assessing 

function improvement needs (i.e., widening, raising, and strengthening improvement needs) and 

revealed the user cost models used to estimate incurred user costs. The three types of element LC 

profiles representing the “base” and “improvement” scenarios (i.e., DN, RO, and AE LC profiles) 

are introduced in this chapter with illustrative examples.  

Chapter 5 presented a basic framework of the improvement module to visualize the modeling 

approach followed to generate LC alternatives (series of element improvement actions) and 

estimate LCCs and LCC benefits. The chapter discussed the novel screening process developed to 

focus on potential deficient elements and the new simulation arrangement to generate realistic 

(“real-life”) LC alternatives for the three improvement types (i.e., MRR, FCI, and REP). The 

module relies on two independent models (i.e., deterioration and LCC models) to predict 

conditions and estimate LCCs and LCC benefits. The LCC and benefit modeling approaches are 

expressed in this chapter. An illustrative example of module results using the MATLAB-based 

tool prototype is also included. The implementation proved the capability of the module in 

producing reliable LC alternative results. The tool successfully identified potential deficient 

elements, predicted performance, generated LC alternatives, constructed LC profiles, and 

determined all incurred LCCs and LCC benefits. The module results can be used independently to 
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determine bridge investment needs for bridge programming and planning. BCA, IBCA, or 

optimization heuristics can be deployed to identify bridge combinations of LC alternatives 

representing the proper intervention strategies. The module LC alternative results are transferred 

to the ELO module to be used in the optimization process. 

Chapter 6 presented the ELO module framework illustrating the different concepts and processes. 

The chapter described the alternative feasibility screening process developed to reduce the ELO 

problem size to a manageable size and improve the computational time. The screening process 

recognizes the best feasible LC alternatives for each program year based on the agency-specified 

criteria and optimization goals. The optimization problem is formulated in terms of binary decision 

variables. The optimization formulation is shaped as a MCKP, involving only the selection 

criterion. The year-by-year optimization strategy is adapted to decompose the optimization 

problem and further reduce the number decision variables. An ELO run is independently 

performed for each program year. The ELO problems focus on finding a set of Pareto solutions 

per program year for each improvement type—Pareto solutions in this research encompass the 

optimal or near-optimal (very close to optimal) solutions. A set of LC alternatives is derived from 

each obtained solution. Each recommended LC alternative represents a series of best (optimal or 

near-optimal) actions for a deficient element over the analysis period. Performance and LCC 

results associated with these LC alternatives (or solutions) serve as the fundamental inputs for the 

bridge- and network-level (top-down approach only) optimization modules. An illustrative 

example using the developed tool prototype is included in this chapter. The example consists of 

different ELO problems under unconstrained scenarios. Only one sample bridge was used in this 

example. For the analyzed program year, under each of three improvement types, the tool 
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successfully produced optimal or near-optimal ELO solutions, recommended sets of intervention 

actions, predicted performance, and determined budget requirements.  

Chapter 7 introduced an innovative BLO module that considers the ELO recommendations. No 

screening process is needed to further reduce the large size of the optimization problem. The total 

number of decision variables remains manageable even for a large network of bridges. A multi-

year optimization strategy was found to be appropriate for the problem formulation. The problem 

is formulated in terms of binary decision variables. The optimization formulation is shaped as a 

MCKP if no constraints involved other than the selection criterion—only one ELO solution (one 

choice) must be picked from all solutions (multiple choices). The multi-dimensional aspect is 

added to the problem when more than one constraint (e.g., budget and/or performance) are 

involved; the problem is then formulated as a MCMDKP. The BLO process addresses one bridge 

at a time. The optimization process focuses on obtaining a diverse set of BLO solutions for the 

entire program period—a recommended BLO solution delivers an optimal or near-optimal set of 

LC alternatives for all the identified deficient elements over the entire analysis period. The 

presented example in this chapter consists of different BLO problems under constrained and 

unconstrained scenarios. Only optimization results of one sample bridge are shown in this chapter. 

The tool prototype successfully produced optimal or near optimal BLO solutions, recommended 

sets of intervention actions and timings, predicted performance, and determined funding 

requirements for the entire program period. The BLO module can be used independently to provide 

a systematic process to develop/assess bridge improvement/preservation programs. 

Chapter 8 introduced the NLO module and defined the top-down and bottom-up approaches 

followed at this higher level of optimization. A bottom-up approach is followed when BLO results 

are used as input parameters; whereas, the top-down approach is followed when ELO results are 
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used instead. The multi-year optimization strategy was found to be appropriate for the problem 

formulations. The NLO problems are formulated in terms of binary decision variables. A solution 

superiority screening process is used with the top-down approach to restrict the decision variable 

space and guide the optimization search toward global optimality within a reasonable 

computational time. The optimization formulation is shaped as a MCKP for an unconstrained NLO 

problem. For a constrained NLO problem, the formulation varies based on the budget constraint 

type. Budget constraints can be imposed either annually (for each program year) or cumulatively 

(for all program years). The multi-year budget-constrained problem is formulated as a MCMDKP. 

Whereas, the annual budget-constrained problem is formulated as a MKP. The aim is to obtain a 

diverse set of NLO solutions as close as possible to the Pareto frontier—a recommended NLO 

solution delivers an optimal or near-optimal LC alternatives for the deficient elements of each 

selected bridge in the portfolio over the entire analysis period. To verify optimally, the consistency 

of each obtained Pareto frontier was verified by increasing the number of iterations/generations 

and observing the difference between shapes. 

The chapter included several examples of constrained (by available budget and/or minimum 

acceptable performance) or unconstrained scenarios for the module implementation using the tool 

prototype. Two cases of budget- and performance-constrained scenarios can be analyzed 

throughout this module: Case A—all bridge in the portfolio must be selected, and Case B—not 

necessarily all bridges must be selected. The examples constitute of different optimization goals 

and problem types. A portfolio of 40 sample bridges (introduced in Chapter 3) is used in these 

examples. The displayed Pareto frontiers for the unconstrained scenarios of these examples are 

practically superimposed. This observation suggests that both the top-down and bottom-up 

approaches converge to the same Pareto frontier for the same unconstrained scenario—though, 
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more studies are needed to confirm this observation. Pareto frontiers for the constrained scenarios 

are bounded by the ones for the unconstrained scenarios—this finding is expected because a Pareto 

frontier of an unconstrained scenario is viewed as the ultimate optimal boundary.  

Under Case A, example results demonstrate that the top-down approach NLO problems are more 

trackable than the bottom-up approach ones. The top-down approach benefits from the diversity 

of the input parameters (ELO solutions per program year) along with a superiority screening 

process, guiding the search toward global optimality. The bottom-up approach lacks this level of 

diversity as it relies mainly on the BLO solutions obtained for the entire program period. The 

convergence time increases almost exponentially with the size of the portfolio when bypassing the 

screening process for the top-down approach optimization. However, this issue wasn’t noticed in 

the bottom-up approach optimization. The benefit of the bottom-up approach optimization can be 

recognized for the unconstrained scenarios or the constrained scenarios under Case B: Pareto 

solutions are obtained in less computational time than the top-down approach optimization. The 

module can be used to determine funding requirements, and short- and long-term investment 

strategies for a network or portfolio of bridges.  

The different examples presented in this dissertation demonstrated the capability of the EB-MOO 

methodology to generate a high quality of solutions (generally optimal or near-optimal), predict 

performance, and determine proper intervention actions and funding requirements. The five 

modules of the methodology collectively provide a systematic process to (1) support 

developing/evaluating improvement programs/transportation plans, and (2) facilitate trade-offs 

among funding levels and performance to help decision makers sort through the recommended 

investment strategies. 
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9.2 Lessons Learned 

Lessons learned from the development process and the implementation of the EB-MOO 

methodology can be summarized as follows:  

• The state of the practice among transportation agencies using performance data to support 

decision making for asset management, planning and programming varies considerably.  

• Economic and performance measures drive investment decisions. Appropriate 

optimization objectives based on agency’s goals, and policies and customer expectations 

are keys to the success of a MOO methodology for transportation asset planning and 

programming. 

• A MOO methodology provides a systematic process with more transparency, addresses 

public needs, supports the development and evaluation of improvement programs and 

transportation plans, and facilitates trade-offs among funding levels and performance. 

• A MOO methodology serves as a balanced decision support tool for asset managers to sort 

through the recommended investment strategies, test more realistic decision scenarios, and 

ultimately improve asset management. 

• Investment strategies detailed at the element level provide a defensible approach to justify 

recommendations. 

• Sufficient and high-quality/reliable element-level data are essential to ensure an effective 

element-based MOO process. 

• Cost, action effectiveness, and deterioration models may not be mature for certain 

transportation agencies. However, the deployment of a MOO methodology to support 

decision making should not be delayed due to this limitation; a MOO methodology allows 
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the flexibility to accommodate agency’s existing models, preferences, and preservation 

policies. 

• Considering a preservation strategy approach in the simulation process of LC alternatives 

extents the bridge service life and provides the most cost-effective improvement strategies. 

• Efficient optimization formulations based on either the year-by-year or multi-year 

optimization strategy along with appropriate alternative screening processes at different 

levels of the optimization are effective in making the optimization problem trackable with 

less computational efforts. 

• An alternative screening process is generally unnecessary for the BLO. The total number 

of decision variables remains manageable even for bridges with many deficient elements. 

• The top-down and bottom-up approaches followed by the NLO often converge to the same 

Pareto frontier under the same unconstrained scenario. Though, Pareto frontiers for the 

constrained scenarios are bounded by the ones for the unconstrained scenarios. 

• An alternative screening process is essential for top-down approach to guide the NLO 

search toward global optimality within a reasonable computational effort. 

• A MOO methodology provides maximum return on investment, simulates investment and 

performance scenarios, and facilitates trade-off analyses—to identify appropriate 

strategies/scenarios, understand relationships between them, and communicate any 

impacts. 

• Optimization using a robust metaheuristic optimizer provides the level of efficiency needed 

to solve complex (non-linear and combinatorial) optimization problems and achieve 

solution diversity and convergence to a near true Pareto frontier.  
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• Successful deployment of a MOO methodology relies on key players and top-level agency 

commitments. Preferences should be provided by asset managers or program planners 

involved in asset management, planning and programming, development of policy 

objectives and performance measures, or resource allocations. Asset managers can validate 

the recommended priorities, funding requirements, and produced infographic depictions. 

• A MOO methodology provides a quantitative process driven by decision makers’ 

preferences, agency’s preservation policy and objectives, and data inputs. The 

methodology follows a posteriori articulation of preference approach—Pareto solutions are 

first determined, and then presented to the decision makers to be explored and select the 

best based on preferences. Multiple criteria analyses facilitate the selection of the best 

solution.  

• A trade-off or “what-if” scenario analysis allows decision makers to trade-off between sets 

of LC alternatives or optimization objectives. This type of analysis is essential to identify 

the appropriate course of actions, adjust preferences and funding levels, and communicate 

resulting impacts. Pareto solutions are indispensable for this type of analysis. Pareto 

solutions obtained for different scenarios, in alignment with the long-term goals, should be 

evaluated for possible implications on resource allocations and performance.  

• It’s important to periodically revisit optimization objectives (measures) and constraints 

(available budget and performance targets) to ensure their effectiveness in the actual 

decision making. Asset managers should perform this kind of assessments and recommend 

their adjustments over time.  

• Considering risk in the decision-making process supports achieving a reasonable informed 

decision. Risk events can have impacts on system levels in various terms—impacting 
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performance and ability to deliver the recommended investment strategies or effectively 

manage assets.  

• Experts are encouraged to identify risks that could impact the serviceability and 

achievement of performance targets. The optimized timing of interventions over the 

analysis period should be explored considering any identified relevant risks—usually based 

on bridge or network attributes such as location, environmental, traffic volume, etc.  

• Visualization plays a major role in communicating with clarity results obtained from the 

complex optimization analysis to the public and stakeholders. Simplicity in presenting 

optimization results helps create buy-in. These results should be presented in simple 

formats—charts and graphs can be used to simplify results in ways that are easy to 

comprehend and clearly convey the message. 
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9.3 Contributions 

This research contributed to the body knowledge in the areas of TAM and BMSs. The most salient 

contributions of this research can be summarized as follows: 

 Better understanding of transportation asset management needs 

Task 1 of this research consists of conducting a comprehensive review of literature across multiple 

resources to explore the availability of research work and findings related to the research areas and 

objectives, identify best practices, and ensure no duplication of efforts but rather build on previous 

research. The literature review identified significant references relevant to the research 

objectives—reflecting the current state-of-the-art in TAM, transportation planning and 

programming, risk assessment, MCDM, and MOO. The gathered information and best practices 

from these references provided the background to shape the TAM framework and the EB-MOO 

methodology. Table 2.1 in Chapter 2 lists these significant references. Each of them is 

accompanied with a brief description.  

The literature review revealed that empirical and non-empirical ranking methods, IBCA, multiple 

criteria analyses are widely applied for selecting bridge projects. A large variety of optimization 

techniques such as mathematical programming methods and metaheuristics have been applied to 

solve bridge optimization problems. The use of one technique versus another depends on the 

characteristics of the optimization problem. Various investment analysis tools and systems using 

optimization techniques for bridge investment decision making either by state DOTs, FHWA, or 

researchers were discoursed in this dissertation. Different MOO approaches, methods and 

techniques, and analytical tools commonly used to support investment decision making involving 

multiple criteria (or objectives) were identified. The importance of carrying out a trade-off analysis 

in TAM was highlighted. Obtained set of optimal solutions can be further examined through trade-
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off analyses to identify the appropriate strategies/scenarios, understand relationships between 

them, and communicate any impacts. EAs produce a high quality of solutions (optimal or near-

optimal) in a reasonable time for non-linear large-sized problems. The literature review was 

devoted to investigate this family of population-based search metaheuristics, specifically focusing 

on GAs to identify the most appropriate for integration. NSGA-II was identified as the appropriate 

metaheuristic algorithm for solving complex (non-linear and combinatorial) optimization 

problems in less computational efforts—it guarantees solution diversity and convergence to a near 

true Pareto frontier.  

 Proposing a goal-driven transportation asset management framework  

A goal-driven framework applying the principles of the Transportation Asset Management Guide: 

Prepared for NCHRP Project, 20-24(11) (Cambridge Systematics, Inc. et al., 2002) is proposed 

to support state DOTs with their transition efforts to performance management and performance-

based planning and required by MAP-21. The framework focuses on one transportation asset class 

(i.e., bridge) and relies on quality data and agency established policies, goals, performance 

measures and targets, anticipated funding levels, and customer expectations to guide the 

management process of assets. The framework can be expanded to accommodate other asset 

classes or modes. The framework is designed to be integrated into the long-range planning and 

programming process—to provide more transparency, address public needs, and support the 

development and evaluation of the LRTP, TIP/STIP, and TAMP. The framework is structured 

around a continuing performance monitoring to assess effectiveness, identify gaps, and adjust as 

needed. This research was also undertaken to develop a novel MOO methodology integrated into 

this proposed framework, serving as a decision support tool to 

(1) identify candidate bridge projects for inclusion in the LRTP or TIP/STIP; 
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(2) set project/program priorities, revaluate funding allocations, or assess impacts of 

programmed types of bridge work (i.e., preservation, rehabilitation, and replacement) in 

the TIP/STIP on system performance; and  

(3) evaluate different investment strategies and set targets through scenario analyses. 

 Developing a “true” multi-objective optimization methodology and a tool prototype for 
implementation 

Typically, decision makers are faced to simultaneously evaluate several differing preferences. In 

most cases, other non-economic preferences (objectives), targets and restrictions (constraints) 

contribute in the decision making. Most BMSs transfer this type of MOO problem to a single-

objective problem by scaling, weighting, and aggregating all competing objectives that could be 

easily solved by mathematical programming algorithms/methods. Although the approach is 

straightforward and guarantees global optimality, it’s sensitive to the selected weights, requires 

advance knowledge of relative importance of each objective, and limits solution diversity. It 

requires several independent runs by varying weights to achieve the desired diversity. Decisions 

are made at either the network level or bridge level. For network-level decisions, ranking 

procedures or established decision trees (discussed in Chapter 2) have been widely used by state 

DOTs and other transportation agencies, especially when dealing with a large network of bridges. 

LCCA, BCA, and IBCA (discussed in Chapter 5) are the common economic decision analyses 

used by BMSs. When dealing with a budget-constrained scenario, alternatives with the highest 

benefit-cost ratios are selected in descending order until the available funding is exhausted. 

Though, at this higher level of assessment, setting priorities by ranking based on benefit-cost ratios 

results or decision trees is usually subjective and inadequate in providing the best long-term 

investment strategies.  
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True MOO methodologies consist of a simultaneous optimization of multiple competing objectives 

subject to constraints. They guarantee a diverse set of optimal or near-optimal solutions, 

constituting a frontier of trade-offs between objectives. This research introduced a systematic true 

MOO methodology for the three levels of assessment (i.e., element, bridge, and network levels), 

laid out its five module frameworks, and presented the different optimization problem types and 

formulations, the adapted mapping approaches of decision variables, and the designed heuristic 

optimization algorithms. A MATLAB-based tool prototype structured around the proposed five 

modules of the EB-MOO methodology was developed. Several examples of unconstrained and 

constrained scenarios were established to test/validate concepts, prove effectiveness, and 

demonstrate and communicate potential benefits using the tool prototype. The proposed MOO 

methodology overcomes the discussed limitations, produces detailed element-level improvement 

strategies within a reasonable computational effort, provides maximum return on investment, 

simulates investment and performance scenarios, and permits trade-offs among competing 

objectives. 

 Developing a methodology based on a posteriori articulation of preference approach  

Due to the large variation among bridge management and maintenance practices, preservation 

policies, and performance measures adapted by state DOTs, the methodology relies on inputs and 

preferences from experts and decision makers, familiar with the state DOT’s internal procedures 

and practices, to support the implemented processes and different analyses (i.e., LCCA, 

optimization process, sensitivity analysis, trade-off analysis, and adjustment of measures and 

targets). A priori articulation of preference approach (discussed in Chapter 2) is often followed 

when multiple objectives are aggregated into one, as in the weighted sum or utility function 

method. Decision makers provide preferences (relative weights) prior the optimization process. 
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The methodology follows a different approach referred to as posteriori articulation of preference 

approach—Pareto solutions are first determined, and then presented to the decision makers to 

select the best one based on preferences. This approach helps providing a complete knowledge of 

the problem and exploring the whole set of Pareto solutions (Talbi, 2009).  

The multiple criteria analyses discussed in Chapter 2 facilitate the selection of the best solution. 

Asset managers can validate optimized priorities, funding requirements, and produced infographic 

depictions. They can also run sensitivity/scenario analysis for funding uncertainty by manipulating 

budget constraints, discount rates, model parameters, or other variables. Optimization results can 

be further explored by a trade-off or “what-if” scenario analysis (covered in Chapter 2) between 

obtained Pareto solutions. The analysis allows decision makers to trade-off between sets of LC 

alternatives or optimization objectives. This type of analysis is essential for identifying the 

appropriate course of actions, adjusting preferences and funding levels, and communicating 

resulting impacts. Pareto solutions are indispensable for this type of analysis. Pareto solutions from 

different scenarios, in alignment with the long-term goal, are evaluated for possible implications 

on resource allocations and performance. It’s important to periodically revisit measures and targets 

to ensure their effectiveness in the actual decision making and the development of long-term 

investment strategies. Asset managers through the proposed EB-MOO modules will be able to 

perform this kind of assessments and recommend adjustments to targets or measures over time—

for example, based on trends of actual investments and separate analyses, measures that were 

proven to be irrelevant or ineffective, or targets believed to be unachievable (set too high).  
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 Developing a methodology producing detailed element-level improvement strategies 

Little research work has been focused on systematic element-based optimization methodologies 

for bridge project selection. This research proposes a novel MOO methodology to assess bridge 

element improvement needs for an effective management of bridge activities in both short- and 

long-term planning horizons. Agency’s rules or triggers are used by most BMSs to limit the 

number of possible improvement actions per year. At the network level, these improvement actions 

are often described in broad terms and applied to the entire bridge or its major components. Thus, 

much of the element-specific information is lost. These high-level actions are generally used in the 

top-down approach assessment, reducing possible combinations of actions and eventually the 

execution time. These actions lack of details and typically are not meant to produce a 

comprehensive bridge improvement program. The proposed methodology depends on a 

quantitative process driven by decision makers’ preferences (derived from the agency’s 

preservation policy, objectives, and constraints), element and bridge data inputs, and defined 

feasible element and bridge improvement actions. Three independent optimization levels are 

incorporated into the methodology: 

(1) an ELO, to identify optimal or near-optimal element intervention actions for each deficient 

element (in a poor condition state) of a candidate bridge;  

(2) a BLO, to identify combinations of optimal or near-optimal element intervention actions 

for a candidate bridge; and  

(3) a NLO, following either a top-down or bottom-up approach, to identify sets of optimal or 

near-optimal element intervention actions for a network of bridges. 

Heuristic optimization algorithms using a robust genetic optimizer (i.e., NSGA-II) for each 

optimization level were developed to efficiently solve the complex (non-linear and combinatorial) 
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optimization problems and achieve solution diversity and convergence to near true Pareto frontiers. 

The recommended element improvement actions and timings represent a detailed element-level 

improvement strategy for bridge planning and programming. 

 Overcoming the limitations of existing top-down and bottom-up approaches followed by the 
network-level optimization 

The literature review revealed two common approaches followed by the NLO among BMSs: (1) 

top-down approach, optimization determines the network-level goals, and then the improvement 

needs for individual bridges; and (2) bottom-up approach, where the bridge improvement needs 

are determined first. The top‐down approach optimization produces high-level strategies 

(generally based on component-level or network-level actions) to meet the network-level goals 

and objectives. The bottom-up approach optimization uses the identified component- or element-

level improvement strategies for each bridge as input parameters for the NLO process. The latter 

preserves bridge information and subsequently produces more refined network-level improvement 

strategies. The drawback of this approach is that a separate analysis for each bridge is required; 

and therefore, increasing the problem complexity, simulation, and eventually computational time. 

For a large network of bridges, the top-down approach is generally the preferred approach due to 

the less computational requirements. Bridge improvement recommendations are made generally 

in terms of network-level improvement actions. Work refinements at the component level or 

element level are generally left to the bridge manager judgments to compensate for the loss of 

bridge-specific information in the aggregation step (Yeo et al., 2013).  

The presented research attempts to overcome the limitations of existing approaches. The top-down 

and bottom-up approaches are defined differently in this research. The NLO module bottom-up 

approach is followed when BLO solutions (input parameters) are used in determining network-
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level needs and recommending investment strategies; however, when superior ELO solutions 

(identified through the solution superiority screening process) are used as input parameters, then 

the top-down approach is followed. In either approach, both levels of solutions originate from an 

unconstrained optimization to increase diversity and ultimately the search space—recommended 

network-level investment strategies (by either approach) are detailed at the element level and 

obtained with reasonable computational efforts. 

 Developing a novel simulation arrangement to generate realistic (“real-life”) LC 
alternatives for three improvement types  

Not all possible combinations of improvement actions and timings over an extended analysis 

period get considered in LC economic analyses—capturing incurred costs due to each possible 

alternative and any effect on performance leads to tremendous computational efforts and 

processing time. Thus, the recommended alternatives do not necessarily guarantee the optimal 

allocation of resources (Kachua, 2012). The methodology is designed to overcome most of these 

limitations. The methodology deploys an independent deterioration model (i.e., Weibull/Markov 

model), to predict performance, and a LCC model, to estimate LCCs and LCC benefits.  

Three types of LC profiles (i.e., DN, RO, and AE LC profiles) are constructed for each element to 

predict bridge and element health indices at different points in time, and estimate RSLs and LCCs. 

The DN LC profile represents a “base” scenario of predicting condition of an untreated element 

This scenario simulates the element declining condition when no action is ever taken until reaching 

its end-of-life threshold. The RO LC profile represents another “base” scenario of predicting 

condition of an element that experiences only replacement actions. The schematic mimics the 

“worst-first” strategy: the element gets entirely replaced as it deteriorates to a poor condition 

without experiencing any treatments (no actions). The AE LC profile represents an “improvement” 
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scenario of predicting condition of a treated element. An AE profile of an element is represented 

by a series of improvement actions. When an action is taken, an immediate change in condition 

happens per the AE model, while subsequent forecasting up to the next action is based on the 

hybrid (Weibull/Markov) deterioration model.  

The module assumes that a preservation policy is followed throughout the LC of the bridge, and a 

major improvement work on the bridge fully restores all elements. Preservation actions are 

considered the most cost-effective actions for the long term. Thus, they always subsequent a major 

improvement work on the bridge for the remaining analysis period. Preservation actions account 

for the large portion of the AE LC profile. To generate LC alternatives for each element, all 

possible AE LC profiles must first be constructed. A LC alternative is defined by a path of actions 

and an improvement type. Each AE LC profile is laid out in a cash-flow diagram following a LC 

alternative action path. It’s possible to generate all possible LC alternatives; however, the number 

will be unmanageable. The methodology relies on a simulation arrangement to generate 

manageable number of realistic (“real-life”) LC alternatives for MRR, FCI and REP improvement 

types based on the following rules: 

• Action effectiveness profile consists of 5 cycles 

• First cycle falls always after a program year  

• Preservation action selection is made at the end of each inaction period (referred to as a 

decision point) 

• Ten years of inaction period between decision points  

• Action is implemented in one year 
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Based on these rules, 3125 MRR, 625 FCI, and 625 REP LC alternatives per program year are 

generated for each deficient element. A given bridge with just few elements can be associated with 

an enormous number of possible combinations of LC alternatives. The bridge LCCs and LCC 

benefits are determined for each of these feasible combinations of LC alternatives to be compared. 

The proposed EB-MOO methodology deviates from the common approaches (i.e., BCA and 

IBCA) used by most BMSs for selecting alternatives. LC alternative results are processed by the 

optimization modules to obtain the optimal or near-optimal combinations of LC alternatives for 

each analyzed bridge. 

 Developing efficient optimization problem formulations and introducing three novel 
screening processes to overcome computer memory and processing time limitations 

To overcome computer memory and processing time limitations, efficient optimization problem 

formulations were developed based on the appropriate optimization strategy (either year-by-year 

or multi-year strategy), considering multiple competing objectives and performance and (annual 

and multi-year) budget constraints. In addition, the methodology relies on the following screening 

processes: 

Element Deficiency Screening Process—The proposed improvement module depends on a 

screening process that evaluates the extent of element deterioration. Some elements may have 

deteriorated to a level where major repairs or proactive preservation efforts are necessary, and 

others may show no sign of deterioration. Each bridge is screened for candidacy. This process is 

referred to as “element deficiency screening.” A bridge with or expected to acquire deficient 

elements is considered a candidate for improvement. The focus is to ensure vulnerable bridges are 

being elevated in the programming process. A bridge identified with no potential deficient 

elements is excluded from consideration—the “state of good repair” is assumed to be maintained 
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in the entire analysis period. Users set minimum element health index limits at different points in 

the analysis period. Element DN health indices at the end of analysis years 10, 20, 30, 40, and 50 

are predicted for each element. A health index lower-frontier is constructed for each element 

(joining minimum limits). Elements with health indices falling under this lower-frontier are 

classified as “deficient.” For MRR improvement type, the identified set of potential deficient 

elements is considered for all program years. For FCI and REP improvement types, preservation 

needs are assessed for the period succeeding the program year. All elements are replaced (restoring 

CS1 to 100%) in the program year because of a major improvement performed on the entire bridge. 

A separate screening is performed for each of the other program years.  

Alternative Feasibility Screening Process—A given bridge can be associated with many possible 

combinations of LC alternatives. This huge number makes the optimization problem very 

challenging and costly to solve in terms of computational time and computer memory. This large-

scale optimization problem becomes extremely difficult to manage. Achieving heuristic solutions 

as close as to the Pareto frontier requires tremendous computational efforts. The need for a strategy 

that guides the optimization search toward global optimality within a reasonable computational 

time became indispensable. A screening process referred to as “alternative feasibility screening” 

was introduced in the ELO module to a make the problem more tractable without affecting the 

quality of solutions—attaining a manageable problem size dramatically improves the optimization 

computational time. To achieve a reasonable problem size and guarantee inclusion of most suitable 

LC alternatives, the process relies on two distinct stages of screening:  

(1) an initial screening stage—feasible LC alternatives are identified after eliminating the 

economically unattractive ones, and  
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(2) a final screening stage—feasible LC alternatives producing results in alignment with the 

ELO goal are further identified and classified as the best feasible LC alternatives for 

consideration.  

The initial stage of the screening process focuses on recognizing feasible LC alternatives for each 

deficient element. The final stage improves the computational time by imposing additional 

screening criteria. The approach reduces the dimensionality of the optimization search space (i.e., 

the space of all feasible solutions) by emphasizing on the best feasible LC alternatives. It allows 

to efficiently explore the search space toward the optimal frontier without affecting the solution 

quality. This additional screening assures inclusion of the best feasible LC alternative results to 

serve as input parameters in the ELO process. These best LC alternatives are compatible with the 

ELO goal. Thus, solutions producing maximum or minimum objective values, depending on the 

optimization goal, are guaranteed. Obtained solutions are considered superior to all other solutions 

in the search space. 

Solution Superiority Screening Process—Incorporating element- and bridge-level details into 

the NLO module complicates the NLO process. The complexity of the problem substantially 

increases when the number of involved bridges increases, and consequently the solution space. 

Therefore, deploying a strategy to reduce the number of possible solutions is essential (Elbehairy, 

2007). Although the improvement or ELO modules deploy two different screening processes to 

reduce the problem size and improve the computational time, the problem size still represents a 

challenge at the network level. The module top-down approach could generate thousands or even 

millions of decision variables. This large-scale problem becomes extremely difficult to manage, 

especially with common computers. Achieving heuristic solutions as close as to the Pareto frontier 

requires a tremendous computational effort and computer memory.  
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An arrangement process referred to as “solution superiority screening” is integrated into the NLO 

module to make the problem tractable with reasonable computational efforts—by restricting the 

decision variable space without affecting the quality of solutions. However, the process can be 

avoided if the running time is not a concern. This process reduces the optimization problem size 

and guarantees the inclusion of the superior (best) ELO solution results in the NLO process. The 

process identifies ELO solutions (input parameters) producing the best results in alignment with 

the NLO goal. For each network-level objective to be optimized, ELO solutions yielding the best 

objective values per program year are embraced—generally, a cutoff value is assigned to control 

the number of these superior ELO solutions. Thus, NLO solutions producing maximum or 

minimum objective values are guaranteed—extending the search space exploration. The screening 

process is generally unnecessary for the bottom-up approach optimization. The total number of 

decision variables remains manageable even for a large network of bridges. 
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9.4 Recommendations 

Several uncertainties and limitations were identified while pursuing this research. To further prove 

robustness and advance capabilities of the proposed EB-MOO methodology, the following 

recommendations could be explored in future research or studies: 

 Comparison study between the proposed EB-MOO methodology and the IBC heuristic  

IBCA is considered a superior to BCA and other empirical and non-empirical ranking methods 

(Farid et al., 1988). The IBCA is used by most BMSs for sorting alternatives at the network level. 

To further assess robustness/effectiveness and communicate benefits of the proposed 

methodology, a comparison study is recommended between the intervention action priorities 

determined by the tool prototype and the IBC heuristic used by BrM, NBIAS, or another state 

DOT’s BMS (covered in Chapter 5)—assessing differences and impacts in terms of performance, 

funding requirements, and achievement of desired targets under different budget- and 

performance-constrained scenarios for a hypothetical network of bridges.  

 Examine other performance measures or health indices to substitute the adapted Caltrans’ 
bridge and element health indices 

The obtained optimization solutions produce comparable values of bridge health indices despite 

the differences between the LCC values. As mentioned in Chapter 4, the bridge health index is an 

appropriate measure to assess performance; however, it is not a complete measure of the value of 

the agency’s investment (Chase et al., 2016). Changes to the overall health index are generally 

minuscule. Element health indices are weighted, aggregated and divided by the sum of all their 

weighs to constitute this overall index. Improving few element health indices (after factoring their 

weights) won’t dramatically change the overall index. It takes substantial improvement efforts to 

alter the overall index. Other performance measures or indices to assess the structural or functional 
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health of a bridge can be examined to substitute the adapted Caltrans’ bridge and element health 

indices. 

 Further investigate the solution convergence following either the top-down or bottom-up 
approach optimization under an unconstrained scenario 

The solutions produced by the NLO module following either the top-down or bottom-up approach 

appear to converge to the same Pareto frontier under the same an unconstrained scenario. Though, 

more studies are needed to confirm this observation. 

 Incorporate deterioration refinements quantifying effects of different protections or 
environments  

Elements deteriorate at different rates in different natural environments. The concept of bridge 

environment is incorporated in many deterioration models. A bridge is assigned to an environment 

based on the climate zone definitions of HPMS. Likewise, the different effects of protective 

elements (such as coatings, wearing surfaces, cathodic protections, joints, and drainage systems) 

are considered in deterioration models by introducing the concept of deterioration refinements. 

These concepts are ignored in the deterioration modeling of the proposed methodology. The 

inclusion of any deterioration refinements is beyond the scope of this research. Though, the data 

processing module is well-suited to accommodate any deterioration refinements that quantify 

effects of different protections or environments.  

 Factoring risk in the life-cycle cost modeling 

A broad range of risk events could impact achievement of bridge-related performance targets and 

the ability to deliver planned investments or manage assets effectively, and the performance of a 

network of assets or a single asset. Considering risk in the decision-making process supports 

achieving a reasonable informed decision. As emphasized in Chapter 2, efforts have been made to 
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assess the threat of natural and man-made hazards in BMSs. Vulnerability or risk cost models 

quantify consequences resulting from natural hazards (such as earthquake, scour, and flooding). 

The NCHRP Project 20-07, Task 378, (Thompson, 2018) developed a risk assessment guideline 

for the LCCA in BMSs based on likelihood probability models for sixteen different hazards and a 

process for monetizing risk. The guideline can be considered in the LCCA to account for risk. The 

improvement module LCC model doesn’t consider risk costs. Only agency and user costs are 

considered in the LCC model. Adding the risk aspect in the recommended investment strategies is 

beyond the scope of this research. Nevertheless, the module is well-suited to admit the 

recommended guideline concepts or other risk models. 

 Investigate the possibility of evolving the proposed methodology to a cross-asset multi-
objective optimization methodology 

MAP-21 (23 CFR 515.9) requires state DOTs to incorporate a LCP process into their TAMPs, at 

a minimum, for pavements and bridges on the NHS and recommends similar process for other 

transportation assets. FHWA (2017a) recommends developing a strategy for managing each asset 

class or asset sub-group by minimizing the LCCs, while achieving the state DOT’s targets for asset 

condition. The proposed goal-driven framework focuses on one transportation asset class (i.e., 

bridge). The framework can be expanded to accommodate other asset classes to facilitate cross-

asset resource allocation decisions through trade-off analyses between asset classes, and support 

the LCP process. This effort requires evolving the integrated EB-MOO methodology to a cross-

asset MOO methodology that considers information from the different asset classes for cross-asset 

management, programming and planning. 
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 Investigate sensitivity of the produced improvement strategies to default variables  

Sensitivity analysis as defined by Tarquin and Blank is “a study to see how the economic decision 

will be altered if certain factors are varied” (as cited in Farid et al., 1988).  The accuracy of the 

proposed EB-MOO methodology results depends on the accuracy of the input data, the model 

parameters, assumptions, and other factors. Variables that most likely to impact results should be 

determined first—if a small variation of the variable changes the decision, the results are sensitive 

to that variable; otherwise, it’s considered not sensitive (Farid et al., 1988). Sensitivity of the 

produced improvement strategies (i.e., optimization solutions) to the following default variables 

(believed sensitive) under different budget- and performance-constrained scenarios should be 

carried out through a series of tests to determine their appropriate values, evaluate impacts on 

funding requirements and performance, and assess the robustness of produced results. 

• discount rate (default, 4%),  

• end-of-life threshold (defined as CS4=50%),  

• deficiency screening thresholds (default, minimum health index of 80% every 10 years) 

• feasibility screening thresholds (default, minimum health index of 60% every 10 years) 

• feasibility screening cutoff value (default, 50) 

• superiority screening cutoff value (default, 2) 

• inaction period (default, 10 years between decision points) 
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 Implementation through a case study involving a pilot state DOT using a user-friendly version 
of the tool prototype 

The deterioration, AE, and user cost models considered in the development of the EB-MOO 

methodology are based on studies (mainly for Florida DOT, TRB, AASHTO, and FHWA) 

presented in the literature. It is highly recommended that the proposed methodology to be 

customized for a pilot state DOT (using the pilot state DOT’s AE, and user cost, deterioration 

models and preservation policy and/or triggers), and implemented through a case study to prove 

effectiveness and demonstrate/communicate potential benefits. The case study will provide the 

pilot state DOT with an excellent opportunity to apply the EB-MOO methodology and compare 

results. The case study should consist of bridges with sufficient data and from the same network 

(e.g., bridges that share the same decision-making entity, geographical area, vicinity, or other 

characteristics)—to ensure a high reliability of outcomes.  

To achieve a successful implementation of the case study, the MATLAB-based tool prototype 

should be first migrated to a standalone or web-based product for ease of use by the pilot state 

DOT or other transportation agencies. The new user-friendly version of the tool (practical and 

ready-to-use) should include a front-end interface that provides most of the controls (user-specified 

performance measures, model parameters, inputs and preferences) and outputs in one convenient 

layout while reserving all complex mathematical calculations and programming languages for 

back-end processing. Tabulations, graphs, and dashboards should be used for summarizing, 

presenting, and displaying data and results.  

A decision-making group consisting of key personnel from the pilot state DOT with various 

backgrounds and diverse expertise should be assembled to support the case study implementation. 

The group should include asset managers or program planners who make decisions about project 
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priority setting, budgeting and programming, and experts who are responsible for overseeing 

bridge-related activities (i.e., inspection, preservation, maintenance, rehabilitation, and 

replacement) and familiar with the performance history of bridges and the state internal bridge 

preservation and maintenance practices. Coordination with the decision-making group should 

proceed throughout the case study implementation. Members of the decision-making group should 

be asked for feedback at different stages of the case study implementation and should be able to  

• input preferences into the new user-friendly version of the tool; 

• manipulate budget constraints and adjust performance measures and targets for the trade-

off analysis; and  

• validate the recommended priorities, funding requirements, and infographic depictions 

produced by the tool. 
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