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4.7 The homogenized value of the roll vorticty Ωc normalized by A6/7 (a) plotted
versus the input wavenumber α̃, where the different curves correspond to
different constant values of the roll wavelength Lz, and (b) plotted versus the
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ABSTRACT
An Asymptotic Self-Sustaining Process Theory for Uniform Momentum

Zones and Internal Interfaces in Unbounded Couette Flow
by

Brandon Montemuro
University of New Hampshire, May, 2020

Meinhart & Adrian (Phys. Fluids, vol. 7, 1995, p 694) were the first investigators to docu-

ment that the wall-normal (y) structure of the instantaneous streamwise velocity in the turbulent

boundary layer exhibits a staircase-like profile: regions of quasi-uniform momentum are separated

by internal shear layers across which the streamwise velocity jumps by an O(1) amount when

scaled by the friction velocity uτ . This sharply-varying instantaneous profile differs dramatically

from the well-known long-time mean profile, which is logarithmic over much of the boundary

layer, and prompted Klewicki (Proc. IUTAM, vol. 9, 2013, p. 69–78) to propose that the turbu-

lent boundary layer is singular in two distinct ways. Firstly, spanwise vorticity and mean viscous

forces are concentrated in a near-wall region of thickness O(h/
√
Reτ ), where Reτ is the friction

Reynolds number and h is the boundary-layer height. Secondly, in a turbulent boundary layer,

spanwise vorticity and viscous forces are also significant away from the wall (outboard of the peak

in the Reynolds stress), but only in spatially-localized regions, i.e. within the internal shear layers.

This interpretation accords with Klewicki’s multiscale similarity analysis of the mean momentum

balance for turbulent wall flows (J. Fluid Mech., vol. 522, 2005, pp. 303–327). The objective of

the present investigation is to probe the governing Navier–Stokes equations in the limit of large

Reτ in search of a mechanistic self-sustaining process (SSP) that (i) can account for the emergent

staircase-like profile of streamwise velocity in the inertial region and (ii) is compatible with the

singular nature of turbulent wall flows.

Plausible explanations for the formation and persistence of sharply-varying instantaneous stream-

wise velocity profiles all implicate quasi-coherent turbulent flow structures including streamwise

roll motions that induce a cellular flow in the transverse (i.e. spanwise/wall-normal) plane. One
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proposal is that the large-scale structures result from the spontaneous concatenation of smaller–

scale structures, particularly hairpin and cane vortices and vortex packets. A competing possibility,

explored here, is that these large–scale motions may be directly sustained via an inertial–layer SSP

that is broadly similar to the near-wall SSP.

The SSP theory derived in this investigation is related to the SSP framework developed by

Waleffe (Stud. Appl. Math, vol. 95, 1995, p. 319) and, especially, to the closely-related vortex-

wave interaction (VWI) theory derived by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp.

641–666) and Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205) in that a rational

asymptotic analysis of the instantaneous Navier–Stokes equations is performed. Nevertheless, in

this dissertation, it is argued that these theories cannot account for organized motions in the iner-

tial domain, essentially because the roll motions are predicted to be viscously dominated even at

large Reτ . The target of the present investigation is an inherently multiscale SSP, in which inviscid

streamwise rolls differentially homogenize an imposed background shear flow, thereby generating

uniform momentum zones and an embedded internal shear layer (or interface), and are sustained by

Rayleigh instability modes having asymptotically smaller streamwise and spanwise length scales.

The Rayleigh mode is supported by the inflectional wall-normal profile of the streamwise–averaged

streamwise velocity. Because the thickness of the internal shear layer varies comparably slowly in

the spanwise direction, the Rayleigh mode is refracted and rendered fully three–dimensional. This

three–dimensional mode is singular, necessitating the introduction of a critical layer inside the

shear layer within which the mode is viscously regularized. As in VWI theory, a jump in the span-

wise Reynolds stress is induced across the critical layer, which ultimately drives the roll motions.

This multiscale and three–region asymptotic structure is efficiently captured using a complement

of matched asymptotic and WKBJ analysis. The resulting reduced equations require the numerical

solution of both ordinary differential eigenvalue and partial differential boundary-value problems,

for which pseudospectral and spectral collocation methods are employed. Crucially, in contrast to

Waleffe’s SSP and to VWI theory, the rolls are sufficiently strong to differentially homogenize the

background shear flow, thereby providing a plausible mechanistic explanation for the formation

and maintenance of both UMZs and interlaced internal shear layers.
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CHAPTER 1

INTRODUCTION

1.1 Background

Improved understanding of the basic properties of fluid motion – that is, of fluid dynamics – is

crucial for the advancement of science and of various technologies. Generically, fluid flows are

categorized into two regimes. Of these, the laminar flow regime is by far the better understood: the

fluid moves in an orderly pattern of layers, or lamina. Conversely, turbulent flows are defined by

the seemingly chaotic motions of small volumes of fluid. Most engineered and naturally-occurring

flows are, in fact, turbulent. Crucially, turbulent fluid motions can enhance mixing of heat, mass,

and momentum by approximately a factor of 1000 relative to the mixing accomplished by the same

flow were it to remain in the laminar regime. The enhanced mixing can be beneficial or detrimental

depending upon the situation. In heat transfer applications (e.g., cooling a room), turbulence will

drive far more rapid temperature changes than would be realized by thermal diffusion alone. In

contrast, the undesirable increase in drag on airplane wings and in oil pipelines results from the

increased turbulent mixing of the momentum of the air and oil, respectively. These latter flows are

prime examples of turbulent wall flows, i.e., the turbulence that results from fluid flow past solid

surfaces. Such flows are ubiquitous in both natural and engineered systems and therefore are of

prime societal importance. Developing improved quantitative and physical understanding of wall

turbulence is the overarching aim of this investigation.

Fluid turbulence frequently is described as the greatest unsolved problem of classical physics

(Sreenivasan, 1999). Although the mathematical equations governing fluid motion were derived

almost 200 years ago (in 1822), few analytical solutions to the resulting Navier-Stokes (NS) equa-

tions are known because the solutions can be chaotic; known analytic solutions correspond to

1



laminar flows. Consequently, fluid dynamicists often utilize a combination of laboratory experi-

ments and computer simulations to study turbulent flows. Computer models of turbulent flows that

faithfully replicate the detailed dynamics are referred to as direct numerical simulations (DNS). In

DNS, the flow is discretized (i.e., divided) in space and time to enable numerical approximations

to the solution of the governing partial differential (NS) equations; the finer the spatiotemporal

discretization, the more accurate and reliably predictive the resulting numerical simulation, but

also the greater the computational expense as measured in memory and time requirements. Al-

though DNS has progressed to the point of being feasible for certain engineering applications,

these ‘brute-force’ simulations of the NS equations would require years of computing time for the

vast majority of turbulent flows in realistic parameter regimes (e.g., to simulate the airflow around

a commercial airliner), even using the world’s fastest and most powerful supercomputers (David-

son, 2004). Through the use of specially-designed facilities, such as the wind tunnel in the UNH

Flow Physics Facility (FPF), laboratory experiments can be performed in more realistic parameter

regimes. In isolation, however, these experiments lack the predictive capability that is crucial for

advances in scientific understanding and engineering design.

Given the limitations of both DNS and experiments, systematically simplified (or ‘reduced’)

mathematical models that retain a clear physical connection to the governing NS equations while

simultaneously allowing for feasible computer simulations in realistic parameter regimes are de-

sirable. Simplification is possible because experimental evidence suggests that, although chaotic,

turbulent wall flows exhibit a certain level of spontaneous self-organization or flow structure. In-

deed, the tendency of fluids to self-organize has captured the imagination of people throughout

history. Scientists including Leonardo da Vinci took note of a fluid’s ability to form coherent

structures as early as the 1500s. Da Vinci made a sketch of water exiting from a square hole into

a pool in which he depicted eddies (swirling motions) forming in the pool. This illustration is one

of the earliest known examples of flow visualization as a scientific tool. Moreover, in his notes on

this sketch, da Vinci describes a ‘principal current’ and another of ‘random and reverse motion’

(Gad-El-Hak, 1998), reminiscent of the notion of a Reynolds decomposition.
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Figure 1.1: (a) Hydrogen-bubble flow visualization of streamwise velocity in a streamwise-
spanwise (x–z) plane revealing near-wall streaks in a flat-plate turbulent boundary layer (Kline
et al., 1967). (b) Instantaneous streamwise velocity in an x–z plane from a direct numerical simula-
tion (Pirozzoli & Bernardini, 2012) of a flat-plate turbulent boundary layer showing outer (inertial)
region streaks.

1.2 Quasi-Coherent Structures in Turbulent Wall Flows

Quasi-coherent flow structures in the form of space-filling streamwise vortices and streaks (figure

1.1a) have long been observed in the near-wall region of turbulent wall flows in both laboratory

experiments (Kline et al., 1967) and DNS (Jiménez & Moin, 1991). These observations prompted

mathematical and computational studies to explain their existence and persistence in flows in which

the structures are not directly forced [Nagata (1990), Waleffe (1997), Hall & Smith (1991), Hall

& Sherwin (2010), Beaume et al. (2015), Schoppa & Hussain (2002), Farrell & Ioannou (2012)].

Indeed, in the near-wall region (i.e., wallward of the peak in the turbulent Reynolds stress, cor-

responding to layers II and III of the four-layer flow regime described in table 1.1 (Klewicki,

2013b)), the interaction among viscous streamwise streaks and rolls has been shown to give rise to

a self-sustaining process (SSP) capable of maintaining the turbulence on scales of O(100) viscous

units ν/uτ , where ν is the kinematic viscosity and uτ is the wall friction velocity (Hamilton et al.,

1995). At sufficiently large (friction) Reynolds number Reτ ≡ uτh/ν, where h is an appropriate

outer length scale, quasi-coherent structures also have been observed in the inertial region (i.e., be-

yond the Reynolds stress peak, corresponding to layer IV in table 1.1) of the boundary layer. These

outer-region structures, including large-scale motions (LSMs), very large-scale motions (VLSMs),
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and superstructures (Hwang & Bengana, 2016), have been investigated using both laboratory ex-

periments and DNS. In addition, they have length scales much larger than 100 viscous units and

penetrate into or exist wholly within the inertial region (i.e., layer IV). Certain superstructures have

been shown to extend for roughly 5−15h in the streamwise (henceforth, the x) direction (Hutchins

& Marusic, 2007). Turbulent superstructures are significant physically because they carry a ma-

jor fraction of the total turbulent kinetic energy of the flow. Moreover, these inertial-layer flow

structures have been shown to leave a footprint on the near-wall structures, as shown in figure 1.1b

[Hwang et al. (2016), Pirozzoli & Bernardini (2012)]. Despite their probable physical importance

to turbulent dynamics, the origin of these inertial layer structures is not clearly understood. For

example, it has been argued that LSMs and VLSMs arise from the spontaneous organization of

attached and/or detached hairpin and cane vortices and hairpin and cane vortex packets (Adrian

et al., 2000). In this dissertation, however, a complementary thesis is investigated; namely, that the

large-scale flow structures can be directly driven.

Meinhart & Adrian (1995) were the first investigators to document that the wall-normal (y)

structure of the instantaneous streamwise velocity in the turbulent boundary layer (TBL) exhibits a

staircase-like profile: zones of quasi-uniform momentum (UMZs) are separated by internal shear

layers across which the streamwise velocity jumps by an O(1) amount when scaled by uτ (see

figures 1.2 and 1.3). In the literature, these internal shear layers are sometimes referred to as

vortical fissures (VFs). Recent investigations [Eisma et al. (2015), de Silva et al. (2016)] have

confirmed and extended our understanding of the UMZ/VF structure. For example, de Silva et al.

(2016) have shown that the number of UMZs (and VFs) increases logarithmically with increasing

Reynolds number. Klewicki (2013a,b) has proposed a kinematic description of the spanwise (z)

vorticity associated with this staircase UMZ/VF structure that is consistent both with the mean

momentum equation and with the intriguing notion that the TBL comprises logarithmically many

internal layers. Klewicki argues that the TBL is singular in two ways:

1) Like the singularity of a laminar boundary layer, near the wall there exists large spanwise

vorticity and significant mean viscous forces;
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Figure 1.2: Uniform momentum zones (UMZs) and internal shear layers (or vortical fissures,
VFs) are ubiquitous in the inertial region of turbulent wall flows at sufficiently large values of
the friction Reynolds number Reτ . (a) Instantaneous (solid line) versus mean (dashed) stream-
wise velocity profiles taken from the boundary-layer measurements of de Silva et al. (2016) at
Reτ ≈ 8000 illustrating the staircase-like arrangement of UMZs and VFs. (b) Two-dimensional
streamwise velocity contour with the solid black line representing the instantaneous profile shown
in (a) (de Silva et al., 2016).

2) Unlike laminar BLs, there exists significant spanwise vorticity and viscous forces but only

within thin spatially-segregated internal layers (VFs).

This singular behavior suggests the paradigm that there are logarithmically many viscous (if not

laminar) ‘boundary layers’ within the TBL. In support of this notion, Bautista et al. (2019) demon-

strate that the logarithmic profile and other, higher-order statistical features associated with the

mean streamwise flow can be recovered by ensemble averaging staircase-like streamwise velocity

profiles. A master staircase-like profile of the instantaneous streamwise velocity is constructed by

incorporating VFs and UMZs with the wall-normal locations of the VFs and the associated incre-

ments in the streamwise flow speed specified in accord with the similarity reduction of the mean

momentum equation performed by Klewicki and collaborators (Wei et al., 2005). The fissures

are then randomly displaced and the resulting profiles ensemble averaged over sufficiently many

realizations. The recovered turbulent statistics agree remarkably well with those acquired from

DNS of turbulent channel flow at large Reτ , supporting the ‘boundary layers within the boundary

layer’ paradigm. Given the likely fundamental dynamical role played by UMZ/VF structures in the
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Figure 1.3: Conditionally-averaged streamwise velocity (a) and its wall-normal derivative (b)
through vortical fissures in the inertial region of a turbulent BL flow (at Reτ ≈ 6000) in the UNH
FPF. yi indicates the wall-normal location of the VF; ucore is the streamwise velocity at the center
of the VF; and angle brackets indicate a conditional average, where the conditioning is based on a
spanwise vorticity threshold equal to 3

√
Reτ (uτ/h). The various distinct conditionally-averaged

profiles are obtained by segregating the instantaneous profiles into 10 contiguous wall-normal bins
(all located within the inertial domain) spanning the measurement field of view.

inertial region of turbulent wall flows, a theoretical study of an idealized (uniformly-distributed)

arrangement of VFs and UMZs is described in chapter 2.

1.3 Modern Dynamical Systems View of Turbulent Wall Flows

The structural, rather than statistical, analysis of turbulence has been given a firm mathematical

basis via modern dynamical systems theory. Motivated by the spontaneous emergence of quasi-

coherent near-wall flow features, Aubry et al. (1988) developed low-dimensional dynamical sys-

tems models of the turbulent boundary layer using proper orthogonal decomposition (POD) to

identify the most energetic structures. Following the identification of these structures, Galerkin

projection of the NS equations was employed to derive the equations of motion for the modal

amplitudes. The resulting models qualitatively reproduced important dynamical features of the

boundary layer. Instead of seeking a low-dimensional reduction of the NS equations, Gibson

et al. (2008) extracted invariant solutions from fully-resolved numerical discretizations of the NS

equations, in essence treating DNS as a faithful, very-high dimensional dynamical-systems repre-

sentation of the governing partial differential equations. Although generally dynamically unstable,
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these three-dimensional (3D) exact coherent states (ECS) are reminiscent of observed coherent

flow structures and are believed to provide a scaffold in phase space for the turbulent dynamics.

Gibson (2014) has compiled a database of invariant solutions for plane Couette flow for a range of

Reynolds numbers and domain sizes.

The aim of the present investigation is to propose a mechanistic explanation for the emergence

of UMZs and VFs by deriving directly from the governing Navier–Stokes equations a new, multi-

scale self-sustaining process that supports ECS exhibiting these two flow features. To date, there

are arguably two distinct first-principles SSP theories that can account for ECS in constant-density

wall-bounded parallel shear flows. Most germane to the present investigation is the classical self-

sustaining process theory introduced by Waleffe (1997) and the closely related asymptotic vortex–

wave interaction (VWI) formalism developed earlier by Hall & Smith (1991) and subsequently

applied to ECS in wall-bounded shear flows by Hall & Sherwin (2010). In both Waleffe’s SSP

and in VWI (the latter may be viewed as the infinite Reynolds number limit of the former), the

nonlinear self-interaction of a streamwise-varying instability ‘wave’ drives the roll motions that

advect the base shear flow to generate streaks. Since the streak profile is inflectional, an inviscid

Rayleigh instability mode is excited. Thus, SSP theory provides a mechanistic approach for under-

standing the creation and persistence of coherent structures. This approach, introduced by Waleffe,

is illustrated by the feedback loop shown in figure 1.4.

1.4 Vortex-Wave Interaction Theory

As the Reynolds number is increased at fixed domain size, many ECS develop a well-defined

asymptotic structure. Figure 1.5, reproduced from Wang et al. (2007), shows how the various

streamwise Fourier modes comprising the velocity field associated with the exact solution of the

NS equations designated ‘EQ1’ in plane Couette flow scale with the Reynolds number R based on

the channel half-width, channel wall speed, and kinematic viscosity. The various curves plotted in

figure 1.5 represent the

streak: û0 = O(1) in green;

roll: (v̂0,ŵ0) = O(R−1) in blue;
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Figure 1.4: (a) Sketches of the rolls, streaks, and streak instabilities that drive the SSP. (b)
Schematic depiction of the SSP feedback loop for a generic wall-bounded shear flow proposed
by Waleffe (1995). Weak [O(R−1), where here the Reynolds number R ≡ U0H0/ν and U0 and
H0 are characteristic velocity and length scales of the shear flow] streamwise rolls redistribute the
imposed background shear creating O(1) streaks. Strong spanwise inflectional instabilities lead to
O(R−1) streamwise-varying Rayleigh instability waves, which nonlinearly interact to sustain the
O(R−1) spanwise rolls. (Images from Waleffe (2005).)

fundamental x mode: û1 = O(R−0.9) in red; and

higher x harmonics: ûn = o(R−1), n > 1 in magenta and tan,

where the velocity field u(x, y, z) =
∑
n

ûn(y, z)ei(
2nπx
Lx

) and Lx is the (fixed) domain length in

the streamwise (x) direction. The scaling of these lower-branch solutions of the full NS equa-

tions accords with those underlying the elegant and independently-developed asymptotic theory

derived by Hall and collaborators [Hall & Smith (1991), Hall & Sherwin (2010)], who employ the

terminology vortex–wave interaction or VWI theory.

In the VWI formalism, comparably weak [O(1/R)] streamwise vortices, sustained by Reynolds

stress divergences concentrated in a critical layer, induce a strong [O(1)] streaky streamwise flow.

The velocity components in VWI theory are expanded in asymptotic series as follows:

u(x, y, z, t;R) ∼ ū(y, z) +R−5/6û(y, z)eiα(x−ct) + c.c.+ · · · ,

v(x, y, z, t;R) ∼ R−1v̄(y, z) +R−7/6v̂(y, z)eiα(x−ct) + c.c.+ · · · ,

w(x, y, z, t;R) ∼ R−1v̄(y, z) +R−5/6ŵ(y, z)eiα(x−ct) + c.c.+ · · · ,

(1.1)
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Figure 1.5: Bifurcation diagram reproduced from Wang et al. (2007) depicting how various
streamwise Fourier modes of the velocity field associated with the ECS designated ‘EQ1’ in plane
Couette flow scale with Reynolds number. The different lines represent the streak: û0 = O(1)
in green; roll: (v̂0,ŵ0) = O(R−1) in blue; fundamental x mode: û1 = O(R−0.9) in red; and
higher x harmonics: ûn = o(R−1), n > 1 in magenta and tan.

presuming a planar (wall-parallel) critical layer. Here (u, v, w) are the streamwise, wall-normal

and spanwise velocity, respectively, and an overbar denotes a streamwise average; (x, y, z) are

the streamwise, wall-normal and spanwise coordinates; t is the time variable; 2π/α is the stream-

wise wavelength of the single x-varying Fourier mode; c is the real phase speed; and c.c. denotes

complex conjugate. Given these expansions, the x-varying fluctuation fields satisfy ‘quasilinear’

equations with respect to the leading-order streak velocity. The 3D linearized NS equations for the

fluctuations then can be collapsed into the two-dimensional (2D) generalized Rayleigh equation

for the Fourier coefficient p̂(y, z) of the fluctuation pressure field. Within a critical layer, where

ū(y, z) = c, the x-varying Rayleigh mode is singular, and the nonlinear self-interaction of the am-

plified spanwise fluctuation velocity forces a jump in the x-averaged x-vorticity, thereby driving

roll motions outside the critical layer.

Blackburn et al. (2013) and Eckhardt & Zammert (2018) have demonstrated that VWI states

can exist on ever smaller spatial scales as the Reynolds number is increased. Specifically, when the
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streamwise and spanwise wavenumbers are increased such that their ratio remains fixed, the ECS

adopt a self-similar form in which the coherent structure becomes localised in the wall-normal

direction within a ‘production’ layer having a thickness comparable to the inverse spanwise (or

streamwise) wavenumber. More recently, Hall (2018) extended VWI theory to encompass an

array of vortex-wave interactions in which streak and roll pairs are stacked in the wall-normal

direction. For a linear background velocity profile (as in unbounded Couette flow), the VWI states

are equispaced in y, while the only nonlinear velocity profile that proves admissible is logarithmic,

corresponding to a logarithmic spacing of the VWI states.

1.5 Challenges and Objectives

As asserted in section 1.3, ECS are believed to provide a scaffold in phase space for turbulent

dynamics. Nevertheless, to date, the relevance of ECS has been convincingly established only

for modest Reτ (i.e., transitional) flows and for the near-wall cycle of turbulent flows, which is

dominated by the dynamics of the small-scale streamwise streaks and vortices for which the ef-

fective Reynolds number is modest. The existence (or not) of an inertial-layer SSP supporting the

formation and evolution of turbulent superstructures remains a subject of ongoing investigation.

In particular, a quantitative SSP theory accounting for these outer-region structures has not been

developed to the same degree that one has been for their near-wall counter-parts (Hwang & Cossu,

2010); indeed, development of such a theory is a primary objective of this dissertation. Elucidation

of the intrinsic nonlinear dynamics and structure of the inertial layer is a prerequisite for increased

understanding of ‘inner–outer’ interactions, which in turn may be leveraged for the design of im-

proved flow control strategies and could enable systematically-reduced numerical simulations of

turbulent wall-flows at high-Reτ that are not yet tractable via DNS.

A fundamental tenet of the SSP theory derived in this investigation is that viscous forces are

subdominant (on average) in the inertial layer; hence, viscous diffusion must be, upon suitable

averaging, asymptotically small there. This assertion is supported by the analysis of Wei et al.

(2005) employing the mean momentum balance (MMB). To derive the MMB, e.g., for fully devel-
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Physical layer Magnitude ordering ∆y increment ∆〈U〉 increment
I |PG| ∼= |MV| � |TI| O(ν/uτ ) (≤ 3) O(uτ ) (≤ 3)
II |MV| ∼= |TI| � |PG| O(

√
νh/uτ ) (∼= 1.6) O(U∞) (∼= 0.5)

III |PG| ∼= |MV| ∼= |TI| O(
√
νh/uτ ) (∼= 1.0) O(uτ ) (∼= 1)

IV |PG| ∼= |TI| � |MV| O(h) (→ 1) O(U∞) (→ 0.5)

Table 1.1: Magnitude ordering and scaling behaviors associated with the four-layer structure of
the mean momentum equation for turbulent channel flow. Note that the layer IV properties are
asymptotically attained as Reτ →∞. PG: mean pressure gradient, TI: Turbulent inertia, and MV:
mean viscous force. (Adapted from Klewicki (2013b).)

oped channel flow, a long-time average of the x-momentum equation is taken, after decomposing

u = 〈U〉(y) + u′(x, y, z, t) and similarly for other variables. Here, the angle brackets indicate the

long-time average and the prime denotes a fluctuation about that mean. The resulting MMB is

µ∂2
y〈U〉︸ ︷︷ ︸
MV

+ ∂y(−ρ〈u′v′〉)︸ ︷︷ ︸
TI

= ∂x〈p〉︸ ︷︷ ︸
PG

, (1.2)

where MV denotes the mean viscous force, TI turbulent inertia (i.e., the gradient of the Reynolds

stress), and PG the mean pressure gradient, and µ and ρ are the dynamic viscosity and the fluid

density, respectively. Figure 1.6a shows the ratio of the mean viscous force to turbulent inertia

(MV/TI) in turbulent channel flow (Elsnab et al., 2017). At largeReτ , four distinct regions emerge.

Table 1.1 summarizes the dominant force balances in each layer, the sizes of the different layers,

and the ∆〈U〉 increment for each layer. In layers I, II, and III, the mean viscous force contributes

to the leading order balance. In layer IV, the focus of this investigation, the mean viscous force

is subdominant. This diminution is consistent with the kinematic pattern of UMZs and VFs: the

bulk of the flow is homogenized, with strong gradients and, hence, viscous forces being relegated

to thin regions of the instantaneous flow. Indeed, Klewicki (2013b) has shown that the fissure

width scales as Re−1/2
τ . Accordingly, the predicted dependence of the fissure thickness on Reτ is

a distinguishing feature of this inertial layer SSP.
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Figure 1.6: Singular nature of the TBL. (a) Plot showing the ratio of the mean viscous force (MV)
to turbulent inertia (TI), i.e. to the Reynolds stress gradient, in turbulent channel flow at four
different values of Reτ ; data taken from the water channel experiments by Elsnab et al. (2017).
The mean viscous force is significant in a volume-averaged sense only in a near-wall domain of
size O(

√
Reτ ) in viscous (or ‘plus’) units, corresponding to a domain of size O(h/

√
Reτ ) in

outer units. Outboard of the peak in the Reynolds stress (where the force ratio tends to plus or
minus infinity), the volume-averaged mean viscous force is negligible. (b) Schematic illustrating
the concentration of spanwise vorticity within VFs that, at large Reτ , become increasingly widely
separated with increasing distance from the wall. (Adapted from Klewicki (2013a,b).) The new
SSP theory developed herein targets UMZs and VFs located in the inertial domain, as highlighted
in blue and green, respectively.

The four-layer structure implied by the MMB imposes important restrictions on any attempt to

extend existing mechanistic SSP theories to account for large-scale roll and streak structures in the

inertial domain (i.e., in layer IV). In particular, if the streamwise streaks [ū = O(1)] are sustained

by streamwise rolls [(v̄, w̄) = O(1/Reτ )] as in Hall et al. [Hall & Smith (1991), Hall & Sherwin

(2010)] and Waleffe (1995, 1997), then necessarily the effective Reynolds number is O(1). To

support this assertion, the velocity field can be decomposed into an x-averaged component, denoted

by an overbar, plus an x-dependent fluctuation denoted by a prime. For a shear flow without a mean

pressure gradient, the x-mean x-momentum equation then becomes

∂tū+ v̄∂yū+ w̄∂zū =
1

Reτ
(∂2
y + ∂2

z )ū+ H.O.T., (1.3)

where H.O.T. denotes higher-order terms as Reτ → ∞. Upon rescaling such that ū ∼ ū0 and

(v̄, w̄) ∼ 1
Reτ

(v̄1, w̄1), and omitting the H.O.T., (1.3) becomes
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∂tū0 + v̄1∂yū0 + w̄1∂zū0 = (∂2
y + ∂2

z )ū0, (1.4)

which clearly shows that the effective Reynolds number is unity with this scaling. Consequently,

neither Waleffe’s SSP theory nor Hall & Smith’s VWI formalism can directly apply to outer-region

superstructures.

The first difficulty with these theories is evident upon consideration of dominant balance of

forces in layer IV. From inspection of (1.4) it is clear the streaks1 (and, in fact, the rolls) are

viscously dominated throughout the spatial region they occupy whenever the effective Reynolds

number is O(1). This dominant balance directly conflicts with the defining characteristic of the

inertial layer: namely, viscous forces are subdominant on average in layer IV, hence viscous diffu-

sion must be (again upon suitable averaging) asymptotically small there. To ensure mean diffusion

is asymptotically small in the proposed inertial-layer SSP, the strength of the roll motion satisfies

O(1/Reτ )� (v̄, w̄)� O(1).

The second limitation of both VWI and Waleffe’s SSP theory is that, even in the limit of infinite

Reynolds number, the x-averaged streaky streamwise flow varies smoothly across the flow domain.

This absence of anything akin to a jump in flow speed across a VF is consistent with the effective

Reynolds number for the x-mean flow being O(1) (see, e.g., Beaume et al. (2015)). To illustrate

this point, figure 1.7 shows the streamwise- and spanwise-averaged streamwise velocity for ‘EQ2’,

an upper-branch equilibrium ECS in plane Couette flow, at two Reynolds numbers separated by

a decade (at fixed domain size). Although this velocity profile superfically resembles part of a

staircase, the upper and lower ‘fissures’ do not show any Reynolds number dependence. Thus,

even at large Reynolds number, the profile will remain smooth and no singular shear layer will

form.

1Strictly, streak refers to the difference between the streamwise- and horizontally-averaged streamwise flow: ū−
uxz , where (·)

xz
denotes a horizontal average. Here, however, we loosely refer to a streak simply as ū. Noting that

the essential attribute of a streak is the inflectional velocity anomaly induced at its flanks that supports a streamwise-
varying instability, this less restrictive definition seems more appropriate for flows with UMZs and VFs, for which the
emergent uxz profile itself may be inflectional and inviscidly unstable (cf. figure 2.2b).

13



Figure 1.7: Streamwise- and spanwise-averaged streamwise velocity for ‘EQ2’, an upper-branch
equilibrium ECS in plane Couette flow, at two Reynolds numbers Re = Uwh/ν, where Uw is the
wall velocity, separated by a decade (at fixed domain size). Data courtesy of J. Gibson.

In light of the limitations of existing SSP/VWI theories, the overarching objective of this disser-

tation is to seek a mechanistic SSP-like explanation for the emergence and sustenance of staircase-

like profiles of instantaneous streamwise velocity in the inertial region of turbulent wall flows via

an asymptotic ECS construction as Reτ →∞.

1.6 Hypothesis

The central hypothesis to be investigated is whether counter-rotating streamwise rolls stacked in the

fissure-normal direction, as shown in figure 1.8, can differentially homogenize an imposed back-

ground shear flow and be sustained by an instability of the emergent shear layer. More specifically,

infinitely many copies of the counter-rotating roll pattern depicted are imagined to be stacked in

the y-direction in unbounded plane Couette flow (for which the background shear Ub(y) = y in the

domain −∞ < y <∞), an imperfect but useful surrogate for the inertial domain of turbulent wall

flows. Streamwise rolls and the streaks they induce are key components of equilibrium, traveling-

wave and periodic-orbit exact coherent states arising in incompressible wall-bounded shear flows
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Figure 1.8: Proposed flow configuration in which sufficiently strong rolls in the y–z plane re-
distribute the imposed background shear in the streamwise velocity profile (here taken to be un-
bounded Couette flow) yielding the staircase-like UMZ/VF profile.

(Waleffe, 1997; Faist & Eckhardt, 2003; Wedin & Kerswell, 2004; Nagata, 1990; Duguet et al.,

2008; Gibson et al., 2008; Duguet et al., 2010). ECS necessarily are self-sustaining since, by con-

struction, they are invariant solutions of the NS equations. Accordingly, we seek a mechanistic

explanation for the occurrence of VFs and UMZs by deriving from the NS equations an asymptotic

SSP formalism whose ECS solutions exhibit these flow features.

There are three primary elements that distinguish this hypothesis from that underlying Wal-

effe’s SSP and Hall’s VWI theory. First, the homogenizing action of large-scale streamwise vor-

tices, with v̄, w̄ = O(ε), where 1/Re� ε� 1 as Re→∞ and Re is a suitably defined Reynolds

number, induces O(1) UMZs in a sheared flow. Hence, the streamwise vortices, while still com-

parably weak relative to the O(1) streaks, are asymptotically stronger than those in classical

SSP/VWI theory. Secondly, in the limitRe→∞with ū = O(1) andO(1/Re)� (v̄, w̄)� O(1),

a three-region (rather than two-region) asymptotic structure emerges in the fissure-normal (y) di-

rection. As shown in figure 1.9, the bulk of the spatial domain is occupied by UMZs. Singular-

ities arising in the effectively-inviscid roll/streak flow within the UMZs are viscously regularized

within emergent internal shear layers (VFs) of dimensionless thickness O(∆), where ∆(Re)→ 0

as Re → ∞. Within each fissure, the fissure-normal inflectional shear supports an inviscid (i.e.,

Rayleigh) instability. The Rayleigh mode, being marginally-stable, exhibits a singularity that is

viscously regularized within an even thinner critical layer (CL) of dimensionless thickness O(δ),

with δ/∆ → 0 as Re → ∞, embedded within each fissure; see figure 1.9. Thirdly, the Rayleigh-
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Figure 1.9: Schematic diagram of the hypothesized three-region asymptotic structure in the
fissure-normal direction centred on a fissure located at y = 0 (cf. highlighted region in fig-
ure 1.6(b))

.

mode streamwise wavenumber α = ᾰ/∆, with ᾰ = O(1); in contrast, α = O(1) in VWI theory.

Moreover, since here α � 1 (see below), the Rayleigh mode is confined to the VF, as the fluc-

tuation fields decay exponentially with distance from the fissures and at asymptotically large Re

(whence ∆ → 0), therefore are transcendentally small within the UMZs. This short streamwise-

wavelength neutral Rayleigh mode riding on an internal shear layer of thickness O(∆) is rendered

three-dimensional by the slow spanwise (z) variation of the streak velocity field within the VF, and

the refraction of the mode induces a commensurately short spanwise wavelength.

Motivation for the large streamwise wavenumber approximation is provided by the growth-rate

curve shown in figure 1.10, obtained by performing an Orr-Sommerfeld linear stability analysis

using the background velocity profile

Ūb(y) = erf
(y
ε

)
. (1.5)

This specification yields a step-like profile for the streamwise velocity similar to that depicted in

figure 1.9. The linear stability analysis was performed in an unbounded domain in y for three
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Figure 1.10: Growth rate curves obtained from an Orr-Sommerfeld linear stability analysis using
an error-function background streamwise velocity profile. Here, α is the streamwise wavenumber,
σ is the real growth rate, and ε is a small parameter characterizing the thickness of the shear layer
in the imposed background streamwise velocity profile. As expected for (largely) inviscid shear
instabilities, α for both the fastest-growing and non-zero neutral mode increases as ε→ 0.

values of ε = (0.01, 0.025, 0.05) and for a Reynolds number equal to ε−2 = (10000, 1600, 400).

Figure 1.10 clearly indicates that, as the shear is confined to ever thinner regions, both the fastest-

growing mode and the neutral mode having non-zero wavenumber are shifted to larger values of

α. With the thickness of the fissure empirically scaling like Re−1/2
τ , it is natural then to seek a

solution for which α is asymptotically large.

1.7 Summary

Generically, fluid flows can be categorized into two regimes, laminar and turbulent. Most naturally

occurring flows are turbulent. Turbulent motions are not completely disordered; rather turbulent

wall flows are dominated both energetically and dynamically by spontaneously-occurring coherent

structures in the form of streamwise rolls and streaks. Quasi-coherent flow structures have long

been observed in the near-wall region, but more recently they have been observed on a hierarchy of

scales including outside the buffer layer. Meinhart & Adrian (1995) were the first to document that,
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away from the wall, the instantaneous streamwise velocity exhibits a staircase-like profile, with

regions of quasi-uniform momentum separated by internal shear layers termed vortical fissures.

These profiles have since been observed and their properties quantified by several other research

groups.

Canonical turbulent wall flows exhibit a four-layer structure with distinct dominant force bal-

ances in the mean momentum equation being used to define each layer. Crucially, in the inertial

domain (in layer IV), on average, viscous forces are subdominant. In the near-wall region (i.e.,

layers I and II), Waleffe’s SSP and Hall’s VWI theories can account for the existence and suste-

nance of rolls and streaks. In both theories, the feedback loop shown in figure 1.4 is operative.

Weak streamwise rolls redistribute the background shear creating O(1) streaks. Strong spanwise

inflectional instabilities of the streaks support O(R−1) instability waves that nonlinearly interact to

drive theO(R−1) spanwise rolls. An immediate consequence is that the effective Reynolds number

governing the streak and roll motions is O(1), implying these key components of the turbulence

are viscously dominated. Viscous rolls and streaks are not apt candidates for coherent structures in

layer IV because:

1. Volume-mean viscous forces then will be significant within this inertial domain; and

2. The streak flow will be smoothly-varying, precluding the formation of UMZs and VFs.

In this dissertation, the NS equations are examined in the limit of large Reynolds number to

assess whether a new, multiple-scale SSP formalism can explain the formation and sustenance of

UMZs and interlaced VFs, arguably the primal coherent structures in the outer part (layer IV)

of turbulent wall flows. Specifically, the question to be addressed is whether counter-rotating

streamwise rolls, stacked in the fissure-normal direction, can differentially homogenize an im-

posed background shear flow, and thereby induce VFs, while a small-scale instability of the VFs

simultaneously sustains the rolls?

To this end, unbounded plane Couette flow is analyzed. Chapter 2 details the required asymp-

totic analysis. In chapter 3, the numerical methods used to solve the resulting asymptotically-
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reduced PDEs and to obtain the key results, including numerical reconstructions of the ECS fields,

are described. These results are presented in chapter 4, and the associated conclusions and physical

implications are summarized in chapter 5.
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CHAPTER 2

LARGE REYNOLDS NUMBER AND LARGE WAVENUMBER
ASYMPTOTIC ANALYSIS

2.1 Introduction

In this chapter, a large Reynolds number and large streamwise wavenumber analysis of the NS

equations is performed in an effort to derive a reduced set of equations and associated SSP that

can explain the observed staircase-like profile of streamwise velocity. The analysis is intended to

apply qualitatively to a portion of the flow domain that has been excised sufficiently far away from

the wall (i.e. in layer 4), as shown schematically in figure 2.1. As noted in chapter 1, unbounded

plane Couette flow is utilized here as an imperfect, but more tractable surrogate configuration.

We choose to scale velocities by the friction velocity uτ , since the jump in streamwise flow

speed across each fissure is a few times uτ (figures 1.2a and 1.3a), and lengths by ly, the dimen-

sional distance between adjacent – and, in this construction, equispaced – VFs. The governing

incompressible Navier–Stokes equations then can be expressed in dimensionless form,

∂tu + u · ∇u = −∇p+
1

Re
∇2u, (2.1)

where u = (u, v, w) and p are the velocity vector and pressure, respectively, and incompressibility

requires ∇ · u = 0. Re ≡ uτ ly/ν is a Reynolds number defined using ly rather than the outer

length scale h; that is, Re 6= Reτ , a point we return to later. Given this non-dimensionalisation,

the imposed background plane Couette flow u = y, where −∞ < y < ∞. Recently, Hall (2018)

constructed asymptotic ECS comprising an infinite wall-normal array of VWI states, each with

a planar critical layer, firstly in unbounded Couette flow and subsequently in background shear

flows with logarithmic profiles. The theory we develop shares certain commonalities with the
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Figure 2.1: Schematic of UMZs and VFs spanning a TBL showing excised domain. (Adapted
from Priyadarshana et al. (2007).)

former construction but, as discussed further in chapter 5, the distinctions highlighted in section

1.5 remain apt.

As in VWI and related theories (Beaume et al., 2015; Chini et al., 2017), we decompose all

flow fields into an x-mean plus a fluctuation about that mean to separate the streamwise-averaged

roll and streak flow from the streamwise-varying instability mode. Because the wavelength of the

instability mode is small relative to the roll diameter and because the mode is refracted, a short

scale not only in x but also in z is induced. This rapid spanwise variation of the fluctuation is

captured using a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) formalism introduced in section

2.3 Accordingly, we replace the streamwise average with an averaging operation that removes all

variation in x and fast variability both in time and in the spanwise direction. Nevertheless, we

continue to denote mean fields with overbars and fluctuation fields with primes.

In the following sections, we first analyze the flow within the UMZs adjacent to the VF centered

on y = 0 and subsequently analyze the VF, itself, and its embedded CL (see figure 1.9). Table 2.1
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Domain Dominant Contributions ECS Component
Region Size Mean Terms Fluctuations S R F
UMZ O(1) NI,PG E.S.T. O(1) O(∆2) E.S.T.
VF O(∆) NI,VNF,PG LI,PG O(1) O(∆2) O(∆3)
CL O(δ) VNF,RSD LI,VNF,PG O(∆) O(∆2) O(∆2)

Table 2.1: Summary of the scalings of the mean and fluctuation fields and the dominant terms
arising in the relevant force balances in each of the three subdomains: UMZ = uniform momentum
zone; VF = vortical fissure (internal shear layer); and CL = critical layer. ECS component: S
= streak; R = roll; and F = fluctuation. Forces: NI = nonlinear inertia; LI = linearized inertia;
PG = pressure gradient; VNF = viscous normal force; and RSD = Reynolds stress divergence. As
demonstrated by the analysis performed in chapter 2, the dimensionless VF thickness ∆ = Re−1/4,
while the CL thickness δ = Re−1/2. E.S.T. = exponentially small terms.

summarizes the scalings of the leading-order fields and highlights the dominant force balances

arising in each of the three sub-regions for both the mean and fluctuating flow components.

2.2 Uniform Momentum Zones

The dynamics within the UMZs is governed by the two-dimensional (2D) but three-component

(i.e. x-independent) NS equations, since the streamwise-varying fluctuation fields are exponen-

tially small there. Thus, the momentum equations reduce to

∂tu+ (v⊥ · ∇⊥)u =
1

Re
∇2
⊥u, (2.2)

∂tv⊥ + (v⊥ · ∇⊥)v⊥ = −∇⊥p +
1

Re
∇2
⊥v⊥, (2.3)

where the ⊥ subscript refers to the y–z plane and the perpendicular (i.e. roll) velocity vector

v̄⊥ = (v̄, w̄). From (2.2)–(2.3), it is clear that the mean streamwise velocity acts as a passive scalar

within the UMZs, being advected by the rolls and diffused. The rolls are not directly forced within

the UMZs and would therefore decay in the absence of the forcing localized within the bounding

VFs. An immediate and significant physical implication is that the internal layers (sometimes

referred to as ‘interfaces’ in the literature, e.g. see de Silva et al. (2017)) are not dynamically
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Figure 2.2: Differential homogenization of a background Couette flow (a,b) by the stacked
counter-rotating pattern of steady rolls (vector plot in (a), obtained from (2.11)–(2.12)) leading
to the emergence of UMZs and an internal shear layer (b); i.e. an embedded VF. This process is
realized only for sufficiently large values of the effective Reynolds number āRe, where the roll
amplitude ā(Re) → 0 as Re → ∞. For example, in the Fourier–Chebyshev pseudospectral com-
putations used to generate these results, āRe ≈ 104.

passive; rather, the driving agency for the staircase-like profiles of streamwise velocity is confined

within the regions of concentrated spanwise vorticity.

As noted in section 1.5, we insist that the dynamical influence of viscosity on the streak and

roll flow is weak, at least in a volume-averaged sense. In particular, the size of the roll flow is

denoted by ā, where ā(Re) → 0 as Re → ∞ (implying that the rolls are weak compared to the

O(1) streamwise streak flow), then we require that the effective Reynolds number āRe governing

the dynamics of the rolls and streaks within the UMZs becomes unbounded in the large-Re limit.

It is well-known that in the presence of a steady cellular (2D) velocity field a passive scalar will

be homogenized in the limit of large Peclet number (Rhines & Young, 1983). Since āRe → ∞,

and given that we seek stacked ECS with steady rolls, the passive streak velocity field ū therefore

is differentially homogenized within regions of closed streamlines of the roll flow.

This process is clearly depicted in figure 2.2. The right-hand plot shows the initial and steady-

state spanwise-averaged streamwise velocity profiles uxz(y). These profiles are obtained by nu-
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Figure 2.3: Dimensionless VF thickness as a function of Re calculated from the steady-state
numerical solution of the advection–diffusion equation (2.2) for u(y, z, T ), regularized by the in-
clusion of Laplacian diffusion (aRe)−1∇2

⊥u on the right hand side, for Lz = 2.

merically integrating (2.2) using a Fourier–Chebyshev pseudospectral algorithm with the pre-

scribed steady, spanwise-periodic roll velocity field given below in (2.11)–(2.12) and plotted in fig-

ure 2.2(a), for an effective Reynolds number āRe ≈ 104, a dimensionless core vorticitiy Ω̄c ≈ 7.35,

and a prescribed roll spatial-period Lz = 2. Of particular note is the emergence of an internal shear

layer centered on the plane y = 0. Figure 2.3 shows that [given O(1/Re) � (v̄, w̄) � O(1)] the

thickness of the fissure is a function of Re with an approximate power-law exponent found to be

-0.24 (at least for Lz = 2). Here, it should be recalled that Re 6= Reτ ; in fact, when proper ac-

count is taken that ly = ly(Reτ ), our inertial-layer SSP theory predict that the geometric-mean VF

scaling Re−1/4 corresponds to Re−7/16
τ ≈ Re

−1/2
τ . See appendix A for further details.

Rhines & Young (1983) demonstrate that if the evolution is laminar (e.g. driven by a strictly

steady 2D cellular velocity field acting on a scalar field exhibiting a uniform gradient at some initial

time, say t = 0), scalar homogenization in the large Peclet number (Pe) limit generically occurs in

two stages. During a time t = O(Pe1/3), shear-augmented dispersion acts to homogenize the scalar

field along streamlines. The subsequent homogenization of the scalar field across streamlines

occurs over a much longer time t = O(Pe). Crucially, diffusion is a leading-order process only

during the first stage. In the present context, advection dominates perturbations due to diffusion,
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‘locking’ contours of constant u to the streamline pattern induced by the rolls, throughout the

second phase as well as in the final steady state. Plausibly, the time scale for homogenization may

be reduced by turbulent mixing processes, but here no judgment is made regarding the time taken

for a turbulent trajectory to visit the neighborhood of the steady ECS we construct. Nevertheless,

we emphasize that within the UMZs viscous diffusion is weak relative to roll-induced advection

for these ECS, in accord with the mean momentum balance outboard of the Reynolds stress peak

(figure 1.6).

For steady rolls and streaks within the homogenized core of the UMZs, the following asymp-

totic expansions accordingly are posited:

u(x, y, z, t;Re) ∼ u0(y, z) + E.S.T., (2.4)

v(x, y, z, t;Re) ∼ āv̄2(y, z) + . . . , (2.5)

w(x, y, z, t;Re) ∼ āw̄2(y, z) + . . . , (2.6)

p(x, y, z, t;Re) ∼ a2p4(y, z) + . . . , (2.7)

The numeric subscripts refer to a posteriori determined powers of the small parameter ∆ defining

ā, and E.S.T. denotes terms that are exponentially small in Re. These terms include the x-varying

fluctuation fields within the UMZs and transcendentally small corrections to the homogenized

field. Substituting the expansions into the governing equations, the leading-order steady equations

are

(v2⊥ · ∇⊥)u0 =
1

aRe
∇2
⊥u0, (2.8)

(v2⊥ · ∇⊥)v2⊥ = −∇⊥p4 +
1

aRe
∇2
⊥v2⊥. (2.9)

Note that, in accord with the Prandtl–Batchelor theorem (Batchelor, 1956), the steady x-mean

x-vorticity Ω̄ also is uniform within regions foliated by steady closed streamlines on which viscous

diffusion is weak relative to advection. Hassan & Mezić (2019) recently extended the Prandtl-
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Batchelor theorem from steady 2D flows to 2D flows with quasiperiodic time-dependence. Conse-

quently,

Ω ≡ ∂yw̄ − ∂zv̄ ∼ ∇2
⊥(aψ2) ∼ aΩc + E.S.T., (2.10)

where the (rescaled) roll streamfunction ψ2(y, z) is defined such that (v2,w2)=(−∂zψ2,∂yψ2). Un-

like the constant core value of the x-mean streamwise velocity, which by symmetry must satisfy

u0 ∼ 1/2 for 0 < y < 1 and u0 = −1/2 for −1 < y < 0, the (rescaled) homogenized value

of the x-mean x-vorticity Ω̄c, which fixes the precise value of the roll-induced circulation, is a

primary unknown to be determined as part of the asymptotic analysis: effectively, Ω̄c is a nonlin-

ear eigenvalue that will be shown to couple information from the various subdomains of the flow.

Nonetheless, as demonstrated in Chini (2008), (2.10) is readily solved analytically on a rectangular

domain of (asymptotically) known dimensions one unit in y and Lz/2 units in z, where Lz is the

prescribed spanwise periodicity length of the rolls, subject to ψ2(y, z) → 0 as the rectangular cell

boundaries are approached. Using the given notation,

v2 = Ω̄c

∞∑
n=1,odd

2Lz
(nπ)2

[
cosh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)
− 1

]
cos

(
2nπz

Lz

)
, (2.11)

w2 = Ω̄c

∞∑
n=1,odd

2Lz
(nπ)2

[
sinh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)

]
sin

(
2nπz

Lz

)
. (2.12)

To avoid the need for iteration in the subsequent solution algorithm, and noting that Ω̄c = O(1),

it proves useful here to introduce the slightly modified small parameter ∆̃ = Ω̄
−1/4
c ∆ and rescaled

mean fields v̄ = Ω̄cṽ, w̄ = Ω̄cw̃ and p̄ = Ω̄2
c p̃, where all fields are (re-)expanded in asymptotic

series in powers of ∆̃ rather than ∆. With the new scaling the asymptotic expansions become

u(x, y, z, t;Re) ∼ u0(y, z, T ) + E.S.T., (2.13)

v(x, y, z, t;Re) ∼ āΩcṽ2(y, z, T ) + E.S.T., (2.14)

w(x, y, z, t;Re) ∼ āΩcw̃2(y, z, T ) + E.S.T., (2.15)

p(x, y, z, t;Re) ∼ a2Ω
2

c p̃4(y, z, T ) + E.S.T., (2.16)
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hence

ṽ2 =
∞∑

n=1,odd

2Lz
(nπ)2

[
cosh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)
− 1

]
cos

(
2nπz

Lz

)
, (2.17)

w̃2 =
∞∑

n=1,odd

2Lz
(nπ)2

[
sinh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)

]
sin

(
2nπz

Lz

)
. (2.18)

Moreover (2.8)–(2.9) reduce to

(ṽ2⊥ · ∇⊥)u0 = ∆̃2∇2
⊥u0, (2.19)

(ṽ2⊥ · ∇⊥) ṽ2⊥ = −∇⊥p̃4 + ∆̃2∇2
⊥ṽ2⊥. (2.20)

Thus, the steady roll velocity field within the UMZs is known (with the understanding that Ω̄c is a

to-be-determined constant), a key simplification.

2.3 Vortical Fissures

In the asymptotic limit Re→∞, the differential homogenization of Ω̄ leads to jump disconti-

nuities in this field across the separatrices between adjacent roll cells. Moreover, in addition to the

jumps in ū induced between stacked cells, streamwise velocity anomalies in the form of narrow jets

are driven between neighboring roll pairs at each fixed y away from the fissures. These discontinu-

ities are smoothed by viscous forces and torques that act on the mean fields within asymptotically

thin regions along the periphery of each cell. Here, we focus on the emergent shear layer cen-

tered on y = 0, but analogous considerations apply to all other VFs (located at y = n, for integer

n = ±1,±2 . . .). Similar scalings also apply to the narrow jets centered on z = mLz/2, for integer

m = 0,±1,±2 . . ., albeit with the roles of y and z interchanged and with the important distinction

that, unlike the VFs, the jets are dynamically passive since in the present theory the x-varying

fluctuations are exponentially small there.

The thickness of each VF follows from the usual laminar-BL scaling in which normal diffusion

is balanced with advection, viz. ∆̃ = (āΩ̄cRe)
−1/2. For the VF centered on y = 0, we therefore
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introduce a rescaled y coordinate Y ≡ y/∆̃, and we decompose all field variables into mean plus

slowly-modulated fluctuation components:



u(x, y, z, t;Re)

v(x, y, z, t;Re)

w(x, y, z, t;Re)

p(x, y, z, t;Re)


∼



U0(Y , z)

ā∆̃V3(Y , z)

āW2(Y , z)

ā2P4(Y , z)


+ a′A



Û3(Y ; z)

V̂3(Y ; z)

Ŵ3(Y ; z)

P̂3(Y ; z)


A(z)ei[α(x−ct)+θ(z/∆̃)] + c.c.(2.21)

where c.c. denotes complex conjugate. In these expansions, the fluctuations, which have a to-be-

determined asymptotic size a′(Re) and O(1) z-varying amplitude AA(z), are represented using

a WKBJ approximation in which the fast phase θ(z/∆̃) ≡ Θ(z)/∆̃, and the rescaled spanwise

wavenumber β̃ ≡ ∂zΘ = O(1). We also define the O(1) streamwise wavenumber α̃ = α∆̃ and,

for subsequent reference, note that ᾰ = α̃Ω̄
1/4
c , i.e. the O(1) streamwise wavenumber scaled by ∆

rather than by ∆̃. The O(1) phase speed c is strictly real for neutral Rayleigh modes implicated

in a steady SSP and vanishes only for the VF at y = 0. Although the real scalar A could be

absorbed into the definition of the amplitude function A(z), it proves convenient to explicitly

retain this factor as a control parameter. (That is, we take A and the rescaled, O(1) streamwise

wavenumber ᾰ as control parameters for the Rayleigh mode and self-consistently determine the

slowly-varying spanwise wavenumber β̃(z) and amplitude function A(z).) To disentangle A from

A(z), we normalize the latter such that A(0) = 1. An additional normalization condition will

be specified below to distinguish the Y- and z-varying eigenfunction from the amplitude, thereby

rendering the decomposition of the fluctuation fields in (2.21) unique.

The scaling of the mean streamwise and spanwise velocity components in (2.21) ensures

smooth matching with the flow in the adjacent UMZs is possible, while the scaling of the mean

fissure-normal velocity follows from incompressibility. In the proposed configuration, no physi-

cal (i.e. no-slip) boundary exists along the horizontal planes separating rows of stacked counter-

rotating rolls. Consequently, the leading-order mean spanwise velocity component within the VF

is not sheared; i.e. ∂YW2 = 0, hence W2 = W2(z), only. Through the mean incompressibility
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condition, this ansatz implies that within the fissure V3(Y , z) varies linearly with the normal coor-

dinate Y . A second immediate consequence is that the roll vorticity will have the same asymptotic

size, namely O(ā), within the VF and adjacent UMZs, ensuring smooth matching of this field

is possible. To close the global vorticity budget, however, a Y-dependent correction ā∆̃W3(Y , z)

must be appended to the expansion for the mean spanwise velocity component in (2.21); see Harper

(1963). Finally, in contrast to the mean fields, the fluctuations are isotropic within the fissure and

thus each fluctuation field has the same asymptotic size a′. (We find that a′ ≤ ā as Re → ∞ for

sensible physical balances to be realized in the mean equations.) Recalling that the streamwise

wavelength of the fluctuation fields is commensurate with ∆̃, the VF thickness, the fluctuations

consequently decay exponentially away from the center of the fissure.

2.3.1 Viscous Mean Dynamics: Childress Cell Problem

Substituting (2.21) into the incompressibility condition and the NS equations, applying the

streamwise/fast-phase averaging operation and collecting terms at leading order in ∆̃ yields

∂Y Ṽ3 + ∂zW̃2 = 0, (2.22)

Ṽ3∂YU0 + W̃2∂zU0 = ∂2
YU0, (2.23)

∂YP̃4 = 0, (2.24)

W̃2∂zW̃2 = −∂zP̃4, (2.25)

Ṽ3∂Y

(
∂YW̃3

)
+ W̃2∂z

(
∂YW̃3

)
= −

∂2
Y
(
V ′3W ′3

)
Ω̄2
c

+ ∂2
Y

(
∂YW̃3

)
, (2.26)

where (V3,W2,3) = Ω̄c(Ṽ3, W̃2,3) and P4 = Ω̄2
cP̃4. The key simplification to the mean flow equa-

tions in this region is that asymptotic matching enables the leading-order roll flow (Ṽ3, W̃2) to be

obtained by extrapolating the UMZ roll solution to the VF. Specifically, the tangential component

of the roll flow within the fissure is obtained simply by evaluating (2.18) at y = 0. Using the

incompressiblity constraint (2.22) and the symmetry condition Ṽ3(Y = 0, z) = 0 to determine a

constant of integration, the normal flow component Ṽ3 also can be determined, yielding
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Ṽ3(Y , z) = −Y
∞∑

n=1,odd

(
4

nπ

)
tanh

(
nπ

Lz

)
cos

(
2nπz

Lz

)
, (2.27)

w̃2(y = 0, z) = W̃2(z) =
∞∑

n=1,odd

(
2Lz

(nπ)2

)
tanh

(
nπ

Lz

)
sin

(
2nπz

Lz

)
. (2.28)

The leading-order roll flow within the VF, (2.27)–(2.28), satisfies the mean equations (2.22), (2.24)

and (2.25), with P̃4(z) = p̃4(y=0, z) for matching with the adjacent UMZs.

Given (2.27)–(2.28), the (⊥) velocity field that advects the leading-order streak flow (U0) and

x-vorticity (∂YW̃3) within the fissure is known, and the equations for these fields effectively lin-

earize. Analogous considerations apply to the viscous jet regions around the remainder of the

roll-cell periphery. By choosing to scale a′ = ∆̃a, the torque provided by the gradient of the

fluctuation-induced Reynolds stress divergence−∂Y(V ′3W ′3) arises consistently in (2.26) and seem-

ingly has the potential to drive x-vorticity within the VF and, thence, roll motions within the UMZ.

Subsequently, however, it is confirmed that V ′3 andW ′3 are out of phase for a (3D) neutral Rayleigh

mode. Consequently, this correlation vanishes and no driving of the rolls is realized. Instead, as

in VWI theory, the driving to sustain the roll motions arises from a critical-layer phenomenon (see

section 2.4 and section 2.5).

The vorticity equation (2.26) must be solved subject to the matching condition ∂YW̃3 → −1

as Y → ∞ (e.g. for matching with the upper UMZ over 0 ≤ z ≤ Lz/2). The appropriate

boundary condition for this vorticity component as Y → 0+ is not obvious a priori, but will be

determined in section 2.4. Indeed, in the absence of driving from the Reynolds stress term in (2.26),

this boundary condition will be shown to give rise to the forcing that sustains the rolls, revealing

that the CL plays a key role in maintaining the staircase-like profile of streamwise velocity in the

proposed asymptotic SSP.

The mean streamwise momentum equation (2.23) must be solved subject to the symmetry

conditions U0 → 1/2 as Y → ∞ (for the UMZ located in 0 < y < 1) and U0 → 0 as Y →

0. Identical equations and boundary conditions apply within the VF centered on y = 1 upon

replacing ∆̃Y → 1 − ∆̃Y and z → Lz/2 − z. The same steady advection–diffusion equation
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Figure 2.4: Formulation of Childress cell problem, as adapted from Chini & Cox (2009). (a) Con-
tour plot of u0(y, z). (b) Corresponding multi-region asymptotic structure of a steady roll cell as
Re→∞. The white region is the dynamically inviscid vortex core. The light grey regions indicate
the O(∆) thick VFs as well as O(∆) thick positive and negative streamwise jets. The streamwise-
averaged streamwise velocity is passively advected through the outer corner regions also indicated
by the light grey shading. (The viscous inner corner regions highlighted in dark grey also are dy-
namically passive.) ζ is a stretched arc-length coordinate running around the cell perimeter, and η
is a scaled coordinate measuring distance normal to the VFs and jets.

also applies within the streamwise jets centered on z = 0 and z = Lz/2, with the roles of y and z

(and Ṽ3 and W̃2) interchanged. The resulting problem for U0 is formally identical to that for the

temperature field in steady 2D Rayleigh-Bénard convection (RBC) in the limit of asymptotically

large Rayleigh number. This observation provides an interesting and potentially useful connection

between coherent structures arising in strongly nonlinear convection and wall-bounded shear flows.

(Of course, in RBC, the cellular flow is driven by buoyancy torques acting within vertical plumes,

while in the proposed SSP, the roll flow is driven by Reynolds stresses arising from the nonlinear

interaction of a streamwise-varying shear instability mode confined to the horizontal fissures.) As

demonstrated in Chini & Cox (2009), the advected and diffused scalar field can be determined by

formulating a Childress cell problem, in which the fissures and jets (or thermal boundary layers

and plumes in the RBC context) around each cell are stitched together to form a connected domain

wherein U0 is governed by the single equation

ṼN∂NU0 + Ṽs∂sU0 = ∂2
NU0; (2.29)
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see figure 2.4. Here, N and s are coordinates normal to and tangent to the cell boundary; within

the VF centered at y = 0, for example, these coordinates are equal to Y and z, respectively. The

required suturing exploits the fact that the scalar field is merely passively advected through each

corner region.

By making a suitable change of variables, U0(s,N ) = U(ζ, η), with the so-called Crocco or

Von Mises coordinates

ζ =

∫ s

0

Ṽs(ŝ)dŝ, η =
1

2

∫ N
0

Ṽs(s)dN̂ , (2.30)

the advection-diffusion equation (2.29) can be transformed into the diffusion equation

∂ζU =
1

4
∂2
ηU. (2.31)

Equation (2.31) is solved subject to the boundary conditions

U(ζ, 0) = 0 on 0 < ζ < l1, (2.32)

∂ηU(ζ, 0) = 0 on l1 < ζ < l2, (2.33)

U(ζ, 0) = 1 on l2 < ζ < (2l1 + l2), (2.34)

∂ηU(ζ, 0) = 0 on (2l1 + l2) < ζ < L ≡ 2(l1 + l2), (2.35)

where l1 and l2 are the lengths of the fissure-parallel and fissure-normal cell edges, respectively,

measured in the coordinate ζ , and subject to the periodicity condition

U(ζ + nL, η) = U(ζ, η), n = 1, 2, 3, · · · (2.36)

in the time-like coordinate ζ . As first shown by Jiménez & Zufiria (1987), exploiting this period-

icity requirement enables the formal solution of the Childress cell problem to be expressed as

U(ζ, η) =
η√
π

∫ ∞
0

Uw(ζ − p)
p3/2

e−η
2/pdp. (2.37)
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An integral equation for the unknown function Uw(ζ) ≡ U(ζ, η = 0) arising in the integrand of

(2.37) is obtained by setting ∂ηU(ζ, 0) = 0 on the two fissure-normal cell edges. Accurate numer-

ical solution of the resulting integral equation requires careful treatment of the singular behavior

of U in the corner regions and specialized acceleration techniques to evaluate numerous slowly

converging infinite summations; see Chini & Cox (2009) for details. Here, we simply lift the key

results from their investigation. In particular, solution of the Childress cell problem yields the shear

λ̃(z) ≡ ∂YU0(Y = 0, z) induced by the mean streamwise velocity component at the center of the

fissure.

2.3.2 Inviscid Fluctuation Dynamics: Rayleigh, Eikonal and Amplitude Equations

Recalling the WKBJ ansatz in (2.21), the leading-order equations for the fluctuation fields

within the VF are

iα̃Û3 + ∂Y V̂3 + iβ̃Ŵ3 = 0, (2.38)

iα̃
(
U0 − c

)
Û3 + V̂3∂YU0 + iα̃P̂3 = 0, (2.39)

iα̃
(
U0 − c

)
V̂3 + ∂YP̂3 = 0, (2.40)

iα̃
(
U0 − c

)
Ŵ3 + iβ̃P̂3 = 0. (2.41)

From (2.38)–(2.41), it can be deduced that V̂3 and Ŵ3 are π/2 out of phase, confirming that the cor-

relation V ′3W ′3 = 0 in (2.26). A crucial aspect of this leading-order system is that the fluctuations

satisfy ‘quasilinear’ equations with respect to the leading-order streak velocity. One consequence

is that Squire’s transformation can be use to reduce (2.38)–(2.41) to a 2D system. Specifically,

adding α̃x(2.39) to β̃x(2.41) and dividing the sum by α̃ yields

ik̃Û3r + ∂Y V̂3 = 0, (2.42)

ik̃
(
U0 − c

)
Û3r + V̂3∂YU0 + ik̃Π̂3 = 0, (2.43)

ik̃
(
U0 − c

)
V̂3 + ∂YΠ̂3 = 0, (2.44)
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along with a decoupled, but important equation for Ŵ3r,

Ŵ3r =
1

ik̃

β̃

α̃

V̂3∂YU0

U0 − c
, (2.45)

where

k̃ =

√
α̃2 + β̃2, k̃P̂3 = α̃Π̂3,

k̃Û3r = α̃Û3 + β̃Ŵ3 ⇐⇒ k̃Û3 = α̃Û3r − β̃Ŵ3r,

k̃Ŵ3r = α̃Ŵ3 − β̃Û3 ⇐⇒ k̃Ŵ3 = β̃Û3r + α̃Ŵ3r.

(2.46)

The equation relating k̃ to α̃ and β̃ in 2.46 is the Eikonal equation. The horizontal wavenumber

k̃ is a function of λ̃, hence the Eikonal equation relates the specified streamwise wavenumber, the

slowly-varying spanwise wavenumber, and thickness of the shear layer itself. Using a streamfunc-

tion (φ) and vorticity formulation to eliminate the fluctuation pressure, (2.42)–(2.44) can be further

simplified, yielding

∂2
Yφ−

∂2
YU0(
U0 − c

)φ = k̃2φ, (2.47)

where V̂3 = −iφ and Û3r = ∂Yφ/k̃.

Equation (2.47) is Rayleigh’s stability equation, albeit here with a base flow U0 that depends

parametrically on the spanwise coordinate z. Since a neutral mode is sought and the associated

wave phase speed is set by symmetry considerations (i.e. c = n for the VF centered at y = n, where

n = 0,±1,±2 . . .), the total horizontal wavenumber k̃2 may be taken as the eigenvalue. Once k̃2 is

determined, the spanwise wavenumber β̃ may be evaluated. Note that this 1D eigenvalue problem

must be solved over the domain z ∈ [−Lz/2, Lz/2], since the streak field U0 varies (slowly) with

z. The shape of the resulting neutral mode is given by the eigenfuction. To determine the slowly

z-varying amplitude, however, the fluctuation equations must be analyzed at higher order.
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In analogy with (2.21), the following ansatz is made for the higher-order fluctuation fields:



U ′4

V ′4

W ′4

P ′4


= B(x, z)



Û4(Y ; z)

V̂4(Y ; z)

Ŵ4(Y ; z)

P̂4(Y ; z)


ei[α(x−ct)+θ(z/∆̃)] + c.c.,

where B(x, z) is the x− and z-varying amplitude of the O(∆̃4) fluctuation field. Collecting terms

at the next order in ∆̃ yields

B
[
iα̃Û4 + ∂Y V̂4 + iβ̃Ŵ4

]
= −(∂xA)Û3 − ∂z(AŴ3), (2.48)

B
[
iα̃
(
U0 − c

)
Û4 + V̂4∂YU0 + iα̃P̂4

]
= −(iα̃)U1AÛ3 − U0(∂xA)Û3

−AV̂3∂YU1 − (∂xA)P̂3 − AŴ3∂zU0, (2.49)

B
[
iα̃
(
U0 − c

)
V̂4 + ∂YP̂4

]
= −(iα̃)U1AV̂3 − U0(∂xA)V̂3, (2.50)

B
[
iα̃
(
U0 − c

)
Ŵ4 + iβ̃P̂4

]
= −(iα̃)U1AŴ3 − U0(∂XA)Ŵ3 − ∂z(AP̂3).(2.51)

As for the leading-order fluctuation equations, it proves advantageous to apply Squire’s transfor-

mation to (2.48)–(2.51). Multiplying (2.49) by α̃/α̃ and (2.51) by β̃/α̃ yields

B

[
iα̃
(
U0 − c

)
Û4 + V̂4∂YU0 + iα̃2

(
P̂4

α̃

)]
= −U0(∂xA)

α̃

α̃
Û3 − iU1A(α̃Û3)

−AV̂3∂YU1 − α̃(∂xA)
P̂3

α̃
− AŴ3∂zU0, (2.52)

B

[
iβ̃
(
U0 − c

)
Ŵ4 + iβ̃2

(
P̂4

α̃

)]
= −iU1A(β̃Ŵ3)

−U0(∂xA)
β̃

α̃
Ŵ3 − β̃∂z

(
AP̂3

α̃

)
. (2.53)

We define the rotated velocity fields Û4r and Ŵ4r and rescaled pressure Π̂4 as
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Û4r ≡
α̃Û4 + β̃Ŵ4√

α̃2 + β̃2

, (2.54)

Ŵ4r ≡
1

ik̃

β̃

α̃

V̂4∂YU0

U0 − c
, (2.55)

Π̂4 ≡
k̃

α̃
P̂4. (2.56)

Here, for generality of the exposition, we also allowB (and consequentlyA) to depend on the orig-

inal x coordinate, although, ultimately, this x-dependence of the amplitudes is suppressed. Adding

(2.52) to (2.53) and using the definitions (2.54)-(2.56) yields the rotated form of the incompress-

ibility and momentum equations:

B
[
ik̃Û4r + ∂Y V̂4

]
= −(∂xA)

[ α̃
k̃
Û3r −

β̃

k̃
Ŵ3r

]
− ∂z

(
A
[ β̃
k̃
Û3r +

α̃

k̃
Ŵ3r

])
, (2.57)

B
[
ik̃
(
U0 − c

)
Û4r + V̂4∂YU0 + ik̃Π̂4

]
= −(ik̃)U1AÛ3r − U0

k̃

α̃
(∂xA)Û3r − AV̂3∂YU1

− α̃
k̃

(∂xA)Π̂3 − β̃∂z

(
AΠ̂3

k̃

)
− A

[ β̃
k̃
Û3r +

α̃

k̃
Ŵ3r

]
∂zU0, (2.58)

B
[
ik̃
(
U0 − c

)
V̂4 + ∂YΠ̂4

]
= −(ik̃)U1AV̂3 − U0

k̃

α̃
(∂xA)V̂3. (2.59)

The correction to the fluctuation vorticity in the rotated coordinate system is

ω̂4 ≡ (ik̃)V̂4 − ∂Y Û4r. (2.60)

To form a Rayleigh-like equation from (2.58)–(2.59), we begin by taking ∂Y of the rotated x-

momentum equation and multiplying the y-momentum equation by ik̃,
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B
[
ik̃(∂YU0)Û4r + ik̃(U0 − c)∂Y Û4r + ∂Y V̂4∂YU0 + V̂4∂

2
YU0 + ik̃∂YΠ̂4

]
=

−ik̃(∂YU1)Û3rA− ik̃U1(∂Y Û3r)A−
k̃

α̃
(∂YU0)Û3r∂xA

− k̃
α̃
U0(∂Y Û3r)∂xA− ∂Y V̂3(∂YU1)A− V̂3(∂2

YU1)A− α̃

k̃
∂YΠ̂3∂xA− β̃∂z

(
A∂YΠ̂3

k̃

)

−∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
A− ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A, (2.61)

B
[
ik̃(U0 − c)ik̃V̂4 + ik̃ ∂YΠ̂4

]
= −(ik̃)U1ik̃V̂3A− U0

k̃

α̃
ik̃V̂3∂xA. (2.62)

Subtracting equation (2.62) from (2.61) to eliminate the pressure term yields

B
[
ik̃(U0 − c)(ik̃V̂4 − ∂Y Û4r)− (ik̃Û4r + ∂Y V̂4)(∂YU0)− V̂4∂

2
YU0

]
=

− ik̃(ik̃V̂3 − ∂Y Û3r)U1A−
k̃

α̃
(ik̃V̂3 − ∂Y Û3r)U0∂xA

+
k̃

α̃
Û3r∂YU0∂xA+ ik̃Û3r(∂YU1)A+ ∂Y V̂3(∂YU1)A

+ V̂3(∂2
YU1)A+

α̃

k̃
∂YΠ̂3∂xA+ β̃∂z

(
A∂YΠ̂3

k̃

)
+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
A

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A.

(2.63)

Finally, after substituting the incompressibility condition (2.57), we obtain

B[(U0 − c)(−k̃2V̂4 − ik̃∂Y Û4r)− V̂4∂
2
YU0] =

− ik̃(ik̃V̂3 − ∂Y Û3r)U1A−
k̃

α̃
(ik̃V̂3 − ∂Y Û3r)U0∂xA

+
k̃

α̃
Û3r(∂YU0)∂xA+ ik̃Û3r(∂YU1)A+ ∂Y V̂3(∂YU1)A

+ V̂3(∂2
YU1)A+

α̃

k̃
∂YΠ̂3∂xA+ β̃∂z

(
A∂YΠ̂3

k̃

)
+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
A

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A− ∂YU0

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
∂xA

− ∂YU0∂z

(
A

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r)

])
,

(2.64)
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which together with (2.57) form a closed system of equations for Û4r and V̂4.

Further manipulation is required to obtain a single equation for V̂4 involving the Rayleigh-

equation linear operator. First, we observe that

B[(U0 − c)(−k̃2V̂4 − ik̃∂Y Û4r)] = −B[(U0 − c)k̃2V̂4]− (U0 − c)∂Y(Bik̃Û4r)

=−B[(U0 − c)k̃2V̂4]− (U0 − c)∂Y

[
(B∂Y V̂4)

+

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
∂xA+ ∂z

(
A

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r)

])]

=B
[
(U0 − c)(∂2

Y V̂4 − k̃2V̂4)
]

+ (U0 − c)

[
∂Y

(
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

)
∂xA

+ ∂z

(
A∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r)

))]
.

(2.65)

We substitute (2.65) into (2.64) to remove the Û4r term from the left-hand side. After reorganizing

the right-hand side of the equation, the equation for V̂4 becomes

B[(U0 − c)(∂Y V̂4 − k̃2V̂4)− ∂2
YU0V̂4] =

− k̃

α̃
(ik̃V̂3 − ∂Y Û3r)U0∂xA+

k̃

α̃
Û3r(∂YU0)∂xA

+
α̃

k̃
∂YΠ̂3∂xA− (U0 − c)∂Y

(
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

)
∂xA− ∂YU0

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
∂xA

+ β̃∂z

(
A∂YΠ̂3

k̃

)
− ∂YU0∂z

(
A

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r)

])
− (U0 − c)∂z

(
A∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r)

))

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
A

+
[
(k̃2V̂3 + ik̃∂Y Û3r)U1 + V̂3∂

2
YU1 + [ik̃Û3r + ∂Y V̂3]∂YU1

]
A.

(2.66)

Crucially, the terms multiplying U1 are a combination of continuity (identified in red) and the

Rayleigh equation (highlighted in blue) at leading order; hence both are identically zero. We

expand the partial z derivatives and group like terms in A to obtain
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B
[
(U0 − c)(∂Y V̂4 − k̃2V̂4)− ∂2

YU0V̂4

]
=

− k̃

α̃
(ik̃V̂3 − ∂Y Û3r)U0∂xA+

k̃

α̃
Û3r(∂YU0)∂xA

+
α̃

k̃
∂YΠ̂3∂xA− (U0 − c)∂Y

(
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

)
∂xA− ∂YU0

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
∂xA

+
β̃

k̃
∂YΠ̂3∂zA− ∂YU0

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
∂zA−

(
U0 − c

)
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
∂zA

+ β̃∂z

(
∂YΠ̂3

k̃

)
A− ∂YU0∂z

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A−

(
U0 − c

)
∂z

(
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

))
A

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
A+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)
A

≡ f4.

(2.67)

For (2.67) to be solvable, the right-hand side must be orthogonal to V̂†3 , the adjoint null solution

associated with the linear operator on the left-hand side (see appendix B). Using integration by

parts the adjoint Rayleigh equation can be shown to be

∂2
Y [(U0 − c∗)V̂†3 ]− k̃2[(U0 − c∗)V̂†3 ]− (∂2

YU0)V̂†3 = 0, (2.68)

where the asterisk denotes complex conjugation. Therefore, if V̂3 is a null solution of Rayleigh’s

equation

(U0 − c)[∂2
Y V̂3 − k̃2V̂3]− (∂2

YU0)V̂3 = 0 (2.69)

with c ∈ <, (i.e. c = c∗) then V̂†3 = V̂3/(U0 − c) is a solution to the adjoint Rayleigh equation

(2.68). The Fredholm alternative condition requires (f4, V̂†3) = 0, where f4 is the right-hand side

of (2.67) and the inner product of two complex functions f(Y), g(Y) defined over the VF is given

by (f, g) ≡ −
∫∞
−∞ g

∗fdY . Here, −
∫∞
−∞ denotes the principal value integral. This condition can be

satisfied only if the following amplitude equation holds:

ax∂xA + az∂zA + a0A = 0, (2.70)
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where

ax = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− k̃

α̃
(U0 − c)(ik̃V̂3 − ∂Y Û3r) +

k̃

α̃
(∂YU0)Û3r +

α̃

k̃
∂YΠ̂3

− ∂YU0

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
−
(
U0 − c

) [ α̃
k̃
∂Y Û3r −

β̃

k̃
∂YŴ3r

]]
dY , (2.71)

az = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
β̃

k̃
∂YΠ̂3 − ∂YU0

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]

−
(
U0 − c

)
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)]
dY , (2.72)

a0 = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
β̃∂z

(
∂YΠ̂3

k̃

)
− ∂YU0∂z

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]

−
(
U0 − c

)
∂z

(
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

))

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)]
dY . (2.73)

The apparent singularities in the expressions for ax, az and a0 associated with the prefactor

(U0 − c)−1 can be removed through repeated use of the incompressibility condition (2.42) and

Rayleigh’s equation (2.47). Following considerable algebraic manipulation (see appendix C), the

coefficients in the amplitude equation (2.70) can be simplified greatly:

ax = −2iα̃

∫ ∞
−∞
V̂3V̂∗3dY , (2.74)

az = −2iβ̃

∫ ∞
−∞
V̂3V̂∗3dY , (2.75)

a0 = −i
∫ ∞
−∞

[
2β̃∂z(V̂3)V̂∗3 + (∂zβ̃)V̂3V̂∗3 − 2

β̃

k̃2
∂Y

(
∂zU0

U0 − c

)
(∂Y V̂3)V̂∗3

+ 2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
V̂3V̂∗3∂YU0

U0 − c

]]
dY . (2.76)

Note that the integrand in (2.76) is regular as Y → 0 (since U0 ∼ λ̃Y) and all integrals are

convergent, as shown in appendix C.
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To identify the simplest viable inertial-layer SSP, we henceforth seek solutions to (2.70) for

which A = A(z), only. Consequently, the amplitude equation simplifies to

az∂zA + a0A = 0, (2.77)

which can be readily integrated, yielding an equation for the amplitude function

A = exp
(
−
∫ z

0

a0

az
dz

)
, (2.78)

where A(z) = A(−z); i.e., A is even about z = 0, and the constant of integration has been

subsumed into the constant A arising in the WKBJ ansatz.

The solution (2.78) breaks down at those z locations where az → 0. In particular, the coefficient

az → 0+ while a0 < 0 remains finite as β̃ → 0+, as can be corroborated using (2.75)-(2.76). Thus,

there is a curve (a line in the x–z plane in the present context), termed a caustic, on which the

amplitude A(z) formally becomes unbounded. The caustic separates the flow within the VF into

a region with finite-amplitude fluctuations, termed the ‘illuminated’ region, and a region in which

the fluctuations are exponentially small, termed the ‘shadow’ region. A more careful analysis

(see appendix D) confirms that within an asymptotically small neighborhood of each caustic the

amplitude is viscously regularized and thus does not become unbounded. Moreover, the spanwise

fluctuation velocity is suppressed at the caustic since the spanwise fluctuation pressure gradient

is weak there relative to its magnitude in the illuminated region, enabling the incident Rayleigh

mode to two-dimensionalize prior to being reflected. Upon reflection, the rays leaving each caustic

experience a π/2 phase shift in z. Finally, it can be shown that the contribution to the roll-flow

energy budget (performed in section 2.5) from this neighborhood of each caustic is asymptotically

small (again, because w′ is suppressed there) and therefore can be neglected from the integral

(2.137) used to calculate Ω̄c.
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2.4 Critical Layers

Although the rotated neutral-mode velocity components Û3r and V̂3 are regular for all Y ∈

(−∞,∞), the rotated spanwise fluctuation velocity Ŵ3r is singular as Y → 0, as evident from

inspection of (2.45). Thus, a critical layer (CL) emerges within the VF, where the horizontal mean

streamwise flow speed matches the phase speed (i.e. 0, for the VF centered at Y = 0) of the

instability mode. Within this CL, the Y−1 amplification of the (non-rotated) fluctuation fields Û3

and Ŵ3 is viscously regularized.

To examine the dynamics within the CL, we introduce a rescaled fissure-normal coordinate

Y ≡ y/δ̃, where δ̃ is the scaled thickness of the critical layer (and, again, δ̃/∆̃→ 0 as Re→∞),

and posit the following expansions:

u(x, y, z, t;Re) ∼ ∆̃U1(Y, z) + a′
∆̃

δ̃
U ′2(x, Y, z) + · · · , (2.79)

v(x, y, z, t;Re) ∼ aδ̃ V 4(Y, z) + a′V ′3(x, Y, z) + · · · , (2.80)

w(x, y, z, t;Re) ∼ aW 2(z) + a′
∆̃

δ̃
W ′

2(x, Y, z) + a∆̃W 3(Y, z) + · · · , (2.81)

p(x, y, z, t;Re) ∼ a2P 4(z) + a′P ′3(x, Y, z) + · · · . (2.82)

Thus, for smooth matching with the streak and roll flow in the VF, the streak velocity becomes

small, i.e. O(∆̃), while the mean spanwise velocity component remains O(ā) within the CL. The

latter scaling follows because, within the CL, w̄ is not sheared at leading order. In addition, the

fissure-normal fluctuation velocity component v′ remains O(a′) as the CL is approached while

the tangential components u′ and w′ blow-up algebraically; this growth is accounted for by the

amplification of these fluctuation velocity components by the factor ∆̃/δ̃ in (2.79) and (2.81).

2.4.1 Mean Equations

We next demonstrate that the nonlinear self-interaction of the fluctuation mode within the CL

gives rise to a Reynolds stress divergence that ultimately drives a spanwise mean flow. To deter-

mine this transverse mean-flow response, we apply the streamwise/fast-phase averaging operation
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to the ⊥-momentum equations. When integrated across the CL, the leading-order (i.e. O(∆̃3))

balance ∂2
YW 3 − ∂Y (V ′3W

′
2) = 0 fails to induce a jump in the mean x-vorticity. Accordingly, we

turn to the mean equations at O(∆̃4):

∂2
YU1 = 0, (2.83)

∂Y P̃4 = 0, (2.84)

W̃2∂zW̃2 = −∂zP̃4 −
∂z(W ′

2W
′
2)

Ω
2

c

− ∂Y (V ′3W
′
3)

Ω
2

c

+ ∂2
Y W̃4, (2.85)

∂Y Ṽ4 + ∂zW̃2 = 0. (2.86)

The solution to the mean x-momentum equation is

U1 = λ̃Y. (2.87)

Here, again, the mean transverse velocities and pressure have been rescaled so that (V 4,W 2) =

Ω̄c(Ṽ4, W̃2) and P 4 = Ω̄2
cP̃4. Balancing the fluctuation-induced forcing with mean diffusion in

both the O(∆̃3) and the O(∆̃4) mean ⊥-momentum equations requires the scaling relationship

(a′)2 = a/(Ω̄cRe) to be satisfied. Recalling that a = 1/(Ω̄cRe∆̃
2), the former relation is consistent

with the requirement that a′ = ∆̃a, an ordering already presumed in the analysis of the mean

dynamics within the VF (see section 2.3.1). From the analysis of the VF it is also known that

−∂zP̃4 = W̃2∂zW̃2.

Since both P̃4 and W̃2 are independent of Y , this equality must also hold within the critical layer.

Subtracting this asymptotic balance from (2.85) and integrating the result across the CL (noting

that the term involving the cross-correlation again integrates to zero) yields

[
∂Y W̃4

]+

−
=

1

Ω̄2
c

∫ ∞
−∞

∂z
(
W ′

2W
′
2

)
dY, (2.88)

where [·]+− denotes the jump across the CL.

43



Matching the mean x-vorticity at the edges of the CL with that at the center of the VF yields

a crucial final scaling relationship δ̃ = ∆̃2. Moreover, the jump in the mean x-vorticity across the

CL now can be expressed as

[
∂YW̃3

]+

−
=

1

Ω̄2
c

∫ ∞
−∞

∂z
(
W ′

2W
′
2

)
dY. (2.89)

Thus, as in VWI theory, a jump in the x-mean spanwise shear across the CL is induced by the

nonlinear self-interaction of the Rayleigh mode within the CL. A key distinction, however, arises

because of the separation in length scales between the rolls and the instability mode; in particular,

a modulational spanwise derivative of the Rayleigh-mode-induced Reynolds stress is operative in

the present construction.

2.4.2 Fluctuation Equations

To evaluate the stress jump (2.89), the fluctuation dynamics within the CL must be analyzed.

The requirement that viscous forces arise at leading order in the fluctuation equations yields the

scaling relationship Reδ̃3 = ∆̃2. Using this relation in conjunction with the three other scaling

relationships among the asymptotic parameters ∆̃, δ̃, a and a′ gives

∆̃ =
(
Ω̄cRe

)−1/4
; δ̃ =

(
Ω̄cRe

)−1/2
; a = ∆̃2; a′ = ∆̃3; (2.90)

implying ∆ = Re−1/4 and δ = Re−1/2 (see table 2.2). For the CL at y = 0, the leading-order

fluctuation equations thus reduce to

∂xU
′
2 + Ω̄c∂Y V

′
3 + ∂zW

′
2 = 0, (2.91)

U1∂xU
′
2 + V ′3∂YU1 = −∂xP ′3 + Ω̄c∂

2
YU
′
2, (2.92)

∂Y P
′
3 = 0, (2.93)

U1∂xW
′
2 = −∂zP ′3 + Ω̄c∂

2
YW

′
2, (2.94)
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where the factor Ω̄c appears as a diffusion coefficient in the fluctuation momentum equations owing

to the redefinition of the small parameter ∆ → ∆̃. It can be seen from the y-momentum equation

that the fluctuating pressure in this region is independent of Y . We make the following ansatz for

the fluctuation fields in the CL:



U ′2

V ′3

W ′
2

P ′3


= A



Û2(Y ; z)

V̂3(Y ; z)

Ŵ2(Y ; z)

P̂3(z)


A(z) ei[α(x−ct)+θ(z/∆̃)] + c.c.

Substituting this ansatz into (2.94) yields an equation for Ŵ2,

iα̃U1Ŵ2 = −iβ̃P̂3|Y=0 + Ω̄c∂
2
Y Ŵ2, (2.95)

and using (2.87) to eliminate U1 gives

∂2
Y Ŵ2 − i

α̃λ̃

Ωc

Y Ŵ2 =
iβ̃

Ωc

P̂3|Y=0. (2.96)

The Airy-like solution for Ŵ2 is proportional to Yi(s), where Yi solves Yi′′ − isYi = 1
π

subject

to decay conditions as as |s| → ∞ and has the following integral representation (Balmforth et al.,

1997):

Yi(s) ≡ − 1

π

∫ ∞
0

exp(−η
3

3
− isη)dη. (2.97)

The real and imaginary parts of the function Yi(s) are plotted in figure 2.5. Hence, the solution to

(2.96) can be expressed as

Ŵ2 = −Ω
−1/3

c (α̃λ̃)−2/3(iβ̃P̂3|Y=0)

∫ ∞
0

e
−i
(
α̃λ̃
Ωc

)1/3
Y ϕ−ϕ3/3

dϕ. (2.98)
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Figure 2.5: The real (Re) and imaginary (Im) parts of the function Yi(s) for real s. (Adapted from
Balmforth et al. (1997).)

To determine how this solution will match with the spanwise fluctuation velocity component within

the VF, the behavior of Yi(s) at large |s| is required:

Yi(s) ∼ i

πs

∞∑
n=0

(3n)!

3nn!
(is)−3n if arg(s) <

1

6
π or

5

6
π < arg(s), (2.99)

and

Yi(s) ∼ exp
[

2

3
s3/2

]
if

1

6
π < arg(s) <

5

6
π. (2.100)

These asymptotic expansions show Yi(s) ∼ i/(πs) as the real part of s→ ±∞ with the imaginary

component of s fixed, confirming that the fluctuating spanwise velocity component decays in the

far field of the CL (i.e. as |Y | → ∞) to smoothly match with its functional form in the internal

shear layer.

From the mean spanwise momentum equation, the vorticity jump across the CL is given by

(2.89). To evaluate the vorticity jump,W ′
2W

′
2 first needs to be determined in terms of Ŵ2. Recalling

46



that the analysis in appendix D indicates that the fluctuation fields experience a π/2 spanwise phase

shift upon reflection from each caustic, the spanwise fluctuation velocity can be expressed as

W ′
2 = A

(
AŴ+

2 e
i(αx+θ+π

4
) + AŴ+

2 e
i(αx+θ+ 3π

4
)

+ AŴ−
2 e

i(αx−θ−π
4

) + AŴ−
2 e

i(αx−θ− 3π
4

) + c.c.

)
.

(2.101)

Inspection of the fluctuation z-momentum equation for β̃ → −β̃ shows that Ŵ2 ≡ Ŵ+
2 = −Ŵ−

2 .

Forming the product of W ′
2 with itself and applying the streamwise/fast-phase averaging operation

therefore yields

(W ′
2W

′
2) = 8A2A2Ŵ+

2 Ŵ
+∗
2 ≡ 8A2A2Ŵ2Ŵ

∗
2 . (2.102)

Substituting (2.102) into (2.89) then gives

[
∂YW̃3

]+

−
= 8A2Ω

−2

c

∫ ∞
−∞

∂z(A
2Ŵ2Ŵ

∗
2 )dY. (2.103)

Using (2.98) to eliminate Ŵ2 yields

[
∂YW̃3

]+

−
= 8
A2

Ω
2

c

∫ ∞
−∞

∂z

(
Ω
−2/3

c A2(α̃λ̃)−4/3β̃2
∣∣∣P̂3|Y=0

∣∣∣2
×
∫ ∞

0

e
−i
(
α̃λ̃
Ωc

)1/3
Y ϕ−ϕ3/3

dϕ

∫ ∞
0

e
i
(
α̃λ̃
Ωc

)1/3
Y ψ−ψ3/3

dψ

)
dY.

(2.104)

We rescale the Y term so that Ŷ =
(
α̃λ̃
Ωc

)1/3

Y , giving

[
∂YW̃3

]+

−
= 8
A2

Ω
2

c

∫ ∞
−∞

∂z

(
Ω
−1/3

c A2(α̃λ̃)−5/3β̃2
∣∣∣P̂3|Y=0

∣∣∣2 ∫ ∞
0

e−iŶ ϕ−ϕ
3/3dϕ

∫ ∞
0

eiŶ ψ−ψ
3/3dψ

)
dŶ

=
8A2

Ω
7/3

c α̃5/3
∂z

(
A2β̃2

∣∣∣P̂3|Y=0

∣∣∣2
λ̃5/3

∫ ∞
−∞

[∫ ∞
0

e−iŶ ϕ−ϕ
3/3dϕ

∫ ∞
0

eiŶ ψ−ψ
3/3dψ

]
dŶ

)
.

(2.105)

Next, we use the fact that if arbitrary functions f and g are integrable functions, then the integral of

their convolution on the whole space (−∞,∞) is simply obtained as the product of their integrals
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each taken on the half space [0,∞). The convolution used for (2.105) is summarized in appendix

E. This result gives

[
∂YW̃3

]+

−
=

8A2

Ω
7/3

c α̃5/3
∂z

(
A2β̃2

∣∣∣P̂3|Y=0

∣∣∣2
λ̃5/3

∫ ∞
−∞

[∫ ∞
0

√
π
√
ϕ
e−

Ŷ 2

ϕ
−ϕ3/12dϕ

]
dŶ

)

=
8πA2

Ω
7/3

c α̃5/3
∂z

(
A2β̃2

∣∣∣P̂3|Y=0

∣∣∣2
λ̃5/3

∫ ∞
0

[
e−ϕ

3/12

∫ ∞
−∞

1
√
πϕ

e−
Ŷ 2

ϕ dŶ

]
dϕ

)
.

(2.106)

Recognizing the Ŷ integral inside the brackets as twice the error function, this expression simplifies

to [
∂YW̃3

]+

−
=

8πA2

Ω
7/3

c α̃5/3
∂z

(
A2β̃2

∣∣∣P̂3|Y=0

∣∣∣2
λ̃5/3

∫ ∞
0

e−ϕ
3/12dϕ

)
. (2.107)

The remaining integral can be evaluated analytically in terms of the Gamma function. Conse-

quently, the stress jump may be expressed as

[
∂YW̃3

]+

−
=

8πA2
(

2
3

)2/3
Γ
(

1
3

)
Ω

7/3

c α̃5/3
∂z

(
A2β̃2

∣∣∣P̂3|Y=0

∣∣∣2
λ̃5/3

)
, (2.108)

where Γ is the Gamma function. Recalling P̂3 = α̃
k̃
Π̂3, and letting n0 = 2π(2/3)2/3Γ(1/3),

following the notation in Hall & Sherwin (2010), (2.108) reduces to

[
∂YW̃3

]+

−
=

4n0A2α̃1/3

Ω
7/3

c

∂z

(
A2β̃2

∣∣∣Π̂3|Y=0

∣∣∣2
k̃2λ̃5/3

)
. (2.109)

Here, again, the z derivative is a modulational derivative unlike in VWI. Finally, normalizing so

that |Π̂3|Y=0 = λ̃/k̃ (so that, conveniently, V̂3|Y=0 = −i) gives

[
∂YW̃3

]+

−
=

4n0A2α̃1/3

Ω
7/3

c

∂z

(
A2β̃2λ̃1/3

k̃4

)
. (2.110)

Consequently, the jump in spanwise shear stress across the CL is known in terms of the Rayleigh-

mode parameters, i.e. the scalar amplitude A, amplitude function A(z), streamwise wavenumber
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α̃ and spanwise wavenumber β̃(z), and in terms of the streak shear stress λ̃(z) and the to-be-

determined roll vorticity Ω̄c. Note that Ω̄c also must be known to relate the O(1) streamwise

wavenumbers α̃ and ᾰ. Since the latter is rendered dimensionless using only Re1/4 and ly, it is

a more natural control parameter, e.g., for numerical computations of ECS at large but finite Re

using the full NS equations.

2.5 Roll-Flow Energy Budget

To close the analysis, the nonlinear eigenvalue Ω̄c must be self-consistently determined. The

required calculation exploits the fact that, physically, the stress jump across the CL drives a span-

wise flow within and, thence, a roll flow outside the VFs. More specifically, the work done by the

mean viscous tangential stress at the CL/VF boundary is balanced by dissipation of roll kinetic en-

ergy within the UMZ. This constraint can be utilized to determine the unknown roll vorticity Ω̄c by

integrating the steady form of the x-mean ⊥-kinetic energy equation over one roll cell, excluding

the critical layers at y = 0, 1.

We begin with the exact mean equations,

∂tv + v∂yv + w∂zv = −∂yp− ∂y(v′v′)− ∂z(v′w′) +
1

Re
∇2
⊥v, (2.111)

∂tw + v∂yw + w∂zw = −∂zp− ∂y(v′w′)− ∂z(w′w′) +
1

Re
∇2
⊥w. (2.112)

Multiplying (2.111) by v̄ and (2.112) by w̄ yields a mean energetics equation:

v∂tv + w∂tw+vv∂yv + wv∂zv + vw∂yw + ww∂zw =

− v∂yp− w∂zp− v∂y(v′v′)− v∂z(v′w′)− w∂y(v′w′)− w∂z(w′w′)

+
1

Re
(v∇2

⊥v + w∇2
⊥w),

(2.113)

or, in conservative form,
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∂t

(
v2

2
+
w2

2

)
+∂y

[
v̄

(
v2

2
+
w2

2

)]
+ ∂z

[
w̄

(
v2

2
+
w2

2

)]
=

− ∂y(v̄p̄)− ∂z(w̄p̄)− v∂y(v′v′)− v∂z(v′w′)− w∂y(v′w′)

− w∂z(w′w′) +
1

Re
(v∇2

⊥v + w∇2
⊥w).

(2.114)

We integrate the steady form of (2.114) over one cell excluding the critical layers at y = 0 and

y = 1 to obtain

∫ Lz/2

0

∫ 1−

0+

{
∂y

[
v̄

(
v2

2
+
w2

2

)]
︸ ︷︷ ︸

1

+ ∂z

[
w̄

(
v2

2
+
w2

2

)]
︸ ︷︷ ︸

2

=

−∂y(v̄p̄)− ∂z(w̄p̄)︸ ︷︷ ︸
3

−v∂y(v′v′)− v∂z(v′w′)− w∂y(v′w′)− w∂z(w′w′)︸ ︷︷ ︸
4

+
1

Re
(v∇2

⊥v + w∇2
⊥w)︸ ︷︷ ︸

5

}
dydz.

(2.115)

The asymptotic matching conditions along y = 0+ and y = 1− and the exact symmetry conditions

along z = 0 and z = Lz/2 needed for the evaluations of the integrals are as follows:

v(1−, z) = O(∆4), (2.116)

v(0+, z) = O(∆4), (2.117)

w(y, 0) = 0, (2.118)

w(y, Lz/2) = 0. (2.119)

The leading-order balance in the roll-flow energy budget (2.115) arises at O(∆8) and, using

the x-mean incompressibility condition and matching and symmetry conditions around the roll-

cell periphery, can be shown to include only the term proportional to 1/Re. To see this, we first

analyze the integral of the terms in group one:
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∫ Lz/2

0

∫ 1−

0+

∂y

[
v̄

(
v2

2
+
w2

2

)]
dydz = =

∫ Lz/2

0

[
v̄

(
v2

2

) ∣∣∣1−
0+

+ v̄

(
w2

2

) ∣∣∣1−
0+

]
dz,

=

∫ Lz/2

0

[
v̄

(
v2

2

) ∣∣∣1−
0+

]
dz,

= O(∆12),

(2.120)

upon noting that w̄2 is even and v̄ is odd about z = Lz/4 (along lines y = 0+ and y = 1−).

The integral of the terms belonging to group two trivially vanishes using the symmetry condi-

tions (2.118)-(2.119). Next, we integrate the terms in group three in (2.115):

−
∫ Lz/2

0

∫ 1−

0+

[∂y(v̄p̄) + ∂z(w̄p̄)] dydz = −

[∫ Lz/2

0

v̄p̄
∣∣∣y=1−

y=0+
dz +

∫ 1−

0+

w̄p̄
∣∣∣z=Lz/2
z=0

dy

]
,

= 0,

(2.121)

using the fact that, within the VFs at y = 0 and y = 1, p̄, like w̄2, is an even function of z about

the line z = π/4 (cf. (2.25)). Finally, the terms in group four in (2.115) are asymptotically small

compared to the terms comprising group five over the entire domain of integration, owing to the

scaling of the fluctuation fields. Therefore, at leading order, (2.115) reduces to

∫ Lz/2

0

∫ 1−

0+

[
v∇2
⊥v + w∇2

⊥w
]
dydz = 0, (2.122)

or, equivalently, upon substituting v = Ωcṽ and w = Ωcw̃

∫ Lz/2

0

∫ 1−

0+

[
ṽ∇2
⊥ṽ + w̃∇2

⊥w̃
]
dydz = 0. (2.123)

We next evaluate this integral asymptotically. Considering first the terms involving w̃, we

integrate by parts to show
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∫ Lz/2

0

∫ 1−

0+

[
w̃∇2

⊥w̃
]
dydz =

∫ Lz/2

0

∫ 1−

0+

[
w̃∇⊥ · (∇⊥w̃)

]
dydz,

=

∫ Lz/2

0

∫ 1−

0+

[
∇⊥ · (w̃∇⊥w̃)− (∇⊥w̃) · (∇⊥w̃)

]
dydz,

=

∫ Lz/2

0

∫ 1−

0+

∂y [w̃∂yw̃] dydz +

∫ Lz/2

0

∫ 1−

0+

∂z [w̃∂zw̃] dydz

−
∫ Lz/2

0

∫ 1−

0+

[
(∂yw̃)2 + (∂zw̃)2

]
dydz.

(2.124)

Using periodicity in the z-direction, we obtain

∫ Lz/2

0

∫ 1−

0+

[
w̃∇2

⊥w̃
]
dydz =

∫ Lz/2

0

w̃∂yw̃
∣∣∣y=1−

y=0+
dz −

∫ Lz/2

0

∫ 1−

0+

[
(∂yw̃)2 + (∂zw̃)2

]
dydz.

(2.125)

Moreover, using w̃∂yw̃
∣∣∣
y=1−

= −w̃∂yw̃
∣∣∣
y=0+

,

∫ Lz/2

0

∫ 1−

0+

[
w̃∇2

⊥w̃
]
dydz =− 2

∫ Lz/2

0

w̃∂yw̃
∣∣∣
y=0+

dz −
∫ Lz/2

0

∫ 1−

0+

[
(∂yw̃)2 + (∂zw̃)2

]
dydz,

=− 2

∫ Lz/2

0

w̃∂yw̃
∣∣∣
y=0+

dz −
∫ Lz/2

0

∫ 1−

0+

(∇⊥w̃)2dydz.

(2.126)

We next consider the terms in (2.123) involving ṽ. Integrating by parts yields

∫ Lz/2

0

∫ 1−

0+

[
ṽ∇2
⊥ṽ
]
dydz =

∫ Lz/2

0

∫ 1−

0+

[
ṽ∇⊥ · (∇⊥ṽ)

]
dydz,

=

∫ Lz/2

0

∫ 1−

0+

[
∇⊥ · (ṽ∇⊥ṽ)− (∇⊥ṽ) · (∇⊥ṽ)

]
dydz,

=

∫ Lz/2

0

∫ 1−

0+

∂y [ṽ∂yṽ] dydz +

∫ Lz/2

0

∫ 1−

0+

∂z [ṽ∂zṽ] dydz

−
∫ Lz/2

0

∫ 1−

0+

[
(∂yṽ)2 + (∂zṽ)2

]
dydz.

(2.127)

Using periodicity in the z-direction and noting that ṽ∂yṽ
∣∣∣
y=1−

= −ṽ∂zw̃
∣∣∣
y=1−

= O(∆6) and

similarly for the term evaluated at y = 0+, while the term on the left of (2.127) is at least O(∆4):
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∫ Lz/2

0

∫ 1−

0+

[
ṽ∇2
⊥ṽ
]
dydz =−

∫ Lz/2

0

∫ 1−

0+

[
(∂yṽ)2 + (∂zṽ)2

]
dydz,

=−
∫ Lz/2

0

∫ 1−

0+

(∇⊥ṽ)2dydz.

(2.128)

Collecting these various results, (2.123) simplifies to

− 2

∫ Lz/2

0

w̃∂yw̃
∣∣∣
y=0+

dz =

∫ Lz/2

0

∫ 1−

0+

[
(∇⊥ṽ)2 + (∇⊥w̃)2

]
dydz, (2.129)

where each term is O(∆4). Physically, (2.129) indicates that the work done by the viscous stress

at the edge of the CL is balanced by the viscous dissipation of roll kinetic energy in the interior of

each roll cell.

The dissipation integral on the right-hand side of (2.129) can be further simplified, as we now

demonstrate:

∫ Lz/2

0

∫ 1−

0+

[
(∇⊥ṽ)2 + (∇⊥w̃)2

]
dydz

=

∫ Lz/2

0

∫ 1−

0+

[
(∂yw̃)2 − 2(∂yw̃)(∂zṽ) + (∂zṽ)2 + (∂zw̃)2 + 2(∂yw̃)(∂zṽ) + (∂yṽ)2

]
dydz,

=

∫ Lz/2

0

∫ 1−

0+

(∂yw̃ − ∂zṽ)2 dydz + 2

∫ Lz/2

0

∫ 1−

0+

(∂yw̃)(∂zṽ)dydz

+

∫ Lz/2

0

∫ 1−

0+

[
(∂zw̃)2 + (∂yṽ)2

]
dydz.

(2.130)

We use integration by parts to recognize that

2

∫ Lz/2

0

∫ 1−

0+

(∂yw̃)(∂zṽ)dydz = 2

∫ Lz/2

0

∫ 1−

0+

(∂yṽ)(∂zw̃)dydz. (2.131)

Substituting (2.131) into (2.130) yields

∫ Lz/2

0

∫ 1−

0+

[
(∇⊥ṽ)2 + (∇⊥w̃)2

]
dydz =

∫ Lz/2

0

∫ 1−

0+

(∂yw̃ − ∂zṽ)2 dydz

+

∫ Lz/2

0

∫ 1−

0+

(∂yṽ + ∂zw̃)2 dydz.

(2.132)
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Using incompressibility to eliminate the last integral, and noting, asymptotically, the core vorticity

(∂yw̃ − ∂zṽ) ≈ 1, we obtain

∫ Lz/2

0

∫ 1−

0+

[
(∇⊥ṽ)2 + (∇⊥w̃)2

]
dydz =

∫ Lz/2

0

∫ 1−

0+

dydz

=
Lz
2
.

(2.133)

Substituting into (2.129) then yields

− 2

∫ Lz/2

0

(w̃∂yw̃) |y=0+dz =
Lz
2
. (2.134)

From the analysis of the fluctuation dynamics within the CL (section 2.4.2), recall the vorticity

jump across the CL expression as

[
∂YW̃3

]+

−
=

4n0A2α̃1/3

Ω
7/3

c

∂z

(
A2β̃2λ̃1/3

k̃4

)
. (2.135)

Using (2.134) along with the expression for w̃|y=0+ given in (2.18) yields

16

∫ Lz/2

0

(
n0A2α̃1/3

Ω
7/3

c

∂z

(
A2β̃2λ̃1/3

k̃4

)
n=∞∑
n=0

[
Lz
n2π2

tanh

(
nπ

Lz

)
sin

(
2nπz

Lz

)])
dz =

Lz
2
.

(2.136)

Finally, rearranging (2.136), we obtain an equation for Ωc:

Ω
7/3

c =
32A2n0α̃

1/3

π2

∫ Lz/2

0

(
∂z

(
A2β̃2λ̃1/3

k̃4

)
n=∞∑
n=0

[
1

n2
tanh

(
nπ

Lz

)
sin

(
2nπz

Lz

)])
dz.

(2.137)

This expression relates Ωc to known or computable quantities, thereby closing the problem for the

construction of inertial ECS.

2.6 Summary

Figure 2.6 provides a schematic representation of the new self-sustaining process supporting UMZs

and VFs in the inertial domain of turbulent wall flows as deduced from the asymptotic analysis.
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Figure 2.6: Schematic diagram of a mechanistic self-sustaining process for UMZs and VFs in
the inertial domain of turbulent wall flows. The feedback loop shown indicates that rolls having
O(Re−1/2) circulation strength redistribute the background shear flow to induce an O(1) inflected
streamwise flow. The counter-rotating and stacked rolls are sufficiently strong to differentially
homogenize the background flow, thereby creating and maintaining both UMZs and internal shear
layers (VFs). The wall-normal (y) inflections in the streamwise-mean streamwise velocity support
an O(Re−3/4) Rayleigh (inviscid shear) instability mode that has a streamwise (x) wavelength
2π/α � 1 that is commensurate with the VF thickness. Consequently, the Rayleigh mode is
confined to the VF, where it is refracted and rendered three-dimensional by the comparably slow
spanwise variation in the fissure thickness, and the resulting ECS are inherently multiscale. The 3D
Rayleigh mode suffers a critical-layer singularity, causing the magnitude of the x-varying spanwise
velocity component to be amplified to O(Re−1/2). The resulting nonlinear self-interaction of the
Rayleigh mode within the CL drives the roll motions in the UMZs through a modulational (i.e.
slow spanwise) Reynolds stress divergence involving this velocity component.
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Field UMZ: y = O(1) VF: y = O(∆) = O(Re−1/4) CL: y = O(δ) = O(Re−1/2)

ū 1 1 Re−1/4

v̄ Re−1/2 Re−3/4 Re−1

w̄ Re−1/2 Re−1/2 Re−1/2

Ω̄ Re−1/2 Re−1/2 Re−1/2

p̄ Re−1 Re−1 Re−1

u′ E.S.T. Re−3/4 Re−1/2

v′ E.S.T. Re−3/4 Re−3/4

w′ E.S.T. Re−3/4 Re−1/2

p′ E.S.T. Re−3/4 Re−3/4

Table 2.2: Summary of the scalings of the mean and fluctuation fields in each of the three fissure-
normal subdomains: UMZ = Uniform Momentum Zone; VF = Vortical Fissure / Internal Shear
Layer; and CL = Critical Layer.

Table 2.2 summarizes the scalings associated with the analysis of each of the subdomains (UMZs,

VFs, and CLs).

Physically, the counter-rotating and stacked rolls are sufficiently strong to differentially ho-

mogenize the background flow, thereby creating and maintaining both O(1) UMZs and internal

shear layers of thickness ∆, where ∆(Re) → 0 as Re → ∞ . Because the streamwise-varying

fluctuation fields are exponentially small within the UMZs, the x-mean rolls and streaks cannot be

directly driven there. Instead, in this inertial layer SSP, the driving for the staircase-like profiles of

the instantaneous streamwise velocity is confined to the internal layers of concentrated spanwise

vorticity, i.e. to the VFs.

The singularities arising in the largely dynamically-inviscid roll/streak flow within the UMZs

are regularized by viscous forces and torques acting within emergent internal shear layers (VFs)

and streamwise jets, both of dimensionless thicknessO(∆), acting along the periphery of each cell.

In the proposed configuration, no physical boundary exists along the horizontal planes separating

rows of stacked counter-rotating rolls. Accordingly, the leading-order mean spanwise velocity

component within the VF is not sheared; i.e. ∂YW2 = 0→W2 =W2(z), only. Consequently, the

roll vorticity has the same asymptotic size O(Re−1/2) within the VF and UMZ ensuring smooth

matching of this field is possible.

56



Within each fissure, the wall-normal (y) inflections in the streamwise-mean streamwise ve-

locity support an O(Re−3/4) Rayleigh (inviscid shear) instability mode. The Rayleigh mode has a

streamwise (x) wavelength 2π/α� 1 that is commensurate with the VF thickness, i.e. O(Re−1/2).

Consequently, the Rayleigh mode is confined to the VF, where it is refracted and rendered three-

dimensional by the comparably slow spanwise variation in the fissure thickness. The resulting

multiscale ECS are analyzed using a WKBJ ansatz. The fluctuations satisfy quasilinear equations

with respect to the leading-order streak velocity, which can be collapsed into Rayleigh’s equation

following Squire’s transformation. This eigenvalue problem is solved to provide the fluctuation

fields within the VF to within some unknown z-varying amplitude. The eigenvalue k̃2 is the total

horizontal wavenumber of the neutral Rayleigh mode, which varies with z since the mean shear λ̃

does so. To solve for the slowly spanwise-varying amplitude, the fluctuation fields are analyzed at

a higher asymptotic order. It is shown that the amplitude grows in asymptotically thin spanwise

regions of the VF known as caustics. Beyond the caustics are shadow regions where the wave am-

plitude is suppressed. Physically, caustics arise in regions of the flow where the internal shear layer

is to diffuse to sustain the Rayleigh instability. By modifying the WKBJ ansatz to include Airy

functions, a bounded solution for the fluctuation amplitude within the caustics can be found. The

analysis of this region reveals that the instability mode is reflected at the caustics and experiences

a π/2-shift in spanwise phase before re-entering the illuminated region.

Although 2D neutral Rayleigh modes are regular, the 3D Rayleigh mode suffers a critical-layer

singularity, causing the magnitude of the x-varying spanwise velocity component to be amplified.

The resulting nonlinear self-interaction of the Rayleigh mode within the CL induces a jump in the

x-mean vorticity through a modulational Reynolds stress divergence driving roll motions within the

UMZs. The core vorticity Ωc is found from a mean kinetic energy budget obtained by integrating

over a single roll cell excluding the CLs at y = 0, 1. It is shown that the work done by the mean

viscous stress at edge of each CL is balanced by dissipation of the roll kinetic energy within UMZ,

thereby closing the analysis.
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In summary, the overarching objective of this asymptotic analysis has been to probe the gov-

erning Navier–Stokes equations in the limit of large Re in search of a mechanistic self-sustaining

process (SSP) theory that

(i) can account for the emergent staircase-like profile of streamwise velocity in the inertial

region; and

(ii) is compatible with the singular nature of turbulent wall flows.

This objective has been achieved via identification of the new, multiscale inertial-layer SSP de-

scribed here. Next, in chapter 3, the numerical methods used to solve for ECS supported by this

new SSP are reviewed. In chapter 4, the results of these computations are described.
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CHAPTER 3

NUMERICAL METHODS

3.1 Introduction

In the previous chapter, a detailed asymptotic analysis was performed in the dual limit of

large Reynolds number and large streamwise wavenumber to derive a mechanistic SSP that can

account for the UMZs and VFs observed in the inertial region of the turbulent boundary layers.

This chapter describes the numerical methods used to solve the resulting asymptotically reduced

equations. In particular, the solution of the Childress cell problem is replaced by the large (but

finite) Re solution of the steady advection–diffusion equation (2.19) for the leading-order streak

velocity over the entire spatial domain. It proves more convenient to extract the full (2D) streak

velocity field within the VF in this manner than to attempt to reconstruct this field (rather just the

streak shear λ̃(z) at the VF centreline) from the formal solution to the Childress cell problem. This

finite-Re approach is justified in section 3.3.1. Moreover, it should be noted that reconstructions

of the ECS, presented in the next chapter, necessarily must be generated at large, but finite Re,

since the Rayleigh mode and the rolls are asymptotically small relative to the streak field. Spectral

numerical methods are employed to obtain the required steady solutions to 2D PDEs, to solve

eigenvalue problems for the Rayleigh mode in the VF, and to evaluate quadratures for the stress

jump across the CL and coefficients in the amplitude equation. The various numerical techniques

in each subdomain of the flow (UMZ, VF, CL) will be summarized in sequence.

3.2 Uniform Momentum Zones

The dynamics within the UMZs are governed by the 2D (x-independent) but three-component

NS equations, (2.19)–(2.20) repeated below for ease of reference, since the streamwise-varying

fluctuation fields are exponentially small:

59



(ṽ2⊥ · ∇⊥)u0 = ∆̃2∇2
⊥u0, (3.1)

(ṽ2⊥ · ∇⊥) ṽ2⊥ = −∇⊥p̃4 + ∆̃2∇2
⊥ṽ2⊥. (3.2)

The key simplification resulting from the homogenization of the roll vorticity is that the roll ve-

locity components (v̄, w̄) can be analytically determined up to an unknown constant prefactor Ωc.

By employing the alternative small parameter ∆̃ = (ReΩc)
−1/4 and expressing the mean fields as

v = Ωcṽ, w = Ωcw̃, and p = Ω
2

c p̃, the unknown constant Ωc is removed from the equations for

(ṽ, w̃); see (3.2). With this change, as shown in Chini (2008), the rescaled version of (2.10) is

readily solved analytically in a rectangular domain of (asymptotically) known dimensions one unit

in y and Lz/2 units in z, where again Lz is the prescribed spanwise periodicity length of the rolls.

The solution for ṽ and w̃ given in (2.17) and (2.18) is repeated here:

ṽ2 =
∞∑

n=1,odd

2Lz
(nπ)2

[
cosh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)
− 1

]
cos

(
2nπz

Lz

)
, (3.3)

w̃2 =
∞∑

n=1,odd

2Lz
(nπ)2

[
sinh[(2nπ/Lz)(1/2− y)]

cosh(nπ/Lz)

]
sin

(
2nπz

Lz

)
. (3.4)

Crucially, (ṽ2, w̃2) therefore can be self-consistently prescribed in the reduced x-momentum

equation (3.1), with u0 behaving as a passive scalar that is advected and diffused around the cell.

Here, the solution for u0 is obtained as the steady-state solution of the time-dependent version of

(3.1) after first decomposing the mean streamwise velocity into a background Couette profile and

a finite amplitude fluctuation ū such that u0 = y + u. Thus within the UMZ and VF subdomains,

ū satisfies

∂tu+ ṽ2 + (ṽ2⊥ · ∇⊥)u = ∆̃2∇2
⊥u (3.5)

subject to homogeneous Dirichlet symmetry conditions at y = 0 and y = 1 and periodic boundary

conditions in the spanwise direction:
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Figure 3.1: Schematic demonstrating how homogeneous Dirichlet boundary conditions are imple-
mented in a Chebyshev discretization method, resulting in the zeroing of certain rows and columns
(adapted from Trefethen (2000)).

u = 0 along y = 0, (3.6)

u = 0 along y = 1, (3.7)

u(y,−Lz/2) = u(y, Lz/2) (periodicity). (3.8)

To solve (3.5) subject to (3.6)–(3.8), a Fourier pseudospectral discretization is used for the

spanwise (z) direction, while a Chebyshev collocation scheme is implemented in the fissure-normal

y direction. As Figure 3.1 demonstrates, when enforcing homogeneous Dirichlet conditions in a

Chebyshev collocation scheme, the first and last columns of the discrete linear operator (LNy) have

no effect since they are multiplied by zero; moreover, the first and last rows are not needed, since

the first and last values of the vector of unknowns (v0 and vNy) are known, yielding an (Ny − 1) x

(Ny− 1) matrix operator, where Ny + 1 is the number of Chebyshev grid points (Trefethen, 2000).

While the Fourier grid is equispaced, the Chebyshev discretization is defined on the computational

domain Yc ∈ [−1, 1] with discrete grid points Yj = cos(jπ/Ny), where j = 0, 1, ..., Ny. The

computational and physical domains are relocated via the mapping Yc = 2y − 1 where 0 ≤ y ≤ 1.

The distribution of grid points associated with the Chebyshev discretization is advantageous, since

the points are clustered at the edges of the domain near y = 0 and y = 1, which coincide with the

locations of the internal shear layers.
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κ = 2π/Lz 0.75 0.76 0.775 0.785 0.8 0.875 1 1.25 1.3 1.4
Ny 1500 750 750 750 750 750 750 1500 750 750
Nz 450 400 400 400 400 400 400 400 400 400

κ = 2π/Lz 1.5 2 2.5 π 3.25 3.5 4.5 6 6.75 10
Ny 750 750 750 1500 750 750 750 1500 1500 1500
Nz 400 400 400 300 400 400 400 200 200 200

Table 3.1: Summary of the discretization used in the numerical solution of (3.5) for u0(y, z)
regularized by the inclusion of Laplacian diffusion ∆̃ = O(10−4).

To study the impact of the cell width (Lz), or equivalently aspect ratio, on the x-mean vorticity,

a range of spanwise roll-pair wavenumbers κ ≡ 2π
Lz

= 0.75 through κ = 10 is simulated. The

spatial discretization [Ny, Nz] used for each Lz value is shown in Table 3.1.

Equation (3.5) is discretized in time using a semi-implicit second-order accurate finite-difference

scheme. The linear terms are time-advanced using the Crank-Nicolson method, while the nonlin-

ear terms are advanced using a second-order Adams-Bashforth method. Recall that the Crank-

Nicolson scheme is a second order implicit method for the model ODE du
dt

= F (u),

un+1 = un +
∆t

2

[
F (un+1) + F (un)

]
, (3.9)

while the Adams-Bashforth scheme used here is the second order explicit method

un+1 = un +
∆t

2

[
3F (un)− F (un−1)

]
, (3.10)

where un = u(n∆t) for integer n and ∆t is the time step.

3.3 Vortical Fissures

As demonstrated below, for sufficiently small numerical values of ∆̃2, the numerically-computed

solution u0 = y + u yields a quantitatively reliable approximation to U0(Y , z) within the internal

shear layers (VFs). Recall that within the VF there is a new dominant force balance in which vis-

cous forces are significant, thereby regularizing discontinuities in the mean fields at the periphery
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κ = 2π/Lz 0.75 0.76 0.775 0.785 0.8 0.875 1 1.25 1.3 1.4
Ny 750 750 750 750 750 750 750 750 750 750
Nz 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

κ = 2π/Lz 1.5 2 2.5 π 3.25 3.5 4.5 6 6.75 10
Ny 750 750 750 750 750 750 750 750 750 750
Nz 750 2000 2000 1600 2000 2000 2000 1100 1100 1100

Table 3.2: Summary of the discretization used for solving Rayleigh’s (eigenvalue) stability equa-
tion within the VF domain.

of each cell. The resulting (steady) U0(Y , z) is then used as an input to the Rayleigh equation

(eigenvalue problem) for the fluctuations within the VFs. The spanwise domain for this region

remains −Lz/2 ≤ z ≤ Lz/2; however, the (re-scaled) fissure normal coordinate ranges over

0 ≤ Y ≤ ∞ where y = ∆̃Y . The spatial discretization [Ny, Nz] used for each Lz value within the

VF is shown in Table 3.2.

3.3.1 Mean Fields

To obtain the true streak velocity field within each VF in the asymptotic limit Re → ∞, the

Childress cell problem formulated in section 2.3.1 must be solved. Here, in figure 3.2, the solution

for λ̃(z) obtained from the solution of the Childress cell problem given by Chini & Cox (2009), i.e.

in the limit Re→∞, is compared to that obtained by numerically solving the advection–diffusion

equation (3.5) for small but finite ∆̃2 (corresponding to large but finiteRe) as a means of validating

the two independent calculations. The two profiles agree closely except at z = 0, where diffusion

heals a passive singularity arising in the solution of the Childress cell problem. This validation

enables the finite-Re data (i.e. with viscous regularization) to be used in the calculation of the

fluctuation velocities within the VF, considered next. This strategy proves to be more convenient

and robust than attempting to directly reconstruct U0(Y , z) from the solution of the Childress cell

problem.
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Figure 3.2: Normalized streak-induced shear λ̃(z) ≡ ∂YU0(0, z) at the mid-plane of the VF
obtained from the solution of the Childress cell problem (i.e. in the limit Re → ∞, solid curve)
and from the numerical solution of the full advection–diffusion equation (2.19) [or, equivalently,
(3.5)] for finite Re (dotted curve).

3.3.2 Fluctuation Fields

The fluctuation fields within the VFs are defined by the WKBJ ansatz



U ′3

V ′3

W ′3

P ′3


= A



Û3(Y ; z)

V̂3(Y ; z)

Ŵ3(Y ; z)

P̂3(Y ; z)


A(z) ei[α̃/∆̃(x−ct)+θ(z/∆̃)] + c.c.,

where the scalar amplitude of the wave A and streamwise wavenumber α̃ are inputs. The (hatted)

eigenfunctions along with the spanwise wavenumber β̃ ≡ ∂zθ, where θ(z/∆̃) ≡ θ(z)/∆̃, and the

amplitude modulation function A(z) must be computed. Since a neutral Rayleigh mode is sought,

the imaginary part of the Rayleigh mode phase speed c is set to zero. For the VF at Y = 0, analyzed

here, the real part of c also is set to zero, although, more generally, for the VF located at y = n

(for integer n), c = n. Squire’s transformation is employed to simplify the resulting eigenvalue

problem, where
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k̃ =

√
α̃2 + β̃2, k̃P̂3 = α̃Π̂3,

k̃Û3r = α̃Û3 + β̃Ŵ3 ⇐⇒ k̃Û3 = α̃Û3r − β̃Ŵ3r,

k̃Ŵ3r = α̃Ŵ3 − β̃Û3 ⇐⇒ k̃Ŵ3 = β̃Û3r + α̃Ŵ3r.

(3.11)

In the rotated (‘r’) coordinates, Rayleigh’s equation

∂2
Yφ−

∂2
YU0(
U0 − c

)φ = k̃2φ, (3.12)

is obtained (see section 2.3.2), where k̃Û3r ≡ ∂Yφ and V̂3 ≡ −iφ. This equation is solved re-

peatedly at each (discrete) z location as an eigenvalue problem for k̃ and φ using a Chebyshev

collocation method in conjunction with Matlabs QZ (‘eig’) algorithm. The required values for the

mean streamwise velocity are obtained by interpolating the solution u0 onto a grid in the VF region

(see table 3.2 for discretization details). At a given spanwise location, the fissure-normal grid used

for interpolation ranges over 0 ≤ y ≤ 0.3, which approximately translates to 0 ≤ Y ≤ 30 for

the given (finite) Re(∆̃). The domain includes (half of) the VF and extends into the UMZ where

the fluctuations reach exponentially small values. (Recall that the fluctuations approach zero expo-

nentially as they leave the fissure.) Noting from symmetry that Û3r → 0 as Y → 0, the boundary

conditions applied to φ are

φ→ 0 as Y → ∞, (3.13)

∂Yφ = 0 at Y = 0. (3.14)

The sole positive real eigenvalue (k̃2(z)) and corresponding eigenfunction (φ(Y , z)) at each z lo-

cation are selected. Note that, given the ansatz ei[α̃/∆̃(x−ct)+θ(z/∆̃)], only real k̃ are admissible;

complex values of k̃ would result in complex θ and blow-up of the fluctuations either as z → −∞

or as z →∞. The relationship between k̃(z), the spanwise wavenumber β̃(z), and the streamwise

wavenumber α̃ is given by (3.11). In particular, the spanwise wavenumber β̃(z) is then calcu-

lated using the Eikonal equation with the streamwise wavenumber α̃ specified as an input and
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k̃ calculated through the solution of the eigenvalue problem (3.12). Integration of the spanwise

wavenumber β̃(z) yields the phase θ(z). Finally, noting Ŵ3r ≡ 1
ik̃

β̃
α̃
V̂3∂YU0

U0−c
allows for each fluctu-

ation velocity-component eigenfunction to be calculated in the rotated frame.

To find the slowly-varying amplitude A(z) using U0, V̂3, and Û3r, we first calculate the coeffi-

cents az and a0. Recalling the definitions

az = −2iβ̃

∫ ∞
−∞
V̂3V̂∗3dY , (3.15)

a0 = −i
∫ ∞
−∞

[
2β̃∂z(V̂3)V̂∗3 + (∂zβ̃)V̂3V̂∗3 − 2

β̃

k̃2
∂Y

(
∂zU0

U0 − c

)
(∂Y V̂3)V̂∗3

+ 2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
V̂3V̂∗3∂YU0

U0 − c

]]
dY , (3.16)

cf. (2.75) and (2.76), the required numerical integrations are performed using Matlab’s ‘trapz’

function at each z location. With az and a0 determined, a further numerical integration yields the

amplitude function

A(z) = exp
(
−
∫ z

0

a0

az
dz

)
(3.17)

Once the eigenfunctions corresponding to the individual components of the fluctuating velocity

have been determined, the velocity fields in the original (non-rotated) coordinate system can be

reconstructed using (3.11). Then by incorporating the complex conjugate expressions and phase

shift induced at the caustics, the fluctuating velocity fields can be derived as follows. To find U ′3 we

designate a hatted fluctuation field corresponding to β̃ > 0 with a ‘+’ superscript and conversely

a hatted fluctuation field corresponding to β̃ < 0 is denoted by a ‘-’ superscript. Consequently,

Û3 = Û+, V̂3 = V̂+, and Ŵ3 = Ŵ+ and,

U ′3 = A
(
AÛ+

3 e
i(αx+θ̂) + AÛ+

3 e
i(αx+θ̂+π

2
) + AÛ−3 ei(αx−θ̂) + AÛ+

3 e
i(αx−θ̂−π

2
) + c.c.

)
,

= 2AAÛ+
3 cos(αx+ θ̂) + 2AAÛ−3 cos(αx− θ̂),

+ 2AAÛ+
3 cos(αx+ θ̂ +

π

2
) + 2AAÛ−3 cos(αx− θ̂ − π

2
),

(3.18)
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where θ̂ = θ + π/4. Noting that Û+
3 = Û−3 from (2.38) upon mapping β̃ → −β̃,

U ′3 = 2AAÛ+
3

[
cos(αx+ θ̂) + cos(αx− θ̂)

]
+ 2AAÛ+

3

[
cos(αx+ θ̂ +

π

2
) + cos(αx− θ̂ − π

2
)
]
,

= 4AAÛ+
3 cos(αx) cos(θ̂)− 2AAÛ+

3

[
sin(αx+ θ̂)− sin(αx− θ̂)

]
,

= 4AAÛ+
3

[
cos(αx) cos(θ̂)− sin(θ̂)cos(αx)

]
,

= 4AAÛ+
3

[
cos
(
θ +

π

4

)
− sin

(
θ +

π

4

)]
cos(αx),

= 4
√

2AAÛ+
3 sin (θ) cos(αx).

(3.19)

Next, solving for V ′3, we obtain

V ′3 = A
(
AV̂+

3 e
i(αx+θ̂) + AV̂+

3 e
i(αx+θ̂+π

2
) + AV̂−3 ei(αx−θ̂) + AV̂+

3 e
i(αx−θ̂−π

2
) + c.c.

)
,

= 2iAAV̂+
3 sin(αx+ θ̂) + 2iAAV̂−3 sin(αx− θ̂),

+ 2iAAV̂+
3 sin(αx+ θ̂ +

π

2
) + 2iAAV̂−3 sin(αx− θ̂ − π

2
).

(3.20)

Since V̂+
3 = V̂−3 ,

V ′3 = 2iAAV̂+
3

[
sin(αx+ θ̂) + sin(αx− θ̂)

]
+ 2iAAV̂+

3

[
sin(αx+ θ̂ +

π

2
) + sin(αx− θ̂ − π

2
)
]
,

= 4iAAV̂+
3 sin(αx) cos(θ̂) + 2iAAV̂+

3

[
cos(αx+ θ̂)− cos(αx− θ̂)

]
,

= 4iAAV̂+
3 sin(αx) cos(θ̂)− 4iAAV̂+

3 sin(αx) sin(θ̂),

= 4iAAV̂+
3 sin(αx)

[
cos
(
θ +

π

4

)
− sin

(
θ +

π

4

)]
,

= 4
√

2iAAV̂+
3 sin(αx) sin(θ).

(3.21)

Finally, we solve forW ′3:

W ′3 = A
(
AŴ+

3 e
i(αx+θ̂) + AŴ+

3 e
i(αx+θ̂+π

2
) + AŴ−3 ei(αx−θ̂) + AŴ+

3 e
i(αx−θ̂−π

2
) + c.c.

)
,

= 2AAŴ+
3 cos(αx+ θ̂) + 2AAŴ−3 cos(αx− θ̂),

+ 2AAŴ+
3 cos(αx+ θ̂ +

π

2
) + 2AAŴ−3 cos(αx− θ̂ − π

2
).

(3.22)
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Since Ŵ+
3 = −Ŵ−3

W ′3 = 2AAŴ+
3

[
cos(αx+ θ̂)− cos(αx− θ̂)

]
+ 2AAŴ+

3

[
cos(αx+ θ̂ +

π

2
)− cos(αx− θ̂ − π

2
)
]
,

= −4AAŴ+
3 sin(αx) sin(θ̂)− 2AAŴ+

3

[
sin(αx+ θ̂)− sin(αx− θ̂)

]
,

= −4AAŴ+
3

[
sin(αx) sin(θ̂) + cos(θ̂) sin(αx)

]
,

= −4AAŴ+
3

[
cos
(
θ +

π

4

)
+ sin

(
θ +

π

4

)]
sin(αx),

= −4
√

2AAŴ+
3 cos (θ) sin(αx).

(3.23)

Consequently,W ′3 is an even function about z = 0 while U ′3 and V ′3 are odd.

3.3.3 Caustics

In appendix D, we showed that caustics do not contribute to the integral when calculat-

ing Ωc. Accordingly, the detailed solutions for the fluctuation fields in the caustics need not be

computed.

3.4 Critical Layers

In section 2.4, it was shown that the vorticity jump in the illuminated region is given by

[∂YW̃3]+− =
4n0A2α̃1/3

Ω
7/3

c

∂z

(
A2β̃2λ̃1/3

k̃4

)
. (3.24)

Additionally, in the asymptotic analysis of the VF, it was shown that the integrands determining

az and a0 (see (3.15) and (3.16)) do not grow within the CL. Therefore, the contributions to these

integrals from the CLs are asymptotically small and can be ignored. Hence, no numerical compu-

tations need be performed for this subdomain, an important benefit of the analysis.

3.5 Roll-Flow Energy Budget

The (rescaled) homogenized value of the x-mean vorticity (Ωc), which fixes the precise value

of the roll-induced circulation, is a primary unknown in this analysis. Since the contributions to the
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integral for Ωc in (2.137) from the caustics and shadow regions are subdominant, the expression

therefore simplifies to

Ω
7/3

c =
32A2n0α̃

1/3

π2

∫ z−c

0

(
∂z

(
A2β̃2λ̃1/3

k̃4

)
n=∞∑
n=0

[
1

n2
tanh

(
nπ

Lz

)
sin

(
2nπz

Lz

)])
dz. (3.25)

Note that all of the terms on the right-hand side of (3.25) either are numerically computable as

described in the preceding sections (namely β̃(z), A(z), and λ̃(z)) or are inputs to the problem (A,

α̃, and Lz). Since the domain of integration is not the full z-domain −Lz/2 to Lz/2, periodicity

does not apply and therefore Fourier transforms cannot be used to evaluate the derivatives. Instead,

we calculate the derivative ∂z
(
A2β̃2λ̃1/3

k̃4

)
using a finite-difference method, while the quadrature is

performed using Matlab’s trapz function. Once Ωc is computed, the true spanwise wavenumber,

true fissure thickness, and true Reynolds number can be found via

ᾰ = α̃Ω
1/4

c , (3.26)

∆ = ∆̃Ω
1/4

c , (3.27)

Re−1 = ∆̃4Ωc. (3.28)

With these computations, the ECS flow fields can be reconstructed. These reconstructions, along

with a parametric study detailing how key outputs (i.e. the roll circulation) vary with changes to

the input parameters are presented in the next chapter.

3.6 Summary

In this chapter, the numerical methods used to solve the reduced governing equations derived

in chapter 2 are summarized. First, the x-mean streamwise velocity is computed in the UMZ

and VFs by marching (3.5) to steady state, where u0 = y + u and the roll motions are self-

consistently prescribed according to (3.3)–(3.4). A Fourier pseudospectral method is used to treat

the spanwise dependencies while a Chebyshev collocation scheme is used to discretize the fissure-
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normal (y) direction. A semi-implicit Crank-Nicolson/Adams-Bashforth time-stepping scheme is

used to advance (3.5) to a steady-state solution.

Next, the resulting viscously-regularized numerical solution for the streak shear at the VF cen-

terline ∂yu0(0, z) computed for finite Re is compared at y = 0 with the corresponding profile

obtained from the Childress cell problem for infinite Re obtained by Chini & Cox (2009). This

validation enables the mean streamwise velocity from the finite-Re computation to be used in the

numerical solution of the Rayleigh equation for the fluctuation fields in the VF, with the values for

the mean streamwise velocity obtained by interpolating onto a grid within the VF domain. The

Rayleigh equation (3.12) is then solved at a discrete set of z-locations within the VF to obtain the

(positive real) eigenvalue k̃2 and corresponding eigenfunction φ. The eigenvalue k̃2(z) is used to

determine the slowly z-varying spanwise wavenumber β̃(z) through the Eikonal equation, while

the eigenfunction φ directly yields the rotated streamwise fluctuating velocity component Û3r and

the fissure-normal fluctuating velocity component V̂3 according to k̃Û3r = ∂Yφ and V̂3 = −iφ.

These results are then used to evaluate the coefficients az and a0 arising in the fluctuation ampli-

tude equation and, thence,

A = exp
(
−
∫ z

0

a4

a3

dz

)
. (3.29)

In the original (non-rotated) coordinate system, the fluctuation velocity components within the VF

centered on Y = 0 are given by

U ′3 = 4
√

2AAÛ+
3 sin (θ) cos(αx), (3.30)

V ′3 = 4
√

2iAAV̂+
3 sin(αx) sin(θ), (3.31)

W ′3 = −4
√

2AAŴ+
3 cos (θ) sin(αx), (3.32)

where the ‘+’ superscript indicates β̃ > 0.

Finally, recalling that contribution to the integral determining the x-mean vorticity Ωc arising

from the caustics is asymptotically small, the quadrature for the core vorticity Ωc reduces to
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Ω
7/3

c =
32A2n0α̃

1/3

π2

∫ z−c

0

(
∂z

(
A2β̃2λ̃1/3

k̃4

)
n=∞∑
n=0

[
1

n2
tanh

(
nπ

Lz

)
sin

(
2nπz

Lz

)])
dz. (3.33)

where z−c is the location of the caustic in z > 0. With the core vorticity known, the values for the

true spanwise wavenumber, true fissure thickness, and true Reynolds number can be computed.
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CHAPTER 4

RESULTS

4.1 Introduction

In the previous chapters a detailed asymptotic analysis of the incompressible NS equations

revealed a new self-sustaining process in (initially) non-inflectional uni-directional shear flows that

provides a mechanistic explanation for the sustenance of UMZs and VFs in high-Reynolds number

wall turbulence. Having reviewed the numerical methods used to solve the asymptotically reduced

equations derived in chapter 2, in this chapter, ECS supported by the new SSP are reconstructed

and analyzed. The ECS we construct are spatially distributed in that the rolls and streaks are

stacked in the y direction, being embedded in unbounded plane Couette flow. Because the Rayleigh

instability modes are strictly localized within the spatially-segregated fissures (owing to the scale

separation between the wavy instabilities and the roll/streak flow), the required stacking is simpler

than that performed in Hall (2018). In the latter investigation, a countable infinity of viscous VWI

states (each related to the lower-branch equilibrium solution EQ7) is shown to be an asymptotic

solution in unbounded plane Couette flow provided the x-varying fluctuation pressure satisfies

a certain global elliptic equation. In contrast, the fluctuation pressure field associated with the

spatially-distributed inertial ECS constructed here decays exponentially away from the center of

each VF. The only subtlety is that although roll and streak flow in each layer is steady, the Rayleigh

instability mode is stationary only for the VF at y = 0. More generally, the instability mode

localized within the VF at y = n, for integer n, propagates with a phase speed cn = n, i.e.

the average of the homogenized streamwise speeds of the adjacent upper and lower UMZs (viz.

[(n+ 1/2) + (n− 1/2)]/2). Nevertheless, the homogenized vorticity Ω̄c within each UMZ has the

same value, implying the rolls have the same circulation strength independently of their y location.
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Figure 4.1: 3D numerical reconstruction of inertial layer ECS supporting VFs coupled to adjacent
UMZs. Input parameters are A = 5, ᾰ = 0.576 and Lz = 2. (Re = 1.36 × 107 for computation
of the streak velocity field.) Color indicates the streamwise-averaged streamwise flow speed in the
y–z and x–y planes and the fissure-normal fluctuation velocity, scaled by O(∆3), in the exposed
x–z plane. Arrows show in-plane velocity vectors.

This deduction, however, applies only to unbounded plane Couette flow and does not hold for

base flow profiles that vary nonlinearly with y. Our ECS solution algorithm is summarized in

appendix F.

4.2 Numerical Reconstruction of ECS

Figure 4.1 shows a ‘unit ECS’ excised from the flow domain centered on the VF at y = 0.

Color indicates the streamwise-averaged streamwise flow speed in the y–z and x–y planes, as well

as the O(∆3) fissure-normal fluctuation velocity in the exposed x–z plane. The parameters used

to generate this ECS are A = 5, α̃ = 0.35, and Lz = 2. With these inputs, the x-mean vorticity

Ω̄c = 7.35 is self-consistently computed. The true streamwise wavenumber, i.e. the dimensional

streamwise wavenumber divided by Re1/4l−1
y independently of Ω̄c, is found to be ᾰ = 0.5763. For

ease of interpretation, subsequent visualizations are presented in three orthogonal planes: the y–z

plane at x = 0, an x–z plane in the VF and on x–y plane restricted in Y to show a close-up view

near the center of the VF.
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Figure 4.2: Reconstruction of inertial ECS exhibiting VFs coupled to adjacent UMZs in un-
bounded plane Couette flow: Mean velocity field in the fissure-normal/spanwise-plane. Color
indicates the value of the streamwise-averaged streamwise velocity component while arrows show
the roll velocity field. Parameter values are given in the figure 4.1 caption.

4.2.1 Uniform Momentum Zones

Figure 4.2 shows a plane perpendicular to the streamwise flow. Only mean velocities

are plotted because the fluctuation fields are exponentially small except within the asymptotically

thin VF. The colors indicate the values of the mean streamwise velocity component, while the

arrows show the in-plane roll velocity field with the size of the arrows indicating the flow velocities

relative to an arbitrary maximum value. This construction enables the rolls to be visualized but it

should be recalled that, asymptotically, the roll flow is weak relative to the streamwise velocity

component. The steady solution clearly exhibits the homogenization driven by the rolls as well

as the spontaneous emergence of thin fissures at y = 0. Additional shear layers located above at

y = 1 and below at y = −1 also are apparent. As expected from symmetry considerations, the

streak speed within the upper UMZ is homogenized to a value u0 = 1/2 while the lower UMZ

has u0 = −1/2. For the upper UMZ, fluid having relatively high (low) streamwise momentum is

carried downward (upward) in narrow jets centered on z = 0 (z = ±1).
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Figure 4.3: Reconstruction of inertial ECS exhibiting VFs coupled to adjacent UMZs in
unbounded plane Couette flow: Fissure-normal fluctuation velocity component in a stream-
wise/spanwise plane within the VF near y = 0. Color indicates the value of this component
normalized by ∆3. The solid black lines indicate caustics, which partition the plane into an illumi-
nated region (−0.75 . z . 0.75) and shadow zones (|z| & 0.75). Parameter values are given in
the figure 4.1 caption.

4.2.2 Vortical Fissures

Figure 4.3 shows the fissure-normal fluctuation velocity component V ′3 in a streamwise/spanwise

plane located within the VF close to the CL (i.e. close to Y = 0). Color is used to represent flow

speeds with yellow corresponding to positive and blue to negative values. This visualization re-

veals two important features of the inertial ECS supported by the SSP investigated here. Firstly,

caustics partition the spanwise domain within the VF into an illuminated region, within which

the fluctuations are confined, and shadow zones, where the instability mode is exponentially small.

Note that only the fluctuations are plotted in figure 4.3; the mean fields do not vanish in the shadow

regions, so the fluid is in motion there. The shadow zones are observed to align with the upwelling

(downwelling) regions in the mean flow for y > 0 (y < 0), suggesting that the caustics arise from

divergent straining of the shear layer to the extent that the shear within the VF is too diffuse to

support the Rayleigh instability mode. A second feature that is clearly evident is the slow z mod-

ulation of the Rayleigh mode spanwise wavenumber and amplitude; indeed, the lines of constant
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Figure 4.4: (a) Streamlines within the VF associated with an inertial-ECS solution computed for
A = 5, ᾰ = 0.576 and Lz = 2 (with Re = 1.36x107) showing a fine-scale Kelvin’s cat’s-eyes
vortex pattern in the streamwise/wall-normal plane z = −0.6738 on which the spanwise fluctuation
velocity vanishes. (b) Schematic taken from Adrian et al. (2000) showing fine-scale hairpin and
‘cane’ vortices (in yellow) separating boluses of large-scale streamwise flow having quasi-uniform
momentum (in grey).

instability-wave phase appear to bend in this plane, forming cusps at the caustics. This patterning

highlights the horizontal scale separation between the instability mode and the roll/streak flow.

Figure 4.4 (a) shows a close-up view of streamlines in a streamwise/fissure-normal plane within

the VF centered on y = 0. In a co-moving reference frame, the streamlines within each fissure

adopt a characteristic Kelvin’s cat’s-eyes vortex pattern. This patterning is commonly observed

in the neighborhood of critical layers when streamlines are plotted in a reference frame traveling

with the marginally stable disturbance mode (Drazin, 2002). Intriguingly, this streamline pattern

seems to accord qualitatively with the conceptual model of Adrian et al. (2000), who proposed that

regions of high shear separating the UMZs comprise the heads of hairpin and/or ‘cane’ vortices, as

shown schematically in figure 4.4(b).

4.3 Parameter Study

We next analyze the impact of varying the key control parametersA, ᾰ and Lz on the ECS. For

this purpose, a convenient metric is the homogenized value of the x-mean x-vorticity Ω̄c within

the UMZs. Equation (2.137) gives Ω̄c as a function of Lz, α̃ and A. To recover the dependence
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Figure 4.5: The homogenized value of the roll vorticty Ωc normalized by A6/7 versus the true
streamwise wavenumber normalized by A3/14 for Lz = 2. The different curves correspond to
different values of A.

of Ω̄c on the true streamwise wavenumber ᾰ, the substitution ᾰ =
[
Ω̄c(α̃)

]1/4
α̃ is made. In

addition, for a given roll-cell wavelength Lz, the dependence of Ω̄c on A can be removed by

scaling Ω̄c → A6/7Ω̄c, provided that the true streamwise wavenumber is also rescaled according

to ᾰ → A3/14ᾰ. Figure 4.5 shows that plots of Ω̄c versus ᾰ for fixed Lz but varying A then will

collapse onto a single curve. Physically, the roll circulation achieved for a given Lz, A and ᾰ also

can be realized by appropriately modifying both A and ᾰ.

Figure 4.6 shows the x-mean vorticity as a function of the roll-cell width. Figure 4.6a shows

curves of constant input parameter α̃ while the plot on the right shows curves of constant ᾰ. Ωc

monotonically decreasing with Lz for the smaller values of α̃. For larger α̃, there is a local maxi-

mum indicating a specific α̃ will result in the greatest circulation within the UMZ for a given cell

width. Figure 4.6b shows the x-mean vorticity versus Lz for specific values of the true streamwise

wavenumber ᾰ. Interestingly, when Ω̄c is plotted versus Lz for fixed ᾰ, a saddle-node bifurcation

with upper- and lower-branch solutions is revealed. The upper branch is characterized by stronger
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Figure 4.6: The homogenized value of the roll vorticty Ωc normalized by A6/7 versus the roll
wavelength Lz. In (a), the different curves correspond to different constant values of the input
wavenumber α̃, while in (b), the various curves indicate different constant values of the ‘true’
streamwise wavenumber ᾰ.

roll-cell circulation arising at smaller ᾰ (i.e. for streamwise-varying instability modes with longer

wavelengths), while the lower branch exhibits the opposite trend.

Figure 4.7 shows the x-mean vorticity as a function of streamwise wavenumber. The figure on

the left shows Ωc versus the rescaled input wavenumber α̃ for given constant values of the input

parameter Lz, while the plot on the right uses the a posteriori calculated value of ᾰ, again for

curves of constant Lz. Figure 4.7a reveals two interesting features. One is the existence of a global

maximum for each curve of constant Lz. Thus, there is a specific α̃ that will result in a maximum

circulation in the UMZ for a given roll-cell width Lz. A second feature is the tendency for a

larger Ωc to be associated with smaller Lz, as first observed in figure 4.6. However, for sufficiently

large α̃, there is a region in which this trend is not realized. This exception can be understood as

a consequence of different cell widths being associated with different maximum values of k̃(z).

Recalling the Eikonal equation,

α̃2 + β̃2 = k̃2, (4.1)

cells with larger maximum k̃ values can support larger values of input α̃.

Figure 4.7b shows the x-mean vorticity as a function of true streamwise wavenumber ᾰ for

a range of given, constant roll-cell widths Lz. In this figure, too, turning points are evident, and
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Figure 4.7: The homogenized value of the roll vorticty Ωc normalized by A6/7 (a) plotted ver-
sus the input wavenumber α̃, where the different curves correspond to different constant values
of the roll wavelength Lz, and (b) plotted versus the ‘true’ streamwise wavenumber ᾰ normal-
ized by A3/14, where the different curves again correspond to different constant values of the roll
wavelength Lz.

the solution bifurcates into upper and lower branches. For the upper-branch solutions, it can be

seen that Ω̄c increases monotonically as the roll-cell size is decreased. In contrast, the roll vortic-

ity associated with the lower-branch states does not vary monotonically with Lz. Moreover, the

bifurcation curve for each fixed Lz possesses a maximum along the upper branch, implying that

for a given Lz there exists a specific streamwise wavenumber at which the roll-cell circulation is

maximized. The primary qualitative distinction between the upper- and lower-branch solutions is

that the illuminated regions associated with the upper-branch states are larger than those associated

with the corresponding lower-branch ECS.

4.4 Upper and Lower Branch States

In this section, the emergence of upper- and lower-branch ECS is analyzed in greater detail.

The saddle-node bifurcations evident in figure 4.6b and figure 4.7b, but not in figure 4.6a and

figure 4.7a can be traced to relationship between the two O(1) streamwise wavenumbers α̃ and

ᾰ; namely ᾰ = α̃Ω
1/4

c . Crucially, this relationship is nonlinear because Ωc itself a function of α̃.

Figure 4.8 confirms that α̃ is not a single-valued function of ᾰ.
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Figure 4.8: The input streamwise wavenumber α̃ plotted versus the ‘true’ streamwise wavenum-
ber ᾰ to demonstrate the nonlinear relationship between them that yields upper and lower branch
inertial ECS. The different curves correspond to different values of the roll wavelength.

As evident in figure 4.7, when Ω̄c is plotted versus the true streamwise wavenumber ᾰ, a saddle-

node bifurcation with upper- and lower-branch solutions is revealed; in contrast, as a function of

α̃, Ω̄c is not multi-valued and decreases monotonically to zero as α̃ is increased beyond a threshold

value. This latter trend may be understood by recalling the Eikonal equation α̃2 + β̃2(z) = k̃2(z).

For a given Lz, the z-varying profile of the eigenvalue k̃2 qualitatively resembles that of the streak

shear λ̃(z), which itself is independent of α̃, shown in figure 3.2: the total horizontal wavenumber

of the neutral Rayleigh mode is larger where the shear is locally larger and the fissure is locally

thinner (and conversely). As α̃ is increased, the Eikonal equation therefore requires the width of

the illuminated region to decrease. Consequently, both the magnitude of the z-integrated forcing

from the Rayleigh mode and the resulting value of Ω̄c also must decrease. The caveat is that, as

the turning point is approached from the upper branch, the ECS solutions become non-uniformly

asymptotic; that is, for the lower-branch states, ever larger values of Re are required to ensure that

the width of the illuminated region remains asymptotically larger than the widths of the caustics
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Figure 4.9: Fissure-normal fluctuation velocity in an x–z plane near the CL for a lower-branch
ECS computed at A = 1, Lz = π/5, and α̃ = 1.02. Colors indicate velocities normalized by ∆̃3.
Re = 1011: top; Re = 1013: middle; Re = 1015: bottom.

and the streamwise jets. For this reason, a dashed line is used to designate the lower-branch states

in figure 4.6b and figure 4.7b.

Although the widths of the illuminated and shadow regions are determined by the input α̃

independently of Re, reconstructions of the fluctuating velocities are dependent on Re. Figure

4.9 shows the fissure-normal fluctuation velocity in a streamwise/spanwise plane within the VF

for Re = (1011, 1013, 1015) for the turning point of the ECS. Clearly, A(z) is exponentially small

over the majority of the z-domain, as the shadow zones occupy most of the x–z plane shown.

Physically, the driving of these rolls from the vorticity jump across the CL is restricted to a very

narrow portion of the spanwise flow domain. Furthermore, the validity of the WKBJ ansatz is

dependent upon spatial scale separation in the spanwise direction. This scale separation becomes

ever more difficult to realize as the illuminated regions associated with the lower-branch ECS
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become narrower as α̃ is increased. Accordingly, extreme values of Re are required to achieve

scale separation, as evident in figure 4.9.

4.5 Summary

The ECS supported by the inertial-layer SSP exhibit the characteristic attributes outlined in the

dissertation objectives. In particular, the numerically-reconstructed ECS clearly show the homog-

enization of the streamwise velocity and the creation of internal shear layers. Additionally, the

reconstructions exhibit other features anticipated from the analysis, including the slow modulation

of the Rayleigh mode in the spanwise direction and the emergence of shadow regions. Unexpected

features such as the cats-eye vortex pattern also are revealed, in evident agreement with a schematic

representation of UMZs and VFs produced by Adrian et al. (2000).

The dependence of the newly-identified ECS on input parameters has been quantified by plot-

ting the roll vorticity Ωc as functions of the Rayleigh-mode (true) streamwise wavenumber ᾰ and

the roll-pair spanwise wavelength Lz. The dependence of Ωc on the scalar amplitude A of the

Rayleigh mode can be eliminated through a suitable rescaling of A and the streamwise wavenum-

ber. These plots reveal saddle-node bifurcations and the emergence of upper and lower branch

solutions, as is common for ECS in shear flows.

Inspection of the upper- and lower- branch solutions, reveals that the former are characterized

by larger values of the roll circulation and wider illuminated regions than exhibited by the latter.

In fact, the illuminated regions associated with the lower-branch ECS can be sufficiently narrow

(depending on the precise value of the streamwise wavenumber) that extraordinarily large values of

Re are required to achieve the scale separation in the spanwise direction necessary for the validity

of the WKBJ approximation.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In turbulent wall flows at large Reynolds number, the ensemble or long-time mean viscous

force is sub-dominant outboard of the peak in the Reynolds stress and hence over the majority of

the turbulent flow domain. Mounting evidence indicates that the instantaneous streamwise velocity

in this inertial domain is characterized by regions of quasi-uniform momentum (UMZs) separated

by spatially-segregated internal shear layers (i.e. vortical fissures). In this investigation, a first-

principles self-sustaining process theory has been derived from the incompressible Navier–Stokes

equations in the large Reynolds number limit that can account for key attributes of the resulting

staircase-like profiles of streamwise velocity. Chief among these attributes is that the suitably

normalized fissure thickness decreases as the friction Reynolds number Reτ = uτh/ν increases;

that the dimensional jump in flow speed across each VF scales with the friction velocity uτ ; and

that the volume-mean viscous force is, in fact, sub-dominant in this dynamical process.

Figure 5.1 depicts the key components of the proposed inertial-layer SSP. As in vortex–wave

interaction (VWI) theory, streamwise rolls induce O(1) streamwise streaks through the lift-up

mechanism. A crucial distinction, however, is that in the inertial domain the comparably weak rolls

must nevertheless have a circulation strength that is asymptotically larger than O(1/Re) to ensure

that these large-scale roll and streak components of the turbulence are not (in a volume-averaged

sense) dynamically influenced by viscous forces, unlike ECS solutions of the VWI equations. In-

deed, in the present inertial-layer SSP theory, the roll strength is O(Re−1/2). This sub-Re−1 decay

is also a necessary condition for stacked arrays of counter-rotating roll vortices to differentially

homogenize the background shear flow and thereby generate slender embedded internal layers of

high vorticity. Each internal layer (VF) has a characteristic thickness that decreases with Re. In
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Figure 5.1: Schematic diagram of a mechanistic self-sustaining process for UMZs and VFs in the
inertial domain of turbulent wall flows. The feedback loop shown in (a) indicates that rolls having
O(Re−1/2) circulation strength redistribute the background shear flow to induce O(1) streamwise
streaks. As depicted in (b), the counter-rotating and stacked rolls are sufficiently strong to differen-
tially homogenize the background flow, thereby creating and maintaining both UMZs (highlighted
in yellow) and internal shear layers (VFs, indicated in blue). The wall-normal (y) inflections in
the streak velocity support an O(Re−3/4) Rayleigh (inviscid shear) instability mode that has a
streamwise (x) wavelength 2π/α� 1 that is commensurate with the VF thickness. Consequently,
the Rayleigh mode is confined to the VF, where it is refracted and rendered three-dimensional by
the comparably slow spanwise variation in the fissure thickness (not depicted), and the resulting
ECS are inherently multiscale. The 3D Rayleigh mode suffers a critical-layer singularity, causing
the magnitude of the x-varying spanwise velocity component to be amplified to O(Re−1/2). The
resulting nonlinear self-interaction of the Rayleigh mode within the CL drives the roll motions in
the UMZs through a modulational (i.e. slow spanwise) Reynolds stress divergence involving this
velocity component.

contrast, the lower- and upper-branch equilibrium solutions EQ7 and EQ8 in plane Couette flow,

which share the same roll configuration as the ECS constructed here, remain viscously dominated

even as Re → ∞. Consequently, neither EQ7 nor EQ8 exhibits thinning internal shear layers or

genuinely homogenized zones of streamwise momentum.

Apparent discontinuities in the inertial-ECS streak velocity and roll vorticity are smoothed

by viscous forces and torques acting within the VFs and narrow streamwise jets demarcating the

boundary of each roll cell. The inflectional streak shear within each fissure supports a neutral

Rayleigh instability (or ‘fluctuation’) mode having an O(Re−3/4) characteristic size and a stream-

wise wavelength that scales with the VF thickness. Thus, inertial ECS are inherently multiscale:

the streamwise-varying fluctuation fields and the streamwise-mean roll/streak flow exhibit dis-
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parate spatial scales, a feature that is accommodated in the theory via a WKBJ representation of

the instability mode. Moreover, the fluctuation fields are exponentially localized within the fis-

sures, since that is where the shear is confined. The Rayleigh mode, which might be expected to

vary primarily in the streamwise and fissure-normal directions, is refracted in the spanwise direc-

tion and rendered 3D by the comparably slow spanwise variation in the thickness of each fissure.

This three-dimensionality is essential because, at least in the present formulation, the fluctuation-

induced Reynolds stresses associated with the inviscid marginal mode necessarily vanish within

the VF; thus, the roll motions are not directly driven there.

Instead, a critical layer (CL) mechanism is operative. More specifically, although the (appro-

priately rotated) two-component, 2D marginal Rayleigh mode is a smooth function of the fissure-

normal coordinate, the full three-component, 3D marginal mode exhibits a CL singularity at the

center of each VF. As in VWI theory, the resulting amplification of the tangential fluctuation ve-

locity components is regularized by viscous forces acting within the CL. (It is conceivable that

nonlinear regularization also may be realizable, although that possibility is not pursued here.) The

nonlinear self-interaction of the Rayleigh mode within the CL induces a jump in the x-mean span-

wise shear or, equivalently, the x-mean streamwise vorticity across the CL via a modulational (i.e.

slow spanwise) divergence of the spanwise Reynolds stress component. In turn, this shear drives

a tangential mean flow within – and ultimately a roll flow outside of – the VF in which the CL is

embedded. (Since this flow is transverse to the streamwise velocity and driven by spanwise stress

gradients, it may be understood as a Prandtl secondary flow of the second kind.) In steady state,

the work done by the fluctuation-induced mean viscous tangential stress at the edges of the CL is

balanced by viscous dissipation of roll kinetic energy within the adjacent UMZs, thereby closing

the inertial-domain SSP.

Visualizations of the inertial ECS clearly show the slow spanwise modulation of the Rayleigh-

mode spanwise wavenumber as well as the emergence of caustics, which separate the VFs into

illuminated and shadow regions. Within these zones, the fluctuations have finite and exponentially

small amplitudes, respectively. The caustics arise because, at specific spanwise locations, the roll

85



flow strains the embedded VF to the extent that the streak shear is too diffuse to continue to support

the marginal Rayleigh mode. As is common in shear flows, the ECS identified here exhibit saddle-

node bifurcations, with the primary distinction between the upper- and lower-branch solutions

being the magnitude of the roll-cell circulation and the width of the illuminated regions (both are

larger for the upper-branch states).

In a co-moving reference frame, the streamlines within each fissure adopt a characteristic

Kelvin’s cat’s-eyes vortex pattern. Intriguingly, this streamline pattern seems to accord qualita-

tively with the conceptual model of Adrian et al. (2000), who proposed that regions of high shear

separating the UMZs comprise the heads of hairpin and/or ‘cane’ vortices, as shown schematically

in figure 4.4b. Regardless of the relevance or not of hairpin vortices per se, flow visualizations by

Adrian et al. (2000) and others reveal small-scale rotary motions, consistent with the structure of

the ECS supported by the proposed SSP, as illustrated in figure 4.4a. Perhaps more significantly,

the schematic shown in figure 4.4b suggests a disparity between the scale (diameter) of these rotary

motions and the transverse scale of the boluses of fluid having uniform momentum, again in appar-

ent qualitative agreement with the multiscale structure intrinsic to the proposed SSP. In particular,

the rotary motions in the inertial ECS have a size that is commensurate with the O(∆) thickness

of the fissure and therefore much smaller than separation distance between adjacent VFs.

Of course, there are certain evident limitations on the potential applicability of the SSP theory

developed here to turbulent wall flows. Firstly, the predicted VF thickness scales as Re−1/4, while

data from DNS and laboratory experiments indicate that the thickness of a ‘representative’ fissure

scales in proportion to Re−1/2
τ . It seems conceivable, however, that the difference between the

predicted and measured scalings may be at least partly attributable to the different definitions

of the Reynolds numbers used. In particular, the length scale used in the definition of Re is the

separation distance ly between the VFs, while the length scale h used to defineReτ is the boundary-

layer height or channel half-height. Moreover, for turbulent wall flows (at a given Reτ ), ly varies

with the wall-normal coordinate, and the ratio of the characteristic separation distance 〈ly〉 to h

varies with Reτ . In appendix A, it is shown that, by accounting for this variation in the context of
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the self-similar layer hierarchy admitted by the mean momentum balance (e.g. Wei et al. (2005);

Klewicki (2013a,b)), the associated characteristic dimensional VF thickness ∆f normalized by h

scales in proportion to Re−7/16
τ , i.e. in much closer agreement with empirical estimates of this

ratio.

A second, related restriction is that the ECS constructed are asymptotic solutions of the Navier–

Stokes equations only for the non-physically-realizable case of unbounded Couette flow. Never-

theless, the ultimate aim of the research initiated in this dissertation is to treat inertial ECS arising

in flows (e.g. plane Poiseuille flow) having velocity profiles that vary nonlinearly with the wall-

normal coordinate. Preliminary considerations indicate that for solutions to exist the VFs necessar-

ily will be non-uniformly spaced, in accord with observations of turbulent wall flows. In addition,

it would be desirable to develop a time-dependent reduced PDE model of turbulence in the inertial

layer by leveraging the most robust features of the asymptotic SSP identified in this study (a general

strategy advocated, e.g., by Chini (2016)); for example, by exploiting the confinement of the fluc-

tuations to the fissures and the quasilinear mathematical structure of the asymptotically-simplified

system. This extension would enable an even tighter link to be made with the 1D UMZ/VF tur-

bulence model recently developed by Bautista et al. (2019), e.g. by allowing for ‘wafting’ of the

fissures, while also placing the 1D model on a more secure theoretical footing. Finally, the asymp-

totic ECS computed here for a given set of parameters presumably could be used as a very good

initial iterate in a Newton search for a finite (but large) Reynolds number realization of this ECS

employing the full Navier–Stokes equations.

In summary, a primary merit of the new SSP identified here is that it highlights the distinction

between viscous and inertial ECS. The SSP also provides a plausible mechanism, derived directly

from the NS equations, for the observed UMZ/VF profiles of streamwise velocity. In this mech-

anism, the VFs play a dynamically active role in the sustenance and persistence of the UMZs.

Perhaps most significantly, the new SSP and associated ECS provide a concrete dynamical realiza-

tion of the conceptual model of the singular nature of turbulent wall flows proposed by Klewicki
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(2013a,b), lending further support to the ‘boundary-layers-within-the-turbulent-boundary-layer’

paradigm.

88



BIBLIOGRAPHY

ADRIAN, RJ., MEINHART, CD. & TOMKINS, CD. 2000 Vortex organization in the outer region
of the turbulent boundary layer. J. Fluid Mech. 422, 1–54.

AUBRY, N., HOLMES, P., LUMLEY, JL. & STONE, E. 1988 The dynamics of coherent structures
in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

BALMFORTH, NJ., DEL-CASTILLO-NEGRETE, D. & YOUNG, WR. 1997 Dynamics of vorticity
defects in shear. J. Fluid Mech. 333, 197–230.

BATCHELOR, GK. 1956 On steady laminar flow with closed streamlines at large Reynolds number.
J. Fluid Mech. 1, 177–190.

BAUTISTA, JC. CUEVAS, EBADI, A., WHITE, CM. & CHINI, GP. 2019 A uniform momentum
zone-vortical fissure model of the turbulent boundary layer. J. Fluid Mech. 858, 609–633.

BEAUME, C., CHINI, GP., JULIEN, K. & KNOBLOCH, E. 2015 Reduced description of exact
coherent states in parallel shear flows. Phys. Rev. E 91, 43010.

BLACKBURN, HM, HALL, P. & SHERWIN, SJ. 2013 Lower branch equilibria in Couette flow:
the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 762R2, 1–12.

CHINI, GP. 2008 Strongly nonlinear langmuir circulation and Rayleigh-Bénard convection. J.
Fluid Mech. 614, 39–65.

CHINI, GP. 2016 Exact coherent structures at extreme Reynolds number. J. Fluid Mech. 794, 1–4.

CHINI, GREG & COX, SM. 2009 Large Rayleigh number thermal convection: Heat flux predic-
tions and strongly nonlinear solutions. Physics of Fluids. 21, 083603.

CHINI, GP., MONTEMURO, B., WHITE, CM. & KLEWICKI, JC. 2017 A self-sustaining process
model of inertial layer dynamics in high Reynolds number turbulent wall flows. Phil. Trans. Roy.
Soc. A 375, 20160090.

DAVIDSON 2004 Turbulence: An introduction for scientist and engineers. Oxford University Press.

DRAZIN 2002 Introduction to Hydrodynamic Stability. Cambridge Texts in Applied Mathematics.

DUGUET, Y., WILLIS, AP. & KERSWELL, RR. 2008 Transition in pipe flow: the saddle structure
on the boundary of turbulence. J. Fluid Mech 613, 255–274.

DUGUET, Y., WILLIS, AP. & KERSWELL, RR. 2010 Slug genesis in cylindrical pipe flow. J.
Fluid Mech 663, 180–208.

89



ECKHARDT, B. & ZAMMERT, S. 2018 Small scale exact coherent structures at large Reynolds
numbers in plane Couette flow. Nonlinearity. 31, R66.

EISMA, J., WESTERWEEL, J., OOMS, G. & ELSINGA, G. 2015 Interfaces and internal layers in
a turbulent boundary layer. Phys. Fluids 27, 055103.

ELSNAB, JR., MONTY, JP., WHITE, CM., KOOCHESFAHANI, MM. & KLEWICKI, JC. 2017
Efficacy of single-component mtv to measure turbulent wall-flow velocity derivative profiles at
high resolution. Exp. Fluids 58, 128–139.

FAIST, H. & ECKHARDT, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.

FARRELL, BF. & IOANNOU, PJ. 2012 Dynamics of streamwise rolls and streaks in wall-bounded
shear flow. J. Fluid Mech. 708, 149–196.

GAD-EL-HAK, MOHAMED 1998 Fluid mechanics from the beginning to the third millennium.
International Journal of Engineering Education 14(3), 177–185.
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APPENDIX A

SCALING OF FISSURE THICKNESS

This appendix shows that by accounting for the variation in VF spacing in the context of the
self-similar layer hierarchy admitted by the mean momentum balance as derived by Klewicki and
collaborators, the associated characteristic dimensional VF thickness ∆f normalized by h is pre-
dicted to decrease like Re−7/16

τ .
At a given large value of the friction Reynolds number Reτ = uτh/ν, the fissures in wall-

bounded turbulent flows are non-uniformly spaced with distance from the wall. More precisely, ob-
servations and theoretical considerations (Klewicki, 2013a) indicate that the spacing between adja-
cent VFs within the inertial domain, i.e. the domain extending from y+=O(Re

1/2
τ ) to y+=O(Reτ ),

increases with distance from the wall according to a geometric progression. Thus, the average
spacing 〈l+y 〉 = (Re

1/2
τ Reτ )

1/2 = Re
3/4
τ , where the angle brackets refer to the geometric mean.

Equivalently, 〈ly〉 = Re
−1/4
τ h. In the inertial-region SSP identified in this investigation, the fis-

sures are uniformly separated by a distance ly, and it is found that the ratio of the dimensional
fissure thickness to this separation distance ∆f/ly = O(Re−1/4), where Re = uτ ly/ν. Replacing
ly with 〈ly〉 in the preceding expressions, which is tantamount to interpreting ly in the asymptotic
analysis as the geometric mean spacing of an array of non-uniformly spaced fissures in a turbulent
wall flow, yields the estimate

∆f/h = O(Re−7/16
τ ), (A.1)

in reasonable accord with the empirically determined scaling ∆f/h ∼ Re
−1/2
τ .
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APPENDIX B

FREDHOLM ALTERNATIVE

This appendix summarizes the Fredholm Alternative.
For a linear boundary value problem LṼ4 = f4:

• If L is non-singular, there exists a unique solution to the problem;

• If L is singular, then either there is no solution, or infinitely many solutions, depending upon
whether (ff , v

†) = 0, where v† satisfies L†v† = 0, and (·, ·) denotes a suitable inner product.
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APPENDIX C

SIMPLIFICATION OF COEFFICIENTS IN AMPLITUDE EQUATION

This appendix shows the simplification of ax, az, and a0.
Recall that

ax = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− k̃

α̃
(U0 − c)(ik̃V̂3 − ∂Y Û3r) +

k̃

α̃
(∂YU0)Û3r +

α̃

k̃
∂YΠ̂3

− ∂YU0

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

]
−
(
U0 − c

) [ α̃
k̃
∂Y Û3r −

β̃

k̃
∂YŴ3r

]]
dY , (C.1)

az = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
β̃

k̃
∂YΠ̂3 − ∂YU0

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]

−
(
U0 − c

)
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)]
dY , (C.2)

a0 = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
β̃∂z

(
∂YΠ̂3

k̃

)
− ∂YU0∂z

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]

−
(
U0 − c

)
∂z

(
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

))

+ ∂z(∂YU0)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
+ ∂zU0∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)]
dY . (C.3)

Beginning with ax we substitute ∂YΠ̂3 = −ik̃(U0 − c)V̂3 from (2.44), giving

ax =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− U0 − c

iα̃
(−k̃2V̂3 − ik̃∂Y Û3r) +

k̃

α̃
(∂YU0)Û3r − iα̃(U0 − c)V̂3

− ∂Y

(
(U0 − c)

[
α̃

k̃
Û3r −

β̃

k̃
Ŵ3r

])]
dY .

(C.4)

Next, we substitute for Ŵ3r from (2.46) and use Rayleigh’s equation −k̃2V̂3 − ik̃∂Y Û3r =
V̂3∂2
YU0

U0−c
(indicated by the blue text) to obtain

ax =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− 1

iα̃
V̂3∂

2
YU0 +

ik̃

iα̃
(∂YU0)Û3r +

α̃2

iα̃
(U0 − c)V̂3

− ∂Y

(
(U0 − c)

[
α̃

k̃
Û3r −

β̃

k̃

β̃

iα̃k̃

V̂3∂YU0

U0 − c

])]
dY .

(C.5)
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Factoring out 1/(iα̃) and 1/(iα̃k̃2) and utilizing the Eikonal equation β̃2 = k̃2 − α̃2,

ax =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
1

iα̃

(
−V̂3∂

2
YU0 + ik̃(∂YU0)Û3r + α̃2(U0 − c)V̂3

)
− 1

iα̃

1

k̃2
∂Y

(
α̃2ik̃Û3r(U0 − c)− β̃2V̂3∂YU0

)]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
1

iα̃

(
−V̂3∂

2
YU0 + ik̃(∂YU0)Û3r + α̃2(U0 − c)V̂3

)
− 1

iα̃

1

k̃2
∂Y

(
α̃2ik̃Û3r(U0 − c) + α̃2V̂3∂YU0 − k̃2V̂3∂YU0

)]
dY .

(C.6)

We now distribute the ∂Y derivative and strategically collect terms, giving

ax =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
1

iα̃

(
−V̂3∂

2
YU0 + ik̃(∂YU0)Û3r + α̃2(U0 − c)V̂3 + ∂Y V̂3∂YU0 + V̂3∂

2
YU0

)
− 1

iα̃

α̃2

k̃2

(
ik̃(∂Y Û3r)(U0 − c) + ik̃Û3r(∂YU0) + (∂Y V̂3)∂YU0 + V̂3∂

2
YU0

)]
dY .

(C.7)
The terms indicated in red cancel owing to the incompressibility condition, while the terms in blue
comprise Rayleigh’s equation. Consequently,

ax = −
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
1

iα̃
α̃2(U0 − c)V̂3 −

1

iα̃

α̃2

k̃2

(
−k̃2(U0 − c)V̂3

)]
dY , (C.8)

i.e.,

ax = −2iα̃

∫ ∞
−∞
V̂3V̂∗3dY . (C.9)

Thus V̂3 is bounded throughout the VF and exponentially decays to 0 as Y → ±∞. Accordingly,
ax is not singular near the CL and is integrable across the VF.

We next examine the expression for az, again making the substitution ∂YΠ̂3 = −ik̃(U0 − c)V̂3

and integrating by parts:

az =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
β̃

k̃
∂YΠ̂3 − ∂YU0

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

]
−
(
U0 − c

)
∂Y

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
−iβ̃(U0 − c)V̂3 − ∂Y

(
(U0 − c)

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

])]
dY .

(C.10)
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We next substitute for Ŵ3r and then distribute (U0 − c) within the derivative:

az =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
−iβ̃(U0 − c)V̂3 −

β̃

ik̃2
∂Y

(
(U0 − c)

[
ik̃Û3r +

V̂3∂YU0

U0 − c

])]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
−iβ̃(U0 − c)V̂3 −

β̃

ik̃2
∂Y

(
(U0 − c)ik̃Û3r + V̂3∂YU0

)]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− iβ̃(U0 − c)V̂3

− β̃

ik̃2

(
∂YU0(ik̃Û3r) + ik̃(U0 − c)∂Y Û3r + ∂Y V̂3∂YU0 + V̂3∂

2
YU0

)]
dY .

(C.11)

As for ax, the red terms cancel owing to incompressibility and the blue terms constitute Rayleigh’s
equation, enabling further simplification; i.e.,

az =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
−iβ̃(U0 − c)V̂3 −

β̃

ik̃2

(
ik̃(U0 − c)∂Y Û3r + V̂3∂

2
YU0

)]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)
β̃

ik̃2

[
k̃2(U0 − c)V̂3 − ik̃(U0 − c)∂Y Û3r − V̂3∂

2
YU0

]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)
β̃

ik̃2

[
2k̃2(U0 − c)V̂3

]
dY .

(C.12)

Finally, we obtain

az = −2iβ̃

∫ ∞
−∞
V̂∗3 V̂3dY . (C.13)

Note that az has a form similar to ax except that β̃ rather than α̃ multiplies the integral. Again, V̂3
is bounded throughout the VF and exponentially approaches 0 as Y → ±∞, implying that az is
not singular near the CL and is integrable across the VF.

Using ∂YΠ̂3 = −ik̃(U0 − c)V̂3 and integrating by parts,

a0 =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂Y

(
∂z

(
(U0 − c)

(
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

)))

+ 2∂Y

(
∂zU0

[
β̃

k̃
Û3r +

α̃

k̃
Ŵ3r

])]
dY .

(C.14)
We again substitute for Ŵ3r and then distribute and factor out (U0−c) from various terms to obtain
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a0 =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂z

(
∂Y

(
(U0 − c)

(
β̃

k̃
Û3r +

β̃

ik̃2

V̂3∂YU0

U0 − c

)))

+ 2∂Y

(
∂zU0

[
β̃

k̃
Û3r +

β̃

ik̃2

V̂3∂YU0

U0 − c

])]
dY ,

a0 =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂z

(
β̃

ik̃2
∂Y

(
ik̃(U0 − c)Û3r + V̂3∂YU0

))

+ 2
β̃

ik̃2
∂Y

(
∂zU0

U0 − c

[
ik̃(U0 − c)Û3r + V̂3∂YU0

])]
dY .

(C.15)
Expanding the ∂Y derivatives yields

a0 =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂z

(
β̃

ik̃2

(
ik̃(U0 − c)(∂Y Û3r) + ik̃(∂YU0)Û3r + (∂Y V̂3)∂YU0 + V̂3∂

2
YU0

))

+ 2
β̃

ik̃2
∂Y

(
∂zU0

U0 − c

)[
ik̃(U0 − c)Û3r + V̂3∂YU0

]
+ 2

β̃

ik̃2

∂zU0

U0 − c

(
ik̃(U0 − c)(∂Y Û3r) + ik̃(∂YU0)Û3r + (∂Y V̂3)∂YU0 + V̂3∂

2
YU0

)]
dY .

(C.16)
The terms in red cancel owing to continuity while the terms in blue can be combined to obtain a
multiple of Rayleigh’s equation. Using these simplifications,

a0 =−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂z

(
β̃

ik̃2

(
−k̃2(U0 − c)V̂3

))

+ 2
β̃

ik̃2
∂Y

(
∂zU0

U0 − c

)[
ik̃(U0 − c)Û3r + V̂3∂YU0

]
+ 2

β̃

ik̃2

∂zU0

U0 − c

(
−k̃2(U0 − c)V̂3

)]
dY

=−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
− β̃∂z

(
i(U0 − c)V̂3

)
− ∂z

(
iβ̃(U0 − c)V̂3

)
+ 2iβ̃(∂zU0)V̂3

− 2
iβ̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
ik̃(U0 − c)Û3r + V̂3∂YU0

] ]
dY .

(C.17)
Next, we expand the ∂z derivatives and group like terms to obtain
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a0 =− i−
∫ ∞
−∞

(
V̂∗3
U0 − c

)[
2β̃(U0 − c)∂z(V̂3) + (∂zβ̃)(U0 − c)V̂3

+ 2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
ik̃(U0 − c)Û3r

]
+ 2

β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
V̂3∂YU0

] ]
dY

=− i−
∫ ∞
−∞

[
2β̃∂z(V̂3)V̂∗3 + (∂zβ̃)V̂3V̂∗3 − 2

β̃

k̃2
∂Y

(
∂zU0

U0 − c

)
(∂Y V̂3)V̂∗3︸ ︷︷ ︸

1

+ 2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
V̂3V̂∗3∂YU0

U0 − c

]
︸ ︷︷ ︸

2

]
dY .

(C.18)

The resulting expression for a0 still apparently contains potentially singular terms indicated by the
underbraces in (C.18). We start by analyzing the first potentially singular term:

2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)
(∂Y V̂3)V̂∗3 . (C.19)

Since (U0 − c) → λ̃Y as Y → 0 (where λ̃ = λ̃(z)), a corollary is that ∂Y
(
∂zU0

U0−c

)
→ ∂zλ̃

λ̃
∂Y
(Y
Y

)
as Y → 0; i.e., ∂Y

(
∂zU0

U0−c

)
→ 0 as Y → 0. Hence, the term indicated by underbrace ‘one’ goes

to zero as the CL is approached and is not singular. Next, we analyze the term highlighted by the
underbrace ‘two’,

2
β̃

k̃2
∂Y

(
∂zU0

U0 − c

)[
V̂3V̂∗3∂YU0

U0 − c

]
. (C.20)

The important observation here is that ∂Y
(
∂zU0

U0−c

)
→ 0 at the same rate as (U0− c)→ 0, implying

that this term approaches a constant asY → 0. Consequently, the integrand in (C.18) is not singular
near Y = 0 and goes exponentially to zero away from the CL, confirming that it is integrable across
the VF. Consequently, each of the coefficients ax, az, and a0 in the amplitude equation (2.70) is
bounded.
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APPENDIX D

CAUSTICS

This appendix provides a detailed analysis of the flow within the caustics.
First, taking the divergence of (2.38)–(2.41) yields an equation for the fluctuation pressure in

the VF:

∂2
YP̂3 − 2

(
∂YU0

U0 − c

)
∂YP̂3 = k̃2P̂3, (D.1)

where, again, α̃2 + β̃2 = k̃2 is the Eikonal equation. The boundary and symmetry conditions on
the fluctuation pressure, respectively, are

|Y| → ∞ : P ′3 → 0, (D.2)
Y = 0 : ∂YP ′3 = 0. (D.3)

The WKBJ solution for the fluctuation pressure given in (2.21) breaks down near each caustic. To
find a uniformly valid solution for all z within VF, we begin with an expansion similar to the ansatz
employed by Ludwig (1966) and McKee (1973):

P ′ ∼ ∆̃17/6P̂3(Y , z)

[
F (Y , z)Ai

(
− ξ̃(z)

∆̃2/3

)
+ i∆̃1/3G(Y , z)Ai′

(
− ξ̃(z)

∆̃2/3

)]
ei(α̃/∆̃)(x−ct) + c.c.,

(D.4)
where P̂3 solves (D.1) and Ai is the Airy function such that

Ai′′(z)− zAi(z) = 0, (D.5)
Ai′′′(z)− zAi′(z)− Ai(z) = 0. (D.6)

Using these identities and ansatz for P ′3, spatial derivatives become
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∂YP ′ = ∆̃17/6

(
∂YP̂3

[
FAi + i∆̃1/3GAi′

]
+ P̂3

[
∂YFAi + i∆̃1/3∂YGAi′

])
ei(α̃/∆̃)(x−ct) + c.c.,(D.7)

∂2
YP ′ = ∆̃17/6

(
∂2
YP̂3

[
FAi + i∆̃1/3GAi′

]
+ 2∂YP̂3

[
∂YFAi + i∆̃1/3∂YGAi′

]
+ P̂3

[
∂2
YFAi + i∆̃1/3∂2

YGAi′
])

ei(α̃/∆̃)(x−ct) + c.c., (D.8)

∂zP ′ = ∆̃17/6

(
∂zP̂3

[
FAi + i∆̃1/3GAi′

]
+ P̂3

[
∂zFAi− ∆̃−2/3∂z ξ̃FAi′ + i∆̃1/3∂zGAi′ + i∆̃−1ξ̃∂z ξ̃GAi

])
ei(α̃/∆̃)(x−ct) + c.c.,(D.9)

∂2
zP ′ = ∆̃17/6

(
∂2
z P̂3

[
FAi + i∆̃1/3GAi′

]
+ 2∂zP̂3

[
∂zFAi− ∆̃−2/3∂z ξ̃FAi′ + i∆̃1/3∂zGAi′

+ i∆̃−1ξ̃∂z ξ̃GAi

]
+ P̂3

[
∂2
zFAi− 2∆̃−2/3∂z ξ̃∂zFAi′ − ∆̃−2/3∂2

z ξ̃FAi′ − ∆̃−2ξ̃(∂z ξ̃)
2FAi

]

+ P̂3

[
i∆̃1/3∂2

zGAi′ + 2i∆̃−1ξ̃∂z ξ̃∂zGAi + i∆̃−1ξ̃∂2
z ξ̃GAi

+ i∆̃−1(∂z ξ̃)
2GAi− i∆̃−5/3ξ̃(∂z ξ̃)

2GAi′
])

ei(α̃/∆̃)(x−ct) + c.c., (D.10)

where

F ∼ F0(z) +
∞∑
m=1

(
∆̃

i

)m

Fm(Y , z), (D.11)

G ∼ G0(z) +
∞∑
m=1

(
∆̃

i

)m

Gm(Y , z). (D.12)

We substitute this modified ansatz and expansion into the NS equations. At leading order,

α̃2 + ξ̃(∂z ξ̃)
2 = k̃2. (D.13)

Equation (D.13) is analogous to the Eikonal equation obtained using the WKBJ ansatz, and its
solution can be expressed as

2

3
ξ̃3/2 = −

∫ z

zc

(
k̃2(t)− α̃2

)1/2

dt z < zc, (D.14)

2

3
(−ξ̃)3/2 =

∫ z

zc

(
α̃2 − k̃2(t)

)1/2

dt z > zc, (D.15)
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where zc is the spanwise location of the caustic. Next, we collect terms at like orders in ∆̃ to obtain

−P̂3∂
2
YFm − 2∂YP̂3∂YFm + 2

(
∂YU0

U0 − c

)
∂YFm − 2

(
∂zU0

U0 − c

)[
∂z(P̂3Fm−2) + P̂3ξ̃∂z ξ̃Gm−1

]
+

[
∂2
z (P̂3Fm−2) + ∂z(P̂3Gm−1)ξ̃∂z ξ̃ + ∂z(P̂3Gm−1ξ̃∂z ξ̃)

]
= 0, (D.16)

−P̂3∂
2
YGm − 2∂YP̂3∂YGm + 2

(
∂YU0

U0 − c

)
P̂3∂YGm − 2

(
∂zU0

U0 − c

)[
∂z(P̂3Gm−2) + P̂3∂z ξ̃Fm−1

]
+

[
∂2
z (P̂3Gm−2) + ∂z(P̂3Fm−1)∂z ξ̃ + ∂z(P̂3Fm−1∂z ξ̃)

]
= 0, (D.17)

for each m = 1, 2, 3 . . .. Equations (D.16)–(D.17) are the so-called transport equations.
The equations for (F,G) reduce to

P̂3∂
2
YF1 + 2∂YP̂3∂YF1 − 2

(
∂YU0

U0 − c

)
∂YF1 =

∂z(P̂3G0)ξ̃∂z ξ̃ + ∂z(P̂3G0ξ̃∂z ξ̃)− 2

(
∂zU0

U0 − c

)
P̂3ξ̃∂z ξ̃G0, (D.18)

P̂3∂
2
YG1 + 2∂YP̂3∂YG1 − 2

(
∂YU0

U0 − c

)
∂YG1 =

∂z(P̂3F0)∂z ξ̃ + ∂z(P̂3F0∂z ξ̃)− 2

(
∂zU0

U0 − c

)
P̂3∂z ξ̃F0. (D.19)

Considering (D.18), the Fredholm Alternative theorem requires

0 = (LF1,Φ
†) =

∫ ∞
0+

(
P̂3∂

2
YF1 + 2∂YP̂3∂YF1 − 2

∂YU0

U0 − c
∂YF1

)
Φ†∗dY

=

∫ ∞
0+

∂Y

(
∂Y

[
Φ†∗(U0 − c)2

P̂3

]
P̂2

3

(U0 − c)2

)
F1dY ,

(D.20)

where here, the linear operator L = P̂3∂
2
Y + 2∂YP̂3∂Y − 2∂YU0

U0−c
∂Y . Φ† is the adjoint eigenfunction,

i.e. satisfying L†Φ† = 0, where the adjoint linear operator

L† =(U0 − c)∂2
Y +

[
∂Y

(
(U0 − c)2

P̂3

)
P̂3

(U0 − c)
+ ∂YU0 + (U0 − c)

]
∂Y

+

[
∂Y

(
P̂3

(U0 − c)
∂Y

(
(U0 − c)2

P̂3

))
+ ∂Y

(
(U0 − c)2

P̂3

)
∂Y

(
P̂3

(U0 − c)

)]
.

(D.21)

More compactly, for L†Φ† = 0,

∂Y

[
Φ†∗(U0 − c)2

P̂3

]
P̂2

3

(U0 − c)2
= 0, (D.22)

102



which has the solution Φ† = P̂3

(U0−c)2 . We next enforce (Lf,Φ†) = 0, using (D.18):

−
∫ ∞
−∞

[
∂z(P̂3G0)ξ̃∂z ξ̃ + ∂z(P̂3G0ξ̃∂z ξ̃)− 2

(
∂zU0

U0 − c

)
P̂3G0ξ̃∂z ξ̃

]
Φ†∗dY = 0. (D.23)

However, P̂3 is real, so Φ†∗ = Φ†. This condition can be simplified to

∂z

(
G0(ξ̃∂z ξ̃)

1/2
)
−
∫ ∞
−∞

(
P̂3

U0 − c

)2

dY +G0(ξ̃∂z ξ̃)
1/2−
∫ ∞
−∞

(
P̂3

U0 − c

)
∂z

(
P̂3

U0 − c

)
dY = 0.

(D.24)
Dividing through by G0(ξ̃∂z ξ̃)

1/2 then yields

∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2
−
∫ ∞
−∞

(
P̂3

U0 − c

)2

dY +−
∫ ∞
−∞

(
P̂3

U0 − c

)
∂z

(
P̂3

U0 − c

)
dY = 0. (D.25)

We break up the integral such that

0 = lim
y∗→0+

[
∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2

(∫ −y∗
−∞

(
P̂3

U0 − c

)2

dY +

∫ y∗

−y∗

(
P̂3

U0 − c

)2

dY

+

∫ ∞
y∗

(
P̂3

U0 − c

)2

dY

)
+

∫ −y∗
−∞

(
P̂3

U0 − c

)
∂z

(
P̂3

U0 − c

)
2dY

+

∫ y∗

−y∗

(
P̂3

U0 − c

)
∂z

(
P̂3

U0 − c

)
dY +

∫ ∞
y∗

(
P̂3

U0 − c

)
∂z

(
P̂3

U0 − c

)
dY

]
.

(D.26)

Asymptotically, (D.26) is dominated by the integrals centered on the CL, so the leading order
equation becomes

0 = lim
y∗→0+

[
∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2

∫ y∗

−y∗

(
P̂3

U0 − c

)2

dY +

∫ y∗

−y∗

P̂3

U0 − c
∂z

(
P̂3

U0 − c

)
dY

]
. (D.27)

In section 2.4, it is shown that, within the critical layer, P̂3 = P̂3(z) and (U0 − c) = λ̃Y . Substi-
tuting these results into (D.27) and factoring yields

0 = lim
y∗→0+

[
∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2

(
P̂3

λ̃

)2 ∣∣∣∣∣
Y=0

∫ y∗

−y∗

1

Y2
dY +

P̂3

λ̃
∂z

(
P̂3

λ̃

)∣∣∣∣∣
Y=0

∫ y∗

−y∗

(
1

Y2

)2

dY

]
.

(D.28)
The integral can now be factored out so the equation becomes

0 =

(
∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2

P̂3

λ̃

∣∣∣∣∣
Y=0

+ ∂z

(
P̂3

λ̃

)∣∣∣∣∣
Y=0

)
lim
y∗→0

[∫ y∗

−y∗

(
1

Y2

)2

dY

]
. (D.29)
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Consequently, the term in parentheses must vanish, enabling G0 to be determined:

∂z

(
G0(ξ̃∂z ξ̃)

1/2
)

G0(ξ̃∂z ξ̃)1/2
= −

∂z

(
P̂3

λ̃

)
P̂3

λ̃

∣∣∣∣∣
Y=0

;

ln
(
G0(ξ̃∂z ξ̃)

1/2
)

= −ln

(
P̂3|Y=0

λ̃

)
+ constant;

G0(ξ̃∂z ξ̃)
1/2 = γg

λ̃

P̂3|Y=0

.

(D.30)

A similar procedure can be used to determine F0. Collecting results, we find

F0(z) =
γf λ̃

P̂3|Y=0(∂z ξ̃)1/2
,

G0(z) =
γgλ̃

P̂3|Y=0(ξ̃∂z ξ̃)1/2
.

(D.31)

Here, the coefficients γf and γg are constants of integration that are determinable by matching with
the WKBJ solution away form the caustic. It can be shown that (k̃2 − α̃2) has a simple zero at
z = zc. Consequently, in the region where (z − zc) is small, ξ̃ scales like −(z − zc). To avoid
singular growth near the caustic we choose γg = 0. Then the leading asymptotic expansion in the
area where ξ̃(z)/∆̃2/3 = O(1) is

P ′ ∼ ∆̃17/6γf P̂3λ̃

P̂3|Y=0(∂z ξ̃)1/2
Ai

(
− ξ̃(z)

∆̃2/3

)
ei(α̃/∆̃)(x−ct) + c.c. (D.32)

In the illuminated region away from the caustic, the Airy function can be replaced by its asymptotic
expansion for large negative argument to give

P ′ ∼ −i ∆̃3γf P̂3λ̃

2
√
πP̂3|Y=0(k̃2 − α̃2)1/4

[
ei(

1
∆̃

∫ 0
z (k̃2−α̃2)1/2dz+π/4) + ei(−

1
∆̃

∫ 0
z (k̃2−α̃2)1/2dz+3π/4)

]
× ei(α̃/∆̃)(x−ct) + c.c. (D.33)

for z < zc and zc > 0. This approximation shows that the ‘incident’ instability mode is reflected
at the caustic. Moreover, the spanwise fluctuation velocity is suppressed at the caustic since the
spanwise fluctuation pressure gradient is weak there relative to its magnitude in the illuminated
region, enabling the incident Rayleigh mode to two-dimensionalize prior to being reflected. The
reflected mode has the same amplitude as the incident mode but experiences a π/2 shift in relative
phase upon entering the illuminated region. In contrast, for z > zc and zc > 0, the asymptotic
approximation of P ′ for |ξ̃(z)/∆̃2/3| � 1 is

P ′ ∼ ∆̃3γf P̂3λ̃

2
√
πP̂3|Y=0(α̃2 − k̃2)1/4

e−
1
∆̃

∫ 0
z (α̃2−k̃2)1/2dzei(α̃/∆̃)(x−ct) + c.c., (D.34)

which rapidly decays to zero in the shadow zone beyond the caustic. Analogous results hold for
the caustic at z = zc and zc < 0.
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The caustics are asymptotically thin (relative to the scale of the rolls) but the amplitude of
the instability mode is asymptotically large there relative to its value in the illuminated region.
Accordingly, we next estimate the contributions to the energy-budget integral on the left-hand side
of (2.134), which is used to compute Ω̄c, made by the Rayleigh mode in the caustic regions. First,
however, we must determine the jump in mean streamwise vorticity across the CL in the vicinity
of the caustic.

Within the CL (at y = 0, say), the governing fluctuation spanwise momentum equation (2.94)
reduces to

U1∂xW
′
2 = −∂zP ′3 + Ω̄c∂

2
YW

′
2. (D.35)

Near the caustic, the fluctuation spanwise pressure gradient is

∂zP
′
3 = ∆̃17/6P̂3∆−2/3∂z ξ̃F0Ai′ei(α̃/∆̃)(x−ct), (D.36)

using ∂zP ≈ 0. Consequently, the fluctuation spanwise pressure gradient is (relatively) weaker
near the caustic, where β̃ → 0, and W ′ is not forced. In fact, near the caustic, the instability
mode two-dimensionalizes in the non-rotated x–z plane, with both ∂z and W ′ becoming weaker
than in the illuminated region. Kinematically, this is plausible since the instability mode must
two-dimensionalize at the caustic before reflecting into the illuminated region. Thus,

W ′ ∼ ∆̃13/6Ŵ2F0Ai ei[α(x−ct)+θ(z/∆̃)] + c.c. (D.37)

By substituting this ansatz into (D.35) we find(
iα̃λ̃Y

)
Ŵ2F0Ai = −P̂3|Y=0∂z ξ̃F0Ai′ + Ωc∂

2
Y Ŵ2F0Ai, (D.38)

where the notation Ai′ signifies an O(1) derivative of Ai with respect to its complete argument.
Rearranging then yields

∂2
Y Ŵ2F0 − i

α̃λ̃

Ωc

Y Ŵ2 =
∂z ξ̃

Ωc

Ai′

Ai
P̂3|Y=0. (D.39)

The solution to (D.39) can be expressed as

Ŵ2 = −Ω
−1/3

c (α̃λ̃)−2/3

(
∂z ξ̃Ai′

Ai
P̂3|Y=0

)∫ ∞
0

e
−i
(
α̃λ̃
Ω̄c

)1/3
Y ϕ−ϕ3/3

dϕ. (D.40)

To determine the jump in x−mean shear across the CL, note that

(W ′W ′) ∼ ∆̃4(W ′
2W

′
2) ∼ 4∆̃4∆̃1/3F 2

0 Ŵ
+
2 Ŵ

+∗
2 Ai2, (D.41)

where the overbar here (i.e. in the neighborhood of the caustic) refers to an average in x. Substi-
tuting into (2.89) we obtain[

∂YW̃3

]+

−
= 4∆̃1/3Ω

−2

c

∫ ∞
−∞

∂z(F
2
0 Ŵ2Ŵ

∗
2 Ai2)dY. (D.42)

Next, substituting for Ŵ2 gives[
∂YW̃3

]+

−
= 4∆̃1/3Ω

−2

c

∫ ∞
−∞

∂z

(
Ω
−2/3

c F 2
0 (α̃λ̃)−4/3Ai′2

∣∣∣P̂3|Y=0

∣∣∣2∂z ξ̃2

∫ ∞
0

e
−i
(

(α̃λ̃)

Ωc

)1/3
Y ϕ−ϕ3/3

dϕ

∫ ∞
0

e
i
(

(α̃λ̃)

Ωc

)1/3
Y ϕ−ϕ3/3

dϕ

)
dY.

(D.43)
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Defining Ŷ =
(

(α̃λ̃)

Ωc

)1/3

Y and recalling F0 =
γf λ̃√

∂z ξ̃P̂3|Y=0

,

[
∂YW̃3

]+

−
= 4

∆̃1/3γ2
f

Ω
2

c

∫ ∞
−∞

∂z

(
Ω
−1/3

c (α̃λ̃)−5/3∂z ξ̃Ai′2λ̃2

∫ ∞
0

e−iŶ ϕ−ϕ
3/3dϕ

∫ ∞
0

eiŶ ϕ−ϕ
3/3dϕ

)
dŶ

= 4
∆̃1/3γ2

f

Ω
7/3

c α̃5/3
∂z

(
∂z ξ̃Ai′2λ̃1/3

∫ ∞
−∞

[∫ ∞
0

e−iŶ ϕ−ϕ
3/3dϕ

∫ ∞
0

eiŶ ϕ−ϕ
3/3dϕ

]
dŶ

)
.

(D.44)
To simplify this result, we exploit the fact that if arbitrary functions f and g are integrable functions
then the integral of their convolution on the whole space is simply obtained as the product of their
integrals; see appendix E. Thus,[

∂YW̃3

]+

−
= 4

∆̃1/3γ2
f

Ω
7/3

c α̃5/3
∂z

(
∂z ξ̃Ai′2λ̃1/3

∫ ∞
−∞

[∫ ∞
0

√
π
√
ϕ
e−

Ŷ 2

ϕ
−ϕ3/12dϕ

]
dŶ

)

= 4
∆̃1/3γ2

fπ

Ω
7/3

c α̃5/3
∂z

(
∂z ξ̃Ai′2λ̃1/3

∫ ∞
0

[
e−ϕ

3/12

∫ ∞
−∞

1
√
πϕ

e−
Ŷ 2

ϕ dŶ

]
dϕ

)
.

(D.45)

Recognizing that the Ŷ integral inside the brackets is an error function, (D.45) can be further
simplified: [

∂YW̃3

]+

−
= 4

∆̃1/3γ2
fπ

Ω
7/3

c α̃5/3
∂z

(
∂z ξ̃Ai′2λ̃1/3

∫ ∞
0

e−ϕ
3/12dϕ

)
. (D.46)

The remaining integral can be evaluated analytically in terms of gamma functions. The mean stress
jump across the CL near the caustic is therefore given by[

∂YW̃3

]+

−
= 4

∆̃1/3γ2
fπ
(

2
3

)2/3
Γ
(

1
3

)
Ω

7/3

c α̃5/3
∂z

(
∂z ξ̃Ai′2λ̃1/3

)
. (D.47)

Finally, for brevity of notation, let n0 = 2π(2/3)2/3Γ(1/3). Equation (D.47) then reduces to

[∂YW̃3]+− = ∆̃1/3
2n0γ

2
f

Ω̄
7/3
c α̃5/3

∂z

(
λ̃1/3∂z ξ̃Ai′2

)
. (D.48)

To isolate the various contributions, the integral in (2.134), we split the integral into three parts:∫ Lz/2

0

w̃2|y=0∂YW̃3|Y=0+dz =

∫ z−c

0

w̃2|y=0∂YW̃3|Y=0+dz +

∫ z+
c

z−c

w̃2|y=0∂YW̃3|Y=0+dz

+

∫ Lz/2

z+
c

w̃2|y=0∂YW̃3|Y=0+dz. (D.49)

The amplitude A(z) in the shadow region is exponentially small, so the integral from z+
c to Lz/2

vanishes.
Upon using (D.48) to evaluate the second integral on the right-hand side of (D.49), we note

that the z derivative is large, O(∆̃−2/3), since the argument of Ai is ∆̃−2/3ξ̃(z). (In contrast,
the notation Ai′ signifies an O(1) derivative of Ai with respect to its complete argument.) This
amplification, however, is offset by the small [i.e. O(∆̃2/3)] integration range. Consequently, the
second integral in (D.49) is asymptotically smaller than the first owing to the ∆̃1/3 factor in (D.48).
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APPENDIX E

CONVOLUTION

This appendix shows how to take the convolution needed for the derivation of the stress jump
across the critical layer. To calculate the convolution, we begin with∫ ∞

−∞
e−

ψ3

3
+iŶ ψdψ

∫ ∞
−∞

e−
ϕ3

3
−iŶ ϕdϕ.

By definition, this equivalent to∫ ∞
−∞

[∫ ∞
−∞

e−
ψ3

3
−iŶ ψe−

(ϕ−ψ)3

3
−iŶ (ϕ−ψ)dψ

]
dϕ.

Factoring out ϕ from integral and expanding the cubic polynomial yields∫ ∞
−∞

[
e−

ϕ3

3
+iŶ ϕ

∫ ∞
−∞

eϕ
2t−ϕψ2−2iŶ ψdψ

]
dϕ.

Completing the square and again factoring out ϕ terms gives∫ ∞
−∞

[
e−

ϕ3

3
+iŶ ϕe

(ϕ2−2iŶ )
4ϕ

2 ∫ ∞
−∞

e
−(
√
ϕψ−ϕ

2ψ−2iŶ ψ
2
√
ϕ

)2

dψ

]
dϕ.

Finally, integrating and expanding the remaining exponential yields∫ ∞
−∞

[
e−

ϕ3

3
+iŶ ϕe

ϕ3

4
−iŶ ϕ− Ŷ

2

ϕ
2
√
π

√
ϕ

]
dϕ,

which simplifies to ∫ ∞
−∞

2
√
π

√
ϕ
e−

ϕ3

12
− Ŷ

2

ϕ dϕ.
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APPENDIX F

ECS SOLUTION ALGORITHM

To compute the ECS, the following algorithm is employed.

1. The renormalized roll velocity field (ṽ2(y, z),w̃2(y, z)) is obtained by dividing (2.11)–(2.12)
by the (as yet) unknown Ω̄c.

2. u0(y, z) is obtained by numerically solving (2.19) using a Fourier–Chebyshev pseudospectral
scheme on the domain 0 ≤ y ≤ 1, −Lz/2 ≤ z ≤ Lz/2 subject to the symmetry conditions
u0(0, z) = 0 and u(1, z) = 1 and periodic boundary conditions in z.

3. The fluctuation fields within the VF are obtained by collapsing (2.42)–(2.44) into Rayleigh’s
equation and then numerically solving the resulting 1D differential eigenvalue problem (treat-
ing the total horizontal wavenumber k(z) as the eigenvalue) on the domain −∞ < Y < ∞
using a Chebyshev collocation method, with a Y-coordinate mapping, for a discrete set of z
ranging from −Lz/2 to Lz/2.

4. The coefficients az and a0 in the amplitude equation (2.77) are obtained by numerical quadra-
ture using the expressions given in (2.75)–(2.76), and the fluctuation amplitude function
A(z) is then obtained from (2.78).

5. The homogenized roll vorticity Ω̄c is computed via numerical quadrature using (2.137).

6. Transformations (2.46) are utilized to obtain the fluctuation fields in the original (i.e. non-
rotated) coordinates.

Note that the fluctuation fields within the CL need not be evaluated, but if desired, they can be
reconstructed using (2.98) and (2.91)–(2.92).
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APPENDIX G

TABLE OF ACRONYMS

This appendix includes a list of acronyms used in the dissertation.

UNH - University of New Hampshire

FPF - Flow Physics Facility

LSM - Large Scale Motions

VLSM - Very Large Scale Motions

POD - Proper Orthogonal Decomposition

MI - Mean Inertia

TI - Turbulent Inertia

MV - Mean Viscous Force

PG - Pressure Gradient

MMB - Mean Momentum Balance

2D - Two-Dimensional

3D - Three-Dimensional

NS - Navier Stokes

TBL - Turbulent Boundary Layer

UMZ - Uniform Momentum Zone

VF - Vortical Fissure

CL - Critical Layer

VWI - Vortex-Wave Interaction

SSP - Self-Sustaining Process

ECS - Exact Coherent States

DNS- Direct Numeric Simulations

WKBJ - Wentzel-Kramers-Brillouin-Jeffreys

E.S.T. - Exponentially Small Terms

H.O.T. - Higher Order Terms

c.c. - Complex Conjugate
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