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ABSTRACT 

Autism Spectrum Disorder (ASD) and Traumatic Brain Injury (TBI) are clinical populations 

with social cognition difficulties, exhibited by deficits in controlling impulsive or perseverative 

behaviors. These difficulties have been attributed to executive functioning (EF) impairments, 

particularly for inhibition. Thus, understanding the neural bases of inhibition is preliminary to 

understanding EF impairments in populations like ASD and TBI. A coordinate-based meta-

analysis of functional magnetic resonance imaging (fMRI) studies was used to identify the neural 

basis of response inhibition in neurotypical adults to compare with TBI and ASD. Inclusion 

criteria for studies required reported foci for adults (17+ years of age), reported on normal 

mapping, and used inhibition experiential tasks that revealed activations results. Five ASD and 

seven TBI studies met inclusion criteria, pooling fMRI data from 1431 neurotypical subjects, 

145 TBI and 71 ASD subjects engaged in inhibition tasks, yielding 98 experiments in controls 

and 15 experiments (9 TBI) for contrast analyses. Brain regions found to be uniquely active in 

the ASD or TBI and in the Control groups were further analyzed using meta-analytic 

connectivity modeling (MACM) to determine whether differences in these regions were 

functionally relevant and associated with differing behavioral patterns. The MACM analyses 

included 480 neurotypical experiments (6820 subjects, 7008 foci) reporting activity in the left 

medial frontal gyrus region of interest and 809 experiments (11568 subjects, 11855 foci) 

reporting activity in the right medial frontal gyrus region of interest. Results provide evidence 

that the brain region involved to the greatest extent for response inhibition, the medial frontal 

cortex, is active in individuals with TBI, with ASD and Controls. However, the groups had 

differences in the peaks of activity in this region. Though subtle, these differences may indicate 

these clinical populations are relying more on top-down, higher-level cognitive processing to 

accomplish response inhibition than do neurotypical controls. Results support a hypothesis that 

those with ASD or TBI are engaging a smaller network of brain regions, with a higher proportion 

of activity in the frontal lobes, and therefore less efficient than that seen in the Controls. Given 

the heterogeneity of TBI and ASD demographics, and the variability of inhibition tasks used, 

these findings are speculative and require further study. This study provides support of concept 

for further research on functional imaging, attention, and inhibition. 
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INTRODUCTION 

Executive functions (EF) are complex higher cognitive processes that are critical for 

directing and modulating thoughts and behaviors, involving widespread cortical and subcortical 

brain networks (Derrfuss et al., 2005; D. E. Nee et al., 2007). Adequate executive functions 

effectively manages performance in cognitive, behavioral, and social realms by adapting 

thoughts and actions to maintain novel or routine goal-directed tasks (Collette et al., 2005; Riggs 

et al., 2006). Tasks requiring executive functions can fall under personal, social, academic or 

professional routines, making EFs central to independence, productivity, and quality of life 

(Riggs et al., 2006).  

Theorists divide executive functions into those that are domain-specific or domain-

general divisions. Domain-specific processing, which may be considered “bottom-up” 

processing, is thought to be modulated by neural areas that process discrete sensory inputs (e.g., 

the visual cortex processes visual information) that then direct information to higher-level 

cortical areas (e.g. the prefrontal lobe)(A. Gazzaley et al., 2007). Domain-general, or top-down, 

processing maintains the integration of information across diverse mental processes (like the 

domain-specific sites) (Adam Gazzaley & D’Esposito, 2007; Adam Gazzaley & Nobre, 2012). 

This concept of top-down modulation, housed in the prefrontal cortex, is attributed to the idea of 

‘cognitive control’ (Adam Gazzaley & D’Esposito, 2007), which refers to the successful 

integration of information from multiple brain regions via capabilities like attention, shifting, and 

inhibiting, to direct neural behavior (Adam Gazzaley & D’Esposito, 2007).   

The collective ability to modulate information from domain-specific neural regions using 

various EFs is known by the synonymous terms ‘executive function,’ ‘the common executive,’ 

‘central executive,’ or ‘cognitive control’ (Lenartowicz et al., 2010; MacDonald, 2008; 
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McKenna et al., 2017; Miyake & Friedman, 2012; Derek Evan Nee et al., 2013; Niendam et al., 

2012). This term ‘executive function,’ or its synonyms, encompasses several sub-abilities of 

neural processing that have been discussed in the literature that include inhibition, shifting, 

updating, planning, flexibility, problem-solving, attentional abilities, working memory, planning, 

organizing, reasoning, categorization, etc. (Jurado & Rosselli, 2007). While it was first 

conceptualized in the 1970s, theories regarding the nature and role of executive functions 

continue to be developed(Baddeley & Hitch, 2004; Lezak, M.D, 1983; Miyake et al., 2000; 

Norman & Shallice, 1986; and many others). 

 In the 1970s, Alan Baddeley and his colleague, Graham Hitch, theorized a model of 

working memory, which is the ability to retrieve information from long-term and short-term 

memory stores to update (or refresh) that information. Working memory is a key postulated 

component in models of higher-cognitive functions. Baddeley and Hitch’s (2002) working 

memory model was the first to introduce the ‘central executive’ (A. Baddeley, 1996, 2002; A. D. 

Baddeley & Logie, 1999). The ‘central executive’ was proposed as the principal component in a 

three-component model that integrates information held in the sub-component short-term 

memory buffers – i.e., ‘phonological loop’ and ‘visuospatial sketchpad’ – and links that 

information to long-term memory. These buffers are proposed temporary storage banks for 

verbal and visual information (received from domain-specific areas), that are needed to direct 

decisions in novel situations. Baddeley and Hitch (2002) initially defined the ‘central executive’ 

vaguely, as a component able to focus, switch, and divide attention. However, through continued 

case studies and the foundational work of other attentional control theorists like Norman and 

Shallice (1986), Baddeley realized a need to disassociate and deconstruct the aspects of the 

‘central executive’ (A. Baddeley, 1996). Since Baddeley’s initial work, the need to parse out and 
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define the sub-components of the ‘central executive’ have led to the continued development of 

EF frameworks and discussions about specific EFs.  

A current framework of EF is the ‘unity/diversity framework’ (Jurado & Rosselli, 2007; 

Miyake et al., 2000; Miyake & Friedman, 2012).  It states that while the unity of several EFs 

contribute to the overall ability of the common executive, the EF’s performance and neural sites 

of activation can be distinguished from one another (Duncan et al., 1996; Miyake et al., 2000; 

Miyake & Friedman, 2012). That is, Miyake and colleagues (2000) hierarchically clustered three 

executive functions: inhibition, shifting, and updating (Miyake et al., 2000; Miyake & Friedman, 

2012). Miyake et al. (2000) believed these three EFs to be foundational (i.e. necessary to perform 

other EFs, like planning). Inhibition, is the deliberate suppression of internal and automatic 

(response inhibition) or external (distractor inhibition) information that is not appropriate or 

necessary at a given time (Jurado & Rosselli, 2007; Miyake et al., 2000; Nee et al., 2013). 

Response inhibition is the focus of this research paper. Updating is the monitoring and 

maintenance of stimuli in memory, while also adding newer information to build upon previous 

stimuli (classic operation of working memory, Linden, 2007). Shifting is required to flexibly 

perform a task that requires alternating between different incoming stimuli or response demands 

(Collette et al., 2006; Derrfuss et al., 2005). Miyake et al. (2000) established this trichotomy by 

performing latent variable analysis on the behavioral performance of several EF-specific tasks in 

neurotypical individuals (e.g., the Flanker task for inhibition, the n-back test for updating, or the 

Color-Shape task for shifting). They found that correlations amongst specific executive functions 

demonstrated separability as well as an underlying unity consistent with a ‘common executive,’ 

that shared variance across all three (Miyake et al., 2000; Miyake & Friedman, 2012). 

Interestingly, while updating and shifting are separable from the common executive and 
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inhibition (i.e. showed variance in correlation), the correlation between the common executive 

and inhibition was nearly perfect (McKenna et al., 2017; Miyake & Friedman, 2012). These 

authors reasoned, then, that inhibition, being synonymous with the common executive, may be a 

more foundational to overall executive function than updating or shifting.  

Further support for inhibition as a foundational EF comes from a developmental 

perspective as its underlying neural structure has been identified in early childhood (Garon et al., 

2008; McKenna et al., 2017; D. E. Nee et al., 2007; Verbruggen & Logan, 2008). For example, 

Mckenna and colleagues (2017) report, using functional magnetic resonance imaging (fMRI) 

with children aged 6-18, report that neural activation for the common executive (or inhibition) is 

seen throughout the age span, but updating-specific and shifting-specific activation did not occur 

until age 12 years. This continues to suggest that, conceptually, inhibition is more foundational 

than other executive functions.  

Neurophysiologically, executive functions engage large brain networks, involving several 

brain structures that are associated with organizing information for complex tasks. Brain 

networks are sets of brain regions that demonstrate coherent neural activity, both at rest and 

during tasks. The networks typically associated with EFs, include the (1) frontoparietal and (2) 

cingulo-opercular networks (Collette et al., 2006; McKenna et al., 2017; Nee et al., 2013; 

Niendam et al., 2012). Specific to inhibition in neurotypical individuals, as reported in a meta-

analysis of over 100 inhibition experiments, regional activation is observed in the dorsolateral 

prefrontal cortex (DLPFC), the anterior cingulate cortex (ACC), the superior and inferior 

portions of the parietal lobes, and in subcortical structures (the thalamus, putamen, caudate, and 

cerebellar declive) (Niendam et al., 2012). Despite having broad atypical presentations, EF 
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performance on isolated tasks may be unimpaired (Chen et al., 2016; Hellyer et al., 2015; 

Johnston et al., 2019; Lopez et al., 2005; Rochat et al., 2013; Sharp et al., 2014; Wu et al., 2014). 

Given the behavioral and neurophysiologic complexity of executive functions 

behaviorally and physiologically, it is not surprising that several clinical populations experience 

EF dysfunction when neurodevelopment is altered or the brain is damaged (Rasmussen et al., 

2006). From a behavioral perspective, even neurotypical individuals demonstrate fluctuations in 

EFs as they develop and decline with advanced age (e.g., when completing a stop-signal 

paradigm, Williams et al., 1999). Behaviorally, EF dysfunction results in trouble staying on task, 

organizing and prioritizing daily activities, navigating the complexities of social situations, 

transitioning through known and unknown life situations, and building on previous knowledge to 

solve problems (Järbrink & Knapp, 2001; McCauley et al., 2013; Turkstra et al., 2001; Tyerman, 

2012). For example, Autism Spectrum Disorder (ASD) and Traumatic Brain Injury (TBI) are 

two clinical populations with known executive functioning impairments that share remarkable 

similarities in the outward presentations of difficulties navigating social situations, relationships, 

and task organization (Alves et al., 1993; Hanten et al., 2011; Poon & Sidhu, 2017; Steel & 

Togher, 2019).  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by 

impairments in social communication and the presence of restricted or repetitive behaviors 

(American Psychiatric Association, 2013). It can be diagnosed as early as 18 months of age and 

has a current U.S. incidence of 1 in 59, with comparable global rates (CDC, 2019). Although 

ASD is often defined by primary impairments in understanding other’s perspectives and 

initiating and maintaining friendships, there are also deficits in executive functioning. Insistency 

on routines, difficulties shifting between tasks or interests, and controlling impulsive comments 
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in conversations are behavioral examples of inhibition dysfunction in ASD (Craig et al., 2016; 

Geurts et al., 2014; Johnston et al., 2019; Lopez et al., 2005; Poon & Sidhu, 2017; Velasquez et 

al., 2017).  

Neuroimaging findings have indicated that deficits in inhibition, working memory, and 

shifting in ASD are associated with hypoactivation in the dorsolateral prefrontal cortex and the 

anterior cingulate cortex (Geurts et al., 2014; Philip et al., 2012). Specifically, during inhibition-

specific tasks like the Go/No-Go and the Flanker tasks, there is reduced activity in the parietal, 

insular, dorsolateral prefrontal, and the anterior cingulate cortices, regions that are typically 

engaged in attention-demanding tasks (Corbetta & Shulman, 2002; Dichter & Belger, 2007; 

Kana et al., 2007; Shafritz et al., 2015). However, with similar inhibition tasks in ASD, Schmitz 

et al. (2006) found hyperactivation activation in these areas (Schmitz et al., 2006). Therefore, 

whether ASD can be characterized by reduced or increased regional activity for inhibition, 

relative to age-matched controls during EF performance, is still unclear (Geurts et al., 2014).  

Traumatic Brain Injury (TBI) is an umbrella term for acquired neurological injury that 

can be characterized by severity of trauma (mild to severe), the location of the trauma (focal or 

diffuse damage), and the nature of injury (open or closed head injury). In 2015, it was estimated 

between 3.2 and 5.3 million people were living with a TBI in the United States (CDC, 2015). 

Individuals with TBI face a wide range of challenges, with psychiatric, cognitive, biological, and 

behavioral realms impacted. The recovery from these challenges are influenced by a multitude of 

factors, including, age, quality of rehabilitation services, and site/severity of neural damage 

(Cremer et al., 2006; Zhou & Lui, 2013). EF dysfunction in TBI may be seen as a memory 

deficit, reduced error awareness, and emotional changes (Dikmen et al., 2010; McAvinue et al., 

2005; Stuss et al., 1992). Inhibition dysfunction in individuals with TBI is often demonstrated by 
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impulsivity, distractibility, or the presence of perseverative comments and behaviors (Hellyer et 

al., 2015; Mayer et al., 2015; Rochat et al., 2013). For individuals with TBI, poorer EF is 

associated with lower rates of returning to work or academics (Crépeau & Scherzer, 1993; 

McAvinue et al., 2005). 

Deficits in higher cognitive functions, particularly working memory and sustained 

attention, have been researched for TBI. There are known deficits in prefrontal and cingulate 

cortex during behavioral and cognitive assessments (Fontaine et al., 1999). Even when attention 

and inhibition performance (e.g., Stroop task) is equivalent to age-matched peers, brain activity 

differs with increased activation in right middle frontal gyrus, the medial frontal areas (including 

the anterior cingulate), the right dorsolateral prefrontal cortex, as well as the right superior and 

inferior parietal lobules in adolescents TBI (Tlustos et al., 2011). Smits et al. (2009) also found 

hyperactivation in adolescents with TBI compared to age-matched controls. For Smiths et al. 

(2009) these areas of hyperactivation during a Stroop task were in the right inferior and bilateral 

middle frontal gyrus, in the medial superior frontal gyrus (supplementary motor area), in the 

right inferior and superior parietal lobule and in the bilateral precuneus (Smits et al., 2009).  

Although these findings are limited to adolescents and the Stroop task, it appears that inhibition 

in TBI presents predominantly as hyperactivation of regions that are also active in controls.    

In both populations, inhibition is critical to success in occupational, personal, and social 

endeavors. Although, research points to atypical inhibition in both ASD and TBI, the nature of 

this deficit between populations is very different. With ASD, a developmental disorder, 

impairments are typically explained by one of three theoretical models; the Theory of Mind 

Deficit, the Weak Central Coherence, and Executive Dysfunction Theory (Pellicano et al., 2006; 

Rajendran & Mitchell, 2007). Each theory focuses on a different deficit as the main contributor 
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to overall behavioral differences in ASD, whether that is (1) an inability to take the perspective 

of others, (2) an inability to see the whole gestalt of situations, or (3) executive dysfunction 

(Rajendran & Mitchell, 2007). Oznoff et al. (1991) first devised the Executive Dysfunction 

theory based on observations that there are similar atypical behaviors in ASD and TBI. Multiple 

theories, including the Executive Dysfunction Theory, on the nature of deficit in ASD are still 

being contended. Overall, given that ASD is heterogeneous in severity and presentation, it is 

important to study the individual and the big picture relationship between ASD and EFs.   

TBI results in inhibition and EF dysfunction secondary to brain injury. Fontaine et al. 

(1999) found that closed head injury especially leads to neural damage of the white matter tracks 

and the frontal lobe. The diffuse damage to the brain may account for the lack the whole-brain 

integration that inhibition and cognitive control requires (Sharp et al., 2014). Typically, TBI 

disrupts processing across neural networks in the brain, given that the pathophysiology of the 

injury often includes diffuse axonal injury (Moreno-Lopez,  Manktelow, Sahakian, Menon, & 

Stamatakis, 2017; Scheibel et al., 2003). Even at rest, individuals with TBI have widespread 

decreases in the neural oscillations that typically work in a coordinated manner to integrate 

information and reduced regional metabolism in prefrontal and cingulate cortices (Fontaine et al., 

1999; Hellyer et al., 2015; Sharp et al., 2014).  

While neuroimaging investigations of inhibition have been conducted in ASD and TBI, 

the results have not been compared between the two populations. Comparing developmental 

disorders with acquired disorders is the next step to uncover psychological premises of both 

populations (Rajendran & Mitchell, 2007). With inhibition, contributing foundationally to the 

overall common executive, delineating the neural signature of inhibition in both populations 

could provide several clinical benefits. First, learning about the neural nature of deficits is crucial 
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to creating interventions that are based on sound theory and that target core deficits. Second, 

identifying the neural sites of inhibition could act as a target for assessing neuroplasticity 

secondary to behavioral or medical interventions. Lastly, if the neural activation of inhibition in 

ASD and TBI is widely different, despite the fact that the presenting deficits are similar, then 

more information may be gained about variability of the brain networks underlying inhibition.  

To identify the nature of the underlying inhibition sites and networks in TBI and ASD, 

this research will utilize coordinate-based meta-analytic tools to pool data across a large set of 

studies. The specific aims of this study are to identify the neural basis of inhibition in (1) TBI 

relative to healthy controls, (2) ASD relative to healthy controls, and (3) in TBI relative to ASD. 

The current hypothesis is that task-based activation for inhibition will be unique to each of the 

three populations. Given the lack of homogeneity in TBI and ASD demographics and the lack of 

focus on inhibition specifically in these populations, this topic is understudied. Providing a 

concise overview of current neural associations on this topic may help to address field gaps, 

direct future research, and support future intervention.   

METHODS 

Literature Search 

PubMed, PsychINFO, Web of Science, and BrainMap were searched to obtain brain 

imaging studies of inhibition in adults with ASD and TBI. Studies were included if they (1) had 

adult participants (17 years+), (2) had functional magnetic resonance imaging studies with 

reported, significant activations, (3) reported whole brain voxel-wise analyses with coordinates 

reported in standardized space (Talairach and Tournoux or Montreal Neurological Institute 

[MNI] atlas systems), (4) were in English, and (5) were published in peer-reviewed journals. 
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Studies with only region of interest (ROI) effects were excluded to avoid bias about presupposed 

areas of inhibition activation.  

In each database, the same terms were used to identify appropriate studies. See Figure 1 

for full list of search terms. Pervasive Development Delay (PDD) and Asperger Syndrome were 

included terms as PDD was previously considered an umbrella category that included Autism, 

Asperger Syndrome, and PDD-Not Otherwise Specified (PDD-NOS), which were separate 

diagnoses from ASD that no longer exist under the most recent update to the Diagnostic and 

Statistical Manual of Mental Disorder – 5th edition (DSM-5). For this paper, ‘inhibition’ refers to 

the intentional suppression of information (i.e. response inhibition) (Miyake et al., 2000; 

Verbruggen & Logan, 2008). Inhibition tasks like the ‘Go-No Go (GNG)’, ‘Stroop’ and the 

‘Flanker,’ were accepted for their relatively pure assessment of inhibition, as identified in 

previous studies comparing them to other EF-specific or complex EF tasks (e.g. Wisconsin Card 

Sort, antisaccades, or the Tower of London). Studies were combed to verify appropriateness of 

experiential task and meta-analytic inclusion criteria. Some studies claimed to test selective 

attention but were included because the task relied heavily on response inhibition. Figure 2 

depicts the study evaluation process.  

Studies that were not in the BrainMap database were coded using BrainMap Scribe 3.6 

by the first author and checked by BrainMap reviewers for coding accuracy (P. T. Fox et al., 

2005; P. T. Fox & Lancaster, 2002; Laird, Lancaster, et al., 2005; Vanasse et al., 2018). Once 

coded, experiments within the studies were reviewed for selection. Experiments are contrast 

analyses between two conditions that are performed by studies to reveal the targeted, residual 

activation effect. Experiments were included if the contrasted conditions revealed inhibition-

related activation.  
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Five ASD studies and seven TBI studies met criteria (Figure 1), pooling data from N=145 

TBI subjects and N=71 ASD subjects in 86 (44 TBI) experiments. Included contrasts analyses 

included 15 experiments (9 TBI) (Tables 2 and 3). 

Control Data 

 To evaluate inhibition activation amongst control subjects, studies were used that were 

already in the BrainMap database. Control studies had to meet similar inclusion criteria as 

studies on ASD and TBI; i.e., reported foci for adults (17+ years of age), reported on normal 

mapping, and used inhibition experiential tasks that revealed activations (not deactivation) 

results. This yielded control data for 1431 subjects in 68 studies for 98 experiments meeting 

inclusion criteria.  

Activation Likelihood Estimation (ALE) Technique and Meta-analytic Connectivity 

Modeling (MACM) 

The primary statistical technique used was activation likelihood estimation (ALE), an 

accepted coordinate-based process that compares peak voxel-wise foci activations to determine 

regions or concentrations of above-chance activation from across multiple experiments (Eickhoff 

et al., 2009b; Laird, McMillan, et al., 2005). Reported foci from one study can be overlapped 

with foci from another study when, using ALE, they are represented as Gaussian functions (P. T. 

Fox & Lancaster, 2002, 2002; Laird, McMillan, et al., 2005). A Gaussian function is an 

algorithm used to analyze a continuous probability based on the normal distribution of linear 

equations. Treating foci as functions, instead of points, allows researchers to compute the union 

of probabilities at each voxel in a functional study. ALE assumes that the spatial distribution of 

foci within an experiment is fixed, allowing for random spatial association to be assessed 

between experiments. Multiple voxels that have significant convergence result in a whole brain 
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image, known as an ALE map. ALE maps are thresholded using a p-value or permutation-based 

Family-Wise Error (FWE). Once these maps are thresholded, a cluster analysis can be performed 

to distinguish final locations of significant clusters. GingerALE 3.0.2 software was used to 

distinguish foci ALE values and run cluster-analysis on thresholded ALE maps for initial and 

secondary contrasts (Eickhoff et al., 2009b, 2012; Turkeltaub et al., 2012). First-level analyses 

were completed to evaluate a population (ASD, TBI, Controls) with inhibition, then second-level 

analyses were completed to compare and contrast two first-level analyses. Result maps were 

overlaid on a high resolution MNI anatomical brain template using the image analysis viewer 

MANGO 4.1 software (http://ric.uthscsa.edu/mango/mango.html, Lancaster et al., 2010).   

After the regions unique to each group were identified in the second-level analyses, meta-

analytic connectivity modeling (MACM; (Eickhoff et al., 2009a; Robinson et al., 2009) was 

performed to inform study findings. This MACM analysis followed 4 steps, similar to those 

described above. First, regions of interest (ROI; made up of voxels) were created representing 

the unique clusters identified for each group in the ALE. These ROIs were used to separately 

search the BrainMap database for previous experiments in which activation was reported within 

that volume. The search was limited to studies coded for normal mapping, reporting activations 

only, and with normal, healthy subjects. Second, as in the ALE described above, those reported 

experiments are meta-analyzed to identify the set of regions most likely to be active when the 

volume of interest is active – these are called MACMs. These analyses were thresholded at p < 

.001 and corrected using the FWE correction at p < .05. Third, the two MACMs (for the lmedFG 

and the rmedFG ROIs) were then contrasted against one another to determine components of the 

MACMs that were specific to lmedFG (from the TBI&ASD ALE) versus rmedFG seeds (from 

the Controls ALE). Fourth, the union, or conjunction, indicating common activity across the two 
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MACMs was identified. Fifth, once these analyses were conducted, the meta-data for all of the 

experiments found in the MACM’s first step was analyzed to determine the types of tasks used to 

elicit the neural activity – these data are characterized by behavioral domain and paradigm class. 

A behavioral domain is the area that an imaging task focused on. In Brainmap behavioral 

domains are divided into cognition, emotion, perception, interoperception, action, and 

pharmacology. Paradigm class refers to the type of experiment task used in the scanner, which is 

typically known by the same formal or informal name across researching groups (e.g., Stroop or 

Flanker).  

RESULTS 

First-Level Analyses, Within-group and Between-group ALEs 

To investigate the differences between inhibition activation for individuals with ASD and 

TBI, a first-level analysis was conducted with a 0.01 p-value and no threshold correction (no 

FWE). This was to gain a simple overview of activation for each group without losing statistical 

power. For TBI, with 0.01 p-value uncorrected, there were three clusters. The largest cluster was 

in left and right middle frontal gyrus of the premotor cortex (peak at x= -8, y= 10, z= 52). All 

TBI clusters are in Table 4. For ASD, there were four clusters, with the largest cluster in the left 

anterior cingulate to cingulate gyrus (peak at x= 2, y= 32, z= 14). All ASD clusters are reported 

in Table 5.  

Due to the small number of studies in both ASD and TBI groups, the populations of 

interest were combined (TBI&ASD) for the contrast analyses with controls. When correcting 

with a p < 0.01 cluster-level FWE and 0.05 p-value with 1000 permutations for initial-level 

analyses, the TBI&ASD combined group had one cluster, which was located in the bilateral 

anterior cingulate gyrus to the bilateral medial frontal gyrus (peak at x = -8, y =10 , z =52). 
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Cluster details are reported in Table 7. When correcting with a 0.01 cluster-level FWE and 0.001 

p-value with 1000 permutations for initial-level analyses, the control group had seven clusters, 

with the largest extending from the right claustrum to medial frontal gyrus (peak at x =34, y =22, 

z =-6). The control group was analyzed at a p < 0.001 for presentation only, reported in Table 6. 

However, when contrast analyses were performed the same specifications were used on controls 

as on TBI&ASD (p < 0.05).  

Second-level analyses – Contrast and Conjunction ALEs 

To identify similarities and differences between the TBI&ASD and Controls, a contrast 

analysis was computed at a p < 0.05 with 10,000 permutations for TBI&ASD (first-level 

computed at 1000 permutations, 0.05 p-value and cluster-level of 0.01) and Controls (first-level 

computed at 1000 permutations, 0.05 p-value and cluster-level of 0.01). The common activity, or 

conjunction of the activation maps, was observed in the left medial frontal gyrus (peak at x = -8, 

y = 10, z = 52), extending into the right cingulate gyrus.  The conjunction analysis is reported in 

Table 10.  

In the contrast analyses, Controls had more activity than TBI&ASD in five clusters with 

the largest in the right middle frontal gyrus. Smaller clusters were located in the left thalamus to 

midbrain, left inferior frontal gyrus, the right cingulate gyrus to medial frontal gyrus, and the left 

sub-lobar claustrum (reported in Table 8). The Controls’ peak activity in the medial frontal 

gyrus, similar to that of the TBI&ASD group, was in the right hemisphere (x = 6, y = 8, z = 50). 

TBI&ASD had more activity than Controls in one cluster in left medial frontal gyrus (peak at x = 

-10, y = 12, z = 52, reported in Table 9).  
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Meta-analytic connectivity mapping (MACM) 

Given that the ALE analyses for both groups identified activity in the medial frontal 

gyrus, with a slight leftward peak in the TBI&ASD and a rightward peak in the Controls, 

MACMs were computed to determine whether these differences in peak activity were 

functionally relevant (i.e., connections to other brain regions differed for each of the peaks) and 

associated with differing behavioral patterns (i.e., activity was associated with different task 

types). The lmedFG volume of interest was reported in 480 BrainMap experiments (6820 

subjects, contributing 7008 foci) and the rmedFG ROI was reported in 809 BrainMap 

experiments (11568 subjects, 11855 foci). These two peak ROIs demonstrated very similar 

MACMs (appendix Figures 4a and 5a) with a large set of regions commonly associated with 

both ROIs (Figure 5). However, they differed significantly with the lmedFG peak connecting 

with left inferior frontal and bilateral parietal regions (Figure 4, red) and the rmedFG peak 

connecting more with subcortical regions (thalamus, cerebellum). Reported MACM regions of 

activity reported in Tables 11 and 12.   

Behavioral Domain and Paradigm Class analysis. 

While the MACM maps were similar for each group and shared overlap with ALE 

results, the behavioral domain and paradigm class meta-data was significantly different between 

populations. The lmedFG peak ROI MACM (based on the peak from TBI&ASD ALE) was 

active during tasks categorized as cognition (working memory), execution of movement, and 

imagination with the following paradigm classes: task switching, counting/calculation, and word 

generation (Figure 6 and 8). In contrast, the rmedFG peak ROI MACM (based on the peak from 

Control ALE) was active for tasks categorized as execution of movement and perception 

(vision.motion) and the following paradigm classes: anti-saccades and saccades (Figure 7 and 8). 
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DISCUSSION 

Coordinate-based meta-analysis of functional magnetic resonance imaging activation 

studies was used to attempt to identify the neural basis of inhibition in TBI relative to HC, ASD 

relative to HC, and in TBI relative to ASD. However due to the limited number of studies on 

inhibition-related fMRI activation in adults with TBI and ASD, the research question morphed to 

maintain statistical power to identify the neural basis underlying TBI and ASD combined 

(TBI&ASD) relative to HC.  

Findings Related to Attentional Networks  

Using activation likelihood estimation (ALE) as a first-level analysis across a large 

number of neurotypical adults indicated involvement of several brain regions when engaged in 

response inhibition tasks. These brain regions, which include areas in the frontal, temporal, and 

parietal regions, include the bulk of brain regions that also make up the ventral and dorsal 

attention networks (VAN and DAN) (blue activation in Figure 2). Uncorrected and corrected 

ALE maps revealed activation in the TBI and ASD groups was similar to Controls, but did not 

encompass as many of the VAN or DAN regions as the Controls (red and green activation in 

Figure 2). The latter may be relevant to the presence of disorder but may also be due to the lack 

of power/number of studies included in the patient population groups.  

However, by conducting comparison and conjunction analyses, it became evident that the 

medial superior frontal and lateral inferior frontal regions were commonly active across groups. 

Group differences were only evident in the peak activation observed within the large cluster of 

activity in the medial prefrontal cortex. That is, results suggest that TBI&ASD activate the left 

medial frontal gyrus (BA 6) in response inhibition tasks to a greater extent than controls do. 

Controls have significant activity in the right medial frontal and cingulate gyri. The largest and 
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most common cluster of activity (cluster 1, Table 6) in the neurotypical sample was in the right 

inferior frontal gyrus (pars orbitalis), extending inferiorly into the anterior insula (claustrum) and 

superiorly into the precentral gyrus. Other regions active included the rostral anterior cingulate 

cortex, the left-sided homolog of cluster 1, along with regions consistent with the dorsal attention 

network (left and right inferior to superior parietal lobules).  

Though the sample was small, a descriptive analysis can probe patterns of neural 

activation differences in TBI, ASD, and controls. Inhibition-related activity in the TBI group was 

distributed in the left medial frontal gyrus, the left precentral gyrus extending to the insula, and 

the right middle frontal gyrus (Table 4). Activity in the ASD group centered in the left anterior 

cingulate and cingulate gyrus, in the left superior and middle temporal gyrus to inferior parietal 

lobe, in the left frontal gyrus, and in the left cingulate gyrus (Table 5).  

These fMRI ALE activation results suggest that the TBI&ASD group are using less 

whole-brain activation and using more frontal region activation than controls. These frontal and 

prefrontal regions are typically associated with higher-level cognitive functions and involved in 

top-down processing (Corbetta & Shulman, 2002; Adam Gazzaley & D’Esposito, 2007; Vossel 

et al., 2014). The controls are activating more diverse neural regions that replicate those found in 

the VAN and DAN. Controls, likewise, are using neural regions that are typically associated with 

lower-level functions involved in bottom-up processing (e.g. the thalamus, temporal, and parietal 

regions), in addition to using higher-level regions. This suggest that the primary finding of this 

study is that controls are using both top-down and bottom-up processing to complete response 

inhibition tasks, whereas the TBI&ASD groups are relying on apparent top-down processing. 

However, it is unclear from these findings if the TBI&ASD group is not using other neural 

regions associated with a VAN or DAN approach, or if they have an inability to use those 
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regions. Further research on TBI and ASD during inhibition is warranted to confirm these 

findings of top-down processing.  

 The MACM results further suggest this finding between impaired inhibition and reduced 

VAN and DAN activation through both a task connectivity analysis and a behavioral/paradigm 

class analysis. The lmedFG MACM, based on the TBI&ASD ALE results, revealed a network of 

activation observed in studies that looked at cognitive (working memory) and motor execution 

domains, as well as, task switching, calculation, and other higher-level cognitive tasks. This 

supports the idea that the TBI&ASD were using higher-level abilities, recognized as part of top-

down processing, to complete response inhibition. In contrast, the rmedFG MACM, based on the 

Controls ALE results, revealed a network of activation also observed in studies limited to action 

or perceptual domains. This included tasks saccades/anti-saccades, passive viewing, repetition, 

as well as reward and GNG tasks. This supports the claim that the Controls are using a network 

to complete successful inhibition that is based on bottom-up processing as evidenced through 

lower-level cognitive tasks. Further research is needed to explore the functional connectivity of 

ASD and TBI as it relates to cognitive control and attention.  

Previous functional connectivity studies in ASD and attention have similarly found 

hypoactivation of the VAN and DAN (Farrant & Uddin, 2016). Studies on TBI and functional 

connectivity between the VAN and DAN are minimal, with most functional connectivity studies 

focusing on the Default-Mode Network (DMN). If ASD and TBI were under-activating the VAN 

and DAN, then this would interrupt task performance for a multitude of daily activities, thus 

continued research on this idea is warranted.  

In addition to these suggestive findings on the relationship between attention and domain 

specific or general processing, the following sections provide a more in-depth discussion of 
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individual neural regions as they relate to TBI&ASD, HC, TBI, and ASD findings. The 

following neural regions were areas of significant activation in the ALE analysis.  

Right and Left Medial Frontal Gyrus 

The TBI&ASD group had significant activation in the left medial frontal gyrus, whereas 

the controls had significant activation in the right. Some prior fMRI studies investigating mild 

TBI during the Stroop task performance found no group differences within the lateral or medial 

prefrontal cortex (Mayer et al., 2012).  However, this current study looked at a range of severity 

for TBI, so it may be that these findings are severity-dependent. In fact, a fMRI and EEG study 

comparing TBI and HC found that reduced activation in the mid-dorsolateral prefrontal cortex 

for the TBI group was associated with increased severity of symptoms (Nadia Gosselin et al., 

2011). Some studies of inhibition in TBI, found increased activation on the right, not the left, 

medial frontal gyrus however those studies were Stroop-specific (Smits et al., 2009; Tlustos et 

al., 2011). This current study included a range of inhibition tasks to look at inhibition in a broad 

sense and future task-dependent analyses should be completed to piece apart task-dependent 

results.  

Sometimes, the medial frontal gyrus is associated with the supplementary motor area 

(SMA). Several other studies have found the SMA to be related to inhibitory control in 

neurotypical individuals (Chikara et al., 2018; Ko et al., 2016; Smits et al., 2009). According to 

the Connectomic Atlas of the Human Cerebrum (2018) the right medial frontal gyrus in 

neurotypical individuals, activation occurs during social interactions (Baker et al., 2018). Some 

of the included inhibition tasks for this study included faces as stimuli and some did not. Future 

research should include specific social stimuli when addressing the medial frontal are in TBI and 
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ASD to more clearly ascertain activation surrounding social information, attention, and 

inhibition.   

Right Middle Frontal Gyrus 

 This study found increased activation in the right middle frontal gyrus for the TBI group, 

but not the ASD group. This aligns with previous research about hypoactivation in the right 

middle frontal gyrus for TBI (Smits et al., 2009; Tlustos et al., 2011). A study looking at the Go-

No Go task using magnetoencephalography to identify timing and location of neural patterns for 

adolescents with ASD and controls, found that the ASD group recruited areas limited to the 

frontal cortex and the right middle frontal gyrus in the beginning of the inhibition task (Vara et 

al., 2014). This may suggest that the right middle frontal gyrus plays some role, although is not 

primary, in inhibition. Messel et al. (2019) paper found in healthy controls preforming a stop-

signal task (like the GNG) that right middle frontal gyrus, along with the inferior parietal cortex, 

right inferior frontal gyrus and left anterior insula was activated in the go-trials, but not in the 

stop-trials (Messel et al., 2019). A stopping-specific pattern was only seen in the supplementary 

motor area, the anterior cingulate cortex, and the right anterior insula (Messel et al., 2019). 

Although both go- and stop-trials are necessary to complete the GNG task, this may suggest that 

the right middle frontal gyrus is a supplementary or preliminary, but not a primary area for 

inhibition. Further research must delineate the primary and supplementary areas of inhibition in 

order to compare the impact of disruption on clinical populations.  

Bilateral Cingulate and Cingulate Gyrus 

 This study found that the ASD group had significant activation in the cingulate gyrus, in 

the rostral anterior and mid-cingulate regions, while the TBI did not. Unlike this study, previous 

GNG and Flanker tasks report hypoactivation of the anterior cingulate gyrus has been found for 
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ASD (Kana et al., 2007; Shafritz et al., 2008). Also unlike this study, Smits et al. (2009) found 

increased activation of the bilateral cingulate gyrus in mild TBI, but this study included several 

tasks that the Smits et al (2009) analysis did not. Using fMRI with neurotypical adults, the 

anterior cingulate has been shown to interact with the dorsolateral prefrontal cortices during error 

detection of EF tasks (Gehring & Knight, 2000; Kiehl et al., 2000). When assessing task 

performance in error detection and sustained attention for adults with TBI, McAvinue et al. 

(2005) found a correlated decrease in both (McAvinue et al., 2005). Further research is required 

to delineate the relationship between the cingulate and ASD, and to clarify decreased cingulate 

activation as it relates to attention or inhibition.  

Left Superior and Middle Temporal Gyrus 

 This study found significant activation in the superior and middle temporal gyrus for the 

ASD group and not the TBI group. Temporal activation is not typically seen during inhibition 

tasks in control populations (Mayer et al., 2012). One study looking at healthy older adults (50+ 

years) found reduced activity in the left temporal gyrus during a set-shifting activity (which 

would require inhibition), as well as reduced functional connectivity in the prefrontal cortex 

(Gerrits et al., 2015). Otherwise, little else on the temporal gyrus has been reported for 

inhibition-based tasks. However, several studies have noticed that activation in the temporal lobe 

is important in comprehension of emotions, particularly emotions in music or faces (Adolphs et 

al., 2001; Gosselin et al., 2011). Some of the inhibition tasks included did have faces as a part of 

the task, particularly in the ASD group, which may explain this activation in the ASD group and 

not the TBI group.  
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Left Inferior Parietal Lobe 

 This study found significant activation in the left inferior parietal lobe for the ASD group 

and not for the TBI group. Similar to this study, Kennedy et al. (2006) found bilateral inferior 

parietal activation when individuals with ASD performed an fMRI Stroop task (Kennedy et al., 

2006). In neurotypical adults EFs are considered to rely on the frontoparetial network (D. E. Nee 

et al., 2007; Niendam et al., 2012), so it is interesting that the TBI group did not have significant 

parietal activation in this study. Previous studies have found increased activation in the parietal 

lobes for working memory tasks in mild TBI when compared to healthy controls and this was 

speculated to be compensatory activation in the case of damaged frontal regions (Wu et al., 

2014). A study by Caeyenberghs et al. (2013) looked at brain connectivity during complex 

executive function tasks for TBI and found that the hubs of activation were present in the parietal 

cortex, frontal cortex, and the basal ganglia (Caeyenberghs et al., 2013). However the network 

connectedness between hubs had decreased efficiency and decreased integration (Caeyenberghs 

et al., 2013). These findings point to the need for more delineation in future investigation to 

determine if inhibition for TBI is disrupted by decreased activation in the parietal regions, 

decreased connectedness with the parietal region, or both.  

Limitations and Future Directions 

There are limitations of note in this meta-analytic study. First, the comparison between 

TBI and ASD neuroimaging studies is complicated by the variability of the activation 

experiments used. Experiments were varying in their stimulus modality and task content. 

However, this effect was minimized by limiting tasks to those of inhibition experiments with 

inhibition-central contrast analysis (Table 3). Similarly, our study did not rely on a specific task 
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(focused only on activation associated with Stroop), thus limiting the ability to identify results 

being based on task-specific activation.   

Second, TBI and ASD are heterogenous populations with great within-group variability 

and complexity. Unfortunately, this disrupts research in both populations. To accommodate this 

reality, a large range of severity of TBI and ASD subjects were included, despite meeting other 

inclusion criteria (specifically they had to be 17+, they had no psychological co-morbidities, and 

they had to have a formal diagnosis of TBI or ASD by an appropriate professional body). Future 

research would benefit from focusing on a range of severity within specific population groups. 

Third, the limited number of available studies in ASD and TBI populations can reduce 

statistical power and allows for individual studies to bias results. Combining groups, 

thresholding, and correcting analyses was done to mitigate the question of statistical power. 

BrainMap’s ALE statistic attempts to correct the influence of individual studies by having 

analyses not impacted based on the threshold of significance employed in each original study 

(Turkeltaub et al., 2012). However, overall this was considered a preliminary, non-exhaustive 

research project with a broad scope and the findings should be considered as such. The findings 

are suggestive of future potential directions only. 

Despite these limitations, this project gives a direction for further research in three ways. 

First, this project links two populations that have similar presentations of impaired inhibition. 

Future research should continue to explore the commonalities and difference between TBI and 

ASD. Second, this paper provides supporting claims to present knowledge on inhibition in HC, 

along with additional insight to the neural underpinnings of inhibition in TBI and ASD. Future 

research should continue to explore the neural differences of TBI and ASD in order to develop 

accurate theories for each population, particularly in regard to the role of attention. Third, this 
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paper points to a neural area, the medial frontal gyrus, as an area for future, more extensive 

analysis. This neural finding may present as a target for future functional connectivity analysis 

on inhibition in TBI or ASD, or it may provide a neurological target to observe treatment effects 

with. Future examination of similar findings on the neural infrastructure of inhibition in TBI and 

ASD is warranted so that the limitations mentioned may be overcome and so questions about the 

relationship between neurology and behavior in executive dysfunction for TBI and ASD can 

continued to be answered.  
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TABLES AND FIGURES 

Table 1. Term for literature search used.  

Search Terms Used in Databases 
 
Functional Magnetic 
Resonance Imaging fMRI functional magnetic resonance imaging  

fMRI  
brain imag*  
brain map* 

Autism Spectrum Disorder Autism Spectrum Disorder 
ASD 

Autis* 
High Functioning Autism 

HFA 
Pervasive Development Delay 

PDD 
Aspergers  

Traumatic Brain Injury TBI 
Traumatic Brain Injury 

Head Injury  
Inhibition Common Executive 

Inhibit* 
Stroop 

Go-No-Go 
Flanker 

Adults Adult* 
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Figure 1. Diagram of Article Exclusion 

360 Studies Found
Identified from PubMed, PyschInfo, Web of Science, and 
BrainMap

49 Excluded for Design
Articles excluded for imaging anaylsis (not being 
fMRI), for being non data articles (commentary, meta-
anylsese, and reviews), for being functional connectivity 
studies, or for treatment studies.  

243 Excluded for Task/Subject Selection
Articles excluded for having underage or nonhuman 
participants (<17 years olds in some or all of the sample, 
rat studies) or for participants with co-occuring 
pyschiatric or neurodevelopmental disorders (ADHD, 
schizophrenia, MDD, PTSD). Articles excluded for 
having an impure inhibition task (e.g. antisaccades). 

56 Excluded for Analysis
Articles excluded for having only Region of Interest 
(ROI) effects. Excluded if coordinates were not 
achieveable. 

Included in Analysis: 

5 Articles for ASD

7 Articles for TBI 



  

 

Table 2. Articles included in the study. 

Study Year TBI Group Control 
Criteria 

Task Design 

N (M:F) Mean Age Diagnosis Mean IQ and/or Edu 
in Years 
 

Diagnostic 
Measures 

Scheibel et 
al. (2007) 

 14 (11:3) 31.9 years 
(SD=24.0) 

Moderate to severe 
TBI 
 
9 MVA, 3 MA, 1 
Fall, 1 Assault 

Est. Preinjury (Barona) 
M= 98.4 (SD= 10.2)  
 
Edu= 13 (SD= 2.2) 

GCS, number of 
brain lesions,  

OI N= 10 (7:3), 
Age= 31.2 
(SD=10.5)  

Stimulus-
response 
compatibility 
task; Red and 
Blue Arrows 
block-design 

Scheibel et 
al. (2009) 

30 (25:5);  
 
*modTBI: 9, 
sTBI: 8, 
vsTBI:13  

modTBI: 46.32 
(SD=7.29) 
sTBI: 22.46 
(SD=3.99) 
vsTBI: 24.12 
(SD=7.04) 

Moderate to very 
severe TBI 
 
 

Est. Preinjury (Barona)  
mTBI M= 101.89 
(SD= 10.89), 
sTBI = 93.50 
(SD=9.01), vsTBI = 
99.08 (SD=9.45) 
 
Edu 
mTBI = 14.56 (SD= 
2.74), 
sTBI = 13.5 
(SD=2.51), vsTBI = 
12.54 (SD=1.94) 

Pre-resuscitation 
GCS 

OI N=10 (7:3),  
Age= 30.8 
(SD= 10.46) 

Stimulus-
response 
compatibility 
task; Red and 
Blue Arrows 
block-design 

Scheibel et 
al. (2012) 

15 (15:0) 28.73 (SD=5.97) Mild TBI  
 
Explosive blast-
related  

Est. Preinjury (Barona) 
M= 103.27 (SD= 5.75)  
 
Edu= 13.8 (SD= 1.52) 

PTA, injury with 
LOC less than 30 
min,  

Controls N=15 
(14:1), Age= 
30.93 (SD= 
5.56) 

Stimulus-
response 
compatibility 
task; Red and 
Blue Arrows 
block-design 

Sozda et al. 
(2011) 

10 (6:4) 25.1 (SD=7.3) Severe TBI 
 
7 MVA, 2 MA, 1 
Boating Accident 

No IQ presented.  
 
Edu= 13.9 (SD=1.7) 

GCS Controls N=12, 
Age= 22.9 
(SD=6.4) 

Task switching 
cued-Stroop 
task 

27 



  

Sullivan et 
al. (2018) 

17 (17:0) 31.7 (SD=6.8) Mild TBI 
 
Explosive blast-
related 

No IQ presented. 
 
Edu= 14.7 (SD=1.6)  

Verfaellie et al. 
(2013) Interview 

Controls N=16 
(14:2), Age= 
33.1 (SD=5.6) 

Flanker task 

Terry et al. 
(2012) 

22 (22:0) 20.3 (SD=1.17) Mild TBI (2+ 
concussion) 
  

No IQ presented.  
 
Edu= 14.3 (SD= 0.9) 

Interview and 
questionnaire 
based on 
American 
Congress of 
Rehabilitation 
Medicine 
(ACRM) 
definition (1993) 

Controls N=20 
(20:0),  
Age=20.4 
(SD=1.6) 

Stroop color-
word 
interference task 

Ham et al. 
(2014) 
 

48 (37:11) 
 
 

35.7 (SD=10.9)  Probable to 
Moderate/Severe 
TBI grouped into 
low (N=18) and 
high (N=30)-
performance 
monitoring groups 
 
Due to RTA, 
concussion, assault, 
or fall 

No IQ or education 
presented 

Mayo 
Classification 
(2007) which 
includes LOC, 
PTA, GCS, and 
neuroimaging.  

Controls for 
fMRI task N= 
25 (17:8), Age= 
34.8 (SD=9.6) 

Stop-signal task 
and Stop-change 
task  

 ASD Group   
Fan et al. 
(2012) 

12 (9:3) 30 (SD=6) ASD and Asperger 
Syndrome (N=4)  

Full scale IQ= 115 
(SD= 14) 

ADOS-G and 
ADI-R 

N=12 (10:2), 
Age= 28 
(SD=7) 

Attention 
Network Test – 
Revised (ANT-
R), which is a 
modified 
Flanker test.  

Duerden et 
al. (2013) 

16 (11:5) 27.2 (SD=5.3) ASD IQ= 111.89 
(SD=13.71) 

ADOS-G, ADI-
R 

N=17 (12:5), 
Age= 30.7 
(SD=7.9)  

Go/NoGo with 
emotional 
stimuli (happy 
or sad faces) 

28 



  

Velasquez 
et al. (2017) 

19 (13:6) 25.84 ASD IQ was above 80 for all 
participants.  

ADOS and ADI-
R 

N=22 (16:6), 
Age= 29.03  

Go/NoGo with 
faces and letters 

Schmitz et 
al. (2006) 

10 (10:0) 38 (SD=9) High-functioning 
ASD, Asperger 
Syndrome  

Full scale IQ= 105 
(SD=14) 

ADI and 
psychiatrist 
(DM) diagnosis 
with WHO ICD-
10 criteria 

N=12 (12:0), 
Age= 39 
(SD=6)  

Go/NoGo, 
Stroop, and 
SWITCH tasks 

Dichter et 
al. (2008) 

14 (13:1)  22.9 (5.2)  High-functioning 
ASD and 
Asperger’s  

Edu= 12.79 (SD= 2.01)  ADI-R and 
ADOS 

N= 15 (14:1), 
Age= 23.2 
(SD=5.7)  

Flanker task 
modeled after 
ANT-R 

Codes: IQ= Intelligence Quotient, GCS=Glasgow Coma Scale, TBI=Traumatic brain injury, OI= Orthopedic Injury, MVA= Motor 
Vehicle Accident, MA= Motorcycle Accident, LOC=loss of confusion, PTA= post-traumatic amnesia, ASD= Autism Spectrum 
Disorder, ADOS-G= Autism Diagnostic Observation Schedule- Generic, ADI-R= Autism Diagnostic Interview-Revised, RBS-R= 
Repetitive Behavior Scale-Revised  
*divided TBI participants into three groups (9 moderate, 8 severe, 13 very severe TBI) 
  

29 



  

 
Table 3. Selected experiments for contrast. 
 
Study Year Task Design Experiment(s) Contrast  Foci Stimuli Mode Response Mode 
TBI      

Scheibel et 
al. (2007) 

Stimulus-response 
compatibility task 

Incompatible minus Compatible, TBI Patients 18 Visual Finger Tap/Button Press 

Scheibel et 
al. (2009) 

Stimulus-response 
compatibility task 

Incompatible minus Compatible: Orthopedic Injury 
Controls (OI) < Severe TBI  
Incompatible minus Compatible: OI < Very Severe 
TBI (vsTBI) 

11 
 
11 

Visual Finger Tap/Button Press 

Scheibel et 
al. (2012) 

Stimulus-response 
compatibility task 

Incompatible > Compatible, TBI Group 3 Visual Finger Tap/Button Press 

Sozda et al. 
(2011) 

Stroop task Incorrect > Correct, sTBI 4 Visual Finger Tap/Button Press 

Sullivan et 
al. (2018) 

Flanker task Incongruent > Congruent, Mild Traumatic Brain 
Injury (mTBI) 

4 Visual Finger Tap/Button Press 

Terry et al. 
(2012) 

Stroop task Stroop Incongruent > Congruent, mTBI 11 Visual Finger Tap/Button Press 

Ham et al. 
(2014) 
 

Stop-signal task and 
Stop-change task  

Low-Monitoring TBI (incorrect STOP>correct GO) 
> Controls (incorrect STOP>correct GO) 
High-Monitoring TBI (incorrect STOP > correct 
GO) > Control group (incorrect STOP > correct GO) 

6 
 
4 

Visual Finger Tap/Button Press 

ASD      
Fan et al. 
(2012) 

Flanker task 
modeled after 
ANT-R 

Flanker (incongruent-congruent), HC > ASD 3 Visual Finger Tap/Button Press 

Duerden et 
al. (2013) 

Go/NoGo  NoGo-Go, ASD only 7 Visual Finger Tap/Button Press 

Velasquez et 
al. (2017) 

Go/NoGo  Face NoGo (ASD > HC) > Face Go (ASD > HC) 1 Visual Finger Tap/Button Press 

Schmitz et 
al. (2006) 

Go/NoGo, Stroop, 
and SWITCH tasks 

Go/No-Go, Autism Spectrum Disorder (ASD) 
Stroop, ASD 

6 
9 

Visual Finger Tap/Button Press 

Dichter et al. 
(2008) 

Flanker task 
modeled after 
ANT-R 

High-arousal > Low-arousal pictures, Incongruent 
arrows, ASD Only 

3 Visual Finger Tap/Button Press 

30  



  

 
Table 4.  
Uncorrected TBI only activations, p < 0.01, three clusters found. 
 

 
  

Cluster # x y z ALE Z Label (Nearest Gray Matter within 5mm) Voxels Mm3 

1 -8 10 52 0.01230745 4.20 Left Medial Frontal Gyrus, BA 6 264 2112 

2 -46 16 6 0.0097824 3.697 Left Precentral Gyrus and Left Insula, BA 44 and 13 172 1376 

 -46 10 0 0.00896968 3.542    

3 42 4 50 0.00928279 3.603 Right Middle Frontal Gyrus, BA 6 142 1136 

 32 8 62 0.00738903 3.102    

3 1 



  

 
Table 5. 
Uncorrected ASD only activations, p < 0.01, four clusters found. 
  

 
 
 
  

Cluster # x y z ALE Z Label (Nearest Gray Matter within 5mm) Voxels Mm3 

1 2 32 14 0.00866706 4.0707 Left Anterior Cingulate and Cingulate 
Gyrus 
BA 24 and 32 

548 4384 

 
2 30 22 0.00829139 3.9433 

 
  

 
0 28 32 0.00740079 3.5924 

 
  

 
0 16 40 0.00641351 3.228 

 
  

2 -52 -50 18 0.01166451 4.649 Left Superior Temporal Gyrus, Middle 
Temporal Gyrus, and Inferior Parietal 
Lobe 
BA 22, 39, and 40 

406 3248 

 
-56 -66 16 0.00697456 3.3911 

 
  

 
-50 -46 32 0.00647548 3.290 

 
  

3 -34 26 -14 0.00869964 4.077 Left Frontal Gyrus, BA 47 224 1792 

4 2 2 36 0.00722067 3.512 Left Cingulate Gyrus, BA 24 199 1592 
 

-2 -6 28 0.00653593 3.303 
 

  

32  



  

 
Table 6. 
Corrected Control only activations, cluster-FWE at 0.01, p < 0.001 for presentation only, 1000 permutations. 

Cluster 
# 

x y z ALE Z Label (Nearest Gray Matter within 5mm) Voxels Mm3 

1 34 22 -6 0.05808274 7.1622 
Right Claustrum, Precentral Gyrus, Insula, and 
Inferior and Middle Frontal Gyrus, BA 9 2153 17224 

 44 10 34 0.05365165 6.745    

 40 18 0 0.04915744 6.310    

 50 26 26 0.04601312 5.996    

 42 38 20 0.04329699 5.720    

 52 18 18 0.04043961 5.421    

2 4 20 42 0.07651953 8.791 

Right Cingulate Gyrus and Medial Frontal 
Gyrus and Left Medial Frontal Gyrus, BA 32 
and 6 1657 13256 

 6 32 26 0.04254507 5.642    

 0 6 50 0.04209139 5.594    

 6 2 58 0.03224389 4.516    

3 -34 18 4 0.0535029 6.731 
Left Insula, Precentral Gyrus, Inferior Frontal 
Gyrus, and Claustrum, BA 13, 9, 44, 1197 9576 

 -42 8 32 0.04097684 5.478    

 -42 14 -6 0.03738919 5.094    

 -52 10 18 0.0352783 4.861    

 -32 20 -8 0.03403825 4.722    

 -52 10 6 0.03269097 4.568    

33 



  

  

 -46 20 28 0.02617437 3.788    

4 40 -46 48 0.04242817 5.630 
Right Inferior Parietal Lobule, Angular Gyrus, 
and Precuneus, BA 40, 38, 7 676 5408 

 36 -56 44 0.04235259 5.621    

 24 -68 48 0.03602877 4.944    

 14 -68 52 0.03572682 4.911    

5 -42 -46 50 0.04870766 6.2658925 
Left Inferior Parietal Lobule and Angular 
Gyrus, BA 40, 39 422 3376 

 -34 -56 42 0.02848489 4.0725317    

6 56 -44 38 0.03474468 4.8007 Right Inferior Parietal Lobule, BA 40 160 1280 

7 -24 -66 48 0.03304441 4.6083403 Left Superior Parietal Lobule, BA 7   

34 



  

 
 
Table 7. 
Corrected TBI&ASD combined group activations, cluster-FWE 0.01, p < 0.05 for presentation only, 1000 permutations. 
 

  

Cluster 
# x y z ALE Z Label (Nearest Gray Matter within 5mm) 

1 -8 10 52 0.01232191 4.028 
Left Medial Frontal Gyrus, Cingulate Gyrus, and 
Anterior Cingulate. BA 6, 32, 24, 8, 9 

 14 24 28 0.00953422 3.469  

 -4 26 30 0.00947309 3.458  

 2 32 14 0.00866722 3.292  

 2 30 22 0.00836742 3.226  

 12 24 46 0.00731156 2.920  

 2 2 36 0.00722185 2.893  

 -12 34 30 0.00656421 2.683  

 -2 -6 28 0.00653645 2.678  

 0 16 40 0.00644578 2.647  
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Table 8. 
Controls > TBI&ASD, contrast set to p < 0.05 and 10,000 permutations.  
 
Cluster # x y z Z Label (Nearest Gray Matter within 5mm) 

1 26 46 32 3.353 
Right Superior and Middle Frontal Gyrus, Precentral Gyrus and Insula, BA 9, 8, 6, 44, 
13 

 40 42 34 3.121  
 32 25 23 0  
 33 44 34 2.968  
 44 22 26 0  
 44 36 36 2.929  
 38 10 26 2.878  
 18 52 22 2.706  
 43.3 20 34.7 2.697  
 56 12 10 2.370  
 48 12 10 2.301  
 18 56 16 2.254  

2 -2 -18 -2 2.370 Left Thalamus and Medial Nucleus, Left and Right Red Nucleus of Midbrain 
 -6 -20 -4 2.264  
 -10 -21 -2 2.254  
 8 -20 -4 2.209  
 -3 -25 -2 2.149  
 -16 -22 0 2.115  
 -10 -14 4 2.081  

3 -50 6 20 2.820 Left Inferior Frontal Gyrus and Precentral Gyrus, BA 9 
 -56 8 22 2.652  
 -36 12 24 2.556  
 -36 14 30 2.086  

4 6 8 50 2.636 Right Medial Frontal Gyrus and Cingulate Gyrus, BA 6, 24 
 14 8 46 2.217  
 4 -6 56 2.167  

5 -26 24 8 2.706 Left Claustrum and Insula, BA 13 
 -30 26 8 2.678  
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Table 9. 
TBI&ASD > Controls, contrast set to p < 0.05 and 10,000 permutations.  

 
 
 
  

Cluster # x y z Z Label (Nearest Gray Matter within 5mm) 

1 -10 12 52 3.719 Left Medial Frontal Gyrus, BA 6 

 -14 10 51 3.291  
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Table 10. 
 TBI&ASD conjunction Controls, contrast set to p < 0.05 and 10,000 permutations.  
 

  

Cluster 
# x y z ALE Label (Nearest Gray Matter within 5mm) 

1 -8 10 52 0.012 
Left and Right Medial Frontal Gyrus, Right and Left Cingulate 
Gyrus, BA 6, 8, 32, 24 

 14 24 28 0.010  

 -4 26 30 0.009  

 2 30 22 0.008  

 12 24 46 0.007  

 2 2 34 0.007  

 0 16 40 0.006  

3 8 



  

 
Figure 2.  
Group results for TBI, ASD, and Controls (Table 4, 5, and 6 respectively) from first-level analysis.  

 
Red = ASD only, Green = TBI only, Blue = Controls only, Pink = overlap between ASD and Controls, Turquoise = overlap between 
TBI and Controls 
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Figure 3.  
Contrasts and Conjunction results.  

  
Red = Unique to ASD&TBI, Green= Unique to Controls, Blue= Conjunction  
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Table 11. 
MACM results for related regions of activation in TBI&ASD.  
 

Cluster # x y z ALE Z Label (Nearest Gray Matter within 5mm)  

1 -10 12 52 0.19186415 20.21 Left Medial Frontal Gyrus, BA 6 

2 34 18 0 0.04190031 6.862 Right Claustrum 

3 6 16 48 0.03442418 5.967 Right Medial Frontal Gyrus, BA 32 

4 20 -66 48 0.03582437 6.140 Right Precuneus, BA 7 
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Table 12.  
MACM for related regions of activation in Controls.  
  

Cluster# x y z ALE Z Label (Nearest Gray Matter within 5mm) 

1 6 10 52 0.3565536 28.105 Right Medial Frontal Gyrus, BA 6 

2 38 22 -6 0.07500941 8.293 Right Insula, BA 13 

2 46 16 -4 0.07019604 7.873 
 

3 -32 22 2 0.06869555 7.741 Left Insula, BA 13 

3 -42 16 -6 0.05143267 6.129 
 

4 50 8 26 0.06092195 7.034 Right Frontal and Precentral Gyrus, BA 9 and 6 

4 52 6 36 0.0584417 6.803 
 

5 -12 -18 6 0.07760286 8.516 Left Thalamus 

6 10 -16 8 0.07484397 8.279 Right Thalamus, Medial Dorsal Nucleus 

7 38 -2 50 0.0577578 6.739 Right Precentral and Middle Frontal Gyrus, BA 6 

7 28 -2 52 0.04922725 5.911 
 

8 6 26 32 0.05026608 6.015 Right Cingulate Gyrus, BA 32, and Left Cingulate Gyrus, 
BA 24 

8 -2 16 32 0.04760294 5.747 
 

9 -44 4 30 0.05304677 6.288 Left Precentral Gyrus, BA 6 
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Figure 4.  
Contrast MACM results.  

  
Red = ASD+TBI, Green = Controls  
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Figure 5.  
Conjunction MACM results.  
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Figure 6.  
MACM results depicting what types of tasks are activating the VOIs in TBI&ASD.  
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Figure 7. 
 MACM results depicting what types of tasks are activating the VOIs in Controls. 
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Figure 8.  
MACM results depicting the contrast of task activation in ASD&TBI and Controls.  
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Figure 1a.  
Controls > ASD+TBI, contrast set to p < 0.05, 10,000 permutations.  
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Figure 2a. 
ASD+TBI > Controls, contrast set to p < 0.05 and 10,000 permutations.  
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Figure 3a. 
ASD+TBI conjunction Controls, contrast set to p < 0.05 and 10,000 permutations.  
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Figure 4a.  
MACM results for task connectivity in the ASD&TBI group.  
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Figure 5a.  
MACM results for task connectivity in the Control group. 
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