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RÉSUMÉ

Les décisions concernant la localisation des infrastructures dans les chaînes
d’approvisionnement sont d’une importance stratégique: la construction d’une nou-
velle infrastructure est généralement coûteuse et l’impact de cette décision est durable. Une
fois qu’une nouvelle installation sera ouverte, elle devrait rester opérationnelle pendant
plusieurs années. Cependant, des facteurs environnementaux, tels que les déplacements de
population et les catastrophes naturelles, peuvent affecter le fonctionnement des installa-
tions. Par exemple, le déplacement de la population peut modifier les modèles de demande,
ce qui influence davantage les décisions d’allocation entre les clients et les installations. Les
catastrophes naturelles peuvent diminuer partiellement ou complètement la capacité d’une
installation, entraînant des décisions de réaffectation ou des pertes de ventes. Toutes ces
incertitudes peuvent faire en sorte qu’une décision optimale d’aujourd’hui ne donne pas de
bons résultats à l’avenir. Ainsi, il est important de considérer les incertitudes potentielles
dans la phase de conception des chaînes d’approvisionnements, tout en prenant explicitement
en compte les réaffectations possibles des clients comme décisions de recours dans la phase
d’exécution.

Dans la première moitié de cette thèse, nous étudions trois problèmes de localisation
d’établissements sous risques de perturbations, où chaque travail a un objectif différent.
Plus précisément, l’étude du chapitre 3 se concentre principalement sur l’amélioration des
algorithmes; le travail du chapitre 4 considère simultanément plusieurs types d’incertitudes;
et le chapitre 5 étudie un problème de conception de réseau à trois échelons soumis à des
perturbations. Nous adoptons des méthodes d’optimisation robuste (OR) en deux étapes,
où les décisions de localisation des installations sont prises ici et maintenant et les décisions
de recours pour réaffecter les clients sont prises après que les informations d’incertitude sur
la disponibilité des installations et la demande des clients ont été révélées. Nous implé-
mentons des méthodes exactes et approximatives pour résoudre les modèles robustes. Les
résultats démontrent que le cadre OR proposé peut améliorer la fiabilité des systèmes de
chaîne d’approvisionnement avec seulement une légère augmentation du coût normal (le coût
du scénario sans interruption). Les différents modèles construits dans cette thèse peuvent
également être utilisés comme outils d’aide à la décision pour voir le compromis entre coût
et fiabilité.

Outre la planification stratégique, nous avons étudié également les problèmes de niveau opéra-
tionnel : problèmes de livraison à l’aide de drones. La livraison par drone est connue comme
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contributeur potentiel à l’amélioration de l’efficacité et à la résolution des problèmes de
livraison du dernier kilomètre. Pour cette raison, le routage des drones est devenu un do-
maine de recherche très actif ces dernières années. Contrairement au problème de routage
des véhicules, cependant, la conception des itinéraires des drones est difficile en raison de
multiples caractéristiques opérationnelles, notamment les opérations multi-voyages, la plan-
ification de la recharge et le calcul de la consommation d’énergie. Pour combler certaines
lacunes importantes dans la littérature, le chapitre 6 résout un problème de routage de drone
multi-voyages, où la consommation d’énergie des drones est affectée par la charge utile et la
distance de déplacement alors que de telles relations sont non linéaires. Pour aborder la fonc-
tion d’énergie non linéaire (convexe), nous proposons deux types de coupes (cuts) qui sont
incorporées dans le schéma de branchement et de coupes (branch-and-cut). Nous utilisons
une formulation à 2 indices pour modéliser le problème et également générer des instances
de référence pour l’évaluation d’algorithmes. Les tests numériques indiquent que même si le
modèle d’origine est non linéaire, notre approche est efficace à la fois en termes d’algorithme
et de qualité de solution.

La livraison par drones peut également être affectée par diverses incertitudes, telles que des
conditions de vent incertaines et des obstacles imprévisibles. Motivé par les problèmes de
retard des drones résultant de l’incertitude du vent, notre travail dans le chapitre 7 vise à op-
timiser de manière robuste le risque de retard pour un problème de programmation de drones
avec des temps de voyage incertains. À cette fin, nous utilisons un cadre d’optimisation ro-
buste aux distributions pour modéliser le problème. Comme les données historiques sur le
vent sont souvent disponibles, nous utilisons des techniques d’apprentissage automatique pour
partitionner les données pour la construction de l’ensemble d’ambiguïté. À partir des données
météorologiques réelles, nous observons que les conditions de vent l’après-midi dépendent des
conditions de vent du matin. Par conséquent, nous proposons une description de l’ambiguïté
en ensemble à deux périodes pour modéliser la distribution conjointe des temps de parcours
incertains. Nous proposons également un modèle de planification des drones à deux périodes,
où les décisions de programmation dans l’après-midi s’adapteraient aux résultats des informa-
tions météorologiques observées le matin. En utilisant des données météorologiques réelles,
nous validons que le modèle d’optimisation robuste adaptatif peut réduire efficacement le
retard dans les tests hors échantillon par rapport à d’autres méthodes de référence.
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ABSTRACT

Facility location decision is strategic: The construction of a new facility is typically costly
and the impact of the decision is long-lasting. Once a new facility is opened, it is expected
to remain in operation for several years. However, environmental factors, such as popula-
tion shift and natural disasters, may affect facilities’ operations. For example, population
shift may change demand patterns, which further influence the allocation decisions between
customers and facilities. Natural disasters may diminish a facility’s capacity partially or com-
pletely, resulting in reassignment decisions or lost sales. All these uncertainties may cause
today’s optimal decision to perform poorly in the future. Thus, it is important to consider
potential uncertainties in the supply chain design phase, while explicitly taking into account
the possible customer reassignments as recourse decisions in the execution phase.

In the first half of this thesis, we study three facility location problems under disruption risks,
where each work has a different focus. Specifically, the study in Chapter 3 mainly focuses
on algorithmic improvement; the work in Chapter 4 considers multiple types of uncertain-
ties simultaneously; and Chapter 5 studies a three-echelon network design problem under
disruptions. We adopt the two-stage robust optimization (RO) method for these problems,
where facility location decisions are made here-and-now and recourse decisions to reassign
customers are made after the uncertainty information on the facility availability and cus-
tomer demand has been revealed. We implement both exact and approximate methods to
solve the robust models. Results demonstrate that the proposed RO framework can improve
supply chain systems’ reliability with only a slight increase in the nominal cost (the cost of
the disruption-free scenario). The various robust models constructed in this thesis can also
be used as decision support tools to see the trade-off between cost and reliability.

Besides strategic planning, we also study operational level problems in this thesis—drone
delivery problems. Drone delivery is known as a potential contributor in improving efficiency
and alleviating last-mile delivery problems. For this reason, drone routing and scheduling has
become a highly active area of research in recent years. Unlike the vehicle routing problem,
however, designing drones’ routes is challenging due to multiple operational characteristics
including multi-trip operations, recharge planning, and energy consumption calculation. To
fill some important gaps in the literature, Chapter 6 solves a multi-trip drone routing prob-
lem, where drones’ energy consumption is affected by payload and travel distance whereas
such relationships are nonlinear. To tackle the nonlinear (convex) energy function, we pro-
pose two types of cuts that are incorporated into the branch-and-cut scheme. We use a
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2-index formulation to model the problem and also generate benchmark instances for algo-
rithm evaluation. Numerical tests indicate that even though the original model is nonlinear,
our approach is effective in both computational efficiency and solution quality.

Drone delivery can also be affected by various uncertainties, such as uncertain wind conditions
and unpredictable obstacles. Motivated by the drone lateness issues resulting from wind
uncertainty, our work in Chapter 7 aims to robustly optimize the lateness risk for a drone
scheduling problem with uncertain travel times. To that end, we use a distributionally robust
optimization framework to model the problem. As historical wind data is often available, we
use machine learning techniques to partition the data for the construction of the ambiguity
set. From the actual weather data, we observe that the wind conditions in the afternoon
are dependent on the wind conditions in the morning. Accordingly, we propose a two-period
cluster-wise ambiguity set to model the joint distribution of uncertain travel times. We also
propose a two-period drone scheduling model, where the scheduling decisions in the afternoon
would adapt to the outcome of the weather information observed in the morning. Using actual
weather data, we validate that the adaptive robust optimization model can effectively reduce
lateness in out-of-sample tests in comparison with other benchmark methods.

Keyword: Facility location; disruption risk; demand uncertainty; two-stage robust opti-
mization; column-and-constraint generation; drone delivery; nonlinear energy consumption;
branch-and-cut; uncertain weather condition; cluster-wise ambiguity set; distributionally ro-
bust optimization
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CHAPTER 1 INTRODUCTION

Supply chain management involves three levels of decisions: strategic, tactical, and oper-
ational. Strategic planning includes product development, system design, and customer
identification, among others. Tactical level management includes material procurements,
production schedules, inventory management and so forth. Operational level decisions in-
volve detailed management of production operations, logistics activities, etc. In this thesis,
we study both strategic and operational level problems. Specifically, in the first half of this
thesis, we consider three facility location problems under uncertainty. In the second half, we
examine both the deterministic and stochastic drone delivery problems.

1.1 Facility Location Problem Under Uncertainty

A facility location problem looks for the optimal placement of facilities to satisfy requests of
service from a given set of customers. Several questions should be addressed in this problem.
For example, how many facilities should be located? Where should these facilities be located?
How large should each facility be? How should we assign customers to opened facilities? The
answers to these questions depend on the optimization objective (e.g., minimization of cost
or maximization of profit) of the considered system and the available resources. Facility
location is an important aspect of strategic planning for both private companies and public
sectors [3]. The construction and acquisition of a new facility is typically a costly and time-
consuming process. Therefore, once a facility is built, it is expected to remain in operation
for several years. However, during the lifetime of a facility, it may face various uncertainties,
among which some can interrupt its operation and make it fail to serve assigned customers.
For example, events such as power outages and natural disasters may destroy a facility
partially or completely such that its residual capacity is not sufficient to serve its assigned
customers. Other environmental changes, such as population shift and economical issues, may
cause customers’ demand to deviate significantly from their nominal values such that opened
facilities are not able to meet increased demand or some facilities’ capacities are wasted if the
demand decreases. To conclude, uncertain factors can turn today’s optimal location decisions
into tomorrow’s poor performance. It is therefore critical to consider potential uncertainties
proactively at the planning stage, to avoid high recourse costs at the operational stage.

In the literature, many probabilistic models have been developed for the facility location
problem under disruptions, where the failure probability of each facility is known in advance.
The sum of the facility location cost and the expected transportation cost is minimized
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[4–7]. However, for rare events, it may be impossible to obtain or predict precise proba-
bility information because of insufficient historical data or inaccurate forecasting methods.
In such circumstances, robust optimization (RO) methods can be used to find a solution
that protects the decision-makers against parameter ambiguity and stochastic uncertainty
without depending on probability information [8]. RO uses uncertainty sets to represent
the random data; therefore, any identified solution is immune to all the possible realiza-
tions within an uncertainty set. In addition, whereas the static RO method determines only
here-and-now decisions, the two-stage adjustable RO method is capable of generating less
conservative solutions, because it allows wait-and-see decisions that can adapt to the real-
ized observations. However, this flexibility comes with significant computational challenges.
Several solution methods, such as the Benders decomposition (BD) method [9–13] and the
column-and-constraint generation (C&CG) algorithm [14,15], have been developed to solve
two-stage RO models exactly. Approximation schemes, such as affine decision rules [16,17]
and piecewise affine decision rules [18], are also used.

In this thesis, we study three facility location problems under uncertainties, where two-stage
RO methods are used to solve these problems. The first one is a fixed charge location
problem (FLP) under disruptions, where our main focus is algorithm improvement for the
robust models. The second one considers both disruption risk and uncertain demand in the
FLP. For this variant, we study the impacts of multiple uncertainties and further extend the
proposed modeling and solution schemes to other types of reliable facility location problems.
The third one is a three-echelon logistics network design problem (LNDP), where both supply
and transshipment nodes are subject to disruptions. For this problem, we propose three two-
stage RO models with different objective functions and performance bounds to reduce the
conservativeness of robust solutions.

1.2 Drone Delivery Problem

In recent years, unmanned aerial vehicles (UAVs) or drones have attracted people’s attention,
especially since 2013 when Amazon announced their Prime Air UAV [19]. Other companies,
like DHL, Google, and Alibaba also began developing their own drones, because they be-
lieve drones have the potential to reduce cost and waiting time for last-mile delivery. The
development of technology has made this idea possible. For example, carbon fiber manufac-
turing costs have decreased dramatically during the past few years, which enable stronger
and lighter air frames [20]; lithium polymer batteries with high energy density are also now
available, which help extend drones’ flight range [21]. Different companies have designed
different drone models, notably, the multirotor drones used by UPS and DHL, and the hy-
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brid drones developed by Amazon and Alphabet. Being similar to the multirotor helicopters,
multirotor drones are lifted and propelled by rotors. Hybrid drones can take off and land
vertically (like helicopters), but use wing or wing-like surfaces to generate lift. Meanwhile
they can also perform horizontal maneuvers like airplanes. On October 18, 2019, Alphabet’s
drone unit Wing launched the first commercial drone delivery flight in the United States [22].

Compared to trucks, drones have some specific advantages: (i) They can save labor, because
no drivers (or pilots) are needed. (ii) They can often travel faster than trucks. (iii) They
are not restricted to road networks [23]. These merits enable logistics companies and on-line
stores to use drones for rapid parcel delivery. Humanitarian organizations are also considering
using drones in disaster scenarios. For example, in the immediate aftermath of a disaster,
drones can provide support with risk assessment, mapping, and temporary communication
network creation [24]. In situations where the transportation network is severely compromised
by natural disasters, drones can deliver emergency supplies to affected regions. In addition,
by taking traffic off the roads, drone might reduce negative implications on congestion, safety,
and the environment [25].

On the other hand, some unique characteristics of drones have presented new operational
challenges. Limited battery capacity influences a drone’s flight duration, which can also
be affected by payload and speed [2]. Therefore, how should we represent the relationship
between battery energy consumption and various factors which affect it? How should we
route drones so that they can safely return after visiting designated sites? Furthermore,
drones’ payload is also limited, which means that a drone can only visit a small number of
customers during a trip. Thus, how should we schedule drones to serve more demands to
maximize their use?

In addition, drone delivery can also be affected by weather conditions. For example, cold
temperatures might cause drones’ energy capacity to drop quickly. Wind may lead to late
deliveries or even cancellations of services. In October 2014, DHL planned to use drones to
deliver medical supplies from the city of Norden to a remote island off the country’s coast,
but finally they cancelled the schedule due to wind. They had postponed the first flight
schedule on September 25 for the same reason, although they had performed approximately
50 experiments to gather information for the optimization of their drone models before the
planned medical delivery [26]. Other authors [27,28] suggest that delays caused by weather
conditions should be overcome before drone-based order delivery becomes a reality. Some
authors [29] further state that the future of drone delivery depends on its capability to adapt
to different scenarios of weather conditions, and drone delivery companies, such as Zipline,
attempt to build models which allow drones to safely and efficiently operate under different
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weather scenarios.

Although various operational challenges arise, current research about drones still focuses only
on engineering issues and studies addressing these other challenges are scarce [30]. Motivated
by these issues, the second half of this thesis studies two drone delivery problems. The
first one is a multi-trip drone routing problem (MTDRP), where a branch-and-cut (B&C)
algorithm is used to solve the problem and various cuts are proposed to calculate the complex
nonlinear energy consumption. The second one is a drone scheduling problem with uncertain
weather conditions. For this problem, we aim to provide a robust formulation to decide drone
delivery schedules that minimize the lateness risk at customers.

1.3 Organization of the Thesis

The studies presented in this thesis have yielded five scientific articles as follows.

1. Cheng, C., Qi, M., Zhang, Y., Rousseau, L.-M., 2018. A Two-Stage Robust Approach
for the Reliable Logistics Network Design Problem. Transportation Research Part B:
Methodological, 111, 185-202.

2. Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2020. Drone Routing with Energy Func-
tion: Formulation and Exact Algorithm. Transportation Research Part B: Methodolog-
ical, 139, 364-387.

3. Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2018. Robust Facility Location Under
Disruptions. GERAD Technical Report, G-2018-91, 28 pages. Major revision at IN-
FORMS Journal on Optimization.

4. Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2019. Robust Facility Location Under De-
mand Uncertainty and Facility Disruptions. CIRRELT Technical Report, CIRRELT-
2019-53, 23 pages. Major revision at Omega: The International Journal of Management
Science.

5. Cheng, C., Adulyasak, Y., Rousseau, L.-M., Sim, M., 2020. Robust Drone Delivery
with Weather Information. Available at http://www.optimization-online.org/DB_
FILE/2020/07/7897.pdf. Submitted to Operations Research.

At the beginning of each chapter, we give details on the chapters that are part of the articles.

The remainder of this thesis is organized as follows. Chapter 2 reviews related literature on
facility location and drone delivery problems. Chapter 3 studies the facility location problem

http://www.optimization-online.org/DB_FILE/2020/07/7897.pdf
http://www.optimization-online.org/DB_FILE/2020/07/7897.pdf
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under disruptions. Chapter 4 examines the facility location problem under demand uncer-
tainty and facility disruptions. We further study a three-echelon LNDP under disruptions in
Chapter 5. This is followed by the MTDRP in Chapter 6. The drone delivery problem with
uncertain weather is studied in Chapter 7. We conclude this thesis in Chapter 8.
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CHAPTER 2 LITERATURE REVIEW

This chapter reviews related works on facility location problems under uncertainty and drone
delivery problems.

2.1 Facility Location Under Uncertainty

Flexible supply chains are expected to adapt effectively to supply disruptions and demand
changes while maintaining customer service levels [31]. To mitigate supply chain risks, several
strategies can be utilized to add redundancy to the system, e.g., inventory management,
sourcing flexibility, demand substitution, and facility location [32,33]. In this thesis, we use
facility location to enhance supply chain flexibility, and thus related works on facility location
under uncertainties are reviewed. For deterministic facility location problems, where all the
parameters are known perfectly at the time of making decisions, interested readers can refer
to the textbook [34].

In facility location problems, the uncertainty can be generally classified into three types:
provider-side uncertainty, receiver-side uncertainty, and in-between uncertainty [35]. The
provider-side uncertainty includes uncertain facility capacity, status (operational or failed),
and supply lead time. The receiver-side uncertainty captures randomness in demand. The
in-between uncertainty involves uncertain transportation costs/times and arc status. These
three types of uncertainty have been widely considered in the literature.

Provider-side Uncertainty. Supply chain disruption is not a new concept; it has existed as
long as the supply chain itself. However, in recent years it has received increasing attention.
The authors of [32] give four reasons for the explosion of interest: (1) high-profile events,
such as the 9/11 terrorist attack in the United States and the Japanese earthquake, have
brought disruption to the forefront of public attention; (2) the “just in time” concept leaves
little room for adjustment, and this significantly exacerbates the impact of disruption; (3)
with the development of the global supply chain, suppliers are more integrated and some
are located in economically or politically unstable regions; (4) as with any other maturing
research area, scholars study this topic because of its high profile.

The reference [36] was the first to consider disruptions in facility location models and the
author introduced the unreliable p-median problem (PMP) and the (p, q)-center problem. In
the former, each facility has a given probability of being inactive; in the latter, p facilities
must be built to minimize the maximum cost when at most q facilities are disrupted. The
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authors of [4] introduce the reliable PMP and the reliable uncapacitated fixed-charge loca-
tion problem (UFLP), where all the facilities have the same disruption probability. They
minimize the weighted sum of the nominal cost and the expected transportation cost of dis-
ruption scenarios. In [5], the authors relax the constraint that all the facilities have the same
disruption probability and consider site-dependent probabilities in the UFLP. They propose
a mixed-integer programming (MIP) formulation and a continuous approximation model.
The MIP model is solved by Lagrangian relaxation. The reference [6] studies a reliable
inventory-location problem. The authors assume that each facility has an equal probability
of disruption. Each customer may receive service from a sequence of R ≥ 1 facilities, i.e., in
the normal scenario a customer is serviced by its level-1 facility, and when its level-r facility
fails, it will be assigned to its level-(r+1) facility. If all R facilities fail, the customer will
not be serviced, and there is an associated penalty. The authors of [7] present a reliable
location-routing problem. Their problem setting is similar to that of [6], except that they
make routing decisions instead of inventory policies. The reference [35] studies a reliable
UFLP, which is first formulated as a two-stage stochastic program and then as a nonlin-
ear integer program. Several heuristics are developed for this problem. The authors of [37]
study the UFLP in a stochastic optimization framework by incorporating risk preferences.
They propose conditional value-at-risk- and absolute semideviation-based models to control
the risk of transportation cost at each customer. The authors of [38] study a reliable PMP
and a reliable UFLP, where each facility has a heterogeneous failure probability and each
customer is allocated to a primary facility and a back-up facility. They propose an evolu-
tionary learning algorithm to solve the problem. The reference [39] studies a reliable service
network design problem, where customers must pass certain network access points to reach
facilities for services. The authors assume that each network access point is associated with
a site-dependent failure probability and minimize the expected system cost. The work in
[40] addresses the reliable UFLP with correlated disruptions, which is solved by Lagrangian
relaxation based algorithms. The authors of [41] explore the reliable supply chain network
design problem with partial disruptions. A two-stage stochastic programming model is de-
veloped, which is solved by a Benders decomposition method. The reference [42] studies
a reliable PMP. The authors of [43] propose a distributionally RO (DRO) model for the
UFLP with correlated disruptions. They assume that the exact probability distribution of
disruption scenarios is unknown but lies in a distributional uncertainty set, such that the
marginal disruption probability of a site is equal to a given value. The expected cost under
the worst-case distribution is minimized. For more details on reliable facility location, see
the review papers [32] and [44].

Receiver-side Uncertainty. For early works of facility location under demand uncertainty,
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see the review paper [45]. In reference [46], a multi-period facility location problem under de-
mand uncertainty is studied, where a box uncertainty set and an ellipsoid uncertainty set are
used. The authors of [47] are the first to study the two-stage robust location-transportation
problem (LTP), and a cutting plane algorithm is applied. They compare solutions gener-
ated by the two-stage RO method, one-stage (also known as static) RO method, and the
two-stage stochastic programming method. For the same problem, the study in [14] focuses
on comparing the performance of the C&CG algorithm and the Benders-style cutting plane
method. The reference [18] studies a multi-period LTP and develops various approximation
schemes to solve the problem based on the affine policy (AP). The authors of [48] study a
multi-period LTP with multiple items and integer-valued demand uncertainty. Adjustable
RO formulations are developed for the problem. The reference [49] studies the robust facility
location under decision-dependent uncertain demand. Specifically, the demand at a customer
node increases if there are new facilities opened in the customer’s neighborhood. The DRO
method is used to model the problem and the resulting model is reformulated to a mixed-
integer linear programming (MILP) model, which is further enhanced by valid inequalities.
The authors of [50] develop a DRO model for the uncapacitated facility location problem
under demand uncertainty, where the distribution of customer demand is assumed to lie in
an ambiguity set. The authors of [51] extend the work in [50] to the capacitated cases, where
a two-stage DRO method is used.

In-between Uncertainty. The in-between uncertainty captures the randomness of the links
between the provider-side and the receiver-side. It might be uncertain travel times or costs
between the suppliers and the customers, or the failures of links resulting from unexpected
events. The reference [52] studies a p-hub center location problem under uncertain travel
times. A chance constrained programming approach is used and the deterministic equivalent
model is solved by a genetic algorithm. The authors of [53] consider a two-echelon facility
location problem, where products are first delivered to depots and then from depots to
customers. The transportation costs in both echelons are uncertain. They use budgeted
uncertainty sets and a static RO method for the problem. In [54], a single-commodity flow
network design problem with multiple concurrent edge failures is addressed. The authors
formulate the problem as a two-stage RO model and solve it with a C&CG algorithm.

Simultaneous Consideration of Multiple Uncertainties. There also exist studies that
consider multiple types of uncertainties simultaneously. For example, the reference [55] stud-
ies a closed-loop supply chain network design problem, where box uncertainty sets are used
to describe the randomness in demand, returns, and transportation costs. The authors of
[56] study a network design problem in the post-disaster environment, where demand- and
network-related uncertainties are present. They use a two-stage stochastic programming



9

method to model the problem, and develop a Benders decomposition-based branch-and-cut
algorithm to solve it. The reference [57] considers both uncertain demand and transportation
costs in uncapacitated hub location problems. The authors use budgeted uncertainty sets
to characterize both uncertainties and the duality technique to reformulate the static robust
models. For the same types of uncertainties, the work of [58] applies the DRO method to
both the uncapacitated and capacitated hub location problems. The authors of [59] study a
supply chain network design problem, considering supply-side and demand-side uncertainties
simultaneously. They assume demand variables follow a known distribution function and
describe supply-side uncertainty (facility disruptions and link failures) through scenarios.
The reference [60] studies a humanitarian network design problem, which includes suppli-
ers, relief distribution centers, and affected areas. Installation costs of distribution centers,
shortage costs at affected areas, transportation costs at both echelons, supply capacity, and
demand are subject to uncertainties. The authors use budgeted uncertainty sets to describe
randomnesses and a static RO method to model the problem. The authors of [61] apply
the two-stage RO method to optimize the operations of pre- and post- disasters. In partic-
ular, decision-makers locate facilities and pre-position inventories before a disaster. After a
disaster, they deliver commodities to affected regions. The authors assume the demand of
commodities, the residual inventories (caused by partial disruptions of facilities), and the ca-
pacities of transportation arcs to be uncertain. The reference [62] considers a facility location
problem in global sourcing under arc disruptions and uncertain demand, which is solved by
a two-stage RO scheme.

Network Design Under Disruptions. Although supply chain disruption has received
extensive attention, research into disruptions in the context of network design is scarce [32].
The reliable LNDP extends the reliable facility location problem by considering multiple
echelons—supplier nodes, transshipment nodes, and demand nodes, and by allowing both
the supplier and transshipment nodes to be destroyed.

The authors of [63] propose several scenario-based models (each scenario has an occurrence
probability) for designing supply chains that are resilient to disruptions. They first present
a reliable network design model for a network that will be built from scratch. For existing
networks, they provide fortification models and indicate that the reliability of the existing
facilities can be enhanced by investing in protection and security measures. The reference
[64] studies a reliable LNDP with a p−robustness criterion, the objective of which is to min-
imize the nominal cost. The authors propose a scenario-based MIP model and develop a
hybrid genetic algorithm. In their numerical tests they randomly generate several scenarios,
where each facility has a 10% probability of becoming disabled. The authors of [65] consider
a capacitated supply chain network design model in which both the facilities and the trans-
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portation network have a given probability of disruptions. They assume that the facilities are
partially destroyed when disruptions occur and that the customers of a disrupted distribution
center (DC) are not assigned to other DCs; instead, the capacity lost at the disrupted DC
is replenished from non-disrupted DCs. They formulate a linear MIP model and propose a
modified BD method. The reference [66] studies a reliable facility location/network design
problem with a constraint on the maximum allowable failure cost. The facilities and network
links are assumed to be uncapacitated. At most one facility fails at a time, and the demand
nodes served by the disrupted facility must be reallocated to the nearest surviving facility.
The objective is to minimize the transportation cost. The work in [67] studies the influence
of disruptions on the competitiveness of supply chains and proposes three policies to mitigate
the disruption risk.

From the literature, we can get the following observations:

1. Most studies assume that the probability information of disruptions is known perfectly
a priori; only a few papers consider distribution-free methods. However, in realistic
applications, it is often difficult to identify the distribution of disruptions, especially
those caused by natural disasters. Thus, more distribution-free frameworks are needed
to describe the randomness of disruptions and solve the resulting models.

2. Most works consider one type of uncertainty at a time. Although some papers consider
multiple types of uncertainties simultaneously, their modeling schemes may produce
overly conservative solutions as all the decisions are made here-and-now [55,60], or
relatively optimistic solutions because it is impossible to enumerate all the disruption
scenarios [59]. Thus, adaptive methods with more accurate description of disruptions
are needed to model systems with multiple types of uncertainties.

3. Research on reliable network design is relatively scarce, especially in the framework of
RO. Therefore, more works are needed for the reliable design of multi-echelon systems,
where facilities at different levels may expose to disruptions.

2.2 Drone Delivery Problem

Besides operational challenges like multi-trip planning and energy consumption calculation,
a drone delivery system has to mitigate the risks of weather uncertainty. Uncertain wind
conditions, i.e., speeds and directions of the wind, could affect the transit times of the drones
to their destinations, leading to late deliveries or even cancellations of services [26]. Some
reports [27–29] indicate that the future of drone delivery depends on drones’ capabilities to
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adapt to different weather scenarios. Thus, we divide the literature reviewed here into two
categories: drone delivery without and with consideration of weather influence.

2.2.1 Drone Delivery Without Consideration of Weather Influence

Since most studies do not consider the influence of weather conditions, we further divide the
literature on drone delivery into two subcategories: drone-only problems and truck-drone
problems. For drone-only problems, only drones are used in the delivery system. For truck-
drone problems, both trucks (one or multiple) and drones are used simultaneously. A truck
can be used either as a tool to carry drones (i.e., the truck does not have delivery tasks)
or for both delivery tasks and as a temporary hub to launch/retrieve drones. Trucks and
drones can also work in parallel making deliveries. As our work in Chapter 6 is also closely
related to the multi-trip vehicle routing problem (MTVRP), we also review related works on
MTVRP here.

Drone-only Problems. Studies on drone-only delivery systems normally assume that there
are multiple drones and that each drone can cover one or several customers per trip. The
authors of [68] study an automated drone delivery system, where all customers’ demands are
the same. They use the relationship among battery capacity, payload, and flight range to
optimize the drone fleet size. The reference [69] describes the implementation steps used to
assign a fleet of heterogeneous UAVs to deliver items to target locations. Each order placed by
a customer can include one or multiple items. Because of drones’ limited payload, one order
may not be completely fulfilled in one trip; thus, multiple deliveries might be required. The
authors use a genetic algorithm to solve the problem, where a multi-dimensional chromosome
representation is introduced. The work in [2] proposes two vehicle routing problem (VRP)
variants for drone delivery. The first one minimizes the total operating cost subject to a
delivery time limit, and the second one optimizes delivery time subject to a budget constraint.
The costs include drone fleet cost and energy cost. Instead of dealing directly with the
original form of the power function, which is nonlinear, the authors use a linear approximation
function to calculate the power consumption which varies linearly with payload and battery
weight. To save cost, each drone can perform multiple trips and visit multiple customers per
trip. They use a simulated annealing (SA) heuristic to solve the models. The authors of [70]
study a drone delivery problem with time windows and a trip duration limit. They minimize
three different objectives: travel distance, the number of drones used, and the number of
batteries required. When imposing the linear energy constraints, the battery capacity is
reserved at 20% to be a buffer for unusual conditions.

Some works study the impacts of drone delivery on costs and carbon dioxide (CO2) emissions.



12

The authors of [71] analyze the feasibility of using drones for package delivery in terms
of energy requirement and economics. They approximate power consumption as a linear
function of payload and velocity. The work in [72] assesses the potential of drones in reducing
CO2 emissions generated by the electricity supply chain and provides a comparison of this
system with delivery using diesel vehicles and electric trucks/tricycles. The authors also
consider the emissions from the vehicle production and disposal phases. The study in [73] uses
the same battery reservation policy as in [70] when studying the energy use and environmental
impacts of drones for last-mile delivery in comparison with medium-duty trucks. The power
function in [73] for hovering takes a similar form as that in [2].

There are also studies focusing on drone energy models, where the drones’ flying status is
considered. The authors of [74] derive a theoretical model to calculate the multirotor drone’s
power consumption. They identify the model’s parameters by performing field tests. In their
experiments, they consider different drone statuses in a flight path: ascend/descend, hover,
and straight line fight. The study in [75] compares the energy demands of drone-based and
ground-based (diesel trucks and electric trucks) parcel delivery services. Factors like drone
weight, speed, head wind speed, and other drone parameters are taken into account for
energy calculation. The authors of [76] review energy consumption models for drone delivery.
They identify key factors that affect drone energy consumption and discuss similarities and
differences among various models. For cruising flight, drone power consumption can be
modeled as a convex function of a drone’s total weight [73–75], while for hovering it is
proportional to the weight to the power 1.5 [2].

Truck-drone Problems. The truck-drone tandem system is the most intensively studied
area in drone delivery problems. Most papers in this area assume that during each trip a
drone can visit only one customer. The reference [30] considers two types of truck-drone
delivery problems. The first is the flying sidekick traveling salesman problem (FSTSP),
where one truck carries one drone to deliver parcels to a set of customers. As the driver
performs deliveries, the UAV is launched from the truck, delivering a parcel for an individual
customer, then the truck and the drone rendezvous at a new customer location. The second
problem in [30] is the parallel drone scheduling traveling salesman problem (PDSTSP), where
multiple drones make single-stop delivery trips from the depot while a single truck serves
other customers without carrying any drone. The objective of both problems is to minimize
the time required to service all customers and return to the depot. Simple heuristics are
used to solve both problems. The work in [77] uses a SA heuristic to solve the FSTSP.
The authors of [23] use a route first-cluster second heuristic to solve a variant of the FSTSP
where the truck can wait at the start node for the drone to return. The authors of [78] and
[79] use a dynamic programming (DP) approach and a branch-and-bound (B&B) algorithm
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for the same variant, respectively. The reference [80] extends the FSTSP by allowing the
launch and rendezvous operations to be performed not only at a node, but also along a
route arc. A greedy randomized adaptive search procedure is developed for the problem.
The authors of [81] extend the FSTSP by considering energy consumption and no-fly zones.
They use the power consumption linear approximation from [2] and propose an evolutionary-
based heuristic solution algorithm that integrates constructive and search heuristics. The
authors of [82] use a truck-drone tandem system to minimize latency in a customer-oriented
distribution system. They compare the benefits of using drones for a single trip versus
multiple trips. The work in [83] extends the PDSTSP by assuming that drones can perform
two types of tasks: drop-off and pickup. A constraint programming method is applied. The
reference [84] studies a same-day delivery problem with trucks and drones, where customer
orders come dynamically during a shift. The authors present a Markov decision model and
an approximate DP algorithm to solve the problem.

Some studies consider multiple trucks where each is equipped with one or multiple drones.
The authors of [85] and [86] consider a fleet of homogeneous trucks with multiple drones
per truck. Their objective is to minimize the maximum duration of the routes, and they
focus on the worst-case analysis. The study in [87] extends the problem by considering time
window constraints. The work in [88] allows docking hubs where trucks can drop off, and
drones can pick up, parcels for delivery maintain backup drones. The authors present an arc-
based model and develop a branch-and-price (B&P) algorithm. The authors of [89] study the
multiple FSTSP with variable drone speeds. They assume that drone power consumption is
a function of speed and payload, which affects flight endurance and range.

Sometimes the truck is only used for carrying drones and packages without making any
deliveries itself [90,91]. The authors of [92] use continuous approximation techniques to
derive the improvement of service quality (i.e., the completion time of all deliveries) by using
a truck-drone system. Unlike other studies, they do not restrict the drone launch/retrieval
locations to be customer sites. The study in [93] also uses a continuous approximation
approach to derive general insights from the aspect of cost.

Multi-trip Vehicle Routing Problems. The MTVRP extends the classical VRP by al-
lowing each truck to perform multiple trips. The reference [94] is the first to study this
problem. The author develops a modification of the saving algorithm and uses a bin packing
heuristic to assign routes to vehicles. The authors of [95] develop a B&P algorithm for the
MTVRP with time windows (MTVRPTW). Their numerical tests focus on the type 2 in-
stance sets in [96]. The reference [97] proposes a network flow model based on generated trips
for the same problem. The work in [98] develops two set-partitioning-like formulations for
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the MTVRP. The authors of [99] develop an exact two-phase algorithm for the MTVRPTW
with a trip duration limit. In the first phase, they enumerate all feasible trips; in the second
phase, they use a B&P algorithm to select the best set of schedules. For the same problem,
the authors of [100] and [101] develop an adaptive large neighborhood search and a route
pool-based metaheuristic, respectively. In [102], the authors develop two set covering formu-
lations for the MTVRPTW without the trip duration constraint and uses B&P algorithms.
The authors compare the two models on instances with the first 25 customers of Solomon’s
“C2”, “R2”, and “RC2” instances.

In the review paper [103], the authors suggest that there are four ways to formulate the
MTVRP. The first one is the 4-index formulation, which uses both the vehicle index and the
trip index. Specifically, a binary variable xvrij is defined to denote whether trip r of vehicle v
travels through arc (i, j). The second and the third ones are the 3-index formulations with
either a trip index, or with a vehicle index, respectively. That is, a variable xrij (xvij) is used
to denote whether trip r (vehicle v) travels through arc (i, j). And the last one is the 2-index
formulation using a variable xij, i.e., neither a vehicle nor a trip index is used. For the
3-index formulation with a trip index, since the number of trips performed by each vehicle
is unknown, one has to set a sufficiently large cardinality for the trip set, resulting in a weak
model with a large number of variables. Or, we can impose an upper bound on the maximal
number of trips each vehicle can perform. For the 3-index formulation with a vehicle index,
symmetries resulting from identical vehicles are introduced to the model, which make the
formulation weak. The authors of [103] indicate that the only compact formulation for the
MTVRP is proposed by [104], where a 2-index formulation is applied. The work in [105] also
uses a 2-index formulation for a multi-trip cumulative capacitated VRP, where the objective
is to minimize the sum of arrival times at required nodes.

2.2.2 Drone Delivery With Consideration of Weather Influence

One major aspect which makes drone delivery problems particularly challenging, as opposed
to the common vehicle delivery problems, is the influence of weather conditions on drones’
operational efficiency. Some recent studies attempted to tackle this important issue by incor-
porating weather conditions either directly or indirectly into the optimization models. The
authors of [106] study a drone routing problem considering the impact of wind on energy
consumption. They first assume that each drone travels at a fixed speed during a trip and
the wind speed and direction remain unchanged (i.e., given parameters) during the time
horizon. They further assume that the total weight of a drone is constant during a trip.
As all of the influencing factors are given parameters, energy consumption on each arc is
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a constant number. Thus, energy constraints are ultimately transformed into generalized
resource constraints. The authors of [107] design a decision support tool for the multi-trip
drone fleet mission planning problem under different weather conditions by decomposing the
problem into several subproblems. They first divide the time period into several flying time
slots, and the weather condition in each slot is known and analogous. They then determine
the clusters of customers for each slot and the routes for each cluster. Finally, they decide
on the sequence of routes within each cluster. The work in [108] considers the influence of
wind and obstacles on flight time by setting symmetric and asymmetric flight distances.

The authors of [109] study a drone location routing problem under different weather con-
ditions. They state that weather such as snow, fog, and heavy rain would limit drones’
operations in some regions. In their study, weather scenarios are known with an occurrence
probability, and each scenario indicates whether a specific region can operate drones. They
formulate the problem as a two-stage stochastic programming model. The authors of [110]
study a stochastic drone facility location problem. They assume that battery energy con-
sumption can be negatively affected under certain weather conditions, which in turn affects
drones’ flight range. In order to incorporate the risk due to weather conditions, a chance
constraint is used to ensure that the probability that a drone’s flight range is larger than or
equal to the travel distance between a facility and a customer is acceptable. They specifi-
cally assume that the flight range follows an exponential distribution, and reformulate the
resulting model as a mixed-integer linear programming model. The reference [111] considers
a drone scheduling problem with uncertain flight ranges, resulting from the impact of air
temperature on battery duration. The authors use a RO method for the problem and com-
pare the performance of three uncertainty sets—polyhedral, box, and ellipsoidal. They use
historical and forecast data to estimate the hourly temperature (a span of 12 hours) over an
area, then calculate the flight range deviation using a regression function. These deviations
are fixed values and considered as different scenarios with weights. Thus, their uncertainty
sets are constructed to represent the randomness of the scenario weights.

Our work in Chapter 7 considers the impact of weather conditions on drones’ flight times,
and it falls within the realm of data-driven RO. Thus, we also briefly review related works
on data-driven RO here, where the key step is to construct an uncertainty or ambiguity set
from historical data. Details on the construction of these sets can be found in [112–115].
Recently, the authors of [116] propose an event-wise ambiguity set, which is rich enough to
capture a wide range of ambiguity sets such as statistic-based and machine-learning-based
ones. The works in [117] and [118] are novel applications of the framework proposed in
[116]. Specifically, the work in [117] addresses a single-period vehicle allocation problem with
uncertain demand, which is related to weather conditions (rainy or not rainy). The authors
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use a multivariate regression tree to construct the ambiguity set. The reference [118] studies a
two-period, multi-item joint pricing and production problem, where the K-means clustering
algorithm is utilized to partition the demand residuals and then a cluster-wise ambiguity set
is constructed.

Based on the aforementioned studies, we get the following observations:

1. Only a few studies explicitly consider drone energy consumption, among which many
use an approximation that is linear in the payload. However, the solutions generated
by the linear approximation method may fail to detect infeasible routes due to excess
energy consumption.

2. To the best of our knowledge, no benchmark instance is available for algorithm eval-
uation, and no efficient exact algorithm is developed for the drone routing problem
(DRP). These gaps put a limitation on algorithm development for the DRP.

3. The impact of weather on drone delivery is either ignored completely or considered
in a simplified way. Specifically, future weather conditions (or flight range/time) are
assumed to be deterministic, or follow a known distribution, or belong to some scenarios
with known probabilities at the moment of making decisions. Only reference [111] uses
a distribution-free method; however, the authors consider limited deviation scenarios
and need to specify the budget or radius of the uncertainty sets. Therefore, more
research is needed to solve the drone delivery problem under weather uncertainty.
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CHAPTER 3 ROBUST FACILITY LOCATION UNDER DISRUPTIONS

This chapter is based on the following article.

• Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2018. Robust Facility Location Under
Disruptions. GERAD Technical Report, G-2018-91, 28 pages. Major revision at IN-
FORMS Journal on Optimization.

3.1 Introduction

In this chapter, we develop two-stage RO models for the reliable uncapacitated/capacitated
fixed-charge location problem (UFLP/CFLP). In the first stage we make location decisions,
and in the second stage we make recourse decisions (i.e., we reassign customers to surviving
facilities). The goal is to guarantee the system’s performance under disruptive scenarios.
The contributions of our work are as follows:

1. We compare the numerical efficiency of exhaustive scenario search to the usual MILP
reformulation when solving the NP-hard adversarial problem that arises in a step of
the C&CG algorithm.

2. We validate the numerical efficiency and quality of solutions obtained when employing
affine decision rules on this class of problems.

3. To illustrate the use of a bi-objective approach to better trade-off between the reliabil-
ity cost and the nominal cost, we impose an upper bound on the nominal cost when
robustifying the system. The results demonstrate that the bound constraints can fur-
ther reduce the conservativeness of the robust solutions and serve as a decision support
tool indicating the trade-off between reliability and nominal cost.

Based on the literature review in Chapter 2, we observe that most studies of the facility
location problem under disruptions assume that the probability distribution of disruptions is
known perfectly a priori. Only the authors of [42] and [43] use distribution-free approaches.
We emphasize that our work differs from their studies in the following aspects. The authors of
[42] study the reliable PMP and explore the modeling capability of the two-stage RO method
by taking into account demand variations. Specifically, they introduce a parameter ϑ (not a
random variable) to denote demand change and study its effect by setting it to a negative
value, 0, and a positive value in numerical tests. Note that they assume the facility set J
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and the customer set I be the same, which makes it possible to incorporate ϑ into the model,
because there should be a link between disruptions and demand variations. In their setting,
since J = I, disruptions may occur at a customer site (which is also a facility site), resulting
in demand variations. They evaluate their C&CG algorithm by a comparison with the BD
method. However, we study the reliable FLP and propose two solution methods. First,
we use a LP-based enumeration method for the subproblem in order to evaluate the worst-
case recourse scenario in the C&CG algorithm. This approach does not require to set big-M
values, and it also provides information for other potential worst-case scenarios, which can be
used to speed up the algorithm. Second, we introduce an approximation scheme based on the
affine policy for large instances, and we provide conditions under which this scheme produces
optimal solutions. We further introduce an enhancement to the robust formulations, which
can effectively reduce the conservativeness of solutions. We emphasize that our modeling
scheme is also able to incorporate demand variations for situations with J = I. The work
in [43] considers the UFLP with correlated disruptions, which are characterized by a joint
distribution. Therefore, DRO instead of two-stage RO framework is used. The authors first
exploit the structural property of the DRO model (supermodularity) and then reformulate
it as a stochastic program, where standard solution methods such as BD can be used. Their
numerical tests focus on quantifying the benefits of considering disruptions that are correlated
rather than independent.

The rest of this chapter is organized as follows. Section 3.2 presents the deterministic and
robust models for the FLP, and Section 3.3 describes the solution methods. Section 3.4
discusses the numerical results, and Section 3.5 provides concluding remarks.

3.2 Mathematical Models

In this section, we introduce the notation and present the robust models for the UFLP and
CFLP.

3.2.1 Notation

We consider a two-echelon supply chain system, where I and J are the sets of customer
nodes and facility sites, respectively. The parameter fj is the fixed cost of locating a facility
at candidate site j ∈ J , and Cj is the capacity of a facility at candidate site j ∈ J if we build
a facility there. The parameter hi is the demand at customer i ∈ I, and dij is the distance
from demand node i ∈ I to candidate location j ∈ J . For customer i ∈ I, the unit penalty
cost associated with unmet demand is pi. We use yj = 1 to indicate that a facility is located
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at site j ∈ J , and yj = 0 otherwise. The variable xij is the fraction of demand from node
i ∈ I that is satisfied by candidate facility j ∈ J , and ui is the fraction of unsatisfied demand
at site i ∈ I.

3.2.2 Robust UFLP

We first give the deterministic UFLP and then present the corresponding robust model. The
deterministic UFLP can be formulated as follows:

min
y,x,u

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij +
∑
i∈I

pihiui, (3.1a)

s.t.
∑
j∈J

xij + ui ≥ 1 ∀i ∈ I, (3.1b)

xij ≤ yj ∀i ∈ I, j ∈ J, (3.1c)

yj ∈ {0, 1} ∀j ∈ J, (3.1d)

xij ≥ 0 ∀i ∈ I, j ∈ J, (3.1e)

ui ≥ 0 ∀i ∈ I. (3.1f)

The objective (3.1a) minimizes the total cost, which includes the fixed facility location cost,
the demand-weighted transportation cost, and the penalty cost of unmet demand. Con-
straints (3.1b) indicate that the sum of the satisfied and unsatisfied demand must be greater
than or equal to the customer’s total demand. These constraints are inequalities rather than
equalities because this is a minimization problem and equality always holds at the optimum.
The inequality constraints make it easier to reformulate the model based on the affine policy
(see Section 3.3.2). Constraints (3.1c) ensure that demand nodes are assigned to opened fa-
cilities. Constraints (3.1d)–(3.1f) impose the integrality and non-negativity constraints. Note
that, in contrast to the model presented in [34], we incorporate the cost of unmet demand
in the objective. This allows us to find a trade-off between reassigning demand or leaving
it unmet when considering the robust reformulations and the CFLP variant. For the UFLP
where the facilities are uncapacitated, if the demand cannot be left unmet, we can set a
sufficiently large value for pi,∀i ∈ I such that each customer’s demand is fully satisfied and
it is not optimal to pay the penalty cost.

We now introduce the two-stage adjustable robust counterpart (ARC) model for the UFLP
under disruptions. The disruption risk is characterized by an uncertainty set ensuring that
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at most k facilities will fail simultaneously in a disruptive scenario [42]:

Z(k) =

z ∈ {0, 1}|J | :
∑
j∈J

zj ≤ k

 , (3.2)

where zj = 1 if facility j is disrupted, and zj = 0 otherwise. In Section 3.3.2, we prove that
Z(k) can be replaced by its convex hull, which facilitates us to develop a heuristic method
for the robust models.

The ARC model for the reliable UFLP is formulated as follows:

min
y,x(·),u(·)

sup
z∈Z(k)

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij(z) +
∑
i∈I

pihiui(z), (3.3a)

s.t.
∑
j∈J

xij(z) + ui(z) ≥ 1 ∀z ∈ Z(k), i ∈ I, (3.3b)

xij(z) ≤ yj(1− zj) ∀z ∈ Z(k), i ∈ I, j ∈ J, (3.3c)

yj ∈ {0, 1} ∀j ∈ J, (3.3d)

xij(z) ≥ 0 ∀z ∈ Z(k), i ∈ I, j ∈ J, (3.3e)

ui(z) ≥ 0 ∀z ∈ Z(k), i ∈ I. (3.3f)

The objective function (3.3a) minimizes the worst-case cost. We use x(·) and u(·) to indicate
that the allocation decisions are implemented once z is known, while y is the decision that
must be made before any realization of z. Constraints (3.3c) ensure that the demand nodes
are assigned to opened and surviving facilities in a disruptive scenario.

We note that our ARC model is also able to incorporate disruption-caused demand deviations
presented in [42]. Specifically, we first assume that I = J and then change the objective
function (3.3a) to

min
y,x(·),u(·)

sup
z∈Z(k)

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

(1− ϑzi)hidijxij(z) +
∑
i∈I

(1− ϑzi)pihiui(z). (3.4)

That being said, we will still focus on the models with objective (3.3a), due to the fact that ϑ is
treated as a parameter instead of a random variable. Moreover, there are many applications,
where candidate facility sites and customers are not exactly the same. For example, in global
supply chains, upstream factories and downstream customers are normally located in different
areas.
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3.2.3 Robust CFLP

The formulation for the deterministic CFLP is as follows:

min
y,x,u

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijxij +
∑
i∈I

pihiui, (3.5a)

s.t. (3.1b)–(3.1f) and (3.5b)∑
i∈I

hixij ≤ Cjyj ∀j ∈ J. (3.5c)

The objective functions of the deterministic UFLP and CFLP are the same. Constraints
(3.5c) ensure that once a facility is opened, its capacity is respected. They also ensure
that customers are allocated to opened facilities, so constraints (3.1c) become redundant.
However, we retain them because they can strengthen the linear programming relaxation
[34].

Similarly, we get the robust CFLP from (3.3a)–(3.3f) with the constraints

∑
i∈I

hixij(z) ≤ Cjyj(1− zj) ∀z ∈ Z(k), j ∈ J. (3.6)

In this robust CFLP, when facility j is disrupted, its capacity becomes 0 and its service
capability is totally lost. We refer to this as complete disruption. Our framework is also
able to incorporate partial disruption, where a damaged facility can still satisfy part of the
demand [64,119]. The reliable CFLP with partial disruption can be modeled with (3.3a)–
(3.3b), (3.3d)–(3.3f), and the constraints

∑
i∈I

hixij(z) ≤ Cjyj(1− ωjzj) ∀z ∈ Z(k), j ∈ J, (3.7)

where parameter ωj (0 < ωj ≤ 1) is the proportion of lost capacity at location j when a
disruption occurs. We give the model here to demonstrate the strong modeling capability of
the two-stage RO approach, but in the following sections we focus on complete disruption,
i.e., ωj = 1,∀j ∈ J . Because our solution method still applies with minor modifications.

3.2.4 Properties of the Robust Formulations

In this section, we present two properties of the robust formulations, based on which we
develop the solution method.

Lemma 3.2.1 Given the facility location ŷ, the uncertainty set Z(k), and two potential
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worst-case scenarios z1 ∈ Z(k) and z2 ∈ Z(k) with respective recourse costs B1 and B2, if
the set of functional facilities (i.e., those with ŷj = 1 and zj = 0) in scenario z1 is a subset
of functional facilities in scenario z2, then B1 ≥ B2.

Proof. See Appendix A.

Lemma 3.2.2 Given the facility location ŷ with ∑j∈J ŷj = m and the uncertainty set Z(k),
we have that if m > k, the worst-case disruptions occur at opened facilities, i.e., those with
ŷj = 1. If m ≤ k, the worst-case disruptions occur at all the opened facilities, and all the
demand in the system will be left unsatisfied.

Proof. This result follows from the proof of Lemma 3.2.1.

Lemma 3.2.2 indicates that when m > k, we can enumerate all the potential worst-case
scenarios by considering only the set of opened facilities instead of set J . This helps to
reduce the number of minimum cost flow problems to be solved in the subproblem of the
C&CG framework.

3.3 Solution Methods

In this section, we introduce a new C&CG algorithm and an approximation scheme for the
ARC models. For both models, we also implement the duality-based C&CG algorithm [42]
and the BD method as benchmarks. We close this section by discussing potential extensions
of our modeling and solution scheme to other applications.

3.3.1 Column-and-Constraint-Generation Algorithm

We implement the C&CG algorithm in a master-subproblem framework. At each iteration,
in the master problem, we make location decision ŷ. In the subproblem, for a given first-stage
solution ŷ, we identify the worst-case scenario. If the relative gap between the upper and
lower bounds satisfies the optimality tolerance, the algorithm terminates; otherwise we create
recourse variables and the corresponding constraints for the identified scenario, add them to
the master problem, and continue to the next iteration. In this section, we first present the
framework of the proposed C&CG algorithm for the two robust models and then introduce
an enhancement strategy to improve the computational performance.
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C&CG Algorithm for Robust UFLP

We use xl and ul to represent the allocation variables associated with the lth disruption
scenario, and zl is the status (disrupted or functional) of the facilities in the lth scenario.

The master problem for the robust UFLP is

φ = min
y,s,{xl}n

l=1,{ul}
n
l=1

s, (3.8a)

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijx
l
ij +

∑
i∈I

pihiu
l
i ∀l ∈ {1, . . . , n}, (3.8b)

∑
j∈J

xlij + uli ≥ 1 ∀l ∈ {1, . . . , n}, i ∈ I, (3.8c)

xlij ≤ yj(1− zlj) ∀l ∈ {1, . . . , n}, i ∈ I, j ∈ J, (3.8d)

yj ∈ {0, 1} ∀j ∈ J, (3.8e)

xlij ≥ 0 ∀l ∈ {1, . . . , n}, i ∈ I, j ∈ J, (3.8f)

uli ≥ 0 ∀l ∈ {1, . . . , n}, i ∈ I. (3.8g)

We use a LP-based enumeration method derived from Lemma 3.2.2 to solve the subproblem.
The details are as follows.

(a) For a given ŷ, when ∑
j∈J ŷi > k, we enumerate all the potential worst-case scenar-

ios (when k > 0, the uncertainty set has multiple extreme points, and each point is
potentially the worst-case scenario) and solve a minimum cost flow problem (MCFP)
associated with each scenario to identify the actual worst-case scenario. Let J̄ be the
new facility set in a scenario, which includes only the functional facilities. Then the
following MCFP is solved for each scenario:

ψ = min
x,u

∑
j∈J

fj ŷj +
∑
i∈I

∑
j∈J̄

hidijxij +
∑
i∈I

pihiui, (3.9a)

s.t.
∑
j∈J̄

xij + ui ≥ 1 ∀i ∈ I, (3.9b)

xij, ui ≥ 0 ∀i ∈ I, j ∈ J̄ . (3.9c)

To solve the MCFP, we use the Python NetworkX 2.0 package [120], which applies a
primal network simplex algorithm.

(b) If ∑j∈J ŷi ≤ k, in the worst-case scenario, all the opened facilities are disrupted and all
the customer demand is left unsatisfied.
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C&CG Algorithm for Robust CFLP

The master problem for the robust CFLP is defined by (3.8a)–(3.8g) and the constraints

∑
i∈I

hix
l
ij ≤ Cjyj(1− zlj) ∀l ∈ {1, . . . , n}, j ∈ J. (3.10)

Similarly to the subproblem of the robust UFLP, when ∑j∈J ŷj > k, we solve an MCFP for
each potential worst-case scenario in the subproblem of the robust CFLP, which is defined
by (3.9a)–(3.9c) and the constraints

∑
i∈I

hix
l
ij ≤ Cj ∀j ∈ J̄ . (3.11)

If ∑j∈J ŷj ≤ k, in the worst-case scenario, all the opened facilities are disrupted and all the
demand is left unsatisfied.

For comparison purposes, we give the duality-based C&CG algorithm and the BD method in
Appendix A and Appendix A for the robust UFLP and CFLP respectively. The subproblems
of both algorithms are obtained by applying duality theory. We note that our LP-based
enumeration method has two advantages over solving the dualized subproblem. First, we do
not need to set big-M values for the constraints, which helps to avoid numerical issues that
can arise with large parameter values. Second, we have cost information for all the potential
disruption scenarios, not just the actual worst-case scenario. Based this advantage, we next
introduce an enhancement to improve the convergence of the C&CG algorithm.

Multiple Scenario Generation. At each iteration we add multiple scenarios instead of
just one. Any replicated scenarios are eliminated before we solve the master problem. In
Section 3.4.2, we test four ways of adding the scenarios. The authors of [42] add two scenarios
at each iteration. Specifically, after obtaining the worst-case scenario by solving the dualized
subproblem, they create another disruption scenario by changing the disrupted facility with
the least demand to make it non-disrupted and changing the non-disrupted facility with
the greatest demand to make it disrupted. Note that the method for generating the second
scenario in [42] applies only to the case where I = J . However, our method can be used in any
situation. In addition, since the LP-based enumeration method evaluates all the potential
scenarios, no extra computational effort is needed to produce and evaluate an alternative
scenario in this framework.

Algorithm 1 describes the proposed C&CG algorithm.
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Algorithm 1: C&CG algorithm with LP-based enumeration method for subproblem
Step 1: Solve the deterministic model to find its optimal value c∗0 and optimal solution y∗0.
Let LB = −∞, UB =∞, n = 0. Set the initial solution to y∗0.
Step 2: Solve the subproblem with respect to y∗0 and obtain the cost information of all the
potential worst-case scenarios. Let ψ̂ be the worst-case cost. Update UB = min{UB, ψ̂}.
Set n = n+ 1. Create recourse variables and the corresponding constraints associated with
the selected scenarios; add them to the master problem.
Step 3: Iterate until the algorithm terminates:
Step 3.1. Solve the master problem to obtain ŷ and φ̂. Update LB = φ̂.
Step 3.2. Solve the subproblem to obtain the cost information of all the potential
worst-case scenarios and ψ̂. Update UB = min{UB, ψ̂}. Set n = n+ 1.
Step 3.3. if (UB − LB)/UB ≤ ε : an ε–optimal solution is found and the algorithm
terminates;

else: create recourse variables and constraints and add them to the master
problem; go to Step 3.1.

3.3.2 Robust Reformulations with Affine Policy

Another common technique for adjustable RO models is the affine policy, also known as the
linear decision rule (LDR), which restricts the adjustable variables to be an affine function of
the uncertain parameters [121,122]. This restriction often leads to tractable robust models
for realistically sized problems. The LDR is commonly used as a heuristic method and to
provide computational insights for exact algorithms. Before introducing the LDR for our
ARC models, we first present Lemma 3.3.1, which is a sufficient condition for the adoption
of LDR.

Lemma 3.3.1 For the robust UFLP and CFLP, when the uncertainty budget k is integer,
the uncertainty set Z(k) has an integrality property, that is, it can be replaced with its convex
hull

Z′(k) =

z ∈ R|J | : 0 ≤ z ≤ 1,
∑
j∈J

zj ≤ k

 .
Proof. See Appendix A.

The proof process of Lemma 3.3.1 also indicates that when ∑
j∈J ŷj ≥ k, the worst-case

scenario always occurs at the extreme points. And if ∑j∈J ŷj < k, all the opened facilities
would be disrupted as indicated in Lemma 3.2.2. Note that our proposed C&CG algorithm
does not take advantage from the integrality property here even though it does exist for both
the UFLP and the CFLP. Thus, the proposed C&CG framework can generally be applied to
the problems where such property does not hold (e.g., see Section 3.3.3).



26

Affine Policy for Robust UFLP

The integrality property of the uncertainty set makes it possible to reformulate the models
based on the LDR. We set xij(·) to xij = WT

ijz + wij and ui(·) to ui = AT
i z + ai, where

Wij ∈ R|J |, wij ∈ R,Ai ∈ R|J |, and ai ∈ R. Thus, the affinely ARC (AARC) model for the
robust UFLP is

min
y,W,w,A,a

sup
z∈Z′(k)

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidij(WT
ijz + wij) +

∑
i∈I

pihi(AT
i z + ai),

s.t.
∑
j∈J

(WT
ijz + wij) + (AT

i z + ai) ≥ 1 ∀z ∈ Z′(k), i ∈ I,

WT
ijz + wij ≤ yj(1− zj) ∀z ∈ Z′(k), i ∈ I, j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,

WT
ijz + wij ≥ 0 ∀z ∈ Z′(k), i ∈ I, j ∈ J,

AT
i z + ai ≥ 0 ∀z ∈ Z′(k), i ∈ I.

(3.12)

To solve the AARC model: (1) We can reformulate the model by first writing it in an
epigraph form and then applying duality to the robust constraints [122], which produces a
MILP model. We then feed the MILP directly to an optimization solver. (2) We can develop
a BD method for an equivalent reformulation of the model, following the idea in [18]. We
have implemented both methods, and our tests show that for our problem it is more efficient
to solve the MILP directly. The reformulation is given in Appendix A.

Affine Policy for Robust CFLP

The AARC model for the robust CFLP is defined by (3.12) and the constraints

∑
i∈I

hi(WT
ijz + wij) ≤ Cjyj(1− zj) ∀z ∈ Z′(k), j ∈ J. (3.13)

After applying duality to each robust constraint, we get the MILP reformulation, which is
given in Appendix A.

According to [123], for linear adjustable RO models with only right-hand-side uncertainty,
an LDR is optimal if the uncertainty set is a simplex. Therefore, for our problem, the AARC
model gives the optimal solution when k = 1. When 2 ≤ k < |J |, it produces an upper
bound on the true optimal value of the ARC model. When k = |J |, the affine policy with
Wij = 0, wij = 0, Ai = 0, and ai = 1 achieves the same worst-case cost as the optimal
worst-case cost. In this situation, both the exact algorithm and the approximation scheme
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identify solutions with no opened facilities.

3.3.3 Extension of Our Modeling and Solution Schemes for Other Applications

Multiple Uncertainty Sets. The authors of [124] suggest that multiple uncertainty sets
can be used to further reduce the conservativeness of robust solutions. To be specific, each
uncertainty set with different budget is assigned a weight to characterize decision makers’ risk
preference, and the overall cost of facility location and the weighted sum of the worst-case
cost is minimized. We note that our C&CG algorithm and the LDR can still be used in this
context. In the former method, one subproblem is solved using the LP-based enumeration
method for each uncertainty set. All the identified worst-case scenarios, recourse variables,
and corresponding constraints are added to the master problem in each iteration. In the
latter method, the constraints containing variables z in model (3.12) will be required to hold
for all the uncertainty sets. Duality theory can still be used to derive the reformulation.

Integer Recourse. We would like to emphasize that our proposed C&CG solution frame-
work allows the flexibility to tackle the problems when the dualization cannot be directly
applied. For example, suppose truckload shipping transportation is used to deliver products
for a supply chain. Besides facility location and customer allocation decisions, we also need
to decide the number of visit on each arc. Let vij be the number of visit to customer i from
facility j. dij is the fixed transportation cost of each visit to customer i from facility j. Q is
truck capacity. Take the robust UFLP for example, it is now formulated as

min
y,x(·),u(·),v(·)

sup
z∈Z(k)

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijvij(z) +
∑
i∈I

pihiui(z),

s.t. hixij(z) ≤ Qvij(z) ∀z ∈ Z(k), i ∈ I, j ∈ J,

vij(z) ≥ 0, integer ∀z ∈ Z(k), i ∈ I, j ∈ J,

and (3.3b)–(3.3f).

For this variant, the recourse variables vij,∀i ∈ I, j ∈ J take integer values, so the duality-
based method cannot be used. However, we can still use the LP-based enumeration method
for the subproblem.

3.4 Numerical Results

In this section, we present the instances and explore: (i) The efficiency of the multiple-scenario
technique and the performance of the proposed C&CG algorithm, compared to existing exact
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algorithms. We also compare the C&CG algorithm with other variants of facility location
problems under disruptions (Section 3.4.2). (ii) The impact of the LDR on the computational
complexity and solution quality (Section 3.4.3). (iii) The trade-off between the nominal cost
and worst-case performance. We enhance our robust formulations with an additional set of
constraints to evaluate this trade-off (Section 3.4.4).

3.4.1 Instances

We consider a 49-site data set from reference [34], available at https://daskin.engin.
umich.edu/network-discrete-location/. It is derived from 1990 census data. The 49
sites include the state capitals of the continental United States plus Washington, D.C. Based
on this set, we generate other instances using the first 10, 15, . . ., 30 nodes as the candidate
facility sites and the first 10, 15, . . ., 45 and 49 nodes as the customer sites. There are 35
instances in total. The demand hi = bPi/105c, where Pi is the population at node i. The
transportation cost dij = bEij × 20c, where Eij is the Euclidean distance between nodes
i and j. For simplicity, we use the same unit penalty cost pi for all the customers, i.e.,
p = pi,∀i ∈ I. To represent systems with different penalty costs, we set two values for p.
For each instance, we first calculate the transportation costs dij,∀i ∈ I, j ∈ J and then
rank them in nondecreasing order. The two values for p are the maximal value and the
(d0.8×|I|× |J |e)th value in the order. For convenience, we denote these values pmax and p0.8

. The meaning of p = pmax is that after a disruption all the demand must be fully satisfied
for the UFLP. For the capacitated models, we let the facility capacity Cj = dmax{hj, rj}e,
where rj is a randomly generated number between [D/10, 3D/10], and D is the total demand
of all the customers. We label the instances Fy-Cx-pd to indicate that there are y candidate
facility sites and x customers, and the unit penalty cost is pd. The details of the instances
and our results are available at: https://sites.google.com/view/chengchun/instances.

All the algorithms and models are implemented in Python using Gurobi 7.5.1 as the solver.
The computations are executed on a cluster of Intel Xeon X5650 CPUs with 2.67GHz and
24GB RAM under Linux 6.3. Each experiment is conducted on a four-core processor of one
node. The computational time limit is set to 24 hours, which is in line with other studies
considering facility location under uncertainty (48 hours in [18] and 96 hours in [57]). The
optimality tolerance ε is set to 0.01% for all the exact algorithms unless otherwise specified.

3.4.2 Comparison of Exact Algorithms

In this section, we first evaluate the impact of the multiple-scenario technique and then
compare the performance of the exact algorithms for the UFLP and CFLP. In the tables,

https://daskin.engin.umich.edu/network-discrete-location/
https://daskin.engin.umich.edu/network-discrete-location/
https://sites.google.com/view/chengchun/instances
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Gap is the percentage difference between the best upper and lower bounds; #Opt is the
number of instances solved to optimality; #Iter is the number of iterations; CPU is the
computing time in seconds to solve the instance. Bold font is used to indicate the best
results. Specifically, if an instance can be solved to optimality, the best computing time is
in bold; otherwise, the best gap is in bold. If #Opt is different for different algorithms, the
largest value is in bold.

Performance of Multiple-Scenario Technique

Each time, after solving the subproblem, we consider four options for adding the scenarios,
corresponding variables, and constraints: (i) only the worst-case scenario; (ii) both the worst-
case scenario and the second-worst scenario; (iii) the worst-case, the second-worst, and the
third-worst scenarios; (iv) the worst-case scenario and a randomly chosen scenario. The
experiments are performed on instances with k = 2 and k = 3, and the average results are
reported in Table 3.1.

Table 3.1 Performance of multiple-scenario technique (p = p0.8)

Only worst-case Worst-case
+ second-worst

Worst-case + second
+ third-worst

Worst-case
+ random scenario

Model Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU
UFLP 2.0 54/70? 91.5 27904.6 1.7 54/70 66.5 24614.7 2.0 54/70 59.3 23984.4 2.1 54/70 69.2 24924.2
CFLP 1.2 59/70 42.6 17577.0 0.9 60/70 26.4 16658.2 0.8 60/70 20.1 15729.8 0.8 60/70 26.6 16137.7
? indicates the number of instances (out of 70) that are solved to optimality.

Table 3.1 shows that for the robust UFLP, adding the worst-case and second-worst scenarios
gives the best optimality gap. For the robust CFLP, the multiple-scenario technique can solve
one more instance to optimality, and the average gap generated by the three implementations
of the technique is relatively close. Our tests for the robust PMP also give similar conclusions;
therefore, in the following sections, we use the worst and second-worst option to enhance the
C&CG algorithm.

Exact Algorithms for Robust UFLP

In the following sections, C&CG-E indicates the proposed C&CG algorithm (where the
LP-based enumeration method is applied for the subproblem) and C&CG-D indicates the
C&CG algorithm with the dualized subproblem. Table 3.2 presents the average results, and
the detailed results are given in Tables A.1–A.3.

When k = 2, both the C&CG algorithms significantly outperform the BD method, solving
more instances to optimality in a shorter time. Specifically, both C&CG algorithms can solve
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Table 3.2 Average results for the robust UFLP

C&CG-E C&CG-D BD

k p Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU

2 p0.8 0.0 35/35 38.5 5298.8 0.0 35/35 61.5 9479.7 14.1 18/35 2731.0 49430.9
pmax 0.0 35/35 24.8 1299.9 0.0 35/35 45.7 3815.5 15.9 16/35 3247.7 56230.1

3 p0.8 3.4 19/35 94.6 43930.6 4.0 19/35 121.3 44616.9 N/A
pmax 3.3 18/35 87.3 46206.2 3.9 17/35 120.6 46726.7 N/A

4 p0.8 9.8 14/35 153.2 57359.4 10.9 13/35 165.0 58191.8 N/A
pmax 11.0 17/35 122.9 52245.8 10.4 17/35 150.0 53551.9 N/A

N/A: No further experiments are performed.

all the instances to optimality, while the BD method can solve only 18 and 16 instances for
p = p0.8 and p = pmax respectively. Therefore, no experiments are performed for k = 3 and
k = 4 with the BD method. Compared to C&CG-D, the average CPU time of C&CG-E
is shorter and there are fewer iterations. Figure 3.1(a) plots the convergence curves of the
three algorithms for F10-C49-p0.8. It shows that C&CG-E finds the optimal solution after
13 iterations and that C&CG-D takes 22 iterations. However, the optimality gap of BD
is significant (around 12%) and it actually requires 364 iterations. When k = 3, one more
instance can be optimally solved by C&CG-E. Moreover, the average gap is smaller, there are
fewer iterations, and the CPU time is shorter. For k = 4 and p = pmax, C&CG-D provides a
smaller optimality gap while the CPU time and the number of iterations are greater.
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(a) Robust UFLP
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Figure 3.1 Convergence curves after 128 iterations for F10-C49-p0.8 with k = 2

Table 3.2 also indicates that the value of p has an influence on the computational efficiency.
In general, for the UFLP, the instances with p = p0.8 are more complex. In addition, from
Table A.1, we observe that for some instances, indicated by a black square, even though the
values of p are different, the worst-case cost is the same. However, the computational time
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varies.

Exact Algorithms for Robust CFLP

We present the summarized results in Table 3.3 and the detailed results in Tables A.4–A.6.
Table 3.3 shows that when k = 2, all the instances can be solved to optimality by both C&CG
algorithms. However, C&CG-E consumes less time on average. Similarly to the results for
the robust UFLP, BD takes the most time, and only a small number of the instances can be
solved to optimality. Figure 3.1(b) displays the convergence curves of the three algorithms.
It shows that for the robust CFLP, C&CG-E has the lowest number of iterations and BD
has the highest.

The results for k = 3 and k = 4 further demonstrate the superiority of C&CG-E, i.e., one
more instance can be solved when k = 3 and p = pmax, and the average gap and CPU time
are better for both budgets.

Table 3.3 Average results for the robust CFLP

C&CG-E C&CG-D BD

k p Gap #Opt #Iter CPU Gap #Opt #Iter CPU Gap #Opt #Iter CPU

2 p0.8 0.0 35/35 17.4 3308.4 0.0 35/35 28.7 4060.2 19.5 11/35 3303.6 62286.2
pmax 0.0 35/35 15.9 4653.4 0.0 35/35 27.0 5979.5 31.5 9/35 3455.8 64683.6

3 p0.8 1.7 25/35 35.5 30008.0 2.2 25/35 57.5 31516.5 N/A
pmax 2.4 25/35 31.4 28919.8 4.1 24/35 48.0 29649.4 N/A

4 p0.8 4.4 20/35 42.3 41172.4 4.7 20/35 64.9 42041.0 N/A
pmax 6.4 21/35 38.6 39382.0 7.6 21/35 57.6 40966.4 N/A

Table 3.4 Statistics of average CPU time for master and sub problems

C&CG-E C&CG-D Time reduction
factor C&CG-E C&CG-D Time reduction

factor
Model k p Master Sub Master Sub Master Sub Model k p Master Sub Master Sub Master Sub
UFLP 2 p0.8 5295.7 0.5 9463.1 12.2 1.79 23.76 CFLP 2 p0.8 3306.0 1.6 4050.0 9.0 1.23 5.82

pmax 1298.4 0.4 3803.0 10.1 2.93 23.37 pmax 4650.7 1.9 5967.4 10.8 1.28 5.67
3 p0.8 43919.4 1.1 44583.3 21.2 1.02 18.55 3 p0.8 29998.2 6.7 31490.8 21.6 1.05 3.21

pmax 46193.4 1.8 46689.0 24.6 1.01 13.89 pmax 28908.2 8.9 29623.3 22.7 1.02 2.56
4 p0.8 57341.0 1.0 58148.3 24.9 1.01 24.18 4 p0.8 41155.5 13.1 42011.5 24.6 1.02 1.88

pmax 52229.5 1.7 53508.4 26.5 1.02 15.80 pmax 39355.7 22.7 40930.1 31.7 1.04 1.39

Statistics of CPU Time for Master and Sub Problems

Table 3.4 presents the statistical results of the CPU time spent on the master and sub
problems respectively. The time reduction factor is calculated as the time spent by the
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C&CG-D algorithm divided by the time spent by the C&CG-E algorithm. A time factor equal
to 2 indicates that the problem spends only half the time using the C&CG-E compared to
using the C&CG-D. Table 3.4 shows that the main time reduction comes from the computing
time for the master problem, which indicates that the cuts generated from the second-worst
scenarios can improve the convergence of the C&CG algorithm. When k = 3 and k = 4, the
time factor of the master problem is only a bit larger than 1, this is because some instances
are not solved to optimality and the time limit is reached.

Table 3.5 Results for uncapacitated p-median problem under disruptions

Unit penalty cost = 15 Unit penalty cost = pmax

C&CG-E C&CG-D in [42] C&CG-E C&CG-D in [42]

|J | % p k Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU

25 0.2 8 1 0.0 1 0.3 0.0 4 2.6 0.0 1 0.3 0.0 4 2.0
2 0.0 5 3.7 0.0 5 2.8 0.0 5 7.6 0.0 5 3.2
3 0.0 21 58.8 0.0 58 578.2 0.0 35 322.5 0.0 70 1364.8

10 1 0.0 1 0.2 0.0 1 0.6 0.0 1 0.4 0.0 1 0.6
2 0.1 3 2.4 0.0 5 3.8 0.1 3 2.9 0.0 5 3.3
3 0.0 5 6.4 0.0 9 10.4 0.0 7 15.0 0.0 11 12.1

0.4 8 1 0.0 3 1.0 0.0 4 2.0 0.0 3 3.7 0.0 4 2.2
2 0.0 8 7.3 0.0 13 12.7 0.0 8 9.7 0.0 13 15.7
3 0.0 46 492.5 0.0 96 1718.8 0.0 64 4159.7 6.9 92 7359.1

10 1 0.0 1 0.3 0.0 1 0.5 0.0 1 1.0 0.0 1 0.6
2 0.0 4 3.3 0.0 6 3.5 0.0 4 16.4 0.0 6 4.4
3 0.0 13 27.2 0.0 22 36.3 0.0 14 55.6 0.0 25 59.5

49 0.2 8 1 0.0 1 1.2 0.0 3 4.9 0.0 1 3.8 0.0 3 9.1
2 0.0 6 22.4 0.0 9 29.0 0.0 27 4604.8 5.0 44 7429.3
3 1.6 38 7618.4 3.6 61 7426.4 9.0 33 7544.5 10.2 43 7661.3

10 1 0.0 1 0.9 0.0 1 1.5 0.0 1 1.4 0.0 1 2.2
2 0.0 6 36.3 0.0 11 71.9 0.0 6 58.9 0.0 11 110.0
3 0.0 27 4280.2 0.0 40 7241.1 7.1 28 7223.8 12.1 52 7272.8

0.4 8 1 0.0 2 4.1 0.0 3 4.8 0.0 2 5.5 0.0 3 11.2
2 0.0 17 747.0 0.0 29 1334.7 8.5 24 7661.8 17.5 46 7458.9
3 11.0 32 7227.2 15.6 44 7821.3 21.5 27 7507.7 23.1 33 7834.5

10 1 0.0 2 3.8 0.0 3 5.0 0.0 2 4.8 0.0 3 5.1
2 0.0 13 683.0 0.0 30 1468.7 0.0 13 788.0 0.0 30 3069.0
3 11.7 24 7355.0 10.4 39 7512.4 15.9 22 8057.3 18.4 44 7753.2

Average 1.0(3) 11.7 1190.9 1.2(3) 20.7 1470.6 2.6(5) 13.8 2002.4 3.9(7) 22.9 2393.5
(−) : indicates the number of instances (out of 24) that are not solved to optimality.

C&CG-E for Other Variants of the Facility Location Problem Under Disruptions

This section applies C&CG-E to the uncapacitated/capacitated PMP (UPMP/CPMP). For
both models, the objective function optimizes the weighted sum of the nominal cost and the
worst-case cost. The detailed models [42] are given in Appendix A. Since our preliminary
experiments as well as those of [42] have shown that C&CG-D performs better than BD, we
compare only the performance of C&CG-E and C&CG-D. The parameters, the optimality
tolerance (ε = 0.1%), and the time limit (2 hours, and we allow the last iteration before
reaching the time limit to terminate) take the same values as in [42]. The results for the two
models are given in Tables 3.5 and 3.6, where J = I and % is the weight of the worst-case



33

Table 3.6 Results for capacitated p-median problem under disruptions

Unit penalty cost = 15 Unit penalty cost = pmax

C&CG-E C&CG-D in [42] C&CG-E C&CG-D in [42]

|J | % p k Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU

25 0.2 8 1 0.0 2 1.5 0.0 3 3.4 0.0 2 3.5 0.0 3 3.0
2 0.0 5 7.2 0.0 7 9.4 0.0 10 51.5 0.0 20 104.1
3 0.0 25 236.5 0.0 41 354.4 15.4 43 7521.6 19.8 72 7296.4

10 1 0.0 1 0.4 0.0 1 0.5 0.0 1 0.3 0.0 1 0.5
2 0.0 2 2.2 0.0 3 4.0 0.0 3 5.4 0.0 4 4.1
3 0.0 7 17.9 0.0 12 23.2 0.0 13 111.4 0.0 19 82.9

0.4 8 1 0.0 3 3.2 0.0 4 4.3 0.0 3 3.4 0.0 4 3.9
2 0.0 8 19.2 0.0 15 39.8 0.0 12 99.0 0.0 23 168.0
3 0.0 37 1051.7 0.0 74 2451.2 28.4 43 7352.8 36.8 63 7272.3

10 1 0.0 1 0.8 0.0 1 0.6 0.0 1 0.4 0.0 1 0.6
2 0.0 4 5.5 0.0 10 13.8 0.0 5 9.8 0.0 10 17.7
3 0.0 12 51.9 0.0 21 63.7 0.0 21 398.2 0.0 35 460.6

49 0.2 8 1 0.0 1 1.5 0.0 3 7.5 0.0 2 6.2 0.0 3 9.3
2 0.0 10 310.5 0.0 15 414.4 5.8 22 7819.2 12.4 37 7370.9
3 9.0 25 7884.2 9.8 41 7676.8 24.4 16 8390.7 24.3 25 7396.5

10 1 0.0 1 1.9 0.0 2 5.1 0.0 1 2.1 0.0 2 4.9
2 0.0 8 213.0 0.0 21 840.2 0.0 11 1121.3 0.0 21 1307.6
3 2.2 23 7258.5 3.0 35 8083.0 14.6 17 7292.3 14.0 27 9613.7

0.4 8 1 0.0 2 8.0 0.0 3 6.2 0.0 2 7.0 0.0 3 9.6
2 0.7 26 7815.3 9.5 35 7858.8 18.3 18 8751.8 27.0 29 7295.0
3 20.5 18 8668.8 26.3 30 7347.6 44.1 15 7852.8 46.4 23 7379.5

10 1 0.0 3 17.2 0.0 4 11.5 0.0 3 16.5 0.0 4 14.1
2 4.6 21 8289.5 4.7 34 7257.8 10.9 19 7993.0 6.8 36 8071.1
3 16.2 22 8742.2 14.6 31 7343.0 28.7 17 8477.9 29.9 27 7410.8

Average 2.2(6) 11.1 2108.7 2.8(6) 18.6 2075.8 7.9(9) 12.5 3053.7 9.1(9) 20.5 2970.7

cost.

Tables 3.5 and 3.6 show that for both the UPMP and CPMP, C&CG-E has better perfor-
mance, in terms of average gap and number of iterations. In particular, for the UPMP,
when unit penalty cost is pmax, two more instances can be solved to optimality by C&CG-E
with less than 4700 seconds; however, C&CG-D produces solutions with optimality gaps over
5.0% when reaching the time limit. For the UPMP, the average CPU time of C&CG-E is
also lower. For the CPMP, the average CPU time of the two algorithms is quite close, while
C&CG-E provides better optimality gaps. From both tables, we observe that C&CG-E gen-
erally works better for instances with a large budget. Take |J | = 25, % = 0.4, p = 8, k = 3
and unit penalty cost = 15 for example, for the UPMP, C&CG-E consumes 492.5 seconds
while C&CG-D takes 1718.8 seconds. Similarly, for the CPMP, the computing time is 1051.7
seconds versus 2451.2 seconds.

Conclusions: (i) For both the UFLP and the CFLP, C&CG-E is the most efficient of
the three exact algorithms. (ii) For both the UPMP and the CPMP, C&CG-E generates
solutions with better optimality gaps. (iii) The computational complexity is influenced by
several factors: problem size, budget of uncertainty, and unit penalty cost. The bottleneck
of the C&CG algorithm is the resolution of the master problem.
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3.4.3 Evaluation of Linear Decision Rule

We evaluate the LDR in terms of the computational efficiency and the optimality gap. Before
presenting the results, we give the following definitions.

• Achieved worst-case cost f ∗C(y∗L): The actual worst-case cost achieved by the LDR.
For a location decision y∗L generated by the LDR, we calculate f ∗C(y∗L) by fixing the location
decision and solving the subproblem of the C&CG algorithm.

• Optimal worst-case cost f ∗C: The best worst-case cost that can be achieved for an
instance, which is obtained by using exact algorithms to solve the ARC models.

• Relative suboptimality (Opt. gap): The relative difference between f ∗C(y∗L) and f ∗C ,
computed as (f ∗C(y∗L)− f ∗C)/f ∗C(y∗L)× 100%.

We consider all the instances with k = 1, . . . , 4 and p = p0.8, pmax, which are solved to
optimality by C&CG-E. There are 208 instances for the UFLP and 231 instances for the
CFLP. The average results are reported in Table 3.7, and the detailed results are given in
Tables A.7–A.8.

Table 3.7 Average results of the LDR for the instances solved to optimality by C&CG-E

CPU time
Opt. gap

CPU time
Opt. gapModel p k #Opt C&CG-E LDR Model p k #Opt C&CG-E LDR

UFLP p0.8 1 35 16.2 41.5 0.00 CFLP p0.8 1 35 46.9 127.4 0.00
2 35 5298.8 10831.8 3.69 2 35 3308.4 5111.0 4.25
3 19 7313.0 269.9 3.27 3 25 6659.8 943.4 4.43
4 14 12533.1 110.0 4.81 4 20 5394.0 452.7 3.59

pmax 1 35 14.5 41.0 0.00 pmax 1 35 52.6 174.0 0.00
2 35 1299.9 21361.7 7.10 2 35 4653.4 12416.6 8.23
3 18 6771.5 295.9 3.86 3 25 5194.2 2012.4 7.16
4 17 14613.3 387.8 4.34 4 21 6645.0 485.1 6.52

Table 3.7 shows that for both models, the average time of C&CG-E is shorter for instances
with k = 1 and k = 2. For k = 2, the average CPU time of LDR is significantly higher
because the MILP model based on the LDR is not solved to optimality within the time limit
for some large instances, making the average CPU time longer (note that we considered only
the instances solved to optimality by C&CG-E here). The LDR, however, could efficiently
solve the instances when k = 3 and k = 4 and the average computing times are much shorter
than those of the C&CG-E. From Tables A.1–A.8, we can see that the budget of uncertainty
has a significant influence on the CPU time of C&CG-E, while this is not the case for the
LDR model. In terms of relative suboptimality, when k = 1, the gaps are 0 since the LDR
is optimal for k = 1. When k varies from 2 to 4, the average gap varies between 3.27%
and 4.81% for p = p0.8 and 3.86% and 8.23% for p = pmax. In general, the LDR generates
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solutions with smaller gaps for the robust UFLP and for instances with p = p0.8.

3.4.4 Trade-Off between Reliability and Nominal Cost

In this section, we first evaluate the impact of considering disruptions on a system’s nominal
cost, i.e., the price of robustness. We then introduce an enhancement to the robust formula-
tions that allows the decision-makers to control the trade-off between the reliability and the
nominal cost.

Impact of Reliability

We conduct experiments as follows. (i) Worst-case cost of the deterministic model: We solve
the deterministic model and obtain the location decision. Then we fix the location decision
and identify the worst-case cost. (ii) Nominal cost of the ARC model: We solve the ARC
model and get the location decision. Then we fix the location decision and solve an MCFP
to find the system’s nominal cost. Table 3.8 presents the results for four randomly selected
instances, where the penultimate column is the increase in the nominal cost compared to
the result of the deterministic model. The last column is the increase in the worst-case cost
compared to the solution of the ARC model.

From Table 3.8, we can make the following two observations: (a) Sometimes the reliability of
a system can be substantially improved with only a slight increase in the nominal cost. This
shows that considering disruptions indeed increases the system’s nominal cost. However, this
increase is generally less than the increase in the worst-case cost when disruptions are ignored
at the design phase but must be handled when they occur. For example, in F20-C49, when
p = p0.8 and k = 2, the nominal cost generated by the ARC model has a 9.1% increase,
whereas the worst-case cost produced by the deterministic solution increases by 31.1%. (b)
The improvement over the worst-case cost is even greater for systems with a higher penalty
cost. When p = pmax, the difference in the worst-case cost is larger than that for p = p0.8.
This indicates that for systems with a higher penalty cost, where the customer demand must
be met to the greatest extent under disruptive scenarios, it is worth considering disruptions at
the design stage. This observation can provide guidelines for the location of public facilities,
such as fire stations, where recourse operations are related to the safety of life and property.

An Enhancement for Trade-Off between Reliability and Nominal Cost

Sometimes, decision-makers want to both reduce the cost of mitigation under disruption
scenarios and control the increase in the nominal cost when robustifying the system. To
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Table 3.8 Impact of reliability

Nominal cost Worst-case cost Cost gap (%)

Model Instance p k Deterministic ARC ARC Deterministic Nominal Worst-case

UFLP F10-C49 p0.8 1 469866 491532 688065 700000 4.4 1.7
2 469866 602896 785576 1358803 22.1 42.2
3 469866 701430 880912 1630340 33.0 46.0
4 469866 691679 953512 1630340 32.1 41.5

pmax 1 469866 491532 689301 724356 4.4 4.8
2 469866 522163 827587 1718571 10.0 51.8
3 469866 636200 928582 2756563 26.1 66.3
4 469866 692915 1018168 2756563 32.2 63.1

F15-C35 p0.8 1 449828 560906 632464 637819 19.8 0.8
2 449828 573660 711992 1176328 21.6 39.5
3 449828 658643 792141 1372400 31.7 42.3
4 449828 697187 863341 1372400 35.5 37.1

pmax 1 449828 469557 657668 691751 4.2 4.9
2 449828 518018 774758 1646822 13.2 53.0
3 449828 676307 868055 2626438 33.5 66.9
4 449828 715603 939255 2626438 37.1 64.2

CFLP F20-C49 p0.8 1 525896 539788 699197 849150 2.6 17.7
2 525896 578284 824165 1196629 9.1 31.1
3 525896 793530 935123 1444697 33.7 35.3
4 525896 1006888 1016404 1639981 47.8 38.0

pmax 1 525896 616558 709395 1085727 14.7 34.7
2 525896 584478 865055 1775142 10.0 51.3
3 525896 641227 995549 2312389 18.0 56.9
4 525896 758230 1094096 2854152 30.6 61.7

F25-C35 p0.8 1 492289 542154 658623 762498 9.2 13.6
2 492289 616750 772713 1039998 20.2 25.7
3 492289 653531 858800 1304999 24.7 34.2
4 492289 680005 680005 1467994 27.6 53.7

pmax 1 492289 643908 667030 986188 23.5 32.4
2 492289 629601 791860 1606012 21.8 50.7
3 492289 635840 916247 2150413 22.6 57.4
4 492289 779098 779098 2645538 36.8 70.6

reflect this, we introduce another group of constraints:

fjyj +
∑
i∈I

∑
j∈J

hidijx
0
ij +

∑
i∈I

pihiu
0
i ≤ (1 + q)c∗0,∑

j∈J
x0
ij + u0

i ≥ 1 ∀i ∈ I,

x0
ij ≤ yj ∀i ∈ I, j ∈ J, (3.14)∑
i∈I

hix
0
ij ≤ Cjyj ∀j ∈ J,

x0
ij ≥ 0 ∀i ∈ I, j ∈ J,

u0
i ≥ 0 ∀i ∈ I,
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where c∗0 is the optimal objective value of the normal scenario, obtained by solving the
deterministic model. Correspondingly, x0 and u0 are the allocation decisions. The parameter
q ≥ 0 indicates the decision-makers’ tolerance of increased nominal cost when robustifying
the system.

We study the impact of constraints (3.14) by varying the value of q. The experiments are
conducted on two randomly selected instances, and the results are presented in Table 3.9,
where the penultimate column is the increase in the nominal cost compared to that of the
deterministic model. The last column is the increase in the worst-case cost compared to the
solution of the ARC model without the bound constraints. Note that the value of q does
not vary with an equal step length, because we report only the value where the location
decision changes. In addition, the first row for each instance corresponds to the result of
the deterministic model, and the last row is the result for the ARC model without bound
constraints.

Table 3.9 Impact of imposing an upper bound on the nominal cost (k = 2, p = p0.8)

ARC model with constraints (3.14) Deterministic model Cost gap (%)
Model Instance q Location decision Worst-case cost Nominal cost Nominal cost Nominal Worst-case
UFLP F10-C30 0.00 [1, 5, 6] 1208972 435528 435528 0.00 39.99

0.06 [1, 3, 5, 6] 892768 459163 5.15 18.74
0.08 [1, 5, 6, 8] 759502 466159 6.57 4.48
0.26 [1, 5, 6, 7] 743641 475435 8.39 2.44
0.30 [3, 5, 6, 8] 725463 555996 21.67 0.00

F10-C49 0.00 [1, 5, 6] 1358803 469866 469866 0.00 42.19
0.06 [1, 3, 5, 6] 957321 491532 4.41 17.94
0.08 [1, 5, 6, 8] 828318 500497 6.12 5.16
0.10 [1, 5, 6, 7] 821814 508753 7.64 4.41
0.12 [1, 3, 5, 6, 8] 816383 522163 10.02 3.77
0.28 [1, 3, 5, 6, 7] 811487 530419 11.42 3.19
0.30 [3, 5, 6, 8] 785576 602896 22.07 0.00

CFLP F10-C30 0.00 [1, 3, 6, 7, 9] 1043678 548704 548704 0.00 19.97
0.02 [1, 3, 5, 6, 8, 9] 925575 555901 1.29 9.76
0.04 [1, 3, 5, 7, 8, 9] 898898 569228 3.61 7.09
0.06 [1, 3, 6, 7, 8, 9] 869826 580916 5.55 3.98
0.30 [1, 5, 6, 7, 8, 9] 862084 588988 6.84 3.12
0.32 [3, 4, 5, 6, 7, 8, 9] 835208 718517 23.63 0.00

F10-C49 0.00 [1, 3, 4, 8, 9] 1141237 571443 571443 0.00 21.03
0.02 [1, 4, 5, 8, 9] 1052860 581790 1.78 14.40
0.04 [1, 3, 4, 5, 8, 9] 969084 590197 3.18 7.00
0.06 [1, 4, 5, 6, 8, 9] 932736 594405 3.86 3.38
0.30 [1, 3, 4, 5, 6, 8, 9] 901229 612904 6.76 0.00

Table 3.9 shows that imposing an upper bound on the nominal cost impacts the location
decision of the ARC models, i.e., different facilities are chosen or different numbers of sites are
opened. We also observe that the bound constraints can help the decision-makers to further
control the conservativeness of the robust solutions. For the given instances, sometimes the
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nominal cost can be significantly decreased with a slight increase in the worst-case cost. For
example, for the UFLP with F10-C49, when q changes from 0.30 to 0.08, the increase in
the nominal cost drops from 22.07% to 6.12%; however, the worst-case cost increases by only
5.16%. Similarly, for the CFLP with F10-C30, when q changes from 0.32 to 0.30, the increase
in the nominal cost drops from 23.63% to 6.84%, and the worst-case cost increases by only
3.12%. Managers can also use the bound constraints as a decision support tool to see the
trade-off between reliability and nominal cost, and to decide the extent to which the nominal
cost can be controlled when robustifying the system.

3.5 Conclusions

In this chapter, we solve the reliable fixed-charge location problems, where each facility is
exposed to disruption risks. We use a budgeted uncertainty set to characterize the disrup-
tions and apply a two-stage RO method to model the problems. To solve the ARC models
exactly, we develop a C&CG algorithm where a LP-based enumeration method is used for
the subproblem. This approach can tackle cases with integer recourses where the dualization
technique cannot be applied. We also use the LDR to approximate the ARC models, in
order to solve large instances in a reasonable time. Our numerical experiments show that
the proposed C&CG algorithm outperforms the C&CG algorithms in the literature and that
the LDR is capable of providing good first-stage solutions in a shorter time. The results also
indicate that the robust models are able to improve the system’s reliability without signifi-
cantly increasing the nominal cost, and that imposing an upper bound on the nominal cost
can further control the conservativeness of the robust solutions.



39

CHAPTER 4 ROBUST FACILITY LOCATION UNDER DEMAND
UNCERTAINTY AND FACILITY DISRUPTIONS

This chapter is based on the following article.

• Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2019. Robust Facility Location Under De-
mand Uncertainty and Facility Disruptions. CIRRELT Technical Report, CIRRELT-
2019-53, 23 pages. Major revision at Omega: The International Journal of Management
Science.

4.1 Introduction

From the literature review in Chapter 2, we can see that most works consider one type
of uncertainty at a time. Although some studies consider multiple types of uncertainties
simultaneously, their modeling schemes may produce overly conservative solutions as all
the decisions are made here-and-now [55,60], or relatively optimistic solutions because it
is impossible to enumerate all the disruption scenarios [59]. Thus, in this chapter we use
a two-stage RO method for the CFLP under uncertain demand and facility disruptions,
which utilizes revealed uncertainty information to make recourse decisions, to generate less
conservative solutions. To solve the adjustable robust models exactly, we develop a C&CG
algorithm based on a decomposition scheme. We benchmark this method with the other
C&CG algorithm proposed in [1] for the two-stage robust network flow problem, a general
problem that often arises from various supply chain applications. We consider this study to
make the following contributions:

1. To the best of our knowledge, this work is the first one to study the CFLP with
simultaneous provider-side and receiver-side uncertainties in a two-stage RO framework.
The corresponding model generalizes the problems with only demand uncertainty and
with only facility disruptions.

2. We implement the C&CG method proposed by the authors of [14] and demonstrate
empirically that it can solve the adjustable robust models efficiently in a reasonable
runtime. Moreover, it shows better performance than the one proposed in [1]. We
further extend our modeling and solution schemes to facility fortification problems with
uncertainties, where facility fortification decisions are made for already existing supply
chain systems to protect facilities from disruptions and against demand uncertainty.
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3. We conduct extensive numerical tests to study the differences in solutions produced
by the robust models, and the impact of uncertainty on solution configuration and
algorithm efficiency. Managerial insights are also drawn from numerical tests.

The rest of this chapter is organized as follows. Section 4.2 presents the deterministic and
the robust models. Section 4.3 describes the solution method and extends the proposed
modeling and solution schemes to facility fortification problems under uncertainties. Section
4.4 discusses the numerical results. Section 4.5 concludes this chapter.

4.2 Models

Notation. We denote R as the space of real numbers and R+ as the space of positive real
numbers. |I| is the cardinality of set I. Other notation is the same as those in Section 3.2.1
expect for xij,∀i ∈ I, j ∈ J and ui,∀i ∈ I. Here, variables xij and ui represent product
quantity instead of fraction of demand.

4.2.1 The Deterministic Model

The deterministic CFLP can be formulated as

CFLP: min
y,x,u

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui (4.1a)

s.t.
∑
j∈J

xij + ui ≥ hi ∀i ∈ I, (4.1b)

∑
i∈I

xij ≤ Cjyj ∀j ∈ J, (4.1c)

yj ∈ {0, 1} ∀j ∈ J, (4.1d)

xij ≥ 0 ∀i ∈ I, j ∈ J, (4.1e)

ui ≥ 0 ∀i ∈ I. (4.1f)

The objective function (4.1a) minimizes the total cost, which includes the facility location
cost, transportation cost, and the penalty cost of unsatisfied demand. Constraints (4.1b)
denote that the sum of met and unmet demand must be greater than or equal to a customer’s
demand. Inequalities (4.1c) impose that customers can only be allocated to opened facilities
and that a facility’s capacity constraint must be respected. Constraints (4.1d)–(4.1f) impose
the integrality and non-negativity constraints. Note that model (4.1) is a quantity-based
model, i.e., variables xij,∀i ∈ I, j ∈ J and ui,∀i ∈ I denote product quantity instead of the
fraction of customer demand as those in model (3.5).
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4.2.2 The Robust Model Under Uncertain Demand and Facility Disruptions

Uncertainty Set. We use a budgeted uncertainty set to characterize uncertain demand
[12,14]:

Uh =
{
h ∈ R|I|+ : hi = h̄i + θih

∆
i , 0 ≤ θi ≤ 1,

∑
i∈I

θi ≤ Γh
}
, (4.2)

where h̄i is the nominal (or basic) demand at customer i and h∆
i ≥ 0 is the maximal demand

deviation. Γh is the uncertainty budget which bounds the maximal number of demand
parameters by which values are allowed to deviate from their nominal values.

We characterize disruption risks as in [42]

Zk =

z ∈ {0, 1}|J | : ∑
j∈J

zj ≤ k

 , (4.3)

where zj = 1 if facility j is disrupted, and zj = 0 otherwise. Equation (4.3) means that at
most k facilities are allowed to fail simultaneously in a disruption scenario.

We use the following uncertainty set to represent simultaneous demand uncertainty and
facility disruptions

W =
{

(h, z) ∈ R|I|+ × {0, 1}|J | : h ∈ Uh, z ∈ Zk
}
. (4.4)

Robust Model. The adjustable robust counterpart model for CFLP is

CFLP-DR: min
y

∑
j∈J

fjyj + max
(h,z)∈W

g(y,h, z) (4.5a)

s.t. yj ∈ {0, 1} ∀j ∈ J, (4.5b)

where g(y,h, z) is the optimal value of the second-stage problem defined as

min
x,u

∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui (4.6a)

s.t.
∑
j∈J

xij + ui ≥ hi ∀i ∈ I, (4.6b)

∑
i∈I

xij ≤ Cjyj(1− zj) ∀j ∈ J, (4.6c)

xij ≥ 0 ∀i ∈ I, j ∈ J, (4.6d)

ui ≥ 0 ∀i ∈ I. (4.6e)
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The objective function (4.5a) minimizes the sum of the facility location cost and the worst-
case allocation cost. The max operator identifies the worst-case scenario and the min oper-
ator in problem (4.6) finds the least costly recourse solution (x,u) with a given first-stage
location decision and a specific scenario. Constraints (4.6c) mean that customers can only
be reassigned to opened and functional facilities (i.e., those with y = 1 and z = 0). We
use CFLP-D and CFLP-R to denote the model with only uncertain demand and with only
facility disruptions, respectively. The two models can be obtained directly by setting the
parameter Γh = 0 or k = 0. From model (4.6), we can observe that uncertainties only affect
the right-hand side of constraints and that the model has the property of fixed recourse (i.e.,
the coefficients of the recourse variables are not influenced by uncertainties).

Remark. Random variables z can be relaxed to continuous variables, i.e., 0 ≤ z ≤ 1, to
characterize facilities’ partial disruptions, where a facility can still provide part of services
to customers if it is opened and not completely disrupted. Under partial disruptions, the
uncertainty budget k in set (4.3) can take any non-negative real value, which gives more
flexibility to control the conservativeness of the robust solutions, compared to the case with k
taking an integer value. More precisely, when z are binary variables, k can still be set to a
non-negative real value, but the worst-case scenario is always reached when the uncertainty
budget is an integer value, i.e., at bkc.

4.3 Solution Method

In this section, we first introduce the solution method, and then extend our modeling and
solution schemes to facility fortification models.

4.3.1 C&CG Algorithm

In the two-stage framework, xij and ui are no longer a single variable but rather a mapping
from the space of observations R|I|+ ×{0, 1}|J | to R+ ∪{0}. This flexibility comes at the price
of significant computational challenges. To solve the robust model, we may consider a vertex
enumeration method, which reformulates the original robust model to a single mixed integer
linear program (MILP) model by enumerating all the extreme points of the uncertainty set.
However, in general the number of extreme vertices of a convex polyhedron is exponential in
size with respect to the faces that describe it, which prevents us from using a full enumeration
method. Therefore, we resort to the C&CG algorithm, which identifies a subset of the vertices
of the uncertainty set and then applies a reduced vertex enumeration method. We use the
CFLP-DR to describe the algorithm.
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Our C&CG algorithm is based on the one developed by the authors of [14], which is imple-
mented in a master-subproblem framework. The master problem (MP) is solved to generate
the first-stage solution, and the subproblem is solved to identify the worst-case realization of
the uncertain parameters under a given first-stage solution. Each time after a subproblem is
solved, we compute the gap between the upper and lower bounds. If the optimality gap is
reached, the algorithm terminates; otherwise, we add the identified worst-case scenario and
its associated variables and constraints to the MP, and the algorithm iterates.

The master problem is written as

φ = min
y,s,{x}n

l=1,{u}
n
l=1

s (4.7a)

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijx
l
ij +

∑
i∈I

piu
l
i ∀l ∈ {1, . . . , n} , (4.7b)

∑
j∈J

xlij + uli ≥ hli ∀l ∈ {1, . . . , n} , i ∈ I, (4.7c)

∑
i∈I

xlij ≤ Cjyj(1− zlj) ∀l ∈ {1, . . . , n} , j ∈ J, (4.7d)

yj ∈ {0, 1} ∀j ∈ J, (4.7e)

xlij ≥ 0 ∀l ∈ {1, . . . , n} , i ∈ I, j ∈ J, (4.7f)

uli ≥ 0 ∀l ∈ {1, . . . , n}, i ∈ I. (4.7g)

The MP seeks to find the best location decision in light of the set of worst-case scenarios
identified in the subproblem. The allocation variables, xlij and uli, now feature an extra index
l, which means that these variables are associated with the lth scenario (added after finishing
the lth iteration). Similarly, parameters hli and zlj are the worst-case realizations of random
variables hi and zj identified in the lth iteration via solving the subproblem. Since constraints
(4.7b) are based on a subset of the uncertainty set W , model (4.7) naturally provides a valid
relaxation (or a lower bound) to the original two-stage RO model. By adding significant
scenarios gradually to model (4.7), stronger lower bounds can be expected [14].

To identify the significant scenarios, we solve the max
(h,z)∈W

g(ŷ,h, z) problem after getting a

location decision ŷ ∈ R|J | from the MP. Since unmet demand is associated with a penalty
cost, the second-stage problem is always feasible (a propriety termed as relatively complete
recourse). Meanwhile, its optimal value is finite as the uncertainty set is bounded and
nonempty. Thus, strong duality holds and we can use the Karush–Kuhn–Tucker (KKT)
condition to derive the SP. Let α ∈ R|I| and β ∈ R|J | be the dual variables associated with
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constraints (4.6b) and (4.6c), respectively, then the SP is written as

ψ = max
x,u,α,β,wα,
wβ ,wx,wu,z

∑
j∈J

fj ŷj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui

s.t.
∑
j∈J

xij + ui ≥ h̄i + θih
∆
i ∀i ∈ I,

∑
i∈I

xij ≤ Cj ŷj(1− zj) ∀j ∈ J,

αi − βj ≤ dij ∀i ∈ I, j ∈ J,

αi ≤ pi ∀i ∈ I,∑
j∈J

xij + ui ≤ h̄i + θih
∆
i +Mα

i (1− wαi ) ∀i ∈ I,

αi ≤Mα
i w

α
i ∀i ∈ I,∑

i∈I
xij ≥ Cj ŷj(1− zj) +Mβ

j (wβj − 1) ∀j ∈ J,

βj ≤Mβ
j w

β
j ∀j ∈ J,

αi − βj ≥ dij +Mx
ij(wxij − 1) ∀i ∈ I, j ∈ J

xij ≤Mx
ijw

x
ij ∀i ∈ I, j ∈ J

αi ≥ pi +Mu
i (wui − 1) ∀i ∈ I,

ui ≤Mu
i w

u
i ∀i ∈ I,

θi ≤ 1 ∀i ∈ I,∑
i∈I

θi ≤ Γh,∑
j∈J

zj ≤ k,

xij, ui, αi, βj, θi ≥ 0 ∀i ∈ I, j ∈ J,

wαi , w
β
j , w

x
ij, w

u
i , zj ∈ {0, 1} ∀i ∈ I, j ∈ J.

We set Mα
i = pi,M

β
j = max{Cj,maxi{dij(h̄i + h∆

i ), pi(h̄i + h∆
i )}},Mx

ij = max{Cj, dij(h̄i +
h∆
i ), pi(h̄i + h∆

i )}+ dij,M
u
i = max{pi, h̄i + h∆

i }.

The detailed implementation of the C&CG algorithm is given in Algorithm 2. In the initial-
ization step, we solve the deterministic model and get an initial location decision ŷ. Note
that the initial solution can be any feasible solution and not necessarily need to be that of
the deterministic model. In the consequent steps, subproblem and MP are alternately solved
to close the optimality gap. Specifically, in Step 1, we solve the subproblem with provided
ŷ to identify the worst-case scenario and update the upper bound. If the termination con-
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dition is satisfied (Step 2), the algorithm ends, else the identified worst-case scenario and its
associated variables and constraints are added to the MP. In Step 3, the MP is solved and
the iteration continues. The C&CG algorithm is guaranteed to converge in a finite number
of iterations, which is upper bounded by the number of extreme points of the uncertainty
set.

Algorithm 2: C&CG algorithm for the ARC model
Initialization: Let LB = −∞,UB =∞, n = 0. Solve the deterministic model with hi = h̄i
to get an initial location decision ŷ. Set LB as the objective value of the deterministic
model.
Iterate until the algorithm terminates:
Step 1 : Solve the subproblem based on ŷ to find the worst-case scenario (ĥ, ẑ). Let ψ̂ be
the subproblem’s optimal value. Set UB = min{UB, ψ̂} and n = n+ 1.
Step 2 : If (UB− LB)/UB ≤ ε, the algorithm terminates; else, add the identified worst-case
scenario and its associated variables and constraints to the MP.
Step 3 : Solve the MP to get a location decision ŷ and its optimal value φ̂. Set LB = φ̂ and
go to Step 1.

The authors of [1] propose a new C&CG algorithm, which formulates the second-stage prob-
lem as a minimum cost flow problem. We provide the details of the C&CG algorithm de-
veloped in [1] in Appendix B. The main difference between our algorithm and theirs lies in
the formulation of the subproblem (the master problems are the same). We use the KKT
condition to derive the subproblem, which introduces big-M values to the model; whereas [1]
reformulates the subproblem as a network flow problem, which introduces auxiliary binary
variables to linearize the nonlinear terms in the objective function. Table 4.1 presents the
number of variables and constraints in the subproblems for the CFLP-DR, where P is a
constant dependent on the maximum flow cost (i.e., pmax = max

i∈I,j∈J
{dij, pi}) in the system,

in particular, P = dlog2(pmax + 1)e − 1. Table 4.1 shows that the size of our subproblem is
decided by the number of nodes whereas that in [1] is affected by both the number of nodes
and the maximum flow cost.

Table 4.1 Comparison of subproblems for the CFLP-DR

Authors #Continuous variables #Integer variables #Constraints

[1] 3|I|+ 2|J |+ 2|I|P 2|I|+ 2|J |+ 3 + (|I|+ 1)P 13|I|+ 10|J |+ 6 + |I||J |+ 8|I|P
This work 3|I|+ |J |+ |I||J | 2|I|+ 2|J |+ |I||J | 7|I|+ 3|J |+ 3|I||J |+ 2

Another common solution method for adjustable RO models is the affine policy, or affine de-
cision rule, which restricts adjustable variables to be affine functions of uncertain parameters
[121]. This restriction is expected to produce a possibly conservative, yet tractable, robust
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counterpart. We also implemented this method for our problems, but results showed that
in most cases, especially for the CFLP-D, the affine policy actually consumed more compu-
tational time than the C&CG algorithm. Thus, we choose to omit this method here. We
also note that some decomposition methods are available for the robust counterpart obtained
from the affine policy, and interested readers can refer to [18] and [125].

4.3.2 Application to Facility Fortification Problems

In the previous sections, we suggest that we could improve the reliability of a system by
considering disruption risks at the initial design phase. However, in reality, we may face
situations where facilities are already existing and decision-makers are prone to improve the
reliability of facilities by investing in protection and security measures, such as purchasing
insurances or installing structural reinforcements, instead of constructing a system from
scratch [63,119,126,127]. In this section, we discuss the extension of our modeling and solution
schemes to facility fortification problems.

We build the model based on the notation used in Section 4.2, with the exception that J
now denotes the set of already existing facilities. Correspondingly, fj is the cost of fortifying
facility j ∈ J . And yj = 1 if facility j ∈ J is chosen to be fortified, yj = 0 otherwise. As
in the four mentioned papers, we assume that a fortified facility becomes immune to disrup-
tions. This assumption is widely used in the context of reliable facility location problems,
where a reliable (or protected) facility is assumed to be nonfailable [38,126,128–131]. The
decision-maker has a total budget B for implementing fortification strategies. We also incor-
porate demand uncertainty to the fortification model, as at the moment of making facility
enhancement decisions, future customer demand is normally not known perfectly.

The two-stage robust facility fortification problem under uncertainties can be formulated as

min
y

max
(h,z)∈W

g′(y,h, z) (4.8a)

s.t.
∑
j∈J

fjyj ≤ B, (4.8b)

yj ∈ {0, 1} ∀j ∈ J, (4.8c)

where g′(y,h, z) is defined by Equations (4.6a)–(4.6b), (4.6d)–(4.6e), and

∑
i∈I

xij ≤ Cj − Cj(1− yj)zj ∀j ∈ J. (4.9)

Constraints (4.9) mean that a fortified facility (i.e., yj = 1) is always available with capacity
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Cj. If facility j is not fortified, it can still supply Cj units of product when zj = 0, as the
facility is already existing; however, it cannot serve any customer when zj = 1. Note that
besides imposing a budget constraint on the fortification cost, we can also optimize the cost
term ∑

j∈J fjyj as in Section 4.2, i.e., we include it in the objective function and omit the
budget constraint.

Correspondingly, we re-write the master problem of the C&CG algorithm as

φ = min
y,s,{x}n

l=1,{u}
n
l=1

s (4.10a)

s.t. s ≥
∑
i∈I

∑
j∈J

dijx
l
ij +

∑
i∈I

piu
l
i ∀l ∈ {1, . . . , n} (4.10b)

∑
i∈I

xlij ≤ Cj − Cj(1− yj)zlj ∀l ∈ {1, . . . , n} , j ∈ J. (4.10c)

and (4.7c), (4.7f)–(4.7g), (4.8b)–(4.8c). (4.10d)

Constraints (4.10c) suggest that a fortified facility is always operational, even if it may be
identified to be disrupted in some worst-case scenarios.

The subproblem is augmented through replacing the objective function and the two capacity-
related constraints by

ψ = max
x,u,α,β,wα,
wβ ,wx,wu,z

∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui (4.11a)

∑
i∈I

xij ≤ Cj − Cj(1− ŷj)zj ∀j ∈ J, (4.11b)
∑
i∈I

xij ≥ Cj − Cj(1− ŷj)zj +Mβ
j (ωβj − 1) ∀j ∈ J. (4.11c)

In terms of computational complexity, the master problem (4.10) has one more constraint,
i.e., the budget constraint (4.8b), compared to the master problem in Section 4.3.1. And
the number of constraints of the subproblem keeps unchanged. Meanwhile, no additional
variables are introduced to the algorithm. Therefore, we can also expect the C&CG algorithm
to solve the robust fortification model efficiently.

4.4 Computational Experiments

We adopt the instances generated in Chapter 3 with slight modifications, which are originally
from [34]. These instances are derived from 1990 census data. The 49 nodes include the state
capitals of the continental United States and Washington, D.C. There are 35 instances in



48

total. The nominal demand h̄i = Pi×10−5, where P i is the population at node i. We generate
the maximal demand deviation h∆

i uniformly from the interval [0.15h̄, h̄]. The transportation
cost dij is the great circle distance between nodes i and j in miles. For simplicity, we set the
unit penalty cost pi the same for all the customers, which is the greatest travel distance in
the system. We denote instances as Fac-X-Cus-Y, which means that the considered instance
has X candidate facilities and Y customers.

All the algorithms and models were coded in Python programming language, using Gurobi
8.1.1 as the solver. The calculations were run on a cluster of Lenovo SD350 servers with
2.4 GHz Intel Skylake cores and 202 GB of memory under Linux CentOS 7 system. Each
experiment was conducted on a four-core processor of one node.

4.4.1 The Impact of Uncertainty on Optimal Solutions

We use instances Fac-10-Cus-10 and Fac-15-Cus-15 to conduct the experiments and set Γh =
0.2|I| and k = 2. Results are presented in Table 4.2. We set the deterministic model’s
results as benchmarks and the other models’ results are normalized by dividing those of
the deterministic model. A ratio smaller (or larger) than 1 means that the robust models
generate solutions of smaller (or larger) costs. Note that the nominal costs of the robust
models are calculated by fixing the location decisions and solving the resulting minimum
cost flow problems. The worst-case cost of the deterministic model is obtained by fixing
the location decision and solving the subproblem of the C&CG algorithm with the same
uncertainty parameters as the robust models.

Table 4.2 The impact of uncertainty on location decision and cost

Instance Model Opened facilities Nominal cost ratio Worst-case cost ratio

Fac-10-Cus-10 CFLP [0, 2, 3, 6, 8]∗ 1.00 1.00
CFLP-D [0, 2, 3, 5, 6, 8] 1.04 0.94
CFLP-R [0, 2, 3, 4, 5, 6, 8] 1.08 0.68
CFLP-DR [0, 2, 3, 4, 5, 6, 7, 8] 1.13 0.73

Fac-15-Cus-15 CFLP [0, 1, 2, 3, 4, 5, 7] 1.00 1.00
CFLP-D [0, 1, 2, 3, 4, 5, 7] 1.00 1.00
CFLP-R [0, 1, 2, 3, 4, 5, 7, 14] 1.09 0.94
CFLP-DR [0, 1, 2, 3, 4, 5, 7, 10, 14] 1.17 0.82

? Facilities are indexed from 0.

The first impact is the selection of opened facilities. As expected, when uncertainties are
considered, more facilities are opened to mitigate potential risks. The CFLP-DR model gen-
erates solutions of the greatest number of opened facilities, due to the fact that two types
of uncertainties are considered simultaneously. The second impact is cost. Generally, con-
sidering uncertainty increases the nominal cost and decreases the worst-case cost. Moreover,
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the nominal cost of model CFLP-DR has the greatest increase in comparison with the de-
terministic model. A similar phenomenon is also observed by the authors of [57], where the
system has the largest cost when two types of uncertainties are simultaneously considered,
compared to one type of uncertainty.

Table 4.2 also shows that facility disruption risk (or provider-side uncertainty) has a greater
influence on the location decisions and the costs, compared to demand uncertainty. For
instance Fac-10-Cus-10, the CFLP-D opens one more facility than the deterministic model.
However, when disruption risk is further considered, the CFLP-DR locates two more facilities
compared to the CFLP-D. For instance Fac-15-Cus-15, the location decision of the CFLP-D
is the same as the deterministic problem. However, the CFLP-R and CFLP-DR generate
different solutions with more opened facilities. The authors of [62] also indicate that the
supplier’s uncertainty is a more pressing issue than the effects of demand uncertainty. Their
computational results show that 3% provider-side uncertainty has almost the same impact on
the worst-case profit as 30% demand uncertainty. Table 4.2 further displays that sometimes
a slight increase in the nominal cost can lead to a significant decrease in the worst-case cost.
For example, for instance Fac-10-Cus-10, the nominal cost ratio of the CFLP-R (CFLP-DR)
is 1.08 (1.13) whereas the worst-case cost ratio is 0.68 (0.73). This observation is consistent
with other works that study facility location problems under disruptions [4,42].

4.4.2 The Impact of Uncertainty Budget on Optimal Solutions

We denote Γh = Θ|I|, which means there are at most Θ of customers whose demand pa-
rameters are allowed to deviate from their nominal values. For space consideration, we only
present the results of instance Fac-15-Cust-15 in Figure 4.1.

Figure 4.1(a) indicates that the budget of demand uncertainty has a slight impact on the
location decision and the worst-case cost after a threshold. Specifically, when Θ increases
from 0.2 to 0.3, one more facility is opened. When Θ ≥ 0.3, the number of opened facilities
stays the same, and the rate of the cost growth is relatively small. The system does not
open more facilities when the demand uncertainty increases, because it is more cost-efficient
to simply penalize the unmet demand instead of paying the fixed expenses for locating new
facilities. On the contrary, the budget of facility disruption has a significant influence on
facility configuration and the worst-case cost. Figure 4.1(b) displays that the number of
opened facilities and the worst-case cost increase quickly with respect to k for the CFLP-R.
The authors of [132] also notice that the worst-case cost increases almost linearly over the
uncertainty budget in a three-echelon network design problem under disruptions.

Figures 4.1(c)–4.1(d) are the summarized results of the CFLP-DR. The detailed results are
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Figure 4.1 The impact of uncertainty budget on optimal solutions (Instance Fac-15-Cus-15)

given in Table 4.3, where the last column is obtained by setting the results in the first
row of different Θ values as benchmarks. Both figures show that the uncertainty of facility
disruptions plays a dominating role. Under the same value of k, the maximal difference in
the number of opened facilities is 2, and the worst-case costs are also close. However, under
the same value of Θ, the number of opened facilities and the worst-case cost ratio increase
almost linearly with k. We note that sometimes even the number of opened facilities is
the same under the same value of k for different Θ, there might be a difference in facility
configuration. For example, according to Table 4.3, when k = 4, 11 sites are opened when
Θ = 0.1 and Θ = 0.2. However, facilities 6 and 8 are opened in the former circumstance,
and facilities 1 and 11 are opened in the latter. Thus, to improve supply chain flexibility
via location decisions, we can either increase the number of opened facilities or change the
facility configuration under a fixed number of opened facilities. For example, in the robust
p-median problem [42], where exactly p facilities should be opened under all the situations,
a selected set of p facilities to be opened in the first stage can differ when the uncertainty
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budget changes.

Table 4.3 Detailed results of the CFLP-DR for Instance Fac-15-Cust-15

Θ k Opened facilities # Opened facilities Worst-case cost ratio

0.1 1 [0, 1, 2, 3, 4, 5, 7] 7 1.00
2 [0, 1, 2, 4, 5, 7, 10, 14] 8 1.19
3 [0, 1, 2, 4, 5, 7, 10, 11, 13, 14] 10 1.31
4 [0, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14] 11 1.41
5 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.52

0.2 1 [0, 1, 2, 3, 4, 5, 7, 14] 8 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 14] 9 1.20
3 [0, 1, 2, 4, 5, 7, 10, 11, 13, 14] 10 1.32
4 [0, 1, 2, 3, 4, 5, 7, 10, 11, 13, 14] 11 1.42
5 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.56

0.3 1 [0, 1, 2, 3, 4, 5, 7, 14] 8 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 14] 9 1.20
3 [0, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14] 11 1.32
4 [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14] 12 1.43
5 [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14] 13 1.59

0.4 1 [0, 1, 2, 3, 4, 5, 7, 11, 14] 9 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 11, 14] 10 1.21
3 [0, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14] 11 1.32
4 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.44
5 [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14] 13 1.59

0.5 1 [0, 1, 2, 3, 4, 5, 7, 11, 14] 9 1.00
2 [0, 1, 2, 3, 4, 5, 7, 10, 11, 14] 10 1.22
3 [0, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14] 11 1.32
4 [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14] 12 1.45
5 [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14] 13 1.61

4.4.3 Analyses of Algorithm Performance

This section first compares our C&CG algorithm with that proposed in [1], and then explores
the impact of uncertainty budget on algorithm performance. The optimality tolerance for
algorithms is set to 0.01% and the CPU time limit is set to 7200 seconds. Note that, when
this limit is reached, we still allow the current iteration to be finished unless the walltime
limit–10800 seconds–is reached. In following tables, #Opt is the number of instances out of
35 that are solved to optimality. #Iter is the number of iterations. Gap is the optimality
gap between the upper and lower bounds.

Performance Comparison

We compare the algorithms by setting Γh = 0.2|I| and k = 2. Experiments are conducted
on model CFLP-DR where both types of uncertainties are considered. In order to use the
C&CG algorithm in [1] for this problem, the assumption that all the transportation costs
dij, i ∈ I, j ∈ J and penalty costs pi, i ∈ I are integer is required. Thus, we round them to
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the nearest integers in the experiments in this subsection. Results are reported in Table 4.4,
where #Fac and #Cust are the number of facilities and customers, respectively. We mark
the results with less CPU time and a smaller optimality gap in bold.

Table 4.4 displays that our C&CG algorithm can solve 33 out of 35 instances to optimality
within the time limit. However, the C&CG algorithm proposed in [1] can only solve 18
instances and the maximum walltime limit is reached in 14 instances. For the 18 instances
that are solved to optimality by both algorithms, our C&CG algorithm generally consumes
less CPU time. We further observe that the time difference of the two algorithms mainly
results from the resolution time used in the subproblem. As indicated by Table 4.1, the size of
the subproblem in [1] is related to the value of parameter P . Thus, for realistic size problems
with relatively high flow costs, the subproblem in [1] has a greater computational complexity
in comparison with the subproblem derived from the KKT condition. Based on the results
here, our C&CG algorithm is used for further experiments in the subsequent sections.

The Impact of Uncertainty Budget on Algorithm Performance

This section studies the impact of uncertainty budget on algorithm performance. Exper-
iments are conducted for different types of uncertainties as presented in Section 4.2.2 to
provide computational insights.

The CFLP-D. Table 4.5 and Figure 4.2 present the results of the CFLP-D. Table 4.5 shows
that the C&CG algorithm can generate optimal solutions for all the instances with different
budgets in a short time, and the iteration number of the algorithm is also small. Figure
4.2(a) shows that the #Iter first increases and then decreases with the increasing uncertainty
budget. When Θ = 1, the C&CG algorithm finds optimal solutions in only 1 iteration and
identifies that all the uncertain parameters would take value 1. Figure 4.2(b) shows that for
the CFLP-D, most time is consumed to solve the subproblem and the computing time of the
master problem is relatively shorter.

The CFLP-R. Table 4.6 and Figure 4.3 present the results of the CFLP-R. Table 4.6 displays
that the C&CG algorithm can solve all the instances to optimality for a small budget k = 1
and 2 in a short time. Although the #Opt decreases to 25 and 18 for k = 3 and 4, the average
optimality gap is not significant, i.e., 2.32% and 6.83% respectively. Figure 4.3 shows that
the number of iterations and the total computing time increase over k. In contrast to the
results of the CFLP-D, the master problem consumes more CPU time than the subproblem.
This can be explained by the fact that as the number of iterations increases, the size of the
master problem gradually increases as more variables and constraints are added to it.
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Table 4.4 Algorithm comparison on model CFLP-DR

Our C&CG C&CG in [1]

CPU time (seconds) CPU time (seconds)

#Fac #Cust Total MP SP Gap Total MP SP Gap

10 10 2.91 0.23 2.68 0.00 5.57 0.23 5.34 0.00
15 5.42 0.24 5.18 0.00 24.75 0.28 24.47 0.00
20 28.69 0.51 28.18 0.00 42.48 0.53 41.95 0.00
25 19.47 0.34 19.13 0.00 279.67 0.35 279.32 0.00
30 59.99 0.49 59.50 0.00 116.03 0.57 115.46 0.00
35 218.09 0.32 217.77 0.00 307.52 0.34 307.18 0.00
40 189.74 0.12 189.62 0.00 79.70 0.13 79.57 0.00
45 291.14 0.40 290.74 0.00 135.88 0.46 135.42 0.00
49 355.35 0.50 354.85 0.00 431.46 0.58 430.88 0.00

15 15 23.86 2.23 21.63 0.00 27.62 2.21 25.41 0.00
20 21.39 0.85 20.54 0.00 351.66 0.88 350.78 0.00
25 79.17 5.86 73.31 0.00 1242.28 6.22 1236.06 0.00
30 196.99 6.15 190.84 0.00 4211.47 6.41 4205.06 0.00
35 84.79 1.39 83.40 0.00 2825.44 1.48 2823.96 0.00
40 298.99 7.99 291.00 0.00 7981.79 4.07 7977.72 1.08
45 435.26 3.29 431.97 0.00 T
49 560.31 5.22 555.09 0.00 T

20 20 38.34 2.85 35.49 0.00 619.23 3.54 615.69 0.00
25 290.60 31.07 259.53 0.00 2274.41 33.64 2240.77 0.00
30 195.57 18.70 176.87 0.00 8895.59 20.13 8875.46 0.00
35 299.15 18.51 280.64 0.00 8197.95 0.54 8197.41 30.83
40 412.84 17.29 395.55 0.00 T
45 546.90 11.23 535.67 0.00 8550.16 0.78 8549.38 19.51
49 645.02 33.20 611.82 0.00 T

25 25 242.27 46.25 196.02 0.00 6409.23 47.87 6361.36 0.00
30 404.90 80.88 324.02 0.00 T
35 456.49 131.57 324.92 0.00 T
40 709.49 132.95 576.54 0.00 T
45 2566.22 261.17 2305.05 0.00 T
49 3694.82 120.48 3574.34 0.00 T

30 30 892.16 292.67 599.49 0.00 T
35 2075.79 912.55 1163.24 0.00 T
40 2083.45 977.17 1106.28 0.00 T
45 7309.41 3961.57 3347.84 1.54 T
49 7327.06 5432.46 1894.60 0.14 T

T: the walltime limit is reached.

The CFLP-DR. Table 4.7 summarizes the results of the CFLP-DR. It shows that when
both uncertainties are simultaneously considered, fewer instances (33, 33, 34 out of 35) are
solved to optimality for the case of k = 2, whereas all the instances are optimally solved for
the CFLP-R when k = 2. When k = 3 and 4, the optimality gaps are close to those of the
CFLP-R. However, we can observe that the gaps increase over Θ under the same value of k
in general. Figure 4.4(a) further shows that when k = 4, the #Opt has a relatively larger
variation under different values of Θ, varying between 22 and 18. We also notice that under
the same value of Θ, the #Opt has an even larger variation with respect to k, especially for
the case of Θ = 0.6 (#Opt varies between 35 and 18). Figure 4.4(b) displays that the case of
Θ = 0.2 has the maximal number of iterations in general, leading to a longer computing time



54

Table 4.5 Algorithm performance for the CFLP-D over different budgets (average results)

Θ #Opt #Iter Gap
Computing time

Total MP Subproblem

0.1 35/35 2.77 0.00 7.99 1.48 6.49
0.2 35/35 4.20 0.00 22.02 3.13 18.85
0.3 35/35 5.14 0.00 21.32 4.82 16.45
0.4 35/35 5.17 0.00 37.55 4.87 32.63
0.5 35/35 4.77 0.00 20.08 2.60 17.43
0.6 35/35 4.11 0.00 15.43 1.86 13.54
0.7 35/35 3.57 0.00 12.95 1.37 11.56
0.8 35/35 3.14 0.00 12.38 0.95 11.41
0.9 35/35 2.63 0.00 12.62 0.56 12.04
1.0 35/35 1.00 0.00 5.65 0.08 5.57
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Figure 4.2 Average results of algorithm performance for the CFLP-D

for the master problem (as shown in Figure 4.4(d)); however, for the other two cases, their
subproblems consume much more time, resulting in a longer total CPU time as reported in
Figure 4.4(c). In addition, we can observe that the disruption risk has a greater impact on
computational efficiency than that of the demand uncertainty. In particular, under a fixed
value of k, the variations of the #Opt and the total CPU time over Θ are not as obvious as
those under a fixed value of Θ but with a varying k.

Summaries. (1) Among the three robust models, the CFLP-D is the easiest one in terms of
computational complexity, for which all the instances can be solved to optimality in a short
time framework. (2) For the CFLP-R, when the uncertainty budget is small, all the instances
can be optimally solved; for a large budget, the average optimality gap is promising within
the time limit. Meanwhile, the master problem consumes more time than the subproblem
because of the great number of iterations. (3) The CFLP-DR is the most difficult one among
the three robust models, which requires the most computational time. The reference [57]
also finds that the robust counterpart under two types of uncertainties requires the longest
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Table 4.6 Algorithm performance for the CFLP-R over different budgets (average results)

k #Opt #Iter Gap
Computing time

Total MP Subproblem

1 35/35 4.57 0.00 16.12 5.84 10.25
2 35/35 14.37 0.00 390.27 281.74 108.25
3 25/35 34.11 2.32 2660.07 2124.10 534.74
4 18/35 42.91 6.83 3970.05 3126.92 841.44
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Table 4.7 Algorithm performance for the CFLP-DR over different budgets (average results)

Θ k #Opt #Iter Gap
Computing time

Total MP Subproblem

0.2 1 35/35 8.00 0.00 163.50 27.31 136.06
2 33/35 14.00 0.05 944.05 348.08 595.64
3 28/35 24.63 1.38 2500.03 641.84 1857.46
4 22/35 28.49 5.15 3494.25 940.69 2552.62

0.4 1 35/35 8.57 0.00 331.03 28.37 302.53
2 33/35 14.69 0.04 1391.08 319.11 1071.62
3 28/35 21.40 2.02 2915.23 387.11 2527.53
4 20/35 22.29 7.24 3960.69 513.61 3446.44

0.6 1 35/35 8.14 0.00 325.37 12.51 312.75
2 34/35 13.69 0.07 1344.43 170.79 1173.34
3 27/35 18.00 2.74 3114.85 285.34 2829.04
4 18/35 18.60 7.87 4372.40 316.42 4055.53
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computing time, compared to that under a single source of uncertainty. (4) The disruption
risk has a larger impact on algorithm performance than the demand uncertainty.

4.4.4 Insights from the Robust Fortification Model

This section provides results for the robust fortification models. Experiments are conducted
using a randomly selected instance Fac-10-Cus-30. For the models with both disruptions and
uncertain demand, we set the budget of demand uncertainty Γh = 0.3|I|.

In the first group of experiments, we study the impact of budget B on the system’s worst-case
cost by setting B = σ

∑
j∈J fj, where σ ∈ {10%, · · · , 60%}. Results are reported in Figure

4.5. It shows that the worst-case cost decreases as the cost budget increases because more
investments lead to more flexibility in facility fortification decisions, such as increasing the
number of fortified facilities or fortifying an expensive facility with a large capacity. When
σ increases from 10% to 30%, the worst-case cost has a quick decrease under the same value
of k, especially for the case with both types of uncertainties (as shown in Figure 4.5(b)).
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Figure 4.5 Worst-case cost under different cost budgets and uncertainty budgets (Instance
Fac-10-Cus-30)

However, if we further increase the cost budget from 30% to 60%, the worst-case cost begins
to decrease slowly, in particular when k ≤ 3. Thus, the robust fortification models can be
used as decision tools for managers to see the trade-off between the investment in protection
measures and the resulting robustness of a system.

Next, we compare the robust fortification models with the robust CFLP models. To perform
the experiments, we first solve the robust CFLP models and get the location decisions and
costs. For the robust fortification models, we then set the budget B as the location cost of the
corresponding robust CFLP model. This experimental setting is to explore the impacts of
different strategies (obtained from different models) under the same cost budget on system
robustness. Results are reported in Table 4.8. It shows that the location or fortification
costs of the two types of models are very close; however, there is a significant gap in their
worst-case flow costs. This is because in the fortification models, if a facility is chosen to be
protected, it becomes immune to disruptions; whereas in the robust CFLP models, a new
located facility can be disrupted later and thus loses its capacity completely. Decision-makers
can then leverage these models based on their cost budget to make an optimal trade-off among
different strategies to improve overall supply chain system’s reliability and resilience.

4.5 Conclusions

This chapter solves a fixed-charge location problem where two types of parameters are sub-
ject to uncertainties simultaneously: demand and facility availability. We apply a two-stage
RO framework for the problem, which allows the allocation decisions to be made after the
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Table 4.8 Comparison between robust CFLP models and robust fortification models

CFLP-R Fortification model with only facility disruptions

k Opened facilities Facility
cost

Worst-case
flow Cost

Fortified facilities Facility
cost

Worst-case
flow cost

1 [0, 2, 3, 4, 5, 7, 8] 478100 966320.64 [0, 1, 2, 3, 5] 421800 276697.39
2 [0, 2, 3, 4, 5, 6, 7, 8] 544100 1203400.07 [0, 1, 2, 3, 4, 5, 6] 526200 295728.79
3 [0, 2, 3, 4, 5, 6, 7, 8, 9] 640700 1284592.17 [0, 1, 2, 3, 4, 5, 6, 9] 622800 270611.69
4 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 1510399.81 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 242932.87

CFLP-DR Fortification model with both types of uncertainties

k Opened facilities Facility
cost

Worst-case
flow cost

Fortified facilities Facility
cost

Worst-case
flow cost

1 [0, 2, 3, 4, 5, 6, 7, 8] 544100 1405946.47 [0, 1, 2, 3, 5, 9] 518400 407327.56
2 [0, 2, 3, 4, 5, 6, 7, 8, 9] 640700 1728833.74 [0, 1, 2, 3, 4, 5, 6, 9] 622800 403133.55
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 1982132.83 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 371110.91
4 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 2546018.16 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 742500 371110.91

uncertainties are realized. We implement the C&CG method proposed in [14] to solve the
robust models exactly, and further extend the modeling and solution schemes to facility for-
tification problems under uncertainties. We benchmark our C&CG algorithm with the one
developed in [1], where the second-stage problem is reformulated to a minimum cost flow
problem. Numerical tests show that our algorithm can solve more instances to optimality
and generally outperform the benchmark approach. Results also indicate that, among the
three robust models, the CFLP-D is the easiest one in terms of computational complexity,
for which all the instances can be optimally solved under different budgets. The CFLP-DR
is the most difficult one, as two types of uncertainties are simultaneously considered. Our
tests further demonstrate that disruption risk (or provider-side uncertainty) has a greater
effect on solution configuration and cost, compared to demand uncertainty. Our solution
optimization framework allows decision-makers to determine an optimal and robust facil-
ity location decision to improve overall reliability and resilience of the supply chain facing
complex uncertainties.
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CHAPTER 5 A TWO-STAGE ROBUST APPROACH FOR THE
RELIABLE LOGISTICS NETWORK DESIGN PROBLEM

This chapter is based on the following article.

• Cheng, C., Qi, M., Zhang, Y., Rousseau, L.-M., 2018. A Two-Stage Robust Approach
for the Reliable Logistics Network Design Problem. Transportation Research Part B:
Methodological, 111, 185-202.

5.1 Introduction

The logistics network design problem (LNDP) is key to achieving efficient operations among
suppliers, manufacturers, and customers [133]. Compared to the classical facility location
problem, it considers multiple echelons and decides the number of suppliers and warehouses,
their locations and capacities, and the product flow throughout the network [134]. One
importance aspect in LNDP is to deal with uncertainty, like uncertain set-up costs of facilities,
uncertain transportation costs and customer demand [53,135]. Facility disruption is another
type of uncertainty. In this chapter, we use a two-stage RO scheme for a LNDP under
disruptions. Our study makes the following contributions:

1. To the best of our knowledge, this study is the first to solve the reliable LNDP using a
two-stage RO approach, which can produce less conservative solutions.

2. The adjustable robust model can be extended to include multiple uncertainty sets and
impose upper bounds on the worst-case performance of these sets. It can also be
extended to problems with partial disruptions.

3. We introduce a variable fixing technique to enhance the C&CG algorithm, which out-
performs the basic C&CG algorithm and the BD method. We present managerial
insights based on the numerical results.

We note that our work differs from those on the reliable PMP and the reliable UFLP by
considering multiple echelons and facility capacities. Specifically, our work differs from two
related papers ([42] and [124]) in the following aspects: (i) The authors of [42] focus on
analyzing the structural properties of the robust PMP and exploring the modeling capability
of the two-stage RO by considering capacitated PMP and demand changes. However, we
extend the basic RO scheme to include multiple uncertainty sets to characterize decision
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makers’ conservative levels. And the model in [42] can be recognized as a special case of
this modeling scheme. We also introduce upper bounds for the worst-case performance, and
this modeling framework can be used as a decision support tool for system expansion with
reliability considerations. Our numerical tests demonstrate that the new models can generate
less conservative solutions. (ii) The authors of [124] present robust unit commitment models,
where the load is subject to interval uncertainty. They focus on building the connection
between the robust models and the stochastic models. However, we apply the modeling
scheme to a reliable LNDP and explain the connections and differences among various models.
Extensive numerical tests are conducted to study the conservativeness of different models and
the price of robustness. Values of key parameters are also analyzed in our study to provide
insights for supply chain decision-makers.

The rest of this chapter is organized as follows. Section 5.2 describes our problem and presents
three two-stage RO models. Section 5.3 introduces the C&CG algorithm, and Section 5.4
presents the numerical results. Section 5.5 concludes our work.

5.2 Mathematical Models

In this section, we first introduce our notation. We then present a basic two-stage RO model
for the reliable LNDP and explore the modeling capability of two-stage RO by describing
two variants of the basic model: the expanded robust LNDP model and the risk-constrained
robust LNDP model.

5.2.1 Notation

We consider a general network (V ,A). Let VS , VT , and VD be the sets of supply, transship-
ment, and demand nodes. Define V0 = VS ∪VT to be the set of facilities for which open/close
decisions are required, and V = V0 ∪ VD. fj is the fixed cost to open facility j ∈ V0. cij is
the unit transportation cost on arc (i, j) ∈ A. Qj is the capacity of facility j ∈ V0. bj is the
supply of node j ∈ V . bj ≥ 0 if j ∈ VS , bj = 0 if j ∈ VT , and bj ≤ 0 if j ∈ VD. θi is the
unit penalty cost for unsatisfied demand at node i ∈ VD. Variable yj = 1 if facility j ∈ V0 is
opened in the first stage, yj = 0 otherwise. Variable xij is the product flow on arc (i, j) ∈ A
in a specific disruptive scenario. ui is the unsatisfied demand at node i ∈ VD in a specific
disruptive scenario.

Our two-stage robust optimization model uses a budgeted uncertainty set to describe possible
disruptive scenarios without requiring any probabilistic information. We assume that at most
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m facilities fail simultaneously:

A =

z ∈ {0, 1}|V0| :
∑
j∈V0

zj ≤ m

 , (5.1)

where zj = 1 if facility j is disrupted and zj = 0 otherwise.

5.2.2 Formulations

We first present the basic two-stage ROmodel, in which only one uncertainty set is considered.
Then we introduce two models with multiple uncertainty sets.

Basic Two-stage RO Model

We formulate the basic two-stage RO LNDP model as follows, where V+
i = {j ∈ V|(i, j) ∈ A}

and V−i = {j ∈ V|(j, i) ∈ A}.

RO-LNDP0:

min
y

∑
j∈V0

fjyj + max
z∈A

min
x,u∈S(y,z)

(
∑

(i,j)∈A
cijxij +

∑
j∈VD

θjuj) (5.2a)

s.t. yj ∈ {0, 1} ∀j ∈ V0, (5.2b)

where S(y, z) =
{ ∑
i∈V+

j

xji ≤ bj ∀j ∈ VS , (5.2c)

∑
i∈V+

j

xji =
∑
i∈V−j

xij ∀j ∈ VT , (5.2d)

∑
i∈V−j

xij + uj = −bj ∀j ∈ VD, (5.2e)

∑
i∈V+

j

xji ≤ (1− zj)Qjyj ∀j ∈ V0, (5.2f)

xij ≥ 0, ∀(i, j) ∈ A, (5.2g)

uj ≥ 0 ∀j ∈ VD
}
. (5.2h)

The objective function in (5.2a) minimizes the cost of the worst-case scenario. The max
operator represents the disruptive scenario in A that generates the largest recourse cost,
given the facility locations y. The min operator identifies the least costly solution, and the
set S(y, z) represents possible recourse operations. Constraints (5.2c)–(5.2e) are the product
flow conservation equations for all nodes. Constraints (5.2f) ensure that when a facility is
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opened and functional the flow does not exceed its capacity, and they prohibit any flow when
it is closed or destroyed. Constraints (5.2b), (5.2g), and (5.2h) define the variable types.

Expanded Two-stage RO Model

Two key factors influence the solution of the two-stage RO: the uncertainty set and the worst-
case performance. A small uncertainty set cannot adequately capture the random factor; a
large set leads to solutions that are costly and overly conservative. To deal with this, the
authors of [124] suggest using multiple uncertainty sets and assigning different weights to the
worst-case performances of these sets. Our RO-LNDP0 model can be extended to multiple
uncertainty sets as follows:

RO-LNDP1:

min
y

∑
j∈V0

fjyj +
K∑
k=1

ρk

max
z∈Ak

min
x,u∈Sk(y,z)

(
∑

(i,j)∈A
cijxij +

∑
j∈VD

θjuj)
 (5.3)

where y and Sk(y, z) are defined by constraints (5.2b) and (5.2c)–(5.2h), respectively. In the
objective function (5.3), Ak denotes the kth uncertainty set, with weight ρk (0 ≤ ρk ≤ 1 and∑
k ρk = 1).

Risk-constrained Two-stage RO Model

Another way to guarantee the quality of the solutions is to impose upper bounds on the worst-
case performance of the uncertainty sets. Then any solution that is feasible with respect to
these uncertainty sets provides a performance guarantee. We extend our RO-LNDP0 model to
introduce the risk-constrained robust LNDP model, where ξk is the performance restriction
on uncertainty set Ak,∀k ∈ {1, . . . , |K|}, and xij0 and uj0 are the normal disruption-free
decisions.

RO-LNDP2:

min
∑
j∈V0

fjyj +
∑

(i,j)∈A
cijxij0 +

∑
j∈VD

θjuj0 (5.4a)

s.t.
∑
i∈V+

j

xji0 ≤ bj ∀j ∈ VS , (5.4b)

∑
i∈V+

j

xji0 =
∑
i∈V−j

xij0 ∀j ∈ VT , (5.4c)

∑
i∈V−j

xij0 + uj0 = −bj ∀j ∈ VD, (5.4d)
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∑
i∈V+

j

xji0 ≤ Qjyj ∀j ∈ V0, (5.4e)

max
z∈Ak

min
x,u∈Sk(y,z)

∑
(i,j)∈A

cijxij +
∑
j∈VD

θjuj ≤ ξk, ∀k ∈ {1, . . . , |K|}, (5.4f)

yj ∈ {0, 1} ∀j ∈ V0, (5.4g)

xij0 ≥ 0 ∀(i, j) ∈ A, (5.4h)

uj0 ≥ 0 ∀j ∈ VD, (5.4i)

where Sk(y, z) is defined by (5.2c)–(5.2h).

For comparison purposes, in Appendix C we formulate the generic (or deterministic) LNDP
(G-LNDP) that ignores disruptions. In Appendix C, we give the formulation of the two-stage
stochastic programming (SP) model.

Summary of Models and Another Extension

The connections and differences among models are shown in Figure 5.1 and Table 5.1. The
G-LNDP model is a special case of the RO-LNDP0 model with m = 0, and also a special
case of the RO-LNDP1 model with K = 1 and m = 0. The RO-LNDP1 model reduces to
the RO-LNDP0 model when K = 1 and m > 0. Furthermore, the authors of [124] have
proved that the RO-LNDP1 model is equivalent to the SP model when the uncertainty sets
are individual scenarios. The RO-LNDP2 model reduces to the G-LNDP model when the
performance bound ξk is sufficiently large.

RO-LNDP0

RO-LNDP1

RO-LNDP2

G-LNDP

! = 0

$ = 1,! = 0

ξ& is unbounded

$ = 1,! > 0

SP model

uncertainty sets are
individual scenarios

Figure 5.1 Connections among models

From Table 5.1, our three two-stage robust models differ in the number of uncertainty sets
and the objective function. The basic RO model has one uncertainty set, and the other
models have multiple uncertainty sets. The objective of the basic RO model is to minimize
the cost of the worst-case scenario in the uncertainty set. The expanded RO model identifies
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the worst-case scenario in each uncertainty set and minimizes the weighted sum. The risk-
constrained RO model minimizes the cost of the normal disruption-free situation.

Table 5.1 Model comparison

Model Possibility information re-
quired?

Uncertainty
set/scenarios

Objective (minimize cost)

Deterministic LNDP Not applicable Not applicable Normal disruption-free case
Basic RO No One Worst-case
Expanded RO No Multiple Weighted sum of multiple worst-cases
Risk-constrained RO No Multiple Normal disruption-free case
Stochastic programming Yes Multiple Weighted sum of multiple scenarios

Another extension of our work allows partial disruption in which a damaged facility can still
satisfy part of the demand. We introduce a parameter δj (0 < δj ≤ 1) to represent the change
in facility j’s capacity in a disruptive scenario, and constraints (5.2f) become

∑
i∈V+

j

xji ≤ (1− δjzj)Qjyj ∀j ∈ V0 (5.5)

5.3 Solution Method

Two-stage RO models are usually difficult to solve [121]. Although BD can be used to
find optimal solutions for the two-stage problem (if it is linear), it is not efficient for large
problems. Recently, the C&CG algorithm has been developed to solve two-stage RO models.
It has performed well on unit commitment problems [124,136] and p-median facility location
problems [42]. We use this algorithm, and we introduce an enhancement strategy to further
improve its computational efficiency.

5.3.1 C&CG Algorithm

The C&CG algorithm is implemented in a master-subproblem framework. In the subproblem,
the solution for the master problem (i.e., the location decision) is known and we solve the
remaining max–min problem. Since unmet demand will be penalized in disruptive scenarios,
the second-stage problem is always feasible. Therefore, we find its dual and obtain a max–
max problem, which can be merged into a maximization problem. We describe our algorithm
for RO-LNDP0; the other RO models can be solved with minor modifications.
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Dual of the Second-stage Problem

We introduce the dual variables α,β,γ, and π for constraints (5.2c), (5.2d), (5.2e), and
(5.2f), respectively. The resulting dual problem is as follows:

max
∑
j∈VS

bjαj −
∑
j∈VD

bjγj +
∑
j∈V0

(1− zj)Qj ŷjπj

s.t. αi + βj + πi ≤ cij ∀i ∈ VS , j ∈ VT ∩ V+
i ,

αi + γj + πi ≤ cij ∀i ∈ VS , j ∈ VD ∩ V+
i ,

− βi + γj + πi ≤ cij ∀i ∈ VT , j ∈ VD ∩ V+
i ,

γj ≤ θj ∀j ∈ VD,

αj ≤ 0 ∀j ∈ VS ,

πj ≤ 0 ∀j ∈ V0.

Since πj ≤ 0 and zj ∈ {0, 1}, the nonlinear term zjπj in the objective function is the product
of a binary variable and a continuous variable. We can linearize it by introducing a new
continuous variable wj = zjπj and using a big-M method, with the following constraints:

wj ≥ πj,

wj ≥ −Mzj,

wj ≤ πj +M(1− zj),

wj ≤ 0.

The value of M can be set as follows: For each facility j ∈ V0 and demand node i ∈ VD, define
c′ji as the minimal cost from j to i, i.e., c′ji = min{cji, cjk + cki}, where k is a transshipment
node. If there is no arc between facility j and demand node i, then cji = +∞. Define
M ′

j = maxi∈VD{θi − c′ji} and M ′′
j = maxi∈V+

j
{cji}. Then we set

− πj ≤ max{M ′
j,M

′′
j } = Mj j ∈ V0. (5.6)

Therefore, the linearized objective function of the subproblem is

χ = max
∑
j∈VS

bjαj −
∑
j∈VD

bjγj +
∑
j∈V0

Qj ŷj(πj − wj). (5.7)
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Framework of the C&CG Algorithm

We now describe the framework of the C&CG algorithm and present the formulation of the
MP, which will be solved iteratively. At each iteration r, we identify a worst-case scenario
ẑr by solving the linearized subproblem. Then we create the recourse variables (xr,ur) and
the corresponding constraints, as well as this specific scenario, and add them to the MP. Let
LB and UB be the lower and upper bounds, Gap = (UB − LB)/UB, and let the optimality
tolerance be ε. The C&CG algorithm is as follows:

(1) Set LB = -∞, UB = +∞, and r = 0.

(2) Take any arbitrary ŷ ∈ {0, 1}|V0| as initial solution.

(3) Solve the linearized subproblem with regards to ŷ to identify the worst-case scenario ẑ.
Update r = r+ 1. Create recourse variables (xr,ur) and corresponding constraints, and add
them to the following MP.

min
∑
j∈V0

fjyj + φ

s.t. φ ≥
∑

(i,j)∈A
cijx

l
ij +

∑
j∈VD

θju
l
j ∀l ∈ {1, . . . , r},

∑
i∈V+

j

xlji ≤ bj ∀j ∈ VS , l ∈ {1, . . . , r},

∑
i∈V+

j

xlji =
∑
i∈V −j

xlij ∀j ∈ VT , l ∈ {1, . . . , r},

∑
i∈V−j

xlij + ulj = −bj ∀j ∈ VD, l ∈ {1, . . . , r},

∑
i∈V+

j

xlji ≤ (1− zlj)Qjyj ∀j ∈ V0, l ∈ {1, . . . , r},

yj ∈ {0, 1} ∀j ∈ V0,

xlij ≥ 0 ∀(i, j) ∈ A, l ∈ {1, . . . , r},

ulj ≥ 0 ∀j ∈ VD, l ∈ {1, . . . , r}.

(4) Iterate until the algorithm terminates:

(i) Solve the MP to find an optimal solution (ŷ, φ); set LB to the optimal value of the MP.

(ii) Solve the subproblem with regards to ŷ to identify the worst-case scenario ẑ. Update
UB = min

{
UB,∑j∈V0 fjy

r
j + χr

}
.

(iii) If Gap ≤ ε, terminate; otherwise, update r = r + 1 and create the recourse variables
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and corresponding constraints. Add them to the MP and go to step (i).

We also implement a Benders decomposition algorithm, where a single cutting plane

φ ≥
∑
j∈VS

bjα
r
j −

∑
j∈VD

bjγ
r
j +

∑
j∈V0

(1− zrj )Qjyjπ
r
j (5.8)

is iteratively added to the MP, which carries only the first-stage decision variable y.

Remarks: (1) For the RO-LNDP1 model, the objective function of the MP becomes

min
∑
j∈V0

fjyj +
K∑
k=1

ρkφk (5.9)

where φk corresponds to the kth uncertainty set. For each uncertainty set, we need to solve
a subproblem to identify the worst-case scenario, and we add its recourse variables and
corresponding constraints to the MP.

(2) For the RO-LNDP2 model, at each iteration we solve a subproblem for each uncertainty
set, to check whether its worst-case performance violates the bound. Once there exists such
scenarios, we add all the identified worst-case scenarios to the MP until all the performance
bounds are respected.

5.3.2 Algorithm Enhancement

In this section we introduce a variable fixing technique to improve the algorithm’s perfor-
mance. This technique has been shown to be efficient in reducing the computational burden
for facility location problems [4,137,138]. We generalize it to solve the reliable LNDP. The
idea is as follows:

Let ŷ be the incumbent solution with corresponding upper bound UB′.

• If ŷj = 0: We add an additional constraint yj = 1 to the MP and solve it to optimality;
if its optimal value is larger than UB′, then we fix yj to 0 in the MP.

• If ŷj = 1: We add an additional constraint yj = 0 to the MP and solve it to optimality;
if its optimal value is larger than UB′, then we fix yj to 1 in the MP.

Fixing some yj reduces the feasible space of the MP, which can help improve computational
efficiency. On the other hand, each time a new constraint with yj = 1 or 0 is added, and
this might increase the computational time, especially when the number of facilities is large.
Therefore, (1) after adding the new constraint, we solve the corresponding linear relaxation
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and get a lower bound, and we compare this bound with UB′ (“C&CG LP”); (2) we solve
the MP with the new constraint to optimality and compare the optimal value with UB′

(“C&CG Optimal”). The variable fixing technique is performed each time after solving the
subproblem. When this operation is finished, we add the identified scenario (via solving the
SP) and its associated variables and constraints to the MP.

5.4 Numerical Experiments and Analyses

In this section, we present the instances, discuss our numerical tests, analyze the influence of
the parameters, and present some insights. The algorithm is coded in the C# programming
language and run on a PC with a 2.53GHz Intel Core Dual Processor and 3GB of memory.
The MP and subproblem are solved using Gurobi 6.0.

5.4.1 Instances

We randomly generate instances of different sizes. The method is based on that of [64], with
a few modifications. The instances are labeled “d− |VS | − |VT | − |VD|,” where d is the edge
density (20%, 30%, or 50%) and |VS |, |VT |, and |VD| are the number of supply, transshipment,
and demand nodes. The number of nodes ranges from 60 to 100.

For each demand node j ∈ VD, the unmet-demand penalty is 1500, and the demand bj is
drawn uniformly from [−110,−50]. Let Sb = −∑j∈VD bj be the sum of all the demands (the
negative sign appears because bj ≤ 0); define s̄ = Sb

|VS |
and c̄ = Sb

|VT |
.

For each facility node j ∈ V0, the fixed cost is drawn uniformly from [5000, 15000]; if j ∈ VS ,
then its capacity Qj is drawn uniformly from [1.5s̄, 2.5s̄] and its supply bj is the same as its
capacity; if j ∈ VT , then its capacity Qj is drawn uniformly from [1.5c̄, 2.5c̄] and its supply
bj is 0.

The arcs are constructed based on the probability specified by the edge density. In detail,
for two nodes i, j (i ∈ VS , j ∈ VT or i ∈ VS , j ∈ VD or i ∈ VT , j ∈ VD) and edge density d,
we generate a random number r ∈ [0, 1]. If r ≤ d, then we construct an arc between i and j.
The unit transportation cost of each arc (i, j) ∈ A is drawn uniformly from [1, 500].

5.4.2 Algorithm Performance

We now evaluate the performance of the algorithms. We set the maximal number of facilities
that can fail simultaneously to 5, i.e., m = 5 (we arbitrarily choose a large value for m to
test the efficiency of the C&CG algorithm). The facilities are destroyed completely when
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disruptions occur (i.e., δj = 1,∀j ∈ V0). The model is RO-LNDP0, and the results are
shown in Table 5.2. The optimality tolerance ε is set to 10−6 and the time limit is 10,800
seconds (when this limit is reached, the current iteration will be completed). In Table 5.2,
the results in the “C&CG No Fix” columns are obtained by using the C&CG algorithm
without enhancement. The column Iter gives the number of iterations; Time indicates the
computational time in seconds; and Gap is the relative percentage gap between the upper
and lower bounds.

Table 5.2 Performance of different algorithms

Benders C&CG LP C&CG No Fix C&CG Optimal

Instance Iter Time Gap UB Iter Time Gap UB Time Gap Time Gap

20%-10-20-30 1042 696.84 0.00 1352471 11 5.66 0.00 1352471 5.19 0.00 72.71 0.00
30%-10-20-30 3710 5126.89 0.00 1532355 6 0.94 0.00 1532355 0.71 0.00 11.32 0.00
50%-10-20-30 919 10831.45 78.59 767158 9 5.37 0.00 751133 4.75 0.00 48.14 0.00
50%-20-20-30 553 10836.64 74.65 663328 41 4005.28 0.00 627139 9662.08 0.00 10839.47 4.91
50%-30-20-30 387 10851.49 65.83 577131 25 6930.84 0.00 532691 12303.52 4.31 12794.40 25.40
50%-40-20-30 391 10812.02 57.25 502841 22 8177.58 0.00 421706 11763.53 6.24 18315.67 13.03
30%-10-30-30 809 10813.28 35.98 1591183 9 2.86 0.00 1531845 2.76 0.00 46.52 0.00
30%-10-40-30 227 10914.11 78.85 1123941 7 4.24 0.00 1095014 3.77 0.00 78.95 0.00
30%-10-50-30 105 10910.24 77.63 1317280 8 3.61 0.00 1249269 3.41 0.00 100.41 0.00
20%-10-20-40 3504 10804.99 13.06 1960874 19 15.09 0.00 1923711 24.96 0.00 211.40 0.00
20%-10-20-50 1546 10808.08 17.94 2265886 14 14.68 0.00 2249769 20.85 0.00 120.54 0.00
20%-10-20-60 642 494.06 0.00 2698076 17 16.04 0.00 2698076 19.71 0.00 219.11 0.00

50%-20-30-50 592 10814.97 81.88 951850 32 7440.17 0.00 709762 11930.12 2.75 11707.76 6.08

Average 1110 8824.23 44.74 1331106 17 2047.87 0.00 1282688 3518.87 1.02 4197.42 3.80

Table 5.2 shows that for most instances (9 out of 13), the C&CG algorithm is hundreds of
times faster than the BD, and the number of iterations is much lower. Within the time
limit, BD can find optimal solutions for just 3 instances. In contrast, the C&CG algorithm
is able to generate optimal solutions for most of the instances, and C&CG LP finds the
optimal solution for all the instances. Therefore, the C&CG algorithm outperforms BD in
both computational time and solution quality.

To further demonstrate the superiority of C&CG LP, Figure 5.2 shows the convergence curves
of the two algorithms for the instance 20%-10-20-30. In Figure 5.2(a), the gap between the
lower and upper bounds reduces slowly and does not reach zero even after 1000 iterations;
the C&CG LP algorithm finds the optimal solution after 11 iterations. The instances 50%-
20-20-30, 50%-30-20-30, and 50%-40-20-30 show that the number of supply nodes has a
significant impact on the computational efficiency. For these instances, C&CG LP finds
optimal solutions within the time limit and performs better than C&CG No Fix and C&CG
Optimal. Therefore, for our model comparison and parameter sensitivity analysis, we use the
C&CG LP. On the other hand, we note that the results in Table 5.2 are based on a vanilla
implementation of the BD and that improvement might be achieved using Benders Branch
& Cut approaches.
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Figure 5.2 Convergence curves for instance 20%-10-20-30

5.4.3 Impact of Reliability

Obviously, if disruptions are not considered (i.e., G-LNDP), the system’s normal cost will be
lower, but it may be more expensive to implement mitigation/recourse operations when they
become necessary. To investigate the impact of reliability on the system cost, we conduct
the following experiments:

(1) We solve RO-LNDP0 to find the location decision. We then fix this decision and solve
a MCFP to find the system’s normal cost under RO-LNDP0. This indicates the impact of
disruptions on the system’s normal cost.

(2) We solve G-LNDP and fix the location decision. We then solve the slave problem of the
C&CG algorithm to identify the worst-case cost. This indicates the cost of not considering
disruptions in advance and handling them as they occur.

For space considerations, Figure 5.3 shows the curves of just 6 instances. The results for
the other instances are similar. Figure 5.3 confirms that considering disruptions will increase
the normal cost. However, ignoring disruptions during the design phase leads to higher costs
when they do occur. As m increases, the deviation of the worst-case cost for RO-LNDP0

and G-LNDP also increases. However, the normal cost of these two models is similar. We
conclude that the two-stage RO model gives a considerable decrease of the recourse cost in
the worst disruptive situation with only a small increase in the normal cost.
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Figure 5.3 Impact of reliability



72

5.4.4 Model Comparison and Analyses

In this section, we compare the results of different models.

Basic RO Model and Expanded RO Model

The experimental setup for each model is as follows. We have one uncertainty set with m

= 2 for the basic two-stage RO model. For the expanded two-stage RO model, we have
three uncertainty sets A0, A1, and A2. Set A0 is the normal disruption-free situation. In
sets A1 and A2, exactly 1 and 2 facilities will fail simultaneously, respectively. For the weight
coefficients, we consider two cases: (1) ρ0 = 0.8, ρ1 = 0.15, and ρ2 = 0.05, where the decision-
maker believes that in most cases the system will not experience disruption; (2) ρ0 = 0.65,
ρ1 = 0.25, and ρ2 = 0.10, where disruption is more likely.

In the following tables, the column Iter gives the number of iterations; FacN. gives the
number of opened facilities in the optimal solution; and Time gives the computational time
in seconds.

Table 5.3 Comparison of basic two-stage RO model and expanded two-stage RO model

Instance Basic two-stage RO model
Expanded two-stage RO model

ρ0 = 0.8, ρ1 = 0.15, ρ2 = 0.05 ρ0 = 0.65, ρ1 = 0.25, ρ2 = 0.10

Iter Cost FacN. Time Iter Cost FacN. Time Iter Cost FacN. Time

20%-10-20-30 15 891019 13 2.55 8 798609 10 21.33 11 813431 13 41.22
30%-10-20-30 5 919641 11 0.53 7 816046 9 10.12 7 827148 9 10.23
50%-10-20-30 6 588292 15 2.71 3 471472 15 1.23 3 483600 15 1.13
30%-10-30-30 6 901721 11 1.83 4 815471 8 4.12 4 827332 9 3.82
30%-10-40-30 6 867244 9 2.28 5 773600 8 8.53 4 783327 9 4.35
30%-10-50-30 6 851158 11 3.64 4 767809 8 9.38 4 778780 9 8.34
20%-10-20-40 8 1323446 14 4.70 6 1072862 10 5.75 6 1104976 13 6.41
20%-10-20-50 5 1467915 14 1.36 6 1280748 13 13.83 5 1295309 13 9.65
20%-10-20-60 8 1783269 14 6.25 13 1572904 13 156.05 9 1592708 13 65.98

Average 7.2 1065967 12.4 2.87 6.2 929947 10.4 25.59 5.9 945179 11.4 16.79

Table 5.3 shows that the solution under the basic RO model is more conservative than that of
the expanded RO model. To hedge against the worst disruptive scenario in the uncertainty
set, the basic RO model tends to open more facilities, increasing the cost. In the expanded RO
model, where more weight is put on the disruptive scenarios, the cost increases as expected;
however, it is still lower than that of the basic RO model. The computational time is slightly
higher for the expanded RO model than the basic RO model. However, with CC&G LP, the
expanded model can still be solved to optimality in a short time.
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Risk-constrained Robust Model and Deterministic LNDP model

For the risk-constrained RO model, we use two uncertainty sets, i.e., Ak (k = 1, 2), and
for set Ak at most k facilities will fail simultaneously. We change the performance bound
on each uncertainty set and investigate the results. The detailed experimental setup is as
follows: for Cases 1–4 (see Table 5.4), the performance bound on A2 is always satisfied,
and we change the bound on A1 gradually; after we have obtained the location decision, we
assume that one facility will be disrupted and compute the worst-case cost. Similarly, for
Cases 5–10, the performance bound on A1 is always satisfied, and we change the bound on
A2 and compute the normal and worst-case costs. The numerical analysis is conducted on
instance 20%-10-20-30, and Table 5.4 and Figure 5.4 give the results.

Table 5.4 Results for risk-constrained RO model for instance 20%-10-20-30

Case ξ1 ξ2 Normal cost FacN. Worst-case cost Time

1 1100000 1600000 758897 7 1103177 0.20
2 1000000 1600000 761983 8 976794 0.39
3 800000 1600000 766515 9 879850 0.78
4 700000 1600000 Infeasiblea N/Ab N/A 0.21
5 1100000 1600000 758897 7 1556769 0.36
6 1100000 1400000 761983 8 1366854 0.55
7 1100000 1200000 766515 9 1189425 1.26
8 1100000 1000000 771935 10 1045396 2.15
9 1100000 800000 794881 13 891019 3.24
10 1100000 600000 Infeasible N/A N/A 0.22

a The constraint is too tight and no feasible solution is found.
b Not applicable.
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Figure 5.4 Results of risk-constrained two-stage RO model

Table 5.4 shows that when the bounds on the worst-case performance are loose (i.e., Cases 1
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and 5), the problem reduces to a deterministic LNDP. As the bounds become more restrictive,
solutions with higher normal costs and lower worst-case costs are obtained, and more facilities
are opened to improve reliability. In Cases 4 and 10, the model becomes infeasible, which
suggests that if greater reliability is required, the system needs to obtain extra facilities
or increase the capacity of some facilities. Therefore, the risk-constrained two-stage RO
model can be employed as a decision support tool for system expansion with reliability
considerations.

Figure 5.4 indicates that a slight increase in the normal cost can lead to a significant decrease
in the worst-case cost. In particular, from Case 1 to 3, the normal cost increases by only
1.00%; however, the worst-case cost reduces by 20.24%. From Case 5 to 9, the worst-case
cost reduces by 42.76% with only a 4.74% increase in the normal cost. We conclude that
compared with G-LNDP, the risk-constrained RO model is capable of improving reliability
substantially with only a slight increase in the normal cost.

Summary of Model Comparison

Based on the numerical experiments in this section, we draw the following conclusions: (1)
The proposed CC&G algorithm is able to solve the three two-stage RO models to optimality
in a reasonable time. (2) The two-stage RO models can improve system reliability with
only a slight increase in the normal cost. Thus, all the three robust models can be applied
to situations where the decision-makers want to design a reliable supply chain network but
without precise probability information about risks. (3) We can use the risk-constrained
model when we care more about the system’s normal cost while still want to control the
worst-case cost to some extent.

5.4.5 Parameter Analysis

This section analyzes the effects of parameters.

Budget of Uncertainty and Partial Disruption

As mentioned earlier, the scope of the uncertainty set and partial disruptions will affect the
system design and operation. However, to what extent they will affect the cost remains
unknown. To investigate this, we explore changing the value of m and δ simultaneously for
instance 20%-10-20-30 and the RO-LNDP0 model. Figure 5.5 presents the results.

It can be seen that with both partial and complete disruption, the worst-case cost increases in
general as the budget of the uncertainty set increases. For all values of δ, as m varies from 10
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Figure 5.5 Impact of m and δ on cost for instance 20%-10-20-30

to 13, the cost remains stable. We explore the details of the solutions and find that in these
cases the system does not open any facilities and all the demands are penalized. We also
find that when partial disruption is considered, the cost for different values of m may be only
slightly different. In particular, when δ is between 0.3 and 0.5, the variation is small although
the budget of the uncertainty set increases gradually. This indicates that for regions where
relatively minor disasters are likely, decision-makers can consider more disruptive scenarios
with little increase in the worst-case cost. On the other hand, when δ is larger than 0.5, the
system is much more sensitive to the budget of the uncertainty sets.

Weight of the Uncertainty Set

For the expanded RO model, the weights put on the uncertainty sets characterize decision-
makers’ protective level, which may influence the location decision. We conduct our analyses
on four instances, where the number of facilities ranges from 30 to 60. For each instance, we
consider two uncertainty sets A1 and A2: A1 with m1 = 0 (i.e., disruption-free case) and A2

with m2 = 2 or 3 or 4. We change the weight gradually and observe its influence. Results are
presented in Figure 5.6, where the left side is the objective value of the RO-LNDP1 model.
The right side is the normal cost of the system, where we fix the location decision and solve
a MCFP.

It shows that the objective value of the RO-LNDP1 model increases almost linearly with
ρ2, which suggests that the worst-case performance of set A2 accounts for a large portion
of the objective value. When m2 = 2, the normal cost is less sensitive to the value of ρ2,
especially for instance 30%-10-40-30. Normally there exists some regions where the normal
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cost keeps stable for each budget m2. In these situations, the location decisions are the
same. Therefore, it is possible that sometimes the estimating errors in the weight will not
significantly influence the system’s configuration. However, for the decision-makers, they
should carefully determine the weight of larger uncertainty sets.

5.5 Conclusions

In this chapter, we consider a reliable LNDP, where both supply and transshipment nodes
are subject to disruptions. Three two-stage RO models are constructed, which are solved to
optimality by the C&CG algorithm. Our numerical tests show that (i) the C&CG algorithm,
especially the C&CG LPmethod, outperforms BD in both solution quality and computational
time; (ii) the two-stage RO models give a considerable decrease in the cost of the worst
disruptive scenario for only a small increase in the normal cost; (iii) when partial disruptions
are considered, sometimes the system experiences small increases in the worst-case cost even
when the uncertainty budget increases dramatically.
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CHAPTER 6 DRONE ROUTING WITH ENERGY FUNCTION:
FORMULATION AND EXACT ALGORITHM

This chapter is based on the following article.

• Cheng, C., Adulyasak, Y., Rousseau, L.-M., 2020. Drone Routing with Energy Func-
tion: Formulation and Exact Algorithm. To appear at Transportation Research Part
B: Methodological.

Before starting this chapter, we first clarify the definition of drone routing problem (DRP)
and multi-trip drone routing problem (MTDRP). DRP refers to the problem where a fleet
of drones visit a set of customer locations and each drone can visit multiple customers in a
trip. In this case, drones can only be dispatched once from the depot. When drones can
perform multiple trips (each trip starts and ends at the depot), this problem is referred to
as the MTDRP.

6.1 Introduction

Based on the reviewed papers in Chapter 2, we find that only a few papers explicitly consider
energy constraints, and many use an approximation that is linear in the payload. In addition,
to the best of our knowledge, no benchmark instance is available for algorithm evaluation, and
no efficient exact algorithm has been developed for the DRP. To fill some gaps in this area,
this chapter solves a MTDRP with time windows, where a fleet of homogeneous multirotor
drones are dispatched to deliver packages to customers within stipulated time slots. The
main contributions of our study is as follows:

1. We explicitly represent drone’s energy consumption as a nonlinear function of payload
and travel time, instead of assuming that flight range (maximum distance or time) is
a fixed number. To tackle the nonlinear energy function, instead of relying on a linear
approximation (e.g., as in reference [2]), we propose adding two types of cuts in the
solution process. Our results show that using a linear energy approximation can lead
to routes that are energy infeasible under the nonlinear energy consumption model.

2. A 2-index formulation scheme is presented, which is solved by a B&C algorithm. To
the best of our knowledge, this work is the first to formulate a MTDRP and use an
exact algorithm for drone routing problems.
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3. We generate several benchmark instance sets based on the realistic parameters and
known instance sets in the literature, which will be available to the research community
and allow for a better comparison of algorithms.

4. We provide extensive computational results of the formulation and the algorithm.

The rest of this chapter is organized as follows. Section 6.2 describes our problem, presents
the mathematical model, and introduces valid inequalities to strengthen it. Section 6.3
presents techniques for the calculation of energy consumption and provides details of our
exact algorithm. Numerical tests and analyses are presented in Section 6.4. This is followed
by the conclusions in Section 6.5.

6.2 Formulation

This section presents the problem, constructs the mathematical model, and introduces valid
inequalities to strengthen the model.

6.2.1 Problem Definition

The problem is defined on a directed graph G = (N,A), where N = {0, . . . , n + 1} is the
set of nodes. Node 0 represents the starting depot, and node n + 1 is a copy of node 0 and
it represents the returning depot. N ′ = {1, . . . , n} is the set of customers. For notational
convenience, we denote N+ = {0, . . . , n} and N− = {1, . . . , n+ 1}. A = {(i, j) : i ∈ {0}, j ∈
N ′ and i ∈ N ′, j ∈ N−, i 6= j} is the set of arcs. Sets δ−(i) and δ+(i) represent node i’s
predecessor and successor nodes, respectively.

Each customer is associated with a non-negative demand di, and a hard time window [ai, bi].
For the depots, [a0, b0] = [an+1, bn+1], where a0 and b0 are the earliest possible departure
time and the latest possible arrival time, respectively. A fleet of K homogeneous multirotor
drones are based at the depot. Q is the maximum payload of a drone and we assume that
di ≤ Q, ∀i ∈ N ′. Each drone can perform several trips and during a trip it can visit several
customers. Drone speed is assumed to be a constant number, and with each arc (i, j) is
associated a travel time tij and a travel cost cij. Further, it is assumed that the triangle
inequality is satisfied for tij. Without loss of generality, here we assume the service time at
each customer is 0, because we can set tij to be the sum of travel time on arc (i, j) and the
service time at node i. We consider multirotor drones in the study as these have been often
used in drone delivery analyses and we use data from [2]. Hybrid drones may have different
performance characteristics and require a different energy model.
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The problem consists in designing a set of drone routes, such that the objective function is
optimized and the following constraints are satisfied: (1) Each route starts at depot 0 and
ends at depot n + 1. (2) Every customer is visited exactly once. (3) The sum of duration
of trips assigned to the same drone does not exceed bn+1. (4) The drone weight capacity
constraint, battery energy constraint, and customers’ time windows must be respected.

6.2.2 Mathematical Model

For our problem, as there is no limit on the number of trips that each drone can perform,
we do not consider the 3-index formulation with a trip index. Further, our preliminary tests
also indicate that the 3-index formulation with a drone index provides worse results than the
2-index formulation. Therefore, we present a 2-index formulation for our MTDRP.

Decision Variables. There are two sets of binary variables: xij = 1 if arc (i, j) is traversed
by a drone, 0 otherwise. zij = 1 if a trip finishing with customer i is followed by another trip
visiting j as the first customer (performed by the same drone), 0 otherwise. There are four
sets of continuous variables: qij is the product weight carried through arc (i, j) (kg). τi is the
start of service time at node i ∈ N− (second). fi is the accumulated energy consumption of
a drone upon arrival at node i (kWh). eij is the energy consumption on arc (i, j) (kWh).

Constraints. We organize the constraints into five groups:

(i) Route feasibility:

∑
j∈δ+(i)

xij = 1 ∀i ∈ N ′, (6.1)

∑
j∈δ−(i)

xji = 1 ∀i ∈ N ′, (6.2)

∑
j∈δ+(0)

x0j =
∑

j∈δ−(n+1)
xj,n+1. (6.3)

Constraints (6.1) and (6.2) guarantee that each customer is visited exactly once. Constraints
(6.3) indicate that the number of trips leaving the starting depot is equal to the number
arriving at the ending depot.

(ii) Weight related constraints:

∑
i∈δ−(j)

qij −
∑

i∈δ+(j)
qji = dj ∀j ∈ N ′, (6.4)

qij ≤ Qxij ∀(i, j) ∈ A, (6.5)

qi,n+1 = 0 ∀i ∈ N ′. (6.6)



81

Equations (6.4) impose that each customer’s demand must be satisfied, and also eliminate
subtours. Constraints (6.5) guarantee that drone weight capacity is respected. Equations
(6.6) indicate that drones cannot carry any product from a customer to the ending depot.

(iii) Drone energy constraints:

We only consider drones’ energy consumption during level flight in this study. The authors
of [2] suggest that the average power during hover is an upper bound on the average power
during flight. Since there are no available field tests of small drones making multiple deliveries
or of actual delivery drones in production mode, in this study, we use the theoretical power
consumption during hovering to approximate the horizontal power consumption for a delivery
drone making multiple-stop trips. The work in [139] describes the energy consumption,
P (q), of a single rotor helicopter in hover as a convex function of payload q. Based on the
assumption that each rotor shares the total weight of a drone equally, the authors of [2] derive
the power consumption equation for a h-rotor drone as

P (qij) = (W +m+ qij)
3
2

√
g3

2ρςh, (6.7)

whereW is the frame weight (kg),m is the battery weight (kg), qij is the payload (kg), g is the
force due to gravity (N), ρ is the fluid density of air (kg/m3), ς is the area of spinning blade
disc (m2), h is the number of rotors, and the unit of P is Watt. In the experiments of [74],
the power consumption in hover also takes a similar form, i.e., P (qij) = cp[(W +m+ qij)g] 3

2 ,
where cp is a parameter. We rewrite Equation (6.7) as

P (qij) = k(W +m+ qij)
3
2 , (6.8)

where k depends on the details of the drone and the environmental parameters and it is a
constant in our model. Based on field tests, the authors of [2] propose to approximate power
consumption as

P (qij) = α(m+ qij) + β, (6.9)

where α(kW/kg) and β(kW ) are two constant numbers obtained by a linear approximation.

As shown in Figure 6.1, when the sum of the battery weight and payload is smaller than A,
the linear approximation function overestimates the energy consumption from the nonlinear
model, and therefore drone routes calculated with the linear approximation will be “energy
feasible” if the nonlinear model is used to calculate energy consumption. However, when
the battery and payload weight is larger than A, then the linear approximation function
underestimates the energy consumption from the nonlinear model. In this case, drone routes
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Figure 6.1 Energy calculation from linear and nonlinear functions (Figure 1 in reference [2])

calculated with the linear approximation may be “energy infeasible” (i.e., exceed the battery’s
energy capacity) if the nonlinear model is used to calculate energy consumption. We use
Equation (6.8) to compute power consumption in this study, and drones’ energy consumption
constraints are written as

f0 = 0, (6.10)

fi + k′(W +m+ qij)
3
2 tij ≤Mij(1− xij) + fj ∀(i, j) ∈ A, (6.11)

fn+1 ≤ σ. (6.12)

Equations (6.10) indicate that at the beginning of each trip the accumulated energy con-
sumption is 0, that is, every time a drone begins a new trip we swap it with a fully charged
battery. This assumption is common in the literature [24,30,83]. Equations (6.11) establish
the energy relationship between node i and its immediate successor j, where k′ is a constant
that includes k from earlier and the conversion from Watt-second to kWh and Mij is an ar-
bitrary large constant. We can observe that, when xij = 0, according to Equations (6.5), qij
also equals 0, then we can setMij = k′(W +m) 3

2 tij+σ (σ is the battery energy available for a
drone trip (kWh)). When xij = 1, the second term of the left-hand side of Equations (6.11) is
the energy consumption on arc (i, j). Constraints (6.12) mean that battery’s energy capacity
constraint must be respected. Since constraints (6.11) are nonlinear, the model cannot be
solved directly by a mixed-integer linear programming (MILP) solver. In Section 6.3.1, we
introduce different types of cuts to tackle this group of constraints implicitly.
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We also give the linear approximation version of constraints (6.11):

fi + [α(m+ qij) + β]tij/3600 ≤M ′
ij(1− xij) + fj ∀(i, j) ∈ A, (6.13)

where M ′
ij = (αm + β)tij/3600 + σ. In numerical tests, we will compare the difference in

solution construction when using these two versions of the energy expressions.

(iv) Time and trip related constraints:

τi + tij −M
′′

ij(1− xij) ≤ τj ∀i ∈ N ′, j ∈ N−, (6.14)

ai ≤ τi ≤ bi ∀i ∈ N−, (6.15)

τi + (ti,n+1 + t0j) ≤ τj + (1− zij)M
′′′

ij ∀i, j ∈ N ′, i 6= j, (6.16)∑
i∈N ′
i 6=j

zij ≤ x0j ∀j ∈ N ′, (6.17)

∑
j∈N ′
j 6=i

zij ≤ xi,n+1 ∀i ∈ N ′, (6.18)

∑
j∈N ′

x0j −
∑
i∈N ′

∑
j∈N ′
j 6=i

zij ≤ K. (6.19)

Constraints (6.14) establish the time relationship between customer i and its immediate
successor j. We set the large constants M ′′

ij = max{bi + tij − aj, 0} [140]. Constraints (6.15)
denote that the time window constraint must be respected. Here we impose the time window
constraint instead of the deadline constraint, because the latter is a special case of the former
with ai = 0,∀i ∈ N . This model fits best when drones land at customer sites for delivery, as
we assume that drones can wait at customer locations until the opening of the time window
and the energy consumption during this period is negligible. Note that in the case where
the energy consumption during that period must be taken into account (e.g., in case when
drones are equipped with cameras and sensors on to actively detect dangerous situations
such as package or drone theft, or for a hovering while waiting), we can also incorporate
the energy consumption of performing these activities in our model and our solution scheme
can still be directly used. The detailed description on the modifications is presented in D.
Equations (6.16) establish the time relationship between consecutive trips performed by the
same drone, where M ′′′

ij = ti,n+1 + t0j + bi. These constraints take into account the time to
return to the depot and replace the battery. Constraints (6.17)–(6.18) connect variables x
and z [104]. Constraints (6.19) limit the number of drones that can be used in the system.
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(v) Variable domains:

xij ∈ {0, 1}, qij, eij ≥ 0 ∀(i, j) ∈ A, (6.20)

fi ≥ 0 ∀i ∈ N, (6.21)

τi ≥ 0 ∀i ∈ N−, (6.22)

zij ∈ {0, 1} ∀i, j ∈ N ′. (6.23)

Objective Function. We consider the applications of logistics companies who use drones
for last-mile delivery, in order to reduce an overall transportation cost. Therefore, we consider
a general form of the objective function which also incorporates the energy consumption

min
∑

(i,j)∈A
(cijxij + δeij), (6.24)

where δ is the battery-related cost ($/kWh) which includes the cost of electricity and the
amortization of lithium-ion battery. We will show how variables eij,∀(i, j) ∈ A are incorpo-
rated in the constraints and linked to variables fi and fj in following sections. Note that the
energy cost could be negligible in realistic applications, and we add it here for two reasons:
First, to keep consistent with some existing works, which also include the energy cost in the
objective function to incorporate the depreciation and operating cost of battery as a function
of energy usage [2,90]; Second, to demonstrate that our objective function is quite flexible.
The model and approach can be used to solve a traditional VRP objective which minimizes
the travel cost by dropping the second term, or a green supply chain related objective that
minimizes the energy consumption/cost by dropping the first term. We analyze the impact of
different objectives on computational efficiency and solution configurations in Section 6.4.3.
For notational convenience, in the following sections we use R, E, and R + E to represent
the model that minimizes travel cost (δ = 0), energy cost (cij = 0, ∀(i, j) ∈ A), and both
travel and energy costs (as in the objective function (6.24)), respectively. For the energy
calculation, we use a subscript e if the nonlinear energy function is used, and a subscript a
if the linear approximation method is used.

We note that constraints in group (i), (ii), (iv), and (v) are adapted from studies on VRP and
MTVRP [103,104,140]. However, the nonlinear energy constraints and the objective function
are newly introduced. Moreover, the time-window constraints, which are not considered in
[104] and [2], are also considered in our study. Thus, our model generalizes the other models in
the literature, such that it can capture important practical constraints. We further emphasize
that our modeling and solution schemes (introduced in next section) simultaneously optimize
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multi-trip drone routing operations and energy consumption under time windows constraints.
We also include a more complex nonlinear energy function.

6.2.3 Valid Inequalities

We use constraints (6.25) to indicate the least number of trips needed to visit all the customers
[141,142]. ∑

j∈N ′
x0j ≥

⌈∑
i∈N ′ di
Q

⌉
. (6.25)

Constraints (6.26) are derived from Equations (6.8) using the constant dj to replace the
variable qij, which yields linear equations and a lower bound of P (qij) since qij ≥ dj when
xij = 1. Constraints (6.26) mean that if arc (i, j) is traversed by a drone, the energy
consumption is at least equal to the value of the right-hand side.

eij ≥ k′(W +m+ dj)
3
2 tijxij ∀(i, j) ∈ A. (6.26)

6.3 Solution Method

In this section, we introduce the techniques to handle the nonlinear energy consumption,
and develop a B&C algorithm for our model. We note that our solution method can also be
applied to other applications with nonlinear energy functions.

6.3.1 Cuts for Nonlinear Energy Function

Logical Cut (Infeasibility Cut). We first solve the model without constraints (6.10)–
(6.12). When a feasible solution is generated, we check whether it satisfies the energy capacity
constraint for each trip. For any violated trip {0, i1, . . . , il, n+ 1}, we add the logical cut

xi1i2 + xi2i3 + . . .+ xil−1il ≤ l − 2, (6.27)

where il−1 is the (l− 1)th customer in the trip, and there are l customers in total in the trip.
Equation (6.27) means that the customer sequence is not allowed to be performed.

Subgradient Cut. In Equation (6.8), P (qij) is a convex function in qij. Thus, the tangent
line at point (q̄ij, P̄ (q̄ij)) (we use a bar ‘-’ to represent known values) is

P (qij) = P̄ (q̄ij) + β̄ij(qij − q̄ij), (6.28)
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where β̄ij = 3
2k(W +m+ q̄ij)

1
2 , and it is the derivative of function P (qij) at point (q̄ij, P̄ (q̄ij)).

Figure 6.2 is an illustration of the tangent line. Therefore, the subgradient cut derived for
constraints (6.11) can be added using a conditional form as follows:

eij ≥ [P̄ (q̄ij)xij + β̄ij(qij − q̄ij)]/1000× (tij/3600) ∀(i, j) ∈ A. (6.29)

When xij = 0, the right-hand side of Equation (6.29) is a negative number (qij = 0 because of
constraints (6.5)) and the cut is inactive. When xij = 1, the cut is added and the right-hand
side of (6.29) underestimates the energy from Equation (6.8).

!"(!#$%)

Slope = '̅$%

!#$%

Figure 6.2 The tangent line of the power function

Remarks: (i) Being different from the logical cuts, constraints (6.10) and (6.12) are necessary
when applying the subgradient cuts, and constraints (6.11) become fi + eij ≤Mij(1− xij) +
fj, ∀(i, j) ∈ A. (ii) For the models with energy costs in the objective, i.e., the E and R +
E models, we must apply the subgradient cuts to ensure the involvement of energy cost.
However, logical cuts are optional because the subgradient cuts can also guarantee that the
energy capacity constraints are respected. (iii) For the models without energy costs, i.e.,
the R model, we can implement the cuts in three ways: only add logical cuts, only add
subgradient cuts, or add both together. If there is only one customer in a trip, we do not
add either logical or subgradient cuts for the R model, because we can guarantee that each
customer is eligible to be serviced by a drone when generating the instance sets. Moreover,
when only the logical cuts are used for model R, we do not need valid inequalities (6.26).

Our techniques can be applied for any energy function that is convex or piecewise convex in
payload. If it is not a convex function, then our logical cut can be used. In other words, our
method generalizes the ones presented in the literature.



87

6.3.2 Branch-and-Cut Algorithm

The B&C algorithm has been extensively used to solve MILP problems, and it is a combina-
tion of a cutting plane method with a B&B algorithm [143]. In our B&C scheme, we first add
valid inequalities to the formulations at the root node of the search tree. We then solve the
LP relaxation problem at each node of the tree. Each time a fractional solution is obtained,
we detect and generate violated cuts in a cutting-plane fashion and the LP relaxation at the
current B&B node is re-optimized. If all the cuts are respected and the solution still has
fractional-valued integer variables, the branching process continues. If an integer solution
is obtained and no cuts are generated, we consider updating the incumbent solution and
pruning some nodes. This process continues until all nodes of the tree are evaluated.

Separation of Subtour Inequalities

Although constraints (6.4) can eliminate subtours, we introduce another group of subtour
elimination constraints (SECs) which can help improve computational efficiency for the B&C
scheme. The SECs are as follows [144]:

∑
i∈S

∑
j∈S

xij ≤ |S| − q(S) ∀S ⊆ N ′, |S| ≥ 2, (6.30)

where q(S) =
⌈∑

i∈S di

Q

⌉
is the minimum number of trips needed to visit customers in set S.

The separation algorithm is performed by using the CVRPSEP package in [145].

Implementation of Cuts and SECs

For the logical and subgradient cuts, they are applied when an integer solution is obtained.
For the SECs, we only generate them at the root node since they are redundant for our models
due to the fact that subtours are eliminated by constraints (6.4) and it is time consuming to
solve the separation problems at all nodes of the B&B tree.

6.4 Numerical Experiment

In this section, we present the instances and discuss our numerical tests for the MTDRP
with the energy function presented in this study. The B&C algorithms are coded in Python
on Pycharm 2.7 using Gurobi 7.5.1 as the solver. All the parameters are set to their default
values in the solver. The experiments are performed on a cluster of Intel Xeon X5650 CPUs
with 2.67 GHz and 24 GB RAM under Linux 6.3. Each experiment is conducted on a single
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core of one node unless specified. The computing time limit is set to four hours.

6.4.1 Instance Sets

We introduce two sets of benchmark instances. The first set, named Set A, is created based
on the instance generation frameworks presented in [96] and [2]. The second set, named Set
B, is an extension of Solomon’s instances, taking into account drones’ specific characteristics.
For Set A instances, we further consider two types of instances and each has 10–50 customers.
For type 1 instances, named Set A1, the depots are located at the lower left corner of the
region. For type 2 instances, named Set A2, the depots are in the middle of the region.
We use Set A instances for preliminary tests and performance comparisons. We conduct
experiments on Set B instances. The detailed instance generation procedures are presented
in D. All the instances and solutions are also available at the following URL: https://sites.
google.com/view/chengchun/instances.

We assume that 4-cell 14.8V lithium polymer batteries are used for drones. According to
the field tests in [2], we set α = 0.217 kW/kg, β = 0.185 kW , m = 1.5 kg, W = 1.5 kg,
Q = 1.5 kg, g = 9.81 N/kg, ρ = 1.204 kg/m3, ς = 0.0064 m2, h = 6, δ = 360 $/kWh. For
Set A instances, we set the battery energy capacity σ = 0.27 kWh; For Set B instances, we
set σ = 0.027 kWh.

6.4.2 Enhancement Strategy Evaluation

This section analyzes the effect of valid inequalities and SECs. We conduct all the tests on
instances with 10–30 customers in Set A. First, we only apply subgradient cuts to the model
to evaluate the valid inequalities and SECs. After knowing the performances, we further
compare different implementations of cuts. Results are provided in Table 6.1. For each
model, we present detailed results of the largest instances (i.e., those with 30 customers) in
the first six rows, and the results of all instances in the last two rows. The column None gives
the results without any enhancement strategy. The remaining columns indicate that one (or
all) valid inequalities or SECs are added to the model. Opt is the number of instances solved
to optimality. UP, LB, and RLB are the best upper bound, the best lower bound, and the
lower bound at the root node, respectively. Gap is the percentage difference between the
best upper and lower bounds. CPU is the time in seconds consumed to solve the instance.

Table 6.1 shows that different implementations of cuts yield different performances. In gen-
eral, the simultaneous application of logical cuts, subgradient cuts, valid inequalities (6.25)–
(6.26), and the SECs, gives the best performance for the three models. Specifically, a few

https://sites.google.com/view/chengchun/instances
https://sites.google.com/view/chengchun/instances
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Table 6.1 Average results with different valid inequalities and SECs for Set A instances

Only subgradient Only logical Subgradient
+logical

Cust None (6.25) (6.26) (6.25)+(6.26) (6.25)+(6.26)
+SECs (6.25)+SECs (6.25)+(6.26)

+SECs

Re

30 Opt 7/10? 7/10 5/10 7/10 7/10 7/10 8/10
UB 11604.97 11608.23 11604.97 11616.74 11604.97 11604.97 11611.46
LB 11539.12 11544.82 11520.78 11541.28 11553.25 11558.07 11575.70
Gap 0.56 0.53 0.72 0.63 0.44 0.39 0.31
CPU 6810.79 6038.29 10041.20 7436.01 6501.20 6033.06 6643.34
RLB 11013.32 11041.65 11013.31 11033.22 11037.09 11055.78 11039.42

All Opt 46/50? 45/50 43/50 45/50 46/50 46/50 47/50
Gap 0.14 0.16 0.22 0.19 0.13 0.11 0.10

Ee

30 Opt 0/10 0/10 3/10 3/10 4/10

Not Applicable

6/10
UB 833.62 836.92 828.35 828.63 828.25 828.63
LB 597.37 611.69 810.58 812.01 819.55 819.65
Gap 28.24 26.82 2.24 2.07 1.05 1.07
CPU 14400.00 14400.00 11515.46 12046.49 11437.83 9440.20
RLB 123.92 80.82 705.74 704.07 708.00 708.00

All Opt 31/50 31/50 41/50 41/50 43/50 46/50
Gap 8.83 8.06 0.54 0.50 0.22 0.22

(R+ E)e

30 Opt 6/10 5/10 6/10 6/10 7/10

Not Applicable

7/10
UB 12451.89 12471.68 12437.36 12437.36 12437.36 12450.29
LB 12321.26 12293.59 12343.51 12365.55 12369.68 12374.19
Gap 1.03 1.40 0.75 0.57 0.54 0.60
CPU 11631.34 9808.45 8577.97 8623.99 8512.23 8270.53
RLB 11015.17 11181.01 11709.88 11742.26 11766.60 11766.70

All Opt 44/50 43/50 45/50 45/50 46/50 46/50
Gap 0.30 0.38 0.19 0.18 0.16 0.18

? indicates the number of instances (out of 10 and 50) that are solved to optimality.

more instances can be solved to optimality for the Re and Ee models. For the (R+E)e model,
the number of optimally solved instances is the same when only using the subgradient cut or
using both cuts together; however, the average optimality gap is relatively close. We can also
observe that, for instances with 30 customers, the average RLB is improved from 123.92 to
705.74 for model Ee when the valid inequalities based on the energy function (i.e., constraints
(6.26)) are used. In addition, the Ee model consumes the most computation time on average,
because its average RLB is not as tight as those of the other two models. In particular,
RLB/LB= 0.86 for the Ee model whereas RLB/LB= 0.95 for the other two models. In the
following sections, we use the 2-index formulation constructed in Section 6.2.2, together with
constraints (6.25)–(6.26), SECs, and both logical and subgradient cuts, to perform our tests
for each model.

6.4.3 Details of Solutions for Set A Instances With Size 10–30

Tables 6.2–6.3 give a summary details of results. Cust is the number of customers. Log, Sub,
and SECs are the number of generated logical cuts, subgradient cuts, and SECs, respectively.
In Table 6.3, UAVs is the number of drones used, and Swap represents the average number of
battery swaps. When calculating Swap, we do not count the first trip performed by a drone.
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For example, if a drone has conducted 3 trips, then the value of Swap would be 2. T/d
indicates the average number of trips performed by each drone. The last column in Table
6.3 is the proportion of energy cost to total cost. More detailed results for each instance are
presented in Appendix D.

Table 6.2 Average results on cuts for Set A instances with size 10–30

Re Ee (R+ E)e

Cust Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs

Set A1

10 5/5 0.0 0.5 0.2 92.2 21.4 5/5 0.0 0.9 0.4 138.2 31.4 5/5 0.0 0.6 0.0 134.8 25.2
15 5/5 0.0 176.6 3.4 400.6 27.6 5/5 0.0 82.6 2.6 595.4 33.2 5/5 0.0 306.2 2.8 518.6 32.6
20 5/5 0.0 162.2 1.6 349.8 35.4 5/5 0.0 72.3 1.6 558.2 39.4 5/5 0.0 224.0 0.6 615.6 35.6
25 4/5 0.4 4666.1 3.0 552.4 34.2 5/5 0.0 4508.6 4.8 1282.0 39.8 4/5 0.6 4945.6 4.4 1512.0 38.2
30 3/5 0.6 6860.3 3.8 1172.8 42.4 3/5 1.0 8989.8 3.4 1884.6 47.8 3/5 0.7 8865.7 2.8 1759.0 47.0

Set A2

10 5/5 0.0 0.4 0.0 40.8 16.6 5/5 0.0 0.5 0.4 142.6 13.8 5/5 0.0 0.3 0.0 71.4 9.8
15 5/5 0.0 5.0 2.4 152.2 34.0 5/5 0.0 4.1 1.4 274.4 27.6 5/5 0.0 5.7 1.8 297.8 29.4
20 5/5 0.0 27.0 2.0 259.0 34.6 5/5 0.0 37.3 1.6 487.6 40.0 5/5 0.0 33.1 1.4 500.8 36.4
25 5/5 0.0 202.3 2.2 469.4 36.6 5/5 0.0 301.0 4.0 921.0 37.2 5/5 0.0 313.1 2.4 853.0 39.4
30 5/5 0.0 6426.4 3.2 927.2 41.2 3/5 1.2 9890.6 5.0 1815.8 35.4 4/5 0.5 7675.3 4.0 1437.4 39.6

Table 6.3 Average results on drones for Set A instances with size 10–30

Re Ee (R+ E)e

Cust UAVs Swap T/d UAVs Swap T/d UAVs Swap T/d Coste (%)

Set A1

10 2.0 3.2 2.6 2.0 3.2 2.6 2.0 3.2 2.6 6.6
15 2.2 4.0 2.9 2.2 4.2 3.0 2.2 4.0 2.9 6.6
20 3.6 6.2 2.8 3.6 6.2 2.8 3.6 6.2 2.8 6.8
25 3.8 7.4 3.0 3.8 7.6 3.0 3.8 7.6 3.0 6.8
30 5.0 8.4 2.7 5.0 8.4 2.7 5.0 8.2 2.6 6.8

Set A2

10 2.0 3.4 2.7 2.0 3.6 2.8 2.0 3.4 2.7 6.4
15 2.8 5.6 3.1 2.8 6.2 3.3 2.8 5.6 3.1 6.4
20 3.4 7.2 3.2 3.4 7.4 3.2 3.4 7.2 3.2 6.6
25 4.0 8.6 3.2 4.0 9.2 3.3 4.0 8.6 3.2 6.7
30 4.4 9.6 3.2 4.4 10.0 3.3 4.4 9.6 3.2 6.6

Average 3.3 6.4 2.9 3.3 6.6 3.0 3.3 6.4 2.9 6.6

Table 6.2 shows that the number of subgradient cuts is much larger than that of the logical
cuts. This is because the subgradient cuts are produced for edges while the logical cuts are
generated for trips. For the largest problems (30 customers), the Re model consumes the least
computing time and the Ee model consumes the most computing time. Further, instances
in Set A1 require more time than those in Set A2, because the locations of the depot and
customers are more geographically dispersed in Set A1.

Table 6.3 indicates that more drones are used with an increasing number of customers and
that, in most cases, each drone performs 2 or 3 trips. For the (R + E)e model, the energy
cost only accounts for a small portion (around 6.6%) of the total cost. The average results
seem similar for the three models; however, with different objectives, different schedules are
indeed generated for some instances. An example is given in Table 6.4. It shows that two
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more trips are performed for the Ee model, leading to a greater travel distance and a lower
energy consumption. Moreover, we find that for this instance the schedules generated by
the Re and (R+E)e models are quite similar, except that the travel direction of the second
and fifth trips are opposite. Since we perform our tests on an undirected network, travel
direction influences energy consumption because of different payloads on arcs. However, as
the (R + E)e model includes the energy cost in the objective, it can always guarantee that
drones travel in directions with minimal energy consumption. Thus, in realistic applications,
for undirected networks, even though decision makers favor a VRP objective which minimizes
the travel cost, they can still add energy cost in the objective and set a small value for energy
price to save battery energy consumption and further reduce the recharging time.

Table 6.4 Schedules generated by different objectives for instance Set_A2_Cust_15_2

Re Ee (R+ E)e

Trips Energy (kWh) Trips Energy (kWh) Trips Energy (kWh)

[0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585
[0, 4, 2, 16] 0.2389 [0, 4, 2, 16] 0.2389 [0, 2, 4, 16] 0.2344
[0, 5, 10, 15, 16] 0.2099 [0, 10, 5, 16] 0.0937 [0, 5, 10, 15, 16] 0.2099
[0, 6, 12, 16] 0.2530 [0, 12, 16] 0.1645 [0, 6, 12, 16] 0.2530
[0, 7, 8, 16] 0.1733 [0, 8, 7, 16] 0.1637 [0, 8, 7, 16] 0.1637
[0, 9, 11, 16] 0.2418 [0, 9, 16] 0.1354 [0, 11, 9, 16] 0.1835
[0, 13, 16] 0.1690 [0, 13, 16] 0.1690 [0, 13, 16] 0.1690
[0, 14, 16] 0.1341 [0, 14, 16] 0.1341 [0, 14, 16] 0.1341

[0, 11, 16] 0.0462
[0, 15, 6, 16] 0.1794

Total energy (kWh) 1.5785 1.4834 1.5061
Total travel distance 7995.39 8153.26 7995.39

6.4.4 Performance Comparison Between Models with Nonlinear and Linear En-
ergy Functions

In this section, we compare the model performance with our nonlinear and linear energy
models. Table 6.5 presents a summary of results, with some detailed results in Appendix
D. For solutions generated by the linear approximation models, after obtaining the trips, we
calculate the energy consumption using the nonlinear model (6.8) for each trip and report
the average results in the last two rows of Table 6.5. Infeasible is the number of instances for
which the linear approximation models yield trips that when energy is calculated with (6.8)
exceed the energy capacity. Energy gap is the percentage difference in energy calculation,
which is computed as (energy from (6.8)− energy from (6.9))/energy from (6.9).

From Table 6.5, we get two observations: (1)Computational efficiency. For both models,
the computational efficiency with the linear approximation (Equation (6.9)) is better than
that of the nonlinear method (Equation (6.8)). By using the approximation method, more
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Table 6.5 Statistics of solutions generated by models R and R+E with nonlinear and linear
energy functions

model R model R+ E

Energy function Nonlinear Linear Nonlinear Linear

Opt 47/50 49/50 46/50 50/50
Optimality gap 0.10 0.04 0.18 0.00
CPU 1852.69 911.59 2236.96 743.95
Travel distance 8276.33 8227.72 8278.71 8227.68
Infeasible 0/50 20/50 0/50 18/50
Energy gap (%) 0.00 9.45 0.00 9.32

instances can be solved in a shorter time frame. For the R and R + E models with the
nonlinear energy function, the average computation times are 1852.69 and 2236.96 seconds,
respectively. Thus, we can conclude that, even though our original models are nonlinear,
the use of logical and subgradient cuts can help solve large problems to optimality. (2)
Feasibility and solution quality. In multiple instances, the approximation models yield
“energy infeasible” trips when energy is calculated based on the nonlinear model (6.8). For
the R and R+E models, the approximation method produces infeasible trips for 20 and 18
instances respectively. In addition, the energy gap is around 9% on average between the two
methods. Note that one may argue that to guarantee the feasibility of trips, we can use an
over-estimated linear energy function. However, our preliminary tests demonstrate that this
strategy might produce solutions with more trips and energy consumption. We provide an
example in Appendix D to explain the results of this new strategy.

To further display the importance of how energy is calculated, we give an example in Table
6.6 to show the different schedules generated by the two methods. It demonstrates that the
first trip given by the two approximation models consumes 0.2925 kWh energy, which violates
the battery’s energy capacity (0.27 kWh). However, if the linear approximation method is
used, it will consider these trips as feasible ones. Therefore, care is needed when modeling
energy consumption to ensure energy feasibility of routes.

6.4.5 Impact of Time Windows

Here, we first consider new instances with tighter time windows at customers. We generate
the width of customers’ time windows according to a new normal distribution whose mean is
0.15(bn+1−tj,n+1−t0j), and keep other data unchanged. Next, we remove the time constraints
(6.14)–(6.16) and solve a multi-trip drone routing problem. Summary results are reported in
Table 6.7 and detailed results are presented in Appendix D.

From Table 6.2 and Table 6.7, when the time windows are tighter, one more instance can
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Table 6.6 Detailed solutions of models with nonlinear and linear energy functions for instance
Set_A1_Cust_25_2

Nonlinear energy function Linear energy function

Energy consumption

Trips Energy Trips Linear Nonlinear Energy gap(%)

R

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 7, 8, 26] 0.1147 0.1240 8.11
[0, 5, 20, 26] 0.2056 [0, 5, 20, 26] 0.1857 0.2056 10.72
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 12, 24, 10, 17, 4, 26] 0.1965 0.2175 10.69
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 19, 21, 26] 0.1551 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

R+ E

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 8, 7, 26] 0.1099 0.1177 7.10
[0, 20, 5, 26] 0.2039 [0, 20, 5, 26] 0.1845 0.2039 10.51
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 4, 17, 10, 24, 12, 26] 0.1903 0.2091 9.88
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 21, 19, 26] 0.1447 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

Table 6.7 Average results for models with tighter time windows and without time windows
model Re model Ee model (R + E)e

Tighter time windows Without time windows Tighter time windows Without time windows Tighter time windows Without time windows

Cust Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU

Set A1

10 5/5 0.0 0.2 5/5 0.0 0.5 5/5 0.0 0.3 5/5 0.0 1.0 5/5 0.0 0.3 5/5 0.0 0.4
15 5/5 0.0 32.2 5/5 0.0 527.4 5/5 0.0 47.8 5/5 0.0 44.6 5/5 0.0 41.7 5/5 0.0 129.5
20 5/5 0.0 82.1 5/5 0.0 387.1 5/5 0.0 106.8 5/5 0.0 200.7 5/5 0.0 87.8 5/5 0.0 287.5
25 5/5 0.0 2377.8 4/5 0.7 5948.0 3/5 1.6 6319.1 4/5 0.4 5641.6 5/5 0.0 3179.9 4/5 0.8 5061.6
30 3/5 0.6 6565.7 1/5 0.5 12339.4 3/5 1.1 8552.8 2/5 1.3 12211.0 3/5 0.7 6425.4 1/5 0.8 12468.2

Set A2

10 5/5 0.0 0.1 5/5 0.0 1.5 5/5 0.0 0.2 5/5 0.0 0.9 5/5 0.0 0.2 5/5 0.0 1.0
15 5/5 0.0 1.0 5/5 0.0 8.8 5/5 0.0 1.3 5/5 0.0 4.4 5/5 0.0 1.2 5/5 0.0 9.6
20 5/5 0.0 10.1 5/5 0.0 97.4 5/5 0.0 19.3 5/5 0.0 47.2 5/5 0.0 13.4 5/5 0.0 73.4
25 5/5 0.0 140.2 5/5 0.0 1183.1 5/5 0.0 240.7 5/5 0.0 119.2 5/5 0.0 121.8 5/5 0.0 1006.6
30 5/5 0.0 646.5 3/5 0.9 8849.3 5/5 0.0 2458.6 3/5 0.5 7969.1 5/5 0.0 507.5 4/5 0.5 6988.8

be solved to optimality for the Re model, and two more instances for the (R + E)e model.
Moreover, for problems of the same size, the average computation time is generally reduced
for the three models. However, when the time constraints are absent, instances become much
more difficult to handle. Fewer instances can be solved to optimality within the time limit
and the average computation time also increases. These observations are consistent with the
results provided by reference [95], where a B&P algorithm is used for the MTVRPTW.

6.4.6 Algorithm Performance on Extended Solomon’s Instances

In this section we test our algorithm on Set B instances based on the well-known Solomon’s
instances. All the experiments are performed on 4 core processors with a 12-hour (43200
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seconds) time limit. Summarized results are shown in Table 6.8 and detailed results on each
instance are provided in Appendix D. In Table 6.8, column Inst is the instance label.

Table 6.8 Algorithm performance on Solomon’s instances of type 2

25 customers 40 customers

model Re model Ee model (R+ E)e model Re model Ee model (R+ E)e

Inst Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

c201 0.00 1.4 0.00 11.5 0.00 2.5 0.00 48.3 0.00 229.9 0.00 43.8
c202 0.00 13.4 0.00 48.5 0.00 19.7 0.00 372.9 0.00 14073.8 0.00 955.4
c203 0.00 56.4 0.00 86.5 0.00 74.8 0.00 3881.6 0.95 43200.0 0.00 10685.1
c204 0.00 48.2 0.00 240.8 0.00 78.6 0.20 43200.0 1.55 43200.0 0.00 16940.6
c205 0.00 13.0 0.00 29.5 0.00 9.0 0.00 871.2 0.00 23630.3 0.00 881.7
c206 0.00 21.1 0.00 40.8 0.00 21.7 0.00 2011.9 1.83 43200.0 0.00 8368.8
c207 0.00 32.0 0.00 55.3 0.00 43.4 0.00 5757.3 0.00 5567.9 0.00 8358.9
c208 0.00 23.2 0.00 34.7 0.00 34.3 0.00 1936.7 0.63 43200.0 0.00 3547.3

r201 0.00 4.0 0.00 8.7 0.00 5.6 0.00 437.7 0.00 2730.5 0.00 348.1
r202 0.00 32.9 0.00 26.9 0.00 29.2 0.00 11666.6 1.22 43200.0 0.00 8183.1
r203 0.00 132.1 0.00 40.2 0.00 58.0 0.00 33302.4 0.00 17013.0 0.00 40920.9
r204 0.00 134.2 0.00 125.4 0.00 120.3 0.58 43200.0 0.00 37471.4 1.22 43200.0
r205 0.00 38.5 0.00 21.8 0.00 27.1 0.00 5921.7 0.00 7086.4 0.00 8098.5
r206 0.00 54.8 0.00 29.8 0.00 84.6 0.96 43200.0 0.00 5167.2 0.42 43200.0
r207 0.00 83.5 0.00 37.4 0.00 87.8 1.18 43200.0 0.00 22529.7 0.00 39388.0
r208 0.00 75.7 0.00 47.9 0.00 106.7 0.96 43200.0 0.36 43200.0 0.67 43200.0
r209 0.00 42.8 0.00 41.5 0.00 50.0 0.00 42044.0 5.91 43200.0 1.40 43200.0
r210 0.00 46.0 0.00 24.8 0.00 60.2 0.00 14821.3 0.00 2832.5 0.68 43200.0
r211 0.00 136.1 0.00 53.4 0.00 102.5 1.44 43200.0 0.62 43200.0 1.16 43200.0

rc201 0.00 28.0 0.00 31.7 0.00 60.0 0.00 959.5 7.42 43200.0 0.00 2540.3
rc202 0.00 366.9 0.00 315.0 0.00 125.1 0.79 43200.0 2.86 43200.0 0.62 43200.0
rc203 0.00 15.7 0.00 29.9 0.00 56.8 0.00 1542.6 0.00 509.2 0.00 5064.3
rc204 0.00 5.4 0.00 64.3 0.00 952.8 0.00 110.3 0.00 2663.9 0.00 9900.8
rc205 0.00 63.4 0.00 269.0 0.00 100.6 0.00 27642.5 13.59 43200.0 1.58 43200.0
rc206 0.00 65.4 0.00 59.5 0.00 755.0 0.00 4719.6 10.42 43200.0 0.00 39338.2
rc207 0.00 1253.2 0.00 58.3 0.00 7306.9 0.39 43200.0 1.10 43200.0 0.91 43200.0
rc208 0.00 207.4 0.00 23.0 0.00 157.5 0.00 1684.8 0.00 237.6 0.00 7961.0

Average 0.00(0) 110.9 0.00(0) 68.7 0.00(0) 390.0 0.24(8) 18716.0 1.80(13) 26049.8 0.32(9) 22234.3

(−) indicates the number of instances (out of 27) that are not solved to optimality.

We can observe that all instances with 25 customers are solved to optimality within the time
limit. When the number of customers increases to 40, 19 out of 27 instances are optimally
solved for model Re, and this number decreases to 14 and 18 for model Ee and model (R+E)e,
respectively. The CPU time also varies widely, ranging from a few minutes to many hours.
In terms of computational performance as opposed to the MTVRPTW which is relatively
similar to the MTDRP considered in this work, our algorithms could generally solve larger
instance sizes compared to those considered in exact algorithms for the MTVRPTW despite
the fact that our original models are nonlinear and more complex.

6.4.7 Results for Large Instances of Set A

Here, we report the results of Set A instances with 35–50 customers in Table 6.9. More de-
tailed results are given in Appendix D. All the experiments are performed on 4 core processors
with a 12-hour time limit. The instances with 10–30 customers that were not optimally solved
in previous experiments are also solved again with the longer time limit. Our results show
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that all the previous instances, except Set_A1_Cust_30_5 for model Ee, are solved to opti-
mality under the new experiment setting. The optimality gap of this instance for model Ee
is 1.77%. For some instances, when we directly solve the Ee model or the (R + E)e model,
we find that the optimality gap is over 5% within the time limit, mainly resulting from the
poor lower bound. Considering the Re model is relatively easier than the other two models,
for these specific instances, we first solve the Re model to get a feasible solution and then use
this solution as a start for the other two models. The results of these instances are marked
by a square in Table 6.9.

Table 6.9 Results using multicore processors for Set A instances with 35–50 customers

model Re model Ee model (R+ E)e

Cust Inst Gap CPU Gap CPU Gap CPU

Set A1

35

1 4.11 43200.0 4.55� 43200.0 3.24� 43200.0
2 1.80 43200.0 3.58� 43200.0 2.78 43200.0
3 0.00 20642.0 0.00� 21866.9 0.98 43200.0
4 0.00 30214.8 0.00� 36895.7 0.21 43200.0
5 0.00 29126.0 0.00 15121.7 0.00 20446.6

40

1 3.38 43200.0 2.92 43200.0 3.95 43200.0
2 0.00 13947.5 0.90 43200.0 0.59 43200.0
3 3.74 43200.0 4.74 43200.0 3.78� 43200.0
4 0.44 43200.0 0.00� 23208.1 0.39 43200.0
5 0.73 43200.0 1.30� 43200.0 2.32 43200.0

45

1 4.24 43200.0 3.65� 43200.0 3.96 43200.0
2 2.15 43200.0 2.66� 43200.0 2.06� 43200.0
3 1.51 43200.0 3.76 43200.0 2.46� 43200.0
4 3.05 43200.0 4.42� 43200.0 3.15� 43200.0
5 1.95 43200.0 1.79� 43200.0 2.29 43200.0

Average 1.81 37942.0 2.28 38152.8 2.14 41683.1

Set A2

35

1 2.53 43200.0 0.00� 31873.4 2.65 43200.0
2 0.00 1755.4 0.00 18306.0 0.00 3397.5
3 0.00 8732.7 2.83 43200.0 0.00 11645.0
4 0.00 9765.1 0.00 38648.4 0.00 25076.3
5 0.00 9491.5 0.00 42292.8 0.00 18041.8

40

1 0.00 32162.3 0.00 6219.5 0.00 21628.1
2 1.12 43200.0 1.44 43200.0 0.00 41897.4
3 0.00 3298.6 0.00 30554.3 0.00 5495.7
4 2.13 43200.0 0.00� 7308.4 2.16 43200.0
5 5.05 43200.0 6.39� 43200.0 4.81 43200.0

45

1 0.00 6142.2 0.00 1802.5 0.00 8093.6
2 0.00 41018.0 1.30 43200.0 1.32 43200.0
3 1.20 43200.0 2.15 43200.0 0.00 7452.0
4 2.02 43200.0 1.85� 43200.0 2.68 43200.0
5 0.00 37956.5 2.11 43200.0 1.00 43200.0

50

1 1.80 43200.0 0.74� 43200.0 2.36 43200.0
2 3.81 43200.0 2.24� 43200.0 3.80 43200.0
3 2.92 43200.0 4.20� 43200.0 2.72 43200.0
4 1.32 43200.0 3.29 43200.0 0.72� 43200.0
5 1.80 43200.0 1.55� 43200.0 2.01� 43200.0

Average 1.29 31276.1 1.50 34770.27 1.31 30896.4
� We use the first feasible solution of the R model as an initial solution for this model.
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Table 6.9 shows that the average gap ranges from 1.81% to 2.28% for instances in Set A1 and
from 1.29% to 1.50% for instances in Set A2, which further confirms our previous observation
that generally instances in Set A2 are easier than those in Set A1. For the Re model, 13 out
of 35 instances are solved to optimality. For the Ee and (R + E)e models, the number of
optimally solved instances are 12 and 10 respectively. We also note that it is effective to use
the first solution of the Re model as a start for the other two models. In particular, for the
Ee model, 5 instances can be solved to optimality by using this method. We further use this
idea to model Ee for Solomon’s r209, rc201, rc205, and rc206 instances with 40 customers
(i.e., instances whose optimality gap is over 5% in Table 6.8). The results show that all these
instances can be solved to optimality now.

6.5 Conclusions

This chapter solves a MTDRP with time windows. A 2-index formulation is introduced
and a B&C algorithm is developed. We propose two types of cuts to tackle the nonlinear
energy function. We demonstrate the differences between using a complex nonlinear energy
consumption function and a linear approximation, which can result in higher energy use and
energy infeasible drone routes. We generate benchmark instances for the drone routing prob-
lem and conduct extensive numerical experiments to evaluate the effects of valid inequalities
and user cuts. The effectiveness of our modeling scheme and the B&C algorithm is confirmed
by solving generated instances and Solomon’s type 2 instances.
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CHAPTER 7 ROBUST DRONE DELIVERY WITH WEATHER
INFORMATION

This chapter is based on the following article.

• Cheng, C., Adulyasak, Y., Rousseau, L.-M., Sim, M., 2020. Available at http:
//www.optimization-online.org/DB_FILE/2020/07/7897.pdf. Robust Drone De-
livery with Weather Information. Submitted to Operations Research.

7.1 Introduction

In this section, we first introduce the backgrounds of our study and then present the contri-
butions.

7.1.1 Backgrounds

A well-designed drone delivery system mitigates the risks of weather uncertainty. Uncertain
wind conditions, i.e., speeds and directions of the wind, can impact the transit times of the
drones to their destinations, leading to late deliveries or even cancellations of service [26].
In order to tackle this important issue, we explore how the available weather data, such as
wind observations, can be used to improve scheduling decisions in a drone delivery system,
where a fleet of identical drones is dispatched to visit a set of N geographically dispersed
customers. Each drone can make multiple round trips, where each round trip is a flight from
the depot to the customer and back to the depot for preparation for the next delivery, which
may include tasks such as mounting a new payload and/or swapping out a depleted battery.
The transit times of the drones between the depot and their assigned customers are affected
by wind conditions, i.e., the wind may increase or decrease their flight times depending on
its speed and direction. Figure 7.1 illustrates the relationship between wind condition and
flight times. The depot and customers are distributed within a two-dimensional space and,
without any loss of generality, the coordinates of the depot are (0, 0). The wind vector is
represented by the polar coordinates (r, θ), where r denotes the speed of the wind, and θ

is the angle between the direction of the wind and the x-axis. The location of customer i,
i ∈ [N ] is represented by the polar coordinates (di, φi), where di is the distance from the
depot.

The launch speed of drones in the forward direction (i.e., from the depot to customers), which
depends on the weight and size of the customer’s payload, is r̄i. In the absence of a payload,

http://www.optimization-online.org/DB_FILE/2020/07/7897.pdf
http://www.optimization-online.org/DB_FILE/2020/07/7897.pdf
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Figure 7.1 Illustration for the calculation of flight times. The right part is based on vector
addition in Physics.

the launch speed of drones in the backward direction is r̄0, r̄0 ≥ r̄i, i ∈ [N ]. We assume
r < r̄i, i ∈ [N ] to forbid delivery under very windy conditions. The automatic navigation
system within a delivery drone would adapt according to the wind condition, to offset the
wind’s influence on flight direction. We can derive the nominal forward flight time ui and
the backward flight time vi as

ui(r, θ) ,
di√

(r̄i)2 − r2 sin2 (θ − φi) + r cos (θ − φi)
,

vi(r, θ) ,
di√

(r̄0)2 − r2 sin2 (θ − φi)− r cos (θ − φi)
.

(7.1)

Note that since r < mini∈[N ] r̄i, the launch speed of the drone has a positive influence on
flight duration. While a drone may not increase its launch speed, it could reduce its speed
or even delay its flight, which may be necessary to avoid an early arrival at the customer’s
location. For instance, if a drone departs from the depot at τ and the customer can only
be served after τ̄ 1, then the arrival time of the drone at the customer’s location would be
max{τ + ui, τ̄

1}.

In practice, the wind condition cannot be perfectly predicted and the actual flight times may
deviate from the nominal values determined solely by the wind speed. To account for the
uncertainty of wind vector (r, θ), we denote the uncertain forward and backward flight times
as

ũi = ui(r̃, θ̃) ṽi = vi(r̃, θ̃).



99

Weather data, such as historical wind observations, are commonly available from the national
or local meteorological information center, and can be used as predictors of flight times.
Figure 7.2 is a wind rose diagram of a province in China during a particular time interval.
Wind information is reported in terms of speed and direction. Each piece of information can
be recognized as a wind observation sample, based on which we can calculate the flight times
between the depot and customers, thus generating samples of flight times. Specifically, given
H samples of the observed wind speed and direction, (rh, θh), h ∈ [H], the corresponding
forward and backward flight times of a drone to the ith customer, i ∈ [N ] are given by
ui(rh, θh) and vi(rh, θh), respectively.

7.1.2 Contributions

We propose a drone delivery system to fulfill customers’ requests for their delivery to be
made in either the morning or in the afternoon. Given the weather data, our goal is to
robustly optimize the schedules of the drone delivery system to mitigate the risks of delivery
delays due to uncertainty in wind conditions. The specific challenges and our contributions
are summarized as follows.

1. We propose a novel two-period data-driven adaptive distributionally robust optimiza-
tion (DRO) model that permits the modeler to use wind observation data to improve
scheduling decisions in a drone delivery system. The scheduling decisions for the fleet
of drones are made in the morning, with provision for different delivery schedules in
the afternoon that adapt to updated weather information available by midday.

2. We show how to construct the ambiguity set characterizing the uncertain flight times of
the drones using wind observation data. We propose a cluster-wise ambiguity set, which
has the benefits of tractability while avoiding overfitting to the empirical distribution.
We incorporate other weather information in the form of discrete scenarios to enhance
the ambiguity set and improve the drone schedule adaptation.

3. Our approach minimizes a decision criterion that is based on the essential riskiness index
[146], which has performed well in vehicle routing problems in terms of meeting delivery
deadlines by limiting the probability of tardy delivery and the magnitude of lateness.
We exploit structures in our proposed decision criterion to reduce the complexity of
our model.

4. For computational scalability, we propose a branch-and-cut (B&C) approach to solve
the adaptive DRO model. Results show that the B&C algorithm can generally solve
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Figure 7.2 Wind information collected from 145 subregions of Sichuan Province, China,
ranging from time interval 00:00 to 04:00 on September 14th, 2019. Data are down-
loaded from China National Meteorological Information Center (http://data.cma.cn/
site/index.html). The color-coded bands represent wind speed ranges and the circles
denote different frequencies (from 0 to 8.4%).

more instances to optimality in a shorter time, compared to the MATLAB based tool-
box RSOME. To the best of our knowledge, this is the fist algorithmic improvement
developed for the recently proposed DRO approach with an event-wise ambiguity set
in [116].

5. We show in our computational studies that a small number of clusters obtained via K-
means can achieve high-quality robust drone delivery schedules. We validate that the
adaptive DROmodel can effectively reduce lateness in out-of-sample tests in comparison
with other classical models.

The rest of this chapter is organized as follows. At the end of this section, we summarize the
notation used throughout this chapter. Section 7.2 constructs the ambiguity set from weather
data. Section 7.3 presents the decision criterion, builds the DRO model, and introduces the
adaptive policy. Section 7.4 reformulates the distributionally robust model and presents the
solution method. Section 7.5 reports numerical results. Section 7.6 concludes this chapter.

Notation. We denote by [N ] , {1, . . . , N} the set of positive running indices up to N .

http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html


101

Boldface lowercase and uppercase characters represent vectors and matrices with appropriate
dimensions, respectively. a′ is the transpose of a. We use P0(RI) to represent the set of all
distributions on RI . A random variable, z̃ is denoted with a tilde sign and we use z̃ ∼ P,
P ∈ P0(W), W ⊆ RI to define z̃ as an I-dimensional random variable with distribution P
over the support W . We use ξ+ to represent max{ξ, 0}. For a vector u ∈ RI , the expression
|u| denotes the vector of absolute values of the components of u. e corresponds to the vector
of 1s with an appropriate dimension. ei is the ith standard basis vector.

7.2 Weather Uncertainty and Influence on Flight

We model a drone delivery system comprising a fleet ofD identical drones that are dispatched
to visit a set of N , N > D geographically dispersed customers. Each drone can make multiple
round trips, where each round trip is a flight from the depot to the customer and back to
the depot for preparation for the next delivery. We assume that the drone has sufficient
energy to perform a round trip, since a depleted battery can quickly be swapped with a
fully charged one. Hence, with sufficient supply of charged batteries, we do not need to
incorporate charging decisions into our model. If a fully charged battery is not sufficient for
a round trip between the depot and a customer site, then that customer would be deemed
a drone-ineligible customer. We characterize the uncertainty of flight times as the result
of wind conditions. Without loss of generality, we assume that the time for mounting new
payloads and swapping batteries at the depot is negligible, as it is not influenced by wind
conditions and can be incorporated into the model easily [83]. The service time at customer
locations is also neglected here because, whenever necessary, we can add it to the forward or
backward flight time as a constant number.

We consider a two-period model, where Period 1 and Period 2 represent the morning and
the afternoon, respectively. Period 1 starts at time 0 and ends at the midday time, τ̄ 1, while
Period 2 starts at τ̄ 1 and ends at τ̄ 2. At the beginning of Period 1, the model optimizes the
scheduling policy, which determines the drones’ delivery schedules in the morning, while the
schedules in the afternoon can flexibly adapt to the observed wind vector, (r1, θ1), in the
morning, and/or other weather information that would be known by midday. We assume
that the modeler has H samples of wind observation data at the beginning of the time period.
Under sample h, h ∈ [H], we define (r1

h, θ
1
h) and (r2

h, θ
2
h) to be the observed wind vectors in

Period 1 and Period 2, respectively.
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Ambiguity Set for Uncertain Flight Times

The forward and backward flight times for serving customer i, i ∈ [N ] in Period 1 are
uncertain and we denote them by the random variables ũ1

i and ṽ1
i , which are functions of

the wind vectors from Equation (7.1). Likewise, we also denote by the random variables ũ2
i

and ṽ2
i the forward and backward flight times for serving customer i, i ∈ [N ] in Period 2.

For convenience, we define the vectorial notation ũt , (ũt1, . . . , ũtN)′ and ṽt , (ṽt1, . . . , ṽtN)′,
t ∈ [2]. Based on Equation (7.1), we also define

u(r, θ) , (u1(r, θ), . . . , uN(r, θ))′

and
v(r, θ) , (v1(r, θ), . . . , vN(r, θ))′.

We first characterize the ambiguity set in the first period using a cluster-wise ambiguity set
introduced by [116]. We partition the wind vector chart into K1 non-overlapping clusters
U1
k , k ∈ [K1] so that the index set of the subsamples

Lk = {h ∈ [H] | (r1
h, θ

1
h) ∈ U1

k}, (7.2)

are each associated with a region to which the morning wind vectors belong (see Figure 7.3).
There are various ways to partition the regions on the wind vector chart, and we will explore
this further in our computational studies.

We introduce the random variable κ̃1 taking discrete values in [K1] to represent the scenario
κ̃1 = k associated with the cluster U1

k that would contain the realized wind vector observed in
Period 1. Accordingly, using wind observational data, we construct the cluster-wise ambiguity
set G1 ⊆ P(R2N × [K1]) associated with the random variable (ũ1, ṽ1, κ̃1) as follows:

G1 =



P ∈ P(R2N × [K1])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, κ̃1) ∼ P
EP [ũ1 | κ̃1 = k] = µ1

k ∀k ∈ [K1]
EP [ṽ1 | κ̃1 = k] = ν1

k ∀k ∈ [K1]
EP [|ũ1 − µ1

k| | κ̃1 = k] ≤ σ1
k ∀k ∈ [K1]

EP [|ṽ1 − ν1
k | | κ̃1 = k] ≤ ς1

k ∀k ∈ [K1]

P

 u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

∣∣∣∣∣∣ κ̃1 = k

 = 1 ∀k ∈ [K1]

P [κ̃1 = k] = |Lk|/H ∀k ∈ [K1]



, (7.3)
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Figure 7.3 Partitioning the wind vector chart into clusters using K-means clustering algo-
rithm. Note that wind vectors are converted from polar coordinates to Cartesian coordinates
when performing the clustering operation. The dark points in each cluster are the centroids.

where, the mean flight times associated with the cluster k, k ∈ [K1] are

µ1
k = 1
|Lk|

∑
h∈Lk

u(r1
h, θ

1
h), ν1

k = 1
|Lk|

∑
h∈Lk

v(r1
h, θ

1
h),

the mean absolute deviations are

σ1
k = 1
|Lk|

∑
h∈Lk

EP

[
|u(r1

h, θ
1
h)− µ1

k|
]
, ς1

k = 1
|Lk|

∑
h∈Lk

EP

[
|v(r1

h, θ
1
h)− ν1

k |
]
,

and the parameters of the supports are

[u1
k]i = min

h∈[Lk]
ui(r1

h, θ
1
h), [v1

k]i = min
h∈[Lk]

vi(r1
h, θ

1
h),

[ū1
k]i = max

h∈[Lk]
ui(r1

h, θ
1
h), [v̄1

k]i = max
h∈[Lk]

vi(r1
h, θ

1
h).

∀i ∈ [N ].

In the spirit of RO, the ambiguity set is often designed to encompass distributions that
may deviate from the empirical distribution, which has the benefit of mitigating the risks of
overfitting that may result in poor out-of-sample performance. Observe that whenK1 = 1, G1

is reduced to a marginal moment ambiguity set which, analogous to the box uncertainty set,
can be quite conservative when applied to solving DRO problems. As we increase the number
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of clusters, the level of conservativeness reduces, though the computational complexity of the
model would increase. In the extreme, each cluster can contain exactly one sample, in which
case, due to the support and deviations constraint, the ambiguity set would only contain
the empirical distribution. In practice, the number of clusters is determined empirically in
validation tests. If the number is small, this approach would benefit from greater scalability.

By midday, in preparation for Period 2, the random variable (ũ1, ṽ1, κ̃1) would be realized.
Apart from the wind data, we assume that there is other weather information such as atmo-
spheric pressures, weather forecasts, and other covariates, which could be used to predict the
wind condition in the afternoon. To incorporate this information into our ambiguity set, we
have to discretize the weather information into S finite scenarios, which can be done using
standard classification approaches used in machine learning. Accordingly, we use s̃ to denote
the random weather scenarios, which would be realized by midday. We assume that the
weather data contains historical information of the weather scenarios, which we denote by
sh, h ∈ [H]. We define the index set of the subsamples associated with the different weather
scenarios,

Vs = {h ∈ [H] | sh = s}. (7.4)

In the absence of other weather information beyond wind observation data, we can use the
random scenario κ̃1 defined for the ambiguity set G1 as the random scenario for predicting
wind condition in the afternoon, in which case, S = K1 and Vs = Ls for all s ∈ [S].

Given a realized scenario s̃ = s, we can characterize Period 2 flight times (ũ2, ṽ2), via a
cluster-wise ambiguity set as before. We partition the wind vectors (r2

h, θ
2
h), h ∈ Vs into K2

non-overlapping clusters U2
g , g ∈ [K2]. Each cluster g ∈ [K2] is associated with the subset of

samples
L2
sg =

{
h ∈ Vs | (r2

h, θ
2
h) ∈ U2

g

}
.

We also introduce the random variable κ̃2, taking discrete values in [K2] to represent the
scenario κ̃2 = g associated with the cluster U2

g that would contain the realized wind vector
observed in Period 2. For each scenario s, s ∈ [S], we construct the ambiguity set G2

s ⊆
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P(R2N × [K2]) as follows:

G2
s =



P ∈ P(R2N × [K2])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ2, ṽ2, κ̃2) ∼ P
EP [ũ2 | κ̃2 = g] = µ2

sg ∀g ∈ [K2]
EP [ṽ2 | κ̃2 = g] = ν2

sg ∀g ∈ [K2]
EP
[
|ũ2 − µ2

sg| | κ̃2 = g
]
≤ σ2

sg ∀g ∈ [K2]
EP
[
|ṽ2 − ν2

sg| | κ̃2 = g
]
≤ ς2

sg ∀g ∈ [K2]

P

 u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣ κ̃2 = g

 = 1 ∀g ∈ [K2]

P [κ̃2 = g] = |L2
sg|/|Vs| ∀g ∈ [K2]



, (7.5)

where the mean flight times associated with cluster g, g ∈ [K2] under scenario s, s ∈ S are

µ2
sg = 1

|L2
sg|

∑
h∈L2

sg

u(r2
h, θ

2
h), ν2

sg = 1
|L2

sg|
∑
h∈L2

sg

v(r2
h, θ

2
h),

the mean absolute deviations are

σ2
sg = 1

|L2
sg|

∑
h∈L2

sg

EP

[
|u(r2

h, θ
2
h)− µ2

sg|
]
, ς2

sg = 1
|L2

sg|
∑
h∈L2

sg

EP

[
|v(r2

h, θ
2
h)− ν2

sg|
]
,

and the parameters of the supports are
[
u2
sg

]
i

= min
h∈[L2

sg ]
ui(r2

h, θ
2
h),

[
v2
sg

]
i

= min
h∈[L2

sg ]
vi(r2

h, θ
2
h),[

ū2
sg

]
i

= max
h∈[L2

sg ]
ui(r2

h, θ
t
h),

[
v̄2
sg

]
i

= max
h∈[L2

sg ]
vi(r2

h, θ
2
h).

∀i ∈ [N ].

In general, the discrete random variable κ̃1, κ̃2 and s̃ are dependent and hence we denote
W as the support of the joint discrete random variable (κ̃1, κ̃2, s̃). We are now ready to
characterize the full ambiguity set. The actual joint distribution of (ũ1, ṽ1, ũ2, ṽ2, s̃) ∼ P is
unknown but belongs to an ambiguity set, F , as follows:

F =


Q ∈ P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃) ∼ Q
∃P ∈ P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃)) ∼ P
∃Q1 ∈ G1 : (ũ1, ṽ1, κ̃1) ∼ Q1

∃Q2
s ∈ G2

s : (ũ2, ṽ2, κ̃2)|s̃=s ∼ Q2
s ∀s ∈ [S]

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s) ∈ W


, (7.6)
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where
qkgs =

|Vs ∩ Lk ∩ L2
sg|

H
,

or explicitly as

F =



Q ∈ P(R4N × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ũ2, ṽ2, s̃) ∼ Q
∃P ∈ P(R4N ×W) :

(ũ1, ṽ1, ũ2, ṽ2, (κ̃1, κ̃2, s̃)) ∼ P
EP [ũ1 | κ̃1 = k] = µ1

k ∀k ∈ [K1]
EP [ṽ1 | κ̃1 = k] = ν1

k ∀k ∈ [K1]
EP [|ũ1 − µ1

k| | κ̃1 = k] ≤ σ1
k ∀k ∈ [K1]

EP [|ṽ1 − ν1
k | | κ̃1 = k] ≤ ς1

k ∀k ∈ [K1]
EP [ũ2 | s̃ = s, κ̃2 = g] = µ2

sg ∀s ∈ [S], g ∈ [K2]
EP [ṽ2 | s̃ = s, κ̃2 = g] = ν2

sg ∀s ∈ [S], g ∈ [K2]
EP

[
|ũ2 − µ2

sg| | s̃ = s, κ̃2 = g
]
≤ σ2

sg ∀s ∈ [S], g ∈ [K2]
EP

[
|ṽ2 − ν2

sg| | s̃ = s, κ̃2 = g
]
≤ ς2

sg ∀s ∈ [S], g ∈ [K2]

P


u1
k ≤ ũ1 ≤ ū1

k

v1
k ≤ ṽ1 ≤ v̄1

k

u2
sg ≤ ũ2 ≤ ū2

sg

v2
sg ≤ ṽ2 ≤ v̄2

sg

∣∣∣∣∣∣∣∣∣∣∣∣
κ̃1 = k,

κ̃2 = g,

s̃ = s

 = 1 ∀(k, g, s) ∈ W

P [(κ̃1, κ̃2, s̃) = (k, g, s)] = qkgs ∀(k, g, s) ∈ W



.

(7.7)

7.3 The Drone Delivery Model

Our goal is to robustly optimize the schedules of the drone delivery system to mitigate the
risks of delivery delays caused by wind uncertainty. Customers specify their preference for
delivery in either the morning or in the afternoon. Hence, we partition the customers into
three groups, C1, C2, and C3. The first two groups, C1 and C2 are the sets of customers that
expect to have their delivery made in Period 1 and Period 2 respectively. The third group
C3 is the set of unconstrained customers who can be served in either period. Customers in
C3 are notified to expect their delivery in either Period 1 or Period 2. Hence, customers
assigned to be served in Period 1 should be served within [0, τ̄ 1], while customers assigned
to be served in Period 2 should be served within [τ̄ 1, τ̄ 2]. Poor service occurs whenever the
scheduled delivery time windows could not be met.
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Decision Criterion

For a given delivery policy, the arriving time of a drone is a function of the random variable
(ũ1, ṽ1, ũ2, ṽ2, s̃) ∼ P, P ∈ F , which we denote by ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) for some function
ξ : R4N × [S] 7→ R. For convenience, we use ξ̃ , ξ(ũ1, ṽ1, ũ2, ṽ2, s̃) to represent the random
arriving time. A service is delayed whenever ξ̃ > τ , where τ ∈ {τ̄ 1, τ̄ 2} is the delivery time
expected by the customer.

Our goal is to mitigate the risks of service delays under distributional ambiguity, and we
evaluate such risks using the essential riskiness index (ERI) proposed by [146]. The index is
endowed with good computational properties and it performs well as an optimization criterion
in a vehicle routing problem, to help meet delivery deadlines by limiting the probability of
tardy delivery and the magnitude of lateness [147].

Definition 7.3.1 Given an arriving time function, ξ : R4N × [S] 7→ R and the expected
delivery time, τ ∈ R+. The essential riskiness index is defined as

ρτ (ξ̃) = min
{
γ ≥ 0

∣∣∣∣∣ sup
P∈F

EP

[
max

{
ξ̃ − τ,−γ

}]
≤ 0

}
, (7.8)

where min ∅ =∞ by convention.

We briefly present some of the important properties as ERI.

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P ∈ F , then ρτ (ξ̃1) ≥ ρτ (ξ̃2);

ii) Satisficing: ρτ (ξ̃) = 0 if and only if P
[
ξ̃ ≤ τ

]
= 1, ∀P ∈ F ;

iii) Infeasibility: If sup
P∈F

EP

[
ξ̃
]
> τ , then ρτ (ξ̃) =∞;

iv) Convexity: For all λ ∈ [0, 1], ρτ (λξ̃1 + (1− λ)ξ̃2) ≤ λρτ (ξ̃1) + (1− λ)ρτ (ξ̃2);

v) Delay bounds:
P
[
ξ̃ − τ > ρτ (ξ̃)ϑ

]
≤ 1

1 + ϑ
, ∀ϑ > 0,P ∈ F .

Monotonicity ensures that an uncertain arriving time that dominates another would not be
better off under ERI. Satisficing ensures that if the delivery time can always be met, then
the risk of poor service under ERI is zero. The infeasibility property ensures that the average
arriving time, even under distributional ambiguity, should not exceed the expected delivery
time. The property of convexity provides a more tractable formulation compared to non-
convex ones, such as the criterion based on the probability of service delays. Finally, as
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shown in the property of delay bounds, the ERI ensures that a bound on the probability
of lateness reduces reciprocally as the magnitude of lateness increases in multiples of the
index value. Thus, unlike the probability of service delay, the ERI accounts for both the
probability of delay and its magnitude. ERI has other useful and interesting properties and
we refer interested readers to [146] and [147].

The drone delivery problem can be modeled as a multi-trip VRPTW proposed in [147], where
the objective of the model is to minimize the sum of the ERIs associated with service delay
risks for all customers. Accordingly, to ensure high quality of services across all customers,
the drone delivery system could also minimize the following joint decision criterion

%τ (ξ̃) ,
∑
i∈[N ]

ρτi(ξ̃i),

where ξ̃i and τi are, respectively, the uncertain arriving time and expected delivery time
for the ith customer. The benefit of this criterion in achieving high-quality solutions with
reasonable computational effort have been demonstrated in [147]. Moreover, the joint decision
criterion satisfies the following salient properties:

i) Monotonicity: If P
[
ξ̃1 ≥ ξ̃2

]
= 1, ∀P ∈ F , then %τ (ξ̃1) ≥ %τ (ξ̃2);

ii) Satisficing: %τ (ξ̃) = 0 if and only if P
[
ξ̃ ≤ τ

]
= 1, ∀P ∈ F ;

iii) Non-abandonment: If there exists i ∈ [N ] such that sup
P∈F

EP

[
ξ̃i
]
> τi, then %τ (ξ̃) =∞;

iv) Convexity: For all λ ∈ [0, 1], %τ (λξ̃1 + (1− λ)ξ̃2) ≤ λ%τ (ξ̃1) + (1− λ)%τ (ξ̃2).

Because we are using a nonstandard decision criterion, these properties serve as an axiomatic
framework for which our decision criterion would be justified. In our opinion, these properties
are reasonable for any joint decision criterion that evaluates the overall customer service. In
particular, the non-abandonment property ensures that any feasible solution for which the
objective value is finite implies that the average arriving time at every customer’s location
would not exceed the expected delivery time. We are cognizant of other joint decision criteria
that would also preserve the same properties, such as the one that takes the value of the
highest ERI among all customers. However, from our numerical experience, minimizing the
maximum ERI results in having an excess of multiple optimal solutions, which has an impact
on the quality of the solutions as well as the computational time to solve the model. We will
illustrate this in our computational studies.

While it may be possible to cast our problem as a static robust VPRTW proposed in [147],
our goal is to extend to an adaptive model, where it is possible to improve the drone delivery
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schedule in response to the new information available by midday. The static robust VPRTW
of [147] would be far too complex for our purpose. One simplifying assumption that enables
us to take this approach is that customers can only choose between two delivery deadlines,
{τ̄ 1, τ̄ 2}. Alongside this, we propose the following joint decision criterion:

%τ (ξ̃) ,
∑

d∈[D]:K1
d
6=∅

(
max
i∈K1

d

{
ρτ̄1

(
ξ̃i
)})

+
∑

d∈[D]:K2
d
6=∅

(
max
i∈K2

d

{
ρτ̄2

(
ξ̃i
)})

, (7.9)

where Ktd ⊆ [N ] denotes the set of customers assigned to be served by drone d, d ∈ [D]
in period t, t ∈ [2]. Observe that the joint decision criterion also satisfies the properties of
monotonicity, satisficing, non-abandonment, and convexity.

The main reason for our proposed joint decision criterion is the potential to have a simpler
formulation that is more scalable computationally, as we will demonstrate in the following
proposition.

Proposition 7.3.1 The joint decision criterion %τ (ξ̃) is equivalent to

%τ (ξ̃) =
∑

d∈[D]:K1
d
6=∅
ρτ̄1

(
ξ̃`1
d

)
+

∑
d∈[D]:K2

d
6=∅
ρτ̄2

(
ξ̃`2
d

)
,

where `td denotes the last customer served by drone d, d ∈ D in Period t, t ∈ [2].

Proof. For each drone d, d ∈ [D], in each period the arriving time at the last assigned
customer is always larger than the arrival times at other assigned customers, i.e.,

ξ̃`1
d
≥ ξ̃i ∀i ∈ K1

d, ξ̃`2
d
≥ ξ̃i ∀i ∈ K2

d.

Based on the monotonicity property of %τ (ξ̃), we have

ρτ̄1

(
ξ̃`1
d

)
≥ ρτ̄1

(
ξ̃i
)

∀i ∈ K1
d, ρτ̄2

(
ξ̃`2
d

)
≥ ρτ̄2

(
ξ̃i
)

∀i ∈ K2
d,

which indicate that

ρτ̄1

(
ξ̃`1
d

)
= max

i∈K1
d

{
ρτ1(ξ̃i)

}
, ρτ̄2

(
ξ̃`2
d

)
= max

i∈K2
d

{
ρτ2(ξ̃i)

}
.

Observe that the random arrival time at the last customer by drone d, d ∈ [D] in Period 1 is

ξ̃`1
d

=
∑

i∈K1
d
\{`1

d
}
(ũ1

i + ṽ1
i ) + ũ1

`1
d
. (7.10)
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Note that the arrival time in Period 2 is not an additive function of the flight times because
customers in Period 2 can only be served after τ̄ 1. We assume that whenever the anticipated
arrival is before τ̄ 1, the drone is able to reduce its speed or delay its departure from the depot
so that the arrival would be punctual at τ̄ 1. We also need to account for the first customer
to be served in Period 2 by drone d, d ∈ [D], which we denote by `2

d. Hence, the random
arrival time at the last customer by drone d, d ∈ [D] in Period 2 is

ξ̃`2
d

= max


∑
i∈K1

d

(ũ1
i + ṽ1

i ) + ũ2
`2d
, τ̄ 1

+ ṽ2
`2d

+
∑

i∈K2
d
\{`2d,`2d}

(
ũ2
i + ṽ2

i

)
+ ũ2

`2
d

∀d ∈ [D]. (7.11)

Under our proposed joint decision criterion, Proposition 7.3.1 implies that we only need to
keep track of, for every drone, the last customer to be served in the morning, and the first
and last customers served in the afternoon by the drone. In particular, the sequence of
customers being served before the last customer in Period 1, and the sequence of customers
being served between the first and the last customer in Period 2, would not affect the joint
decision criterion. This greatly reduces the complexity of the model compared to a VRPTW
formulation, in terms of the number of binary variables needed to model the problem.

Scheduling Decisions and Event-wise Adaptations

To obtain an explicit mathematical optimization model, we first denote C̄1 = C1 ∪ C3 and
C̄2 = C2 ∪ C3 as the sets of customers who can expect their deliveries in the morning and
afternoon, respectively. For scheduling decisions (y1

id, x
1
id), i ∈ C̄1, d ∈ [D] associated with

Period 1, we define the binary variable y1
id = 1 if and only if customer i is the last customer

visited by drone d in Period 1, i.e., i ∈ K1
d ∩{`1

d}, and the binary variable x1
id = 1 if and only

if i ∈ K1
d\{`1

d}.

As we have mentioned, the drone schedule in the afternoon can flexibly adapt to wind infor-
mation, which is available by midday when the random scenario s̃ is realized. Hence, the deci-
sions associated with Period 2 are functions of s ∈ [S], which we denote by y2

id(s), x2
id(s), z2

id(s),
i ∈ C̄2, d ∈ [D]. For a given scenario s ∈ [S], the binary variable y2

id(s) = 1 if and only if
i ∈ K2

d ∩ {`2
d}, the binary variable x2

id(s) = 1 if and only if i ∈ K2
d\{`2

d, `
2
d} and the binary

variable z2
id(s) = 1 if and only if i ∈ K2

d ∩ {`2
d}.

The adaptive scheduling decisions in Period 2 can be defined within a family of binary
function maps. For flexibility in adaptation, we adopt the event-wise adaptation introduced
in [116]. We first define an event E ⊆ [S] by a subset of scenarios. A partition of scenarios
then induces a collection S of mutually exclusive and collectively exhaustive (MECE) events.
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Correspondingly, we define a mapping fS : [S] 7→ S such that fS(s) = E , for which E is the
only event in S that contains the scenario s. Given a collection S of MECE events, we define
the event-wise adaptation to characterize the scheduling decisions in Period 2 as follows:

A (S) ,

x : [S] 7→ {0, 1}C̄2×D

∣∣∣∣∣∣ x(s) = xE , E = fS(s)
for some xE ∈ {0, 1}C̄2×D

 .
In the case of a non-adaptive (or static) policy, we have S = {[S]}, so that the scheduling
decisions in Period 2 would not change its solutions in response to the outcomes of the
scenario s̃. For the case of full adaption, the collection S would have S different events, each
containing an element of [S].

The feasible drone delivery schedule is as follows:

X =



(x1,y1,

x2,y2, z2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
d∈[D]

(x1
id + y1

id) = 1 ∀i ∈ C1,

∑
d∈[D]

(
x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i ∈ C2, s ∈ [S],

∑
d∈[D]

(
x1
id + y1

id + x2
id(s) + y2

id(s) + z2
id(s)

)
= 1 ∀i ∈ C3, s ∈ [S],

∑
i∈C̄1

y1
id = 1 ∀d ∈ [D],

∑
i∈C̄2

y2
id(s) = 1 ∀d ∈ [D], s ∈ [S],

∑
i∈C̄2

z2
id(s) = 1 ∀d ∈ [D], s ∈ [S],

x1,y1 ∈ {0, 1}C̄1×D

x2,y2, z2 ∈ A(S).



(7.12a)

(7.12b)

(7.12c)

(7.12d)

(7.12e)

(7.12f)

Constraints (7.12a)–(7.12c) mean that customers in each set are respectively scheduled to
be visited exactly once in their allowable delivery time slots. Constraints (7.12d)–(7.12e)
impose that each drone at each period can only have one customer as the last served one.
Constraints (7.12f) mean that for each drone in Period 2, it can only have one customer as
the first visited customer. The index s in the constraints suggests that the afternoon schedule
should be feasible under any scenario s, s ∈ [S].

The schedule decision can be enhanced by the following lexicographic ordering constraints,
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which break the symmetry between drones [148]

j∑
i=1,i∈C1

2j−ix1
id ≥

j∑
i=1,i∈C1

2j−ix1
id+1 ∀j ∈ C1, d ∈ [D − 1]. (7.13)

Now, for a given d, d ∈ [D], the arrival time at the last customer in Period 1 can be written
as the function

ζ1
d(x1,y1, ũ1, ṽ1) ,

∑
i∈C̄1

(
x1
id(ũ1

i + ṽ1
i ) + y1

idũ
1
i

)
, (7.14)

and likewise the arrival time at the last customer in Period 2 can be expressed as

ζ2
d(x1,y1,x2,y2, z2, ũ1, ṽ1, ũ2, ṽ2, s̃)

, max

∑
i∈C̄1

(x1
id + y1

id)(ũ1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s̃)ũ2

i , τ̄
1


+
∑
i∈C̄2

(
z2
id(s̃)ṽ2

i + x2
id(s̃)(ũ2

i + ṽ2
i ) + y2

id(s̃)ũ2
i

)
.

(7.15)

Thus, under our proposed decision criterion, we solve the following DRO problem:

inf
∑
d∈[D]

(γ1
d + γ2

d)

s.t. sup
P∈F

EP

[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
≤ 0 ∀d ∈ [D] (7.16a)

sup
P∈F

EP

[
max

{
ζ2
d(x1,y1,x2,y2, z2, ũ1, ṽ1, ũ2, ṽ2, s̃)− τ̄ 2,−γ2

d

}]
≤ 0 ∀d ∈ [D] (7.16b)

γ1
d , γ

2
d ≥ 0 ∀d ∈ [D],

(x1,y1,x2,y2, z2) ∈ X .

The DRO model (7.16) with cluster-wise moment-based ambiguity set and event-wise adap-
tion fits into the robust stochastic optimization framework recently introduced by [116]. They
also provide an algebraic modeling toolbox, RSOME - Robust Stochastic Optimization Made
Easy, which facilitates rapid prototyping of our model. Specifically, by using affine recourse
adaptation on a lifted ambiguity set, we can model the problem intuitively via RSOME.
However, while it is convenient to do so, the MATLAB-based toolbox generates numerous
auxiliary variables and results in slow computational performance. Our goal is to eradicate
all of the auxiliary variables and propose a B&C approach to solve our problem. We use
RSOME as a reference to check the correctness of our approach.
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7.4 Solving via Branch-and-Cut

For greater scalability, we present a classical RO reformulation, which would enable us to
develop a B&C method to solve the model. We first address the supremum over the ambiguity
set in the constraints (7.16a).

Note that sup
P∈F

EP [max {ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d}] is equivalent to

sup
P∈G1

EP
[
max

{
ζ1
d(x1,y1, ũ1, ṽ1)− τ̄ 1,−γ1

d

}]
.

Under the law of total probability, constraints (7.16a) can be reformulated as

∑
k∈[K1]

qk sup
P∈G1

k

EP

max

∑
i∈C̄1

(
x1
id(ũ1

i + ṽ1
i ) + y1

idũ
1
i

)
− τ̄ 1,−γ1

d


 ≤ 0 ∀d ∈ [D]

where qk = |Lk|/H,

G1
k =


Q ∈ P(R4N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ã1, ṽ1, b̃1) ∼ P
EP [ũ1] = µ1

k

EP [ṽ1] = ν1
k

EP [ã1] ≤ σ1
k

EP

[
b̃1
]
≤ ς1

k

P
[
(ũ1, ã1, ṽ1, b̃1) ∈ Ξ1

k

]
= 1


,

and

Ξ1
k ,


(u1,a1,v1, b1) ∈ R4N

∣∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤ u1 ≤ ū1

k

a1 ≥ |u1 − µ1
k|

v1
k ≤ v1 ≤ v̄1

k

b1 ≥ |v1 − ν1
k |


.

Note here that we adopt the “lifted ambiguity set” first proposed by [149] to keep the expec-
tation constraints within the ambiguity set linear.

Theorem 7.4.1 The optimization problem

sup
P∈G1

k

EP

max

∑
i∈C̄1

(
x1
id(ũ1

i + ṽ1
i ) + y1

idũ
1
i

)
− τ̄ 1,−γ1

d


 (7.17)
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is equivalent to

max
(u1

1,v
1
1 ,p1,p2)∈Y1

kd


∑
i∈C̄1

(x1
id + y1

id)ei

′ u1
1 +

∑
i∈C̄1

x1
idei

′ v1
1 − τ̄ 1p1 − γ1

dp2

 , (7.18)

where

Y1
kd =



(u1
1,v

1
1, p1, p2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃a1
j , b

1
j , j ∈ [2] :

u1
1 + u1

2 = µ1
k

v1
1 + v1

2 = ν1
k

a1
1 + a1

2 ≤ σ1
k

b1
1 + b1

2 ≤ ς1
k

p1 + p2 = 1
u1
kpj ≤ u1

j ≤ ū1
kpj ∀j ∈ [2]

a1
j ≥ |u1

j − µ1
kpj| ∀j ∈ [2]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [2]

b1
j ≥ |v1

j − ν1
kpj| ∀j ∈ [2]

p1, p2 ≥ 0
u1
j ,a

1
j ,v

1
j , b

1
j ∈ RN ∀j ∈ [2],



.

Proof. See Appendix E.

To address the supremum over the ambiguity set in the constraints (7.16b), we also note that
under the law of total probability, constraints (7.16b) is equivalent to

∑
(k,g,s)∈W

qkgs sup
P∈Fkgs

EP

max

max

∑
i∈C̄1

(x1
id + y1

id)(ũ1
i + ṽ1

i ) +
∑
i∈C̄2

z2
id(s)ũ2

i , τ̄
1


+
∑
i∈C̄2

(
z2
id(s)ṽ2

i + x2
id(s)(ũ2

i + ṽ2
i ) + y2

id(s)ũ2
i

)
− τ̄ 2,−γ2

d


 ≤ 0 ∀d ∈ [D] (7.19)
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where

Fkgs =



Q ∈ P(R8N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2) ∼ P
EP [ũ1] = µ1

k

EP [ṽ1] = ν1
k

EP [ã1] ≤ σ1
k

EP

[
b̃1
]
≤ ς1

k

EP [ũ2] = µ2
sg

EP [ṽ2] = ν2
sg

EP [ã2] ≤ σ2
sg

EP
[
b̃2
]
≤ ς2

sg

P
[
(ũ1, ṽ1, ã1, b̃1, ũ2, ṽ2, ã2, b̃2) ∈ Ξ2

kgs

]
= 1



,

and

Ξ2
kgs =


(u1,v1,a1, b1,u2,v2,a2, b2) ∈ R8N

∣∣∣∣∣∣∣∣∣∣∣∣

u1
k ≤ u1 ≤ ū1

k, v1
k ≤ v1 ≤ v̄1

k

a1 ≥ |u1 − µ1
k|, b1 ≥ |v1 − ν1

k |
u2
sg ≤ u2 ≤ ū2

sg, v2
sg ≤ v2 ≤ v̄2

sg

a2 ≥ |u2 − µ2
sg|, b2 ≥ |v2 − ν2

sg|


.

Theorem 7.4.2 The optimization problem,

sup
P∈Fkgs

EP

max

 max
{ ∑
i∈C̄1

(x1
id + y1

id)(ũ1
i + ṽ1

i ) + ∑
i∈C̄2

z2
id(s)ũ2

i , τ̄
1
}

+ ∑
i∈C̄2

(z2
id(s)ṽ2

i + x2
id(s)(ũ2

i + ṽ2
i ) + y2

id(s)ũ2
i )− τ̄ 2,−γ2

d


, (7.20)

is equivalent to

max
(u1

1,v
1
1 ,u

2
1,v

2
1 ,u

2
2,v

2
2 ,p1,p2,p3)∈Y2

kgsd


∑
i∈C̄1

(x1
id + y1

id)ei

′ (u1
1 + v1

1) +
∑
i∈C̄2

(z2
id(s) + x2

id(s))ei

′ (u2
1 + v2

1)

+
∑
i∈C̄2

y2
id(s)ei

′ u2
1 − τ̄ 2p1 + τ̄ 1p2

+
∑
i∈C̄2

z2
id(s)ei

′ v2
2 +

∑
i∈C̄2

x2
id(s)ei

′ (u2
2 + v2

2)

+
∑
i∈C̄2

y2
id(s)ei

′ u2
2 − τ̄ 2p2 − γ2

dp3
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where

Y2
kgsd =



(u1
1,v

1
1,u

2
1,v

2
1,u

2
2,v

2
2, p1, p2, p3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u1
2,v

1
2,u

1
3,v

1
3,a

1
j , b

1
j , j ∈ [3] :

u1
1 + u1

2 + u1
3 = µ1

k

v1
1 + v1

2 + v1
3 = ν1

k

a1
1 + a1

2 + a1
3 ≤ σ1

k

b1
1 + b1

2 + b1
3 ≤ ς1

k

u2
1 + u2

2 + u2
3 = µ2

sg

v2
1 + v2

2 + v2
3 = ν2

sg

a2
1 + a2

2 + a2
3 ≤ σ2

sg

b2
1 + b2

2 + b2
3 ≤ ς2

sg

p1 + p2 + p3 = 1
u1
kpj ≤ u1

j ≤ ū1
kpj ∀j ∈ [3]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [3]

a1
j ≥ |u1

j − µ1
kpj| ∀j ∈ [3]

b1
j ≥ |v1

j − ν1
kpj| ∀j ∈ [3]

u2
sgpj ≤ u2

j ≤ ū2
sgpj ∀j ∈ [3]

v2
sgpj ≤ v2

j ≤ v̄2
sgpj ∀j ∈ [3]

a2
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Proof. See Appendix E.

With Theorems 7.4.1 and 7.4.2, we can now transform the DRO problem to a classical linear
RO problem [150] as follows:
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2
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(x1,y1,x2,y2, z2) ∈ X ,

where constraints (7.21a) and (7.21b) are dynamically added, which has the advantage of
keeping the number of decision variables small compared to the explicit formulation via
RSOME. Specifically, we solve model (7.21) by ignoring these two groups of constraints.
Whenever an integer solution is generated, we solve the equivalent maximum models pre-
sented in Theorem 7.4.1 and Theorem 7.4.2. If the resulting solutions violate the constraints,
cuts are generated and added to the model, and the model is solved again. This process
continues until the optimality gap is satisfied.

7.5 Numerical Experiments

In this section, we first introduce the instance sets and benchmark approaches, and then
conduct numerical tests to evaluate the proposed B&C algorithm and the cluster-wise DRO
framework.

Instance Sets

We set drones’ launch speed in both directions to 20 m/s, i.e., r̄0 = r̄i = 20 m/s, i ∈
[N ], based on Amazon Prime Air and Workhorse HorseFly drones (used by UPS to deliver
packages), which can fly at speeds up to 50mph (i.e., 22.35m/s) [151,152]. For each customer
i, i ∈ [N ], we generate a random number from the interval [6000, 18000] to denote the distance
di between the depot and the customer. This indicates that if wind is neglected, it generally
takes 10 to 30 minutes for a drone to perform a round trip. The distance data is based on
the following reports: The Amazon Prime Air drone can fly 15 miles (in about 20 minutes
at a speed of 20 m/s) to deliver packages [153] and the HorseFly drone has a 30-minute
flight time [152]. The angle φi, i ∈ [N ] between customer i and the x-axis takes a random
integer value between 0 and 360. We set C1 = {1, . . . , 0.4N}, C2 = {0.4N + 1, . . . , 0.8N},
and C3 = {0.8N + 1, . . . , N}. Let τ̄ 1 = 4000 and τ̄ 2 = 8000. We randomly generate instances
of 15 and 20 customers, where 2 and 3 drones are used in the delivery system, respectively.
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For a fixed number of customers, we generate 5 instances.

With respect to weather information, we use the wind data downloaded from the China
National Meteorological Information Center (http://data.cma.cn/site/index.html). For
each geographic region, the realized wind of the last 7 days (including the current day) are
available. Each region is divided into several subregions, where the average wind speed and
degree are reported hourly, i.e., 24 records per day. We utilize the wind data of Sichuan
Province, a landlocked province in Southwest China, ranging from September 14th to 19th,
2019. The wind information is reported for 145 subregions; therefore, we have 3480 records
per day. We consider every two hours as a time horizon, and the first hour is Period 1 and
the second hour is Period 2. Thus, for each day, we can get 1740 wind samples. Note that for
some missing data, we randomly generate continuous values based on the lower and upper
bounds of the available data. We use the data of September 14th as the (in-sample) training
data, i.e., H = 1740, and the data from September 15th to 19th as the (out-of-sample) test
data, producing 8700 samples.

To construct the cluster-wise ambiguity set, we use the K-means clustering algorithm to
partition the wind samples. We note that we also tried other clustering algorithms such
as the hierarchical clustering [154], and our preliminary tests showed that the results were
similar to those under theK-means clustering. Thus, we opt to use theK-means clustering as
it is widely adopted clustering algorithm and easy to implement. For the adaptive scheduling
decisions in Period 2, we define each first-period cluster as an event. All of the algorithms and
models are implemented in Python programming language using Gurobi 7.5.1 as the solver.
The computations are executed on an Intel Core i5 2.3 GHz processor with 8GB memory.

Benchmark Approaches

We evaluate our DRO framework by comparing its solutions with those generated by the
four other benchmark models. The first one is the deterministic model that maximizes the
slack of time. The second one maximizes the joint on-time service probability. The third one
has the same objective function as our DRO model, but it is implemented in a stochastic
programming framework. The last one minimizes the maximum ERI.

Deterministic Model (DM). Since the considered drone delivery system is service-
oriented, a natural objective would be to construct a drone schedule that maximizes the

http://data.cma.cn/site/index.html
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slack of time in a deterministic model.
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The first three constraints calculate the slack time ldt for drone d, d ∈ [D] in period t, t ∈ [2].
Since the objective function only captures the magnitude of slack and does not indicate its
probability, if two solutions have the same magnitude of slack time, the one with a potential
probability of 5% may have the same preference as the other one with a probability of 95%.
In computational experiments, we set the flight times u1, v1, u2, and v2 as their sample
means.

Maximizing On-time Probability (MOP). To improve service quality, decision-makers
may prefer to penalize lateness to guarantee that drones can serve customers within stipulated
time windows as well as possible. Thus, another benchmark method is to maximize the joint
on-time service probability as follows:

max P [ζ − τ̄ ≤ 0]
s.t. (x1,y1,x2,y2, z2) ∈ X ,

(7.22)

where ζ =
ζ1

d , . . . , ζ
1
D

ζ2
d , . . . , ζ

2
D

 and τ̄ = (τ̄ 1, τ̄ 2)′e′, e ∈ RD. In contrast to the objective of the

deterministic model, the objective of Model (7.22) only captures the lateness probability
and ignores the magnitude of lateness completely. Thus, if the lateness probabilities of two
solutions are the same, the one with a lateness magnitude of 40 minutes may have the same
preference as the one with a lateness of 1 minute.

Moreover, as the objective to be maximized is not a concave function, we use an empirical
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distribution approximation reformulation to solve Model (7.22) as follows:
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where utih ∈ R and vtih ∈ R are the travel times in Period t, t ∈ [2] with respect to sample h,
h ∈ [H]. Ih = 1 if and only if all drones at all periods serve customers on time under sample h,
h ∈ [H]. M t

h, h ∈ [H], t ∈ [2] is a sufficiently large number. We choose M1
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Minimizing ERI Using Empirical Distribution (ERI-E). For Model (7.16), we assume
the travel times follow an empirical distribution, thus the expectations in constraints (7.16a)
and (7.16b) are now evaluated over a known distribution. The resulting model is
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Minimizing the Maximum ERI (M-ERI). We can also minimize the maximum ERI
with empirical distribution. To do so, we replace the objective of the ERI-E model with

min γ
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and add the additional constraints

γ ≥ γtd ∀d ∈ [D], t ∈ [2].

For all methods, we first derive the delivery decisions from training data, then evaluate
their out-of-sample performance using the following four indicators, which are relevant to
decision-makers in a service-oriented system.

• MaxPro: The maximum lateness probability across all customers.

• SumPro: The sum of lateness probabilities of all customers.

• MaxExp: The maximum expected lateness duration across all customers.

• SumExp: The sum of expected lateness durations of all customers.

When calculating the expected lateness, we assume the travel times follow an empirical
distribution. In addition, for the sequence of customers (except the last customer in Period
1 and the first and last customers in Period 2), we assume that drones will serve a customer
first if the customer is nearer to the depot.

Algorithm Performance

We compare the performance of the B&C algorithm with RSOME by solving the adaptive
DRO model. The optimality gap for both methods is set to 0.01%. Average results are
reported in Table 7.1, where time ratio is obtained by using the computing time of the B&C
algorithm to divide that of the RSOME. We conduct the comparison on instances with 15
customers, as RSOME cannot provide a solution within 6 hours for some instances with
N = 20 when K1 ≥ 2.

Table 7.1 shows that the B&C algorithm can solve instances to optimality within a shorter
time frame in most cases (10 out of 12). In particular, when K2 = 3, the average CPU time
of the B&C is equal to or less than half of the computing time of the RSOME. Therefore,
we can conclude that the B&C algorithm can generally achieve a greater scalability for the
adaptive DRO model with a cluster-wise ambiguity set, compared to RSOME.

Comparison of Decision Criteria

We first evaluate the performance of different decision criteria. For models MOP, M-ERI,
and ERI-E, the optimality gap is set to 0.5% and the time limit for solving each model is set
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Table 7.1 Performance comparison (CPU time in seconds) between B&C and RSOME

N K1 K2 B&C RSOME Time ratio

15 1 1 4.98 3.36 1.48
2 10.09 19.38 0.52
3 18.57 37.42 0.50

2 1 19.93 29.15 0.68
2 50.53 120.05 0.42
3 102.70 344.24 0.30

3 1 88.89 201.41 0.44
2 243.65 294.56 0.83
3 471.87 1868.23 0.25

4 1 880.01 466.13 1.89
2 2353.60 5485.28 0.43

5 1 3478.40 6615.62 0.53

to 3600 seconds. The average results of out-of-sample tests are reported in Table 7.2.

Table 7.2 Average results of out-of-sample tests under different decision criteria

N Model MaxPro SumPro MaxExp SumExp CPU time

15 DM 0.1835 0.2410 17.17 25.43 0.06
MOP 0.0362 0.0743 7.93 16.11 2563.31
M-ERI 0.0360 0.0732 7.56 15.65 530.04
ERI-E 0.0339 0.0668 7.57 14.81 90.22

20 DM 0.1303 0.1809 17.38 29.01 0.06
MOP 0.0309 0.0892 7.11 20.36 3580.08
M-ERI 0.0319 0.1053 6.90 22.78 3600.00
ERI-E 0.0298 0.0850 7.09 19.86 3599.33

Table 7.2 shows that while Method DM consumes the least CPU time, it generates very
poor solutions, leading to significant out-of-sample lateness when uncertainty is present.
Specifically, the lateness probability for the worst-case customer, MaxPro, is as much as
18.35% and 13.03% for N = 15 and 20, respectively; however, under other decision criteria,
the value of MaxPro is around 3%.

In general, Method ERI-E provides a better out-of-sample performance than the three other
methods. Specifically, it shows a superiority in indicators MaxPro, SumPro, and SumExp. It
also consumes much less CPU time than Methods M-ERI and MOP when N = 15. Method
M-ERI performs better with regard toMaxExp, which is consistent with its objective function;
however, it performs worse in other indicators and requires more CPU time in comparison
with ERI-E. This is because there exist multiple optimal solutions under this criterion. Based
on the results here, we use Method ERI-E to evaluate our robust framework in the next
section.



123

Comparison Between Robust Method and Empirical Distribution

In this section, we compare the out-of-sample performance of the static DRO model and
Method ERI-E. The DRO model is solved by the B&C algorithm with the same optimality
gap and time limit as those of Method ERI-E. The average results are reported in Table 7.3,
where the first row under each N presents the results of Method ERI-E.

Table 7.3 Average results of out-of-sample tests generated by the static DRO model

N K1 K2 MaxPro SumPro MaxExp SumExp CPU time

15 ERI-E 0.0339 0.0668 7.57 14.81 90.22
1 1 0.0391 0.0677 8.61 15.23 5.15

2 0.0344 0.0655 8.01 15.06 11.37
3 0.0332 0.0647 7.70 14.71 22.49

2 1 0.0349 0.0647 8.05 14.86 9.90
2 0.0337 0.0652 7.77 14.65 25.68
3 0.0364 0.0657 7.83 14.90 56.56

3 1 0.0340 0.0650 7.93 14.83 26.41
2 0.0330 0.0646 7.81 14.77 72.18
3 0.0325 0.0644 7.83 14.79 93.55

4 1 0.0334 0.0650 7.70 14.88 35.93
2 0.0340 0.0650 7.71 14.82 89.10

5 1 0.0329 0.0644 7.53 14.63 65.45

20 ERI-E 0.0298 0.0850 7.09 19.86 3599.33
1 1 0.0406 0.0931 8.74 21.15 18.58

2 0.0321 0.0865 7.34 20.34 49.37
3 0.0323 0.0838 7.59 20.06 96.90

2 1 0.0364 0.0889 8.14 20.66 68.16
2 0.0300 0.0838 7.33 20.04 475.42
3 0.0343 0.0849 7.69 20.00 595.31

3 1 0.0350 0.0855 8.26 20.12 265.55
2 0.0304 0.0830 7.23 19.82 891.86
3 0.0303 0.0836 7.43 19.85 1734.09

4 1 0.0297 0.0822 7.16 19.71 671.79
2 0.0283 0.0821 6.81 19.73 2860.55

5 1 0.0293 0.0839 6.98 19.87 1428.63

Table 7.3 shows that the static DRO model can find solutions with better out-of-sample
performance in all indicators for N = 15 when (K1, K2) = (5, 1) and for N = 20 when
(K1, K2) = (4, 2). Moreover, the static DRO model consumes less CPU time in these two
cases compared to its empirical counterpart, ERI-E. When N = 20 and (K1, K2) = (5, 1), the
DRO model produces solutions with better performance in indicators MaxPro, SumPro, and
MaxExp, and the value of SumExp is larger than that of Method ERI-E by only 0.01. However,
the DRO model requires much less computing time (1428.63 seconds versus 3599.33 seconds)
on average. Thus, we can conclude that the robust method is more effective in mitigating
the service lateness than the empirical distribution for our drone delivery problem.
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Comparison Between Adaptive and Static Robust Models

In this section, we compare the performance of the adaptive and static DRO models. The
average results are reported in Table 7.4, with results of the static model shown in parentheses.
Under the same cluster numbers, if the static model performs better in an indicator, we mark
the results in bold.

Table 7.4 Average results of out-of-sample tests generated by the adaptive and static DRO
models

N K1 K2 MaxPro SumPro MaxExp SumExp CPU time

15 2 1 0.0355 (0.0349) 0.0612 (0.0647) 7.95 (8.05) 14.07 (14.86) 18.62 (9.90)
2 0.0308 (0.0337) 0.0590 (0.0652) 7.41 (7.77) 13.67 (14.65) 57.03 (25.68)
3 0.0312 (0.0364) 0.0587 (0.0657) 7.24 (7.83) 13.81 (14.90) 135.64 (56.56)

3 1 0.0326 (0.0340) 0.0606 (0.0650) 7.62 (7.93) 13.89 (14.83) 76.69 (26.41)
2 0.0318 (0.0330) 0.0602 (0.0646) 7.54 (7.81) 14.00 (14.77) 277.58 (72.18)
3 0.0320 (0.0325) 0.0595 (0.0644) 7.52 (7.83) 13.74 (14.79) 537.31 (93.55)

4 1 0.0335 (0.0334) 0.0612 (0.0650) 7.62 (7.70) 14.04 (14.88) 189.63 (35.93)
2 0.0325 (0.0340) 0.0596 (0.0650) 7.27 (7.71) 13.68 (14.82) 578.85 (89.10)

5 1 0.0321 (0.0329) 0.0607 (0.0644) 7.20 (7.53) 13.94 (14.63) 491.41 (65.45)

20 2 1 0.0306 (0.0364) 0.0814 (0.0889) 7.31 (8.14) 19.65 (20.66) 336.44 (68.16)
2 0.0342 (0.0300) 0.0812 (0.0838) 7.91 (7.33) 19.14 (20.04) 2920.24 (475.42)
3 0.0299 (0.0343) 0.0785 (0.0849) 7.14 (7.69) 19.00 (20.00) 3174.50 (595.31)

3 1 0.0329 (0.0350) 0.0782 (0.0855) 7.70 (8.26) 18.23 (20.12) 3022.32 (265.55)
2 0.0282 (0.0304) 0.0755 (0.0830) 7.13 (7.23) 18.33 (19.82) 3600.00 (891.86)
3 0.0293 (0.0303) 0.0773 (0.0836) 6.98 (7.43) 18.26 (19.85) 3600.00 (1734.09)

4 1 0.0331 (0.0297) 0.0792 (0.0822) 7.40 (7.16) 18.33 (19.71) 3600.00 (671.79)
2 0.0269 (0.0283) 0.0783 (0.0821) 6.64 (6.81) 17.76 (19.73) 3600.00 (2860.55)

5 1 0.0338 (0.0293) 0.0836 (0.0839) 7.20 (6.98) 18.51 (19.87) 3600.00 (1428.63)

Table 7.4 shows that under the same cluster numbers, in most cases the adaptive model can
find solutions with better out-of-sample performance in all indicators compared to the static
model. When N = 20, under some cluster numbers, even though the adaptive model is not
solved to optimality, it can still generate solutions with better performance. The static model
performs better in indicators MaxPro and MaxExp under some cluster numbers, while the
adaptive model demonstrates superiority in the two other indicators. In the previous section,
we observe that the static model performs better in all indicators when (K1, K2) = (5, 1)
for N = 15 compared to Method ERI-E, whereas the adaptive model can further improve
performance under multiple cluster numbers besides (K1, K2) = (5, 1), e.g., (K1, K2) = (2, 2)
and (2, 3), etc. Likewise, for N = 20, the performance of the adaptive model also dominates
that of the static model in all indicators when (K1, K2) = (4, 2). Another observation is that
with a small number of clusters, both robust models outperform the empirical distribution;
however, the out-of-sample performance does not necessarily improve with a larger number
of clusters, because the ambiguity set would converge to the empirical distribution with



125

increasing clusters, which may lead to over-fitting. In practice, we can determine the number
of clusters via validation tests.

Table 7.5 gives the detailed solutions of one instance under (K1, K2) = (3, 2) for N = 15.
The centroids of the first-period clusters can be easily obtained after applying the K-means
clustering algorithm, which is available in many open-source machine learning libraries (e.g.,
the scikit-learn library that we use). We can observe that under different clusters (or events),
the adaptive DRO model generates different delivery schedules for Period 2. For any out-
of-sample, when decision-makers have observed the wind realization in Period 1, they can
calculate the distance between that realization and each cluster centroid to decide which
cluster the observation belongs to, then adopt the corresponding delivery schedule in that
cluster for Period 2.

Table 7.5 Detailed solutions of the DRO models for one instance

Delivery schedule in Period 1
Adaptive Static

[4, 1, 2, 3], [5, 15, 6] [4, 1, 2, 6], [5, 15, 3]

Centroid (cartesian coordinates)
Delivery schedule in Period 2

Adaptive Static
(-0.76, 0.68) [9, 8, 7, 14], [11, 13, 10, 12]

[13, 8, 11, 12], [10, 9, 7, 14](1.55, 0.15) [11, 9, 14, 10], [7, 8, 13, 12]
(-0.16, -1.23) [7, 9, 8, 14], [10, 11, 13, 12]

7.6 Conclusions

In this chapter, we introduce a distributionally robust optimization model to solve a two-
period drone scheduling problem with uncertain flight times, which can be implemented in
a data-driven framework using historical weather information. We propose a cluster-wise
moment-based ambiguity set by partitioning the wind vector chart into different clusters,
which allows us to adapt the delivery schedule in the afternoon to updated weather infor-
mation available by midday. For greater scalability, we develop a branch-and-cut algorithm
for the adaptive robust model. To evaluate the proposed robust scheme, we benchmark
our method against other classical models. Numerical results demonstrate that our robust
framework, especially the adaptive robust model, can effectively reduce the service lateness
at customers in out-of-sample tests.
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

In this chapter, we summarize all the works presented in this thesis and suggest future
research directions.

8.1 Summary of Works

This thesis has solved two types of problems arising from supply chain management: the
reliable facility location problem at the strategic level and the drone delivery problem at
the operational level. For the facility location problem, we consider both supply-side and
receiver-side uncertainties, which are common in real-world applications. Due to the unique
character of disruption risk, i.e., being difficult to identify the distribution of disruptions, we
adopt a two-stage RO framework to solve these problems. This framework does not require
any probability information in comparison with stochastic models, and can also generate less
conservative solutions compared to the static RO method. Specifically, location decisions are
made in the first stage, and customer reassignment is decided in the second stage after the un-
certainty information is observed. The work in Chapter 3 focuses on algorithm improvement,
where an LP-based enumeration method is proposed for the C&CG algorithm. In Chapter 4,
we consider disruptions and demand uncertainty simultaneously, which is seldom addressed
in the literature. We focus on studying the impact of multiple uncertainties. In Chapter 5,
we consider a reliable three-echelon network design problem. We build three two-stage RO
models to see the trade-off between cost and reliability.

For the drone delivery problem, we have studied both the deterministic and stochastic ver-
sions. For the deterministic variant, we solve a MTDRP with time windows, where a nonlinear
energy function is used to calculate drones’ energy consumption, instead of using the linear
approximation method as in the literature. We are the first to generate benchmark instances
on the DRP and develop an exact algorithm to solve the problem. For the stochastic variant,
we consider the impact of weather on drones’ travel time. We use a DRO scheme to model
the problem, where machine learning techniques are applied to historical weather data for
the construction of the ambiguity set. The proposed modeling and solution schemes can
effectively reduce the risk of lateness at customers.

8.2 Future Research

We consider future research can be conducted in following aspects.



127

Reliable Facility Location. One possible extension of our work would be to consider de-
mand changes in disruption scenarios. Because when disruptions occur, customers’ demand
patterns may change considerably [32,42,155]. For example, after an earthquake or a flood,
the demand for daily necessities (e.g., bottled water and medical supplies) may increase
and the demand for luxuries may decrease or vanish. The second extension is to consider
multiple recourse strategies in the second-stage problem, e.g., products are shared from a
non-disrupted facility to a disrupted one, or part of the demand at a customer is satisfied
by subcontracting facilities. It would also be interesting to combine reliable facility loca-
tions with other supply chain problems, such as vehicle routing and inventory management
problems.

Drone Delivery Problem. The limitations of the energy function used in Chapter 6
include: (1) We did not consider the energy consumption of other flight status like taking off
and landing. (2) Some other factors such as drone speed and wind speed were neglected in our
power function. (3) The parameters associated with the drones considered in our study are
small drones with limited payloads and a low travel speed; however, the recently developed
drone models by Amazon and UPS can carry payloads of up to five pounds and fly at speeds
up to 50 mph. Thus, we consider future research which can extend our work in Chapter 6 in
the following aspects: (1) More complex power models with additional influence factors can
be used for drone energy calculation. In this case, the energy consumption of other flight
status should also be explicitly incorporated into the mathematical model. (2) Numerical
tests can be conducted by using the parameters collected from production level delivery
drones to provide operational insights for decision-makers. (3) Heuristic or metaheuristic
algorithms can be designed to solve large-scale problems for the DRP.

For the drone delivery under uncertainty, we can include more covariate information (e.g., air
pressure and temperature) to the ambiguity set when conducting the numerical tests. We can
also extend the proposed partition-based framework to other applications, where uncertain
parameters are correlated to some uncertain covariates. For example, the containership
routing problems [156], where wind’s speed and direction affect vessels’ travel time.
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APPENDIX A SUPPLEMENT TO CHAPTER 3

Section A provides proofs of lemmas. Sections A and A present the duality-based C&CG
algorithm and BD method for the robust UFLP and CFLP, respectively. Section A gives
the reformulation of the AARC models. Section A presents the models for the robust un-
capacitated and capacitated p-median problems. Section A gives the detailed results of
the numerical tests discussed in Section 3.4. The results can also be downloaded from
https://sites.google.com/view/chengchun/instances.

A.1 Proofs of Lemmas

A.1.1 Proof of Lemma 3.2.1

Suppose the number of open facilities is m, i.e., ∑j∈J ŷj = m. Since the worst-case scenario
always occurs at the extreme points, there will be exactly k disrupted facilities in a worst-case
scenario. Figure A.1 gives an example where m > k. We index the facilities so that the first
m are open and the rest are closed. Without loss of generality, we assume that the first k
facilities are disrupted in scenario z1 and that facilities 2, . . ., k and m + 1 are disrupted in
scenario z2. Since more open facilities are disrupted in scenario z1, the customers have more
options in scenario z2, leading to B2 ≤ B1. Therefore, we have B1 ≥ B2 for m > k. When
m ≤ k, all the demand will be left unsatisfied and we have B1 = B2.

…… k+1k21 m…… m+1 …… |J|

disrupted facilities

open facilities

Scenario !":

…… k+1k21 m…… m+1 …… |J|

disrupted facilities

open facilities

Scenario !#:

disrupted facility

Figure A.1 Illustration for the proof of Lemma 3.2.1

https://sites.google.com/view/chengchun/instances
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A.1.2 Proof of Lemma 3.3.1

To proof Z′(k) is equivalent to Z(k), we need to show that even though we relax the variables
z to be continuous, the optimal values of z in a worst-case scenario still take integer values (0
or 1). This can be proofed through the subproblems of the duality-based C&CG algorithms
(refer to A and A). Specifically, for the UFLP, we can rewrite the objective function (A.3a)
as

ψ = max
z,λ,β

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
j∈J

(∑
i∈I

ŷjβij(1− zj)
)
. (A.1)

Constraints (A.3b)–(A.3g) indicate that variables z are not linked to other variables (i.e.,
λ and β). Since the subproblem is a maximization problem, the third term subtracted
from Equation (A.1) is expected to be as small as possible. To achieve this, we can rank∑
i∈I ŷjβij(≥ 0) for each j, and for the first k largest values, zj would take the value of 1

(even though zj is relaxed to be continuous) at optimum. For other values, zj would be 0.
Similarly, for the CFLP, we can rewrite the objective function (A.7) as

ψ = max
z,λ,β,γ

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
j∈J

((∑
i∈I

βij − Cjγj
)
ŷj(1− zj)

)
. (A.2)

If (∑i∈I βij − Cjγj) ŷj ≤ 0, zj would be 0 at optimum. For those with (∑i∈I βij − Cjγj) ŷj > 0,
the same method describe above for the UFLP applies.

A.2 Duality-Based C&CG Algorithm and Benders Decomposition Method for
Robust UFLP

A.2.1 Duality-Based C&CG Algorithm

Master Problem. The master problem is defined by Equations (3.8a)–(3.8g).

Subproblem. Let λ and β be the dual variables of constraints (3.3b) and (3.3c), respectively.
The dual problem of the inner minimization problem can be written as

ψ = max
z,λ,β

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
i∈I

∑
j∈J

ŷj(1− zj)βij, (A.3a)

s.t. λi − βij ≤ hidij ∀i ∈ I, j ∈ J, (A.3b)

λi ≤ pihi ∀i ∈ I, (A.3c)∑
j∈J

zj ≤ k, (A.3d)

zj ∈ {0, 1} ∀i ∈ I, (A.3e)
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λi ≥ 0 ∀i ∈ I, (A.3f)

βij ≥ 0 ∀i ∈ I, j ∈ J. (A.3g)

Since the nonlinear term zjβij is the product of a binary variable zj and a continuous variable
βij, we can linearize it by introducing a new variable πij = zjβij and adding the following
constraints:

πij ≥ 0 ∀i ∈ I, j ∈ J,

πij ≤ βij ∀i ∈ I, j ∈ J,

πij ≤Mijzj ∀i ∈ I, j ∈ J,

πij ≥ βij + Mij(zj − 1) ∀i ∈ I, j ∈ J,

(A.4)

where Mij = max{hi(p′i − dij), 0}. Therefore, the full subproblem is

ψ = max
z,λ,β,π

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
i∈I

∑
j∈J

ŷj(βij − πij), (A.5)

subject to constraints (A.3b)–(A.3g) and (A.4).

A.2.2 Benders Decomposition Method

Master Problem. The master problem of the Benders decomposition method is

φ = min
y,s

s,

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

λ̂li −
∑
i∈I

∑
j∈J

β̂lijyj(1− ẑlj) ∀l ∈ {1, ..., n},

yj ∈ {0, 1} ∀j ∈ J,

(A.6)

where λ̂l, β̂l, and ẑl are obtained at the lth iteration by solving the subproblem.

Subproblem. The subproblem is defined by Equations (A.3b)–(A.3g), (A.4), and (A.5).

A.3 Duality-Based C&CG Algorithm and Benders Decomposition Method for
Robust CFLP

A.3.1 Duality-Based C&CG Algorithm

Master Problem. The master problem is defined by Equations (3.8a)–(3.8g) and (3.10).

Subproblem. Let γ be the dual variable of constraints (3.6). The resulting dual problem
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can be written as follows:

ψ = max
z,λ,β,γ

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
i∈I

∑
j∈J

ŷj(1− zj)βij −
∑
j∈J

Cj ŷjγj(1− zj), (A.7)

s.t. λi − βij − hiγj ≤ hidij ∀i ∈ I, j ∈ J,

γj ≥ 0 ∀j ∈ J,

and (A.3c)–(A.3g).

(A.8)

There are two nonlinear terms in the objective function (A.7), i.e., zjβij and γjzj. We can
use the technique in Section A to linearize the term zjβij. For the term γjzj, we introduce a
new variable ζj = γjzj and add the following constraints:

ζj ≥ 0 ∀j ∈ J,

ζj ≤ γj ∀j ∈ J,

ζj ≤Mjzj ∀j ∈ J,

ζj ≥ γj + Mj(zj − 1) ∀j ∈ J,

(A.9)

where Mj = max{maxi(pi − dij), 0}.

Therefore, the full subproblem is

ψ = max
z,λ,β,γ,ζ

∑
j∈J

fj ŷj +
∑
i∈I

λi −
∑
i∈I

∑
j∈J

ŷj(βij − πij)−
∑
i∈J

Cj ŷj(γj − ζj), (A.10)

subject to constraints (A.4) and (A.8)–(A.9).

A.3.2 Benders Decomposition Method

Master Problem. The master problem of the Benders decomposition method is

φ = min
y,s

s,

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

λ̂li −
∑
i∈I

∑
j∈J

yj(1− ẑlj)β̂lij −
∑
j∈J

Cjyj γ̂
l
j(1− ẑlj) ∀l ∈ {1, ..., n},

yj ∈ {0, 1} ∀j ∈ J,

where λ̂l, β̂l, and ẑl are obtained at the lth iteration by solving the subproblem.
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Subproblem. The subproblem is defined by Equations (A.4) and (A.8)–(A.10).

A.4 Reformulation of the AARC Models

The AARC model for the robust UFLP can be reformulated as

min
y,W,w,A,a,s,δ,
α,ξ,η,θ,µ,σ,ς,π,ν

s, (A.11a)

s.t. s ≥
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

hidijwij +
∑
i∈I

pihiai + kδ +
∑
e∈J

αe, (A.11b)

δ + αe ≥
∑
i∈I

∑
j∈J

hidijWije +
∑
i∈I

pihiAie ∀e ∈ J, (A.11c)

∑
j∈J

wij + ai − kξi −
∑
e∈J

ηie ≥ 1 ∀i ∈ I, (A.11d)

ξi + ηie ≥ −
∑
j∈J

Wije − Aie ∀i ∈ I, e ∈ J, (A.11e)

− kθij −
∑
e∈J

µije ≥ −yj + wij ∀i ∈ I, j ∈ J, (A.11f)

θij + µije ≥ Wije + yj ∀i ∈ I, j, e ∈ J, e = j, (A.11g)

θij + µije ≥ Wije ∀i ∈ I, j, e ∈ J, e 6= j, (A.11h)

wij − kσij −
∑
e∈J

ςije ≥ 0 ∀i ∈ I, j ∈ J, (A.11i)

σij + ςije ≥ −Wije ∀i ∈ I, j, e ∈ J, (A.11j)

− kπi −
∑
e∈J

νie + ai ≥ 0 ∀i ∈ I, (A.11k)

πi + νie ≥ −Aie ∀i ∈ I, e ∈ J, (A.11l)

yj ∈ {0, 1} ∀j ∈ J, (A.11m)

δ, αe, ξi, ηie, θij, µije, σij, ςije, πi, νie ≥ 0 ∀i ∈ I, j, e ∈ J. (A.11n)

The AARC model for the robust CFLP can be reformulated with (A.11) and the constraints

kρj +
∑
e∈J

Γej +
∑
i∈I

hiwij ≤ Ciyj ∀j ∈ J,

ρj + Γej ≥
∑
i∈I

hiWije + Cjyj ∀e, j ∈ J, e = j

ρj + Γej ≥
∑
i∈I

hiWije ∀e, j ∈ J, e 6= j

ρj,Γej ≥ 0 ∀e ∈ J, j ∈ J.
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A.5 Robust Uncapacitated/Capacitated p-median Problem

The parameter % is the weight of the worst-case cost. The variable bij is the fraction of
demand from customer i ∈ I that is satisfied by facility j ∈ J in a disruptive scenario. The
variable gi is the unsatisfied portion of demand at customer i ∈ I in a disruptive scenario.
The definitions of the other parameters and variables are the same as in Section 3.2.1.

The uncapacitated p-median problem under disruptions can be formulated as

min
x,y

(1− %)
∑
i∈I

∑
j∈J

dijhixij + % max
z∈Z(k)

min
(b,g)∈S(y,z)

(
∑
i∈I

∑
j∈J

dijhibij +
∑
i∈I

pihigi), (A.12)

s.t. xij ≤ yj ∀i ∈ I, j ∈ J,∑
j∈J

xij = 1 ∀i ∈ I,

∑
j∈J

yj = p, (A.13)

xij ≥ 0, ∀i ∈ I, j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,

where S(y, z) =
{
bij ≤ 1− zj ∀i ∈ I, j ∈ J,

bij ≤ yj ∀i ∈ I, j ∈ J,∑
j∈J

bij + gi = 1 ∀i ∈ I, (A.14)

bij ≥ 0, ∀i ∈ I, j ∈ J,

gi ≥ 0, ∀i ∈ I
}
.

The capacitated p-median problem under disruptions is

min
x,y

(1− %)
∑
i∈I

∑
j∈J

dijhixij + % max
z∈Z(k)

min
(b,g)∈SC(y,z)

(
∑
i∈I

∑
j∈J

dijhibij +
∑
i∈I

pihigi) (A.15)

s.t. (A.13) and
∑
i∈I

hixij ≤ Cjyj,∀j ∈ J, (A.16)

where SC(y, z) =
{
(A.14) and

∑
i∈I

hibij ≤ Cjyj,∀j ∈ J
}
. (A.17)

A.6 Detailed Results of Numerical Tests in Section 3.4
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APPENDIX B SUPPLEMENT TO CHAPTER 4

Section B discusses the static robust model for the CFLP under disruptions. Section B
presents the C&CG algorithm developed in [1].

B.1 The Static Robust Optimization Model

The static RO model for the CFLP under facility disruptions is

min
y,x,u

∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dijxij +
∑
i∈I

piui,

s.t.
∑
j∈J

xij + ui ≥ h̄i ∀i ∈ I,

∑
i∈I

xij ≤ Cjyj(1− zj) ∀z ∈ Zk, j ∈ J,

yj ∈ {0, 1} ∀j ∈ J,

xij ≥ 0 ∀i ∈ I, j ∈ J,

ui ≥ 0 ∀i ∈ I.

Through duality theory, the second constraints can be reformulated as

∑
i∈I

xij ≤ Cjyj − kAj −Bj ∀j ∈ J, (B.1)

Cjyj − Aj −Bj ≤ 0 ∀j ∈ J, (B.2)

Aj, Bj ≥ 0 ∀j ∈ J. (B.3)

Constraints (B.2)–(B.3) indicate that when k ≥ 1, the equation Cjyj − kAj − Bj ≤ 0
always holds. Therefore, when k ≥ 1, we have ∑i∈I xij ≤ 0,∀j ∈ J , which suggests that
xij = 0,∀i ∈ I, j ∈ J and ui = h̄i,∀i ∈ I. Since the static RO model is a minimization
problem, all yj would be 0 at optimality. A logical explanation of this result is that when
k ≥ 1, the adversary can always select an opened facility to disrupt, thus rendering the
problem infeasible in the absence of recourse.
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B.2 C&CG Algorithm Developed in Reference [1]

The authors of [1] reformulate the subproblem of the C&CG algorithm as a minimum cost
flow problem instead of using the KKT condition as we do. To transform the second-stage
problem to a minimum cost flow problem, we first add a dummy facility node indexed by
|J | + 1 and a dummy demand node indexed by |I| + 1 to the supply chain system. For
notational convenience, we denote I ′ = I ∪ {|I| + 1} and J ′ = J ∪ {|J | + 1}. We then add
arcs from site |J |+ 1 to demand node i ∈ I with transportation cost pi, and arcs from j ∈ J ′

to demand node |I|+ 1 with zero transportation cost. We assume the supply capacity at site
|J |+ 1 is

C|J |+1 =
∑
i∈I

hi,

and the demand quantity at customer |I|+ 1 is

h|I|+1 =
∑
j∈J

Cjyj(1− zj).

Then, the net flow balance condition always holds for the considered system. Note that
facility |J |+1 is always operational and its fixed cost is 0. Now we can equivalently formulate
g(y,h, z) as a minimum cost flow problem:

min
x

∑
i∈I′

∑
j∈J ′

dijxij (B.4a)

s.t. −
∑
j∈J ′

xij = −hi ∀i ∈ I ′, (B.4b)

∑
i∈I′

xij = Cjyj(1− zj) ∀j ∈ J, (B.4c)
∑
i∈I′

xi,|J |+1 = C|J |+1 (B.4d)

xij ≥ 0 ∀i ∈ I ′, j ∈ J ′. (B.4e)

To use the method in [1] for our problem, the assumption that transportation cost dij,
i ∈ I ′, j ∈ J ′ are integer is required. We can derive the dual problem of model (B.4) as

max
α,β
−
∑
i∈I′

hiαi +
∑
j∈J

Cjyj(1− zj)βj + C|J |+1β|J |+1 (B.5a)

s.t. − αi + βj ≤ dij ∀i ∈ I ′, j ∈ J ′, (B.5b)

α ∈ R|I′|,β ∈ R|J ′|. (B.5c)
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Based on Proposition 2 in [1], model (B.5) is equivalent to

max
α,β
−
∑
i∈I′

hiαi +
∑
j∈J

Cjyj(1− zj)βj + C|J |+1β|J |+1 (B.6a)

s.t. − αi + βj ≤ dij ∀i ∈ I ′, j ∈ J ′, (B.6b)

αi ≤ αmax, βj ≤ βmax ∀i ∈ I ′, j ∈ J ′, (B.6c)

α ∈ N|I′|,β ∈ N|J ′|, (B.6d)

where αmax = βmax = max
i∈I′,j∈J ′

dij and N denotes nonnegative integers. The objective function
(B.6a) can be explicitly written as

max
∑
i∈I

h̄i(β|J |+1 − αi) +
∑
j∈J

Cjyj(βj − α|I|+1) +
∑
i∈I

h∆
i θi(β|J |+1 − αi)−

∑
j∈J

Cjyjzj(βj − α|I|+1),

(B.7)

where the last two terms are nonlinear. The third term contains the product of continuous
variables (i.e., θi) and integer variables (i.e., β|J |+1 and αi), whereas the fourth term involves
the product of binary variables (i.e., zj) and integer variables (i.e., βj and α|I|+1). To lin-
earize the third term, we replace integer variables β|J |+1 and αi, i ∈ I with their binary
representations [157]

β|J |+1 =
P∑
k=0

2kβk|J |+1, αi =
P∑
k=0

2kαki ,

where βk|J |+1, αki , k ∈ {0, · · · , P} are binary variables and P =
⌈
log2( max

i∈I′,j∈J ′
dij + 1)

⌉
−1. Up

to now, we can use the McCormick envelopes [158] to linearize the third term of objective
(B.7). Let W k

i,|J |+1 = θiβ
k
|J |+1 and Qk

i = θiα
k
i , then

∑
i∈I

h∆
i θi(β|J |+1 − αi) =

∑
i∈I

h∆
i

(
P∑
k=0

2k
(
W k
i,|J |+1 −Qk

i

))
(B.8)

and

W k
i,|J |+1 ≤ βk|J |+1, W k

i,|J |+1 ≤ θi, W k
i,|J |+1 ≥ θi − (1− βk|J |+1), W k

i,|J |+1 ≥ 0, (B.9)

Qk
i ≤ αki , Qk

i ≤ θi, Qk
i ≥ θi − (1− αki ), Qk

i ≥ 0. (B.10)

We can directly use the McCormick envelopes [158] to linearize the fourth term of objective
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(B.7). Let Tj = zjβj and Uj = zjα|I|+1, then

−
∑
j∈J

Cjyjzj(βj − α|I|+1) = −
∑
j∈J

Cjyj(Tj − Uj) (B.11)

and

Tj ≤ βmaxzj, Tj ≤ βj, Tj ≥ βj − (1− zj)βmax, Tj ≥ 0, (B.12)

Uj ≤ αmaxzj, Uj ≤ α|I|+1, Uj ≥ α|I|+1 − (1− zj)αmax, Uj ≥ 0. (B.13)

Finally, we get the subproblem of the C&CG algorithm in [1] as follows

max
∑
j∈J

fj ŷj +
∑
i∈I

h̄i(β|J |+1 − αi) +
∑
j∈J

Cjyj(βj − α|I|+1)+

∑
i∈I

h∆
i

(
P∑
k=0

2k
(
W k
i,|J |+1 −Qk

i

))
−
∑
j∈J

Cjyj(Tj − Uj)

s.t. − αi + βj ≤ dij ∀i ∈ I ′, j ∈ J ′,

αi ≤ αmax, ∀i ∈ I ′,

βj ≤ βmax ∀j ∈ J ′,

α ∈ N|I′|,β ∈ N|J ′|,

β|J |+1 =
P∑
k=0

2kβk|J |+1,

αi =
P∑
k=0

2kαki , ∀i ∈ I,

0 ≤ θi ≤ 1 ∀i ∈ I,∑
i∈I

θi ≤ Γh,∑
j∈J

zj ≤ k,

zj ∈ {0, 1}, ∀j ∈ J,

βk|J |+1, α
k
i ∈ {0, 1} ∀i ∈ I, k ∈ {0, · · · , P}

(B.9)–(B.10) and (B.12)–(B.13).
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APPENDIX C SUPPLEMENT TO CHAPTER 5

Section C introduces the deterministic LNDP model. Section C presents the two-stage
stochastic programming model.

C.1 Deterministic LNDP model

G-LNDP:

min
∑
j∈V0

fjyj +
∑

(i,j)∈A
cijxij +

∑
j∈VD

θjuj

s.t.
∑
i∈V+

j

xji ≤ bj ∀j ∈ VS

∑
i∈V+

j

xji =
∑
i∈V −j

xij ∀j ∈ VT

∑
i∈V−j

xij + uj = −bj ∀j ∈ VD

∑
i∈V+

j

xji ≤ Qjyj ∀j ∈ V0

yj ∈ {0, 1} ∀j ∈ V0

xij ≥ 0 ∀(i, j) ∈ A

uj ≥ 0 ∀j ∈ V0

C.2 Scenario-based Two-stage Stochastic Programming Model

Parameters and Variables. S is the set of disruptive scenarios. Parameter ps is the
occurrence probability of scenario s ∈ S. Parameter ajs = 1 if facility j ∈ V0 is disrupted
in scenario s ∈ S, and ajs = 0 otherwise. Variable xijs is the product flow on arc (i, j) in
scenario s ∈ S. Variable ujs is the unsatisfied demand at node j ∈ VD in scenario s ∈ S.

min
∑
j∈V0

fjyj +
∑
s∈S

ps(
∑

(i,j)∈A
cijxijs +

∑
j∈VD

θjujs)

s.t.
∑
i∈V +

j

xjis ≤ bj ∀s ∈ S, j ∈ VS

∑
i∈V +

j

xjis =
∑
i∈V −j

xijs ∀s ∈ S, j ∈ VT
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∑
i∈V −j

xijs + ujs = −bj ∀s ∈ S, j ∈ VD

∑
i∈V +

j

xjis ≤ (1− ajs)Qjyj ∀s ∈ S, j ∈ V0

yj ∈ {0, 1} ∀j ∈ V0

ajs ∈ {0, 1} ∀j ∈ V0, ∀s ∈ S

xijs ≥ 0 ∀s ∈ S, (i, j) ∈ A

ujs ≥ 0 ∀s ∈ S, j ∈ VD

Note that although ajs is a binary parameter in the model, we could allow it to be fractional,
representing partial disruption.



163

APPENDIX D SUPPLEMENT TO CHAPTER 6

Section D introduces how to incorporate the drone energy consumption for waiting time into
our mathematical model. Section D presents the detailed instance generation procedures.
Section D provides the detailed solutions of the numerical tests discussed in Section 6.4.

D.1 Drone Energy Consumption for Waiting Time at Customer Locations

We can incorporate a non-zero energy consumption for waiting time at customer locations in
our model. Specifically, we introduce new variables wi, ∀i ∈ N ′ to represent the waiting time
for the opening of the time window at customer i ∈ N ′. Variables τi,∀i ∈ N− now denote
drones’ arrival time at node i ∈ N−. Correspondingly, constraints (6.14)–(6.16) are modified
as follows to include wi in the model

τi + wi + tij −M
′′

ij(1− xij) ≤ τj ∀i ∈ N ′, j ∈ N−, (D.1)

ai ≤ τi + wi ≤ bi ∀i ∈ N ′, (D.2)

an+1 ≤ τn+1 ≤ bn+1, (D.3)

τi + wi + (ti,n+1 + t0j) ≤ τj + (1− zij)M
′′′

ij ∀i, j ∈ N ′, i 6= j, (D.4)

wi ≥ 0 ∀i ∈ N ′. (D.5)

Now we setM ′′
ij = bi+tij, andM

′′′
ij take the same values as before. We assume the unit energy

consumption for waiting (e.g., performing sensing activities, hovering, etc.) as γ (kWh/s).
Then, constraints (6.11) are replaced by

f0 + k′(W +m+ q0j)
3
2 t0j ≤M0j(1− x0j) + fj ∀j ∈ N ′, (D.6)

fi + γwi + k′(W +m+ qij)
3
2 tij ≤Mij(1− xij) + fj ∀i ∈ N ′, j ∈ N−, (D.7)

where constraints (D.6) establish the energy relationship between the starting depot 0 and
customer i, and constraints (D.7) are the energy relationship between customer i and node
j (which can be a customer node or the ending depot n + 1). Mij take the same values as
before. The objective function becomes

min
∑

(i,j)∈A
(cijxij + δeij) +

∑
i∈I

δγwi. (D.8)

Then, our solution schemes can be directly applied for this extension.
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D.2 Instance Generation Procedures

This section presents the detailed procedures for instance generation.

D.2.1 New Benchmark Instances (Set A)

In this set, we consider two types of instances and each has 10–50 customers. For type 1
instances, named Set A1, the depots are located at the lower left corner of the region. For
type 2 instances, named Set A2, the depots are in the middle of the region. For a fixed
number of customers in each type, we generate 5 instances. Our instances are labeled as
Set_Ax_Cust_Y_Z, which represents that this is the Z th instance of Y customers in Set
Ax.

Based on the size of drones, we consider the delivery of relatively lightweight items (including
those like medicines). The demand of the first 40% of customers is drawn uniformly from
[0.1, 0.7] and the demand of the remaining customers is drawn uniformly from [0.1, 1.5]. We
setK = d

∑
i∈N′ di

3Q e, that is, we expect that each drone can perform 3 or more trips on average.
For Set A1, the coordinate of the depot is (0, 0). The x−coordinate and y−coordinate of
each customer is drawn uniformly from [0, 480]. Since we assume travel distance and travel
time are the same, if a customer is located at (0, 480), then the travel time from the depot to
this customer would be 480 seconds. Meanwhile, we let cij = tij ∀(i, j) ∈ A. For the depots,
we set a0 = an+1 = 0 and generate the right-hand side of the time window as follows: We
first compute the travel time between the depot and each customer, i.e., t0j, and rank them
in a non-increasing order; we then sum up the first hth numbers in order, where h = d |N

′|
K
e

and the sum is denoted as s. Finally, we set b0 = bn+1 = d2se. This generation scheme is
based on the idea that, in an extreme situation, each drone trip only involves one customer
and each drone performs at most h trips. And all the deliveries can be finished within d2se
time limit. As travel time satisfies triangle inequality, the earliest time that a customer j
can be serviced is t0j, and the latest time that a drone must leave j is bn+1 − tj,n+1. To
create customers’ time windows, we refer to the method in [96]. We first randomly generate
the center of the time window oj from [t0j, bn+1 − tj,n+1] using uniform distribution, then
we generate the time window’s width wj as a normally distributed random number whose
mean is 0.25(bn+1 − tj,n+1 − t0j) and standard deviation is 0.05(bn+1 − tj,n+1 − t0j). We
set aj = max(dt0je, boj − 0.5wjc), bj = min{bbn+1 − tj,n+1c, boj + 0.5wjc}. For Set A2, the
coordinate of the depot is (480, 480). The x-coordinate and y-coordinate of each customer
is drawn uniformly from [0, 960]. The method of generating the time windows is the same as
that of Set A1.
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D.2.2 Instances Extended From Solomon’s Instances (Set B)

We generate this set of instances based on the principle of minimal modifications to the orig-
inal data. To fit Solomon’s instances, we need to add a service time si,∀i ∈ N ′ to constraints
(6.14) and (6.16) when conducting our numerical tests. We also make some modifications to
customers’ demands to fit the drone’s payload and to allow multi-trip operations. In particu-
lar, for type C2 and RC2 instances with the first 25 and 40 customers, demands are multiplied
by 0.03, because the minimal and the maximal demands are 10 and 40, respectively. For type
R2 instances, demands are multiplied by 0.05 for those with the first 25 customers, because
the minimal and the maximal demand are 2 and 29, respectively; demands are multiplied by
0.045 for those with the first 40 customers, because the maximal demand now becomes 31.
We determine the number of drones as described in the former section.

D.3 Detailed Results

In this section, we first present the results of another energy strategy, which might be used to
guarantee the feasibility of trips. We then provide the detailed results of our numerical tests
in Section 6.4, which are also available at https://sites.google.com/view/chengchun/
instances.

D.3.1 Results of Over-estimated Linear Energy Function

Based on the parameters of drones, the linear power function (6.9) with over-estimated
parameters takes the form P = 259.6mt + 185.6, where mt is the sum of battery weight and
payload. Note that the unit of power isWatt here. We calculate the gap in power between the
nonlinear function and the over-estimated function as (over-estimated − nonlinear)/nonlinear
× 100%, by taking mt from 0.0 to 3.0 with a step 0.1. It shows that the maximal gap is
11.6% and the average gap is 6.9%.

We further give an example to demonstrate that the linear model with an over-estimated
energy function may generate solutions with more trips and energy consumption. The exper-
iment was conducted on instance Set_A2_Cust_20_3 for model R, and results are reported
in Table D.1. The unit of energy is kWh and the energy gap is calculated as (over-estimated
energy − nonlinear energy)/nonlinear energy × 100%.

Table D.1 shows that the linear model has one more trip than the nonlinear model. This is
because fewer customers might be covered in a single trip when the energy consumption is
overestimated. Take the trips marked in red for example. If the nonlinear model is used, we
could have customer 6 in the trip; however, as energy is estimated higher than the actual
value, the linear model cannot visit customer 6 after visiting customer 16. The total energy

https://sites.google.com/view/chengchun/instances
https://sites.google.com/view/chengchun/instances
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Table D.1 Results of instance Set_A2_Cust_20_3 for modelR with an over-estimated energy
function

Nonlinear model Linear approximation model with the over-estimated energy function

Trips Energy Trips Over-estimated energy Nonlinear energy Energy gap (%)

[0, 2, 5, 4, 20, 21] 0.2660 [0, 2, 5, 15, 21] 0.1617 0.1555 3.99
[0, 3, 10, 21] 0.2427 [0, 3, 10, 21] 0.2553 0.2427 5.19
[0, 9, 16, 6, 21] 0.2616 [0, 4, 20, 21] 0.2341 0.2193 6.75
[0, 7, 8, 11, 21] 0.2520 [0, 6, 21] 0.2225 0.2049 8.59
[0, 15, 21] 0.0906 [0, 7, 8, 11, 21] 0.2604 0.2520 3.33
[0, 12, 21] 0.0695 [0, 9, 16, 21] 0.1860 0.1753 6.10
[0, 13, 21] 0.1882 [0, 12, 21] 0.0737 0.0695 6.04
[0, 14, 21] 0.1561 [0, 13, 21] 0.1963 0.1882 4.30
[0, 17, 21] 0.0254 [0, 14, 21] 0.1636 0.1561 4.80
[0, 18, 1, 21] 0.1636 [0, 17, 21] 0.0265 0.0254 4.33
[0, 19, 21] 0.0980 [0, 18, 1, 21] 0.1727 0.1636 5.56

[0, 19, 21] 0.1023 0.0980 4.39

Total energy 1.8137 2.0551 1.9505

consumption of the nonlinear model and the linear model are 1.8137 kWh and 1.9505 kWh
respectively, resulting in a gap = (1.9505− 1.8137)/1.8137× 100% = 7.54%.

D.3.2 Detailed Results of Numerical Tests
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APPENDIX E SUPPLEMENT TO CHAPTER 7

We provide the proofs of Theorem 7.4.1 and Theorem 7.4.2 here.

E.1 Proof of Theorem 7.4.1

Because of the feasibility and the linearity of the ambiguity set (see, for instance, [116,
159,160]), strong duality holds, thus we can reformulate Problem (7.17) as the following
minimization problem, with α,β, δ, ε, η as the dual variables associated with the expectations
and probability in G1

k :

min (µ1
k)′α+ (ν1

k)′β + (σ1
k)′δ + (ς1

k)′ε+ η

s.t. (u1)′α+ (v1)′β + (a1)′δ + (b1)′ε+ η

≥ ∑
i∈C̄1

(x1
id(u1

i + v1
i ) + y1

idu
1
i )− τ̄ 1 ∀(u1,a1,v1, b1) ∈ Ξ1

k,

(u1)′α+ (v1)′β + (a1)′δ + (b1)′ε+ η ≥ −γ1
d ∀(u1,a1,v1, b1) ∈ Ξ1

k,

δ, ε ≥ 0,
α,β, δ, ε,∈ RN , η ∈ R.

(E.1)

Using the duality result of RO, i.e., the dual of the robust counterpart (‘primal worst’) is
equal to the optimistic counterpart of the dual problem (‘dual best’) [161], Problem (E.1) is
equivalent to the following maximization problem:

max
(u1

j ,a
1
j ,v

1
j ,b

1
j)∈Ξ1

k
∀j∈[2]

min (µ1
k)′α+ (ν1

k)′β + (σ1
k)′δ + (ς1

k)′ε+ η

s.t. (u1
1)′α+ (v1

1)′β + (a1
1)′δ + (b1

1)′ε+ η

≥

∑
i∈C̄1

(x1
id + y1

id)ei

′ u1
1 +

∑
i∈C̄1

x1
idei

′ v1
1 − τ̄ 1

(u1
2)′α+ (v1

2)′β + (a1
2)′δ + (b1

2)′ε+ η ≥ −γ1
d

δ, ε ≥ 0,

α,β, δ, ε,∈ RN , η ∈ R.

By duality of the inner linear optimization problem we have, equivalently,

max
∑
i∈C̄1

(x1
id + y1

id)ei

′ u1
1p1 +

∑
i∈C̄1

x1
idei

′ v1
1p1 − τ̄ 1p1 − γ1

dp2
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s.t. u1
1p1 + u1

2p2 = µ1
k

v1
1p1 + v1

2p2 = ν1
k

a1
1p1 + a1

2p2 ≤ σ1
k

b1
1p1 + b1

2p2 ≤ ς1
k

p1 + p2 = 1

u1
k ≤ u1

j ≤ ū1
k ∀j ∈ [2]

a1
j ≥ |u1

j − µ1
k| ∀j ∈ [2]

v1
k ≤ v1

j ≤ v̄1
k ∀j ∈ [2]

b1
j ≥ |v1

j − µ1
k| ∀j ∈ [2]

p1, p2 ≥ 0

u1
j ,a

1
j ,v

1
j ,v

1
j ∈ RN ∀j ∈ [2].

By perspective transformation, i.e., u1
1p1 → u1

1, v1
1p1 → v1

1, we obtain the linear optimization
model presented in Equation (7.18), noting that the equivalence holds because the feasiblity
Y1
kd requires u1

j = a1
j = v1

j = b1
j = 0 whenever pj = 0.

E.2 Proof of Theorem 7.4.2

The proof is similar to the proof of Theorem 7.4.1. Problem (7.20) is equivalent to the
following minimization problem:

min (µ1
k)′α1 + (ν1

k)′β1 + (σ1
k)′δ1 + (ς1

k)′ε1 + (µ2
sg)′α2 + (ν2

sg)′β2 + (σ2
sg)′δ2 + (ς2

sg)′ε2 + η

s.t. (u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η

≥
∑
i∈C̄1

(x1
id + y1

id)(u1
i + v1

i ) +
∑
i∈C̄2

(
(z2
id(s) + x2

id(s))(u2
i + v2

i ) + y2
id(s)u2

i

)
− τ̄ 2

∀(u1,v1,a1, b1,u2,v2,a2, b2) ∈ Ξ2
kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η

≥ τ̄ 1 +
∑
i∈C̄2

(
z2
id(s)v2

i + x2
id(s)(u2

i + v2
i ) + y2

id(s)u2
i

)
− τ̄ 2 ∀(u1,v1,a1, b1,u2,v2,a2, b2) ∈ Ξ2

kgs

(u1)′α1 + (v1)′β1 + (a1)′δ1 + (b1)′ε1 + (u2)′α2 + (v2)′β2 + (a2)′δ2 + (b2)′ε2 + η ≥ −γ2
d

∀(u1,v1,a1, b1,u2,v2,a2, b2) ∈ Ξ2
kgs

δn, εn ≥ 0 ∀n ∈ [2]

αn,βn, δn, εn ∈ RN , η ∈ R ∀n ∈ [2].
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Using the duality result of robust optimization we have, equivalently

max
(u1
j ,v

1
j ,a

1
j ,b

1
j ,u

2
j ,v

2
j ,a

2
j ,b

2
j )∈Ξ2

kgs
∀j∈[3]

min
(

(µ1
k)′α1 + (ν1

k)′β1 + (σ1
k)′δ1 + (ς1

k)′ε1

+ (µ2
sg)′α2 + (ν2

sg)′β2 + (σ2
sg)′δ2 + (ς2

sg)′ε2 + η
)

s.t. (u1
1)′α1 + (v1

1)′β1 + (a1
1)′δ1 + (b1

1)′ε1 + (u2
1)′α2 + (v2

1)′β2 + (a2
1)′δ2 + (b2

1)′ε2 + η

≥

∑
i∈C̄1

(x1
id + y1

id)ei

′ (u1
1 + v1

1) +
∑
i∈C̄2

(z2
id(s) + x2

id(s))ei

′ (u2
1 + v2

1) +
∑
i∈C̄2

y2
id(s)ei

′ u2
1 − τ̄ 2

(u1
2)′α1 + (v1

2)′β1 + (a1
2)′δ1 + (b1

2)′ε1 + (u2
2)′α2 + (v2

2)′β2 + (a2
2)′δ2 + (b2

2)′ε2 + η

≥ τ̄ 1 +
∑
i∈C̄2

z2
id(s)ei

′ v2
2 +

∑
i∈C̄2

x2
id(s)ei

′ (u2
2 + v2

2) +
∑
i∈C̄2

y2
id(s)ei

′ u2
2 − τ̄ 2

(u1
3)′α1 + (v1

3)′β1 + (a1
3)′δ1 + (b1

3)′ε1 + (u2
3)′α2 + (v2

3)′β2 + (a2
3)′δ2 + (b2

3)′ε2 + η ≥ −γ2
d

δn, εn ≥ 0 ∀n ∈ [2]

αn,βn, δn, εn ∈ RN , η ∈ R ∀n ∈ [2].

By duality of the inner optimization problem we have, equivalently,

max
∑
i∈C̄1

(x1
id + y1

id)ei

′ (u1
1 + v1

1)p1 +
∑
i∈C̄2

(z2
id(s) + x2

id(s))ei

′ (u2
1 + v2

1)p1

+
∑
i∈C̄2

y2
id(s)ei

′ u2
1p1 − τ̄ 2p1 + τ̄ 1p2 +

∑
i∈C̄2

z2
id(s)ei

′ v2
2p2

+
∑
i∈C̄2

x2
id(s)ei

′ (u2
2 + v2

2)p2 +
∑
i∈C̄2

y2
id(s)ei

′ u2
2p2 − τ̄ 2p2 − γ2

dp3

s.t. u1
1p1 + u1

2p2 + u1
3p3 = µ1

k

v1
1p1 + v1

2p2 + v1
3p3 = ν1

k

a1
1p1 + a1

2p2 + a1
3p3 ≤ σ1

k

b1
1p1 + b1

2p2 + b1
3p3 ≤ ς1

k

u2
1p1 + u2

2p2 + u2
3p3 = µ2

sg

v2
1p1 + v2

2p2 + v2
3p3 = ν2

sg

a2
1p1 + a2

2p2 + a2
3p3 ≤ σ2

sg

b2
1p1 + b2

2p2 + b2
3p3 ≤ ς2

sg

p1 + p2 + p3 = 1

u1
k ≤ u1

j ≤ ū1
k ∀j ∈ [3]
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v1
k ≤ v1

j ≤ v̄1
k ∀j ∈ [3]

a1
j ≥ |u1

j − µ1
k| ∀j ∈ [3]

b1
j ≥ |v1

j − ν1
k | ∀j ∈ [3]

u2
sg ≤ u2

j ≤ ū2
sg ∀j ∈ [3]

v2
sg ≤ v2

j ≤ v̄2
sg ∀j ∈ [3]

a2
j ≥ |u2

j − µ2
sg| ∀j ∈ [3]

b2
j ≥ |v2

j − ν2
sg| ∀j ∈ [3]

p1, p2, p3 ≥ 0

By perspective transformation, it is equivalent to the following linear optimization problem,

max
∑
i∈C̄1

(x1
id + y1

id)ei

′ (u1
1 + v1

1) +
∑
i∈C̄2

(z2
id(s) + x2

id(s))ei

′ (u2
1 + v2

1)

+
∑
i∈C̄2

y2
id(s)ei

′ u2
1 − τ̄ 2p1 + τ̄ 1p2 +

∑
i∈C̄2

z2
id(s)ei

′ v2
2

+
∑
i∈C̄2

x2
id(s)ei

′ (u2
2 + v2

2) +
∑
i∈C̄2

y2
id(s)ei

′ u2
2 − τ̄ 2p2 − γ2

dp3

s.t. u1
1 + u1

2 + u1
3 = µ1

k

v1
1 + v1

2 + v1
3 = ν1

k

a1
1 + a1

2 + a1
3 ≤ σ1

k

b1
1 + b1

2 + b1
3 ≤ ς1

k

u2
1 + u2

2 + u2
3 = µ2

sg

v2
1 + v2

2 + v2
3 = ν2

sg

a2
1 + a2

2 + a2
3 ≤ σ2

sg

b2
1 + b2

2 + b2
3 ≤ ς2

sg

p1 + p2 + p3 = 1

u1
kpj ≤ u1

j ≤ ū1
kpj ∀j ∈ [3]

v1
kpj ≤ v1

j ≤ v̄1
kpj ∀j ∈ [3]

a1
j ≥ |u1

j − µ1
kpj| ∀j ∈ [3]

b1
j ≥ |v1

j − ν1
kpj| ∀j ∈ [3]

u2
sgpj ≤ u2

j ≤ ū2
sgpj ∀j ∈ [3]

v2
sgpj ≤ v2

j ≤ v̄2
sgpj ∀j ∈ [3]
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a2
j ≥ |u2

j − µ2
sgpj| ∀j ∈ [3]

b2
j ≥ |v2

j − ν2
sgpj| ∀j ∈ [3]

p1, p2, p3 ≥ 0.
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