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RÉSUMÉ

Grâce aux avancées en micro-tomographie par rayons-X, il est désormais possible d’obtenir
des représentations en 3D haute résolution de milliers de particules échantillonnées depuis di-
verses sources géologiques. La représentation plus précise des particules pourrait éventuelle-
ment permettre d’obtenir des simulations numériques plus fidèles des comportements de
matériaux granulaires par la méthode des éléments discrets (DEM, Discrete Element Method
en anglais). Cependant, l’accès à des descriptions fines demande aussi de développer de nou-
veaux outils numériques pour la caractérisation géométrique et l’analyse statistique d’ensembles
de particules. Ce mémoire se concentre sur la modélisation géométrique des particules
de sol par la représentation de leur surface à l’aide de la décomposition en harmoniques
sphériques. Plus précisément, nous discutons de l’utilisation des représentations en har-
moniques sphériques pour développer un modèle statistique permettant de générer des as-
semblages virtuels de particules à partir des données de plusieurs centaines de grains. La
haute dimension de tels ensembles de données a longtemps été une complication majeure,
mais avec les récentes avancées en apprentissage automatique dans l’analyse des mégadon-
nées, il y a espoir que ces nouveaux algorithmes puissent surmonter cette limitation.
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ABSTRACT

Advancements in X-ray micro-computed tomography allow one to obtain high resolution 3D
representations of particles collected from multiple geological sources. The representational
power enabled by this new technology could allow for more accurate numerical simulations of
granular materials using the celebrated Discrete Element Method (DEM). However, access to
realistic representations of particles requires the development of more advanced geometrical
and statistical characterization techniques. This thesis focuses on the use of the Spherical
Harmonics decomposition of soil particles to model the surface of the particles. More pre-
cisely, we discuss the application of the Spherical Harmonics decomposition of particles to
develop generative models of virtual assemblies that are calibrated based on datasets made of
hundreds of grains. For long, the high dimensionality of the data has been a major challenge
to the developpement of such statistical models. However, with recent advances of machine
learning algorithms in the context of Big Data, there is hope that these new techniques can be
utilized to overcome this limitation and obtain very accurate generative models of assemblies.
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CHAPTER 1 INTRODUCTION

1.1 Scientific Context

It is well understood that the macroscopic behavior of granular materials results from a
cascade of phenomena that originates at the scale of the geometry of the particles. Many ex-
perimental studies show the effect of particle morphology on such characteristics as the pack-
ing density, stiffness, compressibility, or critical state [1–3]. The Discrete Element Method
(DEM) [4], first introduced by Cundall and Strack in the 1980’s, was developed with the
prospect of numerically simulating granular materials by considering the interactions be-
tween all particles in an assembly. In today’s day and age, the exponentially increasing
power of computers has made it possible to simulate with DEM assemblies of thousands,
and even millions of particles, and therefore one can envision simulating properties at the
macroscopic scale. Recent numerical studies based on DEM have confirmed that there is a
relationship between particle morphology and macroscopical behavior [5–8]. Yet, those stud-
ies have only identified partial relations between the means of certain particle characteristics
and macroscopic behavior.

One of the major limitations of the DEM is the necessity to simplify the shape of the par-
ticles to reduce computational costs. Commonly used to approximate particles are spheres,
ellipsoids, superquadrics, or polyhedrons. To obtain meaningful correlations between the
shape of grains and DEM responses, the geometrical features used to characterize particle
morphology must uniquely determine the particles. Simply put, the complexity of useful
geometrical characterization tools is driven by the complexity of the shapes considered in
DEM simulations. The widespread use of simplified shapes like spheres, ellipsoids and su-
perquadrics has favored the classical shape descriptors as geometrical characterization tools
i.e. the volume, aspect ratios, convexity, sphericity, convexity, and roundness [9]. Although
these features are easily interpretable and completely determine spheres, ellipsoids, they are
only partially correlated with DEM simulations.

The use of more complex geometries in DEM requires the development of more advanced
geometrical characterization techniques. Originally, the geometrical features of particles were
calculated using 2D images obtained by microscopy [10]. Though cheap, these methods do
not provide a complete picture in 3D of the morphology of the grains. With the recent arrival
of inexpensive X-ray micro-computed tomography (µCT), 3D representations of thousands
of particles collected from various sources are now made available [11]. With access to this
data, it is not only possible to compute classical shape descriptors more accurately [12], but



2

Real
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Collection of

Virtual Particles

Figure 1.1 Overall generative process, as a black box, to generate an arbitrary large collection
of virtual particles from a small sample of real particles.

it has also been possible to develop more powerful geometrical characterization tools that
can allow one to use DEM for simulating real soils, rather than an idealization of soils.

1.2 Objectives

One of the new exciting applications enabled by µCT datasets of particles is the generation
of virtual assemblies which share the same complex geometries as real particles collected from
a given soil. The principal objective of this thesis shall be stated as:

Main Objective Develop a generative process to create random collections
of virtual particles that are both realistic and geometrically similar to real
particles collected from various geological sources. These particles shall be
completely determined by their geometrical properties.

The overall process, as illustrated in Figure 1.1 involves several requirements, which are now
clarified. By virtual particles, it is meant that said particles must be generated by a computer
algorithm and must not be a simple copy of a real particle. The randomness of the generating
process is key to enable the construction of 10K-100K particles from soil samples of only 1K
particles. Indeed, the available soil samples are usually incomplete and much smaller than
what is required to run large scale DEM simulations. A probabilistic process can hopefully
solve the issue of generating arbitrarily large collections of representative grains by filling out
the gaps between the available particles.

Moreover, it is required that the virtual particles be realistic and geometrically similar to
real particles. The notion of realistic particles is really subjective, although aberrant shapes
can easily be detected by the naked eye. Being geometrically similar is a notion that is not
trivial to formalize mathematically and will be studied thoroughly in this document.

The final requirement is that the virtual particles be determined by their geometrical charac-
teristics. Basically, two particles that are obviously different cannot share the same geomet-
rical characteristics as it would lead to some ambiguity when correlating geometry to DEM
responses.
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Real
Particles

Discretization Discrete
Representation

Preprocessing Processed
Data

Calibration Statistical
Model

Sampling
Collection of

Virtual Particles

Figure 1.2 Sequence of steps to generate a collection of virtual particles from a sample of real
particles.

The black box illustrated in Figure 1.1 can be decomposed into several steps which are shown
in Figure 1.2. In the diagram, boxes represent stored data, the circle is a model and the arrows
are the various mandatory steps. The first step is referred to as a discretization, which takes
real particles collected from a soil, and compute their discrete representation in order to
store them in a computer. The chosen discrete representation must satisfy two constraints:
consistency and completeness. Consistency refers to the requirement that every particle
should be represented using a fixed number of features that measure specific morphological
quantities, i.e. the same finite-dimensional subspace. This enables meaningful comparisons
between particles in a dataset as well as statistical analysis. Completeness implies that it
is possible to reconstruct any particle to arbitrary precision by choosing sufficiently many
features. This property ensures that the particles are uniquely defined by their geometrical
features, which is one of the constraints of our main objective.

The following step of the generative process is to find representations of the data which
allow for efficient statistical analysis. This is referred to as preprocessing in Figure 1.2. Such
techniques can include normalization and dimensionality reduction for example.

Once the raw data has been transformed, the final step is to use it to calibrate a statistical
model, shown as a circle in Figure 1.2. After being trained, the model is used to sample an
arbitrarily large number of virtual particles. In this thesis, we shall mainly be interested in
statistical models that come from the field of machine learning.

Once all steps of the generating process have been implemented, we shall use manufactured
particles with simple geometries, i.e. ellipsoids and superquadrics, to apply validation tests
of the various models. This is critical since the long term objective is to fully automate the
full process described in Figure 1.2. To do so, we need an absolute confidence in every part of
the black box. Manufactured particles are useful to validate models as their exact geometries
and statistical distributions can be controlled.
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1.3 Literature Review

Micro-computed tomography grants access to high-resolution 3D representations of real par-
ticles. These representations are usually discretized using voxels or surface meshes, which
are useful for particle visualization using computer software. However, as explained earlier,
we are looking for representations of particles that are consistent and complete. It is unlikely
that all particles obtained by µCT would have the same number of voxels or nodes so these
representations are not consistent. Even if some particles had the same number of nodes,
consistency would still not be achieved since the ith node need not describe the same aspect
of the particles across the dataset. A popular consistent representation of particles are the
classical shape descriptors, which are often used for statistical analysis. Unfortunately, these
descriptors do not allow for a complete representation unless one is restricted to work on
spheres or ellipsoids. To develop consistent and complete representations of complex par-
ticles, researchers have recently been looking for mappings from the unit sphere onto the
surface of the particles. When such maps are found, the surfaces can be decomposed into a
basis of functions, e.g. spherical harmonics or spherical wavelets. Decomposing the surfaces in
a fixed basis introduces representations with the desired two properties. Two different map-
pings from the unit sphere to the particle surface are currently employed in the literature.
They shall be referred to as radial parametrization and surface parametrization.

The radial parametrization method was first introduced by Garboczi [13] and was explored in
depth in [14–19]. This approach only applies to so-called star-shaped particles, that is to say
particles for which there exists an interior point from which the segment connecting to any
other point in the particle lies entirely within the particle [20]. This definition generalizes the
notion of convexity as every convex domain is also star-shaped. Because it can be difficult
to identify the existence of such a point, we usually only verify if a domain is star-shaped
by examining segments originating from its center of mass. When particles are identified as
star-shaped, the distance from the center of mass to each point on the surface is a well-defined
function on the unit sphere, which can be decomposed in terms of spherical harmonics.

The surface parameterization approach was introduced by Brechbühler et al. [21] and later
expanded by Shen and his collaborators [22,23]. The method was applied to soil particles in
the following studies [24–26]. It is based on the principle that any closed surface without holes
is topologically equivalent to a sphere. In practice, this topological equivalence is interpreted
as stating that there is a bijective and continuous map between points on the unit sphere and
points on the surface of the particle. This mapping is not unique and must be determined
using a constrained optimization algorithm which minimizes the distortion [21]. Once the
mapping is found, it can be approximated using three spherical harmonics decompositions,
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one for each component of the parametrization.

Each method has strengths and weaknesses. The radial parametrization is appealing for its
natural geometric interpretation. It is indeed easy to roughly guess the point on the surface
of the particle that one obtains through the mapping from a given point on the unit sphere.
This property is lost when using a surface parametrization since the mapping from the unit
sphere to the surface is distorted. Another difference is that a radial parametrization is
only well defined on star-shaped particles while a surface parameterization can be applied to
every particle that is topologically equivalent to a sphere, which is satisfied by a larger class
of particles. The larger versatility of the surface parameterization method comes at a price
though since it requires the use of three spherical harmonics decompositions instead of one.
Moreover, there is no proof that the surface parametrization is any way unique, and hence
may not permit a good comparison of different particles. For the sake of simplicity, the radial
parameterization is utilized in this work but most methodologies presented here could also
be applied to the surface parameterization if one uses the latter instead of the former.

Both radial and surface parameterizations allow the computation of classical shape descrip-
tors of the particle: volume, aspect ratios, sphericity, and roundness. Garboczi [13] showed
how to compute the shape descriptors using a radial parametrization while Zhou et al. [24]
showed how to compute the same descriptors using a surface parametrization.

Once the spherical harmonics representations of particles are obtained using the radial
parametrization, they can be used to calibrate a statistical model from which virtual particles
can be sampled. The most daunting aspect of this task is the high dimensionality of the data,
which is typically on the order of several hundred degrees of freedom. It is a well established
fact that the complexity of calibrating a statistical model grows exponentially with the di-
mension of its feature space. This is known as the so-called curse of dimensionality [27–29].
Two different statistical models currently dominate the geology literature. Though they dif-
fer in some aspects, they are both based on the Principal Components Analysis (PCA) to
reduce the dimensionality of the data and to decorrelate the different features.

The first statistical model consists of sampling the principal components of the data from
independent normal distributions [17, 19, 24]. Doing so is only theoretically justifiable when
the data follows a multivariate Gaussian distribution. Unfortunately, the assumptions of
independence in those studies were mainly based on crude visual observations, rather than
through statistical hypothesis testing. We suspect that the three studies were not amenable
to validation due to the fact that the sample sizes were all extremely small, i.e. 12, 20, and
100.

The second model requires transforming the marginals of each variable into normal distribu-
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tions with a Nataf transform [18,25]. The PCA is then applied on the transformed variables
instead of the original ones. As before, the principal components are fitted with normal
distributions and sampled independently to generate new particles. This method’s main hy-
pothesis is that, by transforming the marginals into normals, the joint distribution should
become more similar to a multivariate Gaussian. The issue with this reasoning is that having
normal marginals is not a strong enough statement to imply that the data follows a multi-
variate normal distribution. In fact, it is easy to construct joint distributions which are not
multivariate normals but whose marginals follow normal distributions.

To improve the current state of the art, it is important to apply a more rigorous inference
of the data distribution based on hypothesis testing. It is also primordial to experiment
with generative models which assume looser hypotheses. With the recent success of machine
learning algorithms on high-dimensional applications such as clustering, pattern recognition
and image generation, there is hope that some of those techniques can be applied to the
specific task of this project. In fact, a number of novel generative models on high-dimensional
data which range from non-parametric to neural-networks have actually been developed in
the past two decades [28,30].

Several applications of virtual particles sampled from probabilistic models currently exists
in the literature. An efficient contact model between SH representations of particles has
been developped using the extent overlap box [31]. This contact model was implemented
within the code Anm which models composite structures of mortar or concrete [32]. In Anm,
various virtual particles are suspended in a unit cell with periodic boundary to model a com-
posite material, and the contact algorithm ensures that no overlap between the suspended
grains is observed. Other recent studies have used virtual particles in DEM packing simula-
tions. To reduce the cost of dynamically computing contacts between all particles, the SH
representations are approximated with sphere clumps [18,33].

1.4 Contributions

At a conceptual level, one can summarize our contributions by saying that we made use of
modern machine learning techniques to generate large datasets of virtual particles. Cluster-
ing algorithms are employed to identify subpopulations of particles which share geometrical
properties. Partitioning the data in this manner holds the promise of requiring simpler sta-
tistical models to capture the geometrical patterns of each subpopulation. To the best of
our knowledge, this is the first time these techniques have been used on spherical harmonics
representations of particles. Generative models which go beyond the multivariate Gaussian
and the Nataf transforms have also been studied. More precisely, our application of the Ker-
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nel Density Estimation (KDE) algorithm shows promise on low-dimensional manufactured
populations and with a modified version called Manifold-KDE, we obtain encouraging results
on high-dimensional data of real particles.

Among other important results is the empirical demonstration that the SH representations
of real particles are concentrated near low dimensional manifolds. The possible origin of
such manifolds is a point dealt in the thesis. We propose that understanding them can
yield geological insight on the data and lead to better generative models exploiting those low
dimensional structures. Such models would include, but are not restricted to, Manifold-KDE,
Variational Auto-Encoders, Generative Adversarial Networks, andM-flows [28,34,35].

Underlying the other conclusions to this research, are the careful and numerous verification
processes introduced at each step of the methodology, many of which are lacking from the
literature. Some verification analysis original to this thesis include the quadrature study
on the unit sphere, the effects of the Lanczos filtering, and the verification of statistical
hypothesis tests on simple bivariate distributions.

The final innovation discussed in the thesis is the introduction of particularly useful series
of validations based on different families of manufactured particles, i.e. ellipsoids and su-
perquadrics. Working with said particles allows to validate of the statistical models since the
exact geometries and distributions of the particles can be controlled.
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1.5 Organization of the Thesis

Here is how the content will be divided between chapters:

• Chapter 2 focuses on the discretization step in Figure 1.2. More precisely, the surface
triangular mesh (STM) and the spherical harmonics (SH) representations, as well as
their computation, are described in great detail. Convergence studies are also presented.

• Chapter 3 tackles the challenge of defining the geometrical resemblance between par-
ticles. Indeed, the main requirement of the generative model is that virtual particles
be similar to the original particles. The notion of resemblance is frequently defined
in terms of the following classical descriptors: volume, aspect ratios, sphericity, and
roundness. All algorithms implemented for their calculation are extensively verified
with the use of simple manufactured particles.

• Chapter 4 describes in detail the preprocessing, calibration, and sampling steps as
shown in Figure 1.2. More precisely, the Principal Component Analysis (PCA), KMean,
Gaussian Mixture (GM), and Kernel Density Estimation (KDE) algorithms are dis-
cussed.

• Chapter 5 presents some numerical results that demonstrate the efficacity of the gen-
erative process to create virtual particles when starting from real or manufactured
particles. Synthetic or manufactured particles are used to validate the appropriateness
of the statistical models while real particles illustrate the performance of the overall
process in the case of real-life applications.

• Chapter 6 provides some concluding remarks about our work and explores possible
avenues for future work.
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CHAPTER 2 DISCRETE REPRESENTATIONS OF PARTICLES

The first step in the development of the generative process is to obtain a discrete represen-
tation of real particles collected from a given geological source, see Figure 1.2. Ideally, the
discrete representation should have specific properties which allow for the statistical analysis
of samples of particles. To that end, this chapter introduces the mathematical definitions of
two representations of particles: the surface triangular mesh (STM) and the spherical har-
monics (SH) representations, which are both used during the discretization process. First,
the STM representation of particles is discussed, the definition of a surface tessellation is
provided, and defective tessellations are investigated. Secondly, the SH representation is in-
troduced and its numerical computation is detailed extensively. The chapter concludes with
a visual comparison of four arbitrary particles in both representations.

2.1 Surface Triangular Mesh Representation (STM)

With the advent of inexpensive X-ray micro-computed tomography (µCT), it has been pos-
sible to characterize a host of materials and objects. This non-invasive technology enables a
resolution at the micrometer scale of bones, archeological artifacts, biological materials, and
grains. The characterization is commonly given with a triangulation of the surface of the
particle. To make subsequent text lighter, the surface triangular mesh representation shall
be referred to as the STM representation. Figure ?? illustrates the STM representation of a
grain picked from a river bed.

The STL format (Stereolithography) [36], is often used to store the necessary information
to describe such representations. More concretely, an STL file contains Nv vertices stored
in a two-dimensional set V = ((xi, yi, zi))1≤i≤Nv . The set V can be seen as a Nv × 3 matrix
whose rows represent the nodes in 3D space. The STL file also lists the Nf triangles forming
the (hopefully) closed surface. A connectivity matrix K of size Nf × 3 ties the local vertices
of the faces to the global vertices in V. The file also contains normals on each face stored
in a matrix N of size Nf × 3. To index elements of V, N and K, we will use a matlab-like
notation N(i, j), V(i, j) and K(i, j) where the indices i and j start at 1. For example, V(i, j)
represents the jth coordinate of the ith vertex. Also, K(i, j) outputs the global index of the
jth local vertex of the ith face. Finally, to index a whole row or column, we will use the ":"
symbol so the first vertex of the file would be obtained with V (1, :) ∈ R3 for example. This
notation is standard throughout the document when indexing the elements of a matrix.
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Figure 2.1 STM representation of a river particle.

In differential geometry, surface triangulations are assumed to be consistent in the sense that
i) each triangle (2-simplex) is formed of 3 different segments (1-simplex), ii) each segment
is formed of two nodes (0-simplex) and iii) each n − 1-simplex is the intersection of exactly
two n-simplices. Without these conditions, the triangulation will not correspond to the
triangulation of a 2-manifold, but the necessity of such conditions was the result of decades
of debates, as detailed in the respected book of Imre Lakatos [37].

The STM representations of four distinct populations of particles obtained with micro-
computed tomography were made available to us by Hydro-Québec. Those populations
include asphalt, river, rouge and margelle particles. Unfortunately, the surface triangula-
tions obtained by µCT are prone to disrespect the consistency conditions described earlier.
The most common errors are the presence of 2-simplexes suspended inside the particle and
holes on the particle surface. Both defects result in some edges that are not shared between
two 2-simplexes, which violates the third condition of consistent triangulations. Figure 2.2
shows examples of two such defects. The most extreme defect was having multiple particles
glued together, see Figure 2.3. Though the triangulation may be consistent on such examples,
they obviously represent non-physical particles.

Automating the removal of such defects is a rather complicated task in computer graphics
and is beyond the scope of this thesis. Hence, we have chosen to simply eliminate surface
triangulations that contain too many defects. In practice, we observe that grains with defects
are not more or less complicated than those without, indicating that these are caused by the
micro-tomography, and that the geometrical results we would deduce would still be valid,
even after the exclusion of certain particles. The selection process can be applied to the four
populations of particles described earlier and the results are reported in Table 2.1.
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(a) 2-Simplexes suspended inside the volume (b) Holes on the surface

Figure 2.2 Two common defects on STM representations.

Figure 2.3 Extreme defect in the STM representations.

Table 2.1 – Amount of usable and defective files for each population.

Asphalt River Rouge Margelle

usable 301 1005 264 892
defective 1 53 52 0
total 302 1058 316 892

The STM representation of grains is convenient for visualization with computer software,
however, it is not well adapted to statistical analysis. The reason being that, to analyze
samples of multiple particles, one needs a representation that is consistent and complete.
By consistent, we mean that each particle is represented with the same number of features
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which all characterize the same geometric information. By complete, we impose that, given
the set of all features, one should be able to reconstruct the associated particle to some
arbitrary accuracy. When working on STM representations, one could be tempted to use
the nodes as features. However, the STL files do not have the same number of nodes.
Moreover, comparing the ith node from two different STL files does not yield any insight,
since we could always perform rotations. For these two reasons, the STM representation
is not consistent. The first important challenge to this research is to find a consistent and
complete representation of soil particles. A classical approach would be to use features such
as volume, aspect ratios, sphericity, convexity, and roundness. Though this representation
is consistent, it is not complete, i.e. only simple artificial grains are uniquely determined by
those few quantities, while the particles we study typically have a rich geometry and cannot
be fully reconstructed when only given their classical shape descriptors.

2.2 Spherical Harmonics Representation (SH)

In order to find a consistent and complete representation, we need to explore the concepts
of Fourier series and Spherical Harmonics. The general Fourier Series are ubiquitous in
science and engineering but the theory of Spherical Harmonics appears mostly in specialized
applications. For this reason, we begin this section by introducing the Fourier series in the
general sense and afterwards specify how they can be apply to the representation of 3D
particles, which will naturally lead to the formulation of the Spherical Harmonics. Most of
the content of Section 2.2.1 is based on the first and fourth chapters in [38].

2.2.1 Fourier Series

The theory attempts to describe functions belonging to the space of squared integrable func-
tions

L2(Ω) =
{
f : Ω→ R such that

ˆ
Ω
f 2(x)dx ≤ ∞

}
, (2.1)

which is a Hilbert space equipped with the following inner product and norm

〈f, g〉Ω =
ˆ

Ω
f(x)g(x)dx, (2.2)

‖f‖2
Ω = 〈f, f〉Ω =

ˆ
Ω
f 2(x)dx. (2.3)

For simplicity, we assume here that Ω is an open bounded domain with a piecewise smooth
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boundary. A set {ui}i∈N of functions in L2(Ω) is called an orthonormal system if

〈ui, uj〉Ω = δij, ∀i, j ∈ N, (2.4)

An orthonormal system {ui}i∈N forms an orthonormal basis of L2(Ω) if and only if its span
is a dense subset, i.e. for every f ∈ L2(Ω) there exists a sequence (ci)i∈N ∈ R∞ such that

lim
n→∞

∥∥∥∥∥∥f −
n∑
i=1

ciui

∥∥∥∥∥∥
Ω

→ 0. (2.5)

A natural consequence of the structure of Hilbert spaces is that the coefficients (ci)i∈N, which
satisfy (2.5), are unique and are obtained through the L2 projection

ci = 〈f, ui〉Ω. (2.6)

The coefficients ci are called the components or the Fourier coefficients of f and each contri-
bution ciui is referred to as a mode. We note that in practice, many different orthonormal
bases for L2(Ω) may exist, and so many sequences of Fourier coefficients may be associated to
the same function f . Though convergence in L2(Ω) is always guaranteed, pointwise conver-
gence can be achieved under sufficient smoothness assumptions on f . According to Theorem
2.5 in [39], the following holds for one-dimensional domains,

f ∈ C1(Ω) =⇒ f(x) =
∞∑
i=1

ciui(x), ∀x ∈ Ω, (2.7)

which could be relaxed to continuous piecewise smooth functions, i.e. those corresponding
to the class of functions provided by the STM representation. An important property of
orthonormal bases is Parseval’s equality

‖f‖2
Ω =

∞∑
i=1

〈f, ui〉2Ω =
∞∑
i=1

c2
i ≤ ∞. (2.8)

This equality sheds light on a strict constraint over the coefficients

(ci)i∈N ∈ `2(N) =
{
c ∈ R∞ such that

∞∑
i=1

c2
i ≤ ∞

}
. (2.9)
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To summarize, using an orthonormal basis defines a bijective isometry between the space of
functions L2(Ω) and the space of coefficients `2(N), the latter being easier to work with from
a statistical point of view than the former. In practice, one must truncate (ci)i∈N to obtain a
finite amount of features to store in a dataset. Let nmax be the maximal number of features
selected, the L2 error of the representation would be, using (2.8),

∥∥∥∥∥∥f −
nmax∑
i=1

ciui

∥∥∥∥∥∥
2

Ω

= ‖f‖2
Ω −

nmax∑
i=1

c2
i

=
∞∑

i=nmax+1

c2
i ,

(2.10)

which shows that the truncation error is closely related to the decay rate of the coefficients
(ci)i∈N. According to Theorem 2.6 in [39], the decay rate of the Fourier coefficients is linked
to the regularity of the function f ,

|ci| ≤ C i−k−1, (2.11)

where k is the regularity of f , i.e. the number of continous derivatives. This result is only valid
in one dimension, however, similar results can be derived in higher dimensions. The decay
rate k + 1 according to the regularity of f which is an intuitive observation. Very irregular
functions require a high frequency modes to faithfully represent their steep variations so their
coefficients have a smaller decay rate.

A well known truncation artefact of the Fourier series is the Gibbs phenomenon, which
occurs when truncating the representation of a function with discontinuities. For example,
let Ω = [−1, 1] and f be a step function over Ω. Figure 2.4 shows the Fourier series of f
using a cosine orthonormal basis cos(x). Adding more modes improves the approximation
but the largest overshoot converges to a constant 18% overshoot. Common approaches to
reduce Gibbs phenomenon consist of applying a high frequency filter to the components which
reduces the ripples at the cost of having a larger L2 error.

2.2.2 Spherical Harmonics

Having described the Fourier Series in the general sense, we now specialize to their application
to represent 3D particles, which will lead to the definition of the Spherical Harmonics. As
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Figure 2.4 The Gibbs phenomenon generates an overshoot (and undershoot) that is equal to
18% of the strength of the discontinuity. This overshoot does not decrease as the number of
modes increases.

discussed in the previous chapter, finding a continuous map from the unit sphere

S2 :=
{
x ∈ R3 :

3∑
i=1

x2
i = 1

}
, (2.12)

to the particle surface is the first step to develop a consistent and complete representation of
realistic soil particles. Two different mappings were explained in Section 1.3 and the radial
parametrization has been selected. To define this parametrization, the spherical coordinate
system of R3 must be introduced,

r = (r cos θ sinφ, r sin θ sinφ, r cosφ), (2.13)

where θ ∈ [0, 2π[ is called the azimuth angle and φ ∈ [0, π] is called the polar angle, see Fig-
ure 2.5. Since there is a bijection between S2 and the angles (θ, φ), a function f(θ, φ) defines
a function on the unit sphere. To define arbitrary grains as functions over the unit sphere,
the class of star-shaped particles must be considered. A particle is said to be star-shaped if it
contains a fixed point such that any segment connecting this point to another interior point
lies within the particle [20]. This definition is a more relaxed version of convexity where
only one interior point is arbitrary, which implies that convex particles constitute a subset
of star-shaped particles. If one uses the fixed point as the origin of a spherical coordinate
system, then a star-shaped particle can be represented with a function r(θ, φ) defining the
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Figure 2.5 Spherical coordinates.

θr

Star-Shaped Non Star-Shaped

Figure 2.6 Slices of a star-shaped and non star-shaped particle.

distance from the origin to the surface in every direction. Figure 2.6 illustrates examples of
star-shaped and non star-shaped particles.

Every particle must be represented with a unique function r(θ, φ), however, for any given
function, pre-composition with an isometry of the sphere will generate a new map. This can
be solved by consistently measuring the angles θ and φ with respect to the principal axes
of the particle, which are explained in Section 3.1.2. Moreover, even the center used in the
definition of the star-shaped domain is not necessarily unique. The common solution is to use
the center of mass, though it is not always one of the points with respect to which the particle
is star-shaped (but it is reasonable). The Hilbert space L2(S2) can now be introduced with
respect to the the following inner product

〈f, g〉S2 =
ˆ 2π

0

ˆ π

0
f(θ, φ) g(θ, φ) sinφ dφdθ. (2.14)

The spherical harmonics on S2 correspond to the eigenfunctions of the surface Laplacian ∇2.
Since the Laplacian is a compact self-adjoint operator, its eigenfunctions form an orthonormal
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basis of L2(S2) [40] and elliptic regularity implies that the eigenfunctions are smooth. They
are given by

Y m
` (θ, φ) =



√
2C(`, |m|)P |m|` (cosφ) cos(mθ), m > 0,

C(`, 0)P 0
` (cosφ), m = 0,

√
2C(`, |m|)P |m|` (cosφ) sin(−mθ), m < 0,

(2.15)

where

C(`, |m|) =

√√√√(2`+ 1) (`− |m|)!
4π (`+ |m|)! ,

is a normalization constant and P |m|` are the associated Legendre polynomials. The spherical
harmonics are indexed by two the indices ` and m, which are associated with frequencies in
the φ and θ directions ans satisfy

` = 0, 1, 2, 3 . . .

m = −`,−`+ 1, . . . ,−1, 0, 1, . . . , `− 1, `.
(2.16)

Examples of harmonics are shown in Figure 2.7. Since the spherical harmonics form a basis,
any square integrable surface function r(θ, φ) can be represented in term of its Fourier coeffi-
cients (2.6), which will be referred from now on as its SH coefficients and will be denoted cm` .
To obtain a dataset of multiple particles using a finite number of features, one must truncate
the sequence to an index ` = `max. Therefore, only (`max + 1)2 different SH coefficients cm`
are considered, which provides an approximation of the true function r(θ, φ)

r(θ, φ) ≈
`max∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, φ). (2.17)

It was previously discussed that the L2 truncation error is related to the decay of the Fourier
coefficients. The energy associated with the frequency ` characterizes this decay in the
framework of the spherical harmonics [18, 24,26]

E(`) =

√√√√√√
m=∑̀
m=−`

∣∣∣cm` ∣∣∣2, (2.18)

where the relation between the decay rate of the energy and the regularity of r(θ, φ) is a lot
more complicated than in (2.11). We refer to the first example of [41] for additional insight.
Harmonics are in C∞(S2) and the expression of their first and second derivatives are provided
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(a) ` = 2,m = −1 (b) ` = 3,m = 0

(c) ` = 3,m = 3 (d) ` = 5,m = 4

Figure 2.7 Absolute value of the real valued harmonics for different values of ` and m. The
colormap shows which values are positive (blue) and negative (yellow).

in appendix B.

2.2.3 Implementation

We now go through the numerical computation of the SH coefficients when given the STM
representation of a particle. The main steps are the interpolation of the surface and the
discretization of the L2 projection. Error sources and convergence are discussed afterwards.
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Figure 2.8 Interpolation of the grain surface.

Linear interpolation: Computing the SH representation requires the ability to compute
the particle surface function r(θ, φ) in arbitrary directions. The objective is therefore to
compute, for each direction r̂ ∈ S2, the intersection point between the triangulated surface
and the ray

R := {r ∈ R3 | r = α r̂, α ∈ R+}. (2.19)

Since the surface is described by a collection of triangles, the problem consists in finding
the unique triangle that intersects the ray R. The three vertices of the ith triangle, with i
belonging between 1 and Nf , are obtained as

v1 = V(K(i, 1), :), v2 = V(K(i, 2), :), v3 = V(K(i, 3), :).

To identify the unique triangle pierced by the ray R, we need to verify each triangle individ-
ually by computing:

1. The intersection point between the ray and the plane generated by the triangle,

2. Whether or not the intersection point is located inside the triangle.

The technique is illustrated in Figure 2.8. Once the pierced triangle is identified, the contact
point distance from the origin is chosen as the interpolated value I(θ, φ).

The technical details of the algorithm are omitted but they involve computing the barycentric
coordinates of each triangle. Figure 2.9 demonstrates results of the interpolation on two
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(a) I(θ, φ) of star-shaped particle (b) I(θ, φ) of non star-shaped particle

Figure 2.9 Interpolation of two asphalt particles.

asphalt particles. It appears that the surface of the star-shaped particle from Figure 2.9(a)
is faithfully approximated by linear interpolation. However, some issues occur when trying
to interpolate the surface of a non star-shaped particle, see Figure 2.9(b). By zooming at the
bottom of the particle, very abrupt variations in the interpolation can be observed. These
variations are attributed to the non star-shapedness of the particle, which causes the ray R
to pierce the surface multiple times. In those instances the interpolation algorithm struggles
to assign distances from the origin in a smooth manner. These strong irregularities can
cause large ripples on the surface of the SH representation and a very slow decay of the SH
coefficients.

Gauss Quadrature: Assuming now that the function I(θ, φ) could be computed for all
(θ, φ) on the sphere, one must estimate the integral 〈r, Y m

` 〉S2 by a quadrature rule over the
unit sphere. Several schemes are possible but the most common one in the literature is the
Gauss Quadrature involving between 14,000 and 60,000 Gauss points sampled in the θ − φ
plane [13, 14, 20]. This scheme is simple since is does not require discretizing the sphere
into patches. Despite the importance of the quadrature on the values of the SH coefficients,
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comparisons with other schemes are rarely, if ever, made.

Rather than simply selecting a method of approximation, this thesis will attempt to establish
guidelines for this process. We begin by defining a partition of the sphere as a collection of
Ne subsets called elements Ωi ⊂ S2 such that

Ne⋃
i=1

Ωi = S2 and Ωi ∩ Ωj = ∅ for i 6= j. (2.20)

The most straightforward partition of the sphere is to use rectangles in [0, 2π[×]0, π[ such
that each element of the partition is described by

Ωi := {r ∈ S2 | θi ≤ θ < θi + ∆θi , φi ≤ φ < φi + ∆φi}, (2.21)

where (θi, φi) is a lower left corner of the rectangle and ∆θi and ∆φi may depend on i. The
three partitions we consider are

1. The uniform mesh with constant ∆θ and ∆φ, independent of i;

2. The semi-uniform mesh with constant ∆θ, but ∆φ dependent on φ;

3. The igloo mesh where the area of Ωi is constant over all elements.

Since the elements are rectangular, the Gauss points inside them can be computed by a
tensor-product of the one-dimensional Gauss points [42]. Figure 2.10 shows the distributions
of the elements and Gauss points on the upper half of the unit sphere with 4 Gauss points
per element.

The uniform mesh is very straightforward to understand and implement, however the number
of quadrature points is probably suboptimal because they become concentrated near the
poles. This concentration of points is easily explained by the vanishing of the Jacobian when
looking at the mapping from the θ−φ plane to the sphere. The second mesh is uniform in θ
but not in φ. It is designed to counterbalance the fact that the points get more concentrated
at the poles, at least with respect to φ. The idea is to generate a uniform grid with respect
to α ∈ [0, 1] and generate the non-uniform grid for φ by mapping φ = acos(1 − 2α). This
mapping is primarily used in statistics to sample points uniformly from S2. However, for
this application, it seems like an over-correction because there are much fewer points in the
vicinity of the poles. The third mesh generates elements of same area, producing a partition
of the sphere with the appearance of an igloo.
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(a) Gauss points on uniform mesh. (b) Gauss points on semi-uniform mesh.

(c) Gauss points on igloo mesh.

Figure 2.10 Gauss points distribution for various meshes.

(a) Absolute value of Y 0
15 (b) Convergence

Figure 2.11 Discretization errors for the approximation of ‖Y 0
15‖2 over three meshes.
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(a) Absolute value of Y 10
20 (b) Convergence

Figure 2.12 Discretization errors for the approximation of ‖Y 10
20 ‖2 over three meshes.

(a) Absolute value of Y 10
10 (b) Convergence

Figure 2.13 Discretization errors for the approximation of ‖Y 10
10 ‖2 over three meshes.

To select the best mesh, the following integral

‖Y m
` ‖2

S2 =
ˆ 2π

0

ˆ π

0
|Y m
l (θ, φ)|2 sinφ dφdθ, (2.22)

which is known to equal unity for all ` andm (2.4) can be evaluated using all three partitions.
The partitions that yields the smallest absolute error of (2.22) with a fixed number of elements
and Gauss points per element can be selected. High values of ` and m are used because their
associated harmonics are prone to abrupt variations, which makes them harder to integrate.
Figures 2.11, 2.12, and 2.13 illustrate the absolute errors of the integrals of Y 0

15, Y 20
10 , and Y 10

10
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when considering 9 = 3× 3 Gauss points per element and various numbers of elements. We
observe that, on these examples, the uniform mesh is better or equivalent than the two other
meshes. For this reason it is selected as the mesh used to compute all our integrals over the
unit sphere.

Given a function r(θ, φ), the coefficients of the SH expansion are approximated as:

cml = 〈r, Y m
` 〉S2

=
¨
S2
r(θ, φ)Y m

l (θ, φ)dS

=
Ne∑
i=1

¨
Ωi
r(θ, φ)Y m

l (θ, φ)dΩi

=
Ne∑
i=1

ˆ θi+∆θi

θi

ˆ φi+∆φi

φi

r(θ, φ)Y m
l (θ, φ) sinφ dφdθ

≈
Ne∑
i=1

ˆ θi+∆θi

θi

ˆ φi+∆φi

φi

I(θ, φ)Y m
l (θ, φ) sinφ dφdθ

=
Ne∑
i=1

ˆ θi+∆θi

θi

ˆ φi+∆φi

φi

f(θ, φ) dφdθ (with f(θ, φ) := I(θ, φ)Y `
m(θ, φ) sinφ)

≈
Ne∑
i=1

∆φi∆θi
4

Ng∑
j=1

Ng∑
k=1

ωjωkf
(
0.5 ∆θi(ξj + 1) + θi , 0.5 ∆φi(ηk + 1) + φi

)
,

(2.23)

where Ng is the number of Gauss points in each direction, ωj and ωk are the Gauss weights,
and ξj and ηk denote the one-dimensional coordinates of the Gauss points in the interval
[−1, 1].

Convergence and errors: Before studying the convergence of the SH representation, it
is necessary to investigate the various sources of errors involved in approximating a particle
by a SH representation. The three principal errors are

1. Truncation of the Fourier series at `max;

2. Surface interpolation of particles which are not star-shaped;

3. Numerical integration of the SH coefficients.

Since discretization errors of the integrals can be reduced indefinitely at the cost of using more
elements and Gauss points, the induced errors are easier to control based on our previous
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experiments. As discussed earlier, the truncation of the Fourier series and irregularities in
the interpolation I(θ, φ), as exhibited in Figure 2.9(b), can cause spurious oscillations on the
surface of the SH representations. These errors are harder to keep in check since they depend
on irregularities, or lack of convexity, of the particles, combined with the Gibbs phenomenon.
To reduce the ringing for all particles of a sample, the authors in [16] have applied the
so-called Lanczos sigma factor to the SH coefficients

c
′m
` = cm` sinc

(
(`− `0)π

(`max − `0)

)
, `0 ≤ ` ≤ `max (2.24)

where sinc(x) = sin(x)
x

is the cardinal sine and `0 is the frequency where the filter starts
being applied. This has the effect of reducing ripples at the cost of having a larger L2

error. However, empirical evidence suggest that applying a high-frequency filter to the SH
coefficients can oversmooth the function, resulting in a loss of finer details [43].

An alternative solution to the Gibbs phenomenon is to apply a Gegenbauer polynomial de-
composition of the approximation ∑`max

`=1
∑`
m=−` c

m
` Y

m
` . This technique requires the use of

an edge detection algorithm that identifies and labels very steep variations in the function
r(θ, φ) as discontinuities [44]. A Gegenbauer polynomial decomposition of the SH represen-
tation is then done in the regions between the edges [43, 45]. Although this method is able
to correct the Gibbs phenomenon without oversmoothing the function, its implementation is
considerably more complex than the Lanczos filter. For this reason, the Lanczos filter was
chosen in this work.

Now that all error sources have been described, the convergence study of the SH representa-
tion of particles can be conducted. First thing is to check whether the L2 error between the
STM and SH representations does decrease as more modes are added (2.5). The L2 error is
computed as

ε =
∥∥∥∥∥I −

`max∑
`=1

∑̀
m=−`

cm` Y
m
`

∥∥∥∥∥
2

S2
. (2.25)

The energy as a function of ` (2.18) can also be calculated to observe the decay rates of the
coefficients. Figure 2.14(a) shows convergence of the L2 error with respect to `max and Figure
2.14(b) illustrates energy for various values of `. Note that the frequency ` is shifted by 1 to
avoid a singularity in the logarithmic scale. We see that the L2 error is strictly decreasing
which is an indicator that the implementation is not incorrect. The energy seems to reach
the asymptotic regime E(`) ∼ `−β for β ≈ 2 when ` reaches 10.

To confirm the relation between regularity and coefficient decay rate, the energies for three
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(a) L2 error between I and SH expansion (b) Energy with respect to the cutoff frequency

Figure 2.14 Convergence of the L2 error and energy for an asphalt particle.

different particles are computed, see Figure 2.15. It appears that the SH coefficients of the
regular particles have faster convergence rate than the SH coefficients of the very irregular
particle (grain3). This suggests that `max should be selected by studying the most complex
particles in a sample.

2.2.4 Geometrical Interpretation

In this section, we introduce an intuitive geometrical interpretation that can be associated
to the SH coefficients. This interpretation will help the reader to appreciate why the SH are
particularly effective for simple shapes, but much more difficult to obtain for realistic grains.
We begin by observing that the mean value of a function f on the sphere can be computed
as

〈f〉 := 1
4π

¨
S2
f(θ, φ)dS. (2.26)

According to (2.15), Y 0
0 (θ, φ) = 1√

4π so one obtains

c0
0 = 〈r, Y 0

0 〉S2 = 1√
4π

¨
S2
r(θ, φ)dS =

√
4π〈r〉. (2.27)

In other words, the first SH mode c0
0Y

0
0 describes a sphere of radius 〈r〉. Subsequent SH

modes act as perturbations of this initial approximation. Considering the coefficients cm` ,
where m, ` 6= 0, one can denote the perturbation they induce on the sphere by ∆m

` := cm` Y
m
` .

Figure 2.16 illustrates how this perspective makes the spherical harmonics easier to interpret.
The radial perturbations ∆m

` have the nice property that their mean value is zero, which is
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grain1

grain2

grain3

Figure 2.15 Decay of the energy with respect to ` for three particles.

derived from the orthogonality property (2.4)

〈∆m
` 〉 = 1

4π

¨
S2
cm` Y

m
` (θ, φ)dS

= cm`√
4π

¨
S2

1√
4π
Y m
` (θ, φ)dS

= cm`√
4π
〈Y 0

0 , Y
m
` 〉S2

= 0.

(2.28)

By analogy, one can view the initial sphere as a ball of clay, that one can perturb in a sequence
of steps. One cannot strictly compress or stretch the clay so both must be done equally.

Clay modeling analogy: Finding the SH representation of a particle is
akin to modeling clay. One starts with a initial sphere of clay c0

0Y
0

0 with
radius 〈r〉. One then applies radial perturbations ∆m

` on the clay to model
the particle. As more modes are added, the amount of possible manipulations
increase so one has more finesse over the final result.

A more formal interpretation is that the SH correspond to directions of variation of zero net
change in volume within the tangent space of L2(S2) of the grain. So the lack of change in
volume is only correct in an infinitesimal sense. For this reason, the analogy is not perfect
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(a) (b)

Figure 2.16 The term c0
0Y

0
0 represents the initial sphere (blue) and ∆m

` represents the pertur-
bation (red arrows), while c0

0Y
0

0 +∆m
` is the new perturbed shape (black). This is a simplified

2D slice of the sphere.

but it will nonetheless be used throughout the thesis. Now that the modes are understood
as perturbations of some sphere, one must get a grasp on what the values of the coefficients
cm` actually represent. Using Parseval’s equality, we get

〈
(∆m

` )2
〉

= 1
4π

¨
S2

(∆m
` )2dS = 1

4π |c
m
` |2. (2.29)

The quantity |cm` |2 is therefore proportional to the mean-squared perturbation that the corre-
sponding mode induces on the initial sphere. Taking the square root gives

√〈
(∆m

` )2
〉
∝ |cm` |.

However the square root of the mean-squared perturbation is hard to interpret. A more inter-
pretable value would be the mean absolute perturbation

〈
|∆m

` |
〉
. Jensen’s Inequality [46, page

66] states that
√〈

(∆m
` )2

〉
≥
〈
|∆m

` |
〉
, so the following holds true

|cm` | =
√

4π
√〈

(∆m
` )2

〉
≥
√

4π
〈
|∆m

` |
〉
. (2.30)

This relation is key, as it shows that the coefficient cm` is the upper bound of a term with
geometrical meaning. Figure 2.17 shows some perturbations on the unit sphere ∆m

` where cm`
is fixed to 0.2

√
4π, ensuring that the average absolute perturbation is not higher than 0.2.

The unit sphere
√

4πY 0
0 is represented in grey and the perturbations must be interpreted

as the differences between the grey and colored surfaces. Visualizing SH this way is a lot
more intuitive than the representations shown in Figure 2.7. Most notably, negative and
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(a)
√

4πY 0
0 + 0.2

√
4πY −1

1 (b)
√

4πY 0
0 + 0.2

√
4πY −1

2

(c)
√

4πY 0
0 + 0.2

√
4πY 0

3 (d)
√

4πY 0
0 + 0.2

√
4πY 4

5

Figure 2.17 Visualization of cm` Y m
` with m, ` 6= 0 as perturbations of the unit sphere

√
4πY 0

0 .
The colormap has no relation to the perturbation and is only included to increase the contrast
with the sphere.

positive values clearly indicate wether the perturbation compresses or stretches the unit
sphere, respectively.

Instead of considering the perturbation induced by a single mode, we can also study the
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perturbation induced by a set of modes

∆1:`max :=
`max∑
`=1

∑̀
m=−`

cm` Y
m
l (θ, φ). (2.31)

By Parseval’s equality we get

〈(
∆1:`max

)2〉
= 1

4π

¨
S2

(
∆1:`max

)2
dS = 1

4π

`max∑
`=1

∑̀
m=`

|cm` |2 = 1
4π

`max∑
`=1

E(`)2. (2.32)

Equation (2.32) explains that the energies are related to the mean-squared perturbations〈(
∆1:`max

)2〉
, which are geometrically meaningful.

2.3 Preliminary Results

Left for clarification are the choices of `max, `0, Ne, and Ng that were used when computing
the SH representations of particles. In the literature, the parameter `max is usually set
heuristically between 12 and 15 [17–19, 24–26]. Another approach is to adapt the value
`max for each particle using a quality criterion based on the integral of the Gauss curvature
of the SH representations [13, 20]. Though more rigorous, an adaptive `max does not yield
a consistent representation of particles unless one pads-out the missing coefficients with
zeros. For this reason, we decide to fix the value `max a priori for all particles. As stated
previously, the choice of `max should be driven by studying the most extreme particles of
a dataset, since these are the ones where the SH coefficients decrease at the slowest rate.
Early experimentation suggests that `max = 20 is a reasonable choice. Analyzing the curve in
Figure 2.15 corresponding to the particle with the least convexity and smoothness (grain3),
we observe that `max = 20 is the point where the perturbations induced by the spherical
harmonics become two orders of magnitude smaller than the average radius of the particle.
At this value of `, one can assume that the spherical harmonics simply adjust the texture
of the particle. Even though setting `max = 20 is maybe an overkill to faithfully represent
the average particles from a dataset, we argue that it is safer to use more coefficients than
necessary rather than fewer. Our argument is that the dimensionality of the data will be
eventually reduced through the use of the Principal Component Analysis, see Section 4.2.

The choice of Ne and Ng essentially depends on `max since high frequency functions are most
susceptible to quadrature errors. The Gauss quadratures seen in the literature typically use
from 14,000 to 60,000 Gauss points sampled in the θ − φ plane. However, our quadrature
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scheme is slightly different so the choice of Ne and Ng should be based on our own results.
Looking at the curves corresponding to the uniform mesh in Figures 2.11, 2.12, and 2.13, we
observe that setting Ne = 3, 000 and Ng = 9 yields absolute errors of 10−4 and 10−15 on all
three spherical harmonics integrals. For extra security measure, the number of elements is
set to an even larger value Ne = 5, 000. This choice leads to a total of Ne × Ng = 45, 000
Gauss points sampled on the unit sphere, which is not as extreme as some of the values seen
in the literature.

Finally, the factor `0 at which the Lanczos filter starts being applied is set to 10. Our
justification is based on one of the results in [16], where the authors demonstrate that the
filtered SH representation of a prolate ellipsoid degrades rapidly in accuracy when considering
`0 < 10. They also explain that applying the filter at `0 = 10 can drastically reduce the ripples
seen on the faces of a smooth cube.

This chapter concludes by showing the STM and SH representations of four arbitrary parti-
cles. The values of `max, `0, Ne, and Ng discussed above are used. Looking at Figures 2.18
and 2.19, it appears that the SH coefficients are able to estimate reasonably well the shapes
of all four particles, even non-convex ones. The major difference between the STM and unfil-
tered SH representations is the presence of ripples on the surface of the SH representations.
These are artefacts of both truncation and Gibbs phenomenon. Particles which are highly
non-convex encounter the risk of being non-star shaped. As seen in Figure 2.9(b), trying
to represent non star-shaped particles in terms of a radial function r(θ, φ) can induce some
irregularities in their linear interpolation. These abrupt variations can potentially amplify
the Gibbs phenomenon. Another major difference between the STM and SH representations
is that the latter tends to have smoother corners than the former. This is due to the trunca-
tion of the SH expansion which prevents the spherical harmonics from representing such fine
details.

Differences between the SH representations with and without filter are also visible. The filter
clearly has the beneficial effect of reducing the ripples but it has the side effect of smoothing
the corners even more. Because of its positive effect on surface ripples, the Lanczos sigma
factor shall be consistently applied, unless specified otherwise.

2.4 Summary

In this chapter, we have explained how to compute the SH representations of real parti-
cles. The STM representation was obtained from micro-computed tomography, while the SH
representation was calculated from the STM one using linear interpolation and numerical
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integration. Our specific contributions to the subject include the followings

1. An in-depth investigation of multiple spherical quadratures for computing the SH co-
efficients;

2. An intuitive geometrical analogy of the SH based on clay modeling;

3. An explanation of the values of the SH coefficients based on mean-squared perturbations
they induce on the sphere.

We describe in the next chapter the calculations of classical particle descriptors from their
STM and SH representations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.18 STM representation (left column), SH representation (middle column), and fil-
tered SH representation (right column) of a set of particles.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.19 STM representation (left column), SH representation (middle column), and fil-
tered SH representation (right column) of additional particles.
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CHAPTER 3 GEOMETRICAL CHARACTERIZATION

The main objective of this research is to develop a general process that takes real particles
and generate virtual ones that are geometrically similar, see Figure 1.2. Before describing
the steps of the generative process which follow the discretization of particles, it is primordial
to take the time to define rigorous notions of geometrical ressemblance. This chapter focuses
on defining the classical shape descriptors found in the geology literature, which can be
used to make meaningful comparisons between particles. These quantities of interest include
volume, aspect ratios, sphericity, convexity, and roundness. Elementary geometry results are
first discussed. The calculation of the shape descriptors in both STM and SH representations
is then described in detail. The chapter concludes by showing convergence studies on various
manufactured star-shaped particles and one asphalt particle.

3.1 Preliminary Results of Differential Geometry

This section summarizes those elementary results from differential geometry necessary to
define the shape descriptors. Readers who are already familiar with the subject can safely
skip to the next section.

3.1.1 Surface and Volume

Let G ⊂ R3 be a particle. The surface area of G is defined as

S =
‹
∂G

dS, (3.1)

where ∂G is the boundary of G, i.e. the surface of the particle. When a particle is described
in the STM representation, the integral becomes

SSTM =
Nf∑
i=1

¨
dSi =

Nf∑
i=1

Ai, (3.2)

where dSi represent the surface element of the ith simplex so that Ai represents the area of
the ith simplex. In the SH representation, the integral, expressed in spherical coordinates,
becomes [13]

SSH =
ˆ 2π

0

ˆ π

0
r
√
r2
θ + (r2 + r2

φ) sin2 φ dφdθ. (3.3)
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The derivatives rφ and rθ are computed from a linear combination of the derivatives of the
spherical harmonics. As a reminder, the derivatives of the SH are listed in Appendix B. The
volume of G is defined as

V =
ˆ
G

dV. (3.4)

Since the STM representation provides only a description of the surface of the particles, the
volume integral must be transformed into a surface integral via the divergence theorem

VSTM =
ˆ
G

dV =
ˆ
G

∇ · (xi)dV =
‹
∂G

xi · ndS =
Nf∑
i=1

¨
Si

xN(i, 1)dSi. (3.5)

Using the SH representation, the integral over the volume has the following convenient sim-
plification

VSH =
ˆ 2π

0

ˆ π

0

ˆ r(θ,φ)

0
r2 sinφ drdφdθ = 1

3

ˆ 2π

0

ˆ π

0
r(θ, φ)3 sinφ dφdθ. (3.6)

3.1.2 Inertia and Semi-Axes

The inertia tensor I is an invariant which measures the resistance of a particle to rotate around
certain axes. It is possible to show that in each frame of reference, the inertia tensor I can
be represented by a symmetric positive definite matrix

I =


´
G

(
(y − ȳ)2 + (z − z̄)2

)
dV −

´
G

(x− x̄)(y − ȳ)dV −
´
G

(x− x̄)(z − z̄)dV
∗

´
G

(
(x− x̄)2 + (z − z̄)2

)
dV −

´
G

(y − ȳ)(z − z̄)dV
∗ ∗

´
G

(
(x− x̄)2 + (y − ȳ)2

)
dV


(3.7)

where the first moments

x̄ = 1
V

ˆ
G

x dV, ȳ = 1
V

ˆ
G

y dV, z̄ = 1
V

ˆ
G

z dV, (3.8)

define the center of mass. The orthonormal eigenvectors of the inertia tensor are referred to
as the principal axes and the eigenvalues are called the inertias

Ipi = Ii pi, i = 1, 2, 3, (3.9)

which are typically ordered as I1 > I2 > I3. The principal axes are stored as the columns of
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the matrix
P =

[
p1 p2 p3

]
. (3.10)

The transpose of P is an orthogonal transformation, i.e. an isometry, which takes vectors in
the original frame of reference and expresses them in the frame of the principal axes. In case
P has a negative determinant, one can change the sign of one of the columns to ensure that
p1 × p2 = p3. Using the matrix P and the center of mass, the following change of basis is
introduced 

x′

y′

z′

 = PT


x− x̄
y − ȳ
z − z̄

 , (3.11)

which puts the origin at the center of mass and orients the axes with the principal axes. This
new frame of reference is called the principal frame and is illustrated in Figure 3.1.

Referring back to Section 2.2.2, the spherical harmonics are computed in the principal frame
since angles θ and φ are consistently calculated with respect to the principal axes.

The principal axes and their associated eigenvalues allow us to associate to each grain a
unique equivalent ellipsoid with the same center of mass and volume as the particle and
whose inertias are proportional to I1, I2, and I3. An ellipsoid satisfies the implicit relation

x′

a

)2

+ y′

b

)2

+ z′

c

)2

= 1, (3.12)

where a < b < c. The scalars a, b, and c are called the semi-axes of the ellipsoid. Note that
this is not the usual convention a > b > c. The reason why the former has been chosen is
that visualization of a set of particles is made easier by aligning the longest axis of a particle
with the z axis. The unknown a, b, and c can be found by the solving a non-linear system
of equations that requires the calculation of the inertia tensor and the volume, which can be
done in the STM or SH representations.

3.1.3 Curvature

One of the most widely used shape descriptors is based on the surface curvature of the grains,
and so we take the time to define this notion carefully. This section begins by studying the
curvature of a single parametrized curve, before discussing curvature of surfaces in general.
The presentation given here is novel but the interested reader can find additional information
in [47].
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(a) Particle in the original basis (b) Particle in its principal frame I1 > I2 > I3

Figure 3.1 Change of basis into the particle principle frame.

α β

γ γ(β)

γ(α)

Figure 3.2 Example of parametric curve.

The simplest definition of curvature requires the use of parametrized curves, which are defined
as maps γ : R ⊃ [α, β]→ R3. An example of a parametric curve is shown in Figure 3.2. To
define the curvature at a given point γ(s), one must calculate the tangent circle which is the
unique circle with the same second order Taylor expansion around γ(s) as γ. The curvature
κ at γ(s) is then defined as the inverse radius of the tangent circle, see Figure 3.3.

Curvature of surfaces is an extension of the concept of curvature of parametric curves. Let
S be a smooth surface and let p be a point on the surface. One can define the tangent plane
Tp as the first order taylor expansion of the surface around p and n as a unit normal to
the plane, see Figure 3.4. By selecting an arbitrary vector t ∈ Tp, one can define a normal
plane Np,t as the unique plane that contains p and is spanned by the vectors t and n. The
intersection between this normal plane and the surface Np,t ∩ S generates a curve on the
surface, as seen in Figure 3.4. The curvature of such curves were previously defined and so
we define the surface curvature at p to be the function κp : Tp → R that associate to each
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γ(s)

κ = 1
R

R

Figure 3.3 The unique circle which approximates the curve to the second order around γ(s)
defines the curvature κ at γ(s).

tangent direction t, the curvature κp(t) of the curve Np,t ∩ S.

A fundamental result of differential geometry is that, at p, these exist two unit vectors
w1,w2 ∈ Tp and two scalars κ1 < κ2 such that

κp(wi) = κi, (3.13)

and
t = cos θw1 + sin θw2 ∈ Tp =⇒ κp(t) = κ1 cos2 θ + κ2 sin2 θ. (3.14)

This allows the computation of curvature in any direction. The two curvatures κ1 and κ2 are
called the principal curvatures while the two directions w1 and w2 are called the principal
directions. One can define two geometric invariants from the principal curvatures

H = κ1 + κ2

2 , K = κ1κ2, (3.15)

which are called the Mean and Gaussian curvatures, respectively.

We can compute the quantities κ1, κ2, H,K on all particles in all our samples using both
STM and SH representations. Various techniques exist to estimate the curvature of triangu-
lated surfaces and their technical details shall not be discussed in this thesis so we refer the
interested reader to the following ressources. [48–50]. With the SH representation, one can
compute the curvature analytically without requiring any approximation, but the formulas
are quite complicated. In the appendix of [13], Garboczi collected all the formulas to compute
the curvatures of any a smooth function r(θ, φ) in spherical coordinates. Those formulas are
reproduced in Appendix B.
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S

Tp

n

Np,t

t

p

Figure 3.4 The vectors t ∈ Tp and n define a normal plane Np,t whose intersection with S
defines a curve.

3.2 Classical Shape Descriptors

In this section, the geometrical quantities described in Section 3.1 are used to define the
normalized scale-invariant classical shape descriptors from the geology literature [12,16]. By
normalized, it is meant that their value ranges from 0 to 1 and by scale-invariant, that they
do not change when scaling a particle by some amount. These two properties are essential
to make meaningful comparisons between particles, independently of their sizes.

3.2.1 Elongation and Flatness Indexes

The semi-axes a, b, c of the equivalent ellipsoid can be made both scale-invariant and nor-
malized by taking their ratio, which yields the elongation and flatness indexes

EI = b

c
, FI = a

b
. (3.16)

Recall that a < b < c, so these quantities are both smaller than one. Those indices give an
overall idea of the shape of the particle. The authors in [12] use these two values to define an
informal classification into four shapes: spheroids, prolates, oblates, and blades. Figure 3.5
illustrates this widely used classification.
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1

12/3

2/3
FI

EI

Blade

SpheroidProlate

Oblate

Figure 3.5 Four classes of ellipsoids based on their elongation (EI) and flatness (FI).

3.2.2 Sphericity

Sphericity naturally appears when one attempts to take the surface information and make it
scale-invariant. To do so, notice that all shapes in 3D space respect the power law

S = α
3
√
V 2, (3.17)

where the scaling factor α only depends on the shape of the particle. This factor α contains
the intrinsic surface information. The isoperimetric inequality [47] states that the smallest
possible value of the scaling factor is αmin = 3

√
36π which is only achieved in the case of

spheres. This suggests defining a quantity called the sphericity [16]

ζ = αmin

α
=

3
√

36πV 2

S
, (3.18)

which is a measure of the equiaxiality of a particle. Equiaxiality refers to the property that
lengths of particles do not vary widely with respect to directions. We refer the reader to refer
to Table 1 in [16] for some insightful examples.

3.2.3 Roundness

The curvature of a sphere is the inverse of its radius, hence doubling a particles size halves its
curvature. In order to obtain a scale-invariant measure, we consider the ratio with respect to
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a reference curvature which is typically chosen to be the inverse radius of the largest inscribed
sphere κis [12,16]. The justification for using the largest inscribed sphere is that it allows to
define corners of a particle as

4 := {p ∈ ∂G | |κ2(p)| ≥ κis}. (3.19)

First introduced by Wadell while studying 2D slices of particles [9], the roundness was later
extended to 3D particles. Its most recent definition is [16]

R =
κis

¨
4
|κ2(p)|−1dS

¨
4
dS

, (3.20)

To compute roundness, one basically takes the average of κis/|κ2| over all corners of the particle.
Sharper corners result in higher |κ2| which yields a smaller roundness factor. This quantity
is normalized, scale-invariant, and reaches the value of one for spheres. Note that sphericity
and roundness are different characterizations, see Figure 3.6. From the crooked look of the
graph, it is implied that the sphericity and roundness are slightly correlated although they
measure different morphological characteristics. This is because smoothing corners tends to
make particles more equiaxed.

3.2.4 Convexity

The final classical shape descriptor is convexity which is defined as

C = VCH

V
, (3.21)

where VCH is the volume of the convex hull of the particle. Convexity is straightforward to
interpret and reaches the value of one when G is a convex set. It can be computed for both
STM and SH representations using the Matlab native function convhull [51].

3.3 Manufactured Star-Shaped Particles

In order to verify the implementation of the previous formulas, one needs to consider manu-
factured star-shaped particles for which the exact values of some of the geometrical quantities
of interest are known. The Lanczos filter shall not be applied to the SH coefficients of said
particles since its effect on particle geometry is not yet fully understood.
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Roundness

Sphericity

Figure 3.6 Intuitive difference between Sphericity and Roundness. Sphericity measures
equiaxiality while roundness measures the sharpness of corners.

3.3.1 Revolution Ellipsoid

A revolution ellipsoid is a special case of the ellipsoid where a = b and a < c. Its implicit
equation becomes

x2 + y2

a2 + z2

c2 = 1. (3.22)

The parametrization in spherical coordinates is given by

r(θ, φ) = a2c√
a2c2 sin2 φ+ a2 cos2 φ

, (3.23)

which is used to compute the SH coefficients without requiring interpolation. This shape is
of interest because it is more complicated than a sphere but its geometrical features can be
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computed analytically [52, 53]

S = 2πa2

1 + c

a

arcsin
√

1− (a
c
)2√

1− (a
c
)2

 ,
V = 4π

3 a2c,

H = r2 − 2a2 − c2

2a4c2 x2

a4 + y2

a4 + z2

c4

) 3
2
,

K = 1

a4c2 x2

a4 + y2

a4 + z2

c4

)2 .

(3.24)

To obtain the curvatures H and K as a function of θ and φ, one must replace x, y, z by their
expression in spherical coordinates (2.13). In the following convergence study, we compute
the geometrical descriptors in the SH representation on a revolution ellipsoid with a = 1 and
c = 2. A mesh of 5,000 elements with 9 = 3× 3 Gauss points per element is used to evaluate
the integrals. Let Θ be the true value of a parameter and ΘSH be its approximation using
the SH representation, the absolute and relative errors are defined as

∆Θ = |Θ−ΘSH |,

∆∗Θ = ∆Θ
Θ .

(3.25)

Figure 3.7 illustrates the convergence of the relative errors of the geometrical descriptors.
Note that the mean operator 〈 · 〉 from (2.26) is employed here. This was done to yield a
single scalar value since curvatures are functions over the surface of the particle. It is observed
that the geometrical properties calculated with the SH representation converge to the true
values of the revolution ellipsoid. However, it appears the curvatures converge more slowly
than other shape descriptors.

3.3.2 Smooth Cubes

Another informative class of star-shaped particles are the smooth cubes defined by the im-
plicit relation

|x|2/ε + |y|2/ε + |z|2/ε = 1, (3.26)
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Figure 3.7 Relative errors with respect to `max in geometrical quantities associated with a
revolution ellipsoid (a = 1, c = 2).

where ε ∈]0, 1]. Such surfaces have the following expression in spherical coordinates

r(θ, φ) =
(
| cos θ sinφ|2/ε + | sin θ sinφ|2/ε + | cosφ|2/ε

)−ε/2
. (3.27)

Figure 3.8 offers some insight on the effect of ε on the particle shape. The analytical values
of some geometrical quantities of smooth cubes are known [54]

V = 2ε2β ε

2 , ε+ 1
)
β

ε

2 ,
ε

2 + 1
)
,

Ixx = Iyy = Izz = ε2β

(
3ε
2 ,

ε

2

)
β

ε

2 , 2ε+ 1
)
,

(3.28)

where
β(x, y) = Γ(x)Γ(y)

Γ(x+ y) , (3.29)

and Γ(x) is the well-known Gamma function introduced by Daniel Bernoulli. Moreover, the
exact curvatures K and H are found by computing the first and second-order derivatives of
(3.27) using the Sympy python package for symbolic mathematics. The discovered formulas
will not be shown because they are too heavy to be put in the document. Figure 3.9 shows
the convergence for a smooth cube with ε = 0.25 using the same amount of mesh elements
and Gauss points as for the revolution ellipsoid.
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ε = 1 ε = 0.75 ε = 0.5 ε = 0.25 ε = 0.1

Figure 3.8 Effect of the ε parameter on the shape of smooth cubes.

(a) (b)

Figure 3.9 Absolute and relative errors with respect to `max in geometrical quantities associ-
ated with a smooth cube (ε = 0.25).

The inertias Iyy and Izz are not plotted since they are extremely close to Ixx. Moreover, the
absolute errors of the mean and Gauss curvatures are computed because the exact curvatures
vanish on the faces of the cube, making the use of the relative error impossible. Once
again, the convergence of the geometrical features in the SH representation is observed.
Nevertheless, the surface area and curvatures converge more slowly than other descriptors.

The last computation that requires verification is that of roundness. The first test is to verify
subjectively if the criteria |κ2| ≥ κis does indeed identify corners. Figure 3.10 exhibits the
results for `max = 25. Looking at Figure 3.10(a), the presence of ripples on the surface which
is due to the truncation of the SH coefficients is seen. Those ripples could potentially be
identified as corners if they become too large. The Figure 3.10(b) illustrates that the criterion
is able to identify corners of the particles without being affected by the surface ripples.

The second verification is to approximate the roundness for different values of ε and verify
if it decreases with ε. Since the curvature is known at every surface point, the roundness
can be approximated with a Gauss quadrature of the integral defined by (3.19) and (3.20).
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(a) Mean curvature HSH (b) Colormap of max{1, |κ2|/κis}.

Figure 3.10 Curvatures computed on the SH representation of a smooth cube with ε = 0.25.

Figure 3.11 Effect of ε on the approximated roundness R (smooth cubes) and RSH (SH
representation of smooth cubes).

This process can be applied to both the analytical curvature and its estimation using the
spherical harmonics. Figure 3.11 demonstrates the different approximations of roundness as a
function of ε with `max = 25. It appears that both approximations start at unity when ε = 1,
as expected, and then shrink to zero as ε is reduced. When ε reaches 0.15, the roundness
approximated with the SH representation starts increasing. This behavior is not yet fully
understood and requires more investigation. Our main hypothesis is that as ε decreases,
the cube becomes more irregular since the derivatives on its edges and corners begin to
vary abruptly. This growth in irregularity could increase the surface ripples already seen in
Figure 3.10(a), therefore increasing the estimate of roundness. A possible solution would be
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to increase `max or to use the Lanczos factor to remove ripples.

3.4 Asphalt Particle

We conclude this chapter with a brief convergence study of the geometric quantities computed
with the SH representation of a real asphalt particle, see Figure 3.12. When working with
real particles, the true geometrical properties are not accessible. However, the geometrical
features computed in the STM representation can be treated as the ground truth. This
specific grain is chosen because of its non-convexity which would induce large surface ripples
on the SH representation. In order to observe the ripples, the Lanczos filter was not applied.

Figure 3.13 depicts the convergence of geometric quantities of interests. Note that the cur-
vature error was is not treated since the technique currently used to evaluate the curvatures
on STM representations has not yet been fully verified. It was found that the geometric
quantities computed with the SH coefficients converge to the same quantities calculated with
the STM representation. Figure 3.14 compares the largest inscribed spheres for both repre-
sentations. Though the spheres are not centered at the same location inside the particle, they
have a similar radius which is the most important quantity to compute the roundness. With
the knowledge of the largest inscribed sphere, the corners of the particle and the roundness
factor can be identified, see Figure 3.15. We observe that the ripples on the surface of the
SH representation are also identified as corners. This error could potentially bias the SH
roundness downward. Moreover, it appears that the actual edges in the SH representation
are more round since the relative curvature |κ2|/κis reaches a maximal value of 20 for the STM
representation and only 14 for the SH representation. This phenomenon could bias the SH
roundness upward. Because of these two opposite effects, one should always be cautious when
analyzing the roundness computed on SH representations of particles.

3.5 Summary

In this chapter, we have defined classical shape descriptors and have shown how these are
commonly computed using both the STM and SH representations. Moreover, we have con-
ducted a convergence analysis of the SH representation using a revolution ellipsoid, a smooth
cube, and an asphalt particle. Classical shape descriptors will be of importance later when
comparing the real particles to the virtual grains generated by the statistical model, see Fig-
ure 1.2. In the next chapter, we describe the remaining modeling steps that are needed to
develop a generative process used to create virtual particles from real ones.
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(a) (b)

Figure 3.12 Views of the asphalt particle under study.

Figure 3.13 Convergence of the geometrical properties computed with the SH representation
of the asphalt particle shown in Figure 3.12.
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(a) STM inscribed radius of 6.52 (b) SH inscribed radius of 6.46

Figure 3.14 Largest inscribed sphere for STM and SH representations.

(a) RSTM = 0.49 (b) RSH = 0.52

Figure 3.15 Colormap of max{1, |κ2|/κis} for the STM representation (a) and the SH repre-
sentaiton (b).
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CHAPTER 4 PROBABILISTIC MODELING

Left for clarification are the mandatory steps to generate virtual particles when given the
SH representations of real particles, see Figure 4.1. These remaining steps are the focus of
this chapter. We begin by detailing the required preprocessing to simplify the statistical
modeling of the data. Preprocessing includes normalization, dimensionality reduction, and
clustering. Normalization is important because it makes the SH coefficients independent on
particle size. The dimensionality reduction is primordial to reduce the curse of dimensionality
and is done using the Principal Component Analysis (PCA) algorithm. Finally, clustering
algorithms allow one to group particles in different subpopulations with specific geometrical
traits. Partitioning the data this way holds the promise of requiring less complex statistical
models to learn the geometrical patterns within each subpopulation. Once the data has
been processed in this manner, it can be used to calibrate a statistical model from which we
can sample virtual particles. Before discussing the preprocessing and statistical models, we
first proceed by defining some populations of manufactured particles used for verifying the
algorithms.

4.1 Data Samples and Storage

Several populations of particles are considered, some are made of manufactured particles
generated from analytical radial functions in spherical coordinates while other arise from
STM representations of real particles. The manufactured particles are created from normal-
ized shapes and then scaled by some random scaling factor A in order to obtain arbitrary
size, independently of the geometry. Size is measured in terms of the quantity L = 3

√
V

which is sampled by a uniform distribution, i.e. L ∼ U(1, 10), for all manufactured particles.
The uniform distribution is chosen by simplicity but note that sampling L will results in a
distribution of volumes that is concentrated towards 1.

Ellipsoids are closed surfaces that can be generated in spherical coordinates by the radial
function

r(θ, φ) = A√
(cos θ sinφ)2 + (rF sin θ sinφ)2 + (rFrE cosφ)2

, (4.1)

where rE and rF are the elongation and flatness indices. The scaling factor A is computed
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Figure 4.1 Steps to generate virtual particles when given the SH coefficients of a collection
of real particles.

from the volume V = L3, the elongation index rE, and flatness index rF via

A = 3

√
3 rEr2

F
4πV = 1

L

3

√
3 rEr2

F
4π . (4.2)

Three families of ellipsoids are generated, namely spheroids, prolates, and oblates using
specific distributions of the parameters V , rE, and rF as shown in Table 4.1. The ranges of
the uniform distributions are chosen heuristically to sample particles with distinct shapes.

Superquadrics form a rich set of shapes that are described by the following function in
spherical coordinates

r(θ, φ) = A(
(| cos θ sinφ|2/ε2 + |rF sin θ sinφ|2/ε2)ε2/ε1 + |rFrE cosφ|2/ε1

)ε1/2
, (4.3)

where rF and rE are related to elongation and flatness indices and the degrees of freedom ε1

and ε2 affect the shapes in a continuous way. Note that superquadrics include ellipsoids by
taking ε1 = ε2 = 1. Knowing V, rF, rE, ε1, and ε2, one can compute the scaling parameter A
using [54]

V = 2 A3

r2
F rE

ε1ε2 β
(
ε1
2 + ε2, ε1

)
β
(
ε2
2 ,

ε2
2

)
. (4.4)

Four different families of superquadrics are created: cubes, cylinders, diamonds and boxes
and the sampling distributions associated with each of these families are shown in Table 4.2.
Like for the ellipsoids, the ranges of the uniform distributions is chosen heuristically to make
the four groups of particles very distinct from one another.

Figures 4.2 and 4.3 show 36 samples from each of these manufactured populations. The
spheroids, prolates, oblates, cubes and cylinders can be viewed as simple populations since
only three degrees of freedom need to be sampled. Diamonds and boxes form populations
with richer geometries in the sense that five degrees of freedom are sampled from uniform
distributions. It is important to note that considering every degree of freedom impacts the
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Table 4.1 – Distribution of the degrees of freedom for three populations of ellipsoids.

Degree of freedom Spheroids Prolates Oblates
L U(1, 10) U(1, 10) U(1, 10)
rE U(0.8, 1) U(0.4, 0.6) U(0.75, 1)
rF U(0.8, 1) U(0.75, 1) U(0.4, 0.6)

Table 4.2 – Distribution and values of the degrees of freedom on four populations of su-
perquadrics.

Degree of freedom Cubes Cylinder Diamonds Boxes
L U(1, 10) U(1, 10) U(1, 10) U(1, 10)
rE U(0.8, 1) U(0.8, 1) U(0.6, 1) U(0.6, 1)
rF 1 1 U(0.6, 1) U(0.6, 1)
ε1 U(0.2, 0.75) U(0.1, 0.5) U(1, 2) U(0.2, 1)
ε2 ε1 1 U(1, 2) U(0.2, 1)

shape in a continuous way, and since the SH coefficients are a continuous function of r(θ, φ),
each population will lie on a d-manifold in the SH coefficient space where d is the number of
sampled degrees of freedom.

The last population consists of particles collected from a river bed. This population ex-
hibits more complex geometries and, unlike the manufactured ones, the true nature of their
statistical distribution is unknown.

As explained in Chapter 3, the STM representation of particles is useful for 3D visualization,
but not for statistical analysis. The SH coefficients of particles, however, lend themselves to
statistical analysis since they allow one to represent particles as points in the vector space
R(`max+1)2 . For notational simplicity, we shall denote d := (`max + 1)2. For the rest of
this chapter, the cutoff frequency `max is set to 20 meaning that we are working in a 441
dimensional space.

Figure 4.4 compares the STM and unfiltered SH representations of diamond and box particles.
We observe that, while both representations of boxes are nearly undistinguishable, the SH
representation of diamonds is subject to major defects. Indeed, large surface ripples can be
seen as well as an excess of edge smoothing. These issues can be attributed to the non-
convexity and sharp edges of the diamonds, making the SH representation converge slowly.

Figure 4.5 displays 36 samples of the SH representation of river particles. Most apparent is
the presence of small surface ripples that could be easily reduced by applying the lanczos
sigma factor. Note that despite having a very rich geometry, these particles are relatively
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(a) Spheroids (b) Prolates

(c) Oblates (d) Cubes

(e) Cylinders

Figure 4.2 STM representations of manufactured populations.
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(a) Diamonds (b) Boxes

Figure 4.3 Additional STM representations of manufactured populations.

smooth implying that their SH coefficients should converge quickly.

Before analyzing the data, we need to simplify the notation of the SH coefficients. In order
to do so, note that the coefficients are ordered as c0

0, c
−1
1 , c0

1, c
1
1, c
−2
2 , c−1

2 , c0
2, c

1
2, c

2
2, . . . which

suggests using the new index i such that

i = `2 + `+m, for i = 0, 1, 2, 3, . . . d− 1. (4.5)

Given i, the original indices ` and m are recovered with

` = b
√
ic,

m = i− `2 − `,
(4.6)

where the correspondence between the coefficients is provided as follows:

c0
0

c0

c−1
1

c1

c0
1

c2

c1
1

c3

c−2
2

c4

c−1
2

c5

c0
2

c6

c1
2

c7

c2
2

c8

...

The first step in the preprocessing stage is to distinguish, for each particle described by its
SH representation, the information on its size from the information associated with other
geometrical properties. Two size characteristic sizes in the literature are the mean radius
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(a) SH representation of diamonds (b) STM representation of diamonds

(c) SH representation of boxes (d) STM representation of boxes

Figure 4.4 SH representation of manufactured populations.

〈r〉 [14] and the characteristic length L = 3
√
V [17, 19,24,25]

〈r〉 = 1
4π

ˆ 2π

0

ˆ π

0
r(θ, φ) sinφdφdθ, L =

(
1
3

ˆ 2π

0

ˆ π

0
r(θ, φ)3 sinφ dφdθ

) 1
3

. (4.7)

Despite being less popular, the mean radius is a more natural measure of the particle size
than the characteristic length L when treating SH coefficients of particles. This is because the
mean radius only depends on one of the SH coefficients, i.e. c0 =

√
4π〈r〉, see Equation (2.27).

To the contrary, L depends on all SH coefficients through a nonlinear relation. This suggests
that the coefficient c0 is the best candidate for size characterization. Left for characterization
is the intrinsic geometry, which refers to all geometric properties that are independent of size,
i.e. aspect ratio, sphericity, roundness, convexity, etc. Encoding the intrinsic geometry using
the SH coefficients is subtle since a scale-invariant quantity is required. It was previously
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Figure 4.5 SH representations of river particles.

discussed that the modes ciYi, i 6= 0, represent radial perturbations of the sphere of radius
〈r〉. Those perturbations hold the information about the intrinsic geometry. The fact that
|ci| =

√
4π
√〈

(∆i)2
〉
implies that the coefficients are not scale-invariant. However, we observe

that the ratio

|ci|
c0

=

√
4π
√〈

(∆i)2
〉

√
4π〈r〉

=

√〈
(∆i)2

〉
〈r〉

≥

〈
|∆i|

〉
〈r〉

, (4.8)

is both scale-invariant and geometrically meaningful. It indeed provides an upper bound
on the average absolute perturbation of the ith mode relative to the particle size 〈r〉. For
this reason, we shall refer to this ratio as the relative perturbation. We therefore propose to
consider the normalized coefficients

ĉi =


c0 i = 0 (Size),
ci
c0

i 6= 0 (Intrinsic geometry), (4.9)

when performing the statistical analysis of the particles in each population. The same normal-
ization of the coefficients was previously used in [14] while other sources usually normalized
the volume to unity, which is identical to dividing the SH coefficients by L. As explained
earlier, dividing the SH coefficients by c0 is a more natural normalization as it allows one
to encode all information related to particle size in the coefficient ĉ0, and all the intrinsic
geometry information into the relative perturbations ĉi = ci

c0
, i = 1, 2, . . . , d− 1.

Let Ns ∈ N be the number of particles in a given population. Each particle in the population
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will be indicated by the index j = 1, 2, . . . , Ns and quantities associated with a particle j will
be denoted with a superscript (j). For example, ĉ(j)

i represents the ith coefficient of the jth
particle. All the relative perturbations can be stored in a matrix Ĉ ∈ R(d−1)×Ns such that
Ĉ(i, j) = ĉ

(j)
i . We note that the jth column of Ĉ thus provides the relative perturbations

ĉ(j) of the particle j. The reason ĉ(j)
0 is not included will become clear soon.

4.2 Principal Component Analysis

Dimensionality reduction refers to all techniques that allow one to represent data using fewer
features while retaining the meaningful properties of the original data. We shall rely on
dimensionality reduction here by reason of working in a space of dimension d = 441. The
first coefficient ĉ0 contains all information on particle size so it must be kept intact. In
light of this reasoning, dimensionality reduction is only applied to the relative perturbations.
The simplest and most used dimensionality reduction algorithm is the Principal Component
Analysis (PCA), which consists of projecting the data onto the affine subspace that minimizes
the reconstruction loss [28].

4.2.1 Affine Changes of Basis

We first study affine changes of basis in the space of relative perturbations. Let µ ∈ Rd−1

be an arbitrary vector. One can apply the translation ĉ(j)
i − µi, i = 1, 2, . . . , (d − 1), which

relocates the origin at µ, see Figure 4.6. Let 1 ∈ Rd−1 be a vector of ones, the translation
can be written in matrix notation as

Ĉ− µ1T . (4.10)

Let pi ∈ Rd−1, i = 1, 2, . . . , d− 1, be orthonormal vectors forming a basis of Rd−1. They can
be stored as the square matrix

P =
[
p1 p2 p3 · · · pd−1

]
. (4.11)

Let X ∈ R(d−1)×Ns be a matrix, X(i, j) = x
(j)
i , such that

X = PT (Ĉ− µ1T ), (4.12)

Ĉ = PX + µ1T . (4.13)

The above transformation corresponds to a change of basis as shown in Figure 4.6. We now



59

p2

p1

µ

Original Basis

New Basis

Figure 4.6 Orthonormal change of basis in R2.

provide a geometric interpretation of the coefficients x(j)
i by computing the radius of the jth

particle:

r(j)(θ, φ) = c
(j)
0 Y0(θ, φ) +

d−1∑
i=1

c
(j)
i Yi(θ, φ)

= c
(j)
0 Y0(θ, φ) + c

(j)
0

d−1∑
i=1

ĉ
(j)
i Yi(θ, φ)

= c
(j)
0 Y0(θ, φ) + c

(j)
0

d−1∑
i=1

 d−1∑
k=1

x
(j)
k P(i, k) + µi

Yi(θ, φ)

= c
(j)
0 Y0(θ, φ) + c

(j)
0

d−1∑
k=1

x
(j)
k

d−1∑
i=1

P(i, k)Yi(θ, φ) + c
(j)
0

d−1∑
i=1

µiYi(θ, φ)

= c
(j)
0

Y0(θ, φ) +
d−1∑
i=1

µi Yi(θ, φ)


︸ ︷︷ ︸

Initial shape

+ c
(j)
0

d−1∑
k=1

x
(j)
k Xk(θ, φ)

︸ ︷︷ ︸
Perturbations with new modes

,

(4.14)

where we have defined the functions Xk(θ, φ) = ∑d−1
i=1 P(i, k)Yi(θ, φ). Since the matrix P

that transforms the Yi(θ, φ) into Xk(θ, φ) is orthonormal, the Xk(θ, φ) functions form another
orthonormal system of L2(S2)

¨
S2
Xi(θ, φ)Xj(θ, φ)dS = δij. (4.15)

Let us discuss the term Initial shape. It was previously discussed that c(j)
0 Y0 represents the

sphere that best approximates the jth particle. Adding c(j)
0
∑d−1
i=1 µi Yi perturbs the initial
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sphere but this perturbation depends only on j through c(j)
0 , which is a scale parameter that

does not affect the geometry. This means that the perturbation of the sphere is applied to
all particles relative to their size. Using the clay modeling analogy, one begins to model all
particles from chunks of clay with specific shapes instead of spheres.

We now interpret the term Perturbation with new modes. By considering the new basis in
the space of relative perturbations, different types of radial perturbations are applied on the
clay. These new perturbations are denoted ∆(j)

k = c
(j)
0 x

(j)
k Xk(θ, φ). The functions Xk(θ, φ)

being orthonormal, we obtain 4π
〈
(∆(j)

k )2
〉

=
(
c

(j)
0 x

(j)
k

)2
so that

|x(j)
k | =

√〈
(∆(j)

k )2
〉

〈r(j)〉
, (4.16)

which is the same as (4.8). To conclude, the new coefficients x(j)
k represent relative per-

turbations, but induced by the new functions Xk(θ, φ) instead of Yi(θ, φ). Just like the SH
coefficients, the clay modeling analogy is still valid when understanding the coefficients x(j)

k .

4.2.2 Reconstruction Loss

PCA consists in finding the affine subset (hyperplane) of the relative perturbations space
which best approximates the data. The vector µ is now interpreted as a point that lives on
a hyperplane. Let m < d− 1 be the dimension of the hyperplane and define m orthonormal
vectors qi ∈ Rd−1 such that µ+qi span the hyperplane. The vectors qi are stored in a matrix
Q ∈ R(d−1)×m.

Q =
[
q1 q2 · · · qm

]
. (4.17)

We introduce X ∈ Rm×Ns such that

X = QT (Ĉ− µ1T ). (4.18)

However, unlike in (4.13),
Ŵ = QX + µ1T

= QQT (Ĉ− µ1T ) + µ1T

= QQT Ĉ + (I−QQT )µ1T

6= Ĉ,

(4.19)

since QQT 6= I (Q is not full-rank). The coefficients Ŵ(i, j) = ŵ
(j)
i of the matrix Ŵ ∈
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R(d−1)×Ns are called the reconstructions of ĉ(j)
i . The fact that relative perturbations are not

equal to their reconstruction means that there was a loss of information, which is encapsulated
in the reconstruction loss

R(Q,µ) = 1
Ns

||Ĉ− Ŵ||2F , (4.20)

where ||A||2F = ∑
i=1

∑
j=1(A(i, j))2 is the Frobenius norm. Basically, the reconstruction loss

is the averaged squared distances between the coefficients and their reconstruction, over all
particles in the dataset. PCA consists in minimizing this function with respect to Q and µ
under the constraint that the columns of Q be orthonormal. By first minimizing with respect
to µ, one obtains

µ∗ = 1
Ns

Ns∑
j=1

ĉ(j). (4.21)

Minimizing with respect to Q is a lot more complex and a good outline of the proof is
presented in the second chapter of [28]. The solution is to compute the sample covariance
matrix

Σ = 1
Ns

(Ĉ− µ∗1T )(Ĉ− µ∗1T )T . (4.22)

This (d−1)×(d−1) matrix is symmetric and positive definite. Therefore its eigenvectors can
be chosen orthonormal. The positive eigenvalues are denoted by σ2

i and indexed in descending
order: σ2

1 ≥ σ2
2 ≥ σ2

3 · · · ≥ σ2
d−1 . For m fixed, the optimal matrix Q is the matrix whose

columns are the first m eigenvectors of Σ with the highest eigenvalues. These vectors are
conventionally referred to as the principal axes. This terminology extends to the projected
coefficients x(j)

i , which are now referred to as the principal components. A visual example
of PCA is shown in Figure 4.7. Applying PCA with m = 1 on this example would project
the data on the line spanned by q1, the principal axis with the largest variance. For more
numerical details on PCA, we suggest the following tutorial [55].

4.2.3 Geometrical Intuition

This section shall conclude with the geometrical interpretation of PCA. The reconstructed
particle radius is defined as

r(j)
w (θ, φ) := c

(j)
0 Y0(θ, φ) + c

(j)
0

d−1∑
i=1

ŵ
(j)
i Yi(θ, φ). (4.23)
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Figure 4.7 Two principal axes and associated standard deviations for a bivariate Gaussian
distribution.

Using this definition, the reconstruction loss (4.20) can be expressed in geometrical space

R(Q,µ) = 1
Ns

Ns∑
j=1

〈 (
r(j) − r(j)

w

)2
〉

〈r(j)〉2
. (4.24)

The proof of (4.24) is provided in Appendix A. Note that the dependencies on µ and Q are
hidden in the reconstructed particle coefficients ŵ(j)

i . This equation demonstrates why it is
justifiable to apply PCA on relative perturbations instead of all the SH coefficients. Doing
so enables one to obtain an objective function that minimizes the relative error of the radius
functions. Minimizing the reconstruction loss can be explained in terms of the clay-modeling
analogy. The following holds true

r(j)(θ, φ) ≈ r(j)
w (θ, φ) = c

(j)
0 Y0(θ, φ) +

∑
i=1

µi Yi(θ, φ)
)

︸ ︷︷ ︸
Initial shape

+ c
(j)
0

m∑
k=1

x
(j)
k Xk(θ, φ)

︸ ︷︷ ︸
Perturbations with new modes

, (4.25)

the only difference with (4.14) being that the m functions Xk(θ, φ) are now derived from
the principal components Q instead of the arbitrary vectors P. Minimizing (4.24) with
respect to µ and Q, is equivalent to searching for the initial shapes and new m perturbations
x

(j)
k Xk(θ, φ), which best approximate the radial functions r(j)(θ, φ) over all particles in the

data. The division by 〈r(j)〉2 in (4.24) is a way to balance the contributions of the small and
large particles.
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The final aspect of PCA that must be discussed is the selection of m. The most established
practice is to compute the cumulative variance CV(m) of the m first principal components

CV(m) =
∑m
i=1 σ

2
i∑d−1

i=1 σ
2
i

. (4.26)

The heuristic choice of m is to set a threshold between 95% and 99% and fix m as the
first value where CV(m) becomes larger than the selected threshold. This heuristic can be
justified by demonstrating there is an affine relationship between the reconstruction loss and
the cumulative variance, see Appendix A.

4.3 Clustering

The final step of the data preprocessing is the identification subpopulations of particles. A
subpopulation can be described as a set of particles which look similar independently of their
sizes. Good examples include spheroids, prolates, oblates, cubes, or cylinders. To make this
statement more precise, one needs to mathematically define the notion of similarity between
particles independently of their size. Independence with respect to size requires the use of
relative perturbations while ressemblance can be measured in terms of distance within the
vector space of the SH coefficients. In other words, computing the distance between the
relative perturbations of the jth and kth particle should be an indicator of resemblance that
ignores size. Since Rd−1 is a normed vector space, the distance d(j, k) between the particles
j and k can be inferred from a norm

∥∥∥ĉ(j) − ĉ(k)
∥∥∥ and the definition of a subpopulation can

thus be stated as

A subpopulation is a set of particles which are close to each other with respect
to some norm ‖ . ‖ in the space of the relative perturbations ĉi, i 6= 0.

Several choices for a norm are possible. We shall restrict ourselves to norms of the form
∥∥∥ĉ(j) − ĉ(k)

∥∥∥2

A
=
(
ĉ(j) − ĉ(k)

)T
A−1

(
ĉ(j) − ĉ(k)

)
, (4.27)

where A is a symmetric positive definite matrix. Taking A = I, one gets the classical
Euclidean norm ∥∥∥ĉ(j) − ĉ(k)

∥∥∥2

2
:=

d−1∑
i=1

(
ĉ

(j)
i − ĉ

(k)
i

)2
. (4.28)

Note that the index starts at i = 1 since the vectors ĉ only include the relative perturbations.
The Euclidean norm has simple expression in terms of the radial function of the particles j
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and k, i.e. r(j)(θ, φ) and r(k)(θ, φ)

∥∥∥ĉ(j) − ĉ(k)
∥∥∥2

2
=
〈(

r(j)

〈r(j)〉
− r(k)

〈r(k)〉

)2〉
. (4.29)

A second norm of interest is the Mahalanobis norm which is obtained by setting A = Σ, the
covariance matrix of the data,

∥∥∥ĉ(j) − ĉ(k)
∥∥∥2

Σ
=
(
ĉ(j) − ĉ(k)

)T
Σ−1

(
ĉ(j) − ĉ(k)

)
, (4.30)

Open unit balls in that case are ellipsoids that are elongated in the directions of large variance
in the data. Note that in the literature, one usually introduces the Mahalanobis distance,
but considering the Mahalanobis norm is more general. This norm is of interest because it
naturally appears when working with multivariate Gaussians.

To get preleminairy evidence of the relation between geometrical ressemblance and distance
in the vector space relative perturbation Rd−1, the following experiment is conducted: three
arbitrary river particles are chosen and their three closest neighbors with respect to the Eu-
clidean and Mahalanobis norms are identified, see Figure 4.8. It appears that Euclidean
proximity in the space of relative perturbations is indeed linked to our intuition of ressem-
blance, which is a consequence of (4.29). However, the Mahalanobis norm seems to have failed
at identifying neighbor particles with meaningful geometric similarities. Relations between
norms, proximity and data dimension are studied further in Appendix D. The theoretical
and empirical results discussed in Appendix D, as well as Figure 4.8, suggest that Euclidean
nearest neighbors are well-defined despite high dimensionality, while Mahalanobis nearest
neighbors become ill-defined in high dimensions.

The problem of identifying subpopulations becomes that of finding aggregates of points which
are close to each other in the relative perturbations space. This branch of statistical analysis
is known as clustering so each subpopulation shall now be referred to as a cluster. Clustering
algorithms are susceptible to the curse of dimensionality which is why it is better, in practice,
to apply them on the principal components rather than the relative perturbations ĉ(j)

i . We
shall then search for clusters in the space Rm of the principal components. Note the norms
(4.28) and (4.30) can also be applied to the coefficients x(j)

i while still retaining the same
interpretation. Let Nc be the number of clusters and τ = {x(j)}1≤j≤Ns be the unordered
dataset of principal components. Clusters, which are denoted Ki, i = 1, 2, . . . , Nc, form a
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Particles Euclidean Neighbors Mahalanobis Neighbors

Figure 4.8 3 Nearest neighbors of three river particles with respect to the Euclidean and
Mahalanobis norms.

partition of the dataset

Ki ⊂ τ such that
Nc⋃
i=1

Ki = τ and Kk

⋂
Ki = ∅. (4.31)

Partitioning data this way has two main applications. Firstly, since each cluster is constituted
of particles with similar geometry, one can hope that fitting a distinct statistical model
associated with each cluster would result in simpler models. These models could be easier to
train and to interpret than a single complex model fitting the whole dataset. For example, if
one attempts to fit a single model on a dataset consisting of triangles and circles, the model
would need to learn about the concepts of equiaxiality, smoothness, flat faces, and sharp
edges. On the other hand, fitting distinct models on circles and triangles would allow each
model to learn only a subset of those concepts. The second application of partitioning the
data is to gain geological insight about the data distribution. Indeed, different clusters could
correspond to particles with different geological backgrounds.

Two clustering algorithm, namely the K-Means and Gaussian Mixture (GM) will be discussed.
The K-Means algorithm is the simplest and most commonly used. It assumes that the clusters
are approximately spherical and have similar sizes. It is based on computing the Euclidean
distance between the data points and points µi, i = 1, 2, . . . , Nc, called the centroids of the
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clusters. The decision rule to assign SH representations of particles to clusters is

Ki =
{
x(j) ∈ τ | i = argmin

1≤k≤Nc

∥∥∥x(j) − µk
∥∥∥2

2

}
. (4.32)

Basically, each cluster consists of the data points that are closer to its centroid than to any
other centroid. The full procedure to obtain K-Means clusters can be found in [29]. This
algorithm is appealing because of its simplicity and its use of the Euclidean norm, which has
a nice geometrical interpretation as seen in (4.29).

Unlike K-Means, Gaussian Mixture (GM) allows one to describe non-spherical clusters. The
main assumption is that each cluster can be approximated by a multivariate Gaussian. The
process of finding clusters is replaced by a fit of Nc Gaussians on the data using the Expec-
tation Maximization algorithm [46]. After fitting the Gaussians, the algorithm computes the
probabilities P[x(j) ∈ Ki] and the decision rule for cluster assignment is

Ki =
{
x(j) ∈ τ | i = argmax

1≤k≤Nc
P[x(j) ∈ Kk]

}
(4.33)

For mathematical details on GM and Expectation Maximization, we suggest reading [29,46].

4.3.1 Silhouette

One of the challenges of K-Means and GM clustering is to determine the number of clusters.
This is actually a fuzzy notion since there is no precise mathematical definition of a cluster.
Intuitively, a cluster should contain points that are more similar to each other than to points
from other clusters. The silhouette is a quality measure of clusters that is based on this
intuition [56]. The silhouette can be computed for every point x(j) in a sample. If we let
x(j) ∈ Ki, we first define the following quantities

a(j) = 1
card(Ki)− 1

∑
x(k)∈Ki | k 6=j

d(j, k), (4.34)

b(j) = min
k 6=i

 1
card(Kk)

∑
x(m)∈Kk

d(j,m)

 , (4.35)

where d(j, k) is the distance between the relative perturbations of the jth and kth particles.
The term a(j) represents the average similarity between the particle j and the other particles
from the same cluster while b(j) represents the average similarity between the jth particles
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and particles from the most similar cluster. The silhouette is defined as

s(j) = a(j)− b(j)
max{a(j), b(j)} , (4.36)

and its value lies between -1 and 1. A value close to 1 indicates that the jth particle is
assigned to the right cluster, while a value of -1 suggests that it is put in the wrong cluster.
Finally, a value close to 0 signifies ambiguity as to which cluster the particle should belong
to. To select the number of clusters, one should try different values of Nc and select the one
that yields the highest average silhouette over all particles.

The Euclidean and Mahalanobis norms were previously proposed as measures of distance
between particles. When computing the silhouette of clusters obtained with K-Means, one
should use d(j, k) =

∥∥∥x(j) − x(k)
∥∥∥

2
since it is the build-in metric of the algorithm. Choosing

the right norm to compute the silhouette of GM clusters is more subtle because clusters can
be very elongated in certain directions. The Euclidean norm would automatically assign low
silhouettes to points at the extreme ends of the clusters, even when such elongations are
intrinsic to the structure of the clusters. Using the Mahalanobis norm with A = Σ does
not solve this issue since the total covariance cannot describe the shape of a specific cluster.
Our solution is to set A to A∗i := det(Σi)−

1
d−1 Σi where Σi is the covariance of the ith

cluster, which is the cluster the jth particle is assigned to. One justification for this choice
is that it captures the shape of the local cluster while removing any distortion of volumes,
see Figure 4.9. We therefore use d(j, k) = ‖x(j) − x(k)‖2

A∗i
when computing the silhouette

of GM clusters1. Clusters are likely to have different covariances, so there will be a loss of
symmetry d(j, k) 6= d(k, j).

4.3.2 Cluster Compactness

Another common approach to determine Nc is to define a notion of cluster compactness.
This measure should diminish as Nc increases since clusters become more localized, until they
become singletons. As Nc grows, one should reach a regime where the gain in compactness
becomes lesser. The largest values of Nc before that regime is attained should be selected.
For K-Means, compactness is measured in terms of the average inertia of the clusters

I(Nc) = 1
Nc

Nc∑
i=1

 1
card(Ki)

∑
x(j)∈Ki

∥∥∥x(j) − µi
∥∥∥2

2

 . (4.37)

1Computing the silhouette with this norm is not common in the literature compared to the Euclidean
norm. Therefore, one should approach this suggestion with skepticism.
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Figure 4.9 Comparisons of the unit ball with various metrics on the ith cluster Ki.

To heuristically select Nc, one must plot the average inertia versus the number of clusters
and search for a point where the slope changes abruptly. This point is often referred to as
the elbow of the graph. The value of Nc corresponding to the elbow is selected as the number
of clusters. When working with GM, one can get a similar measure with the Bayesian
Information Criterion (BIC) which was first introduced by Schwarz in the context of model
selection [57]. It is defined as

BIC(Nc) = log(Ns)p− 2
Ns∑
j=1

log
(
f(x(j); Θ)

)
, (4.38)

were p is the number of parameters in the model and f(x(j); Θ) is the probability density
given by the GM algorithm with Nc Gaussians. The symbol Θ accentuates the fact that the
density is parametric. Common practice is to choose Nc that minimizes the BIC. The log-
likelihood term in (4.38) measures cluster compactness. Indeed, as the number of Gaussian
clusters increases, a higher probability density is assigned to each individual data point. This
results in a decrease of the negative log-likelihood as Nc increases. However, at some point,
the decrease in negative log-likelihood becomes lesser compared to the growth of the left term
log(Ns)p, which expands with Nc. This will result in a minimum of the BIC, that plays the
same role as the elbow for the heuristic average inertia.
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4.4 Statistical Model

In order to build the probabilistic model from Figure 4.1, we are going to consider machine
learning algorithms from a branch called density estimation. This rich branch of machine
learning includes models of probability density that are calibrated using the data points. The
calibration process is often referred to as the training step so we shall use both terminologies
interchangeably. Once the training is done, it is possible to randomly sample from such
models which allows one to generate virtual particles with, hopefully, similar geometries as
particles from the training set. Since the sampling is random, one can sample an arbitrary
large number of virtual particles making large scale DEM simulations possibles or any other
application that requires large samples of realistic particles. We first suppose that the size
ĉ

(j)
0 and each principal components x(j)

i are one realization of the random variables ĉ0 and x̂i,
and that the set of coefficients follows the joint probability density distribution ρ

(
ĉ0, x1, x2, . . . , xm

)
∼ ρ. (4.39)

Note that the parenthesis superscript (j) now represents a specific realization of the random
variables. The following steps are required to generate a virtual particle:

1. Approximate the unknown density ρ with a model φ;

2. Sample new principal components
(
ĉ

(j)
0 , x

(j)
1 , x

(j)
2 , . . . , x(j)

m

)
from φ;

3. Reconstruct the relative perturbations ŵ(j)
i , i = 1, 2, . . . , d− 1 using (4.19),

4. Scale the reconstructed relative perturbations as

w
(j)
i =

 ĉ
(j)
0 i = 0,
ĉ

(j)
0 ŵ

(j)
i i 6= 0,

(4.40)

5. Compute the particle radius r(j)(θ, φ) from the reconstructed coefficients w(j)
i .

4.4.1 Simplification Hypotheses

It is helpful to make hypotheses about the density ρ in order to simplify its modeling. The
primary hypothesis (H0) is to suppose that the size and intrinsic geometry components of



70

the density are independent,

φ(ĉ0, x1, x2, . . . , xm)H0= φ0(ĉ0)︸ ︷︷ ︸
Size

φ1:m(x1, x2, . . . , xm)︸ ︷︷ ︸
Intrinsic geometry

. (4.41)

This hypothesis was first proposed by Grigoriu et al. [14]. It implies that one can sample
the size and geometry independently, which will generate samples of particles where small
and large grains look alike. By construction, it is expected to hold for the populations of
manufactured particles. However, the hypothesis may not be valid for populations of real
particles considering small grains could be sharper and thinner than larger ones. One way
to resolve this issue could be clustering in order to identify aggregates of particles with
similar geometries independently of their size. Therefore, we could expect the independence
hypothesis to hold better on each separate cluster rather than on the whole population.
This reasoning is illustrated in Figure 4.10. To interpret the figure, note that H0 holds if
and only if small and large particles all look alike. The hypothesis clearly is not valid on
the whole dataset (left) since large particles tend to be more ellipsoidal and small particles
tend to be both ellipsoidal and rectangular. Training a single model to generate this dataset
could be very complicated since it would not only require to generate rectangles and ellipses,
but it would also need to learn that rectangles tend to be smaller in average than ellipses.
Examining the right part of Figure 4.10, we observe that the ideal clustering algorithm
separates the ellipse and rectangle subpopulations. Moreover, the H0 hypothesis holds on
each cluster separately since all particles look alike independently of their size. Training a
separate model on each cluster could prove to be simpler since the models would generate
particles with a specific geometry and with arbitrary sizes within some range.

Due to the finite number of samples, determining whether the independence hypothesis holds
is not a trivial task. A common measure to infer H0 is given by the Pearson correlation
coefficient between the two random variables X and Y

Cor[X, Y ] =
E
[
(X − E[X]) (Y − E[Y ])

]
E
[
(X − E[X])2

]
E
[
(Y − E[Y ])2

])1/2
, (4.42)

where E[X] denotes the expected value of X. The Pearson correlation coefficient is related
to the notion of independence, but is not equivalent

X and Y are independent =⇒ Cor[X, Y ] = 0. (4.43)
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H0 does not hold

⇒

H0 holds on each cluster

K1

K2

Figure 4.10 Idealized example of how clustering could help uncovering subpopulations where
the independence hypothesis (H0) holds.

The converse can be shown to be true only for very specific distributions like multivariate
Gaussians. A more powerful measure of independence between two random variables X and
Y is the Mutual Information (MI)

MI[X, Y ] = DKL
(
fXY (x, y)||fX(x)fY (x)

)
=
ˆ
X

ˆ
Y
fXY (x, y) log

(
fXY (x, y)
fX(x)fY (x)

)
dydx,

(4.44)

where fXY (x, y) is the joint distribution for X and Y and fX(x) and fY (x) are the marginal
distributions of X and Y , respectively. DKL(f ||g) is the Kullback–Leibler divergence, which
is a positive measure of the distance between distributions. The following holds

X and Y are independent ⇐⇒ MI[X, Y ] = 0, (4.45)

which is a stronger statement than (4.43). We compute the mutual information with the
function mutual_information_regression from the Scikit-learn Python Library [58].
The Scikit-learn implementation is based on the K-Nearest-Neighbors algorithm discussed
in [59]. Because the KL divergence is estimated using a finite number of samples, the mutual
information may not vanish even if the variables are independent. To solve this issue, one
must build a statistical test. The authors in [60] describe how to build a test of indepen-
dence based on MI. The first step is to generate fake samples under H0 by using resampling
methods on each variable independently. By computing MI on each fake sample, a sampling
distribution of MI is generated. By evaluating MI on the actual data, one can introduce the
p-value of the test as the ratio of elements of the sampling distribution that have a larger
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MI than the one computed on the actual data. The significance of a test is noted α, with
0 < α < 1. and represents an upper bound on the probability to reject the null-hypothesis
when it is in fact valid. Therefore, to build a Mutual Information independence test of sig-
nificance α, one must reject the null-hypothesis when the p-value is smaller than α. This
way, one gains confidence that large values of MI are not attributed to errors caused by finite
sample estimation.

To generate the sampling distribution under H0, the Bootstrap scheme [46, page 107] with
B = 100 different bootstrap samples is used. Since B is so low, the p-value returned by
the test has a very low resolution and may not always be trustworthy. Using larger values
of B is not ideal since the test becomes extremely expensive, especially when it is applied
on multiple variables. An alternative solution would be to use the MI test in conjunction
with a second test. We thus pair the test with the Spearman correlation test implemented as
spearmanr from the SciPy Python Library [61]. The null-hypothesis of this test is that the
data is uncorrelated. To verify this hypothesis, the test computes the Spearman correlation
which is defined as the Pearson correlation applied to the rank of the variables instead of
their values. This implies that small p-values are strong indicators of monotonic relationships
and not just linear ones, which is the case with the basic Pearson correlation. Both MI and
Spearman tests are verified on bivariate distributions and results are shown in Appendix C.

4.4.2 Multivariate Gaussian

In the specific scenario where φ1:m(x1, x2, ..., xm) can be shown to follow a multivariate Gaus-
sian distribution, the problem becomes staggeringly simple. This is because the principal
components of a multivariate Gaussian follow independent univariate Gaussians with mean
zero and variance σ2

i . Since the variances σ2
i are directly given by the PCA procedure, no

training is required. Moreover, in order to sample from such this model, each principal com-
ponent xi can be sampled independently from univariate Gaussians. This method is very
common in the geology literature [17,19,24], however, hypothesis tests of normality are rarely
discussed.

In this study, two normality tests are applied to the SH coefficients using the statistical mod-
ule of the SciPy Python library [61]. Since the principal components and the SH coefficients
are related by an affine relation, the tests can be applied to either of them. This holds because
any multivariate Gaussian can be shown to be an affine transformation of another Gaussian.
The first test is the D’agostino test implemented as the function normaltest [61]. This
univariate test assumes that the data is normally distributed and computes the p-value based
on the sample skewness and kurtosis. The second test is the so-called Shapiro-Wilk test im-



73

−2.5 0.0 2.5
X

−4

−2

0

2

4

Y

Figure 4.11 Classic example where X and Y follow Gaussian distributions but their joint
distribution is not a multivariate Gaussian. Jitter is applied to the scatter plot to make
points more visible.

plemented as the function shapiro [61]. This univariate test also assumes that the data is
normally distributed and computes the p-value by using the ranked data points. Since each
test is univariate, they must be applied to every single feature in the dataset.

Note that even in the ideal scenario where every single SH coefficient can be shown to
follow a univariate Gaussian, this is still not enough evidence to prove the data follows
a multivariate normal. This is because one can create distributions that have Gaussian
marginals but are not multivariate Gaussians. The typical example is to considerX ∼ N(0, 1)
andW ∼ Bernoulli(0.5). One can show that Y = (2W−1)X follows a Gaussian distribution.
Therefore, we have constructed a random vector (X, Y ) whose marginals are Gaussians but
whose joint distribution is clearly not a multivariate Gaussian, as seen in Figure 4.11.

Other similar counter-examples exist but are usually very contrived so, in practice, the mul-
tivariate normal hypothesis can still hold reasonably well if one manages to prove that all
SH coefficients follow normal distributions.

4.4.3 Kernel Density Estimation

When there is strong evidence that the data does not follow a multivariate Gaussian, other
probabilistic models should be considered. One simple alternative is the Kernel Density
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Estimation (KDE)

φ1:m(x1, x2, ..., xm) = 1
Ns

Ns∑
j=1

m∏
i=1

1
hσi

K

xi − x(j)
i

hσi

 , (4.46)

where σi is the standard deviation of the ith principal component and the so-called kernel
K(.) is a univariate probability density distribution chosen symmetric around the origin. The
parameter h is called the bandwidth and is used to control the spread of the kernel. The
most popular kernel is the Gaussian

K(z) = 1√
2π

exp −z
2

2

)
. (4.47)

Figure 4.12 illustrates the motivation behind KDE. The model is calibrated by setting the
bandwidth to its optimal value, which is critical as small values induce a high variance of
the density estimation and large values oversmooth the distribution. There are two common
approaches to select the value of the parameter. The first technique is to use a point estimate
using the data. For example, Scott [27] showed that for m-dimensional multivariate Gaussian
data with no correlations the optimal bandwidth with a Gaussian kernel is

hScott = N
− 1/(m + 4)
s . (4.48)

Notice that the optimal bandwidth decreases as the amount of data Ns increases. Moreover,
when Ns is fixed, the optimal bandwidth increases with dimension m. This is a manifes-
tation of the curse of dimensionality, where the growing sparsity of data points forces the
kernel to increase its spread in order to fill out the empty regions of space. The second
approach consists in performing K-fold cross-validation using either the Mean Integrated
Squared Error or the log-likelihood as performance measures [27]. We choose to work with
the log-likelihood since it is standardly used in the Scikit-learn Python library. Like Scott’s
estimator, cross-validation is subject to the curse of dimensionality. More precisely, maxi-
mizing the cross-validated log-likelihood forces the kernels to increase their spread in order
to assign a considerable probability density to each of their neighboring data points that
are not part of the same fold, see Figure 4.13. In high dimensions, data points tend be
located very far away from their nearest neighbors, which forces the bandwidth to become
ridiculously large. Our method for selecting the bandwidth is a mix of Scott’s estimator
and cross-validation. More precisely, K-fold cross-validation is applied with Scott’s estimator
used as a starting value for the linesearch of h.
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Figure 4.12 Illustration of KDE. The kernel centered at the point x(j)
i (marked in red on

the figure) assigns a probability density to its neighborhood. Notice that the kernel is more
spread out in the directions of higher data variance.
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(b) Optimal Bandwidth

Figure 4.13 Example of how 2-fold cross-validation guides the choice of bandwidth. The
kernel is forced to attribute a high probability density to its nearest neighbor data points
from the second fold ⊗.

Once the calibration is finished, sampling is as simple as choosing a random data point x(j)

with uniform probability and sampling from the Kernel centered at that point. That way,
KDE sampling can be seen as generating virtual particles which are perturbations of already
existing particles from the training set.

KDE has many shortcomings. First, its performance degrades rapidly with dimension because



76

of the increasing sparsity of the data. As explained earlier, the growing sparsity of data points
leads the Scott and cross-validation estimators to select extremely large bandwidths which
result in over-smoothed models. One way to reduce data sparsity is to increase the number
of data points Ns. The table in [46, page 319] illustrates that when modeling multivariate
Gaussian data with KDE, having 4 samples in one dimension is similar to having 768 and
84,2000 samples in 5 and 10 dimensions, respectively. This exponential constraint on sample
sizes makes KDE very impractical for applications with more than 5-6 dimensions. However,
when working with SH coefficients, we suspect that this behavior could be avoided. In fact,
we show in Appendix D that the SH coefficients of river particles are very close to their
nearest neighbor when considering the Euclidean norm, even in a space of dimension 440.
For this reason, we believe it is justifiable to experiment with KDE on high-dimensional
populations of real particles.

The second shortcoming of KDE is that it does not consider local structures. Data is often
concentrated around low-dimensional manifolds. Such situations are encountered so fre-
quently that this is now referred to as Manifold Hypothesis [28]. A kernel centered at a data
point spreads probability density in all directions of the SH coefficient space, even in those
that are not tangent to the manifold. This results in probability density leaking outside the
manifold. The leaking worsens with dimensionality since the number of bad directions in-
creases. A solution introduced by Vincent and Bengio [34] is called Manifold Kernel Density
Estimation (M-KDE) which we now discuss.

Let N (x;µ,Σ) be a m-dimensional Gaussian density

N (x;µ,Σ) = 1
(2π)m2 det(Σ) 1

2
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)
, (4.49)

with mean µ and covariance matrix Σ. TheM-KDE model is

φ1:m(x) = 1
Ns

Ns∑
j=1

N (x;x(j),Σ(j)), (4.50)

where a Gaussian kernel is still centered at every data point, but now the covariances may
vary between data points. Is this manner, one can design local covariances Σ(j) to capture the
low-dimensional structures of the manifolds. This is typically accomplished with a pancake
covariance [28,34]

Σ(j) = Σ(j)
local + hI, (4.51)

where the local covariance Σ(j)
local is a singular rank-k (k < m) matrix whose k eigenvectors
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are tangent to the local manifold at x(j). The term hI, where h is the bandwidth and I the
identity matrix, provides small isotropic noise to ensure the Gaussian kernels are not singular.
The covariance (4.51) is called pancake because the resulting Gaussians are spread out along
all tangent directions of the manifold and very flat in the normal directions. Computing the
local covariance Σ(j) around each data point as well as adjusting the noise h constitutes the
calibration step of the M-KDE model. Sampling from this model is the same as sampling
from the KDE, i.e. a data point x(j) is chosen at random and virtual particles are sampled
from its kernel N (x;x(j),Σ(j)). The main difference is that the new kernels will sample in
directions that are nearly tangent of the manifolds.

To illustrate this, consider a 1-Manifold embedded in 2D space. Let t be the tangent vector
to the manifold, the pancake covariance is given by

Σ = σ2
t tt

T + h I, (4.52)

where σ2
t is a new parameter which controls the variance along the curve. Figure 4.14 shows

how the choices of σ2
t and h affect the samples of virtual particles. We observe that the local

covariance matrix allows one to sample along the tangent direction of the manifold, which is
not guaranteed when one only considers the hI covariance.

In this contrived example, the analytical expression of the manifold is known so one can
compute its tangent vector. With real data, one does not have this luxury and must resort
to estimating the local covariance. Similar to what was done in [34], we shall select the
k nearest Euclidean neighbors of every data point x(j) and use them to compute a rank-k
covariance matrix at every data point. The eigenvectors of this matrix are approximations of
the manifold tangent vectors and the eigenvalues indicate variances in those directions. Let
nk(j) ⊂ {1, 2, . . . , Ns} be a list containing the index of the k Euclidean nearest neighbors of
x(j) and let 1 ∈ Rk be a vector of ones, we define

Σ(j) = 1
k

(
X
(

: , nk(j)
)
− x(j)1T

)(
X
(

: , nk(j)
)
− x(j)1T

)T
+ hI. (4.53)

Though M-KDE is a lot more flexible than KDE, it also requires more memory storage.
Indeed, KDE only needs to store the coordinates of each data point, whileM-KDE requires
to store information about the local covariances at each data point in addition to their
coordinates.

Using isotropic noise is standard for multiple machine learning tasks but one must be careful
when working with SH coefficients, the reason being that SH coefficients of higher indices
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Figure 4.14 Sampling points usingM-KDE with various covariances.

must have small amplitudes and variances compared to the first coefficients. Therefore,
the anisotropic noise should not be larger than the smallest standard deviation of the SH
coefficients. An alternative approach would be to use anisotropic noise, but doing so, an
important property of the matrix Σ(j) is lost. It can be shown that the eigenvectors of Σ(j)

with isotropic noise only depend on Σ(j)
local and not on h. Moreover, with isotropic noise, the

eigenvalues of Σ(j) are equal to the eigenvalues of the local covariance Σ(j)
local plus the noise h.

This property allows for fast computations of the log-likelihood for any given h, making the
linesearch over all h values far less expensive. With anisotropic noise, each value of h leads
to drastically different eigen-decompositions of Σ(j).

4.5 Summary

In this chapter, we have described several populations of manufactured particles that follow
simple distributions. These will be used for the validation of the modeling steps decribed in
Figure 4.1 thanks to their simple geometries and their known exact statistical distributions.
Moreover the preprocessing step, including normalization, PCA, and clustering was explained
in-depth. Finally, the multivariate Gaussian, KDE, andM-KDE statistical models were all
introduced along with their assumptions and limitations. The contributions from this chapter
are as follows:

1. Introduction of manufactured particle populations with known statistical distributions;

2. An in-depth and intuitive description of the PCA procedure applied to the SH coeffi-
cients. More precisely, the clay modeling analogy is adapted to the principal compo-
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nents, see (4.14);

3. Implementation of an independence test between the size and intrinsic geometry of
particles based on the Mutual Information and the Spearmann correlation.
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CHAPTER 5 NUMERICAL RESULTS

In this chapter, we present some numerical results to illustrate the generative process in
action. More precisely, the PCA, clustering, and statistical models from the last chapter are
used on manufactured and river particles. Manufactured particles are used for the validation
of the clustering and statistical models since their exact geometries and distributions are
known. The Gaussian Mixture (GM) clustering algorithm applied to man-made populations
manages to identify the subpopulations of prolates, oblates, spheroids, cubes and cylinders.
The Kernel Density Estimation also shows promise for generating virtual diamond and box
particles. River particles are studied afterwards as a way to illustrate how the statistical
models perform in real-life applications. We discover that GM identifies two subpopulations
with very distinct geometries. Moreover, by sampling virtual river particles from a single
M-KDE kernel centered around a river particle, evidence is provided that the SH coefficients
concentrate near low dimensional manifolds. We finally suggest that understanding and
estimating those manifolds will be key to develop the next generation of generative models.

5.1 Manufactured Particle Populations

The results on manufactured particles generated in Section 4.1 are discussed first. Even
though these datasets are not representative of real-life grains, they allow for the validation
of the clustering and data generation processes.

5.1.1 PCA

The principal component analysis is currently implemented using the decomposition.PCA
class of the Scikit-Learn Python Library [58]. To select the optimal number of principal
components, the cumulative variance (4.26) must be computed for multiple values of m, and
the values achieving the 99% threshold of cumulative variance are selected, see Table 5.1.
There seems to be a slight correlation between the selected values of m and the number of
geometrical degrees of freedom for each population, which suggests that high-dimensional
manifolds must be embedded in a larger space Rm to be represented faithfully. The PCA
modes for some of these populations can be visualized. For simplicity, the term Initial Shape
from (4.25) shall be noted
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Table 5.1 – Cumulative variance with respect to m for the populations of manufactured
particles. The selected values of m are indicated with *.

Spheroid Prolate Oblate Cubes Cylinders Boxes Diamond
Geometrical Degrees of Freedom

3 3 3 3 3 5 5
Cumulative Variance

q=1 0.775 0.760 0.815 0.517 0.800 0.633 0.625
q=2 0.998* 0.997* 0.997* 0.989 0.992* 0.834 0.816
q=3 0.999 0.999 0.999 0.994* 0.998 0.920 0.948
q=4 0.999 0.999 0.999 0.999 0.999 0.982 0.990*
q=5 0.999 0.999 0.999 0.999 0.999 0.988 0.994
q=6 1 0.999 0.999 0.999 0.999 0.992* 0.996
q=7 1 1 1 0.999 1 0.995 0.997

r
(j)
0 (θ, φ) := c

(j)
0

Y0(θ, φ) +
∑
i=1

µi Yi(θ, φ)
 . (5.1)

Figure 5.1 illustrates the initial shape r(j)
0 (θ, φ) obtained with PCA on the prolate population.

We observe that the initial shape of clay intuitively resembles an ellipsoid. The first two PCA
modes are shown in Figure 5.2. The gray surface represents the initial shape while the colored
surfaces represent r(j)

0 (θ, φ) + 0.2
√

4πXi(θ, φ), i = 1, 2. The perturbations induced by the
PCA modes must be interpreted as the difference between the gray and colored surfaces. It
appears that the first mode elongates the initial shape while making it flatter by compressing
it in the x-direction. The second mode compresses the particle in the z-direction, making it
less elongated, but also stretches it in the y-direction, making it flatter.

5.1.2 Clustering

As previously discussed, clustering on the SH coefficients has the potential to identify aggre-
gates of particles which look alike independently of their size. Before applying clustering on
real particles, the algorithms must be validated using man-made populations by checking if
they are capable of separating the different families. The following experiment consists of
running clustering on the first 4 principal components of a dataset containing 5,000 particles
equally sampled from the prolates, oblates, spheroids, cubes, and cylinders subpopulations.
To demonstrate that clustering is potentially viable for real particles, it is primordial that
the algorithm uncovers those five underlying subpopulations.

Firstly, the K-Means algorithm is implemented with class cluster.KMeans from the Scikit-
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Figure 5.1 Initial shape r(j)
0 (θ, φ) computed on the prolate population.

(a) r(j)
0 (θ, φ) + 0.2

√
4πX1(θ, φ) (b) r(j)

0 (θ, φ) + 0.2
√

4πX2(θ, φ)

Figure 5.2 First two PCA modes on the prolate population.
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Figure 5.3 Selection of Nc for K-Means.
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Figure 5.4 Selection of Nc for the Gaussian Mixture algorithm.

Learn Library with the hyperparameter n_init set to 10. The hyperparameter n_init
enables the K-Means algorithm to be run multiple times, so that the result with minimal
average inertia can be selected. It is primordial to set it to a high value, considering that
the initialization of the cluster centroids is random and that the predicted clusters are highly
sensitive to the initialization. To select the optimal number of clusters, the silhouette (4.36)
and average inertia (4.37) are then computed for several values of Nc, see Figure 5.3. We
observe a maximum of the average silhouette at Nc = 3 and the elbow in the inertia graph at
Nc = 3. Looking closely at the results, we discovered that K-Means combined the spheroids,
cylinders and cubes families into a single cluster. A glance at Figure 5.5 demonstrates that
the clusters are not spherical, which could explain the failure of K-Means.
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Figure 5.5 Clusters predicted by the GM algorithm. Dashed lines represent 95% confidence
ellipses of the Gaussian for each cluster. Centroids are represented with a "x".

To remedy this fact, the GM clustering algorithm is applied using the Scikit-Learn class
mixture.GaussianMixture with the hyperparameter n_init once again set to 10.
Selection of Nc is now based on the silhouette (4.36) and the BIC (4.38), see Figure 5.4. It
seems that Nc = 6 yields a minimum in the BIC and Nc = 5 results in the highest silhouette.
In scenarios where BIC and silhouette do not agree on the optimal choice of Nc, one must
visualize the data to obtain additional evidence as to which Nc is the most appropriate.
Looking once again at the scatter plots in Figure 5.5, we clearly observe the presence of
Nc = 5 clusters. By setting Nc = 5, the GM is able to identify all five subpopulations with no
errors. This promising result illustrates how clustering in the space of relative perturbations
can uncover subsets of particles with similar geometries.

5.1.3 Statistical Model

The diamond and box families are datasets of particles with rich geometries that still only
require a small number of principal components, i.e. 4 and 6 respectively. In light of this, these
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Figure 5.6 Independence test between ĉ0 and ĉ6 for the box population.

populations can be considered for the validation of the density estimation model. Even though
the dimensions of the manufactured datasets are far smaller than real particle populations,
studying them is justifiable considering that a model that fails on diamonds and boxes is
unlikely to perform well on real particles.

Before generating virtual particles, the independence hypothesis (H0) between size and in-
trinsic geometry must be validated. By construction, it is expected to hold on both diamonds
and boxes populations. Note that this hypothesis does not necessarily need to be tested us-
ing the principal components. In fact, proving that ĉ0 is independent of

(
ĉ1, ĉ2, . . . , ĉd−1)

is sufficient to prove (4.41). Figure 5.6 exhibits a typical result of MI independence test.
The estimated Mutual Information score is 0.0032 with a p-value of 55% while the Spearman
correlation is -0.0025 with a p-value of 94%. These two measurement suggests that the coeffi-
cients are independent. Results for other coefficients of the boxes and diamonds populations
are similar.

The following step is to fit the distributions of the size coefficient ĉ0 and the principal com-
ponents x(j)

i . The size distribution is fitted with a uniform distribution, while the joint
probability density of the principal components is fitted with KDE. The Kernel Density Es-
timation is implemented using the Scikit-Learn class neighbors.KernelDensity with a
Gaussian kernel and the optimal bandwidth is selected by K-fold cross-validation with k = 4,
see Section 4.4.3. The results of the generative model on the box population are illustrated
in Figure 5.7.

We observe in Figures 5.7(a) and 5.7(b) that the generative model manages to create realistic
virtual boxes. However, when looking at the histograms of the shape descriptors, subtle
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differences between particles become apparent. The particle size, elongation, and flatness
follow similar distributions while roundness and convexity distributions exhibit some major
dissimilarities. The roundness histogram suggests that the generative model is unable to
create round particles or particles with sharp edges. On the other hand, according to the
convexity histogram, virtual boxes tend to be less convex than real boxes. Two main error
sources are suspected to cause these observations. Firstly, KDE is only an approximation of
the true distribution. This error can however be arbitrarily reduced by increasing the size of
the dataset, which is easily done considering the particles are manufactured. Secondly, the
value of m is selected using the cumulative variance which is related to the reconstruction
loss (4.24) by an affine relation. This reconstruction loss does not involve any derivatives
while curvature and convexity are highly sensitive to the first and second order derivatives
of the surface. To reduce errors in roundness and convexity, it could be necessary to build
a selection criterion for m that includes derivatives. More investigation on the subject is
required.

The same generative model is also applied to the diamond population, which is also of interest
because, unlike boxes, they are highly non-convex and exhibit sharp corners. Figures 5.8
illustrates the results of the generative model on this manufactured population. Looking at
Figures 5.8(a) and 5.8(b), it once again appears that the model captures the geometrical
patterns of the original population. It is important to note that the model succeeds even
though the SH representation is subject to defects such as large surface ripples. This is
because the model simply learns to reproduce the patterns it is trained on. When the
particles given to the model are riddled with defects, a well fitted model is able to generate
new particles that share those same defects. Looking at the histograms of roundness and
convexity, we observe similar behaviors as with the virtual boxes. Once again the model is
not able to generate sharp corner as indicated by the lack of virtual diamonds with small
roundness and the convexity of virtual diamonds is once again biased downward.

5.2 Real Particle Population

In this section, the clustering and generative algorithms which were previously validated,
are now executed on river particles. The following outcomes are more representative of the
viability of the methodology on real-life applications. These specific grains are chosen for the
reason that they are rounder and more convex than asphalt, rouge, and margelle particles,
which implies that their SH coefficients converge much faster, resulting in less principal
components selected by PCA.
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Figure 5.7 Real and virtual boxes.
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Figure 5.8 Real and virtual diamonds.

5.2.1 PCA

Table 5.2 shows the number of principal components m selected based on two thresholds
on the cumulative variance. Applications that require a very faithful representation like
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Table 5.2 – Value of m selected based on the the 95-99% thresholds of cumulative variance
on river particles.

CV Selected m
95% 28
99% 64

generative models should use the 99% threshold while applications that only need a coarse
representation of shape, i.e. clustering, should use the 95% threshold. Three PCA modes of
the river population are visualized in Figure 5.9. The first two modes are similar to the ones
of the prolate populations from Figure 5.2, while the 10th mode is harder to understand.
Considering that all PCA modes work in tandem to sculpt particles, a plot of only three
modes is nevertheless not informative enough to understand the role of every single mode.

5.2.2 Clustering

When applying clustering algorithms on the river population, 28 principal components are
used. The 95% threshold of cumulative variance is chosen because fine details may not be
critical to determine the key geometrical features of subpopulations. A brief look at a scatter
plot of the principal components yields evidence that the clusters are non-spherical, which
motivates the use of the GM algorithm. See Figure 5.10 for the selection of Nc based on
the silhouette (4.36) and the BIC (4.38). Both silhouette and BIC suggest that Nc = 2 is
the optimal choice, which is confirmed by the results of Figure 5.11. These two clusters are
especially apparent in the scatter plot of x1 and x10.

As suggested by looking at the first column of the scatter plots in Figure 5.11, Gaussian
Mixture discovers a cluster of particles that tend to be smaller in average e.g. the cluster
K2. This is a pure coincidence since the clustering algorithm is oblivious to the concept of
size. The second column of scatter plots demonstrates that the first principal component
x1 plays a big role in the separation of the two clusters. Figure 5.9 shows that the asso-
ciated perturbation flattens and elongates the particles. Because of this, we expect K2 to
contain flatter and more elongated particles than K1. When looking at the other principal
components, it becomes harder to distinguish the clusters as they appear to be superimposed
in the scatter plots. However, the variances of the second cluster are systematically higher
than for the first one, which suggests that K2 contains a large range of particles that are
highly non-spherical. Those two observations are consistent with Figures 5.12 and Figure
5.13, which exhibit the STM representations and classical shape descriptors of particles from
both clusters. It is seen that the particles from K2 have a smaller flatness index, sphericity
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(a) Initial shape r(j)
0 (θ, φ) of river population (b) r(j)

0 (θ, φ) + 0.2
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Figure 5.9 PCA mean and modes on the river population.

and roundness. This early result demonstrates the potential of clustering algorithms for the
identification of subpopulations of particles within a dataset obtained with micro-computed
tomography.
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Figure 5.10 Selection of Nc for Gaussian Mixture on river particles.
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(a) angle 1

(b) angle 2

Figure 5.12 Comparison of 64 particles from each cluster. Left particles come from K1 while
right particles come from K2.

5.2.3 Statistical Model

Independence of principal components: The first hypothesis to test on the river pop-
ulation is the normality hypothesis, the reason being that the normality assumption is often
used to justify sampling the principal components of the data independently.

To verify if the data of the normalized SH coefficients ĉi is normally distributed, both the
D’agostino and Shapiro-Wilk tests are executed on all 441 normalized SH coefficients with
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Figure 5.13 Shapes descriptors of the river particles from both clusters.

the significance α = 0.05/441. Dividing 0.05 by 441 ensures that the probability of falsely
rejecting at least one hypothesis is less than 0.05. This very conservative approach to multiple
hypotheses testing is referred to as the Bonferri method [46, page 166]. On our data, each
test approximately rejects 98% of the normality hypotheses over all 441 coefficients. This
strong empirical evidence forces us to reject the normality assumption. Since the data is not
normally distributed, we cannot justify sampling each principal component independently.

Another experiment that can be done to confirm the dependence of principal components is
to build a generative model that assumes their independence. The virtual particles sampled
from such a model can then be compared to the real ones, enabling one to observe which
geometrical patterns are lost when assuming independence of the principal components. The
Bootstrap applied on each principal component independently can be used as a simple way to
simulate sampling from such a model. Results comparing 36 SH representations of real and
virtual river particles are shown in Figure 5.14. The first observation is that the virtual and
real particles look similar. This could explain why the independence of the principal com-
ponents is so often assumed in practice. Nevertheless, a more thorough comparison between
real and virtual particles unveils the loss of two important morphologic characteristics: the
smoothness of the surface and the presence of flat faces. Indeed, the virtual grains exhibit
significantly larger surface ripples which make them look more akin to popcorn rather than
smooth river particles. Additionally, the flat faces that can be observed on some of the real
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(a) Real particles (b) Virtual particles (Bootstrap)

Figure 5.14 Simulating a model where the principal components are assumed to be indepen-
dent.

river particles are mostly absent from the virtual assembly. This suggests that the principal
components must synchronize in a specific way to sculpt flat faces.

Independence between size and geometry: Secondly, the independence between size
and geometry (H0) is to be tested. On the river population, we find that some relative
perturbations are not independent of size (ĉ0). For example, Figure 5.15 suggests that the
coefficient ĉ20 is correlated with the particle size. The computed Spearman correlation is
-0.32 with a p-value of 8.4 × 10−24 which is strong evidence for correlation. The Mutual
Information score is 0.108 with a p-value of zero. Figure 5.15(b) shows that the MI is located
far away from the sampling distribution, which confirms dependence.

Two alternatives can be used when the independence hypothesis is shown to be false. The
first approach is to reject it and jointly fit the size and geometry distributions. This was done
by Zhou et al. [19] where the authors conditioned the distribution of the principal components
on the volume. The alternative is to partition the data into clusters where H0 approximately
holds. Since clustering identifies aggregates of particles that look similar independently of
their size, the hypothesis should, at least, hold better on each individual cluster.

The second approach is chosen since clusters in the river population have already been iden-
tified in Section 5.2.2. Following some experimentation, we observe that, even though the
independence hypothesis fails on the clusters, it holds better than on the whole dataset. To
demonstrate it, we run the MI independence test between ĉ0 and the first 100 relative per-
turbations ĉi, i = 1, 2, . . . , 100 using on the one hand, the whole dataset, and on the other
hand, the two clusters taken separately. The number of independence hypotheses that are
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Figure 5.15 Example of the Mutual Information independence test between the size and
intrinsic geometry of river particles.

Table 5.3 – Amount of rejected hypothesis of the Mutual Information independence test
between ĉ0 and ĉi, i = 1, 2, . . . , 100.

Whole data cluster K1 cluster K2

Rejected H0 40 9 16

rejected with significance α = 0.05 are illustrated in Table 5.3. We observe that each cluster
leads to fewer rejections of the hypothesis than when considering the whole dataset. Note
that the Bonferri method, which consists of using α = 0.05/100 instead of α = 0.05, is not
useful when applying multiple MI tests due to the extremely low resolution of the p-values
returned by the test.

Kernel Density Models: We now discuss the model of the joint probability density of the
principal components of river particles. We previously found that normalized SH coefficients
do not follow a multivariate Gaussian distribution. For this reason, the KDE is considered
to estimate the probability density distribution of the principal components. However, early
results of KDE with the K1 cluster of river particles are not very promising. Figure 5.16
illustrates the selected bandwidths using both Scott’s estimator and K-fold cross-validation
with k = 20. We observe that the cross-validated bandwidth keeps increasing up to 0.9 as
more principal components are considered. A bandwidth close to 0.9 results in an extremely
biased estimation of the density distribution since the width of a single kernels is almost
equal to the width of the data in every single direction. Note that values of m that go
beyond 30 are not included in the graph because the density estimation provided by the
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Figure 5.16 Optimal bandwidth selected with K-fold cross validation and Scott’s estimator
for KDE as a function of the number of principal components.

neighbors.KernelDensity Scikit-Learn class was becoming especially noisy for large
values of m, which resulted in unstable predictions of h. We suspect that this can be at-
tributed to the fact that the neighbors.KernelDensity class does not compute the
exact probability density, but estimates it by storing the data points into a KD-tree [58].
However, this remains to be fully confirmed.

As discussed in Section 4.4.3, selecting the bandwidth with K-fold cross-validation forces
each kernel to attribute a considerable probability density to their nearest neighbors. It
is explained in Appendix D that when working with SH representations of particles, the
Euclidean distance between a data point and its nearest neighbor remains very small, even in
arbitrarily large dimensions. It is therefore surprising that the K-fold cross-validation selects
such high bandwidths. One issue with that reasoning is the KDE algorithm build-in norm
is that the Mahalanobis norm, not the Euclidean one. To understand this, observe that the
probability density attributed by the jth kernel in (4.46) is proportional to

exp
(
− 1

2h‖x− x
(j)‖2

Σ

)
.

It is shown in Appendix D that the Mahalanobis distance to a nearest neighbor keeps ar-
bitrarily increasing as more dimensions are considered, which forces the kernels to increase
their bandwidth accordingly.

Another potential issue with KDE is that the data may concentrate near low dimensional
manifolds. If such is the case, the KDE would still fail even if enough data were used to
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SH coefficients space

Virtual v̂(k)

Template ĉ

Directions d(k)

B1(ĉ)

Figure 5.17 Computation of the directions d(k) from a template particle ĉ to the kth virtual
particle v̂(k) generated by the kernel. B1(ĉ) refers to the Euclidean unit ball.

allow for a small optimal bandwidth. This is because, as illustrated in Figure 4.14, the KDE
attributes probability density in all directions, even in those that are not tangent to the
manifold, and results in samples that lie outside of the manifold.

To the best of our knowledge, no study has been conducted to date that shows that such
manifolds exist for populations of real particles. As a preliminary study, the following exper-
iment is conducted: a KDE kernel and aM-KDE kernel are both centered at an arbitrary
data point ĉ, which we shall refer to as the template particle. Note that we do not consider
the index (j) of the particle since it is totally arbitrary. On one hand, the bandwidth of the
KDE kernel is chosen arbitrarily, and on the other hand, the M-KDE covariance matrix
(4.53) is computed using the 20 nearest Euclidean neighbors of ĉ and without considering
isotropic noise (h = 0). New particles can be sampled from both kernels which yields the
virtual coefficients v̂(k). Notice that, by construction, any virtual particle sampled withM-
KDE lives on a 20-dimensional hyperplane. To get evidence that the data of river particles
is indeed concentrated near low-dimensional manifolds, we examine the directions

d(k) := v̂(k) − ĉ
‖v̂(k) − ĉ‖2

, (5.2)

which are illustrated in Figure 5.17. Looking at directions d(k) not only allows one to remove
any effect of the bandwidth in the KDE kernel, but it also exposes how both kernels explore
the boundary ∂B1(ĉ) of the neighborhood B1(ĉ) of the template particle. Note that B1(ĉ)
refers to the Euclidean unit ball around ĉ. By moving a small distance ε along the directions
given by both kernels, i.e. εd(k) + ĉ, we can see how both kernels explore the boundary
∂Bε(ĉ) around the template. Figure 5.18 shows particles that are obtained by moving a
small distance ε = 0.053 along each direction. We observe that the directions obtained by



98

KDE yield particles with multiple ripples making them look non-physical. However, since
M-KDE explores the SH coefficient space along directions that are approximately tangent
to the manifold, the resulting directions generate smoother and more realistic particles.

This result provides evidence that the SH coefficients are subject to local constraints that
dictate which directions yield realistic particles and which do not. For this reason, we hy-
pothesize that the coefficients are concentrated near a manifold MG, which we shall refer
to as the geology manifold. The reason for this terminology is that we suspect these local
constraints on variations can be attributed to perturbations that are allowed by geological
processes. See Figure 5.19 for an illustration of the geology manifold. Note that the particles
B, C, D, and E are all located at a fixed distance ε = 0.053 from the template particle A.
Applying non-physical perturbations cause the virtual particles B and C to lie outside of the
manifold.

We leave as future work the complete implementation of theM-KDE algorithm. This algo-
rithm could be validated on manufactured particles for which we know the exact dimension
of the manifolds their SH coefficients live on. The same method would afterwards be applied
to the river particles, and in case it succeeds in generating realistic grains, it would provide
strong evidence that exploiting manifold structure can improve generative models of vir-
tual particles. Alternatively, we could experiment with advanced generative models, known
to exploit manifolds structures in given datasets. For example, Variational Auto-Encoder,
Generative Adversarial Networks,M-flows Networks are flexible neural-network based gen-
erative models known to be able to estimate low-dimensional structure through the use of
latent variables that represent coordinates along the manifolds [28,35].
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Figure 5.18 Exploration of the boundary ∂Bε(ĉ) around a template particle using the di-
rections computed byM-KDE with 20 neighbors and no noise and KDE with an arbitrary
bandwidth. All virtual particles are located at a fixed distance ε = 0.053 from the template.
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Figure 5.19 Manifold hypohtesis applied on river particles.

Geology manifold expanded around a template particle A. The virtual particles B, C, D,
and E are all part of the boundary ∂Bε(A) with ε = 0.053. The particles B and C are

sampled outside the manifold, giving them unrealistic shapes, while the virtual particles D
and E are sampled close to the manifold, leading to more realistic particles.

5.3 Summary

The main conclusions and contributions from this chapter are as follows:

1. Validation of the GM clustering algorithm by applying it to the manufactured popula-
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tions of prolates, oblates, spheroids, cubes, and cylinders. The algorithm is indeed able
to perfectly identify the five distinct subpopulations;

2. Validation of the independence hypothesis H0 (4.41) on the box population, for which
it is known to hold;

3. Validation of the KDE statistical model on the box and diamond populations. It was
shown that the model is able to generate virtual particles that look similar to the
particles from the training data;

4. Use of the GM clustering algorithm to identify two subpopulations of river particles
with distinct geometry. In fact, one cluster contained smoother and more spherical
particles while the other contained particles with sharper corners and with an overall
flatter shape.

5. Use of the MI independence test to prove the dependence between particle size and
geometry on the river population. It was also observed that partionning the river
particles into the two clusters obtained with GM would yield fewer rejections of H0 than
on the whole data. This is early evidence that clustering can simplify the statistical
modeling of particles as shape and geometry could be independently approximated on
each cluster separately, but this needs to be confirmed with additional examples;

6. Demonstration that the KDE models fails on high-dimensional data of river particles as
cross-validation is forced to select ridiculously large bandwidths, despite the observation
from appendix D that particles are close to their nearest neighbors with respect to the
Euclidean norm;

7. Empirical evidence that the SH coefficients are subject to local constraints on their
directions of variation. To explain this observation, it is hypothesized that the particles
are concentrated near lower dimensional manifolds.

The following chapter includes concluding remarks as well as a discussion of futur
research avenues.
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1 Summary of Work

In this thesis, we have described a methodology to generate collections of particles based on
STM representations of grains obtained with micro-computed tomography. The methodology
involves several steps, the first one being the computation of the Spherical Harmonics (SH)
coefficients associated with actual particles. Such calculations require linear interpolation
of the particle triangulated surface and numerical integration. The SH coefficients are of
importance since they allow one to represent each particle in a population with a fixed
number of features, making comparisons between grains possible. Additionally, particles
are completely determined by their SH coefficients which could make them useful when
correlating particle morphology to DEM responses. The following step of the methodology
is preprocessing the data by normalizing the SH coefficients and by applying the Principal
Component Analysis (PCA). Normalization enables one to store all the information related
to particle size into a single coefficient, while PCA reduces the dimensionality of all other
coefficients. Afterwards, clustering algorithms can be used to identify subpopulations of
particles with similar geometries independently of their size. Clustering has the potential to
simplify the statistical modeling of particles by fitting a distinct model to each subpopulation.
Finally, generative models are fitted on each cluster, lending one the ability to sample virtual
SH coefficients which can be reconstructed into full particles.

Among the specific contributions of this research is the discovery that clustering algorithms
can be applied on SH representations of particles to uncover various underlying geometries
within a large population of particles. More precisely, the Gaussian Mixture is able to per-
fectly partition subpopulations of spheroids, oblates, prolates, cubes, and cylinders. More-
over, the same algorithm applied on a population of river particles identifies two subsets of
particles with very distinct morphologies.

Another important contribution discussed in this thesis is the use of generative models that
go beyond the multivariate Gaussian and Nataf transform, which are used in the geology
literature. The Kernel Density Estimation (KDE) method shows promise for the task of
generating superquadrics, which have a simpler geometry than real particles. Unfortunately,
the same algorithm does not perform well on high dimensional data of river particles, but a
modified version called Manifold KDE provides evidence that the SH coefficients are concen-
trated near low-dimensional manifolds. This observation could drive the next generation of
generative models who can exploit those low-dimensional structures.
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6.2 Future Research

The discussed methodology is subject to some limitations. The first one is the restriction
to star-shaped particles. It was observed that computing the SH representation of the ra-
dial parametrization of non star-shaped particles would yield large defects on the surface of
the particles. This shortcoming could potentially be overcome by considering the surface
parametrization of particles described in Section 1.3 instead of their radial parametriza-
tion. The whole methodology could then be extended to representations in terms of surface
parametrizations. However, some investigation would be required to determine if the sur-
face parametrization allows for a consistent representation between particles. This is not
immediately apparent since the mapping from the unit sphere to the particle surface is not
unique.

A second issue is maybe the use of spherical harmonics. Indeed, these are defined globally over
the unit sphere in the sense that their support is the whole sphere. Full support implies that
each mode may create global defects that must be cancelled out by subsequent harmonics.
This could translate into complex correlations between all SH coefficients. Using a basis
with compact support, e.g. spherical wavelets, could overcome this challenge. Indeed, since
these functions are hierarchical, undesirable defects introduced by a specific wavelet need
only be cancelled out by the wavelet descendants. This could reduce correlations between
the features of the data set as well as making the data more interpretable, considering that
each wavelet is known to work on a specific region of the particle. However, it is not clear how
PCA modes obtained from wavelet coefficients would differ from the same modes computed
using spherical harmonics. The reason the modes may end up being the same is that the
spherical harmonics can be represented with a linear combination of spherical wavelets and
vice versa. The PCA algorithm being linear, both representations could end up with the
same result. If such is the case, then working with spherical wavelets would be superficial
considering all the machine learning algorithms are applied on the principal components and
not on the original coefficients.

The next step of our research would be to fully implement the Manifold Kernel Density
Estimation algorithm and to apply it to river particles. If done successfully, this method
would then need to be compared to the two most popular models in the geology literature: the
multivariate Gaussian and the Nataf transform. In case we observe significant improvements,
this would give strong evidence that exploiting manifold structures in the framework of
spherical harmonics representations of particles can yield better generative models.

It would also be important to study data sets of grains with different geometries than river
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particles. Directly available to us are asphalt, rouge, and margelle particles which tend to be
less convex and less smooth on average than river particles. Studying those populations could
reveal if problems encountered by the statistical models are specific to a type of geometry.
For example, as discussed in Section 5.2.3, smooth particles could be harder to generate
despite having well behaved SH representations. Other particles that could be considered
include Leighton Buzzard Sand (LBS) and Highly Decomposed Granite (HDG), which are
widely used in the geology literature.

The research conducted in this thesis covers only a small aspect of a broad projet which
aims at running DEM simulations in order to relate the macroscopical behavior of a granular
material to specific geometric properties of its particles. It is therefore primordial to even-
tually run DEM simulations using the virtual assemblies created by our generative model.
Considering virtual particles are completely determined by their SH representation, the SH
coefficients could be potentially correlated with DEM responses. A similar experiment was
done in [18], where the authors ran DEM simulations using virtual particles generated with
spherical harmonics representations. Such simulations could be attempted with our genera-
tive model.

In the very long term, it would be also pertinent to explore the emerging field of geometric
deep learning [62]. This field is inspired by the recent accomplishments of convolutional neural
networks in image-based tasks such as object recognition and image generation. Researchers
in this domain are currently extending the classical convolutional neural networks so they
can work on functions defined over curved manifolds. In the geology literature, particles
are mainly represented as functions defined over the unit sphere, which is why these new
convolutional networks could be of interest.
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APPENDIX A PROOFS

A.1 Reconstruction loss

Our goal is to express the reconstruction loss in geometrical space. As a reminder, the
coefficients ŵ(j)

i are the reconstructions of the relative perturbations ĉ(j)
i (4.19). We start by

writing the loss (4.20) without matrix notation.

R(P,µ) = 1
Ns

Ns∑
j=1

d−1∑
i=1

∣∣∣ĉ(j)
i − ŵ

(j)
i

∣∣∣2

= 1
Ns

Ns∑
j=1

1
|c(j)

0 |2

d−1∑
i=1

∣∣∣c(j)
0 ĉ

(j)
i − c

(j)
0 ŵ

(j)
i

∣∣∣2

= 1
Ns

Ns∑
j=1

1
|c(j)

0 |2

d−1∑
i=1

∣∣∣c(j)
i − w

(j)
i

∣∣∣2 (
we define w(j)

i := c
(j)
0 ŵ

(j)
i

)

= 1
Ns

Ns∑
j=1

1
|c(j)

0 |2

∣∣∣c(j)
0 − c

(j)
0

∣∣∣2 +
d−1∑
i=1

∣∣∣c(j)
i − w

(j)
i

∣∣∣2


In the last step, we simply added zero to the expression. Next, we use Parseval’s equality to
express the loss in the geometric space:

R(P,µ) = 1
Ns

Ns∑
j=1

1
4π〈r(j)〉2

|c(j)
0 − c

(j)
0 |2 +

d−1∑
i=1

|c(j)
i − w

(j)
i |2


= 1
Ns

Ns∑
j=1

1
〈r(j)〉2

〈( d−1∑
i=0

c
(j)
i Yi(θ, φ)

︸ ︷︷ ︸
Original Surface : r(j)(θ,φ)

−
(
c

(j)
0 Y0(θ, φ) +

d−1∑
i=1

w
(j)
i Yi(θ, φ)

)
︸ ︷︷ ︸

Reconstructed surface : r(j)
w (θ,φ)

)2〉

= 1
Ns

Ns∑
j=1

〈 (
r(j) − r(j)

w

)2
〉

〈r(j)〉2
,

which concludes the proof.
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A.2 Cumulative Variance vs Reconstruction Loss

We demonstrate that the cumulative variance (4.26) and the reconstruction loss (4.20) are
related by an affine relation. The idea is to express the reconstruction loss in terms of the
principal components x(j)

k that are ignored when fixing m < d− 1.

R(Q,µ) = 1
Ns

Ns∑
j=1

d−1∑
i=m+1

|x(j)
i |2

=
d−1∑

i=m+1

1
Ns

Ns∑
j=1

|x(j)
i |2

=
d−1∑

i=m+1

σ2
i

=
d−1∑
i=1

σ2
i −

m∑
i=1

σ2
i

=
(
1− CV(i)

) d−1∑
i=1

σ2
i .

This relation illustrates how choosing a high cumulative variance relates to selecting a low
reconstruction loss. Indeed, as CV approaches unity, the reconstruction goes to zero. The
number of principal components is often heuristically chosen to yield a CV between 95% and

99%, which ensures that R(Q,µ) ≤ 5%
∑d−1

i=1
σ2
i .
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APPENDIX B FORMULAS FOR SPHERICAL HARMONICS

This appendix provides useful formulas associated with the spherical harmonics. These for-
mulas are assembled here for those who wish to reproduce this research. The formula from
Section B are taken from [25], while the formulas in Sections B and B are taken from [13].

B.1 Derivatives

We show a list of first-order derivatives of the spherical harmonics.

∂Y m
` (θ, φ)
∂θ

=


−m
√

2C(`,m)P |m|` (cosφ) sin(mθ) m > 0,

0 m = 0,

−m
√

2C(`,m)P |m|` (cosφ) cos(−mθ) m < 0,

(B.1)

∂Y m
` (θ, φ)
∂φ

=



√
2C(`,m) ∂P

|m|
` (cosφ)
∂φ

cos(mθ) m > 0,

C(`, 0)∂P
|m|
` (cosφ)
∂φ

m = 0,

√
2C(`,m) ∂P

|m|
` (cosφ)
∂φ

sin(−mθ) m < 0,

(B.2)

where

∂P
|m|
` (cosφ)
∂φ

= −1
sinφ

(
(`+ 1) cosφP |m|` (cosφ)− (`− |m|+ 1)P |m|`+1(cosφ)

)
. (B.3)

The second-order derivatives of the spherical harmonics are given by:

∂2Y m
` (θ, φ)
∂θ2 =


−m2√2C(`,m)P |m|` (cosφ) cos(mθ) m > 0,

0 m = 0,

−m2√2C(`,m)P |m|` (cosφ) sin(−mθ) m < 0,

(B.4)
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∂2Y m
` (θ, φ)
∂φ∂θ

=



−m
√

2C(`,m) ∂P
|m|
` (cosφ)
∂φ

sin(mθ) m > 0,

0 m = 0,

−m
√

2C(`,m) ∂P
|m|
` (cosφ)
∂φ

cos(−mθ) m < 0,

(B.5)

∂2Y m
` (θ, φ)
∂φ2 =



√
2C(`,m) ∂

2P
|m|
` (cosφ)
∂φ2 cos(mθ) m > 0,

C(`, 0) ∂
2P
|m|
` (cosφ)
∂φ2 m = 0,

√
2C(`,m) ∂

2P
|m|
` (cosφ)
∂φ2 sin(−mθ) m < 0,

(B.6)

where

∂2P
|m|
` (cosφ)
∂φ2 = 1

sin2 φ

(
(`+ 1 + (`+ 1)2 cos2 φ

)
P
|m|
` (cosφ)

− 2 cosφ(`− |m|+ 1)(`+ 2)P |m|`+1(cosφ)

+ (`− |m|+ 1)(`− |m|+ 2)P |m|`+2(cosφ) ). (B.7)

B.2 Inertia Tensor Components

The following formulas allow one to compute the inertia tensor of a shape described by
the surface function r(θ, φ). These formulas can be derived by expressing (3.7) in spherical
coordinates.
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I11 = 1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sinφ (1− sin2 φ cos2 θ)dφdθ

I22 = 1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sinφ (1− sin2 φ sin2 θ)dφdθ

I33 = 1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sin3 φ dφdθ

I12 = −1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sin3 φ cos θ sin θ dφdθ

I13 = −1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sin2 φ cosφ cos θ dφdθ

I23 = −1
5

ˆ 2π

0

ˆ π

0
r5(θ, φ) sin2 φ cosφ sin θ dφdθ.

(B.8)

B.3 Curvature of Radial Functions

This section explains how to compute the curvature of any smooth surface r(θ, φ) assuming
one can compute its first and second order derivatives. The formulas were verified and
adapted from [13], but we remark that a different convention for the angles θ and φ was used
and a few typos were present. In the formulas, all vectors shall be expressed in the classical
orthonormal basis. First, the position vector of the surface is

r(θ, φ) =
(
r(θ, φ) cos θ sinφ, r(θ, φ) sin θ sinφ, r(θ, φ) cosφ

)
. (B.9)

The first step is to compute the tangent vectors on the surface

rθ =
(
rθ cos θ sinφ− r sinφ sin θ, rθ sin θ sinφ+ r cos θ sinφ, rθ cosφ

)
, (B.10)

rφ =
(
rφ cos θ sinφ+ r cosφ cos θ, rφ sin θ sinφ+ r sin θ cosφ, rφ cosφ− r sinφ

)
. (B.11)

The second step is to compute the normal vector

n = rφ × rθ
||rφ × rθ||

, (B.12)

whose components are

n1 = S−1(rrθ sin θ − rrφ sinφ cosφ cos θ + r2 sin2 φ cos θ),

n2 = S−1(−rrθ cos θ − rrφ sinφ cosφ sin θ + r2 sin2 φ sin θ),

n3 = S−1(rrφ sin2 φ+ r2 cosφ sinφ),

(B.13)
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where S = r
√
r2
θ + r2

φ sin2 φ+ r2 sin2 φ is the surface Jacobian. We compute the partial
derivatives of the normal vector as

∂ni
∂θ

= S−1
(
ai − bi

(rθ
r

+ c

S2

))
, (B.14)

∂ni
∂φ

= S−1
(
di − bi

(rφ
r

+ e

S2

))
, (B.15)

where

a1 = r2
θ sin θ + rrθθ sin θ + rrθ cos θ − rθrφ sinφ cosφ cos θ − rrθφ sinφ cosφ cos θ

+ rrφ sinφ cosφ sin θ + 2rrθ sin2 φ cos θ − r2 sin2 φ sin θ,

a2 = −r2
θ cos θ − rrθθ cos θ + rrθ sin θ − rφrθ sinφ cosφ sin θ

− rrθφ sinφ cosφ sin θ − rrφ sinφ cosφ cos θ + 2rrθ sin2 φ sin θ + r2 sin2 φ cos θ,

a3 = rφrθ sin2 φ+ rrθφ sin2 φ+ 2rrθ sinφ cosφ,

b1 = rrθ sin θ − rrφ sinφ cosφ cos θ + r2 sin2 φ cos θ,

b2 = −rrθ cos θ − rrφ sinφ cosφ sin θ + r2 sin2 φ sin θ,

b3 = rrφ sin2 φ+ r2 sinφ cosφ,

c = r2(rθrθθ + rφrθφ sin2 φ+ rrθ sin2 φ),

d1 = rθrφ sin θ + rrθφ sin θ − r2
φ sinφ cosφ cos θ − rrφφ sinφ cosφ cos θ

− rrφ cos2 φ cos θ + rrφ sin2 φ cos θ + 2rrφ sin2 φ cos θ + 2r2 sinφ cosφ cos θ,

d2 = −rθrφ cos θ − rrθφ cos θ − r2
φ sinφ cosφ sin θ − rrφφ sinφ cosφ sin θ

− rrφ cos2 φ sin θ + rrφ sin2 φ sin θ + 2rrφ sin2 φ sin θ + 2r2 sinφ cosφ sin θ,

d3 = r2
φ sin2 φ+ rrφφ sin2 φ+ 4rrφ sinφ cosφ+ r2 cos2 φ− r2 sin2 φ,

e = r2(rθrθφ + rφrφφ sin2 φ+ rrφ sin2 φ+ r2
φ sinφ cosφ+ r2 sinφ cosφ).

(B.16)

To compute the curvature on the surface, we must calculate the first and second fundamental
forms of the surface [47]. The components of the first fundamental form can be computed
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via
E = 〈rφ, rφ〉 = r2

φ + r2,

F = 〈rθ, rφ〉 = rθrφ,

G = 〈rθ, rθ〉 = r2
θ + r2 sin2 φ.

(B.17)

The components of the second fundamental form can be computed with

L = −〈rφ,nφ〉,

M = −〈rθ,nφ〉 = −〈rφ,nθ〉,

N = −〈rθ,nθ〉.

(B.18)

The Weingarten matrix is therefore given as

W =
E F

F G

−1 L M

M N

 . (B.19)

The eigenvalues of W are the principal curvatures κ1, κ2. Its determinant and trace provide
the Gaussian and mean curvatures:

H = LG+NE − 2MF

2(EG− F 2) , K = LN −M2

EG− F 2 . (B.20)
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APPENDIX C CORRELATION AND INDEPENDENCE TESTS

In this appendix, we shall verify the Spearman and the Mutual Information (MI) tests on
simple bivariate distributions. The significance level α = 5% was used for every test and
each dataset was generated with 500 samples.

C.1 Uniform distributions

Let X, Y ∼ U(0, 1) be sampled independently, see Figure C.1.
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Figure C.1 Independence test for a Uniform distribution.

The Spearman correlation is -0.03 with a p-value of 0.5, which means that the data is uncor-
related. The mutual information is 0.006 with a p-value of 0.4, which implies that the data
is independent.

C.2 Linear Relationship

Let X ∼ U(0, 10) and Y = X + ε with ε ∼ N(0, 1), see Figure C.2.
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Figure C.2 Independence test for linear relationship.

We compute a Spearman correlation of 0.95 with a p-value of 1.17 × 10−263, which shows
very strong correlation. The mutual information is 1.134 with a p-value of zero. A look at
the Figure C.2 (b) demonstrates that the Mutual Information score is located far away from
the sampling distribution so we can safely state that X and Y are independent.

C.3 Quadratic Relationship

Let X ∼ U(0, 10) and Y = X2 + ε where ε ∼ N(0, 1), see Figure C.3.

−3 −2 −1 0 1 2 3
X

−2

0

2

4

6

8

10

Y

(a) Joint distribution of X and Y

0.0 0.2 0.4 0.6 0.8 1.0
Mutual Information

0

20

40

60

80

100

D
en

si
ty

MI[X, Y]

Sampling Distribution ∼ H0

(b) Sampling distribution for MI

Figure C.3 Independence test for quadratic relationship.

We get a correlation of -0.01 with a p-value of 0.958, which suggests that the data is non-
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correlated. The Mutual Information score is 0.958 with a p-value of zero.

C.4 Independent Gaussians

Let X, Y ∼ N(0, 1) be independent variables, see Figure C.4.

−3 −2 −1 0 1 2
X

−3

−2

−1

0

1

2

3

Y

(a) Joint distribution of X and Y

0.00 0.02 0.04 0.06 0.08
Mutual Information

0

20

40

60

80

100

120

D
en

si
ty

MI[X, Y]

Sampling Distribution ∼ H0

(b) Sampling distribution for MI

Figure C.4 Independence test for independent Gaussians.

The Spearman correlation is -0.019 with a p-value of 0.439, which indicates that the data is
not correlated. The mutual information is 0 with a p-value of 0.439. The two test jointly
show evidence that the data is independent.

C.5 Correlated Gaussians

Let (X, Y ) ∼ N(0,Σ) be correlated variables, see Figure C.5.
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Figure C.5 Independence test for correlated Gaussians.
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In that case, we measure a correlation of -0.77 with a p-value of 1.23×10−99, which indicates
that the data is negatively correlated. The Mutual Information score is 0.54 with a p-value
of 0, which states that the data independent.

C.6 Square-Shaped Distribution

We can sample X, Y from a diamond centered at the origin, see Figure C.6. These variables
are dependent by construction.
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Figure C.6 Independence test for square-shaped distribution.

The observed Spearman correlation is -0.004 with a p-value of 0.925, which suggests that the
data is un-correlated. The mutual information is 0.301 with a p-value of zero, which confirms
dependence.
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APPENDIX D NORMS IN `2(N)

Two decades ago, multiple studies demonstrated that, for high dimensional data, the con-
cepts of proximity and nearest neighbor may become ambiguous. For example, the authors
of [66] argued that the meaningfulness of said concepts becomes highly dependent on the
choice of the norm. They provided theoretical and empirical evidence that using fractional
norms compared with Manhattan or Euclidean norms can improve the performance of clus-
tering and K-Nearest Neighbors algorithms for high dimensional tasks. In this appendix,
we examine these notions by comparing how the Euclidean and Mahalanobis norms behave
when restricted to the Hilbert space `2(N),

`2(N) =
{
c ∈ R∞

∣∣∣ ∞∑
i=1
|ci|2 <∞

}
, (D.1)

the space in which the SH coefficients belong.

D.1 Ill-definition of the Mahalanobis norm

In this section, we demonstrate that the Mahalanobis norm is not always defined in the space
`2(N). By construction, the infinite Euclidean norm

‖c‖2
`2 :=

∞∑
i=1
|ci|2, (D.2)

is always finite on the SH coefficients. The Mahalanobis norm unfortunately does not share
this property because it can be shown to be infinite for some sequences in `2(N). As a
reminder, the Mahalanobis norm is defined as

‖c‖2
Σ = cTΣ−1c, (D.3)

where Σ is the covariance matrix of the data. For example, let us sample the SH coefficients
from an infinity of independent uniform distributions, ci ∼ U([0, 1

i
]), i = 1, 2, . . . . All
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sequences sampled from this distribution are in `2(N) since

‖c‖2
`2 =

∞∑
i=1

|ci|2

≤
∞∑
i=1

1
i2

= π2

6 <∞.

(D.4)

The covariance matrix of this distribution is diagonal with diagonal elements Σ(i, i) = 1
12i2 .

Note that the variances diminish as one goes further in the sequence. Though this example
is contrived, the reduction of variance always occurs when studying datasets of real particles.
Let c = (1, 1/2, 1/3, · · · , 1/i, · · · ), its Mahalanobis norm is infinite,

‖c‖2
Σ =

∞∑
i=1

|cj|2

Σ(i, i)

=
∞∑
i=1

1
i2Σ(i, i)

=
∞∑
i=1

12i
2

i2

=
∞∑
i=1

12 =∞

(D.5)

This shows that the Mahalanobis norm can potentially be undefined when working with an
infinity of SH coefficients. In this example, the Mahalanobis norm behaves badly because of
the division by Σ(i, i) which cancels out the property that the amplitude of the coefficients
tends rapidly to zero.

The previous analysis considers infinity of SH coefficients which is not possible in practice.
However, similar behavior of the Euclidean and Mahalanobis norms can be observed when
using a steadily increasing number of SH coefficients. In following experiment, two random
river particles are selected and the distance between their relative perturbations ĉi, i 6= 0 is
computed using only d dimensions. Note that the relative perturbations also live in `2(N)
since they are simply a scaled version of the SH coefficients. Figure D.1 illustrates the results
for various values of d using the Euclidean and Mahalanobis norms. Figure D.1(a), shows
that after d = 50 dimensions, the Euclidean norm reaches a plateau, which is expected since
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Figure D.1 Distance computed between two arbitrary river particles for various.

lim
d→∞

d∑
i=1
|c(j)
i − c

(k)
i |2 = ‖c(j) − c(k)‖2

`2 <∞ (D.6)

In Figure D.1(b), we observe that the Mahalanobis distance between the data points keeps
increasing with respect to the dimension d.

D.2 Proximity and Nearest Neighbors

Typically, as the number of dimensions increases, the data points become sparsely distributed
in feature space, making it harder to identify meaningful notions of proximity. Proximity can
be investigated by studying computations of the nearest neighbors of an arbitrary query point
ĉ. One common measure used to characterize the meaningfulness of proximity is the relative
contrast [66], which is computed using the minimum and maximum distances between the
query point ĉ and all data points ĉ(j), j = 1, 2, . . . Ns, that is

dmin := min
1≤j≤Ns

‖ĉ− ĉ(j)‖ (D.7)

dmax := max
1≤j≤Ns

‖ĉ− ĉ(j)‖. (D.8)

The relative contrast is then defined as

RC(ĉ) = dmax − dmin

dmin
= 1− dmax/dmin

dmax/dmin
, (D.9)

which is a strictly decreasing function of the ratio dmax/dmin. The nearest neighbors search of
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Figure D.2 Minimal and Maximal distances from a query point as a function of dimensionality.

a query point ĉ is said to be meaningful if the relative contrast RC(ĉ) is large, meaning that
the nearest particle appears much closer than the one that appears farthest. Unmeaningful
nearest neighbor search occurs when the contrast is poor, which happens when the nearest
and farthest neighbors are almost at the same distance from ĉ.

The following experiment is conducted to study the relative contrasts using both Euclidean
and Mahalanobis norms: a random river particle is chosen as query points and the minimum
and maximal distances dmax and dmin are calculated for various dimensions, see Figure D.2.
By studying Figure D.2(a), we see that the distance to the nearest neighbor dmin converges
quickly to the small value 0.1. Similar behavior has been observed for other river particles,
which suggests that the river particles are very close to their nearest neighbors with respect
to the Euclidean norm. Comparing the minimal distance to dmax, the contrast of this specific
query point converges approximately to 3.5. Results from Figure D.2(b) are quite different.
First of all, the minimal distance dmin keeps increasing as d increases. This means that
neighboring particles of ĉ are pulled away from the query point as dimensionality grows.
Note that we found that this behavior also occurs for other query points. When considering
the maximal dimension, the observed contrast is around 0.85 which is smaller than the one
obtained with the Euclidean norm. This is an indicator that the notion of nearest neighbor
is better defined with the Euclidean norm than with the Mahalanobis norm.
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