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ABSTRACT 

 

Comparison of Household-Scale Rainwater Harvesting and Greywater Recycling Systems 

 in Boston Through Spatial Optimization of Cost and Energy Savings 

 

by 

 

Shannon K. Stang 

University of New Hampshire 

 

Household decentralized water systems, including rainwater harvesting and greywater recycling, are 

often touted as a means to improve the sustainability and resiliency of centralized municipal systems. This 

research is focused on the spatial distribution of life cycle energy savings and consumer cost savings of 

adopting decentralized systems for individual households in the city of Boston. Using a Python model 

simulation, the optimal type and size of decentralized system for each household is selected based on the 

cost and energy comparison between the installation, operation, and maintenance of the new system and 

the process of treatment and delivery from the existing utility. The decentralized system selection is based 

on household characteristics such as distance from the centralized plants, number of tenants, and roof 

size. The distribution of households was mapped to analyze the spatial distribution of the effects of 

adopting a decentralized system. Greywater recycling systems largely returned cost and energy savings 

after 30 years, while rainwater harvesting systems resulted in losses.
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1. Introduction 

Around 90% of the US population currently relies on centralized water supply systems, which are often 

characterized as infrastructure with distribution networks that provide service to an entire city or region 

(Dieter et al. 2018). With the benefit of economies-of-scale, these centralized systems can supply 

sufficient quantities of easily accessed, high-quality potable water with a relatively low cost to the 

consumers (Hunter et al. 2010). Nevertheless, management of these systems has become increasingly 

challenging. In the US, many crucial water conveyance pipes were installed over 100 years ago, while the 

total expected lifespan of the pipes is generally between 75 and 100 years (ASCE, 2017). The country has 

fallen behind on repairing or replacing aged water systems. There are an estimated 240,000 water main 

breaks per year, resulting in losses of around six billion gallons of treated water per day (ASCE, 2017). 

An estimated investment of $250 billion over the next 30 years is needed to replace the aged water pipes 

and fixtures (AWWA, 2001). Additionally, the centralized water supply scheme can have high 

vulnerability and lack adaptability to the increasingly common natural (e.g., droughts and flooding) and 

manmade (e.g., terrorist attacks) threats. On the other hand, decentralized water supply systems have been 

developed and increasingly integrated within the centralized network. Decentralized or distributed 

systems are smaller-scale dispersed facilities that are located near or at the point of use (JFW, 2014). 

They can either function independently or remain connected to a centralized system (JFW, 2014). 

Rainwater harvesting (RWH) and greywater recycling (GWR) systems are currently the two most widely 

investigated/implemented decentralized water systems (Ángel et al. 2016). Decentralized systems are 

often touted as money- and energy-saving investments (Wang et al. 2015). However, poorly sized or sited 

systems can lead to an increased cost for the consumer and a net energy loss (Wang and Zimmerman 

2015). A holistic understanding of how the decentralized water systems can be integrated on a city-scale 

to improve sustainability and resiliency is hence imperative.  
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Over the last decade, life cycle assessment (LCA) and life cycle cost assessment (LCCA) have been 

increasingly applied for assessing RWH and GWR systems, although much uncertainty still exists as 

whether the decentralized systems can result in positive cost or energy savings. Many of these studies 

adopted a case study approach that focused on specific building settings (e.g., (Morales-Pinzón et al. 

2015; Wang and Zimmerman 2015)), but did not consider the influence of adoption patterns on a city 

scale. They commonly suggested that RWH or GWR systems with a higher service population or 

population density are more likely to achieve cost or energy savings (e.g., (Godskesen et al. 2011; Jeong 

et al. 2016; Memon et al. 2007; Newman, Dandy, and Maier 2015; Wanjiru and Xia 2017; Ward, Memon, 

and Butler 2012)). Only a few of these studies have considered the avoided treatment and pumping needs 

at the centralized plants as a result of the adoption. Of these that did consider the avoided treatment and 

pumping needs, findings vary significantly depending on the design of the decentralized systems and the 

system boundary that has been included in the analysis. None of these studies, however, considered the 

influence of household location within the context of the existing centralized network on the avoided 

pumping needs (e.g. (Angrill et al. 2012; Ghimire et al. 2014; Godskesen et al. 2011, 2013; Newman, 

Dandy, and Maier 2015; Ward, Memon, and Butler 2012)). 

 

Very few studies have examined the influence of integrating decentralized water systems into the existing 

centralized networks on a city scale. Matteo et al. (2017) investigated the optimized spatial distribution of 

RWH system adoptions based upon supply volume, water quality improvement, and life cycle cost. They 

found integrating RWH systems into the centralized network can improve the reliability of the water 

supply, but there is a tradeoff between reliability and cost. Similarly, Penn et al. (2013) optimized the 

spatial distribution of homes with GWR systems in a neighborhood to minimize life cycle energy cost and 

wastewater outflow using hydrodynamic modeling. They found the optimal amount of greywater water 

usage was highly related to the spatial location of the households. This study, however, did not include a 

full life cycle assessment. Neither studies, however, investigated the optimized sizing of the decentralized 

systems. Kavvada et al. (2016), on the other hand, investigated the optimal size and locations of shared 
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decentralized water reuse systems in San Francisco, CA. Optimal distribution was based on life cycle 

cost, energy and greenhouse-gas emissions which were determined by home elevation, population 

density, and road network analysis. This study determined that savings were more sensitive to spatial 

determinants for decentralized systems than their size or scale. One recent study investigated the optimal 

integration of GWR and RWH systems at a regional scale based upon water volume and cost savings 

(Hargreaves et al., 2019). However, life cycle energy savings as well as the avoided treatment and 

pumping needs from the centralized plants were not investigated. 

 

Most of the previous studies often investigate RWH and GWR systems separately, making their 

comparisons difficult. Ghisi, Rupp, and Triska (2014) applied RWH, GWR, and other potable water 

saving methods to a single school building in Brazil to examine the energy and cost outcomes. The RWH 

system was found to have a shorter payback period compared with the GWR system. However, the study 

used fixed flow rates and sizes to model the systems over the systems’ life span. On the other hand, 

Chang, Lee, and Yoon (2017) looked at the operation phases of GWR, RWH, as well as a typical 

centralized plant in South Korea to compare their energy consumptions. The GWR system was 

determined to be superior than both the RWH and the centralized water supply primarily due to the 

reduced amount of wastewater that needs to be treated. The completely different recommendations 

provided by the two studies are likely a result of the varied climate, building, and system settings that 

have been considered. This suggests the importance of developing models that can be easily generalized 

for different decentralized system applications.  

 

Our study combines LCA and LCCA with system dynamics modeling, tank size optimization, and spatial 

analysis. This model gives individual households of varying sizes and characteristics an optimally sized 

greywater or rainwater system based upon its life cycle cost and energy expenditure. RWH and GWR 

systems were selected for this study due to their common household applications for onsite non-potable 

collection and reuse. Areas in a city that can benefit most from decentralized system integration were then 
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investigated. Boston, MA was selected as a study site given its expected population growth and aged 

water and wastewater infrastructure (Bowen et al. 2019). Our model aims to provide communities a tool 

that informs them of the feasibility of adopting decentralized systems based on energy and costs as well 

as to determine viable ways to efficiently conserve energy and dependably supply water to assist 

decision-making in water management policy. 

 

2. Methodology 

2.1 RWH and GWR System Description 

Figure 1 illustrates the process of the modeling effort conducted in this study. Two system dynamics 

models, one for RWH and one for GWR, were first developed to simulate the daily water balance based 

upon the supply of rainwater or greywater, the non-potable water demand, and the available space in the 

storage tanks. LCA and LCCA were then conducted to calculate life cycle cost and energy savings that 

can be achieved through the decentralized system installations. These savings were then optimized for 

each individual residential household in Boston, MA to identify the scientifically optimal locations of 

decentralized system installations. All models were developed using the open sourced Python 3.7. A 

sensitivity analysis was performed to investigate the uncertainties related to key model assumptions. 



10 
 

 

Figure 1: Rainwater and greywater modeling required the simulation of interdependent dynamic processes, 

including life cycles and water usage cycles. 

 

 

RWH systems store rain that falls on a specific collection area. For this study, residential rooftops were 

the collection area for each individual system. Rainwater falls on the roof, flows by gravity to gutters, 

passes through a filter to remove solids, and accumulates in a storage tank at ground level (Figure 2(a)). 

GWR systems collect water that has already been used in a household for reuse with minimal treatment. 

Water from sinks, showers, and washing machines is collected in a storage tank (Figure 2(b)). Both the 

collected rainwater and greywater is used for non-potable uses including toilet flushing and lawn 



11 
 

irrigation (Dixon et al. 2000; Hamilton et al. 2017), which reduce the need for having high-quality water 

in the storage tank (Gwenzi et al. 2015). 

 

 

Figure 2: Rain falls on a roof, where it is collected in the gutter and diverted to the storage tank before being 

pumped into the household (a). Greywater is collected from various household usages, flows to the storage tank, 

and is pumped for toilet flushing (b). 

 

Information for the households analyzed in the study was from the City of Boston’s open-sourced GIS 

data portal (AB, 2019). Particularly, the 2016 tax parcel dataset has been used to obtain key attributes, 

including building type, street name and number, living area, number of floors, number of bedrooms, 

parcel square footage, average elevation, building type, and distance from the treatment plants (CB, 

2019). Out of the over 160,000 property parcels included within the dataset, only residential buildings 

were included in the analysis. All commercial buildings as well as any buildings that did not have 

bathrooms and bedrooms were omitted, which reduced the data size significantly to around 68,000. 

Apartment units that belong to the same building were combined by matching their street addresses, 

which allows us to investigate decentralized system installations on a building basis. 

 

2.2 Model Description 

2.2.1 Rainwater and Greywater Supply, Yield, and Storage 

The dynamic portion of the model stems from rainwater and greywater supply and demand changing 

daily. For both systems, the yield after spillage method was used. This algorithm has been commonly 

Pump TankPump Tank

(a) (b)



12 
 

used to simulate RWH models (Hanson et al. 2009; Wang and Zimmerman 2015). In this method, 

influent is collected until the storage tank has reached capacity, and the excess volume is spilled, or not 

collected. This excess volume becomes runoff for RWH systems or gets diverted to the sewer for GWR. 

Yield refers to the amount of demand that is met by the available volume in storage. When the tank is 

empty, the households meet their demand with potable water from their drinking water treatment plant. 

The dynamic equations showing the yield and storage of the tank are shown in Eqs. 1 and 2. 

 

𝑌𝑡 = min {
𝑆𝑡−1

𝐷𝑡
  Eq. 1  

       

 

𝑆𝑡 = max {
𝑇 − 𝑌𝑡−1

0
 Eq. 2  

        
 

where 𝑌𝑡 is yield on day t (m³), 𝑆𝑡−1 is the volume of water available in the tank from the previous day, t-

1 (m³), 𝑇 is tank size (m³), and 𝐷𝑡 is demand on day t (m³). Roof area was assumed to be the same as the 

buildings’ footprint and did not include any slopes or items that may be on the roof. The National Oceanic 

and Atmospheric Administration’s (NOAA) daily precipitation was multiplied by the roof area and a roof 

runoff coefficient of 0.9 to determine the total rainfall volume sent to the tank as seen in Equation 3 

(Wang and Zimmerman 2015). Using NOAA’s National Climate Data Center, daily precipitation data for 

Boston, MA was acquired from the Logan Airport gauge (NOAA 2019). Thirty years of data from 1988 

to 2018 were used to simulate precipitation over the assumed 30-year life span of the decentralized 

systems (Morales-Pinzón et al. 2015).  

 

𝑆𝑅𝑊,𝑡 = min {
𝑅𝐴 ∗ 𝑃𝑡 ∗ 𝐶𝑅

𝑇 − 𝑆𝑡
   Eq. 3 

 

 

where 𝑆𝑅𝑊,𝑡 is the rainfall collected in the tank on day t (m³); 𝑅𝐴 is the roof area (m²); 𝑃 is the amount of 

precipitation on day t (m); 𝐶𝑅 is the roof runoff coefficient; and, 𝑆𝑡 is the amount of water volume 

available in the tank on day t (m³).  
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GWR systems have a consistent daily supply dependent on occupancy (Eq. 4). Occupancy in each 

building was determined by the number of bedrooms within each building and the average occupancy per 

bedroom. The average occupancy per bedroom was calculated by dividing the total Boston population 

(USCB 2019) by the total number of bedrooms in the residential buildings, as obtained from the 2016 tax 

parcel dataset. Showers were assumed to supply 0.065 m³ per person per day; sinks were assumed to 

supply 0.023 m³ per person per day; and laundry supplies 0.018 m³ per person per day (USGS 2019). 

 

𝑆𝐺𝑊,𝑡 = min {
𝑁 ∗ (𝑆𝐻 + 𝐿 +  𝑆𝑈)

𝑇 − 𝑆𝑡
  Eq. 4 

 

Where 𝑆𝐺𝑊,𝑡 is the daily greywater collected in the tank (m³), 𝑁 is the building occupancy, 𝑆𝐻 is the 

shower usage per person (m³), 𝐿 is laundry demand (m³), and 𝑆𝑈 the sink usage (m³). 

 

2.2.2 Rainwater and Greywater Demand 

For this study, the non-potable uses are toilet flushing and lawn irrigation for both system types. The daily 

water use by toilet flushing was determined by daily flushing usage, or fixture rate, 0.072 m³ per person 

per day (Dieter et al. 2018), and the occupancy.  

 

Lawn irrigation was assumed to only occur between May and September and on days when there is no 

precipitation (Steffen et al. 2013). On days when lawn irrigation is needed, volume was determined using 

Eq. 5 (Kjelgren et al. 2016). 

 

𝐷𝐼,𝑡 =  
𝐸∗𝑃𝐹∗𝐿𝐴∗𝑎∗𝑏

𝐸𝐹
 Eq. 5 
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Where 𝐸 is the evapotranspiration rate (in), which was assumed to be 0.06 for Boston (Romero and Duke 

2014); 𝐿𝐴 is the lawn area (ft²), which was estimated by subtracting the footprint of the building from the 

land parcel; 𝑎 is 0.62, which is the conversion of one inch of water depth to gallons per square foot of 

area; 𝑏 is 0.0038, which is the conversion for gallons to m3; 𝐸𝐹 is the irrigation efficiency, which was 

assumed to be 80% taken from a range of general lawn irrigation efficiencies (Fipps 2000); 𝐷𝐼,𝑡 is 

irrigation demand (m3) and PF is the plant factor, which was assumed to be 0.8 (NRCC 2019; Romero 

and Duke 2014).  

 

2.3 Life Cycle Cost Model 

The life cycle saving of a decentralized system depends on the capital, operation, and maintenance costs 

as well as the achievable economic savings over a 30-year life span. All costs were discounted back to the 

2018 dollar value using an annual discount rate of 3%.  

 

2.3.1 Capital Cost 

Capital costs include construction and installation costs, while the construction cost consists of the pump 

cost, tank cost, and design cost. The pump cost was calculated based on the horsepower required for the 

household as shown in Eqs. 6 and 7 (WERF 2009). There was a minimum horsepower requirement of 0.5 

due to typical pump sizes.  

 

𝑃𝑆 = max {
0.5

𝐹 × 𝑁𝐹 × 𝑊 ×
𝐻

2
(𝑃𝐸 × 𝑘)⁄    Eq. 6 

 

 

𝑃𝐶 =  max {
2,005

−31.2 ∗ 𝑃𝑆2 + 486.33 ∗ 𝑃𝑆 + 205.68
 Eq. 7 
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where 𝑃𝑆 is pump size (hp); 𝐹 is fixture rate (m³/day); 𝑁𝐹 is number of fixtures in the building, which 

was estimated to be occupancy divided by 1.5; 𝑔 is gravity, or 9.81 m/s2; 𝑘 is the conversion of joules to 

kWh or 3.6 * 106; 𝑊is the water density (kg/ m³); 𝐻 is building height (m); 𝑃𝐶 is pump cost ($); and 𝑃𝐸 

is pump efficiency, which was assumed to be 0.8. 

 

The tank cost was a function of tank size (Eq. 8;(WERF 2009)). Tanks were assumed to be made of 

plastic materials.  

 

𝑇𝐶 = 358.77 ∗ (𝑇0.5064) Eq. 8 

 

Where 𝑇𝐶 is tank cost ($) and 𝑇 is tank size (m³). 

 

Installation cost is the cost of implementing the system in the home and was assumed to be 60% of the 

tank cost (WERF 2009), while the design cost was assumed to be 8% of the sum of the capital costs and 

maintenance cost (WERF 2009). 

 

2.3.2 Operation and Maintenance Cost 

The operation cost was calculated based on the pumping energy for operating the decentralized systems. 

The system’s pumping energy demand is dependent on the home’s indoor use ratio. Indoor use ratio 

refers to the proportion of rainwater or greywater that was used for toilet flushing out of the total yield on 

a particular day. We assumed only the water for toilet flushing needs to be pumped upwards, and 

irrigation was assumed to be gravity-fed. The height for water lifting was assumed to be half of the 

building height. The daily pumping energy was calculated using Eq. 9.  

 

𝑃𝐸𝐶𝑡 =  𝑌𝑡 ∗ 𝐼𝑈𝑡 ∗ 𝑊 ∗ 𝑔 ∗ (
𝐻

2
) ∗

𝑗

𝑃𝐸𝐷
∗ 𝐸𝑃  Eq. 9 
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where 𝑃𝐸𝐶𝑡 is pumping energy cost on day t ($); 𝑌𝑡 is yield on day t (m³); 𝑊 is water density (kg/m³); j  is 

the conversion from kWh to joules, which is 2.78 * 10-7; 𝐼𝑈𝑡 is indoor use ratio on day t; 𝐻 is building 

height (m); 𝑃𝐸𝐷 is pump efficiency, which was assumed to be 0.5; and EP is the electricity price ($/kWh), 

which was assumed to be $0.216/kWh for Boston (BLS 2019). 

 

Maintenance cost was set at $100 annually, which falls within the suggested range by various literature 

sources (WERF 2009; USEPA 2013). Maintenance of the system is required to ensure the tank and filter 

are in proper working order and unobstructed by clogs or failing equipment.  

 

2.3.3 Cost Benefit 

RWH systems prevent owners from needing to purchase potable water from the centralized drinking 

water plant. GWR systems prevent owners from needing to purchase potable water as well as from 

sending the greywater to the sewer. Both benefits reduce the customer’s monthly water bills. Boston’s 

2018 water rates were used for the simulation, with $1.82 per m³ for purchased potable water and $2.41 

per m³ for sewer (BWSC 2019). For GWR systems, the combined savings per reused unit of greywater 

was $4.23 per m³. It is typical that a sewer meter is not installed in addition to the potable water meter, 

and the wastewater quantity is assumed to be the same as the amount of drinking water used. However, 

landlords in Massachusetts are permitted to implement individual sewer meters in each unit to accurately 

measure sewerage. For this reason, the model for the GWR system reflects the reduced sewer flow and 

subsequent utility bill savings.  

 

2.4 Life Cycle Energy Model 

The life cycle energy model considers the energy expenditure of installing and operating a RWH or GWR 

system and the avoided energy for pumping and treatment at the centralized water and wastewater 

treatment plants. Particularly, RWH systems affect the pumping and treatment energy use in the drinking 
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water plant, while the GWR systems affect the energy use in both the drinking water and the wastewater 

treatment plants.  

 

2.4.1 Avoided Pumping Energy 

The avoided pumping energy from the centralized treatment plants was estimated based upon four 

components: friction head loss, elevation head, operating head, and velocity head using Eqs. 10-13. While 

all four components were considered for the avoided pumping energy from the centralized drinking water 

plant, only friction head loss and elevation head were considered for the centralized wastewater treatment 

plant.  

 

𝑃𝑀 =  
𝑂𝐹 ∗ 𝑊 ∗ 𝑔 ∗( 𝐹𝐿 + 𝛥𝐸 + 𝑂𝑃+𝑉𝐻)

𝐶𝑃∗𝑘
  Eq. 10 

 

𝐹𝐿 = 𝐹𝐶 ∗ 𝐷𝑃  Eq. 11 

 

𝛥𝐸 = {
𝐻𝐸 − 𝑃𝐸     𝑖𝑓    𝐻𝐸 − 𝑃𝐸 > 0
0                   𝑖𝑓     𝐻𝐸 − 𝑃𝐸 < 0 

  Eq. 12 

 

𝑉𝐻 = 0.5 ∗ 𝑉2/𝑔 Eq. 13 

 

where 𝑃𝑀 is centralized pumping energy savings (kWh); 𝑂𝐹 is the outflow of the pumps, which was 

assumed to be equal to the rainwater or greywater yield for each household (m³); W is the water density, 

1,000 kg/m3; 𝐶𝑃 is the pumping efficiency of the centralized pumps, which was assumed to be 50%; 𝑇𝐻 

is total head (m); 𝐹𝐿 is friction loss (m); 𝛥𝐸 is the elevation head (m); 𝑂𝑃 is operating head of the 

centralized pumps (m), which was assumed to be only applicable to drinking water system; VH is the 

velocity head or the dynamic pressure (m), which was assumed to be only applicable to drinking water 

system; 𝐹𝐶 is friction loss coefficient (m/km); 𝐷𝑃 is distance between the household and the treatment 
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plant (km); 𝐻𝐸 is household elevation (m), 𝑃𝐸 is plant elevation (m); and 𝑉 is water velocity in the pipe 

(m/s).  

 

To find the friction water head, the minimum piping distance from each building to the drinking water 

plant, the John J. Carroll Water Treatment Plant, and the wastewater treatment plant, the Deer Island 

Sewage Treatment Plant, need to be determined. Boston’s road network was used to estimate the piping 

distances, assuming water and wastewater pipes were located along the roads (Kavvada et al. 2016). A 

road network dataset was collected from the Boston’s GIS data portal (AB; Analyze Boston 2019; CB; 

City of Boston 2019). Approximate piping distance between the households and the plants was found 

using the Network Analyst toolset in ArcMap 10.6, using the closest facility function. The network was 

completed by finding the centroid of each parcel, determining the closest road to each centroid, and 

creating a line from the centroid to the road network. The coordinates for the John J. Carroll Water 

Treatment Plant and the Deer Island Sewage Treatment Plant were obtained from Google Earth and added 

to the road network layer using the geo-referencing tool in ArcMap. The residential buildings and their 

corresponding data were placed in the road network layer using address locators to ensure correct 

coordinates to find the distance to the water and wastewater treatment plants. The friction loss coefficient 

was estimated to be 8 m/km, based on approximate pipe material and diameter (Ghorbanian, Karney, and 

Guo 2016; NRCNA 2006). Elevation head was determined using an elevation contours dataset from 

Boston’s GIS data portal (AB 2019). The elevation of each parcel was determined by finding the average 

elevation spatially across the parcel to calculate elevation head. Operating head at the plant was assumed 

be 70 psi to meet 27.5 psi at the withdrawal point, which is recommended for water distribution systems 

to meet maximum daily demand and fire flow conditions.  

 

An empirical method was used to calibrate the modeled pumping energy to ensure that it does not exceed 

the total pumping energy used by the plants. To achieve this, annual total operational energy usages were 

obtained from the John J. Carroll Water Treatment Plant and the Deer Island Sewage Treatment Plant, 
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which are 0.22 MJ/m3 and 2.14 MJ/m3, respectively. As the amounts of pumping energy usages were not 

directly available to the authors, we assumed pumping represents 86% of the drinking water plant’s 

operational energy (EPRI 2002) and 14% of the wastewater treatment plant’s operational energy. Based 

upon these percentages, the pumping energy intensity was estimated to be around 0.19 MJ/m³ for the John 

J. Carroll Water Treatment Plant and 0.30 MJ/m³ for the Deer Island Sewage Treatment Plant. Modelled 

unit pumping energy savings from the centralized drinking water and wastewater treatment plants were 

calculated by summing up the avoided drinking or wastewater pumping energy from all households in the 

dataset over the 30-year life cycle and divide it by the total yield from all households over 30 years. The 

modelled pumping energy intensities were then adjusted to match the real ones. A correction factor of 

0.92 and 0.89 was applied to the modelled avoided pumping energy from the centralized drinking water 

and wastewater treatment plants, respectively.  

 

The calibrated pumping energy was then converted to the primary energy form for estimation of life cycle 

energy. A conversion factor of 1.5 MJ/MJ was obtained from SimaPro 8.5 by applying the Cumulative 

Energy Demand V1.10 method to a data entry named “Electricity, medium voltage {US}| market group 

for | Conseq, U”. 

Figure 3: The water’s path from the drinking water plant, to the households in Boston, and then to the wastewater 

plant was mapped via Massachusetts’s road network, which was assumed to reflect the placement of distribution 

and collection pipes. 
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2.4.2 Avoided Treatment Energy 

The avoided treatment energy was obtained from previous life cycle assessment studies on the John J. 

Carroll Water Treatment Plant and the Deer Island Wastewater Treatment Plant. The energy intensity of 

drinking water treatment was assumed to be 1.13 62 MJ/m3 of primary energy, while the energy intensity 

of wastewater treatment was assumed to be 1.68 MJ/m3 of primary energy. 

 

2.4.3 Energy Used for Constructing, Operating, and Maintaining Decentralized Systems 

Construction energy is a single energy expenditure that accounts for pump manufacturing, tank 

manufacturing, and installation. These three components were calculated using the Economic Input-

Output Life Cycle Assessment (EIOLCA) web tool (Carnegie Mellon University 2018). The pump and 

pumping equipment manufacturing sector was used for the pump manufacturing energy intensity, and the 

associated embodied energy intensity was 8.49 MJ of primary energy/dollar. The total pump 

manufacturing energy was estimated as a product of the estimated pump cost (Eq. 7) and the pump 

manufacturing energy intensity. The other plastic products manufacturing sector was used for tank 

manufacturing, and the embodied energy intensity was 14.8 MJ of primary energy/dollar. The total tank 

manufacturing energy was a product of the estimated tank cost (Eq. 8) and the tank manufacturing energy 

intensity. The residential permanent site single- and multi-family structures sector was used to find the 

energy intensity of installation, and its embodied energy intensity was 6.21 MJ of primary energy/dollar. 

Similarly, the total installation energy was estimated as a product of installation cost and the installation 

energy intensity. The operation energy usages of the decentralized systems were calculated as a part of 

Eq. 9. The calculated pumping energy was converted to the primary energy form using a factor of 5.4 

MJ/kWh. The maintenance energy of the decentralized systems was calculated using the EIO-LCA tool. 

The other support services sector was used to find the energy intensity of maintenance, which was 3.58 

MJ/dollar (Carnegie Mellon University 2018). The total maintenance energy was estimated as a product 

of maintenance cost and the maintenance energy intensity. Energy usage for the decentralized system was 

calculated for each of the residential households in the Boston tax parcel dataset.  
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2.5 Optimization of Tank Sizes 

Tank size was optimized for each household to maximize either net cost or energy savings. The Brent’s 

method was used to select the optimal tank size. The Brent’s method searches for the maximum savings 

point of each household using the bisection method, secant method, and inverse quadratic interpolation. 

The bisection method splits the output data in half until it finds the point of interest, in this case the 

maximum cost or energy savings. To use the Brent’s method, scipy.optimize and negative minimized 

scalar function was coded, with an accuracy range of 0.2 m³. Since the Brent’s method requires bounds to 

operate within, the maximum possible tank size was determined to be 40 m³. Brent’s method assumes the 

function is concave. If the model’s output does not result in a concave function, the maximums selected 

may not be unique. However, in our model tests on randomly selected households, we found all of the 

cost and energy results as a function of tank size are concave. Two optimal sizes were selected for each 

system, one based on the highest cost savings and one based on the highest energy savings (or lowest 

energy losses). The two optimal tank sizes were not dependent on each other and could vary greatly. 

 

2.6 Sensitivity Analysis 

To evaluate which variables had the greatest effect on the system dynamics outcomes for cost and energy, 

a sensitivity analysis was conducted. Analyses were performed for RWH energy savings, RWH cost 

savings, GWR energy savings, and GWR cost savings. The attributes varied and tested were height per 

floor, electricity price, pump efficiency, water price, fixture rate, lawn condition, irrigation efficiency, 

water velocity in pipes, discount rate, laundry loads, shower flow, sink flow, evapotranspiration rate, and 

plant factor. Input variables were changed by ±25% and ±50% to represent a reasonable range of possible 

values. To determine the variables’ influence on the outcomes, Equation 11 was used to create a 

sensitivity index. Variables were considered highly sensitive if their indices were greater than one. 

 

𝑆𝐼 =  
𝐶𝑂− 𝑂𝑂

𝑂𝑂
𝐶𝐼−𝑂𝐼

𝑂𝐼

  Eq. 11 
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where 𝑆𝐼 is sensitivity index, 𝐶𝑂 is the changed output value, 𝑂𝑂 is the original output value, 𝐶𝐼 is 

changed input value, and 𝑂𝐼 is original input.  

 

3. Results and Discussion 

3.1 Spatial Distribution of RWH and GWR Savings in Boston 

Figure 4 presents the net life cycle cost and energy savings of RWH for each of the residential household 

in Boston. According to our analysis, no optimized RWH systems would provide energy savings and few 

RWH systems could offer cost savings. All the systems would cause an overall increase in embodied 

energy usage for water supply, largely due to the energy intensity associated with constructing and 

implementing the system. The average net energy consumption was 1,128 MJ/year with an averaged 

optimal tank size of 0.3 m³ if every household adopts a RWH system, and the average net cost was 

$107/year with an averaged optimal tank size of 3.9 m³. The pumping and treatment energy savings at the 

drinking water plant were found to never be greater than the embodied energy associated with adopting a 

RWH system in a 30-year time frame. The energy model selected the tank size closest to zero to minimize 

the overall energy loss.  

 

Out of the nearly 70,000 buildings that were optimized, about 350 of them had cost savings. These 

savings ranged from $0.03-200/year. Households that resulted in cost savings had one of two 

characteristics: 30 or more bedrooms, or a lawn size that was at least double the size of the building’s 

footprint.  

 

The buildings that benefited from cost savings also have tank sizes of 8 m³ or greater.  

Buildings with more bedrooms have more tenants and therefore have a higher demand. 

 The water demand of buildings with small roof sizes and large lawns may often exceed the supply 

available from their tanks, so their RWH system will be heavily relied upon for irrigation.  
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Most of the buildings that had cost savings were located in downtown Boston, where there are more large 

residential buildings with higher occupancies. Figure 4 shows the energy and cost savings distribution of 

RWH systems over 30 years in Boston. 

 

 

Figure 4: All RWH energy savings throughout Boston were negative after 30 years, shown on the left. Most RWH 

cost savings were negative with a few households in central Boston experiencing positive savings, shown on the 

right. 

 

Over 95% of the households that were modelled had energy and cost savings from GWR systems. GWR 

are beneficial because they offer cost and energy savings through wastewater diversion, which is an 

energy intensive and expensive process. The average energy savings was -5,169 MJ with an optimal tank 

size of 1.3 m³, and the average cost savings was $26,510 with a tank size of 11.2 m³. Households with the 

highest number of tenants and the largest lawn size compared to the roof area had the highest cost and 

energy savings. Larger systems could offer economies of scale due to a higher water cost savings to 

construction cost ratio. GWR has a constant daily supply for water use due to the approximated daily 

water use per person. Boston’s Back Bay area had the largest occurrence of buildings with high cost and 
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energy savings compared to the rest of the city. Figure 5 shows the spatial distribution of cost and energy 

savings for GWR systems in the Boston metro area. 

 

 

Figure 5: GWR energy savings were mostly negative at the edges of Boston, while the center of Boston and 

downtown Boston experienced positive savings. Every household resulted in cost savings for GWR, with downtown 

Boston having the largest savings after 30 years. 

 

Overall, GWR systems offered greater cost and energy savings throughout Boston if adopted. This could 

be because GWR systems have a constant daily supply of water available for recycling while RWH 

systems have varying daily supplies. On both GWR maps and the RWH energy map, there is an area in 

the northwest center where there is a large concentration of high savings. This area, known as Back Bay, 

has one of the highest population densities in Boston and has a high average household income (BPDA; 

Boston Planning & Development Agency 2019). The high population density in this area can be 

attributed to the closely grouped apartments with four to six floors that largely make up Back Bay. Back 

Bay’s buildings on average are some of the oldest in the city (NTHP; National Trust for Historic 

Preservation 2019). Old buildings may be the ones most likely to be renovated for updates, and they could 

more easily be retrofitted for decentralized systems during this process. Meanwhile, households in Back 

Bay have a relatively higher affordability of the initial cost of the decentralized systems. Most of the 
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households in Hyde Park, an area in south Boston, cannot benefit from installations of decentralized water 

systems from both energy and cost perspectives. This area has a low average income, low population 

density, a mix of new and old buildings, as well as a relatively lower affordability of the initial costs of 

the decentralized systems. Maintaining affordable and reliable centralized water service to the area is 

hence critical. This also indicates the need of further lowering the cost and energy intensity of 

decentralized systems to increase its competitiveness as an alternative water source.  

 

3.2 Sensitivity Analysis  

The GWR energy and RWH energy models did not have any highly sensitive variables. GWR cost was 

highly sensitive to floor height with a sensitivity index of 1.5. Floor height determined the height that the 

households’ pump would have to deliver the collected water from the tank to the point of use. The higher 

the water had to travel, the more energy the pump would use, which is an increase in electricity costs for 

the household.  RWH cost was sensitive to water price with a peak sensitive index of 1.1. The lower the 

water price, the less savings a household can incur per unit of water. Figure 6 shows the sensitivity 

indices for the cost model.  
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Figure 6: Water price was determined to have a significant absolute sensitivity (greater than 1) for both 

cost savings models, shown in the blue section of the graphs. 

 

 

4. Conclusion 

This study used a Python model to optimize the tank sizes of GWR and RWH decentralized systems for 

households in Boston based on cost savings to the homeowners and energy savings for the water 

distribution system.  

 

Two system dynamics models, one for RWH and one for GWR, were first developed to simulate the daily 

water balance based upon the supply of rainwater or greywater, the non-potable water demand, and the 

available space in the storage tanks. LCA and LCCA were then conducted to calculate life cycle cost and 

energy savings that can be achieved through the decentralized system installations. These savings were 

then optimized for each individual residential household in Boston, MA to identify the scientifically 

optimal locations of decentralized system installations. 

 

The results showed that RWH systems rarely offered cost savings for homeowners, and very few RWH 

systems could provide energy savings after 30 years. GWR systems were more likely to benefit 
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households for cost and energy savings, with applicable households throughout the Boston metro area. An 

area of large, old buildings in Boston had the highest potential cost and energy savings if a GWR system 

was adopted.  

 

A changing economy or environment could also impact the economic and energy feasibility of GWR and 

RWH. If the utility prices of water and wastewater increase, homeowners could potentially see higher 

cost savings with the use of water that is recycled or reused. Water and wastewater treatment could also 

become more require more energy, as emerging pollutants are regulated and new, energy-intensive steps 

need to be added to the treatment train. GWR and RWH systems could reduce the volume of water 

required to go through more rigorous treatment. Climate change could also play a role in the importance 

of decentralized adoption. Other areas around the country are expected to see reduced rainfall and 

increased evaporation, placing stress on surface water withdrawals for drinking water. GWR and RWH 

systems could alleviate some of the stress on the system by sourcing water from other areas. 

 

For holistic infrastructure planning, a policy could be put in place to add a decentralized system when 

older buildings are renovated if they could benefit. For low income areas that cannot benefit from 

decentralized water systems due to their household characteristics, a subsidy could be given to offset their 

water bills. This model can be applied to any region to assist with decision making for water distribution 

management. 

 

RWH has been accepted worldwide as a source of water for non-potable uses for generations, particularly 

for irrigation (USEPA, 2013). Conversely, GWR has had low public support (Oteng-Peprah et al., 2018). 

This could be due to misinformation surrounding greywater, dislike of the idea of used water being close 

to human contact, and push back against new technology (Oteng-Peprah et al., 2018). To encourage 

adoption of GWR, city planners could develop an education and outreach plan to inform homeowners and 

developers about the environmental and economic benefits of GWR and its low health risk. 
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