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RÉSUMÉ

On peut s’attendre à une croissance en popularité des paris sportifs dans le marché américain
suite à la légalisation de ceux-ci dans plusieurs états depuis 2018 [1]. De plus, l’augmentation
de la quantité de données sur le sport et le développement de nouvelles métriques de perfor-
mance sportive ont permis depuis quelques années d’avoir une approche statistique pour les
problèmes de prise de décision dans le sport. Alors que la littérature sur les paris sportifs
couvrent majoritairement des modèles probabilistes pour prédire le résultat d’un évènement,
cette thèse s’intéresse plutôt au développement d’une stratégie optimale pour remporter un
paris sportif, plus particulièrement le Tournament challenge tenu annuellement par ESPN.

Le Tournament Challenge demande aux participants de choisir le gagnant de chacune des 63
parties du March Madness, soit le championnat de fin de saison de basketball collégial améri-
cain. Il existe 263 façons de sélectionner les gagnants du tournois. De plus, plusieurs millions
de personnes y participent à chaque année. Généralement, seulement un petit pourcentage
des meilleurs scores font un gain monétaire ce qui implique qu’un participant doit obtenir un
meilleur score que plusieurs millions de personnes pour remporter un gain.

Kaplan et al. (2001) ont été les premiers à introduire une approche exacte qui maximise
l’espérance de point produit par une entrée. Notre stratégie est la première à considérer
plusieurs entrées dépendantes au Tournament Challenge. Notre stratégie cherche à maximiser
l’espérance de points produit par le score maximal des k entrées. Deux problèmes découlent
de cette stratégie, soit comment évaluer et comment optimiser la fonction objective. Nous
présentons trois approches pour évaluer la fonction objective. Cela inclue une méthode exacte
qui est un algorithme basé sur un arbre de décision et deux modèles approximatifs, soit une
approche par simulation et une approche par apprentissage machine. À partir de ces différents
modèles, nous développons deux heuristiques permettants d’optimiser la fonction objective,
soit un algorithme génétique et un réseau de neuronnes intégré à un modèle en nombre entier.
Finalement, nous comparons l’espérence de points produits ainsi que le vrai score obtenu par
chacune des méthodes pour chaque tournois depuis 2002. Nos deux modèles surpassent pour
chaque instance la solution optimal du modèle exacte avec une entrée.



v

ABSTRACT

Sports gambling are expected to grow in popularity in the US as they have been legalized by
many states in the last two years [1]. The availability of sports data and the development
of new metrics to evaluate the performance of either athletes or teams have allowed the use
of statistical approaches to tackle decision-making problems in sports. While most papers
in the literature investigate how to predict the outcome of a game, this thesis addresses
the development of an optimal strategy to win a sports betting contest. Specifically, we
focus on the ESPN Tournament Challenge which is a sport betting contest on the season-
ending championship tournaments of americain college basketball, also known as the March
Madness.

The ESPN Tournament Challenge asks participants to pick the winner of each of the 63 games
in the March Madness. Thus, there is a total of 263 different ways of filling the tournament
which makes the challenge a complex task. Every year, millions of people aim to predict
accurately the March Madness. This contest often adopts a top-heavy payoff structure which
implies that a single participant needs to beat millions of participant to receive a positive
payoff.

Kaplan et al. (2001) first introduce an exact approach to the problem by selecting a single-
entry that maximizes the expected score. We propose a novel strategy that considers a
multi-entry approach to the Tournament Challenge. Such a strategy maximizes the expected
score of the maximum scoring entry. We face two main challenge, namely, (1) how to evaluate
the objective function and (2) how to optimize it. We then present three approaches for the
evaluation of the objective function. This includes an exact approach in a Tree-based algo-
rithm and two approximate models, a simulation approach and a neural network approach.
Based on these three different models to evaluate the objective function, we develop both
a genetic algorithm and a neural network-embedded algorithm. Finally, we compare the
expected score and the empirical score by each approach on each tournament played since
2002. Computational experiments show that the proposed models clearly outperform the
single-entry exact approach on every instance.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

Betting on sports continues to grow in the U.S. and abroad. Many U.S. states legalized
gambling following a 2018 Supreme Court ruling [1] that rescinded the federal government’s
ban on such activity. Within this newly legalized and regulated environment, U.S. states
reported over $13 billion wagered at licensed sportsbooks in 2019 alone [2]. Globally, between
both licensed and unlicensed operators, the database company Statista estimates that over
$120 billion in U.S. dollars is gambled on sports every year [3].

In traditional sports gambling, bettors risk an amount of their choosing on the outcome of
a single game by paying a wager. If their chosen team wins, they win back their wager, plus
the amount of the wager less a cut taken by the sportsbook (sometimes called the "vig," this
is usually around 9% of the wager). If their chosen team loses, they lose the wager.

Betting pools are a separate type of sports gambling, and form a significant subset of the
overall sports gambling market. In betting pools, all participants pay an entry fee for the
competition. The winning teams for many games have to be chosen by the participants, and
the participant who correctly picks the most winners wins the pool of money (the operator of
the pool may keep a small amount as payment).1 By far the most popular form of betting pool
is the annual National Collegiate Athletic Association (NCAA) men’s basketball tournament
that takes place every March. A survey conducted by Morning Consult and produced by
the American Gaming Association showed that an estimated $4.6 billion would be spent by
Americans on such pools in 2019 [4].

The NCAA basketball tournament, often termed March Madness, consists of 68 teams com-
peting in a bracket-style, a single-elimination tournament. In the preliminary round, eight
of the teams play in four separate games, with the winning teams advancing to the group
of 64 that constitute the initial set up of the tournament. The tournament winner has to
win six consecutive games to claim the championship. An example bracket from the 2019
tournament is shown in Figure 1.1 [5].

There are four "regions" (as designated by where in the U.S. the first two rounds of games are
played), each with 16 teams seeded from 1-16 where seed 1 is the strongest team and seed 16

1Depending on the circumstances, betting pools can require participants to make all of their selections
at once, or in an iterative fashion. Additionally, other scoring systems are possible (e.g., picking the winner
of a designated important game is worth more than picking the winner of another game). Finally, pools can
allow for a cascading payment system instead of the "winner-take-all" design.
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Figure 1.1 2019 March Madness

is the weakest team in the "region". Within each region, in the first round, seed numbers n
= (1, 2, 3, ..., 8) play against seed numbers 17−n. At no point is the tournament "reseeded"
after the start. The four regional bracket winners advance to the stage of the tournament
known as the Final Four, where the two semifinal games and then the championship game
determine the winning team.

Popular interest in March Madness has been widespread for years. In 2019, over 40 million
people filled out as estimated 149 million brackets [4]. Warren Buffett famously offered
$1 billion in 2014 to anyone filling out a perfect bracket [6], an offer that has since been
changed to $1 million a year for life to any of his employees for correctly picking all games
in the first two rounds (48 games) [7]. And as popular interest has grown, so has academic
interest. Kaggle has hosted annual machine learning competitions [8] from 2014-2020 in which
participants competed to pick the best brackets each year using novel machine learning and
optimization techniques.

Many papers focus on the idea of developing an accurate probabilistic model and on finding
the best single-entry solution (e.g., [9], [10], [11], [12], [13], and [14]). Metrick [15] first
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presented evidence that participants in March Madness betting pools over-pick the heaviest
favorites, suggesting that an understanding of the selection behavior of other participants
can be just as important as picking winners of games correctly. In an analysis of over
200,000 brackets selected by participants in online pools in 2015 and 2016, Wright et al. [16]
confirmed this tendency to over-back the top-ranked team. To our knowledge, none of the
previous research inMarch Madness betting pools has focused on the possibility of submitting
multiple bracket entries. Considering the aforementioned estimates that in 2019, 40 million
people filled out 149 million brackets (approximately 3.7 brackets per person), a strategy
for multi-entry participation is needed. The novelty of this thesis lies in presenting two
heuristics that find a near-optimal solution (given a probabilistic model for game outcomes)
to the problem of selecting multiple entries for a March Madness betting pool.

1.2 Problem description and preliminaries

A tournament T = 〈R, T,G〉 is defined by the collection of rounds R = {1, . . . , |R|} indexed
by r, the collection of teams T = {1, . . . , |T |} indexed by t, and the collection of games
G = {1, . . . , |G|} indexed by g. T is a single-elimination sport tournament with |G| = 2|R|−1
games and |T | = 2|R| teams. P is a |T | × |T | matrix defining the win probabilities for each
team in every possible game. For 1 ≤ ti, tj ≤ |T |, pti,tj in P is the probability that team ti

wins a game against team tj (since no tie games can occur, pti,tj + ptj ,ti = 1). Round r = 1
features games between teams 2 · g− 1 and 2 · g for g = 1, . . . , 2|R|−1.2 Iteratively from there,
round r consists of 2|R|−r games between a pair of teams, where for g = 2|R|−r−1+1, . . . , 2|R|−r,
one is from the set {2r · (g−2|R|−r−1−1)+1, . . . , 2r · (g−2|R|−r−1−0.5)} and one from the set
{2r · (g−2|R|−r−1−0.5)+1, . . . , 2r ·g−2|R|−r−1}. The team from the corresponding sets is the
sole team that won each of its games before round r. As an example, suppose |R| = 3 and
we are considering round r = 2. This round will feature 23−2 = 2 games. One of the games
will be between a team from {1, 2} and a team from {3, 4}, and the other will be between
a team from {5, 6} and {7, 8}. Finally, let T (g) be the collection of teams that might play
in game g, R(g) be the round of game g and G(t, r) be the game that team t might play in
round r.

A March Madness betting pool challenge consists of participants that select an outcome of
every game for the entire tournament, before it starts. A single entry or a complete bracket
b : G → T is an assignment of a team t ∈ T to each game g ∈ G where t ∈ T (g). A single
entry therefore selects a single team for each game which is understood to be selected as the

2This numbering is not the same as the "seeding" for the March Madness tournament described previously
in the thesis and shown in Figure 1.1.
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winner of the game. Note that the term "bracket" both in this thesis and colloquially can
describe the outcome of the tournament, an entry in the pool, or a simulation of the outcome.

A partial bracket Bwd
: G→ T ∪{∅} is a complete bracket but with the additional possibility

of assigning the empty set to a game, which indicates that no team has been chosen as the
winner of the game. Let Bwd=t represent the subset of brackets in B with team t winning
game d. We assume that both complete and partial brackets must be consistent in that if
there is a team t′ and a game g′ for which b[g′] = t′ then t′ must also be the winner in each
game g for which g ∈ G(t, r′)∀r′ ∈ {1, . . . , R(g′)− 1} and b[g] ≤ b[g′]. Let B be the set of all
complete brackets.

The tournament outcome is uncertain and will be a complete bracket b∗ ∈ B. Any entry
b ∈ B earns points corresponding to a linear function of the number of correct assignments
of winners in b, that are also winners in b∗. In this thesis we focus on the ESPN Tournament
Challenge, where a game in round r ∈ R is worth 2r−1 points and the value of bracket b given
that b∗ is the tournament outcome is denoted and defined by

S (b, b∗) :=
∑

g∈G:b[g]=b∗[g]
2R(g)−1.

The bracket with the maximum value is b∗ and has value v(b∗, b∗) = r · 2r−1. Moreover,
since the tournament outcome is uncertain, the score of a single-entry b is a random variable
denoted as S(b) and its expected score is denoted and defined by

E(S (b)) :=
∑
b∗∈B

Pb∗
∑

g∈G:b[g]=b∗[g]
2R(g)−1

where Pb∗ is the probability that the bracket b∗ occurs. Pb∗ is calculated as

Pb∗ =
∏
g∈G:

ti=b∗[g],
tj=o(b∗,ti,R(g))

pti,tj

where o(b∗, ti, R(g)) denote the opponent of team ti in round R(g) in the bracket b∗. Finally,
let S ′(b,Bwd

) be the random variable of the score of bracket b when the partial bracket Bwd

is observed while, and PBwd
be the probability of observing the partial bracket Bwd

.
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1.3 Example of the calculation of the expectation of the maximum of two entries

The model presented in the previous section exhibits how difficult it is to optimize for the
maximum expected score among a collection of k brackets. There might be an analytical
formula to calculate the expected score of the maximum of k brackets, but we were not able
to identify one.

Consider the following small tournament:

Figure 1.2 Four-team tournament

There’s a total of two rounds and three games in this four-team tournament. There are
23 = 8 feasible outcomes all listed in Table 1.1, where the winner for each game is listed in
each column.

Table 1.1 Possible tournament results

B b1 b2 b3 b4 b5 b6 b7 b8
w1 1 1 1 1 2 2 2 2
w2 3 4 3 4 3 4 3 4
w3 1 1 3 4 2 2 3 4

Assuming we select entry b1 and entry b6, here’s an analytic formula to compute the expected
score of the maximum of two entries.

E(max(S(b1, b6)) =
∑
bi∈B

Pbi
max(S(b1, bi), S(b6, bi))

= Pb1 ·max(4, 0) + Pb2 ·max(3, 1) + Pb3 ·max(2, 0) + Pb4 ·max(1, 1)+

Pb5 ·max(1, 3) + Pb6 ·max(0, 4) + Pb7 ·max(1, 1) + Pb8 ·max(0, 2)

= P1,2 ·P3,4 ·P1,3 ·4+P1,2 ·P4,3 ·P1,4 ·3+P1,2 ·P3,4 ·P3,1 ·2+P1,2 ·P4,3 ·P4,1 ·1+

P2,1 ·P3,4 ·P2,3 ·3+P2,1 ·P4,3 ·P2,4 ·4+P2,1 ·P3,4 ·P3,2 ·1+P2,1 ·P4,3 ·P4,2 ·2
(1.1)



6

Generalizing this formula even in this small tournament appears to be particularly difficult,
let alone for a larger tournament like March Madness. In addition, this only accounts for
evaluating the quality of a solution, let alone identifying the optimal solution.

1.4 Research objectives

The goal of this thesis is to explore how a participant can select multiple entries in the
March Madness pool. Specifically we seek to answer the following question: How can a
participant select multiple entries in a March Madness pool to maximize the expected value
of the maximum scoring entry?

The challenge of this problem lies in how to evaluate a solution (i.e., calculate the expectation
of the maximum score of a collection of entries), in addition to devising a decision-making
framework that allows us to search through all subsets of brackets and find the optimal
collection. The approach we explore inherently requires us to model the dependency between
solutions. As discussed in Section 2, there exist methods for maximizing the expected value
for a single-entry selection problem, but the optimal single-entry bracket is not necessarily
one of the brackets in an optimal solution to this multiple entries problem, necessitating
reasoning over multiple brackets simultaneously.

As discussed in detail in this thesis, the evaluation of the expectation of the maximum of
multiple entries is quite challenging. To the best of our knowledge, there is no analytical
closed-form expression, even for just two entries. Our contributions in attacking this compli-
cated problem are the following:

1. A tree-based dynamic programming model for evaluating exactly the expected value of
the maximum score of a collection of brackets which can be stopped at any point to
provide bounds

2. A genetic algorithm for finding a collection of brackets relying on simulation to evaluate
the quality of the solution

3. A neural network-embedded IP model for finding a collection of brackets.

For the last point, we use a recently introduced solver called JANOS that allows users to
pre-train neural network models and embed them in optimization model. This allows us to
train a neural network to evaluate the quality of a collection of brackets and then, through
JANOS, select proper brackets to maximize the output of the neural network.
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1.5 Outline

We will begin this thesis with a literature review on multi-entry models of sports betting pools
and single-entry approaches appearing in the literature for the March Madness tournament
in Chapter 2. We will also introduce in this chapter the optimization and machine machine
learning material required for the rest of the thesis. Chapter 3 will detail the technical
contributions on this thesis. It starts with presenting three approaches for evaluating the
expectation of the maximum scoring bracket out of a collection of brackets. The first is an
exact approach, and the latter two are approximations, one using simulation and the other
using neural networks. We then discuss two optimization algorithms for the multi-entry
problem, both heuristics; a genetic algorithm and a neural network-embedded IP approach.
Chapter 4 will detail the results from our experimental evaluation. The thesis will then
conclude with a discussion of the approaches taken to solve this complex decision-making
problem.
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CHAPTER 2 LITERATURE REVIEW

2.1 Multi-entry sports gambling

The study of the selection of multiple entries in sports gambling competitions has gained
popularity in the last few years. Bergman et al. [17] introduce a multi-entry strategy using
stochastic programming to win a National Football League (NFL) survivor pool. NFL sur-
vivor pools require participant to select a team every week, and if the selected team wins its
match, the participant advances to the following week. Every participant needs to select a
team prior to the games playing in every week with the only constraint that a team can not
be selected more than once by any entry. The winners of the pool are all the participants
who survived the 17 weeks of the season, or last as long as they can. Their methodology
utilizes integer programming to maximize the probability of surviving, and they show that
maximizing the survival probability through a half-season look-ahead performs better than
maximizing the survival probability over the entire season. Their model reports a 0.5 proba-
bility of winning a large contest at least one time in the next 30 years, an extremely profitable
outcome.

Hunter et al. [18] and Haugh et al.[19] both tackle the multi-entry problem in Daily Fan-
tasy Sports (DFS). DFS contests occur every day with scores for participants based on the
performance of players selected sports competitions. A DFS contest requires participants to
select a collection of players according to selection constraints. Each participant then receives
points based on the performance of each player they select, and the winner is the participant
who accumulates the most points after all matches are played. This presents a very difficult
combinatorial problem in a similar fashion to March Madness pools because of the number
of way of selecting all the players and the number of participants entering the contest.

Hunter et al. [18] selects entries by using a sequential integer programming (SIP) model.
Their model selects entries that produce the highest expected score individually. Every time
they select an entry, they sequentially add constraints that force the newly selected entries to
have at most some number of identical players with all previously selected entries, leading to
diversified entries that increase the variance of the score. Their best entry among 200 entries
ranked in the top-3 best selected entries over ten weeks three different times.

Clair et al. [20] shows that the optimal strategy in a betting contest with a small number
of opponents can be reduced to finding the solution that maximizes the expected score, but
this strategy changes as the number of opponents increases. In large contests such as March
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Madness or DFS, they demonstrate that many entries tend to be over-selected, leading to
great opportunity to increase expected payoff by choosing under-selected entries even if their
expected scores might be lower. With this concept in mind, Haugh et al.[19] introduce a
model to simulate the opponents’ selection. This model is used to establish a score to beat in
order to be in-the-money. Utilizing mean-variance theory, their objective function maximizes
the probability of exceeding the stochastic benchmark. To extend their formulation to the
multi-entry problem, they use a SIP model in a similar fashion to Hunter et al. [18]. The
model of Haugh et al.[19] outperforms by three times profit and loss over the benchmark
they use for evaluation over 17 weeks of action in NFL DFS contest.
Bergman et al. [17] methodology happens to be too different to implement in a March Mad-
ness pool, but Hunter et al. [18] and Haugh et al.[19] could both be adapted to this contest.
In Appendix B, we introduce a SIP for the March Madness pools, but this dissertation does
not take in consideration what other participants select as in Clair et al. [20] and Haugh et
al.[19]. Nonetheless, this thesis focused on developing methodology for selection a collection
of entries simultaneously that maximize the expected score of the maximum scoring entry,
rather than sequentially finding good entries. This task is more complicated than a sim-
ple sequential optimization model, because it directly incorporates reasoning based on the
stochastic dependency between the entries.

2.2 Discrete optimization

This section is based on the book Integer Programming by Wolsey [21].

Discrete optimization (DO) is a subclass of optimization (or mathematical programming)
that aims at maximizing or minimizing a given function which depends on a discrete set. A
discrete set can either be an integer program for which the variables are constrained to be
integers or a combinatorial problem where the algorithm is required to find the discrete set
of objects. DO problems usually face a large number of feasible solutions up to the point
where it is impossible to find the optimal solution by exhaustive search. Due to the wide
range of applications of DO, there has been a big amount of research in the past 50 years
leading to advanced commercial solvers. In this section, we will go over the concepts that
form the foundation of DO and commercial solvers.

2.2.1 Convex optimization

C is a convex set (See Figure 2.1 (a)) if and only if

∀ x, y ∈ C, ∀ t ∈ [0, 1] : (1− t)x+ ty ∈ C .
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(a) Convex set (b) Convex function

Figure 2.1 Convex analysis

Similarly, a function f(·) is convex (See Figure 2.1 (b) [22]) if and only if

∀x1, x2 ∈ X, ∀ t ∈ [0, 1] : f(t(x1) + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

The objective of mathematical programming is to find the solution x∗ that maximizes (or
minimizes) a function f(.). A local minimum x∗ is defined as the optimal solution if

∃δ > 0|‖x− x∗‖ ≤ δ → f(x∗) ≤ f(x)∀x ∈ X

where X is a subset of value.

A convex problem is defined as

min
x
f(x) (2.1)

s.t. x ∈ X (2.2)

where X is a convex set and f(x) is a convex function. f(x) is also known as the objective
function of an optimization problem. One characteristic of a convex problem is that every
local minimum happens to be a global minimum as well.

A linear programming (LP) model is a subclass of convex optimization which can be formu-
lated as

min
x

cTx (2.3)
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s.t. Ax = b (2.4)

x ≥ 0 (2.5)

where x ∈ Rn denotes the variables, c ∈ Rn denote the coefficient of the objective function,
and A ∈ Rm×n and b ∈ Rm define the constraints. In a LP model, the objective function
(2.3) and the constraints (2.4 and 2.5) are all linear. Interestingly, a LP model can also be
interpreted geometrically by a polytope where Ax = b is a set of hyperplanes that limits
the feasible region (See a polytope in Figure 2.2 [23]). Moreover, it can be proven that an
optimal solution is equal to at least one vertex of the polytope if the LP model is bounded.

The best algorithm found in practice to solve a LP model is the Simplex method. This
algorithm takes, in theory, an exponential number of iterations (or exponential time), but
it happens to solve most problems in practice in a polynomial number of iterations (or
polynomial time). As illustrated in Figure 2.2, the idea of this algorithm is to start from a
feasible solution, and to iterate wisely over the vertices of the polytope until it finds a local
minimum.

Figure 2.2 Simplex method

2.2.2 Integer linear program

Integer programming (IP) model is a LP model where the variables are constrained to be
integers. An IP model can be formulated as

min
x

cTx (2.6)
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s.t. Ax = b (2.7)

x ∈ Z (2.8)

which we denote by P. The integrality constraints makes this class of problem non-convex.
Furthermore, some practical problems modeled by an IP model can be solved by exhaustive
search, but, in general, no known algorithm has been able to solve IP model in polynomial
time making it a member of the NP-Hard family.

Exact methods have been developed to find the optimal solution or near-optimal solution
to problems that can be formulated as an IP model. The first step of these exact methods
consists of transforming the integer variables into continuous variables. This reformulation
denoted as P ∗ is also known as the LP relaxation of an IP model. The LP relaxation is
not unique in general, because it is possible to transform the constraints (A, b) → P ∗ to
(Ā, b̄) → P̄ such that all feasible solutions in P are also in P̄ where P ∗ 6= P̄ . The ideal
reformulation is a polytope named the Convex hull denoted by Conv(P ) that includes all
feasible solutions in P and where every vertices of Conv(P ) is a feasible solution of P (See
polygon form by red dot in Figure 2.3 [24]). Unfortunately, no algorithm has been proved to
be able to find the Conv(P ) in polynomial time. Nonetheless, the cutting plane algorithm
was developed to find an approximate Conv(P ). The idea is to generate new constraints
iteratively such that we remove the feasible solutions of P ∗ that are not feasible in P to
create P̄ . Geometrically, these new constraints act as a cut of the polytope which explains
the name given to this algorithm (See green line in Figure 2.3 defines as a strong cut). There’s
plenty of different methods to create cuts such as combining constraints, but finding strong
cuts remains a difficult task.

Another approach to solve an IP model is the branch and bound algorithm (B&B). The idea
of this tree-based method is to iteratively transform the IP model into smaller and easier
sub-problems until an optimal solution is found. Every sub-problem is represented as a node
in the tree, and a branch is represented by the introduction of a new constraint to a node.
For every node, B&B solves the LP relaxation of the IP model, and finds a solution x∗. If x∗

satisfies the integer constraints, then this node is defined as a leaf and we can stop branching
on it. On the other hand, if x∗ does not satisfy the integer constraints, B&B selects a variable
xj that is noninteger, and creates two sub-problems by introducing the constraints xj ≤ bx∗jc
and xj ≥ bx∗jc+1, respectively. The optimal solution is found when every node is a leaf or has
been pruned. For the specific case where the IP model is bounded and has n binary variables,
B&B needs 2n iterations in the worst-case scenario. Nonetheless, B&B is extremely powerful
in practical problems mainly due to the pruning concept. Rather then finding every leaf of a
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Figure 2.3 Cutting plane algorithm

tree, it is possible to prune sub-trees whenever the LP relaxation of a node is greater than a
feasible solution previously found in another node. In other words, assuming we obtain the
feasible solution x∗ after solving IP 1 = {min cTx : Ax = b, x ∈ Z}, we can prune a sub-tree
whenever the solution x̄ of its LP relaxation gives cTx∗ ≤ cT x̄. Enabling pruning of a tree is
explained by the fact that the solution to the LP relaxation represents a lower bound on the
possible solution found by the sub-tree, meaning that no solution in this sub-problem can be
better than x∗.

The branch and bound algorithm and cutting plane algorithm combine with the LP relaxation
form the basis of every IP solver. Note that this formulation is generalized by the Mixed
Integer Linear Program (MILP) which deals with continuous and integer variables, but the
idea to solve this class of problem remains the same as what we detailed for the IP.

Combinatorial optimization problems can often be modeled as an IP, but some of them
remain extremely difficult to solve even with commercial solvers. Fortunately, we sometimes
have a good understanding of a DO problem enabling us to build a simulation model that
can produce a feasible solution. Local search algorithms is a class of heuristics that tries
to leverage the simulation model to find the optimal solution. These algorithms use an
objective function, also known as the fitness function of an heuristic, to evaluate the quality
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of a solution. Heuristics do not guarantee convergence to global optimality, but they are able
in practice to find good solutions in a reasonable amount of time. Genetics algorithm (GA)
is one heuristic among this family that is based on the idea of natural selection. While most
heuristics perform greedy operations on a single solution, GA rather focus on generating
a population of solutions (or individuals) that evolves from generation to generation. The
typical step of a GA goes as follows:

1. Initialize first generation with N individuals S0
1 , ..., S

0
N .

2. Evaluate the quality of Sji ∀i ∈ 1, ..., N with the fitness function.

3. If all individuals are identical or maximum time is reached, stop the GA.

4. Otherwise,

• Select pairs of individuals based on their fitness.

• Mate the pairs of individuals to create a new generation with N individuals
Sj+1

1 , ..., Sj+1
N .

• Execute mutation on α% of the new individuals to include feasible solutions that
were not in the initial set.

• Restart step 2 with the generation j + 1.

2.3 Machine learning

Machine learning (ML) has gained popularity in the last decade with important break-
throughs in computer vision (e.g. [25]) and in reinforcement learning (e.g. [26], [27]). ML
includes any algorithm and statistical model that leverages the information gathered from
past experience to develop models that have the ability to predict outcomes in the future.

There are three common paradigms in ML: (1) Supervised learning, (2) Unsupervised learn-
ing, and (3) Reinforcement learning. While unsupervised learning tries to find pattern in
unlabeled data, and reinforcement learning seeks to find the optimal solution by interacting
with an environment, this thesis rather focuses on supervised learning, which consists of de-
veloping a predictive model out of collected labeled data. This section will introduce the ML
concept used throughout the rest of this thesis. We refer the reader to the book The elements
of statistical learning by Hastie et. al [28] and the book Deep Learning by Goodfellow et al.
[29] for more details on ML.
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2.3.1 Supervised learning

In supervised learning, one tries to estimate an output (or a collection of outputs) using
historical data. A dataset is divided into two parts: (1) the independent variables often
denoted as the inputs or the features of the problem, and (2) the dependent variable also
known as the target variable, the outcome or the output of a problem. While convex op-
timization tries to find the variables (i.e., x in a LP) that optimize an objective function,
a ML algorithm, in particular linear regression, rather focuses on finding the parameters of
the objective function (i.e., the coefficient vector c in a LP model) that approximates best
the output. ML algorithms use the features from a dataset to train a model to predict the
target variable. The target variable can either be continuous value or discrete set of classes.
A model predicting a continuous output such as a stock price performs a regression task. On
the other hand, a model predicting a discrete target variable such as the expected number of
claims in the next year by an insured individual or whether or not a person will win a sports
bet is described as a classification task.

Developing a ML model includes three phases: (1) a training phase, (2) a validation phase,
and (3) a testing phase. By using a dataset also known as the training set, the training phase
consist of learning rules or fitting a distribution able to infer the outcomes of the training set.
The validation phase then evaluates the performance of the trained model over a validation
set, and aims at tuning our model such that it generalizes best to unseen data. Finally, the
testing phase uses an independent dataset defined as the testing set to evaluate the accuracy
of the model.

Loss function

An important component of a ML model is the loss function, also known as the cost function.
The loss function is chosen according to the type of problem we want to solve. The loss
function penalizes the error made by the predictive model. Therefore, a common goal of a
ML algorithm is to minimize the value of the loss function, which relates to minimizing the
errors made by the predictive model, by choosing parameters. Mathematically, one can write
this as

θ̂ = arg min
θ

m∑
i=1

L(y(i), x(i); θ)

where θ are the parameters of the problem and L(·) is the loss function utilized.

Maximum likelihood estimation (MLE) is a common approach used for identifying optimal
parameters of a probability distribution for fitting to data. MLE uses the likelihood function
of a probability model, and uses gradient of the likelihood function to find the optimal value
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for each parameter. MLE can be interpreted as the estimator that minimizes the difference
between the observation and the prediction. Two examples of popular loss functions are the
mean squared error (MSE) and the cross-entropy loss.

The former can be derived using the MLE of the normal distribution, and is calculated as

MSE = 1
N

N∑
i=1

(f̂(xi; θ)− yi)2

where N is the size of the training set, f̂(xi; θ) is the predicted value given the features
xi and the parameters θ, and yi is the true value associated to xi. As the name implies,
MSE calculates the average squared difference between the predicted value and its true
value, and it is a common loss function use in regression task. A MSE = 0 indicates a
perfect prediction. The cross-entropy loss is often use as loss function for classification task,
and it measures the difference between the true probability distribution and the predicted
probability distribution. The problem with this loss function is that it aims at decreasing
the classification error. Let’s assume we have to predict the probability that team A wins
against team B, and team A won 99 of the 100 last games played between both teams. By
predicting team A with a probability of 1 over B will ends up having an almost perfect score
of cross-entropy loss. In order to have a better understanding of such a predictive model,
one could decide to evaluate its performance by using the Receiver Operating Characteristic
(ROC). This metric depicts the difference between the true positive rate and the false positive
rate, which corresponds to the number of samples that are correctly classified as positive to
the number of samples that are misclassified as positive, respectively. A perfect ROC has an
area under the curve (AUC) equal to 1.

Generalization

ML aims at building a model that can generalize to make predictions on unseen data. The
capacity of a model is defined by the ability to find complex structures in the data. The
capacity of a model depends on the number of hyperparameters. Models with high capacity
tend to memorize or overfit the outcome of the training set, leading to a highly accurate
model in the training phase with poor performance on the testing set. On the other hand,
models with low capacity tend to underfit because they are unable to find structure in the
data that helps predicting the outcome. As illustrated in Figure 2.4, the optimal fit is the
one where the average error on the validation set restarts to increase while the one on the
training set continue to decrease.
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Figure 2.4 Overfitting vs underfitting

Regularization is a technique that controls the training process in a way that limits overfitting
on the training set. One way is to add a penalty term to the loss function in order to reduce
the impact of outliers on the training process. Another important method that helps control
training is cross validation. Cross validation leverages the validation phase introduced earlier
to select hyperparameters that generalize best to unseen data. This algorithm also helps in
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situations where we do not hold out much data. See Algorithm 1 for more details.

Algorithm 1: K-fold cross-validation algorithm [29]
Required: The dataset D with label y.
Required: The ML algorithm f that takes a dataset as input and a set of
hyperparameters. f outputs a learned function.
Required: The loss function L that takes a vector of predicted value and the true
labels y. L returns a real value.
Required: The number of folds k
Required: Initialize ξ as a set of random combination of hyperparameters indexed by
ξi∀i = 1, . . . , k
Split D in k mutually exclusive subsets denoted as Di with label y(i). Their union is
D
i = 0
mine = +∞
fmin = f(D \ Di; ξi)
while i ≤ k do

zi = f(D \ Di;αi)
ei = L(zi(Di), y(i))
if ei ≤ mine then

mine = ei

fmin = zi
end if
i+ = 1

end
return mine, fmin

Logistic regression

A logistic regression is a probability model, also known as a binary classifier. It takes as
input a set of features and outputs a number between 0 and 1. The function it learns is

P (y = 1|X = x) = 1
1 + e−θT x

where θ represents the parameters of the logistic regression. A logistic regression is a member
of the Generalized Linear Models family. It is sometimes considered a linear model due to
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the linear association between θ and X. The log-likelihood of the logistic regression is

logloss =
N∑
i=1
−(yi log(P (yi = 1|X = xi)) + (1− yi) log(1− P (yi = 1|X = xi))),

and this loss is also known as the binary cross-entropy. To regularize this model, we can add
a penalty term to the loss function. It becomes

logLoss =
N∑
i=1
−(yi log(P (yi = 1|X = xi)) + (1− yi) log(1− P (yi = 1|X = xi))) + λ

2‖θ‖

. The penalty term λ
2‖θ‖, also known as the weight decay, increases the capacity of the

model by adding the hyperparameter λ. It makes sure that the value of the parameters of
the model do not increase too much. The best value of λ can be established by using the
K-fold cross-validation algorithm.

The gradient descent algorithm is a common way to optimize a ML algorithm. This algorithm
updates θ iteratively using the gradient of the loss function until a stopping criteria is met.
This algorithm summarizes to

θt+1 = θt − α∇θ

N∑
i=1

L(y(i), x(i);θ) (2.9)

where α is the learning rate and ∇θ is the gradient of the loss function with respect to θ. For
the logistic regression, it can be proven that the updates rule for the logistic regression is

θ = θ − α∇θ

N∑
i=1

( 1
1 + eθT x(i) − y

)
x(i). (2.10)

Neural network

Neural networks (NN), also known as multilayer perceptrons, are a generalized form of several
classical regression/prediction models. As we can see in Figure 2.5, a NN is characterized by
a network structure that connects many functions. A NN is divided into three sections: (1)
the first layer known as the input layer, (2) the last layer known as the output layer, and (3)
the layers in between defined as the hidden layers.

Each arrow in Figure 2.5 defines the weights or the parameters of the model while each
circle in the hidden layer defines the neurons characterized by an activation function. NN
linearly combines inputs together, and transforms their weighted combination by passing
them through an activation function. NNs are extremely flexible models that can adapt
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Figure 2.5 Neural network structure

to representing very general functions. In fact, the universal approximation theorem says
that a NN with one hidden layer can approximate any continuous function to an arbitrary
precision. NNs can perform classification tasks as well as regression tasks by choosing the
right activation function and the number of units needed for a given task in the output layer.
Moreover, the learning capacity of a NN increases as we increase the number of layers or the
number of neurons per layer.

Mathematically, a feedforward NN is represented by the following equations

h(1) = g(1)
(
W(1)Th(0)

)
(2.11)

... (2.12)

h(i−1) = g(i−1)
(
W(i−1)Th(i−2)

)
(2.13)

h(i) = g(i)
(
W(i)Th(i−1)

)
(2.14)

where h(z) designs the vector of outputs of the zth layer with h0 and hi equal to the input
and the output, respectively. W(z)T is the transpose of the matrix of parameters and gz is
the activation function of layer z. It is known as the forward propagation of the NN.

Back-propagation is an algorithm used to train a NN. Given the structure of the NN, the
algorithm finds W that minimizes a chosen loss function. Due to the activation function
of a NN which are mostly nonlinear function, back-propagation iteratively uses the gradient
descent algorithm to minimize the loss function. Since a NN is structured in a chain, the
back-propagation algorithm uses the chain rule of calculus to propagate the gradient to all
the parameters in the NN. The reader is referred to Goodfellow [29] for more details on the
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back-propagation algorithm.

To improve the training of a NN, one can utilize stochastic gradient descent (SGD) with
momentum. SGD has the particularity to train the model using the average gradient of a
minibatch, a sample without replacement of h examples of the training set, rather than using
the gradient of the loss function evaluated on the entire dataset. Minibatch tends to be a
source of noise for which the gradient does not vanish. Once the gradient has been computed
over the entire training set, a new epoch starts which simply continue the training process
by resampling without replacement new minibatchs from the same training set. Moreover, it
is possible to add momentum to SGD to accelerate the training of a NN. Momentum adds a
parameter to SGD that accumulates the gradient. The idea behind this modification is that
the speed and direction from previous gradients should also impact the next update of the
parameters. Therefore, if the direction between two consecutive gradients remains the same,
the momentum parameter will accelerate the learning by updating the parameters from a
factor of the two last gradients. On the other hand, if two consecutive gradients move in
two directions, the momentum parameter will update the parameter without forgetting the
update that was previously made.

Algorithm 2: Stochastic Gradient Descent with Momentum [29]
Required: Learning rate α, momentum parameter ω
Required: Initialize θ and velocity ν
while stopping criterion not met do

Sample a minibatch of m exemple from the training set {x(1), . . . , x(m)} with
corresponding y(i),
Compute the gradient estimate ν ← ων − α∇θ

1
m

m∑
i=1

L(f(x(i); θ), y(i)).

Update: θ ← θ + ν.
end

Finally, NN can have a high capacity. To control the risk of overfit, we use early stopping,
which is a stopping criteria that forces the NN to stop training once the error made on the
validation set increases for N consecutive epochs.

2.4 Embedding NNs in optimization (JANOS)

There is a close relationship between optimization and ML. As discussed in the previous
section, ML algorithms search for parameters (and hyperparameters) that minimize the error
of a loss function which itself is an optimization problem. Recent research has focused on
the opposite direction, namely using ML to improve optimization [30]. Some work focused
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on using reinforcement learning to decide which heuristic to use to solve a combinatorial
problem (e.g., [31]) while other work improved the branch-and-bound algorithm using a deep
learning model (e.g., [32]).

JANOS [33] is a solver that works at the frontier of ML and optimization. Using a predictive-
prescriptive framework, JANOS aims at optimizing a decision-making problem given a pre-
trained predictive model using the python package Scikit-Learn[34]. JANOS’s solves problems
that can be modeled as the following MILP:

max
x

n1∑
j=1

cjxj +
n2∑
k=1

dkyk (2.15)

s.t.
n1∑
j=1

aijxj ≤ bi, ∀i ∈ {1, . . . ,m} (2.16)

yk = gk(αk1, . . . , αkpk; θk), ∀k ∈ {1, . . . , n2} (2.17)

αkl = ekl · x, ∀l ∈ {(qk + 1), . . . , pk}, k ∈ {1, . . . , n2} (2.18)

xj ∈ Xj ∀j ∈ {1, . . . , n1}. (2.19)

xj defines the regular variable of the MILP and aij, bi, cj and dk are the parameters. More-
over, yk are the predicted variables, which represents the outcome of the predictive model
gk with the features αkl and the parameters θk, and ekl is a binary unit vector of length n1

with 0 everywhere except at the coordinate of the associated regular variable. As of now,
JANOS allows the user to use three different predictive models: (1) linear model, (2) logistic
regression, and (3) NN with rectified linear activation function (ReLU) as activation function.

2.4.1 NN with Rectified Linear Unit Activation Function in Janos

A ReLU activation function is defined as

gi
(
W(i)Th(i−1)

)
= max

(
W(i)Th(i−1), 0

)
.

This nonlinear activation function is linear on half of the domain, and it is equal to 0 on
the other half. Training a NN with such nonlinear activation functions allows the modelling
of a complex linking between input variables. A main advantage of this activation function
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Figure 2.6 ReLU activation function

compared to other commonly used activation functions is that the gradient of the linear part
of a ReLU remains large making it easier to optimize.

An interesting aspect of a NN with ReLU activation functions is that it can be represented
with a network flow formulation [35]. The NN can be seen as an acyclic layered diagraph
N = (V,A) where V is the collection of all layers V = {V1, . . . , Vl}, and A is the collection
of all arcs. All arcs a = (u, v) in A are directed arcs from node u in layer Vj to node v
in layer Vj+1. w(a) will denote the weight associated to arc a and B(u) will denote the
learned bias associated to node u. Given the weights of the NN and the vector of inputs
which are respectively θk and αk in (2.17), JANOS replaces the nonlinear predictive model by
reformulating the NN as
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yk = Ft (2.20)

Fv = Gv, ∀v ∈ V1 ∪ Vl (2.21)

Gv = α(v), ∀v ∈ V1 (2.22)

Gv =
∑

u∈Vj−1

w((u, v)) · Fu +B(u), ∀j ∈ {2, . . . , l}, v ∈ Vj (2.23)

−M · (1− zv) ≤ Gv ≤M · zv, ∀v ∈ V2 ∪ . . . ∪ Vl−1 (2.24)

Gv −M(1− zv) ≤ Fv ≤ Gv +M · (1− zv), ∀v ∈ V2 ∪ . . . ∪ Vl−1 (2.25)

0 ≤ Fv ≤M · zv, ∀v ∈ V2 ∪ . . . ∪ Vl−1 (2.26)

zv ∈ {0, 1}, ∀v ∈ V (2.27)

Gv, Fvunconstrained, ∀v ∈ V. (2.28)

yk is the output of the NN, Fv the linear transformation done by each layer, Gv is the value
obtained after applying the ReLU function on Fv and zv is a binary variable required to
linearize the ReLU function. The constraints (2.20), (2.21), (2.22) and (2.23) represents the
forward propagation of the NN while the big-M linear constraints (2.24), (2.25) and (2.26)
represents the ReLU activation function. We invite the reader to read Bergman et al. [33] for
more details on this reformulation. JANOS allows the user to use Gurobi to find an optimal
solution, or a near-optimal solution, to a MILP model with an embedded predictive model.

2.5 Optimizing the expected value of order statistics

Bergman et al. [36] is the first paper to discuss the complexity of a decision-making problem
that requires the optimization of the expected score of order statistics. Mathematically, in
that paper, the authors study problems of the form

max
x∈Ω⊆{0,1}n

E(Y(k)(x)) (2.29)

where E(·) is the expected value of Y(k) which is the kth order statistic. The kth order
statistic is the smallest kth value of the variables, with the largest order statistics being the
maximum among a collection of random variables, similar to what we study in this paper.
The authors shows that this problem classifies as a NP-hard problem, and they introduce an
exact algorithm to solve it in certain cases.



25

2.6 Optimization for March Madness

In order to address the problem of selecting an entry for a March Madness betting pool,
Kaplan et al. [37] introduced a dynamic programming approach that identifies a bracket that
maximizes the expected number of points (max

b∈B
(E(S(b))) among all possible brackets. The

algorithm requires as input the probability that every team will reach their game in every
round, denoted as Qt,r, which is calculated as follows:

Algorithm 3: Recursive calculation of Qt,r

Let o(t, r) be a list of all possible opponents of team t in round r;
Initialize Qt,1 = Pt,o(t,1) and r = 2;
while r < |R| do

Qt,r = Qt,r−1 ·
∑

t′∈T (G(t,r))/t
Pt,t′ ·Qt′,r−1 ∀ t ∈ T .

end

Following the calculation of these probabilities, the algorithm then calculates the expected
number of points of any pick in any round, denoted as µt,r, evaluated through the following
recursive algorithm:
Algorithm 4: Recursive calculation of µt,r
Let o(t,1) be the opponent of team t in round 1;
Initialize Qt,1 = Pt,o(t,r), r = 2 and µt,1 = 21−1 ·Qt,1;
while r < |R| do

µt,r = µt,r−1 + max
t′∈o(t,r)

µt′,r−1 +Qt,r · 2r−1 ∀ t ∈ T
r = r + 1.

end

Using µt,r∀r ∈ R, t ∈ T , the authors then use a greedy algorithm that selects the teams with
the maximum expected number of points for every games by starting from the final game
and moving backwards through the tournament.

This dynamic programming approach can easily be transformed into an IP model which we
denote as IPMM. Using the same probabilities Qt,r as in Kaplan et al. [37], an IP model can
be written as
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max
x

∑
g∈G

∑
t∈T (g)

2R(g)−1Qt,R(g)xi,R(g) (2.30)

s.t. xt,r ≤ xt,r−1, ∀t ∈ T, r ∈ R (2.31)∑
t∈T (g)

xt,R(g) = 1, ∀g ∈ G (2.32)

where

xt,r =

 1 if team t wins in round r,
0 otherwise.

The objective function calculates the expected number of points of a bracket. The constraints
ensure that every team that wins in round r must have won in every previous round and
that only one team can win a game. We define these two constraints as bracket feasibility
constraints.

We have now described two algorithms that find a single entry with the maximum expected
score in a March Madness betting pool. The first is the dynamic program introduced by
Kaplan et al. [37], and the second is our IP model IPMM.

In this thesis we study the problem of finding k brackets that maximizes the expected score
of the maximum scoring bracket. This problem is very challenging because there exist

(
263

k

)
ways of selecting k entries. This problem can be expressed as

max
b1,...,bk∈B

E

(
max

bj∈{b1,...,bk}
S(bj)

)
.

This formulation expands to

max
b1,...,bk∈B

∑
b∗∈B

P (b∗)
(

max
bj∈{b1,...,bk}

S (bj, b∗)
)
.

Assuming we want to solve this problem for k = 2, where the entries are denoted by b1 and
b2, we can rewrite the previous formulation as

max
X

∑
b∗∈B

P (b∗)
max

∑
g∈G

2R(g)−1xb∗[g],R(g),1,
∑
g∈G

2R(g)−1xb∗[g],R(g),2)
 (2.33)
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where

xt,r,k =

 1, if we select team t in round r for the entry k,
0, otherwise.

Equipped with variables xt,g,k, we add the bracket feasibility constraints to compose a baseline
IP model for finding the optimal two brackets:

max
X

∑
b∗∈B

P (b∗)
max

∑
g∈G

2R(g)−1xb∗[g],R(g),1,
∑
g∈G

2R(g)−1xb∗[g],R(g),2

 (2.34)

s.t. xt,r,k ≤ xi,r−1,k, ∀ t ∈ T, r ∈ R \ {1}, k ∈ {1, 2} (2.35)∑
t∈T (g)

xt,R(g),k = 1, ∀ g ∈ G, k ∈ {1, 2} (2.36)

xt,r,k ∈ {0, 1}, ∀t ∈ T, r ∈ R, k ∈ {1, 2}. (2.37)

(2.38)

This IP model remains challenging to solve due to the max(·) function, which is nonlinear,
and it has exponential size. Fortunately, it is possible to linearize the max(·) function. The
new formulation goes as
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max
x,h,s,z

∑
b∈B

P (b)hb (2.39)

s.t. xt,r,k ≤ xt,r−1,k ∀ t ∈ T, r ∈ R \ {1}, k ∈ {1, 2} (2.40)∑
t∈T (g)

xt,R(g),k = 1 ∀ g ∈ G, k ∈ {1, 2} (2.41)

∑
g∈G

2R(g)−1xb[g],R(g),k = skb ∀ b ∈ B, k ∈ {1, 2} (2.42)

s1
b −Mz[b] ≤ s2

b ∀ b ∈ B (2.43)

s1
b ≥ s2

b −M(1− zb) ∀ b ∈ B (2.44)

hb ≤ s1
b +M(1− zb) ∀ b ∈ B (2.45)

hb ≤ s2
b +Mzb ∀ b ∈ B (2.46)

xt,r,k ∈ {0, 1} ∀t ∈ T, r ∈ R, k ∈ {1, 2}, b ∈ B. (2.47)

where skb is the score of entry k when the outcome bracket b is observed and hb is the
maximum score of both entries when the outcome bracket b is observed. (2.43), (2.44), (2.45)
and (2.46) are all Big-M constraints that combine together linearize the max(·) function of
the previous formulation. This IP model is very difficult to solve due the fact that the number
of constraints and variables depends on B, which contains 263 brackets. We explored the idea
of solving this model assuming that we replace B by a sample of N brackets. However, this
model contains |T | · |R| · 2 + 3 ·N variables and 2 · |G|+ |T | · (|R| − 1) · 2 + 6 ·N constraints
which is still very difficult to solve. So the question remains: how do we find the collection of
k brackets that maximize the expected value of the maximum scoring bracket? We observe
two main challenges in finding the optimal solution of the maximum of k entries: (1) how

do we evaluate E
(

max
bi∈{b1,...,bk}

S(bi)
)
, and (2) how do we find the optimal k entries among 263

feasible brackets? The remainder of the dissertation focuses on answering these questions.
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CHAPTER 3 METHODOLOGY

3.0.1 Exact approach

A first approach to evaluate exactly the objective function for k brackets is a tree-based
algorithm. Given k brackets, we break the tournament outcome into scenarios that have an
impact on the number of points that can be achieved by the k brackets. This method can
be seen as building a tree, where each branch conditions on the result of a game and each
node contains the minimum and the maximum number of points that each of the brackets
can achieve in the scenario defined by the branches that define the node.

Figure 3.1 depicts how the tree-based algorithm finds the expected score of the maximum
scoring entry of the four-team tournament presented earlier with b1 and b6 as the selected
entries.

Figure 3.1 Tree-based algorithm example

The order of branching starts with the final game and finishes with first round matches,
when required. Note that we always branch on the scenario with the highest probability of
occurring. We keep branching until 2r − 1 games are reached or if the minimum number of
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points of any of the selected brackets is greater than the maximum number of points of all
other brackets at any point in the tree. This stopping criteria ensures that one bracket will
score at least as high as all other brackets, independent of the outcome of the remaining,
unconditioned games.

Based on Figure 3.1, we can observe that b1 is the best entry in scenario 1 and 3, and b6

is the best entry in scenario 2 and 4. For each node, there are a maximum (k + 1) ways
of conditioning. In other words, for a given game, the outcome can be any pick made by
one of k brackets or none of these picks. An interesting aspect of this branching structure
is that conditioning on the winner of a game also gives us the winner of every match where
this pick previously played in the tournament. See Table 3.1 to observe the number of points
associated with correctly picking or the number of points lost for a wrong selection in any
round in a 64-team tournament.

Table 3.1 Tree-based algorithm branching rules

Increase minimum number of points Reduce maximum number of points
First round +1 -1
Second round +3 -2
Third round +7 -4
Fourth round +15 -8
Fifth round +31 -16
Sixth round +63 -32

For the two-entry model in a 64-team tournament, there is a maximum of 363 nodes that can
be created. The maximum number of points of the 64-team March Madness tournament is
192 and the minimum is 0.

Given the tree, we can then compute the probability that a scenario occurs. The probability
and the score allows us to evaluate exactly E

(
maxbj∈{b1,...,bk} S(bj)

)
. Using the tree of Figure

3.1, the expected score calculates as

E

(
max

bj∈{b1,b2}
S(bj)

)
= PBw3=1 · S ′(b1,Bw3=1) + PBw3=2 · S ′(b6,Bw3=2)+

PBw3=None,w1=1·S ′(b1,Bw3=None,w1=1)+PBw3=None,w1=2 ·S ′(b6,Bw3=None,w1=2)

= P1,2 · (P3,4 ·P1,3 · 4 +P4,3 ·P1,4 · 3) +P2,1 · (P4,3 ·P2,4 · 4 +P3,4 ·P2,3 · 3)+

P1,2 · (P3,4 ·P3,1 · 2 +P4,3 ·P4,1 · 1) +P2,1 · (P3,4 ·P3,2 · 1 +P4,3 ·P4,2 · 2)
(3.1)

which is equivalent to equation (1.1).
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An interesting aspect of this methodology is that we can obtain upper and lower bounds of
the expected score given a limited amount of computational time and/or memory. To do
so, the algorithm can simply stop at any point. For every node where the stopping criteria
is reached, we compute the expected number of points associated with this node. All the
remaining nodes have bounds that intersect between at least one pair of brackets, preventing
us from defining the best entry in the scenario defined by the branching rules of the node.
In this case, to define the lower and upper bounds of the expected score of the maximum of
k entries on a scenario, we assume the lower bound to be the highest minimum score in the
node and the upper bound to be the highest maximum score in the node.

For example, suppose a scenario where bracket A has a minimum score of 100 and a maximum
score of 160, and bracket B has a minimum score of 120 and a maximum score of 144. The
lower and upper bound on the expected score of this scenario for these two brackets is 120
points and 160 points, respectively. To determine the lower bound of the expected score
of the maximum of two entries, we sum the lower bound of each scenario, scaled by the
probability. The same process is conducted to find the upper bound.

3.0.2 Simulation approach

Given a probability matrix P that estimates the probability that team ti beats team tj,
we can simulate the outcome of an entire tournament. More specifically, given an initial
tournament with |G| teams, these teams are separated in 2|R|−1 games. We can use P to
simulate the outcome for each of these games, and the simulated winners then advance to the
next round. The winners of the first round matches are then split in 2|R|−2 games where we
again use P to simulate the winner of the second round matches. By repeating this process
for |R| rounds, we simulate a complete bracket (See Figure 1.1 for a visualization of the
structure of the tournament).

A second approach to calculating the expectation of a k-bracket solution is sample average
approximation (SAA). SAA leverage the simulation model to evaluate the expected score of
the maximum of k entries. The following provides pseudo-code to the SAA algorithm.

Algorithm 5: Sample average approximation of E
(

max
bi∈{b1,...,bk}

S(bi)
)

Required: Simulate O outcome brackets denoted by bouto , o = 1, . . . , O.
Given a solution of k candidate brackets denoted by bcanc , c = 1, . . . , k,

̂E( max
bcan

i ∈{bcan
1 ,...,bcan

k
}
S(bcani )) = 1

O

O∑
o=1

max
bcan

i ∈{bcan
1 ,...,bcan

k
}
S(bcani , bouto ))

Note that even though we have an exact approach for the single entry, this approach can also
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be used for k = 1.

3.0.3 Approximation via NNs

Equipped with a simulation model to estimate the expected score of the maximum of multiple
entries, we can use it to build a learning-based model. Through simulation, we construct a
training set by simulating N random k-brackets solutions, recording their associated expected
score. For the input of our NN, we want to leverage the information provided by the structure
of the single elimination tournament.

We start by approximating the expected score of a single entry by using a NN with G

parameters denoted as fg. Each of the parameters represents the expected score of the pick
selected to win game g, which is denoted as

fg := Qb[g],R(g)

R∑
r=1

(g)2r−1. (3.2)

This NN is extendable to k = 2. To do so, We add the same features for each entry leading
to 2 · |G| features, and we also include features

vs = I(Bi(s) == Bj(s))∀s ∈ G (3.3)

where I(·) is the identity function. (3.3) indicates whether the picks are the same for both
brackets. The set of features (3.3) was added because it improved empirically the performance
of the NN. Note that these two sets of features can easily be extended to k > 2 by adding
(3.2) for each of the k brackets and (3.3) for each pair of two brackets for a total of k ·|G|+

(
k
2

)
features.

One could decide to learn a different objective function, rather than simply maximizing the
expectation of the maximum scoring bracket, depending on the type of strategy we want
to exploit. As discussed in Chapter 2, this type of contest often favors solutions with high
variance, so one could calculate the variance of all entries using simulation, and train a NN
which learns the variance of the score of k entries or a mixture of the expected value and its
variance. Another very interesting approach is to learn the expected payoff of an entry. We
leave these for future work.
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3.1 Optimization algorithms

The previous section introduced three algorithms for calculating E
(

max
bi∈{b1,...,bk}

S(bi)
)
. The

next step is to devise an algorithm to identify the optimal collection of brackets among the(
263

k

)
possible choices.

3.1.1 Genetic algorithm

Rather then solving the multi-entry problem through IP, one could randomly try different
entries together, observe their empirical performance using simulation, and pick the best
among all of them. One such framework utilizes evolutionary algorithms, and in particular
in this paper we study a genetic algorithm (GA).

Our GA starts by simulating a large collection of C candidate brackets. Each population
consists of M individuals defined as Gj = {bcan1 , . . . , bcank }∀j ∈ {1, . . . ,M} where bcani is one
of the candidate brackets. To evaluate the empirical performance of every individual, we
use the SAA introduced in Section 3.0.2. We then rank their performance by assigning a
normalized average-based probability to each individual. The higher the weighted average
of an individual, the higher is the probability for this individual to be selected in a future
generation.

To create a new generation of M individuals, we first use elitism, which keeps the Z best
individuals from the previous generation. We continue by randomly selecting two individuals
from the current generation, and by applying a cross-over operation to create new individuals
for the next generation. The cross-over operation mates the two individuals by keeping the
intersection and by selecting randomly among the remaining brackets in the two individuals
in order to have k brackets in each individual. Finally, we apply the mutation operation
which randomly selects an individual from the new generation and modifies one of the k
brackets with a randomly generated bracket. These operation are repeated for any number
of generations and/or until a time limit is reached. See Figure 3.2 for the details of each step
of the GA.

3.1.2 NN-Embedded optimization via JANOS

We first train a NN, which we denote as NN . As introduced in section 3.0.3, NN takes
as argument the expected score of every selection of an entry. We then adapt NN to the
IPMM model (See Section 2.6), where the objective function becomes the output of NN . The
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Figure 3.2 Genetic algorithm

model for the single-entry transforms to

max
X
NN (f1,1, ..., fG,1) (3.4)

s.t. xt,r,k ≤ xi,r−1,k, ∀ t ∈ T, r ∈ R \ {1}, k ∈ {1} (3.5)∑
t∈T (g)

xt,R(g),k = 1, ∀ g ∈ G, k ∈ {1} (3.6)

R(g)∑
r=1

2r−1 ∑
t∈T (g)

xt,R(g),kQt,R(g) = fg,k ∀ g ∈ G, k ∈ {1} (3.7)

xt,r,k ∈ {0, 1}, ∀ t ∈ T, r ∈ R, k ∈ {1}. (3.8)

(3.9)

In order to extend this model to a two-entry model, we need to train a new NN also denoted
as NN . This NN takes as argument the expected score of every selection of each entry and
a binary set of variable which indicate the same selection among each entry. NN is then
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adapted to the multi-entry model introduced in Section 2.6 which transforms to

max
X
NN (f1,1, . . . , fG,1, f1,2, . . . , fG,2, v1, . . . , vG) (3.10)

s.t. xt,r,k ≤ xi,r−1,k, ∀ t ∈ T, r ∈ R \ {1}, k ∈ {1, 2} (3.11)∑
t∈T (g)

xt,R(g),k = 1, ∀ g ∈ G, k ∈ {1, 2} (3.12)

R(g)∑
r=1

2r−1 ∑
t∈T (g)

xt,R(g),kQt,R(g) = fg,k, ∀ g ∈ G, k ∈ {1, 2} (3.13)

∑
t∈T (g)

2st,R(g) − xt,R(g),1 − xt,R(g),2 ≤ 0, ∀ g ∈ G (3.14)

∑
t∈T (g)

xt,R(g),1 + xt,R(g),2 − 2st,R(g) ≤ 1, ∀ g ∈ G (3.15)

∑
t∈T (g)

st,R(g) − vg = 0, ∀ g ∈ G (3.16)

xt,r,k ∈ {0, 1}, ∀ t ∈ T, r ∈ R, k ∈ {1, 2}. (3.17)

We modify the NN to the two-entry model introduced in Section 3.0.3 and add the linear
constraints (3.14), (3.15) and (3.16) to ensure that

vg =

 1 if both entries have the same pick in game g,
0 otherwise.
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CHAPTER 4 EXPERIMENTAL EVALUATION

In this chapter, we report on a collection of experiments that were conducted to evaluate the
efficacy of the proposed models.

4.1 Computational platform

All experiments are conducted on an Intel(R) Xeon(R) Gold 6142 CPU at 2.60GHz with a
limit 1 core. Source code and synthetic instances are available upon request.

This work is done using Python 3.7.7. In solving IPs, we use Gurobi 9.0.0 [38], and utilize
JANOS 0.0.9 [33] for optimizing over NN-embedded optimization models. We learn the NNs
using Pytorch 1.4.0 [39] and convert the pytorch model into a Scikit-learn object by using
Scikit-learn 0.22.1[34] which is required by JANOS. We also train the logistic regression
by using Scikit-learn 0.22.1.

4.2 Probability models

In order to test the algorithms developed in this paper, we train a logistic regression model,
denoted as P1, to predict the outcomes of the games. This model has the following features:
the seed of both teams in the tournament and the ratio between those values. As discuss
in Section 1, the March Madness is divided in four "regions", and the teams of each region
are ranked from 1 being the best team to 16 being the worst team in the region. The lowest
seed is the first parameter, so the ratio of both seeds is always less than or equal to 1. For
every game between two teams with the same seed, we assign a .5 probability of winning
the game to each team. For each year that we test the optimization algorithms, we train a
model based on data for the March Madness tournament for every year between 2002 and
the year immediately preceding the tournament. Table 4.1 reports the performance of the
seed-based model on every March Madness tournament played since 2002, for both the men’s
and women’s tournaments.

As can be seen in Table 4.1, the accuracy of this simple model provides reasonable probability
estimates for games in the March Madness tournament. Predicting the outcome of a March
Madness game is challenging due to the high variance in the results from year to year.
Although more advanced models can be designed, this seed-based model has proven to be a
competitive model empirically throughout the years (e.g., [40, 41, 9]). However, the purpose
of this paper is to introduce optimization models for team selection, and any probability
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Table 4.1 P1 model performance for year’s 2002 to 2019

Man P1 Woman P1
year Accuracy ROC AUC logloss Accuracy ROC AUC logloss
2019 73.02% 0.83 0.50 82.54% 0.81 0.38
2018 70.97% 0.66 0.59 79.37% 0.80 0.44
2017 74.19% 0.62 0.52 80.95% 0.73 0.45
2016 69.35% 0.68 0.59 76.19% 0.82 0.48
2015 73.77% 0.58 0.52 80.95% 0.73 0.39
2014 61.90% 0.65 0.63 80.95% 0.75 0.44
2013 69.35% 0.65 0.61 74.60% 0.77 0.46
2012 70.97% 0.64 0.57 85.71% 0.56 0.41
2011 65.08% 0.63 0.61 74.60% 0.87 0.45
2010 67.74% 0.70 0.58 74.60% 0.66 0.47
2009 73.02% 0.77 0.49 77.78% 0.76 0.48
2008 75.00% 0.63 0.52 80.95% 0.81 0.38
2007 83.87% 0.86 0.43 76.19% 0.70 0.50
2006 63.49% 0.70 0.59 80.95% 0.69 0.42
2005 74.19% 0.74 0.54 79.37% 0.83 0.43
2004 71.43% 0.70 0.52 71.43% 0.75 0.54
2003 69.84% 0.83 0.51 80.95% 0.75 0.40
2002 67.74% 0.58 0.57 82.54% 0.74 0.44
Average 71.00% 0.69 0.55 78.92% 0.75 0.44

model can be directly applied.

We also observe that the seed-based model is a better predictor for the women’s tournament
than the men’s tournament. This can be in part attributed to the increased likelihood of
upsets in the men’s tournament (see Table 4.6 and Table 4.7).

4.3 Calculation the Expected Value of the Maximum

The first challenge is to identify a mechanism by which we can efficiently calculate, exactly
or approximately, the expected value of a two bracket solution (i.e., the expected value of the
highest scoring of the two). The tree-based algorithm is an exact method, but unfortunately
takes extremely long to solve.

We compare in Figure 4.1 the exact approach with the SAA approach. To produce the
figure, we first simulate an evaluation set of 280 two-bracket solutions, and compared the
value obtained by the tree-based algorithm after 5 minutes of computation with the value
obtained by the SAA, which is approximating the expected value of the two-bracket solution.
For the SAA, for each of the 280 solutions, we calculate the average of the maximum score of
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the two brackets when evaluated on 50 randomly generated outcome brackets, repeated 100
times. We record the average and the standard deviation of the mean score of the maximum
over these 100 repetitions.

Figure 4.1 SAA vs Tree-based algorithm

Figure 4.1 depicts the results, sorted by the mean of the estimation. We depict in purple
and black the upper and lower bounds obtained by the tree-based model within 5 minutes.
In blue we depict the mean of the average scores over the 100 trials. In green and red we
depict one standard deviation above and below the mean.

We see that SAA has a relatively tighter bound at approximating the expected value than
the tree-based model we design. We therefore use simulation to approximate the expected
value of a solution rather than an early stop of the tree-based model.
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4.4 Optimization results

We now present results obtained by employing the variable optimization strategies discussed
in this thesis. We first report on one-bracket solutions, and then on two-bracket solutions.

4.4.1 Single-entry evaluation

In order to test the potential of the solution approach, we first apply the NN-embedded
model to the single-entry problem. This allows us to evaluate its effectiveness as a modeling
paradigm, and to ensure the NNs generalize well when optimized over.

An NN is trained to estimate the expected value of a single bracket, denoted by E(S(Bi)). For
the results we present, we trained a NN with two hidden layers with 32 units on each layer,
with rectified-linear activation functions (this was used throughout so that it was ameable
to the solver JANOS). We used MSE as the loss function, and we trained the NN using SGD
with a learning rate of 0.01 and a momentum of 0.9. To regularize the NN, we implemented
early stopping with a maximum of 15 epochs.

We use Mean Absolute Percentage Error (MAPE),

MAPE = 1
N

N∑
i=1

|E(S(Bi))− ̂E(S(Bi))|
E(S(Bi))

,

to evaluate the quality of the prediction, where N is the size of the testing set, i indexes
the set of solutions in our test set, Bi is the single bracket in the ith solution and S(Bi) is
a random variable representing the score of the solution’s bracket i. The NNs are trained
and validated respectively on 160,000 and 20,000 randomly generated single brackets. For
both the training set and the test set, we generate random brackets through the simulation
procedure defined in Section 3.0.2. E(S(Bi)) is the actual expectation of S(Bi), which in the
case of a single bracket can be computed exactly. ̂E(S(Bi)) is the estimated expectation of
S(Bi) computed via the NN. To further support the accuracy of the NN predictions, we also
report

A(h) = 1
N

N∑
i=1

I[|E(S(Bi)− ̂E(S(Bi))| ≤ h].

which represents the proportion of instances in the test set for which the prediction of the
expected value of the solution given by the NN is within h units of the actual expectation.

The NN has high-quality prediction, with less than 1% MAPE and predicting an expectation
within 1% of the expectation in over 99% of cases.
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Table 4.2 Accuracy of NN for estimating the expectation of one entry

Man P1 Woman P1
Year Training Time MAPE A(1) Training Time MAPE A(1)
2019 942.01 0.0016 99.96% 857.96 0.0021 99.87%
2018 935.12 0.0013 99.88% 871.58 0.0021 99.86%
2017 958.27 0.0022 99.95% 876.88 0.0028 99.91%
2016 966.81 0.0010 99.91% 879.58 0.0017 99.97%
2015 997.11 0.0011 99.94% 905.69 0.0021 99.90%
2014 954.95 0.0014 99.93% 872.31 0.0017 99.97%
2013 914.45 0.0016 99.95% 894.71 0.002 99.96%
2012 908.66 0.0018 99.92% 868.83 0.0027 99.95%
2011 916.08 0.0013 99.91% 866.59 0.0021 99.87%
2010 938.19 0.0016 99.85% 855.34 0.0026 99.81%
2009 915.98 0.0014 99.92% 902.17 0.0018 99.94%
2008 920.95 0.0017 99.92% 892.72 0.0029 99.90%
2007 919.00 0.0021 99.90% 845.83 0.0023 99.83%
2006 913.12 0.0016 99.89% 876.51 0.0016 99.87%
2005 940.68 0.0012 99.95% 874.77 0.0020 99.92%
2004 969.52 0.0016 99.98% 940.99 0.0021 99.90%
2003 972.85 0.0015 99.98% 816.06 0.0022 99.89%
2002 969.25 0.0019 99.91% 953.95 0.0024 99.88%
Average 941.83 0.0016 99.92% 880.69 0.0022 99.90%

Equipped with a high-quality predictive model, we then use JANOS to find the best single-
entry solution according to the prediction of the trained NN. In Table 4.3, we report the
value of the optimal solution found by JANOS denoted as JANOS1 (which is a bracket with an
objective function that is an estimate of the expected value of the bracket), the exact value
of the solution identified by JANOS, denoted as JANOSexact-1, and the optimal solution found
by the IPMM (which is the optimal value of the problem).

The purpose of this experiment is to evaluate how effective JANOS is at generalizing beyond
the training set and finding a high-quality solution for the single-entry problem. Although
the single-entry problem can be solved to provable optimality effectively by other approaches,
evaluating the efficacy of JANOS in this setting suggests that it can also be applied to more
general settings, such as multi-entry.

JANOS works very well for the single-entry setting. The predicted expectation of the best
solution identified is nearly identical to the actual expectation of that solution. Furthermore,
the quality of the actual expectation of the identified solution is on average (across the men’s
and women’s tournaments from 2002-2019) only 0.31 points below the optimal value. These
results validate that our predictive model integrated with the prescriptive model can find a
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Table 4.3 JANOS solution quality for single-entry problem

Men P1 Women P1
Year JANOS1 JANOSexact-1 IPMM JANOS1 JANOSexact-1 IPMM

2019 79.37 79.49 79.52 98.43 98.44 98.59
2018 79.36 78.73 79.48 97.83 97.80 98.30
2017 78.95 79.00 79.28 97.84 97.99 98.13
2016 79.32 79.36 79.39 99.14 99.11 99.43
2015 79.31 79.29 79.38 97.32 97.49 97.49
2014 80.14 80.23 80.28 96.27 94.56 96.50
2013 80.74 80.70 80.86 95.44 95.54 95.84
2012 80.57 80.75 80.86 94.64 94.66 94.92
2011 83.26 83.33 83.41 94.58 94.58 94.95
2010 85.73 85.81 85.94 95.88 95.52 96.09
2009 82.85 82.90 83.00 96.86 96.97 97.09
2008 80.58 80.68 80.81 95.34 95.03 95.62
2007 79.33 79.21 79.61 97.81 97.14 97.90
2006 80.30 80.27 80.41 97.70 97.55 97.86
2005 79.77 79.85 79.89 96.16 95.79 96.23
2004 76.98 77.19 77.19 101.16 100.47 101.15
2003 76.20 76.24 76.27 102.12 101.85 102.24
2002 79.64 79.73 79.92 100.59 100.15 100.64
Average 80.13 80.15 80.31 97.51 97.26 97.72

near-optimal solution for the single-entry problem.

In Figure 4.2 we report the time to solve the various models previously proposed and intro-
duced in the paper for the single-entry problem. We only report the results for the men’s
tournament as it is nearly identical for the women’s tournament. In particular, for each year,
we report the time to solve (a) the IPMM introduced in this work, (b) the DP presented by
Kaplan et al. [37], and (c) the NN-embedded model in JANOS.

We see from the plot that IPMM is an order of magnitude faster than the previous DP model.
Additionally, the complexity of optimizing over a NN with JANOS is clearly more challenging,
and requires more computational effort. Despite being a challenging optimization model, the
accuracy of the heuristic is quite good. We now extend it to the multi-entry problem.

4.4.2 Multi-entry evaluation

We now report on the application of our decision-making framework on the two-entry prob-
lem. Training an accurate NN for the multi-entry problem is much harder than for the single
entry. Designing an analytical model for the two-entry problem appears to be intractable.
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Figure 4.2 Time (seconds) to solve each instances for the men tourneys

We increase the size of the network to three layers with 32 units on each of the layers for the
men’s model, and four layers with 32 units on each layer for the women’s model. For both
models, we kept the same training parameters as the single-entry model, but use 300 epochs.
Similarly to the single-entry problem, we report the computing time and the MAPE (which
in this case can only be approximated due to lack of closed-form calculation), evaluated as:

MAPE = 1
N

N∑
i=1

∣∣∣∣∣E
(

max
k=1.....K

S(Bi,k)
)
−

̂
E
(

max
k=1.....K

S(Bi,k)
)∣∣∣∣∣

E
(

max
k=1.....K

S(Bi,k)
)

where N is the size of testing set, i indexes the set of instances in our test set, K is the
number of entries, Bi,k is the kth solution bracket of the ith instance, and max

k=1.....K
S(Bi,k) is

the maximum score of the solution brackets in the ith instance. The NNs are trained and
validated respectively on 160,000 and 20,000 randomly generated K-entry solution brackets
for the men’s tournament and 240,000 and 30,000 randomly generated K-entry solution
brackets for the women’s tournament. Since we can’t compute exactly E( max

k=1.....K
S(Bi,k)),

we estimate the value by evaluating the solution on 100,000 randomly generated outcome
brackets and determine the maximum scoring bracket for each instance. Similarly to the
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single-entry case, we also report

A(h) = 1
N

N∑
i=1

I[|E( max
k=1.....K

S(Bi,k))− ̂E( max
k=1.....K

S(Bi,k))| ≤ h]

which is the proportion of instances in the test set for which the prediction from the NN of
the expected value of the maximum score of the K solution brackets is within h points of the
simulated estimate. We report results in Table 4.4 with K = 2, h = 1, and N = 20, 000 for
the men’s tournament and N = 30, 000 for the women’s tournament.

Table 4.4 Accuracy of NN for estimating E( max
k=1.....K

S(Bk))

Man P1 Woman P1
Year Training Time MAPE A(1) Training Time MAPE A(1)
2019 3003.89 0.0044 97.80% 5752.09 0.0028 99.63%
2018 3072.12 0.0044 97.74% 5770.77 0.0027 99.61%
2017 3164.24 0.0045 97.63% 5751.70 0.0029 99.58%
2016 3079.16 0.0047 96.96% 5902.01 0.0028 99.51%
2015 2870.31 0.0046 96.99% 5798.63 0.0028 99.59%
2014 2898.67 0.0047 96.95% 5891.28 0.0028 99.78%
2013 3452.96 0.0049 95.78% 5707.41 0.0030 99.50%
2012 3364.61 0.0044 97.30% 5732.65 0.0033 99.17%
2011 3243.01 0.0047 96.35% 5785.56 0.0030 99.26%
2010 3449.45 0.0048 94.62% 5859.99 0.0035 99.09%
2009 3245.77 0.0044 97.81% 5819.77 0.0033 99.22%
2008 3322.67 0.0049 95.94% 5775.52 0.0034 99.13%
2007 3028.29 0.0045 97.87% 5074.43 0.0056 97.50%
2006 2968.59 0.0046 97.06% 6396.26 0.0034 98.89%
2005 3116.60 0.0048 96.39% 6230.00 0.0036 98.76%
2004 2972.52 0.0041 98.93% 6650.47 0.0032 99.07%
2003 2992.12 0.0038 99.52% 6400.89 0.0033 98.42%
2002 2727.97 0.0043 98.01% 6674.33 0.0036 97.53%
Average 3109.61 0.0045 97.20% 5946.86 0.0033 99.07%

The complexity in learning the expected score of two brackets requires more training time
than for the single entry. We observe that the accuracy of the men’s model is smaller than the
one for the women. However, the MAPE of both models is similar to that of the single-entry
NN model. The difference in the accuracy is partly explained by the difference in the size of
the NN and the training time.

We limit JANOS to 3600 seconds, and this time-limit is hit for all years. For GA, we initialize
with 2,000 random single-brackets, use a population with 200 individuals for a maximum of
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200 generations with again a time limit of 3600 seconds. We reach this time limit in every
year.

In Table 4.5, we report two values for JANOS: the estimated expectation in the solution
obtained denoted by JANOS2 and the simulated expected score of the best solution JANOS
finds, denoted by JANOSsim-2. For GA, we simply report the estimated expectation for the
best solution found, denoted by GA2.

Table 4.5 Comparison of quality of solutions between JANOS and GA

Man P1 Woman P1
Year JANOS2 JANOSsim-2 GA2 JANOS2 JANOSsim-2 GA2

2019 91.03 90.38 87.03 106.08 105.35 103.60
2018 90.53 90.44 85.83 105.35 103.00 103.14
2017 90.88 90.21 87.46 105.04 103.61 102.57
2016 89.55 89.59 86.79 107.05 105.02 104.18
2015 90.25 90.54 86.51 103.44 101.77 101.51
2014 91.75 91.27 87.45 97.66 92.66 101.55
2013 90.62 92.04 88.62 101.43 100.90 101.78
2012 92.70 92.14 88.36 101.65 100.24 98.70
2011 95.34 95.35 90.52 102.38 102.23 100.11
2010 96.34 96.07 95.15 98.47 98.13 100.61
2009 95.84 95.14 90.35 96.75 95.70 100.43
2008 92.30 91.99 86.69 102.79 102.05 100.88
2007 91.28 90.94 87.54 91.63 91.04 102.30
2006 92.30 91.89 88.58 106.28 105.34 102.20
2005 91.75 90.92 87.50 103.75 102.85 100.38
2004 84.44 83.32 80.09 103.03 102.69 106.05
2003 82.62 81.39 77.83 104.86 103.07 111.94
2002 89.97 90.27 85.89 112.87 111.74 108.78
Average 91.08 90.77 87.12 103.47 101.50 102.85

For the men’s bracket, we see that the values estimated by the NN-embedded are very close
to what results from simulating outcome brackets and evaluating the accuracy, namely a dif-
ference of 0.3 and 2.0 points on average for the men’s and women’s tournaments, respectively.
We also note that in all cases, the quality of the solution we obtain through JANOS is better
than what the GA model can determine based on evaluation over a simulated set of solutions.
The solution determined by JANOS is estimated at 3.65 more points better than the solution
identified by GA.

On the other hand, we observe that JANOS and GA find approximately the same expected
value, on average, for the women’s tournament. This diminishing quality of JANOS can
perhaps be attributed to a lower variance in previous outcomes in terms of seeds. With fewer
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upsets, the women’s bracket is harder to generalize, and perhaps more difficult to improve
upon a more basic heuristic. This characteristic makes it more difficult to train the NN.
Additionally, since high-quality solutions will contain fewer upsets than in the men’s bracket,
initializing GA with high-quality solutions is easier and therefore makes it more competitive
with JANOS.

Note that the expectation of the two-entry solution improves substantially on the expectation
of the single-entry solution. Compared with the solutions found by JANOS, the uplift in
expectation is 10.28 points for the men’s bracket and 4.24 for the women’s bracket.

Finally, Table 4.6 and Table 4.7 reports results obtained by each model on each March
Madness between 2002 and 2019. Results indicate that JANOS and GA are both able to find
good solutions when tested on actual outcomes.

Table 4.6 Actual score obtained by every entry in the men’s tournaments

Year JANOS1 IPMM JANOS2 GA2 # upset
2019 79 80 94 125 20
2018 113 115 110 118 20
2017 81 80 92 158 14
2016 88 89 86 86 20
2015 87 85 126 109 12
2014 67 66 69 68 22
2013 79 80 80 65 20
2012 86 86 95 92 17
2011 56 55 56 59 20
2010 86 86 87 85 20
2009 106 106 130 100 16
2008 112 114 141 119 13
2007 107 111 143 149 12
2006 60 61 65 63 21
2005 69 70 101 110 19
2004 64 64 63 66 16
2003 73 74 77 73 21
2002 125 125 109 82 16
mean 85.50 85.94 95.78 95.94 17.72
Geo. 83.33 83.69 92.37 91.85 17.41

For the men’s tournament, all the scores of our best solutions remained far from the winning
scores in the ESPN Tournament Challenge. It can be explained by the decision to use a seed-
based model that strongly selects favorites to win each game of March Madness, which results
in an inability to predict upsets. With an average of over 17 upsets per year in the men’s
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Table 4.7 Actual score obtained by every entry in the women’s tournaments

Year JANOS1 IPMM JANOS2 GA2 # upset
2019 88 89 91 108 11
2018 103 105 119 131 15
2017 69 70 73 89 12
2016 107 110 110 107 19
2015 132 132 148 132 10
2014 112 113 109 136 14
2013 111 108 110 117 14
2012 140 138 138 132 7
2011 76 78 79 77 18
2010 134 132 111 120 12
2009 83 82 126 120 16
2008 45 45 53 61 15
2007 61 62 94 111 14
2006 106 109 109 104 10
2005 98 99 98 91 17
2004 89 90 90 83 17
2003 163 166 162 144 10
2002 112 113 165 110 13
mean 101.61 102.28 110.27 109.61 13.56
Geo. 97.22 97.93 106.32 107.19 13.16

tournament, it would have perhaps been fruitful to use a probability model that recognizes
more upsets. We can also observe that both JANOS and GA models obtained a similar average
score that is 10 points above the single-entry model. On the 36 instances tested, JANOS
outperforms GA 20 times while GA beats JANOS 15 times. As the probability model suggested,
there are a smaller number of upsets in the women’s tournament (on average, 4.16 fewer upsets
per year) leading to an easier prediction problem for the women’s tournament. Overall, we
observe a very good score for the single-entry model in the women’s tournament in 2003,
reaching 166 points. It is also impressive that the GA is able to reach 158 points in 2017
in the men’s tournament knowing that there were 14 upsets that year. We expect that
increasing the number of entries and choosing a probability model that relies less on the seed
will find more upsets that will lead to improved solutions. Similarly to Hunter et al. [18],
selecting solutions with high variance and high expected value should be the ultimate goal
of this optimization problem.
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CHAPTER 5 CONCLUSION, FUTURE WORK AND
RECOMMENDATIONS

5.1 Summary of work

This work introduced new approaches to the problem of evaluating and selecting multiple
entries in sports betting contests. In particular, we study the March Madness tournament.
This thesis presents two high-quality heuristics that optimize the expected value of order
statistics, and that can potentially be expanded to more general settings. It is also among
the first implementations of JANOS in the academic literature, and it explores NN-embedded
models for which a lot of questions remain open.

More precisely, this work aims at identifying optimal brackets for a portfolio of entries in a
sports betting tournament. We first explore different approaches for evaluating the objective
function, which is particularly challenging. We present three approaches, including an exact
tree-based algorithm and two approximation methods based on SAA and NN.

To optimize with this complex objective function, we then present two algorithms. The first
is a GA and the second is a NN-embedded approach, which uses the recently introduced solver
JANOS.

The results indicate that our optimization framework can be effective at identifying high-
quality solutions. We report an improvement of 5% and 2% in expectation for the men’s
tournament and women’s tournament, when moving from a single bracket to two brackets.
When tested on real data, the men’s model improvement remains the same, but the two-
entries model are on average 4% better than the single-entry model. By increasing the
number of brackets, we are optimistic that this framework would continue to improve upon
the quality of the solutions, which we leave as future work.

5.2 Limitations

The biggest limitation for the GA is that it finds the best k bracket solutions consisting only of
the candidates from a pre-populated set C. In order to be computationally feasible, C cannot
be too large, since SAA over the sample outcome brackets requires significant computation
effort.

The NN-embedded optimization model overcomes this challenge, and allows for an exhaustive
search over all feasible solutions. Still, there are some limitations. For example, JANOS takes



48

a long time to solve the optimization models, and significant effort is required for training
the NNs. As the number of entries increase, we believe that JANOS will have a better capacity
to find near-optimal due to its capacity to perform an exhaustive search.

5.3 Future research

For this work, it would be informative to learn how many entries are needed to achieve
the winning score in the ESPN Tournament Challenge, which contains millions of entries
submitted by participants throughout the world. Another possible extension is to apply
more advanced predictive models for game outcomes, and see how the results differ.

Additionally, it would be interesting to see how our learning-based approach extends to differ-
ent objective functions, like maximizing payoff or maximizing a combination of expectation
and variance.

Finally, an intriguing observation on NN-embedded optimization that was observed in our
experimental results was that as the solving time of JANOS increased, the evaluation of the
solution found by the solver tended to decrease in quality (the objective function of the opti-
mization model improved, but when it was evaluated by the simulation model the objective
value decreased). This can be attributed to the challenge of building NNs that generalize
well. A possible approach to counter this issue would be to use early stopping, similarly to
how it is used in deep learning. We leave this for future research.
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APPENDIX A MILP MODEL WITH SIMULATION MODEL

Another approach explored is to adapt the mutli-entry MILP model (2.39)-(2.47) to leverage
the simulation-based model. We will denote this model as IPsim-2. The reformulation goes
as

max
x,h,s,z

∑
b∈B′

h[b]
|B′|

(A.1)

s.t. xt,r,k ≤ xt,r−1,k ∀ t ∈ T, r ∈ R \ {1}, k ∈ {1, 2} (A.2)∑
t∈T (g)

xt,R(g),k = 1 ∀ g ∈ G, k ∈ {1, 2} (A.3)

∑
g∈G

2R(g)−1xb[g],R(g),k = skb ∀ b ∈ B′, k ∈ {1, 2} (A.4)

s1
b −Mz[b] ≤ s2

b ∀ b ∈ B′ (A.5)

s1
b ≥ s2

b −M(1− zb) ∀ b ∈ B′ (A.6)

hb ≤ s1
b +M(1− zb) ∀ b ∈ B′ (A.7)

hb ≤ s2
b +Mzb ∀ b ∈ B′ (A.8)

xt,r,k, hb ∈ {0, 1} ∀t ∈ T, r ∈ R, k ∈ {1, 2}, b ∈ B. (A.9)

where the only difference from (2.39)-(2.47) is the objective function. In this model, B′ is a
subset of randomly generated brackets of size M . In other words, this model summarizes to
finding exactly the two brackets that maximize the expected value of the maximum scoring
entry when evaluated on M randomly generated brackets.

Throughout this thesis, the SAA was always done using 100,000 randomly generated brackets.
M = 100, 000 appears to be to large to solve this model since the objective function and the
number of constraints depends on M . Therefore, we tested this model using M = 10, 000.
In order to compare the solution given by this approach, we report for the men’s tournament
in Table B.1 the expected score of the maximum scoring entry of the two optimal brackets
on another 100,000 randomly generated brackets to properly compare it with all the other
approaches, and we report the actual points it obtained in Table B.2.



54

APPENDIX B SEQUENTIAL INTEGER PROGRAMMING MODEL

The last approach we tested was a Sequential Integer Programming (SIP) model denoted
as SIPk for the k-entry model. Rather than trying to maximize the expected score of the
maximum scoring entry, this SIP model is focusing on finding good single-entry brackets
without completely considering the dependency between each entry as we did in all other
approaches. Therefore, the sequential approach sequentially add constraints such that we
have at most σ picks identical in the last 4 rounds with all previously selected entries. This
model goes as

max
x

∑
g∈G

∑
t∈T (g)

2R(g)−1Qt,R(g)xi,R(g) (B.1)

s.t. xt,r ≤ xt,r−1, ∀t ∈ T, r ∈ R (B.2)∑
t∈T (g)

xt,R(g) = 1, ∀g ∈ G (B.3)

zt,r,k − xt,r ≤ 0, ∀t ∈ T, r ∈ {2, 3, 4, 5}, k ∈ K ′ (B.4)

zt,r,k − xkt,r ≤ 0 ∀t ∈ T, r ∈ {2, 3, 4, 5}, k ∈ K ′ (B.5)

xt,r + xkt,r − zt,r,k ≤ 1 ∀t ∈ T, r ∈ {2, 3, 4, 5}, k ∈ K ′ (B.6)∑
t∈T

∑
r∈{2,3,4,5}

zt,r,k ≤ σ ∀k ∈ K ′ (B.7)

xt,r,k ∈ {0, 1}, zt,r,k ∈ {0, 1} ∀t ∈ T, r ∈ R, k ∈ K ′ (B.8)

where

xt,r =

 1, if team t wins in round r,
0, otherwise,

K ′ represents the number of solutions found by the SIP so far and xk represents the kth

solution found by the SIP. Moreover,

zt,r,k =

 1, if team t is selected to wins in round r in x and xk,
0, otherwise.

This SIP is computed for K iteration where K is the number of entries. The SIP is exactly
the same as the IP with the added constraints (B.4), (B.5), (B.6) and (B.7) which aims at
increasing the variance of points obtained by each of the entries. Of course, this heuristic
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do not find the expected score of the multi-entry solution, but by regrouping all the selected
brackets and using the SAA with 100,000 randomly generated brackets, we report the ex-
pected value of this multi-entry solution. The main advantage of this solution is that it is
extremely fast to generate. We report the expected score and the actual score of the SIP for
K ∈ {2, 3, 5, 10, 20} in Table B.1 and Table B.2, respectively. We only report result for the
two last models on the men’s tournament.

Table B.1 Expected score of IPsim-2 and SIPk for the men’s tournament

Year IPsim-2 SIP2 SIP3 SIP5 SIP10 SIP20

2019 89.47 88.15 91.97 96.16 101.35 111.29
2018 89.68 88.08 91.68 96.00 100.80 110.42
2017 89.73 87.81 91.28 95.96 102.31 111.65
2016 89.83 87.92 91.47 96.06 102.38 111.83
2015 89.06 87.70 91.53 95.77 102.38 113.37
2014 90.53 88.99 92.50 97.30 103.64 113.23
2013 91.23 89.53 92.95 97.77 104.63 116.21
2012 91.56 89.38 93.10 97.66 104.54 115.12
2011 95.45 93.63 96.74 103.51 108.89 120.90
2010 98.78 98.80 96.33 106.06 118.56 128.10
2009 95.11 93.82 96.39 102.93 108.80 122.24
2008 91.46 90.69 93.49 99.99 105.11 117.91
2007 90.27 89.42 91.98 97.99 103.59 116.54
2006 90.94 90.31 93.02 99.43 104.82 117.64
2005 90.02 88.21 91.90 96.51 103.52 113.80
2004 83.46 80.26 79.71 82.07 87.89 97.10
2003 81.37 79.46 80.00 81.10 84.65 92.66
2002 89.26 88.47 91.52 96.32 100.72 111.49
mean 90.40 88.92 91.53 96.59 102.70 113.42

We first observe that the expected score of the maximum scoring entry of SIP2 scores on
average almost 2 points lower than JANOS-2 while IPsim-2 scores .67 point lower than JANOS.
However, it is surprising to observe that SIP2 performs slightly better than JANOS on actual
data. The most interesting observation is the fact that the exact approach outperforms
all other two entries models by almost 5 points on actual data showing the importance of
modeling the expected value of the maximum scoring entry. It is also motivating to observe
that the expected number of points continues to increase as we increase the number of entries.
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Table B.2 Actual score of IPsim-2 and SIPk for the men’s tournament

Year IPsim-2 SIP2 SIP3 SIP5 SIP10 SIP20

2019 132 96 96 132 132 132
2018 106 115 115 115 115 131
2017 115 112 112 124 140 140
2016 89 89 89 89 89 101
2015 134 145 149 149 149 149
2014 66 66 66 66 70 74
2013 80 80 108 108 116 120
2012 86 86 114 114 118 150
2011 55 55 55 55 55 63
2010 86 86 86 110 122 122
2009 98 106 130 146 146 146
2008 154 114 154 154 158 158
2007 121 143 143 143 143 167
2006 85 69 61 69 89 89
2005 134 102 102 114 138 142
2004 64 64 72 72 72 90
2003 126 74 74 74 74 80
2002 79 125 125 125 125 125
mean 100.56 95.94 102.83 108.83 113.94 121.06
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