
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Towards Understanding Modern Multi-Language Software Systems

MANEL GRICHI
Département de génie informatique et génie logiciel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie informatique

Août 2020

c© Manel Grichi, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Towards Understanding Modern Multi-Language Software Systems

présentée par Manel GRICHI
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Giuliano ANTONIOL, président
Bram ADAMS, membre et directeur de recherche
Houari SAHRAOUI, membre
Ghizlane ELBOUSSAIDI, membre externe

iii

DEDICATION

To my parents
To my grand-mother

To my husband
To my sister and my brother

To my friends
For their endless love, support, and encouragement

iv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Professor Bram Adams, for his
exceptional support, encouragement, and for pushing further my confidence to finish my
Ph.D. I am thankful for all the opportunities he gave me, his guidance, as well as all the
professionalism he showed while dealing with me.

My sincere thanks go also to my internship supervisor, Fehmi Jaafar, for allowing me to be an
intern in the Computer Research Institute of Montréal (CRIM). I believe that his effort and
support throughout the thesis, his endless advice, and his contributions led me to complete
my Ph.D. study. I would also like to convey my deepest appreciation to the CRIM, especially
to Mr.Hans Bherer, for accepting me among their team and for the professional environment
that they have.

I would like also to thank my thesis committee, Professor Giuliano Antoniol, Professor Houari
Sahraoui, and Professor Ghizlane ElBoussaidi for accepting my invitation to be jury members.

I am thankful to all my co-authors, especially Ellis Emmanuel Eghan, for their endless help
and guidance in getting this thesis to an end.

Furthermore, not to forget all my friends and colleagues for sharing ideas, productive discus-
sions, joy, and happiness.

Last but not least, I’m so grateful and thankful to my beloved family for their endless love
and sacrifice. You were my strengths through these difficult four years and without you, this
day would never have existed and I would never get to achieve my dream. I love you and
may God bless you all.

v

RÉSUMÉ

Aujourd’hui, la plupart des applications et sites Web tels que Google et Facebook sont des
systèmes multi-langages. Google est codé en C, C++, Go, Java, Python et JS. Facebook,
quant à lui, utilise Hack, PHP, Python, C++, Java, Erlang, D, Haskell et JS. De plus, de
précédentes études ont permis de constater que les développeurs PHP utilisaient régulière-
ment deux langages en plus du PHP. Les développeurs Java utilisent également le C/C++
avec du code Java à travers la Java Native Interface (JNI) qui permet d’appeler des fonctions
natives à partir de méthodes Java et des méthodes Java à partir des fonctions natives. De
plus, les développeurs d’applications Android préfèrent utiliser Android NDK (qui permet
d’utiliser du code C/C++ avec Android) en plus de Java, plutôt que d’utiliser uniquement
Java. Dans tous ces exemples, on observe le phénomène du développement multi-langage.

Bien qu’il y ait, le plus souvent, un seul langage principal (Java ou C/C++) avec divers
contributions dans d’autres langages (par exemple, bash ou make), les logiciels modernes
sont de plus en plus hétérogènes dans le sens où ils combinent de multiples langages de
programmation qui interagissent d’une façon significative avec le langage principal. Le déve-
loppement multi-langage représente une bonne pratique dans le développement de logiciels
car il tire profit des bibliothèques écrites dans d’autres langages de programmation et de
la réutilisation de code, ce qui permet un gain en terme de temps de développement et de
budget des projets.

Par contre, puisque le développement multi-langage consiste à combiner des langages ayant
des règles de programmation différentes, cela contribue à rendre le code plus difficile à com-
prendre et, surtout, à rendre plus difficile la maintenance du code, la synchronisation des
dépendances entre les différents composants, la communication entre langages, la gestion des
exceptions, et l’analyse d’impact des changements. Ces difficultés ne sont pas entierement
abordées dans la littérature. Les principales préoccupations des développeurs identifiées dans
la littérature sont : l’analyse d’impact des changements ainsi que son lien avec les dépendances
de composants, et le choix des pratiques de programmation appropriées au multi-langage.

Ainsi, dans cette dissertation, nous prenons d’abord du recul pour mieux comprendre com-
ment et pourquoi les développeurs optent pour le développement multi-langage avant d’éva-
luer les défis associés à ce type de développement et son impact sur la qualité et la sécurité
des logiciels. Pour cela, nous avons élaboré plusieurs études empiriques qualitatives et quan-
titatives sur des projets multi-langages. Nous avons d’abord réalisé une étude systématique
de la littérature où nous avons tenté de comprendre la démarche du développement du multi-

vi

langage, quels langages à combiner, quelles techniques permettent cette combinaison, quand
il est préférable de faire appel au développement multi-langage, et quels défis et problèmes
rencontrent les développeurs durant ce processus. Cette étude nous amené à établir principa-
lement que : (1) Java Native Interface est la technique la plus utilisée dans le développement
multi-langage depuis 2010 et que (2) l’analyse d’impact de changement et les bonnes prac-
tiques sont les principales préoccupation des utilisateurs du développement du multi-langage.

Afin de mieux comprendre comment les développeurs gèrent le développement multi-langage,
nous avons, lors d’une seconde étude, mené une analyse qualitative afin de comprendre l’uti-
lisation de Java Native Interface par les développeurs (un sous-type de développement multi-
langage). Nous avons identifié 11 bonnes pratiques et nous avons investigué leur présence dans
100 projets JNI. Il s’agit d’une liste de bonnes pratiques que nous recommandons fortement
aux développeurs durant le développement JNI.

Nous nous sommes ensuite intéressés à la seconde principale préoccupation des développeurs
multi-langages, c’est l’analyse d’impact des changements. Nous avons mené une enquête où
nous avons sondé 69 développeurs expérimentés, ensuite nous avons interrogé par un appel
conférence huit d’entre eux. Nous leur avons demandé quelles sont les motivations des dé-
veloppeurs pour l’analyse d’impact des changements, comment ils gèrent les changements
dans les systèmes multi-langages. En particulier, nous avons enquêté sur les outils, les tech-
niques et les méthodes suivies par les développeurs pour l’analyse d’impact des changements.
Également nous avons interrogé les participants sur les difficultés auxquelles ils font face
lorsqu’ils mènent ces analyses et comment celles-ci se répercutent sur la qualité et la sécurité
des systèmes. D’après le sondage et les entrevues, nous avons principalement constaté que
les développeurs rencontrent des difficultés au niveau de l’analyse des dépendances du code
à travers les différents composants écrits dans différents langages de programmation.

À partir de cela, nous avons mené une quatrième étude empirique sur dix projets Java Native
Interface afin d’identifier leurs dépendances multi-langages et leur impact sur la qualité et
la sécurité logicielles. Nous avons également introduit deux approches pour l’analyse des dé-
pendances multi-langages : SMLDA, analyseur des dépendances statiques multi-langages qui
réalise une analyse des dépendances statiques à l’aide d’heuristiques et de régles conventions
et H-MLDA, analyseur des dépendances historiques multi-langages qui réalise une analyse
des dépendances historiques.

Au cours de cette thèse, la popularité croissante de l’intelligence artificielle (IA) a commencé
à se répercuter sur le domaine du développement multi-langage, conduisant à l’adoption
concrète de dizaines de frameworks d’apprentissage automatique multi-langages. Ainsi, dans
notre dernière étude, nous avons analysé la prévalence du développement multi-langage dans

vii

les frameworks d’apprentissage automatique afin de comprendre si ces frameworks suivaient
la tendance du développement multi-langage, en nous posant la question si la pratique du
développement multi-langage augmente-t-elle la difficulté à gérer les frameworks d’appren-
tissage automatique ? Nous avons donc analysé empiriquement dix projets de frameworks
d’apprentissage automatique multi-langage et dix projets traditionnels dont nous avons étu-
dié l’impact du développement multi-langage en terme de taux d’acceptation, de la durée du
processus de révision et de la propension aux bogues introduits aux pull-requests. Nous avons
observé une corrélation entre le développement multi-langage et les frameworks d’apprentis-
sage automatique. Le développement multi-langage influence les contributions du logiciel
(pull-requests) aux frameworks d’apprentissage automatique dans la mesure où la nature
multi-langage de ces frameworks est due à la collaboration de ces deux groupes de personnes
(développeurs en génie logiciel et data scientist).

Notre thèse a validé que, malgré les divers avantages du développement multi-langage, une at-
tention particulière et une bonne manipulation sont encore nécessaires pour les développeurs
afin d’en surmonter les limitations et inconvénients du développement du multi-langage. Nous
proposons aux développeurs une liste de bonnes pratiques afin de les aider à augmenter la
qualité de leurs programmes. Nous avons constaté que le maintien du système multi-langage
présente un défi, en particulier en ce qui concerne l’analyse des dépendances. Nous constatons
que l’augmentation des dépendances multi-langages entraine le risque d’introduire des bogues.
Nous avons ainsi proposé deux approches (statique et historique) pour l’analyse des dépen-
dances multi-langages afin d’aider les développeurs dans le développement multi-langage.
Nous avons observé que ce type de développement avait un impact sur les contributions du
logiciel (les pull-requests) et menait à une augmentation du pourcentage du rejet.

viii

ABSTRACT

Today, most popular applications and websites such as Google and Facebook are multi-
language systems. Google is developed with C, C++, Go, Java, Python, and JS, while
Facebook is using Hack, PHP, Python, C++, Java, Erlang, D, Haskell, and JS. Furthermore,
previous research studies reported that PHP developers regularly use two languages besides
PHP. Java developers also use C/C++ with Java code through the Java native interface
(JNI) that allows to call native functions from Java methods and Java methods from native
functions. Moreover, Android application developers prefer to use the Android NDK (allows
to use C/C++ code with Android) along with Java compared to using only Java. In all these
examples, we observe the phenomenon of multi-language development.

While in many cases, there is one clear main language (e.g., Java or C/C++) with various
smaller contributions from other languages (e.g., bash or make), increasingly more modern
software are heterogeneous in the sense that they are composed of multiple programming
languages that interact with the host language to a large extent. Multi-language development
presents a good practice for software development because it takes advantage of existing
libraries written in other programming languages (code reuse), which leads the industry to
save development time and project budgets.

As multi-language development consists of combining languages with different semantics and
lexical programming rules, this leads to complicate the code comprehension and, especially,
the code maintenance, i.e., dependency tracking, data synchronisation between the different
components, communication between the combined languages, exception management, and
change impact analysis. Not all of these challenges are discussed in the literature. Based
on the literature, the major concerns of developers consist of: Change impact analysis and
its relation with component dependencies and the adequate choice of multi-language design
patterns.

Hence, in this thesis, we first take a step back to better understand how and why developers
opt for multi-language development, before evaluating the challenges related to this kind
of development and their impact on software quality and security. For these purposes, we
conducted several qualitative and quantitative empirical studies on large open-source multi-
language software systems. We first conducted a systematic literature review study where
we tried to understand the multi-language process, i.e., what are the languages available
to be combined, what are the techniques allowing that combination, when is it preferable
to use multi-language development, and the challenges and problems developers face during

ix

this process. We mainly identified from this study that (1) Java Native Interface is the
technique most commonly used in multi-language development since 2010 and (2) change
impact analysis and design patterns are the major concerns of multi-language users.

To better understand how developers manage their multi-language development, in a second
study, we conducted a qualitative analysis to understand the usage of Java Native Interface
by developers, i.e., a sub-type of multi-language development. For that, we identified a set of
11 practices where we investigated their usage in 100 JNI systems. This set presents a list of
best practices that we highly recommend developers to follow during their JNI development.

We then focused on the major concern of the multi-language developers i.e., change im-
pact analysis. We conducted a survey where we surveyed 69 experienced developers and
interviewed eight of them. We asked about the developers’ motivations for change-impact
analysis, how they deal with changes in multi-language systems. In particular, we investigate
tools, techniques, and methodologies followed by developers in industry for change-impact
analysis and we also inquire about the difficulties that they face when conducting such anal-
ysis and how those reflect in the system quality and security. From the survey and the
interview, we mainly identified that developers are suffering from the difficulties of tracking
code dependencies across components written in different programming languages.

Based on that, we conducted a fourth study where we performed an empirical study on ten
large open-source Java Native Interface software systems to identify their multi-language
dependencies and the impact on software quality and security. We also introduced two
approaches for multi-language dependency analysis: S-MLDA (Static Multi-language De-
pendency Analyzer) that performs a static dependency analysis using heuristics and naming
conventions, and H-MLDA (Historical Multi-language Dependency Analyzer) that performs
historical dependency analysis.

During the course of my thesis, the increasing popularity of Artificial Intelligence (AI) has
started to impact the area of multi-language development in the form of dozens of multi-
language machine learning frameworks being developed and adopted in practice. Thus, in
the last study of this thesis, we were interested to analyze the prevalence of multi-language
development in machine learning frameworks in order to understand to what extent these
frameworks are following the multi-language development trend. Does the practice of multi-
language development increase the difficulty of dealing with machine learning frameworks?
Hence, we empirically analyze the ten largest open-source multi-language machine learning
frameworks and the ten largest open-source traditional systems to study the impact of multi-
language development in terms of the volume, acceptance rate, review process duration,
and bug-proneness of pull requests. We identified a correlation between the existence of

x

multi-language development with machine learning frameworks. Multi-language development
influences software contributions (pull requests) to machine learning frameworks. To some
extent, the multi-language nature of these frameworks is due to the collaboration of these
two groups of people, i.e., software developers and data scientists.

Our thesis confirmed that, despite the various advantages that offers multi-language develop-
ment, it still needs special attention by developers to overcome the associated limitations and
inconveniences. We proposed a set of best practices to the multi-language developers to help
them increase the quality of their development. We found that maintaining a multi-language
system is challenging, in particular in terms of dependency analysis. Our findings show that
the more multi-language dependencies, the higher the risk of bug introduction. Thus, we
proposed two approaches (Static and Historic) for multi-language dependency analysis to
support developers within their multi-language development. We also find that this kind of
development has an impact on the software contributions (i.e., pull-requests) and leads to
an increase in the percentage of rejected contributions.

xi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF APPENDICES . xix

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Hypothesis . 4
1.2 Summary of Thesis Contributions . 5

1.2.1 Contribution of Chapter 4 (Sub-hypothesis 1) 5
1.2.2 Contribution of Chapter 5 (Sub-hypothesis 1) 7
1.2.3 Contribution of Chapter 6 (Sub-hypothesis 2) 7
1.2.4 Contributions of Chapter 7 (Sub-hypothesis 2) 8
1.2.5 Contribution of Chapter 8 (Sub-Hypothesis 3) 9

1.3 Organization of the Thesis . 9

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 11
2.1 Background . 11

2.1.1 Java Native Interface . 11
2.1.2 Python-C-extension . 13

2.2 Literature Review . 14
2.2.1 Multi-language Development in Traditional Systems 14
2.2.2 Change Impact Analysis in Multi-language Systems 15
2.2.3 Multi-language Development in Machine Learning Frameworks 19

2.3 Chapter Summary . 20

xii

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS . 21
3.1 Part 1 : Why and how is multi-language development used in practice ? (Chap-

ters 4 and 5) . 22
3.1.1 Investigating multi-language usage, the possible combined languages,

and the techniques used . 22
3.1.2 Studying the best practices in multi-language development 23

3.2 Part 2 : How can we overcome the challenge of change impact analysis in
multi-language development ? (Chapters 6 and 7) 23
3.2.1 Investigating the change impact analysis from developers’ perspective 24
3.2.2 Investigating the inter-language dependencies in multi-language systems 25

3.3 Part 3 : What is the impact of multi-language development in machine learning
vs. traditional systems ? (Chapter 8) . 25

3.4 Chapter Summary . 26

CHAPTER 4 WHY AND HOW IS MULTI-LANGUAGE DEVELOPMENT USED IN
PRACTICE? (Sub-hypothesis 1) . 27
4.1 Chapter Overview . 27
4.2 SLR Design . 28

4.2.1 Automatic analysis . 29
4.2.2 Manual analysis . 31

4.3 SLR results . 33
4.4 Discussion . 39
4.5 Threats to validity . 39
4.6 Chapter Summary . 40

CHAPTER 5 IDENTIFICATION OF THE PRACTICES OF JAVA NATIVE INTER-
FACE DEVELOPMENT (sub-hypothesis 1) . 42
5.1 Chapter Overview . 42
5.2 Study Design . 42

5.2.1 Data collection . 42
5.2.2 Data analysis . 43
5.2.3 Practices identification . 43

5.3 Study Results : Catalogue of identified practices 46
5.4 Discussion . 51
5.5 Threats to validity . 54
5.6 Chapter Summary . 55

xiii

CHAPTER 6 HOW IS CHANGE IMPACT ANALYSIS PERFORMED IN THE CONTEXT
OF MULTI-LANGUAGE DEVELOPMENT? (Sub-hypothesis 2) 56
6.1 Chapter Overview . 56
6.2 Study design . 59

6.2.1 Questionnaire Design . 59
6.2.2 Questionnaire implementation . 59
6.2.3 Interview Sessions . 60
6.2.4 Participant Selection . 61

6.3 Data Analysis . 62
6.3.1 Answer Collection . 62
6.3.2 Coding Method . 62

6.4 Results . 64
6.4.1 Demographics . 64
6.4.2 Multi-language in Companies . 69
6.4.3 Challenges of change-impact analysis in multi-language systems . . . 71
6.4.4 Methods used for change-impact analysis in Multi-language systems . 73
6.4.5 Consequences of a lack of change impact analysis in multi-language

systems . 76
6.4.6 Requirements for a multi-language change-impact analysis approach . 78
6.4.7 Scenario of change-impact analysis in multi-language systems 79

6.5 Discussion . 82
6.6 Threats to validity . 84
6.7 Chapter Summary . 86

CHAPTER 7 EMPIRICAL STUDY ON THE INTER-LANGUAGE DEPENDENCIES
IN THE JAVA NATIVE INTERFACE (Sub-hypothesis 2) 87
7.1 Chapter Overview . 87
7.2 Study Design . 88

7.2.1 Static dependency analysis . 90
7.2.2 Historical Dependency Analysis . 93
7.2.3 Quality Issues and Security Vulnerabilities 94

7.3 Results . 96
7.4 Discussion . 103
7.5 Threats to validity . 105
7.6 Chapter Summary . 106

CHAPTER 8 WHAT IS THE IMPACT OF MULTI-LANGUAGE ADOPTION IN

xiv

MACHINE LEARNING FRAMEWORKS VS. TRADITIONAL SYSTEMS? (Sub-
hypothesis 3) . 108
8.1 Chapter Overview . 108
8.2 Methodology . 109

8.2.1 Project selection and cloning . 109
8.2.2 Project categorisation . 110
8.2.3 Preprocessing and filtering . 110
8.2.4 Pull request analysis . 112
8.2.5 Statistical tests . 112

8.3 Results . 113
8.4 Discussion . 123
8.5 Threats to validity . 124
8.6 Chapter Summary . 125

CHAPTER 9 CONCLUSION . 126
9.1 Sub-hypothesis One (Chapters 4 and 5) . 127
9.2 Sub-hypothesis Two (Chapters 6 and 7) . 128
9.3 Sub-hypothesis Three (Chapter 8) . 130
9.4 Limitations . 131
9.5 Future work . 132

REFERENCES . 136

APPENDIX . 146

xv

LIST OF TABLES

Table 4.1: Number of papers published according to the respective conferences/jour-
nals. 33

Table 5.1: Metrics of the top 20 of the collected JNI systems . 44

Table 5.2: Lessons learned. 53

Table 6.1: Illustration of our Data Encoding process . 65

Table 6.2: Interviewees’ demographics. 69

Table 6.3: Requirements needed for a multi-language CIA tool. 78

Table 6.4: Different tests used to analyze the impact of changes. 82

Table 7.1: List of the studied multi-language software systems. 89

Table 7.2: Number of Mono-/Multi-language Commits. 97

Table 7.3: Proportions of identified inter-LD and intra-LD.. 97

Table 7.4: Number of (In)Direct Inter-language Dependencies. 100

Table 7.5: Percentage of Bugs and vulnerabilities within co-changes.. 100

Table 8.1: Selected case study projects, grouped by category and, per category, ordered
from largest to smallest in terms of total number of lines code. 111

Table 8.2: P-value of the Mann-Whitney U test. 121

xvi

LIST OF FIGURES

Figure 1.1: Overview of the thesis methodology. 6
Figure 2.1: HelloWorld Example : JNI Method Declaration [1] . 12
Figure 2.2: HelloWorld Example : Implementation Function [1] . 12
Figure 2.3: Ntuple example : Python Code [2] . 13
Figure 2.4: Ntuple example : C Code [2]. 13
Figure 4.1: Overview of the literature review process . 29
Figure 4.2: Author affiliations (countries). 32
Figure 4.3: Multi-language development over time . 34
Figure 4.4: Main topic categories . 35
Figure 4.5: Major challenges of multi-language development . 36
Figure 4.6: The 20 most common programming language combinations discussed in
literature . 37
Figure 4.7: Techniques used for the integration of languages . 38
Figure 5.1: An overview of the steps followed to identify the JNI practices. 45
Figure 5.2: Safe loading library (OpenJ9) [1] . 47
Figure 5.3: Load library for different OS (Frostwire) [1]. 47
Figure 5.4: Abstracting library loading (Conscrypt) [1] . 48
Figure 5.5: Using relative path (JatoVm) [1] . 48
Figure 5.6: Use list of probable paths (JNA) [1] . 49
Figure 5.7: Assuming safe return value of JNI (libgdx) [1]. 49
Figure 5.8: Assuming safe return value of JNI (Libgdx) [1] . 50
Figure 5.9: Converting a Java String into a C String (Telegram) [1] 50
Figure 5.10: Releasing the C string (Telegram) [1] . 51
Figure 5.11: Obtaining a global reference from a local reference [1] 51
Figure 5.12: Native exceptions using ExceptionOccurred [1] . 52
Figure 5.13: Use proper way of caching FieldIDs (Jatovm) [1] . 52
Figure 6.1: An overview of the followed methodology. 58
Figure 6.2: Participants countries . 66
Figure 6.3: Education level . 66

xvii

Figure 6.4: Work positions . 66
Figure 6.5: Work experience years . 67
Figure 6.6: Companies field . 67
Figure 6.7: Companies size . 68
Figure 6.8: Projects developed per year . 68
Figure 6.9: Software development methodologies. 68
Figure 6.10: Developer’s top ten programming language competences 68
Figure 6.11: Number of Multi-language systems per year. 70
Figure 6.12: Percentage of Multi-language code change reasons . 71
Figure 6.13: Multi-language change impact analysis challenge . 72
Figure 6.14: Percentage of Means followed by developers on their CIA 74
Figure 6.15: Multi-language scenario [3] . 80
Figure 7.1: Percentage of programming languages used in each software system.. 90
Figure 7.2: Dependency call graph of a part of Conscrypt generated by S-MLDA. 90
Figure 7.3: S-MLDA approach. 91
Figure 7.4: S-MLDA matching rules. (M-Java : Java method name ; M-C : C function name ;

RT-Java : Java method return type ; RT-C : C function return type ; P-Java : Java method parameters ;

P-C : C function parameters ; PT-Java : Java method parameter types ; PT-C : C function parameter

types) . 92
Figure 7.5: Mono/multi-language co-changes analysis. 93
Figure 7.6: H-MLDA approach. 95
Figure 7.7: Identification of indirect dependencies. 96
Figure 7.8: Percentage of Buggy dependencies. 99
Figure 7.9: Percentage of Quality and security issues detected in intra- and inter-
language dependencies. 101
Figure 7.10: Percentage of Quality and security issues detected in (in)direct inter-
language dependencies. 102
Figure 7.11: Percentage of Vulnerable dependencies. 103
Figure 7.12: Distribution of the five security vulnerabilities categories. 106
Figure 8.1: Overview of the methodology. 110
Figure 8.2: Percentage of the programming languages used. 114
Figure 8.3: Total number of pull requests. 115

xviii

Figure 8.4: Distribution of the percentage of multi-language pull requests 115
Figure 8.5: Percentage of accepted pull requests.. 116
Figure 8.6: Acceptance rate in multi-/mono-language pull requests. 117
Figure 8.7: Period taken (in hours) to accept/reject a multi-/mono-PR. (It should be
noted that two outliers were removed from Cat-III’s Accept Mono-PR (value = 1352.5)
and Reject Mono-PR (value = 1552.5) to improve the presentation of the figure.) 118
Figure 8.8: Comparing period to accept/reject a multi-/mono-PR according to the
changed files.. 120
Figure 8.9: Number of contributors per software system. 122
Figure 8.10: Percentage of Bug-inducing pull requests.. 123

xix

LIST OF APPENDICES

Annexe A SURVEY QUESTIONNAIRE . 146

1

CHAPTER 1 INTRODUCTION

A software component can be implemented in any programming language. Depending upon
the nature and functionality provided by a component, it may be developed more efficiently
or elegantly in one programming language than in another, or perhaps the choice of pro-
gramming language is merely determined by a programmer’s preference. In any case, since
any component theoretically could be developed in any language, a software application may
contain several components written in different languages. The creation of such systems is
called multi-language development [4], i.e., opting in the same software system for the use
of two or more programming languages having different lexical, semantic, and syntactical
programming rules.

The software development industry has been taking advantage of multi-language develop-
ment not only in low-level languages such as Assembly, but also in high-level programming
languages such as C, Ada, Pascal, Cobol, etc [5]. For example, the integration of C (high-level
language) with Assembly (low-level language) provides extra flexibility to the program where
the static libraries are written in Assembly and called from C, and vice-versa 1. As such, with
the passage of time, the usage of multi-language development has increased. A recent survey
has shown that the use of multi-language development in open source software systems is
getting popular with, on average, five languages used in a system [6,7].

We can observe its usage in many popular websites and software systems that are built using
a combination of heterogeneous components written in multiple programming languages, e.g.,
C, C++, Java, JSP, PHP [8]. Their integration is performed through techniques that play
the role of a bridge to ensure the synchronisation between the combined languages. The most
known integration techniques are Java Native Interface (JNI), which ensures the communi-
cation between Java and C/C++, and Python-C-extension, that ensures the communication
between Python and C/C++. JNI and Python-C-extension are two examples of a Foreign
Function Interface (FFI). We will discuss these concepts in more detail in Section 2.1.

The multi-language development has brought several advantages to software engineering.
Today, developers are often using more than one single programming language in the same
software system to gain the benefits from the advances made in other programming languages
[9]. First, multi-language development has made it easier for industry and developers to keep
up with market development speed, since it allows code reuse. Thus, developers no longer
need to reinvent the wheel and re-code everything from scratch. Instead, they are asked

1. https://www.devdungeon.com/content/how-mix-c-and-assembly

https://www.devdungeon.com/content/how-mix-c-and-assembly

2

to integrate external libraries or external API written in a foreign programming language
to gain time and effort [1]. Second, multi-language offers to benefit from the specificity of
particular programming languages. As we know, each programming language has weaknesses
and strengths ; thus, combining languages allows to benefit from each language’s strengths
and overcome its weaknesses. Last, multi-language offers developers to keep using legacy
implementations of their existing libraries and systems by encapsulating them within a system
developed in a different language [10].

As an example, Java being a high-level programming language offers many advantages over
other programming languages, such as the absence of pointers and explicit memory mana-
gement, built-in security mechanism (e.g., sandboxing) and the possibility of building code
portable across platforms. However, since Java also has some limitations, it offers the facility
to integrate and benefit from different programming languages. For example, JNI integrates
Java with C/C++, while Jython integrates Java with Python for embedded scripting, rapid
application development and interactive experimentation. Also, Jperl was developed by in-
tegrating Perl and Java, for example to use CPAN modules without having to rewrite them
in Java. Several other languages like Tcl, OpenGL for GUI features, Groovy, Scala for build,
REDUCE for algebraic features are also integrated with Java [11].

Several popular software applications are implemented using multiple languages. For example,
the Linux operating system consists of a kernel written in C with several parts implemen-
ted in assembler (for performance reasons) and several utilities written in C++, Perl, and
Python. Similarly, OpenCV, an open-source computer vision library, is developed using mul-
tiple languages i.e., C++, C, Python, Java, and JavaScript [12]. Many other popular software
applications have been built using multi-language development such as Google, Facebook,
Youtube, Mozilla Firefox, MS Office, and OpenOffice to name a few.

While the benefits of multi-language development have been deeply discussed in the litera-
ture, the associated software engineering challenges are still an ongoing problem. Despite the
advantages presented above (e.g., code reuse, encapsulating legacy code, gain in development
time, etc), multi-language development leads to more complex and complicated software sys-
tems. Using multiple languages in a software system means that developers must have a
good command of each of these languages for fully understanding, analyzing, and evolving
the software system [13]. Developers working on any of the system’s components are required
to have experience in multiple programming languages at the same time. In addition, they
need to consider the synchronisation and the data conversion between the different integra-
ted languages since each programming language has its own rules (i.e., lexical, semantic, and
syntactical). Hence, multi-language development increases the cognitive overhead of code

3

comprehension and leads to difficulties in code maintenance and adaptability.

Such difficulties unfortunately might lead to bugs that are hard to detect and debug. ID200551
is a bug identified in Rhino, developed with Java, JS, Perl, and C , that was caused by a
mismatch between changes applied in one component i.e., Java class Kit and the correspon-
ding changes that should be applied in a second component written in a different language
C class DefiningClassLoader [14]. Another bug in libguests happened in 2018 and was due to
a misuse of the rules of Java Native Interface (JNI) when integrating Java and C++ code 2.
The developer did not synchronized correctly the Java exceptions with the JNI calls. Further-
more, bug 322222, found in the Eclipse bug repository led to crashes in the JVM through a
segmentation fault in C when the program throws an exception in Java [15]. A final example
concerns an issue reported by Microsoft Word users when using Visual Basic macros. These
issues were due to a mismatch between unique identifiers in C++ libraries and in Visual Ba-
sic 3. As showed in these examples, multi-language bugs is mainly due to the mismatch and
the incompatibilities between the entities written in different programming languages. The
challenge does not come necessary from the combination of languages itself but more from
the lack of means i.e., tools, documentations, methodologies that could provides support for
developers to avoid or limit these kind of bugs.

In addition to the multi-language development trend within “traditional” software systems,
in recent years multi-language development has been adopted massively in the domain of AI-
based software systems. In particular, many (open-source) frameworks for machine learning
(ML), such as Pytorch and Theano, have been engineered using multi-language practices,
typically to integrate a low-level language for efficient computations with a high-level language
for building robust software frameworks [16]. Similar to traditional (non-machine learning)
frameworks, these ML frameworks need to evolve to incorporate new features, optimizations,
etc., and their evolution is impacted by the interdisciplinary development teams needed to
develop them : data scientists and software developers. Scientists have to write optimized
low-level code while developers need to integrate the latter into a robust framework. Based
on that, in this dissertation, we are interested in studying the prevalence of multi-language
development in both traditional and machine learning frameworks, and their impact on the
software system’s quality and security.

2. https://bugzilla.redhat.com/show_bug.cgi?id=1536762
3. support.microsoft.com/kb/292744

https://bugzilla.redhat.com/show_bug.cgi?id=1536762
support.microsoft.com/kb/292744

4

1.1 Thesis Hypothesis

While multi-language development offers facilities to developers, it potentially makes a soft-
ware system more complex and hard to maintain, which can cause more bugs that are harder
to track down, more severe, and harder to debug. Therefore, it is important to obtain a
better understanding of the usage and maintenance of multi-language development as well
as the challenges that developers could face during their development activities. Thus, in the
following, we present our research hypothesis composed of three sub-hypotheses :

Thesis Hypothesis :
We hypothesize that (1) multi-language development is common, spanning many combina-
tions of languages through specific techniques, and, over time, has led to a catalog of best
practices ; (2) the integration of multiple languages with different development rules (semantic
and lexical) makes maintenance activities, such as change impact analysis, more complex and
bug/vulnerability-prone ; (3) the impact of multi-language development on software contri-
butions and bug introduction is larger in machine learning frameworks than in traditional
systems.

To validate the three sub-hypotheses :

1. We systematically review the research literature (initial set of 3964 papers, filtered
down to 138 papers) to understand the concept of multi-language development, the
process followed to apply it and the challenges that are faced by developers during
that process. Then, we qualitatively study the usage of multi-language development
by developers in open-source systems, in which we identified a set of 11 technical prac-
tices of multi-language development. In this qualitative study, we focus on the most
commonly used technology for integrating languages, i.e., the Java Native Interface.
This addresses the first sub-hypothesis, and is detailed in Chapter 4 and Chapter 5.

2. Then, we perform a survey with developers working in 52 software companies across
a diverse set of domains to evaluate their process for the change impact analysis in
multi-language systems, i.e., to investigate the challenges, the tools, methodologies,
the impact on system quality and system security, and the consequences of a lack of
change impact analysis practices.
One of the major and important steps of the change impact analysis identified by this
survey consists of tracking down all dependant components that might have to be
changed according to a given change made to the system. Hence, we empirically study
multi-language open source systems to identify the dependencies in multi-language

5

development, analyze their prevalence, and their impact on software quality and se-
curity. Finally, we propose static and history-based approaches for multi-language
dependency analysis. This addresses the second sub-hypothesis, and is detailed in
Chapter 6 and Chapter 7.

3. Lastly, we investigate the prevalence of multi-language development in machine lear-
ning frameworks and evaluate the impact of multi-language software contributions
(pull-requests) made to those frameworks on the acceptance rate, the frameworks’
software quality, and the frameworks’ software security. We perform a comparison
between multi-language development in machine learning and in traditional multi-
language systems. This addresses the third sub-hypothesis, and is detailed in Chapter
8.

1.2 Summary of Thesis Contributions

We describe in the following a general overview of the different contributions of this dis-
sertation, grouped by chapters. We detail them and show their interactions in Chapter 3,
before presenting each study in detail in their respective chapters. Figure 1.1 shows a general
overview of the three parts of this thesis and the output of each part.

1.2.1 Contribution of Chapter 4 (Sub-hypothesis 1)

First major contribution : a systematic literature review about multi-language develop-
ment, i.e., existing combinations of languages, contexts of use, challenges of multi-language
development, and existing techniques.

C1 : Identification of the most common language combinations used, the tech-
nical mechanisms allowing the communication between these languages,
and the contexts of multi-language usage : We conduct a state-of-the-art review
on the use of multi-language development from the researcher’s perspective (literature
review). We aim to understand what is multi-language development, what are the
combinations of languages that match together, and what are the existing techniques
to bridge between the different languages ? To achieve this goal, we performed a sys-
tematic literature review [17] of 3964 papers, refined with different exclusion steps to
138 papers, published between 2010 and 2020.
Regarding the contexts of multi-language usage, we aim to know in which cases multi-
language development is preferred to be used ? Are there specific contexts related to
the use of multi-language development ? What are the most discussed situations in the

6

Figure 1.1 Overview of the thesis methodology.

7

literature where multi-language development usage presented a challenge ? Based on
the papers identified in the first contribution, we perform an open coding process [18] in
which we identify the context of the use of multi-language development categorised in
different groups. From these groups, we identified the most discussed and challenging
usage contexts of use of multi-language development.

1.2.2 Contribution of Chapter 5 (Sub-hypothesis 1)

Second major contribution : a catalog of good practices of Java Native Interface deve-
lopment.

C2 : Qualitative study of the practices used for multi-language development
using Java Native Interface : How are developers implementing multi-language
systems ? Do developers follow any specific practices to deal with multi-language de-
velopment ? How do developers ensure data flow propagation between two components
written in different languages ? To answer these questions, we refer to the integration
of languages used the most in the literature, which is the integration of Java with
C/C++ via the Java Native Interface. We qualitatively analyze the source code of
100 JNI systems i.e., we semi-automatically analysed only the part of the Java Native
Interface in the source code, to identify the most common and recurrent practices
developers are following.

1.2.3 Contribution of Chapter 6 (Sub-hypothesis 2)

Third major contribution : a technical survey from the developer’s perspectives about
the change impact analysis in multi-language development.

C3 : Technical industrial survey to understand how developers manage changes
in multi-language systems : This contribution tries to answer the following ques-
tions : What are the different steps followed by developers when conducting their
changes in multi-language systems ? Are there specific testing methods or methodo-
logies that they use ? How do they ensure the code quality of their multi-language
system while making different changes ? We perform a technical survey with 69 pro-
fessional developers working in different industries around the world. The goal is to
trace the different steps considered by developers before and after making a change
to a multi-language system.
Then, we identify the risks and the consequences on the software quality and security
when applying a change to a multi-language software system without performing a

8

change impact analysis to initially verify the potentially impacted components. Thus,
we perform a coding process on the answers of the open-ended questions where we
apply three steps : open Coding, axial coding, and selective coding. Based on the fin-
dings, we suggest a set of practices developers should pay more attention to their
future maintenance changes in a multi-language context.
Lastly, we want to identify the requirements, from developer’s perspectives, for an
effective change impact analysis approach for multi-language systems. Using the same
coding process as before, we identify 20 requirements that we categorised in three
categories i.e., Easily realisable, Medium realisable, and Hardly realisable.

1.2.4 Contributions of Chapter 7 (Sub-hypothesis 2)

Fourth major contribution : static and history-based approaches (S-MLDA and H-
MLDA) to identify the dependencies within multi-language systems.

C4 : Approaches for a static and history-based dependency analysis in multi-
language systems : We propose two approaches where the first one is based on
historical dependency analysis, named H-MLDA, and the second one is based on the
static dependency analysis, named S-MLDA. Our approaches show precision (recall)
values of 100% (68%) for S-MLDA and 68% (87%) for H-MLDA.

Fifth major contribution : Analysis of the impact of multi-language dependencies on
software quality and security, and comparing them with the impact of mono-language de-
pendencies.

C5 : Empirical evaluation of the impact of multi-language dependencies on
software quality and security : Dependencies between components written in dif-
ferent programming languages is a hard task, in which tracking the data dependency
flow requires specific effort and rules. We aim to answer the following question : Are
multi-language dependencies more risky for multi-language software systems in terms
of software quality and security ? We perform an empirical study on the commits of
ten open-source multi-language systems (JNI) where we used the SZZ algorithm to
identify changes that are likely to introduce issues. Thus, we collect the log messages of
the multi-language commits and based on a set of keywords, we identify the commits
that contain a fix to a bug. Those commits are then analyzed by SZZ to determine the
initial bug-introducing commits. We perform the same process for the mono-language
commits involving dependencies between the same language to compare their findings
with those for multi-language commits involving dependencies between different lan-
guages.

9

1.2.5 Contribution of Chapter 8 (Sub-Hypothesis 3)

Sixth major contribution : comparison of the impact on software quality of the multi-
language development in traditional systems and multi-language development in machine
learning frameworks.

C6 : Empirical analysis of the prevalence of multi-language in machine lear-
ning frameworks : To what extent are open-source machine learning frameworks
following the multi-language development trend ? What is the prevalence of multi-
language development in machine learning frameworks ? Does the practice of multi-
language development decrease the acceptance rate of the software contributions ? Are
multi-language machine learning frameworks more bug-prone than multi-language tra-
ditional systems ? We perform an empirical study on the top ten common open source
machine learning frameworks where we analyzed the percentage of programming lan-
guages involved in these frameworks. Then, we focus on analyzing the software contri-
butions (i.e., pull requests) made to those frameworks, to study the prevalence of
multi-language pull requests and to compare them to the mono-language pull re-
quests within these frameworks. Last, to understand the correlation between multi-
language development and the introduction of bugs in machine learning frameworks,
compared to traditional systems, we analyse the bug proneness within the accepted
multi-language and mono-language pull requests of machine learning frameworks and
traditional systems.

1.3 Organization of the Thesis

The remainder of this dissertation is organised as follows. Chapter 2 provides background and
related work on multi-language development, dependencies within multi-language systems,
the integration of SE in machine learning frameworks, and the implication of multi-language
development in machine learning frameworks. Chapter 3 provides a high-level overview about
the research process used in this thesis. Chapter 4 studies the prevalence of multi-language
development, and the existing techniques for that. Chapter 5 identifies best practices within
multi-language development. Chapter 6 reports on our analysis of one of the most common
challenges of multi-language development, i.e., change impact analysis, while Chapter 7 dis-
cusses its relation with identifying the multi-language dependencies between components.
Chapter 8 examines the prevalence of multi-language development in machine learning fra-
meworks, their impact on the acceptance rate of the software contributions (pull requests),
and on the quality and the security. Finally, Chapter 9 draws conclusions of this dissertation,

10

discusses limitations of the work, and also outlines avenues for future work.

11

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we present a survey of related work on multi-language development, their
evolution, their different types, and their challenges on the impact on software quality. First,
we will start by a background section where we provide some source code examples to define
and explain the typical multi-language development concepts.

2.1 Background

For many years, the development of systems through the combination of multiple program-
ming languages has been the subject of interest by the software community and it is still in-
creasingly popular today [19]. Multi-language development can be used across a wide range of
systems (e.g., web applications, embedded systems, mobile applications, etc.) ; its importance
and advantages have been discussed by many researchers [20–24].

The communication between the programming languages is ensured by the Foreign Function
Interface (FFI). The FFI [25] allows a program written in one programming language to
call components/libraries/APIs or make use of services written in another one. Java Native
Interface (Java/C(++)), Python C extensions (Python/C(++)), and Ruby C extensions
(Ruby/C(++)) are some examples of FFI technology that consist of a bridge between the
combined languages. Before continuing, we need first to understand how we can integrate
languages and how we can ensure a safe synchronisation between languages that have different
semantic and lexical programming rules. Thus, in the following, we present two popular
examples of multi-language FFI techniques i.e., Java Native Interface and the Python C
extension.

2.1.1 Java Native Interface

Java Native Interface is a framework that allows the interaction between Java and C(++)
code. It allows to call native functions from Java methods and Java methods from native
functions. In JNI, a native method name can be any valid Java method name declared as
native and should not be implemented within Java. Instead, the corresponding implementa-
tion should be done in the C/C++ part of the system, using a function name concatenated
from the following components [1,26], such that the JVM knows which function to execute :
the prefix Java_, a fully-qualified class name, an underscore (_) separator, and a method
name. More details about the other criteria checked by the JVM to validate the exact native

Java_

12

class HelloWorld {
static {

AccessController.doPrivileged(
new PrivilegedAction<Void>() {
public Void run() {

System.loadLibrary("HelloWorld");
return null; }
}

}
private native void print();
public static void main(String[] args) {

new HelloWorld().print();
}

}

Figure 2.1 HelloWorld Example : JNI Method Declaration [1]

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"
JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv *env, jobject obj)
{

printf("Hello World!\n");
return;

}

Figure 2.2 HelloWorld Example : Implementation Function [1]

method to call [1], are provided in Section 7.2.1.

Figures 2.1 and 2.2 [27] show a common and simple example of the use of JNI in a “HelloWord”
class. Figure 2.1 shows the Java class that contains a native method declaration, Print(),
and that loads the native library providing an implementation for this method. Figure 2.2
presents the C file that implements the function Print(). JNIEXPORT and JNICALL are the
macros needed to link the method declaration in Java with the corresponding implementation
in C. These macros ensure that functions are exported correctly from the native library and
that C compilers generate code with the correct calling convention for that function [27].

13

>>> import ntuple
>>> ntuple.create_ntuple(5)

Figure 2.3 Ntuple example : Python Code [2]

static PyObject* create_ntuple(PyObject *self, PyObject *args) {
int n, i, err;
PyObject *tup = NULL;
PyObject *item = NULL;
if (!PyArg_Parse(args, "(i)", &n)) return NULL;
tup = PyTuple_New(n);
if (tup == NULL) return NULL;
for (i=0; i<n; i++) {

item = PyInt_FromLong(i);
if (item == NULL) {Py_DECREF(tup); return NULL;}
err = PyTuple_SetItem(tup, i, item);
if (err) {

Py_DECREF(tup);
return NULL; } }

return tup;}

Figure 2.4 Ntuple example : C Code [2]

2.1.2 Python-C-extension

Python-C-extension allows a Python program to interact with a native module written in
C or C++ by developing a native extension module [28]. The extension module provides
a set of different native functions. In practice, developers write a C/C+ code that can be
imported into Python code as an extension module. Figures 2.3 and 2.4 provide further
details. Figure 2.3 shows the extension module called ntuple included in Python code. Figure
2.4 shows the C function create_ntuple() that will be called when the Python expression
create_ntuple(5) is treated. The Python-C-extension defines the PyObject type and a set
of subtypes that can be used by extension code, such as PyIntObject and PyStringObject.
The parameter args presents the list of objects passed from Python code [2].

create_ntuple()
create_ntuple(5)

14

2.2 Literature Review

2.2.1 Multi-language Development in Traditional Systems

Practicing multi-language development is challenging and presents several difficulties. Mush-
taq et al. [19], through their study, emphasized the significance of addressing the complica-
tions that emerge from using more than one language for software development. Also, they
proposed several approaches to minimize the challenges of multi-language development and
list the few existing code comprehension and maintenance tools that are reserved for multi-
language development, along with their limitations. Similarly, Kul-bach et al. [29] highlighted
the importance of program comprehension in multi-language systems. They argued that it
plays a vital role in improving the efficiency of software development and maintenance pro-
cesses in multi-language systems.

To evaluate the impact of using multi-language development, Bissyandé et al. [30] explored
the interoperability and the effect of multiple programming languages in open-source software
systems, also from GitHub, on software quality attributes. They reported that multi-language
development should be used with caution in software systems. In the context of our research,
a similar empirical study has been done to investigate how multi-language development in-
fluences software quality and leads to increase the bug-prone in the context of machine
learning frameworks, not only traditional multi-language systems.

In order to provide developers with multi-language development guidelines that they should
follow to decrease bug-prone, Abidi et al. [10] investigated the developers’ level of knowledge
on the standard practices of multi-language development by surveying 93 developers. A set
of good practices, initially collected from the literature, was proposed to these developers.
The authors identified that these practices are not equally used in practice i.e., industry.
Furthermore, they signified the need for developers to be more attentive with the use of the
good practices of multi-language development, such as managing exceptions between Java
and C, loading libraries, etc. In Chapter 4, we propose a set of practices more specific to the
use of the Java Native Interface, a sub-type of multi-language development.

Other researchers carried out studies specific to JNI multi-language systems. Moise and
Wong [31] were among the first researchers who investigated and recorded the inter-language
dependencies among multi-language components. They studied the calls to the Java Native
Interface API in Java and C and they also used the available API for each language to identify
multi-language call dependencies.

Gong et al. [32] analyzed the source code of JDK v1.2, where they focused on the Java
Native Interface part. They outlined the main limitations of its security features including,

15

but not limited to, access rights, library loading, and exception management. Furthermore,
they analyzed the impact of deploying new features on the existing code without respecting
the Java Native Interface security. However, their study was limited to only one JDK version.
During our qualitative study presented in Chapter 5, we use the JDK v9 in addition to 10
open-source Java native interface to identify the best practices in JNI development.

Tan et al. [33], on the other hand, investigated the JNI usage in the JDK v1.6. Their
study focused on the analysis of a set of bug patterns in the native source code where they
highlighted two bug categories i.e., buffer-overflows and unexpected control flow path, due to
a misuse of JNI exceptions. They managed to identify bugs that concerned the usage of native
methods resulting into JVM crashes and security breaches being exposed. They proposed a
static and a dynamic approach to help in minimising these bugs. However, they restricted
their study to a portion of the native code in JDK v1.6 i.e., java.util.zip in Sun’s JDK, about
800k lines of code. Kondoh et al. [34] emphasized four types of common JNI issues employed
by the developers. They carried out a study to analyze in depth the following JNI issues :
error checking, invalid references, and the calling of native methods in critical regions. The
authors confirmed that these poor practices may lead to several problems and open up the
software system to security vulnerabilities. Therefore, they recommended BEAM, a static
tool to identify such issues in Java Native Interface systems.

Li et al. [35] examined the risks caused by the software exceptions between C and Java.
They reported that when the exceptions are misused in the Java Native Interface software,
they lead to issues in the implementation functions and risk to decrease the software security.
They proposed a static analysis tool to examine and report potential risks in JNI systems.
In our thesis, we propose a set of JNI practices that support developers to overcome some
of the JNI risks. Additionally, we proposed approaches to developers to better manage their
JNI maintenance and avoid the introduction of bugs to the software system. Our proposal
consists of a combination of two analysis type i.e., static and history-based approaches.

2.2.2 Change Impact Analysis in Multi-language Systems

Change-impact analysis is a process that consists of evaluating the risk associated with a
change, i.e., its potential consequences [36,37]. To make a safe change to a software system,
it is necessary to investigate the dependencies between the source-code entities and how
the change flow (change propagation) is moving from one source code entity to others in
the system. If a given method is renamed because of a new client requirements, then all
the dependant source-code entities that call or use this method need to be changed as well
according to the new requirement [14,38].

16

Let’s consider the same source code example presented in Figure 2.1 and 2.2 on page 11.
Based on a new requirement, the Java method print() should have a new parameter,
thus the signature method should become private native void print(int x). As shown
in Section 2.1.1, this method has a JNI dependency with the C implementation function
Java_HelloWorld_print(JNIEnv *env, jobject obj), thus, the change that will be ap-
plied to the Java method print() will also impact the implementation function in the C file.
This is what we call the impact of a change in multi-language development. The signature of
the C implementation function also needs to be changed and the same parameter added in
the Java declaration method should be added in the C function with respect to the JNI rules
e.g., JNI type conversion. Hence, the function signature in C file should became : JNIEXPORT
void JNICALL Java_HelloWorld_print(JNIEnv *env, jobject obj, jint x).

Since the 1980s, there have been many research works published on change impact ana-
lysis in mono-language systems. Wilkerson [39] classified change impact analysis in direct
and indirect changes. Entities are directly affected if they have been modified in any way
since the prior version. This impact is easy to identify using for example the lexical diff
algorithm [39]. The Chianti algorithm aims to address the analysis of direct impact [40].
Indirect impact is a modification that results from a dependency on other entities. RA [41],
CHA [42], RTA [43], and 0-CFA [44] are all algorithms for indirect analysis change impact. Li
et al. [45] presented through their survey a taxonomy of change impact tools, categorized
according to the change application area : Software comprehension, Change propagation,
Regression testing, Debugging, and Software measurement. These tools are dedicated
to mono-language systems, offering different options such as mono-language dependency ana-
lysis, proposing adequate testing methods, quality metrics, etc. During this thesis, in Chapter
6, we studied the context of changes application within multi-language development.

The JRipples [46] and ROSE [47] tools can be used for software comprehension before the
implementation of a change. Jtracker [48] and JRipples [46] are mono-language analysis tools
for change propagation. They can be used by maintainers when a change is made to ensure
the security for other entities in the software systems. Chianti [40] and Celadon [49] used for
regression testing. Crisp [50], AutoFlow [51] and Chianti are able to perform debugging. They
are used when regression tests fail. The last application area concerns software measurements
that can be made with the ROSE tool.

Jiang et al. [36] investigated through their paper the ways that developers follow to perform
a change impact analysis in mono-language systems. By a study conducted on 35 professional
developers, they found that developers usually did a static impact analysis before applying the
change and a dynamic change impact analysis after they made changes. The static analysis is

17

done using IDE navigational functionalities, while the dynamic analysis is made by executing
the programs. The authors found that developers in their study did not use any dedicated
change impact analysis tools. As this study was done on mono-language systems, during
this dissertation we investigate how developers perform and assess changes in multi-language
systems.

Hassaine et al. [52] used a static change impact analysis technique to study the change
propagation in time by analyzing the syntax and semantic of the code. They proposed a
novel approach based on an earthquake metaphor where it analyze how far the propagation
will proceed from a given class to the others.

In the context of change impact analysis methodologies, Maia et al. [53] proposed a solution
that combines static and dynamic analysis for Java software systems. They used static ana-
lysis to identify structural dependencies between source code where as the dynamic analysis
was used to identify the dependencies based on the code execution. They have compared
their results, finding that the hybrid technique (combining static and dynamic methodolo-
gies) improves the recall (able to detect better the potential impact of a change).

Another change impact analysis research direction was followed by Bano et al. [54], who
showed that software requirements are naturally changing and the changes in general are
related to many causes. They performed a systematic literature review to identify these
causes and their frequency on mono-language systems. They performed a coding process
on the causes identified where they classified them into Essential and Accidental causes.
Essential causes cannot be controlled by developers such as Changing market demand, ho-
wever, accidental causes are the changes that can be avoided such as Requirements not
sufficiently specified and analyzed. A part of our research is following this study to
investigate the causes of changes in multi-language systems.

Other researchers were interested in another aspect of change impact analysis i.e., software
co-change analysis. Co-change considers sets of files that have been observed to change to-
gether to exhibit some form of logical coupling. Zimmerman et al. [47] and Ying et al. [55]
proposed association rules to identify co-changing files. They suggested that co-changes may
be important in recommending dependent entities that are prone to changes in the future.
They identified co-changing files by the use of the co-change history in CVS. However, the
authors did not discuss the dependency aspects between the identified co-changes. In chapter
6, we perform a co-change study on multi-language systems where we focused on comparing
multi-language co-changes versus mono-language co-changes and their impact of the software
security and quality.

Abdeen et al. [37] have found that predicting change impact by combining semantic and

18

structural coupling information outperforms using one of them individually. They also found
that semantic coupling produces better recall values compared to structural coupling metrics.

Furthermore, Jaafar et al. [56] presented a novel approach called Macocha to validate two
change patterns when analyzing co-changes : the asynchronous change pattern, corresponding
to macro co-changes (MC) and the dephased change pattern, corresponding to dephased
macro co-changes (DC). They applied Macocha on seven mono-language systems, either Java
or C/C++ source code.

All of the above-mentioned works exclusively focus on mono-languages. However, we came
across a few studies that focused on change impact analysis in multi-language systems. An
ongoing work by Angerer [57] is focused on developing a change impact analysis approach
for multi-language software product lines (SPLs). His motivation is due to the limitations
of existing change impact analysis for multi-language SPLs. His proposed approach is based
on system dependency graphs (SDG). However, it is limited to SPLs and does not address
the change in programming language sets. Deruelle et al. [58] have recommended a model
for change impact analysis applied on multi-language databases applications. Their model is
based on graph rewriting and it deals with centralized and distributed environments. They
used a CORBA-based framework containing three different databases and environments to
analyze and manage the changeability of multi-database applications.

Nguyen et al. [59], on the other hand, proposed a technique called Web-Slice to calculate pro-
gram slices for dynamic and multi-language web applications. It is considered as a preventive
solution for assisting developers in the analysis and comprehension of change impact in the
multi-language web development context. Cossette et al. [60] argued that dependency analy-
sis is very important in determining change impact in a multi-language software. They have
presented the limitations of techniques available for supporting multi-language dependency
analysis, which are mostly lexical or semantically-based. While semantic analyses are expen-
sive to model, lexical analyses give poor accuracy and primarily depend on developers’ skills
to write appropriate pattern expressions. The authors suggested the use of island grammars
in order to detect dependencies in multi-language software systems, same as Moonen [61].
Shatnawi et al. [62] proposed DeJEE, a tool that detect and build dependency graphs for
J2EE applications. Their approach, limited to Servlets and JSPs, parses the source code into
knowledge-discovery-model (KDM) to mine the dependencies within the J2EE applications.
Hecht et al. [63] extracted declarative specification of the hidden dependencies of the J2EE
applications not directly visible in the user code. They performed a codification of these
dependencies into rules to make them automatically detectable using a software tool. This
work was limited in proposing solution and did not investigate the impact of these hidden

19

dependencies on the quality and the security of multi-language systems.

Additional research work focused on identifying and analysing in depth the difficulties and
the impact of using multi-language development. Shatnawi et al. [8] analyzed the challenges
that a multi-language system could face and that make static code analysis a hard task for
the developer. They proposed a solution based on KDM (Knowledge Discovery Meta-model)
that identified dependencies between different artifacts. Their study focused on Java container
servers where they studied the case of server-side Java with client-side Web dialects (e.g.,
JSP, JSF, etc.). Still, in the context of multi-language dependency analysis, Sayagh et al. [64]
highlighted the challenge of identifying configuration options through a multi-layer software
system. They were the first researchers to perform an empirical study toward identifying
the configuration dependencies through multiple layers as configuration options in each layer
might contradict each other. One of the main findings was that there is more indirect use of
configuration options than direct use, and they concluded that the detection and fixing of
configuration errors could become more difficult for developers.

2.2.3 Multi-language Development in Machine Learning Frameworks

Historically, traditional machine learning developers preferred dedicated programming lan-
guages such as Lisp or Prolog for their development. Nevertheless, in recent years, Python
emerged as the most commonly used programming language for the development of Machine
Learning frameworks as it offers a wide range of powerful and advanced features [65]. Yet,
again the need arose of involving multi-language development in these frameworks because
Python was observed to have some critical shortcomings, notably, its lack of efficient compu-
tational performance required for high-frequency real-time predictions [66]. Therefore, using
the Python C extension is prevalent to overcome this shortcoming and as a solution to in-
terface with highly performant C code for frequently executed low-level algorithms, such as
required by the gaming industry [67], multi-agents [68], and so on. We report in the following
related work on using machine learning frameworks within multi-language development.

Poggi et al. [69] presented HOMAGE, an environment for the development of multi-agent
systems using three object-oriented programming languages i.e., C++, Common Lisp, and
Java. Tasharrofi et al. [70] developed a modular framework written in multiple languages. The
use of multi-language development is also found in machine learning-based games. On the
other hand, Phelps et al. [67] argued that multi-language development is propagating quickly
proportionally with the arrival of more games leveraging AI, which leads to development
challenges.

Other studies have been done over the past years to conduct research on incorporating tra-

20

ditional software engineering practices in the machine learning domain. Braiek et al. [65]
explored the association, if any, between open source software and machine learning fra-
meworks. Furthermore, they investigated the advantages and inconveniences of employing
software engineering practices in machine learning frameworks. In Chapter 8, we discuss in
depth 17 of the 20 largest open-source machine learning frameworks presented in their study
in the context of analysing the impact of multi-language machine learning frameworks on the
bug-proneness. Khomh et al. [71] highlighted yet another aspect of software engineering (SE)
challenges for machine learning (ML) frameworks. They suggested a stronger and even deeper
synergy between the communities of SE and ML in order to deal with these development
challenges. Their study catalogues two primary challenges of integrating SE practices in ML
frameworks including software testing and software evolution.

Dhasade et al. [72] presented the mono-language tool Prioritizer to assist developers in
handling high volumes of issues in systems. They developed a machine learning based tool
for prioritizing pull requests based on different criteria, such as issue life time, to fix these
issues. They evaluated the efficiency of this tool by testing it on a data-set of 3000 issues.
Similarly, Veen et al. [73] proposed a tool for pull request prioritization called “PRioritizer".
This tool uses machine learning to work as a priority inbox for pull requests, recommending
the top pull requests the project owner should focus on. Zhao et al. [74] addressed yet another
aspect of given issue and suggested a learning-to-rank (LTR) methodology to recommend pull
requests for quick reviews within mono-language development.

2.3 Chapter Summary

In this chapter, we presented some background information and simple examples (e.g., Java
Native Interface and Python-C-Extension) of multi-language source code in order to give an
overview of multi-language development in practice. Furthermore, we provided an overview of
literature on multi-language development in traditional systems and its adoption in machine
learning frameworks.

21

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE
THESIS

In this chapter, we present the research methodology and the structure of this dissertation. As
previously mentioned in Chapter 1, this thesis aims to understand and analyze how multi-
language systems are developed. Multi-language systems are systems designed with more
than one programming language using specific techniques to create the bridge between the
combined languages. To achieve the thesis goal, we will study two families of multi-language
systems : traditional software systems and machine learning frameworks, as shown in Figure
1.1. As multi-language development appeared first within the traditional systems, studying
them first presents an opportunity to understand later the adoption of the multi-language
practice in more modern systems that use machine learning frameworks.

To achieve our goal, this thesis presents the following three main sub-goals that map to the
three sub-hypotheses presented in our research hypothesis in Section 1.1. Chapters 4 and 5
belong to the first sub-hypothesis, Chapters 6 and 7 belong to the second sub-hypothesis,
and Chapter 8 belong to the third sub-hypothesis.

1. We first need to understand the multi-language development phenomenon in traditio-
nal systems. Thus, we need to investigate the prevalence of multi-language develop-
ment by identifying the different sets of programming languages used within systems,
the techniques applied to ensure their interoperability, and the communication bet-
ween the combined languages. We also investigate the practices followed to mitigate
the challenges associated with multi-language development (language synchronisation)
and enhance the benefits of this development paradigm. This is addressed in Chapter
4 and Chapter 5.

2. The second step consists of empirically evaluating the major challenge identified from
the previous step i.e., the change impact analysis in multi-language systems and its
impact on the quality and security of software systems. We propose new approaches
and recommendations to help developers with this in their multi-language develop-
ment. This is addressed in Chapter 6 and Chapter 7.

3. Finally, we examine more modern and advanced multi-language systems. We analyze
the adoption of multi-language development in machine learning frameworks and its
impact within these frameworks in terms of acceptance rate of the software contribu-
tions (i.e., pull requests) and the risks of bug introduction. Finally, we compare the
findings with those of multi-language traditional systems. We address this part of the

22

thesis in Chapter 8.

We briefly outline the three different parts of this thesis below.

3.1 Part 1 : Why and how is multi-language development used in practice ?
(Chapters 4 and 5)

Modern software is no longer developed in a single programming language. Instead, pro-
grammers tend to exploit the strengths of different programming languages, thus developing
multi-language systems [19, 75]. As such, we observe an increase in the number of multi-
language systems being developed, with most of the recent software systems today being
heterogeneous i.e., they are composed of components of different programming languages
that interact with the host language. Developers also opt for this practice to keep using le-
gacy implementations of their existing libraries and systems, while still benefiting from code
reuse of modern software components [1, 76].

3.1.1 Investigating multi-language usage, the possible combined languages, and
the techniques used

How prevalent is multi-language development ? In which context is it preferred over mono-
language development ? What techniques are available to facilitate the interoperability of
multiple languages ? In order to find answers to these important questions, we conduct a
systematic literature review to highlight the state-of-the-art of multi-language development.
A systematic literature review is an effective methodology to explore the new dimensions of
multi-language development from researchers’ perspective and also to facilitate identifying
and discovering new facts.

We address four objectives : (1) understanding the motivation behind opting for multiple lan-
guages, (2) classifying contexts where multiple languages are used, (3) categorizing different
combinations of programming languages used in multi-language systems, and (4) identifying
procedures, i.e., techniques that present a bridge to combine the languages, that allow for
the integration of various programming languages.

One of our main results highlighted that Java/C(++) has been found as the most common
combination of programming languages via the use of the Java Native Interface technique. We
also found during our systematic literature review (Chapter 4) that change impact analysis
is one of the main challenges of multi-language systems.

Both researchers and developers within the multi-language development community will be-

23

nefit from the results of this study. They can use this literature review to further explore
the diversity and complexity of multi-language frameworks. Furthermore, this study will em-
power them to propose more practical and feasible solutions to facilitate the integration of
complex links and bridging techniques for multiple programming languages.

3.1.2 Studying the best practices in multi-language development

One of the major findings from the first study was that Java/C(++), through the JNI tech-
nique, is the most common combination of languages used within the multi-language context.
JNI is the Foreign Function Interface that allows communication between Java and C/C++
code ; functions written in C(++) or assembly can be called within Java code, and vice-versa.
It allows Java code running inside an instance of the Java Virtual Machine (JVM) to invoke
native code to call Java code [27].

In this chapter, we identify the JNI usage and the practices followed in 100 open source multi-
language systems collected from Open-Hub (with around 8k of source code files combined
between Java and C/C++, including the Java class libraries part of the JDK v9). The JNI
practices are identified by semi-automatically and manually analyzing the source code (the
JNI part) following the data flow propagation between Java and C(++). This qualitative
analysis identified 11 JNI practices that are primarily related to loading libraries, implemen-
ting native methods, exception management, return types, and management of local/global.
Based on these practices, we suggest a set of recommendations to developers to help them
in debugging JNI tasks.

This chapter presents an opportunity to thoroughly investigate the data flow propagation
between languages (in the case of Java and C(++)) ; we studied the practices used by de-
velopers to ensure better communication and dependency synchronization between Java and
C/C++ components.

3.2 Part 2 : How can we overcome the challenge of change impact analysis in
multi-language development ? (Chapters 6 and 7)

The systematic literature review presented in Chapter 4 showed that change impact analysis
in multi-language systems is one of the most discussed topics. An in-depth investigation sho-
wed that multi-language development posed a new challenge to the maintenance of software
systems. The challenge comes from the fact that when a multi-language system is changed,
we should take into consideration the different rules of each programming language (e.g.,
source code syntax, data conversion, synchronization, exception management, etc,) that go-

24

vern dependency analysis. Safe change impact analysis in the multi-language context allows
to identify the propagation of a change between two or more programming languages. This
kind of detection is necessary to ensure a safe change and keep the consistency between the
source-code entities written in different programming languages.

3.2.1 Investigating the change impact analysis from developers’ perspective

In this first study in Chapter 6, we aim to understand how developers manage their changes
in multi-language systems. Using a technical survey comprising 30 questions, we first examine
the developers’ motivations for the change impact analysis. Next, we investigate how deve-
lopers deal with changes in multi-language systems. In particular, we investigate the tools,
techniques, and methodologies used by developers. We also inquire about the difficulties that
they face during their analysis. We do not only investigate and record the challenges faced by
the developers while performing their analysis, but also discuss the impact of a lack of change
impact analysis on system quality and system security. We categorise the consequences of a
lack of change impact analysis in multi-language systems and present recommendations to
guide and help industries and developers in their change impact analysis of multi-language
systems.

The survey was sent to 200 developers using the LinkedIn platform. It was completed by
69 different developers (34,5%), from eight countries, with diverse backgrounds and work
positions. We also invited the participants for a 20-minute follow-up interview. The purpose
of the interview was to ask more precise and interactive questions to make sure that they
understood each question accurately and responded accordingly. Eight out of 69 participants
agreed to participate in the interview.

From the survey and the interview, we find that dependency analysis is the most challenging
problem within the change impact analysis of multi-language systems and there is a major
need for an approach or tool to support such analyses. Surprisingly, we found that developers
typically perform implicitly the change impact analysis before applying changes to multi-
language systems. We found that they use testing methods without a deep analysis of the
dependant component that may be impacted by the change. Most surprisingly, developers
are aware of the importance of change analysis but they do not know how to implement it
in the context of multi-language development, as the dependency analysis process is totally
different from that of mono-language development. Furthermore, we identified that multi-
language systems are more prone to be negatively impacted by bugs and vulnerabilities
through changes. In general, developers lack of tool support to perform correctly change
impact analysis within multi-language systems.

25

3.2.2 Investigating the inter-language dependencies in multi-language systems

Based on the main findings from our previous studies, we perform an empirical study on
10 Java Native Interface (JNI) open-source multi-language systems to identify the multi-
language dependencies and their impact on software quality and security. Moreover, to answer
the developers’ needs detected in the technical survey study, we introduce two approaches,
which we applied to the ten JNI systems :

— S-MLDA (Static Multi-language Dependency Analyzer) that performs a static depen-
dency analysis using heuristics and naming conventions to detect direct multi-language
dependencies between two multi-language files.

— H-MLDA (Historical Multi-language Dependency Analyzer) that performs histori-
cal dependency analysis based on software co-changes to identify the indirect multi-
language dependencies that could not be detected by static analysis.

Our main results show that multi-language dependencies i.e., dependencies between multi-
language components involve a higher risk of introducing bugs and vulnerabilities to the
software than dependencies between mono-language components. The percentage of bugs
within multi-language dependencies is three times higher than within mono-language depen-
dencies, and the percentage of vulnerabilities is two times higher in the case of multi-language
dependencies.

3.3 Part 3 : What is the impact of multi-language development in machine
learning vs. traditional systems ? (Chapter 8)

Machine Learning, a major sub-field of Artificial Intelligence, has introduced the automation
concept. SE is yet another specialised field ready to use the machine learning (ML) techniques
for solving diverse problems ranging from software development to maintenance [77].

Machine Learning frameworks are complex and require skilled developers for efficient use.
Therefore, the SE community has been trying to implement user-oriented solutions in or-
der to make ML applications simpler. The research community, for many years, has been
focusing on multi-language development in this regard. The software developers have been
leveraging the use of multiple languages in a single AI system. To be more precise, developers
have been opting for the Python-C-Extension with highly performant C code for frequently
executed low-level learning algorithms, as required, for example, by the gaming industry [67],
multi-agents [68], and so on, instead of using python alone. In this domain, Python requires
consequential CPU time for interpretation, and lacks efficient performance required for high-
frequency real-time predictions [66].

26

As multi-language development presented new challenges in traditional systems, it is likely
to present some challenges in machine learning frameworks as well. Therefore, Chapter 8
empirically analyzes the ten largest open source multi-language machine learning frameworks,
comparing them with ten large open source traditional systems. Furthermore, we recorded
the variation between challenges faced while applying multi-language in ML frameworks
as compared to traditional systems. We analyze the correlation between the existence of
multi-language development with machine learning. Finally, we analyse the impact of multi-
language development on the acceptance rate of open-source code contributions and their
relation to bug introduction.

The primary result of our analysis highlighted that multi-language presents a challenge for
machine learning. Furthermore, it was also found that ML frameworks are more error-prone
compared to traditional systems, therefore, multi-language machine learning software contri-
butions take longer to be accepted than the traditional systems.

3.4 Chapter Summary

This chapter presented a detailed overview of the thesis and the link between the hypothesis
and the respective chapters. We briefly described the different studies made during this thesis,
their methodologies, and summaries of the major results.

27

CHAPTER 4 WHY AND HOW IS MULTI-LANGUAGE DEVELOPMENT
USED IN PRACTICE? (Sub-hypothesis 1)

4.1 Chapter Overview

Most modern systems are developed through the integration of multiple programming lan-
guages [78]. According to Tomassetti et al. [79], 96% of their 15000 studied GitHub systems
use at least two different languages, with 50% using three or more. Rather than trying to
solve all problems with a single language, developers adopt the languages that are best suited
for their needs.

However, multi-language development presents different development challenges. Developers
have to decide which programming languages best complement one another, determine the
best mix of programming languages to adopt, consider what is the best existing mechanism
or technique to use, and what are the best developing practices that they should follow. As
we hope to support multi-language development users to deal with the complexity of such
systems, we aim to highlight first the state of art of the multi-language development and
then the state of the practices of the multi-language development.

We present, in this Chapter, a systematic literature review aimed at establishing the state-
of-the-art of multi-language development and addressing the following objectives : (1) un-
derstanding the motivation behind the use of multi-language development in literature, (2)
categorising the main topics and contexts of use of multi-language development in literature,
(3) identifying the different sets of programming languages in literature, and (4) identifying
the mechanisms used to link between the programming languages.

A Systematic Literature Review (SLR) is considered as an effective research methodology [17]
to identify and discover new facts about a research area and to publish primary results
to investigate specific research questions [80, 81]. This study aims to answer the following
research questions :

RQ4.1. Are there articles that deal with multi-language development in literature?

RQ4.2. What are the different contexts of the use of multi-language development in
literature?

RQ4.3. What are the different sets of programming languages used by researchers in the
multi-language systems?

RQ4.4. What are the existing mechanisms used for the integration between the different
programming languages in literature?

28

During this study, we followed Kitchenham et al. ’s approach [17]. Figure 4.1 presents the
different steps followed to collect and analyse the data.

4.2 SLR Design

We performed an SLR covering the multi-language development studies published from 2010
up to 2020. We performed an automated search on Engineering Village 1 for relevant multi-
language development papers. Engineering Village is an information discovery platform that
is connected to several trusted engineering electronic libraries. Specialized in engineering,
it offers many options to refine the search queries, exclude and include criteria, offers the
flexibility to choose the period of time, language, venues, and authors. This platform gives to
users also the ability to search in all recognised journals, conferences, books, and workshop
proceedings together with the same search query [82].

We assumed that the main keywords to create the search query are : Multi-language,
Software, and Analyse. We used keywords, synonyms, and truncation to build our query
in order to ensure a complete collection of papers. Following are the respective three main
keywords combined with AND/OR in the search queries.

— “Multiple language", “Multiple languages", “Multi language", “Multi languages", “Multi-
language*", “Mixed language", “Mixed languages", “Mixed-language*", “Heteregenous
language", “Heteregenous languages", “Polylingual", and “Polyglot".

— Software : “Software*", “Program*", and “System*".
— Analysis :“Analys*" and “Analyz*".

Now, we present the search query and the different refinement steps applied to get the relevant
desired input set of papers for our analysis. We searched for desired papers basing on the
title, abstract and keywords. This option is expressed by wn KY in the Engineering Village.

The following is the general query that does not include any exclusion criteria. The query re-
turned 3964 papers. In order to refine the output and get more relevant papers, we performed
two exclusion process i.e., one automatic and one manual analysis.
Query 1 :
((((((((((((((((((("multiple languages" OR "multiple language" OR multi-language* OR "multi
language" OR "multi languages" OR mixed-language* OR "mixed language" OR "mixed lan-
guages" OR "heterogeneous language" OR "heterogeneous languages" OR polylingual OR
polyglot)wn KY AND (software* OR Program* OR Analys* OR System*)wn KY))))))))))
))))))))

1. https://www.engineeringvillage.com/search/quick.url

https://www.engineeringvillage.com/search/quick.url

29

Figure 4.1 Overview of the literature review process

4.2.1 Automatic analysis

The first exclusion set contains four steps (presented below).

— First, we excluded papers published before 2010. The new query returned 2170 papers
down from 3964.

30

Query 2 :
((((((((((((((((((("multiple languages" OR "multiple language" OR multi-language* OR
"multi language" OR "multi languages" OR mixed-language* OR "mixed language"
OR "mixed languages" OR "heterogeneous language" OR "heterogeneous languages"
OR polylingual OR polyglot)wn KY AND (software* OR Program* OR Analys* OR
System*)wn KY))))))))))))))) AND ((2020 OR 2019 OR 2018 OR 2017 OR 2016
OR 2015 OR 2014 OR 2013 OR 2012 OR 2011 OR 2010) wn YR))))

In this study, we limited the studied period to ten years (2010 until 2020). We believe
that ten years is a good and sufficient period in which we can find the most modern
and updated works. Especially, in the Software engineering field, technologies are
moving quickly so referring to papers older than ten years will not provide up to date
information.

— Second, we excluded papers not written in English. The query returned 2116 papers.

Query 3 :
(((((((((((((((((("multiple languages" OR "multiple language" OR multi-language* OR
"multi language" OR "multi languages" OR mixed-language* OR "mixed language"
OR "mixed languages" OR "heterogeneous language" OR "heterogeneous languages"
OR polylingual OR polyglot)wn KY AND (software* OR Program* OR Analys* OR
System*)wn KY))))))))))))))) AND ((2020 OR 2019 OR 2018 OR 2017 OR 2016
OR 2015 OR 2014 OR 2013 OR 2012 OR 2011 OR 2010) wn YR)) AND (english wn
LA))

— Third, we observed that the Multi-language keyword causes confusion. It is used
to describe the Multi-language development field but on the other hand, it also
matches with the Multi-language linguistic field. From the obtained papers, we
found that many papers turn around plagiarism, speech recognition, translation, and
linguistic software tools. Thus, we used the options offered by Engineering village to
exclude them : Classification code (presented by the keyword wn CL) and Controlled
vocabulary (presented by the keyword wn CV). Engineering village groups the papers
in different groups according to their main field, each group is presented by a code
(e.g., 751.5, 802.3, 932.1) as we see in the following search query. Hence, we excluded
those papers considered as out of scope. The new query resulted in 1161 papers, down
from 2116.

31

Query 4 :
(((((((((("multiple languages" OR "multiple language" OR multi-language* OR "multi
language" OR "multi languages" OR mixed-language* OR "mixed language" OR
"mixed languages" OR "heterogeneous language" OR "heterogeneous languages" OR
polylingual OR polyglot)wn KY AND (software* OR Program* OR Analys* OR Sys-
tem*)wn KY) NOT (computational linguistics WN CV) NOT (cp OR ip OR ds) wn
DT)) AND (english wn LA)) NOT ((751.5 OR 802.3 OR 932.1 OR 931.3 OR 801) wn
CL)) AND (2020 OR 2019 OR 2018 OR 2017 OR 2016 OR 2015 OR 2014 OR 2013
OR 2012 OR 2011 OR 2010) wn YR)) NOT (linguistics OR language translation OR
speech recognition OR ontology OR speech synthesis OR natural languages OR speech
processing OR sentiment analysis OR teaching OR speaker recognition OR character
recognition OR visual languages OR neural nets OR text detection OR behavioral
research OR vocabulary OR knowledge representation OR emotion recognition) wn
CV))

— Last, using the option provided by Engineering Village, we removed the duplicated
papers within the three data-banks (Inspec, Compendex, and Knovel) used by Engi-
neering Village. The output gave a total of 800 papers i.e., 621 from Compendex, 177
from Inspec, and only two from Knovel.

4.2.2 Manual analysis

The second set of exclusions was dedicated to the manual analysis of the 800 papers previously
obtained. Two researchers were involved in this set of exclusion to ensure a high confidence
in the validity of the papers excluded.

— First, we analyzed, for each of the obtained papers, their title, abstract, and conclu-
sion to eliminate the papers out of scope and to keep only the relevant ones. Papers
considered out of scope are : papers not directly related to multi-language develop-
ment ; papers that did not go in depth in analyzing the multi-language development,
for example, papers that enumerated only examples of multi-language systems ; papers
that integrated multi-language development in databases and services (did not involve
the programming languages).
However, papers considered in scope are the papers that discussed multi-language
development challenges, mechanisms used, multi-language tools used or developed or
extended, papers that classify the combined programming languages, etc. Thus, we
eliminated 551 and kept 249 to be analyzed in the next step.

— Second, we analysed the content of the papers obtained in the previous step, since

32

Figure 4.2 Author affiliations (countries)

using only the title, abstract, and conclusion does not provide enough information
about the content of the paper when we want to investigate specific information.
We went in depth in each paper, read it and understand its contribution in order to
identify the most relevant ones needed for this study and also to extract the needed
information for the RQs. At the end of this step, we kept 70 papers.

— Finally, we performed a snowballing search technique to ensure high recall. For this,
we run through papers’ references and identify, if any, papers that were missed by the
search method/queries for any reason. We did three snowballing rounds based on the
references of the 70 papers.

The first snowballing round returned 38 papers, the second round returned 24 where as
the third one returned six multi-language development papers. We stopped the snowballing
process at the third round as we obtained convergence in the results. As we see in figure 4.1,
the four last steps resulted in a final list of 138 papers. We completely and deeply analyzed
the 138 identified papers to extract the following information :

— General information : author affiliation, publication countries, publication years, and
conference/journal names.

— Contexts of multi-language development use.
— Sets of combined programming languages.
— Mechanisms used to combine and provide the interface between the different program-

ming languages.

33

Table 4.1 Number of papers published according to the respective conferences/journals

Conferences/Journals Occurrences
PLDI 13
ICSE (full research papers) 11
SCAM 9
OOPSLA 6
SANER 6
PPPJ 6
ASE 5
IWST 5
WCRE 5
SIGAda 4
Europlop 2
DLS 2
ESEM 2
EASE 2
FSE 2
POPL 2

4.3 SLR results

We present now the SLR report step i.e., the last step in Kitchenham’ methodology [17],
which consists of reporting the findings.

RQ4.1. Are there articles that deal with multi-language development in lite-
rature?
Motivation : The goal is to identify relevant multi-language development research
papers. Based on that, we extract different information that characterizes the use
of multi-language development nowadays e.g., evolution in time, conference/journal
publishers, etc.
Results : We found 138 relevant papers that deal with multi-language development
in the literature. We report, in the following, general information about them.
— The main researchers are from USA followed by Italy, Germany, and

then Canada. We present in Figure 4.2 a world map with countries colored by
the number of papers published in multi-language development.

— PLDI, ICSE, and SCAM are the main conferences where multi-language
development papers are published. We collected the main conferences/jour-
nals that published the multi-language development papers identified previously.
It is considered as a helpful result as it will assists the researchers to target in

34

Figure 4.3 Multi-language development over time

fact, any software engineering conference/journal is suited. We present the results
in Table 4.1. We found that 56 conferences/journals published one paper each, for
the sake of the space, we did not add them in the Table.

— The number of published multi-language development papers is increa-
sing linearly over time. We analysed the evolution over time of the identified
papers to investigate how multi-language development were considered over years.
We show in Figure 4.3, the evolution regarding the publication years. In figure 4.3,
the results indicates that multi-language development domain is a growing research
domain, however, the results for 2020 are misleading since it is incomplete year.

RQ4.2. What are the different contexts of the use of multi-language develop-
ment in literature?
Motivation : We are interested in understanding when multi-language development
should be used. Is there any specific situation where the use of multi-language de-
velopment is necessary ? In which context, multi-language development presents an
added value to the software system ? and are the most common challenging situations
of multi-language systems ?
Results : “Software analysis" in multi-language software systems is the most
commonly discussed topic in the literature where “software changes" and
“development practices" are the main challenging tasks. We present in the
following, the different steps followed for the coding. To ensure a high confidence of

35

Figure 4.4 Main topic categories

the validity of coding, two researchers involved in this research work did the process
and then contrasted the obtained results.
— First, we read all the papers to understand their contexts, objectives, and motiva-

tions.
— Then, we identify the keywords/sentences that could identify the multi-language

development studied topics (e.g., code analysis, compilation, tool evolution, me-
tric measurement, debugging, etc.). On the other hand, we identify the papers
that reported challenges and difficulties of multi-language development based on
keywords such as : challenge, hard, difficult... to debug,test,develop, etc.

— Third, we perform a coding process based on the identified keywords to generalise
the extracted keywords and create different topic categories. The process lasted two
days and performed on three steps [18] : Open Coding, Axial coding, and Selective
coding.

— Lastly, we verify the matching of the papers with their respective categories. During
this step, a validation of the obtained categories was performed between the two
researchers implicated in this coding process to reduce subjectivity of the coding
methodology.

36

Figure 4.5 Major challenges of multi-language development

Figure 4.4 summarises the 13 general obtained categories. One paper can belong to
more than one category. We found that “Software analysis in multi-language software
systems” is the most common discussed topic in the literature. Researchers are preoc-
cupied by proposing solutions and facilitate the analysis of multi-language systems.
This category could contains any analysis method such as static analysis, dynamic
analysis, slicing, graph-based, code review, etc.
Regarding the challenging situations, reported by researchers, that developers face
during their development, we find that change impact analysis (reported in 31 papers)
and design patterns/code smells (reported in 28 papers) are the major challenges of
multi-language development as they are related to the core of software maintenance
i.e., they touch daily actions such as bug fix, new requirements to add, etc. Figure 4.5
shows the multi-language challenges as reported by researchers.

RQ4.3. What are the different sets of programming languages used by resear-
chers in the multi-language systems?
Motivation : Multi-language development is the combination of two or more pro-
gramming languages. Thus, we aim through this RQ to identify the existing combina-
tion of programming languages studied in the literature. All the multi-language deve-

37

Figure 4.6 The 20 most common programming language combinations discussed in literature

lopment papers (138 papers) belonging to the 13 identified categories were analyzed
to extract the information needed about the most common language combinations.
Results : The most used set in the literature is Java combined with C/C++,
reported in 52 papers (37.68%). We found 60 sets (combinations of programming
languages) that we present in figure 4.6. One paper can include more than one set.
We limited the figure to the top 20 sets for clarity and visibility of the figure. The
results show three main sets that are discussed the most in literature. The integration
of Java with C/C++ takes the first place with 52 papers (37.68%). Java/JavaScript
takes the second place in 15 papers, followed by Python/C, which was discussed in 13
papers. The remaining sets were presented in less than 5 papers (3,62%).

RQ4.4. What are the existing mechanisms used for the integration between
the different programming languages in literature?
Motivation : Similar to any development methodology, integrating languages follows
specific techniques or mechanisms that ensure the communication between languages.
Our goal is to investigate the existence of such mechanisms and their prevalence in
multi-language development.
Results : The most discussed mechanism is Java Native Interface (JNI)
with 51 occurrences (36.95%). We identified from the papers the different multi-
language development mechanisms discussed by the researchers. These mechanisms

38

Figure 4.7 Techniques used for the integration of languages

could be :
— Techniques for helping developers within their multi-language development analy-

sis such as : abstract syntax tree, graphs, etc.
— The existing interfaces to combine the languages e.g., JNI, Python/c, etc.
— Existing tools already developed or being developed providing services for : testing

methods, dependency analysis, quality metrics, debugging tasks, etc.
— New tools/algorithms being developed by researchers and discussed in their papers.
We present the results in Figure 4.7, limited to the top 20 mechanisms for the clarity
and the simplicity for the reader. One paper can introduce more than one mechanism
(method, tool, technique, etc.). We found that 32 papers (21.73%) did not report any
details about the used mechanisms. In total, our analysis identified 90 mechanisms
where the most used technique is Java Native Interface (JNI) with 51 occurrences
(36.95%), which confirms the major results of RQ4.3 i.e., the integration of Java with
C/C++ is the most common set of languages used. Then, Foreign Function Interface
(FFI) that takes the second place with 36 occurrences (26.08%). In these 36 papers,
researchers discussed FFI in general without precising any specific types such as JNI or
Python-C-extension. This, dependency analysis technique was reported in 15 papers
(10.86%), followed by eight papers reporting the use of TuProlog tool and Python/C
(5.79% each). Fluent interface, abstract syntax tree (AST), and graph techniques were

39

reported by five papers each (3.62% each). GNU Compiler Collection (GCC), GNFI,
LuaJIT tool, Microsoft .Net, RubyC, and TruffleC were presented by two papers each
(1.44% each). The remaining mechanisms were discussed each in only one paper.

4.4 Discussion

Nowadays, researchers are becoming more interested in studying multi-language develop-
ment, with several papers reporting its benefits and advantages. The inherent complexity
and challenges associated with multi-language development has been a major motivation
for further research in this field. Several other researchers are investigating multi-language
development and proposing new solutions to help developers to overcome these challenges.

We observed from the systematic literature review that researchers are focusing most on the
combination of Java/C(++). We explain it by the fact that the Java Native Interface (JNI)
i.e., the interface that allow the combination of Java and C(++), is already developed by
the JDK team and available since 1996 [27]. Few years ago, Java and C++ were among the
top five programming languages used in the world. At that time researchers started trying to
make the combination between Java and C(++) more simple by providing better and more
updated versions of JNI. Furthermore, Java is based on bytecode, thus, many languages have
been ported on top to interact with a rich catalog of APIs for Java. On the other hand,
JavaScript and Python are becoming the new trend and rank ahead of Java and C(++)
terms of language popularity. We believe that focusing multi-language development on these
new top programming languages will help the research community stay up to date with the
industry trend.

Identifying multi-language development techniques and mechanisms was challenging. We
found it difficult to identify them as many of the studied papers do not describe in de-
tail their methodologies. We succeeded to identify the techniques used in some papers based
on the documentation provided by the papers, references, and deeper investigation on the
internet i.e., developers blogs, GitHub, etc.

4.5 Threats to validity

Threats to construct validity : Threats that concern the design of the study. In this
chapter, we presented a systematic literature review where the findings rely on our own eva-
luation on the papers collected and on our criteria used to exclude papers deemed out of
scope. To ensure a high confidence in the validity of the papers excluded, two researchers
involved in this research work did the process and then contract the obtained results. Then,

40

the same two researchers did twice the process related to papers analysis and information ex-
traction (Programming language sets, mechanisms, categories, etc). Regarding the validation
of the categories presented in Section 4.1, we performed it on three steps. The first round was
dedicated to reading in depth all the papers and trying to extract some relevant keywords
that can help to understand the scope of the paper (Code analysis, Compilation, Software
quality, etc.). Then, we generalised the keywords extracted and created categories. Finally,
we validate the final results. To reduce subjectivity in our coding methodology, we validated
it with two different researchers.

Threats to internal validity : We manually validated the inclusion and exclusion criteria
of the papers selection in the systematic literature review study. We manually extracted
the needed information from the 138 papers by reading and analysing them twice. We also
performed many discussions with the researchers involved in the study to decide about the
keywords used for the query search. We also identified from the literature the main challenges
of multi-language development i.e., change impact analysis and design practices. We assumed
that these challenges are the challenges of developers as reported by researchers, but we also
surveyed developers about that directly through a survey and an interview in Chapter 6.

Threats to external validity : Threats that concern the generalization of the results.
During the systematic literature review, our methodology was firstly based on favouring
Recall over the Precision to be sure that we had all papers and then from the obtained ones,
we worked on the precision to keep only the relevant ones to the scope of the paper. We may
forget or exclude some papers that discussed and analysed multi-language systems between
2010 to 2020. We accept this threat, as exclusion criteria vary depending from a researcher
to other. However, to mitigate this threat, we did three snowballing rounds in which we
collected papers that was not selected by the research queries because of the keywords used.
We diversified the keywords, and their synonyms, used in the queries to cover as much as
possible the published papers.

4.6 Chapter Summary

Multi-language development has become prevalent and despite its benefits, multi-language
development introduces new challenges. In order to direct research efforts and help developers
deal with the multi-language development challenges, we investigated through this chapter,
the use of multi-language development in the literature. We performed a systematic literature
review of the use of multi-language development.

41

Our analysis of 138 papers showed that the most commonly used set of programming lan-
guages in the literature is Java/C(++) combined through the Java Native Interface (JNI).
One of the most important results concerns the identifications of the challenges that de-
velopers face during their daily multi-language development. Hence, we find that change
impact analysis and the need for design patterns/code smells presents the main challenge of
multi-language systems according to the literature.

42

CHAPTER 5 IDENTIFICATION OF THE PRACTICES OF JAVA NATIVE
INTERFACE DEVELOPMENT (sub-hypothesis 1)

5.1 Chapter Overview

One key finding from the previous chapter was that the implementation of multi-language
systems presents a huge challenge to developers. In this chapter, we analyze the practices used
by developers of multi-language systems with the aim of identifying a set of best practices that
can help developers overcome the challenges associated with multi-language development.

We perform a case study on 100 systems written in Java/C(C++) and using the Java Native
Interface. These 100 systems, i.e., 99 open-source GitHub software systems and the JDK
v9 from OpenJDK, are from different application domains with different percentages of JNI
native methods. We included the JDK because it is a large code base that includes many
usages of JNI that has been written by the inventors of JNI, thus presumably an appropriate
repository of good practices. We qualitatively studied those systems and catalogued the
practices.

5.2 Study Design

This section details the design of our case study.

5.2.1 Data collection

We used OpenHub to collect open-source JNI systems. OpenHub provides reports about the
composition and the activities of the systems. To create our data-set including the relevant
open-source systems in GitHub, we used Python scripts to extract systems that contain Java
and either C or C++ code. Then, for each software system, we calculated the number of JNI
method declarations using grep (searching for the keyword “native”) and followed by manual
filtering. Based on that, we grouped the initial set into three groups : high, medium, and
low number of JNI native method declarations and we randomly selected 99 JNI systems as
follows :

— 20 projects with a number of native method declarations superior to 1,000
— 39 projects between 1,000 and 100
— 40 with a number of native methods between 100 and 10

We ignored systems with a number of native methods lower than ten, because our manual

43

filtering showed that these methods are very short, usually delegators. Thus, we obtained a
representative set of JNI open-source systems.

We also considered the source code of JDK v9 from OpenJDK. We decided to analyze it in
addition to the 99 collected systems since it is developed and maintained by the implementors
of JNI as it appeared firstly with the JDK v1.1 [1,83]. We believe that best practices of JNI
may have been implemented in that system. We downloaded the OpenJDK source code of the
JDK v9 ; the reason behind this choice resides in the fact that it is the official implementation
reference of Java SE since version seven 1.

5.2.2 Data analysis

First, we measured the main metrics of the collected software systems to have an initial over-
view of our data-set. We measured, using the Understand tool 2, the total number of methods
(NOM) and the total number of code lines (LOC). We also identified and counted metrics
related to the quantity of JNI in the systems i.e., the number of JNI method declarations
and number of JNI implementation functions using grep commands. Then, we manually va-
lidated the output and cleaned the data. Table 5.1 presents the metrics of top-20 studied JNI
systems as an example. Then, using a Python script, we extracted JNI implementation func-
tions from C/C++ files. These are functions starting with JAVA_ or JAVACRITICAL_. We
manually checked the implementation function names to validate the output. Identifying the
native method declarations with their respective JNI implementation functions is a necessary
step to facilitate the analysis process for the practices extraction.

These steps helped to understand the entire functionality of the systems and the implication
of the JNI on them. We extracted JNI components i.e., JNI method declarations and JNI
implementation functions, to understand the coupling between them and how the data is
propagated in order to identify developers’ habits.

5.2.3 Practices identification

Once the JNI software systems are collected, we investigated the practices followed by de-
velopers when they use the Java Native Interface. The goal is to document and establish
common and recurring practices of JNI usage to help and guide future JNI developers.

A best practice is a practice that respects the JNI specifications, the programming language
rules to ensure the software quality, the design patterns, that was used in JDK, and potentially

1. http://jdk.java.net/java-se-ri/7
2. https://scitools.com/

http://jdk.java.net/java-se-ri/7
https://scitools.com/

44

Table 5.1 Metrics of the top 20 of the collected JNI systems

JNI JNI methods LOC NOM
systems (Declaration +

Implementation)
libgdx 8417 577,986 60,248
JDK 2789 1,925,782 147,098
Google toolkit 2755 729,918 78,898
Openj9 1771 1,050,418 77,251
Rocksdb 839 209,054 18,205
JMonkeyEng 720 208,909 20,411
OpenVRML 324 653,777 5,256
Realm 314 83,426 8,162
Conscrypt 276 49,993 5,067
JavaSMT 237 20,460 2,641
Jna 213 97,161 8,4617
CeylonComp 160 268,853 27,581
ReactNative 155 79,283 8,394
Telegram 114 525,663 27,9
OpenCV 93 745,57 60,612
Tenserflow 81 460,926 29,811
JatoVM 64 59,384 4,964
SQLite 54 19,297 2,463
Frostwire 45 161,630 16,810
Godot 23 867,822 53,819

used in most of the collected JNI software systems. A practice could be any methodology of
the implementation of JNI functions, a recurrent or a common JNI piece of code, a recurrent
security check, a common use of specific attributes, etc. We report a practice when it was
identified in ten or more of the JNI systems. We present in the following the steps followed
to identify the practices and verify their usage in the collected JNI software systems. Figure
5.1 shows a general overview of these steps.

— First, we relied on the literature review study and on the JNI programming rules [83] to
identify the essential and critical categories of JNI (e.g., JNI library loading, exception
management, JNI return complex types, etc,). We used these categories to limit and
guide our process in searching for JNI programming practices first in JDK and then
in the 99 open-source JNI software systems. The categories identified and used in this
study are : JNI library loading, exceptions management, return types management,
local and global references management, and String uses.

— Then, for each category identified from the previous step, we analyzed the source

45

Figure 5.1 An overview of the steps followed to identify the JNI practices

code of JDK v9, considered as our pilot, to find how these categories are implemented
and used. We investigated mainly the JNI part i.e., JNI methods declaration in the
Java side and their respective JNI implementation functions in the C side. Based on
that, we defined the practices that we will investigate their usage in the other 99 JNI
software systems.

— Lastly, we investigated the presence of JDK practices in the others systems. We identi-
fied the systems that are/aren’t following JDK’s development ways and that are/aren’t
following JNI specification rules in general.
For example, regarding the category of JNI library loading, we extracted the respective
pieces of code in JDK, then we identified the involved keywords such as : static,
system.load(), etc. Last, using scripts, we searched for these keywords in the other
99 JNI software systems and compared how the native libraries are loaded there.
Each category was analyzed differently. For example, in the case of JNI exception
management, we had to identify the data propagation of the exception object from
both the Java and C side and to verify if the same implementation used in the other

46

systems.

5.3 Study Results : Catalogue of identified practices

By analyzing the 100 JNI systems source code, we extracted 10 best practices and habits
of JNI developers. These practices were identified based on the common JNI mistakes as
defined in the bug reports. We found that six of these practices have been mentioned also in
the IBM developers blog 3 which provides evidence that we followed an accurate approach to
identify the best practices to support developers. This set of 10 practices are the first of a set
of practices that can be extracted from the Java and C/C++ source code. We believe that
developers should be aware of them and try to follow these common guidelines and practices
when using JNI. In future work, we plan to enforce these practices with tools/IDEs to provide
developers with an adequate JNI programming environment.

1. Practice Name : AccessController to load a native library.
AccessController presents a safe way to load a native library because it ensures
that the library cannot be loaded without permissions. We analyzed the source code
of the JDK and observed that libraries are loaded in static blocks, wrapped in a call
to AccessController.doPrivileged as shown in Figure 5.2. JDK developers use
doPrivileged to ensure security and prevent undesirable access to the system 4 [1].
Similarly, we analyzed the source code of the other systems to look for System.loadLibrary.
We found that 85 out of the 99 systems, i.e., 85%, do not use the safe way to load
libraries.

2. Practice Name : No hard-coded library name.
Java is written to be used everywhere i.e., the same code is expected to run on all
platforms but there should be different native code libraries for different platforms
that have to be loaded according to the target OS. Loading the library in a way to
take care of the OS ensures that all platforms are covered and those missing libraries
can be easily identified. This practice was ignored by 34% of JNI systems that we
studied. We show in Figure 5.3 an example extracted from Frostwire system where
it follows this good practice.

3. Practice Name : Hiding Library Loading.
To load the native libraries, depending upon how the code is being compiled, develo-
pers should create a class to load the correct library. Then, they should call it from

3. https://developer.ibm.com/technologies/java/articles/j-jni/
4. http://download.java.net/jdk7/archive/b123/docs/api/java/security/AccessController.

html

AccessController.doPrivileged
https://developer.ibm.com/technologies/java/articles/j-jni/
http://download.java.net/jdk7/archive/b123/docs/api/java/security/AccessController.html
http://download.java.net/jdk7/archive/b123/docs/api/java/security/AccessController.html

47

static { AccessController.doPrivileged(
new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("osxsecurity");
return null; }
}) ; }

Figure 5.2 Safe loading library (OpenJ9) [1]

/∗for Windows∗/
if (OSUtils.isWindows() && OSUtils.isGoodWindows()) {
if (OSUtils.isMachineX64()) {
System.loadLibrary("SystemUtilitiesX64");
} else { System.loadLibrary("SystemUtilities");}
/∗for Mac OS∗/
public final class GURLHandler {
System.loadLibrary("GURLLeopard");
public class MacOSXUtils {
System.loadLibrary("MacOSXUtilsLeopard"); }

Figure 5.3 Load library for different OS (Frostwire) [1]

another class to hide the actual library loading as in the case of the Conscrypt system
shown in Figure 5.4. We found that 13% of JNI systems are not following this practice.

4. Practice Name : Using Relative Path.
In JNI software systems we usually need to access or integrate foreign libraries or API.
For that, when using a native library, we need to specify the relative path to access
the library and allow it to be installed anywhere. We found that 32 of the studied
systems load the external library by only specifying the name of the library without
providing the full path, which can impact the reuse of code or maintenance of the
library. We show in Figure 5.5 an example of the right way to perform it.

5. Practice Name : Use List of Probable Paths.
When we deal with different libraries and operating systems, a list of probable loading
paths can be generated based on the OS being used as illustrated by JNA system. This
is a good practice when the native library is in a JAR, however, it seems that this
approach is not used by the majority of the developers 5. Figure 5.6 shows an example
of the JNA system that creates a list of probable paths where the library can be found.

5. https://www.adamheinrich.com/blog/2012/12/how-toload-native-jni-library-from-jar

https://www.adamheinrich.com/blog/2012/12/how-toload-native-jni-library-from-jar

48

class NativeCryptoJni {
public static void init() {
System.loadLibrary("gmscore");
System.loadLibrary("conscrypt_gmscore_jni");
System.loadLibrary("conscrypt_jni");}}

class NativeCrypto {
public static void main(String[] args) {

...
NativeCryptoJni.init() ; ... }}

Figure 5.4 Abstracting library loading (Conscrypt) [1]

public class JNITest extends TestCase {
static {System.load("./test/functional/jni/ libjnitest .so") ; }

Figure 5.5 Using relative path (JatoVm) [1]

We found that 62% of the studied JNI systems are not following this practice.

6. Practice Name : Assuming safe JNI return values.
Exceptions allow developers to report and handle exceptional events that require spe-
cial processing outside the actual flow of an application. However, their support is not
available for C programming language. JNI is designed to be a universal solution to
facilitate the integration of native modules into Java applications, hence it uses excep-
tions, but in the C-way. Typically, we need to access and transfer data and information
between different languages. We usually pass and return values from one language to
another, the JNI API functions rely on their return values instead of indicating any
errors during the execution of the API call.
As a good practice, developers should never assume that it is safe to use a value
returned by a JNI API call, it should always be checked to make sure that the JNI
API call was successfully executed and the proper usable value is returned to the
native function. Figure 5.7 shows a good example of the code extracted from Libgdx
where Figure 5.8 shows a counter-example. Our results show that 40% of the studied
JNI systems do not follow this practice.

7. Practice Name : Take care of the strings.
JNI handles Java strings as reference types. These reference types are not null-terminated
C char arrays (C strings). JNI provides the necessary functions to convert such Java

49

private static NativeLibrary loadLibrary(...) {
boolean isAbsolutePath = new File(libraryName).isAbsolute();
List<String> searchPath = new ArrayList<String>();
int openFlags = openFlags(options);
String webstartPath = Native.getWebStartLibraryPath(libraryName);
if (webstartPath != null) {if (Native.DEBUG_LOAD) { System.out.println("Adding web start

path " + webstartPath);} searchPath.add(webstartPath);}
List<String> customPaths = searchPaths.get(libraryName);
if (customPaths != null) { synchronized (customPaths) { searchPath.addAll(0,

customPaths);}}
if (Native.DEBUG_LOAD) {
System.out.println("Adding paths from jna.library.path: " +

System.getProperty("jna.library.path"));}
searchPath.addAll(initPaths("jna. library .path"));
String libraryPath = findLibraryPath(libraryName, searchPath);

Figure 5.6 Use list of probable paths (JNA) [1]

jclass clazz ;
clazz = env−>FindClass("java/lang/String");
if (0 == clazz) { /∗ Class could not be found. ∗/
} else { /∗ Class is found, we can use the return value. ∗/}

Figure 5.7 Assuming safe return value of JNI (libgdx) [1]

string references to C strings and vice-versa, as shown in Figure 5.9. When a Java
string is converted to a C string, it becomes simply a pointer to a null-terminated
character array. It is the developers’ responsibility to explicitly release the arrays, al-
located on heap, using the ReleaseString or ReleaseStringUTF functions, as shown
in Figure 5.10. Memory leaks can occur if the developers forget to do so. Our results
show that only 8% of the studied systems are not following this practice.

8. Practice Name : Never Cache Local References.
The lifespan of a local reference is limited to the native method itself. The JVM
garbage collector’s boundaries are limited to the Java space only, so the JVM garbage
collector cannot free the memory that the application allocates in the native space.
It is the developers’ responsibility to manage properly the application memory in the
native space. Otherwise, the application will cause memory leaks. To reuse a reference,
the developer must explicitly create a global reference based on the local one using
the NewGlobalRef JNI API call, as shown in Figure 5.11. The global reference can be

50

staticvoid nativeClassInitBuffer (JNIEnv ∗_env){
jclass nioAccessClassLocal= _env−>FindClass("java/nio/NIOAccess");
nioAccessClass = (jclass) _env−>NewGlobalRef(nioAccessClassLocal);
bufferClass = (jclass) _env−>NewGlobalRef(bufferClassLocal);
positionID = _env−>GetFieldID(bufferClass, "position", "I");

Figure 5.8 Assuming safe return value of JNI (Libgdx) [1]

jboolean isCopy;
str = env−>GetStringUTFChars(javaString, &isCopy);
if (0 != str) {...}

Figure 5.9 Converting a Java String into a C String (Telegram) [1]

released when it is no longer needed using the DeleteGlobalRef function. Only 22
JNI software systems are not following this practice.

9. Practice Name : Always Check for Java Exceptions caught in native code.
Exceptions behave differently in the JNI than they do in Java. In Java, when an
exception is thrown, the virtual machine stops the execution of the code and goes
through the call stack in reverse order to find an exception handler that can handle
the specific exception type. The VM clears the exception and transfers the control to
the exception handler block.
In contrast, JNI requires developers to explicitly implement the exception handling
flow after an exception has occurred. Java exceptions can be caught in native code
using the JNI API call ExceptionOccurred. This function queries the JVM for any
pending exception, and it returns a local reference to the exception Java object, as
shown in Figure 5.12. It will not block the execution of the native code. As the actual
exception does not leave any traces behind, it is hard to debug.
Checking whether a Java exception has been thrown is considered a good practice
by the developers. Developers must check whether a Java exception has been thrown
after invoking any Java methods that may throw an exception. Upon handling the
exception, it should be cleared using the ExceptionClear function to inform the JVM
that the exception is handled and JNI can resume serving requests to Java space. 80%
of the JNI systems do not follow this practice, Libgdx is an example of that.

10. Practice name : Use of proper caching of classes, methods, and field IDs.
JNI does not expose the fields and methods of Java classes directly in the native code.

51

str = env−>GetStringUTFChars(javaString, &isCopy);
if (0 != str) {env−>ReleaseStringUTFChars(javaString, str);
str = 0; }

Figure 5.10 Releasing the C string (Telegram) [1]

jobject globalObject = env−>NewGlobalRef(...);
if (0 != globalObject) {/∗we can cache and reuse globalObject∗/}

Figure 5.11 Obtaining a global reference from a local reference [1]

It provides a set of APIs to access them. For example to get the value of a field of a
class : we can (1) obtain a reference to the class object through the FindClass function,
(2) obtain the ID for the field that will be accessed through the GetFieldIDfunction,
(3) obtain the actual value of the field by supplying the class instance and the field
ID to the Get<Type>Field function.
These functions go upon the inheritance of classes and methods to identify the right
ID to return. Neither the Class object, the Class inheritance, nor the fieldID can be
changed during the execution of the system. These values are cached in the native
layer for subsequent accesses. The return type of the FindClass function is a local
reference so developers must create a global reference first through the NewGlobalRef
function, when it is needed. The return value of GetFieldID is jfieldID, which is an
integer that can be cached as it is.
As a good practice, developers should focus on caching both the field Ids and method
IDs that are accessed multiple times during the execution of the application. This
practice improves the execution time of the system. Caching classes, methods, and
fields present an impact on the application’s run time. We found that all the JNI
systems that we analyzed are following this practice. Figure 5.13 shows an example of
this practice extracted from JatoVM.

5.4 Discussion

Table 5.2 summarizes the lessons learned from the practices qualitative study to support
developers within their JNI development, while in the following, we discuss our findings.

First, we investigated the safe library loading and we found that JDK developers use AccessController.
doPrivileged to load the native library. However, in the other 99 systems, we found that

AccessController.doPrivileged
AccessController.doPrivileged

52

env−>CallVoidMethod(instance, throwingMethodId);
ex = env−>ExceptionOccurred(env);
if (0 != ex) { env−>ExceptionClear(env); }

Figure 5.12 Native exceptions using ExceptionOccurred [1]

static jfieldID JNI_GetFieldID(JNIEnv ∗env, jclass clazz,...)
{ fb = vm_jni_common_get_field_id(clazz, name, sig);

if (! fb) {return NULL;}
if (vm_field_is_static(fb)) {return NULL;}
return fb; }

Figure 5.13 Use proper way of caching FieldIDs (Jatovm) [1]

85 out of 99 do not use the same way to load their libraries i.e., AccessController.
doPrivileged. Thus, we investigated 40 StackOverflow Q&A entries and we found that
most of the developers use unsafe library loading as well. This practice faces software sys-
tems to more vulnerabilities i.e., security breaches from outside 6. The AccessController
class is used to : (i) determine whether access to a critical system resource should be allowed
or denied, (ii) mark the code as “privileged” thereby affecting subsequent access determi-
nations, and (iii) obtain a “snapshot” of the current call context so that the access control
decisions from a different context can be made with respect to the recorded one. We be-
lieve that developers must be aware of this practice to ensure safe use of the JNI and avoid
vulnerabilities.

Regarding the software exceptions, the languages do not have the same way to manage
exceptions as it depend on the language itself. Thus, in the context of multi-language systems,
we can not rely only on the exception provided by the other language, it is necessary to
implement the exception handling. Same in the case of JNI, developers have to explicitly
implement the exception handling flow when an exception occurred. A mis-handling on JNI
exception may result in software issues (quality and security issues) as unchecked exceptions
will introduce faults in the system that will be hardly debugged or retraced to the origin of
the bug.

Another practice concerns the check of the JNI Return Values where we suggest to developers
to never assume that it is safe to use a return value without any additional verification. As
well, developers should always check the return values to make sure that JNI API call was

6. https://docs.oracle.com/javase/7/docs/api/java/security/AccessController.html

AccessController.doPrivileged
AccessController.doPrivileged
https://docs.oracle.com/javase/7/docs/api/java/security/AccessController.html

53

Table 5.2 Lessons learned

Lessons learned Brief description
1 Be aware of library

loading
Developers should be aware of the security of the system when
loading native libraries. We recommend the use of AccessCon-
troller for a safe load.

2 Define the library
for each OS

Developers have to use a clean way to load the library by hand-
ling all targeted OS on which the library is available to ensures
the code readability by making the libraries easily defined for
each operating system.

3 Hide the library
loading

Developers are recommended to abstract the access to the native
library loading by hiding its implementation in a separate class
and then call it through that class.

4 Use relative Path
to load the library

In order to ensure the reusability and maintainability, developers
are recommended to use relative path when loading the native
library as it will easily located by maintainers and accessible
from anywhere.

5 Generate a list of
library probable
paths

It is better to generate a list of probable loading paths of the
native libraries When we manage different libraries through dif-
ferent operating systems.

6 Always check JNI
return values

Never assume it is safe to use the return value of a JNI API call
as is. Developers should always check the return value to make
sure that the JNI API call was successfully executed and the
proper usable value is returned to the native function.

7 Take care of the
Strings

JNI handles Java strings as reference types that are not directly
usable as native C strings, so JNI provides the necessary func-
tions to convert these Java string references to C strings and
back.

8 Never cache local
reference

Developers should use a global reference, but they should take
care of the memory.

9 Check Java Excep-
tions

JNI requires developers to explicitly implement the exception
handling flow after an exception has occurred.

10 Use Proper way
of caching classes,
methods, and fields

JNI does not expose the fields and methods of Java classes di-
rectly in the native code. Instead, it provides a set of APIs to
access them indirectly.

54

successfully executed and that the native code will receive the correct return value. Developers
also need to take care of strings as they are converted from a pointer to a character array.
These references will keep Java objects from being garbage collected. As good practice, we
believe that it is the developers’ responsibility to release the character arrays explicitly using
the ReleaseString or ReleaseStringUTF functions to avoid issues related to memory leaks
because JNI cannot manage the memory allocation automatically. From another survey study
performed in [84], we found that checking multi-language return values, even if it is mostly
followed by developers, is not given the same degree of a priority than checking the exceptions.
Also, the survey reported that only 27.96% of the surveyed developers check multi-language
return values very often, while the others reported that even they did not check these return
values, they rarely experienced issues related to this practice.

The next interesting finding is about local and global reference management in JNI. Local
references become invalid when the execution returns from the native method in which the
local reference is created. Therefore, a native method must not store a local reference and
expect to reuse it in subsequent invocations. So whenever the state is to be maintained during
JNI calls, global references are a must where JNI global references are prone to memory leaks
because they are not automatically garbage collected, and the developer should explicitly free
them.

5.5 Threats to validity

Threats to construct validity : We ensured a diversity of systems where we analyzed
the source code of the JDK v9 and 99 JNI systems and downloaded the source code of JNI
systems from GitHub and the JDK from the OpenJDK Web site.

Threats to internal validity : We manually validated our choice of the JDK, the 100 JNI
systems, our methodology, and tools. We believe that the JDK is an example of good JNI
usage. We choose the JDK v9 as it is the last stable version of the JDK. We also analyzed 99
open source JNI systems collected from GitHub. We use the Understand tool, Git commands,
and python scripts to identify JNI method declarations and implementation functions. We
semi-automatically validated the results of our scripts.

Threats to external validity : We identified 10 common JNI practices. We believe that
these practices are some of many other practices that can be found by analyzing more systems.
On the other hand, while we cannot generalize our results to all JNI systems, the choice of
major categories of the JNI development and the use of JDK as a study pilot provides

55

confidence that the identified practices may be applied on many other JNI systems. Also, we
mitigate the threat by evaluating the manual analysis by two of the implicated researchers
to ensure a high accuracy.

5.6 Chapter Summary

From the previous chapter, we concluded that JNI (a sub-type of FFI) is the most used
and studied technique in literature. Researchers are interested in analysing the combination
of Java with C(++) in different contexts such as JNI practices [1, 78] and JNI challenges
[85]. In this chapter, we further investigate the Java Native Interface from the developer’s
perspectives. JNI proposes structures and an idiomatic syntax to declare, implement and
call native methods. However, the actual state of the practice of JNI usage was unknown so
far. Thus, we performed a qualitative analysis to extract facts about the usage of JNI in the
source code of 100 systems (around 8k Java and C(++) files) that use JNI from GitHub. Our
main results show 10 JNI practices mainly related to library loading, exceptions management,
return types management, local and global references management, and String uses.

56

CHAPTER 6 HOW IS CHANGE IMPACT ANALYSIS PERFORMED IN
THE CONTEXT OF MULTI-LANGUAGE DEVELOPMENT?

(Sub-hypothesis 2)

6.1 Chapter Overview

The systematic literature review conducted in chapter 4 identifies change impact analysis
as one of the main challenges faced by developers during multi-language development. Thus
in this chapter, we analyze in depth the concept of change impact analysis with the goal of
helping the multi-language developers to overcome this challenge.

Change-impact analysis (CIA) is the technique to analyze the impact of changes on source-
code entities. It is an essential technique for software maintenance and evolution, as it com-
putes the impact associated with any kind of changes, as well as their consequences [86], i.e.,
the source-code entities that must be changed after a bug fix, a client’s new requirement, a
migration to a new technology, etc. When a change is applied to a system, the dependency
between its entities may be broken i.e., one of the entities may risk being no longer coherent
with others or the new change may require further changes to some entities on which it
depends [87]. A lack of change impact analysis may lead to introduce several bugs and secu-
rity vulnerabilities on the software system [3]. Thus, performing change-impact analysis on
a system is vital for the success of the system as it consists of verifying the propagation of
any change through the dependant entities [58].

Many researchers have studied CIA in mono-language systems i.e., systems developed with
a single programming language [39, 40, 45, 88]. Different causes of changes in the scope of
mono-language systems have been enumerated in the literature, e.g., requirement uncer-
tainty, market demands, changing environment, new clients’ requirements [54]. Nowadays,
developers are often using multi-language development and multi-language systems are thus
becoming more prevalent [19, 76, 89]. However, investigating CIA in those systems presents
a new challenge due to the complexity of such systems in terms of dependency analysis,
source-code entity interaction, change propagation, different programming language rules
e.g., lexical, semantic, and syntactical, different mechanisms to combine languages e.g., Java
native interface, Python C extension, etc. [8].

Our objective in this chapter is to understand how developers manage changes in multi-
language systems. First, we examine the developers’ motivations for change-impact analysis.
Next, we investigate how developers deal with changes in multi-language systems, in parti-

57

cular, we investigate tools, techniques, and methodologies followed by developers in industry.
We also inquire about the difficulties that they face when conducting their analysis and the
impact on system quality and system security. Lastly, we present recommendations to guide
and help industries and developers in their change-impact analysis in multi-language systems.
Thus, we answer the following two research questions :

RQ6.1. What are the challenges of change-impact analysis in multi-language
systems? On the one hand, we investigate the main reasons behind source-code
changes. On the other hand, we investigate the challenges and issues that developers
face when changing their multi-language systems. So, through this general research
question, we aim as well to answer the following sub-question :
— What are the consequences of a lack of change-impact analysis in multi-language

systems ?

RQ6.2. What are the existing means for change-impact analysis in multi-
language systems? We investigate how developers analyze and make changes to
their multi-language systems. We investigate the existing means that developers use
to perform their change-impact analysis on multi-language systems. Thus, we answer
the following sub-questions :
— Do companies put into place specific means to conduct a change impact analysis

in multi-language systems ?
— What are the different steps followed by developers when conducting their changes

in multi-language systems ?
— What are the requirements for a professional change impact analysis means for

multi-language systems ?

To achieve these objectives and answer the research questions, we developed a survey with
30 questions that we sent to 200 developers. The questionnaire was completed by 69 different
developers (34,5%), from eight countries, with mixed backgrounds and mixed work positions.
We present the questions in the appendix of this thesis.

A survey is the adequate method to answer these research questions because it allows col-
lecting information from different stakeholders to describe and compare their knowledge and
behavior [90]. There are many ways to conduct a survey : either directly by asking partici-
pants or indirectly by reviewing written or visual records. In this study, we opted for a direct
survey. Thus, first, we shared the questionnaire using LinkedIn platform. Then, to validate
the answers, we asked the participants, via the last question of the survey, for a follow-up of
a 20-minutes interview so we can ask more precisely and interactive questions. Eight out of
69 agreed to participate.

58

Figure 6.1 An overview of the followed methodology

59

6.2 Study design

In this section, we present the design of this study. We show in Figure 6.1 an overview of the
different steps followed.

6.2.1 Questionnaire Design

The survey questions 1 were prepared based on prior literature [36,45,54] as well as software
blogs, websites, and developer discussions. We used the online professional survey platform
CheckMarket 2 that possesses a free trial version and offers an unlimited number of questions.
Our survey contains close-ended questions with potential predefined answers and open-ended
questions, to give the participants the freedom to provide all the information that they
consider relevant. We present the questions used in this survey in Appendix Section.

6.2.2 Questionnaire implementation

As a basis for any questionnaire, we started by the policy of the study where we confirmed
that participants’ identities were kept anonymous both for the data and the results. Then,
we detailed the objective of the study in which we presented a short definition of multi-
language development and change-impact analysis concepts, to help participants understand
the context of the study and the research questions.

We split the questionnaire into three parts, where the first part is dedicated to participant’s
information and work experience in general. The second part is dedicated to their experience
with change-impact analysis in multi-language systems, and the third part presents a short
case study where participants are asked to answer three analysis questions related to a given
source code scenario.

The first part included nine questions related to information about the participants’ context
of work e.g., education level, work positions, years of experience, company information, com-
petencies, programming language knowledge, etc. All the questions in the survey contain the
references from where we extracted the information.

The second part included 18 questions mixed between multi-language development and
change-impact analysis knowledge. The questions included experience in these two topics,
change impact analysis means being used, challenges faced, etc.

The third part included one multi-language source code scenario. We provided a small pro-

1. https://s-ca.chkmkt.com/?e=132567&h=EC01C1B95F9F3F8
2. https://www.checkmarket.com/

https://s-ca.chkmkt.com/?e=132567&h=EC01C1B95F9F3F8
https://www.checkmarket.com/

60

gram written in (Perl, Java, and C) with a descriptive text where the developer needs to
apply changes in the Java part of this code source (example of code extracted from [3]). we
asked them what would be the impact in the C part and what are the methodologies that
they would use. In total, we asked the participants three open-ended questions from which
we aimed to extract information about the behavior of a developer in such situation. The
30 questions in the survey were conditional. Regarding Yes/No questions, if we suppose that
the answer is No then our survey will ignore the following related questions and bring the
respondent to the next, relevant one.

The survey is a mix of close-ended and open-ended questions. 24 questions are close-ended
with predefined answers where participants select their best answers. An open choice box
“Other (please specify)” is available, if the participants’ answer does not match with any
of the predefined answers. Six questions are totally open-ended and contain empty fields to
give to the participants the ability and freedom to describe and explain their ideas. The
open-ended questions were created especially where we need participants’ opinion about the
benefits and improvements of specific change-impact analysis mechanisms.

6.2.3 Interview Sessions

We performed interview sessions with eight participants who kindly accepted our invitation.
We believe that an interview i.e., one-on-one conversation between the participants and us
is the better method to validate and evaluate the survey answers in an interactive way.
Performing these interviews allowed to assess the reliability of the answers in the survey by
looking for contradictions, spurious, and unreasonable answers.

During the survey process, we asked the participants to provide us their email addresses if they
are interested in a follow-up interview. Thus, we contacted them by email to fix upcoming
appointments. We chose to carry the interview session using video-conference (Skype) as
some of them were outside Canada. We performed the interview on three consecutive days
according to the availability of our interviewees.

We performed open-ended qualitative interviews. The questions were flexible. We adjusted
them depending on the interviewees’ answers, in order (1) to clarify the responses, (2) to
follow promising new lines of inquiry, and (3) to probe for more details. Thus, during the
interview sessions, we asked the interviewees :

— First, to validate their answers. This step allowed them to rectify some of their answers
or to ask for more details about the questions that maybe were confusing for them.

— Then, to elaborate their answers. This step helped us to understand the interviewees’
intentions, since they had the opportunity to discuss in detail the difficulties due to

61

a lack of means, their expertise, etc., and the problems faced with changes in multi-
language systems.

— Lastly, to resolve contradictions among the survey answers. With the interviewees’
feedback, we were able to clean the data i.e., the survey answers, to correctly categorize
and code the answers, and to easily draw conclusions.

6.2.4 Participant Selection

LinkedIn 3, as a professional social media site, seemed like a good way to identify and make
contact with potential participants for this study. It is a social network designed specifically
for career and business professionals. We decided to use LinkedIn because it offers an advanced
search with multiple filters to facilitate the discovery of relevant profiles.

We identified 200 developers by searching for them with specific criteria and keywords that we
detail below. We also used the inMail contact available in the premium version of LinkedIn,
to contact developers that can only be reached with a premium account. First, we defined the
list of keywords that will be used to select the practitioners in LinkedIn. Then, we upgraded
our LinkedIn profile to a premium version to take advantage of its advanced options available
such as contacting people using inMail. Next, in the LinkedIn search bar, we started inserting
our keywords one by one. And last, for each profile list returned by each keyword, we dedicated
half of a day to check the online profiles and look for target persons, and then moved to the
next keyword and new profile list.

Our search keywords for the developers’ competences were “Software developer/Software
development”, “Software engineer”, “Software analyst/Software analysis”, “Code analysis”,
“Static analysis/Dynamic analysis”, “Software tester/ Software testing”, “Software quali-
ty”, “Foreign function interface/FFI”. Then, we manually checked the profiles retrieved, and
contacted those who satisfied the criteria detailed above. “Multi-language” and “Change-
impact analysis (CIA)” keywords as well as their synonyms are not used as competences
in LinkedIn. Thus, it was impossible for us to know in advance and without checking the
profiles if developers have competences in multi-language systems or change-impact analysis.
We were interested in the profile of developer in general who had used several programming
languages during their career.

The selection of the right profiles was challenging. Manual verification of the target parti-
cipants was made by consulting the online profiles. We selected developers based on their
online resumes as well as their actual or previous jobs. Some LinkedIn users add details to

3. https://www.linkedin.com/uas/login

https://www.linkedin.com/uas/login

62

their online profiles about old or in-progress projects. This information was very helpful to
target the right participants.

After identifying potential participants, we started sending formal invitations via LinkedIn’s
message service and sharing the survey with a descriptive message of the study and a public
link towards the questionnaire.

To get more participants, we also shared the survey by posting it in discussion groups spe-
cialized in software engineering and programming languages. We asked people to contact us
if they needed more information or details about the study. We can not estimate the exact
number of answers received from developers of these groups, because there is no way in lin-
kedIn to know who and how much people in these groups had read our message or open our
survey link. The only number that we can confirm is the 200 developers that we contacted
directly and personally via LinkedIn messages. From the participants contacted, we received
responses from 69 participants (34.5%).

6.3 Data Analysis

6.3.1 Answer Collection

CheckMarket offers the option to download the results of the survey in Excel, CSV, or PDF
formats. In our case, we chose to save locally the data in a CSV file and to build our analysis
and hypothesis based on the data interpretations.

Regarding the interview results, we recorded videos of the different sessions with the eight
interviewees after getting their official approval. We committed to keeping the interviewees’
identities anonymous and will never publish the interviews in order not to risk exposing
personal information.

6.3.2 Coding Method

We extracted the responses to our open-ended questions i.e., the survey’s answers and the
transcripts of the individual interviews, then, we encoded them. Close-ended questions did
not need to be encoded because their answers are already predefined.

We followed the process of Bluff [18] to transform the qualitative data for analysis. The
process implies three main steps :

— Open Coding to name and give meaning to the data, then, to link the similar meanings
together, and renamed them as categories.

— Axial coding to build connections between categories and sub-categories. These connec-

63

tions are created by determining causes, contexts, consequences, covariances, and
conditions.

— Selective coding to link all categories and sub-categories to the core category in order
to make the “story-line".

In more details, the coding process in this study lasted six days, three for each of the survey’s
answers and the transcripts of the individual interviews. The detailed process performed as
following :

— We regrouped the survey answers together for each open-ended question, and we did
same for each individual interview transcript.

— In the first round, for each question separately, we extracted the keywords and the
targets from each answer. Targets are keywords that provide enough information about
the question. Examples of targets are presented in bold in Table 6.1 and described
below. Some questions that asked for a description of a sequence of events/steps were
coded differently. For example, Q28 required that we go through the answers and
analyze each one in depth, there were no target words to look for. Instead, we looked
for a logical sequence of events or steps.

— Then, for the second round, we categorized the targets according to the purpose and
the goal of each question. We regrouped similar targets into one. One answer can be
related to more than one target and one target can include more than one answer.

— In the third round, we went through the answers and their corresponding categoriza-
tion, to verify and validate the matching.

Table 6.1 presents examples of three questions chosen randomly, to illustrate our encoding
process. We present their answers and the three rounds of the coding that were performed. As
can be seen from Question 15 “Have you faced, in your department/team, problems caused
by a lack of change-impact analysis in multi-language systems ?” and question 16 “What
were these problems ?” in Table 6.1, we extracted the main keywords from the answers in
the first round, then we categorized them according to the reported consequences of a lack
of change-impact analysis. The third round is a matching validation step. We discussed all
ambiguities in the collected answers to generate the final categories.

Regarding question 27 “Imagine that a change-impact analysis software is being developed,
what aspects should this software consider for a good change analysis in a multi-language
system ?” in Table 6.1, the first round was similar to the first round of Q16, but the catego-
rization was different because the goal and the context of the question are not the same. We
regrouped the targets in three categories in terms of the realisability of such tool characte-
ristics : easily realisable, medium realisable, and hardly realisable.

The last example presented in Table 6.1 concerns question 28 “What steps will you follow

64

when applying this change ?”. The first round followed was the same as in the methodology
of the previous questions. The categorization was made based on the way that a developer
performed the changes, i.e., considering whether a change-impact analysis was made impli-
citly or explicitly. Implicit change-impact analysis occurs when developers followed the steps
required to do a CIA using a manual approach, or without knowing that they were doing
a change-impact analysis, or they missed the step of analyzing dependencies, etc. Explicit
change-impact analysis is when developers applied necessary means for a CIA such as che-
cking the dependency between components, identifying the potentially impacted artifacts,
applying specific testing for a multi-language system, etc.

6.4 Results

The following section presents the survey and the interview results, summarizes the findings,
and provides recommendations. Each subsection shown below corresponds to one section of
the survey and the last one concerns the interview sessions.

6.4.1 Demographics

We surveyed a total of 69 participants from eight countries as shown in Figure 6.2 : 44 were
from Canada (63.77%), nine from France (13.04%), eight from Tunisia (11.59%), three from
the USA (4.35%), two from Morocco (2.90%), and one from Jordan, Ukraine, and United
Kingdom, each (1.45% each).

From question Q1 to Q8, we report the following results.

1. “What is your highest level of education ?”
Figure 6.3 presents the findings. 39 participants among 69 had a Master’s degree, 20
(28.98%) had an engineering degree, seven (10.14%) had a Ph.D. degree, and three
(4.34%) had a bachelor degree.

2. “What is (are) your current position(s) ?”
Respondents hold different work positions in different enterprises, one developer can
hold more than one position. We show the results in Figure 6.4. 46 (66.66%) par-
ticipants are software engineers, nine (13.04%) postdoc position, eight (11.59%) web
developers, seven (10.14%) system analysts, six (8.69%) project managers, six (8.69%)
software testers. There were five (7.24%) technical consultants, three (4.34%) business
analysts, two (2.89%) technical support, and only one developer (1.44%) was a network
engineer.

65

Table 6.1 Illustration of our Data Encoding process

Answers First Round Second Round
Q16 “Incompatibility between code compo-

nents”
Incompatibility between com-
ponents

Incompatibility

“Completely restart over a feature be-
cause the client had a new awesome
idea”

Clients new requirements Rework

“Platforms issues like Windows vs Li-
nux or Unix”

Incompatibility between the
OS

Incompatibility

“We had to work on feature that were
supposed to be done since something
changed...”

New change appeared Rework

Q27 “It should be integrated in an IDE” Be part of an IDE Easily realisable
“Ensure the behavior of the program re-
mains unchanged after modifications”

Ensure coherent results Medium realisable

“The evaluation of the many risks asso-
ciated with the change and dependencies
analysis”

Evaluate the risks Hardly realisable

Q28 “Add jint parameter in C program.
Change Java program to add parameter
in functions. Add parameter in Perl pro-
gram when we call Java program”

Changes were made step by
step according to dependent
classes identified visually wi-
thout any CIA means

Implicit CIA

“I will start making those changes from
top to bottom (Perl to C). I will add a
new question so that we can get the days
in Perl. Then add the parameters in both
print methods in Java. And finally i will
implement the logic in C”

Changes were made step by
step according to dependent
classes identified visually wi-
thout any CIA means

Implicit CIA

“Look at the Java method dependen-
cies (both what it calls and what calls
it), synch up, and down the changes
requirement. Compile and test beha-
vior”

Some change-impact analysis
techniques were used (Depen-
dencies analysis, behavior tes-
ting)

Explicit CIA

66

Figure 6.2 Participants countries Figure 6.3 Education level

Figure 6.4 Work positions

3. “How many years of work experience do you have in software development ?”
The majority of participants had a solid work experience as shown in Figure 6.5. 29
participants had between two and five years (42.03%) of experience, 33 participants
had between six and ten years (47.82%), four participants (5.80%) had between 11
and 15 years of experiences, one participant (1.45%) had between 16 to 20 years of
experience, and two (2.90%) participants were very highly experienced with more than
20 years.

4. “What is the field of the developed software in your company ?”
Figure 6.6 shows that companies’ domains were mixed as well : 22 (31.88%) of par-
ticipants are working in the business and IT services. Then, 20 (28.98%) in research
and development department where they are implicated in research activities under-
taken by the company in developing new services/products, or improving the existing

67

Figure 6.5 Work experience years Figure 6.6 Companies field

ones. Eight (11.59%) in banking and insurance, three (4.35%) in health-care, and one
(1.45%) in government and defense. 15 (21.74%) of the participants mentioned other
domains like transport, finance, social media, telecommunications, and cyber-security.

5. “What is the size of your company (number of developers) ?”
The size of these companies in terms of developers numbers is different from one
company to another. 32 (46.37%) developers reported that their company holds less
than 50 developers, eight (11.59%) reported between 51 and 250 developers, seven
(10.14%) reported between 251 and 500 developers, and 22 (31.88%) affirmed that
their company contains more than 500 developers. The results are presented in Figure
6.7.

6. “What is the number of software projects undertaken by your department/team per
year ?”
We asked the developers as well about the number of software being developed per year
in their team/department inside these companies (Figure 6.8) : 45 (65.21%) affirmed
that their team is developing less than ten software projects, 13 (18.84%) reported
between 11 and 20, eight (11.59%) reported between 21 and 50, and finally three
(4.34%) affirmed that more than 50 software projects are being developed yearly in
their team.

7. “What kind(s) of software development methodologies does your company follow ?”
The participants’ companies follow different development methodologies as presented
in Figure 6.9, one company can follow more than one development methodology. 65
(94.20%) affirmed using Agile while 38 (55.07%) affirmed using Scrum, nine (13.04%)
reported using Waterfall, one (1.44%) affirmed using Spiral and XP.

8. “What programming language(s) do you use in your company ?”
Programming language competences were also mixed. We asked a close-ended question

68

Figure 6.7 Companies size Figure 6.8 Projects developed per year

Figure 6.9 Software development methodo-
logies

Figure 6.10 Developer’s top ten program-
ming language competences

with predefined answers extracted from the list of top 10 programming languages 4.
The participants were allowed to select more than one programming language compe-
tence. We used the same list of programming languages in the design of the last survey
section, more detailed in the short program given to the participants. Results are sum-
marized in Figure 6.10. 38 (55.07%) of the participants use Java, 36 (52.17%) reported
using JavaScript. 35 (50.72%) use Python, 29 (42.02%) use C/C++, 19 (27.53%) use
C#, and 15 (21.73%) use PHP. Four (5.79%) participants reported using Go, and
only three (4.34%) reported using Kotlin as well as Swift. 18 (26.08%) participants
mentioned that they are using other programming languages in addition to those in
the top 10 list. They mentioned for example : Cobol, Erlang, F#, Objective C, Perl,
Shell.

Among these surveyed participants, we performed an interview sessions with eight out of the
69 participants to assess the reliability of the answers in the online survey and to validate our

4. https ://simpleprogrammer.com/top-10-programming-languages-learn-2018-javascript-c-python/

69

Table 6.2 Interviewees’ demographics

Interviewees Education level Current position Work experience Company field
I1 Ph.D. degree Software engineer 5 years Research and

and researcher Development
I2 Master’s degree Software engineer 5 years Business and IT
I3 Master’s degree Software engineer 5 years Banking and insurance
I4 Master’s degree Software engineer 6 years Business and IT
I5 Master’s degree Software engineer 6 years Business and IT
I6 Ph.D. degree Project manager 7 years Research and

Development
I7 Engineer’s degree Software engineer 7 years Business and IT
I8 Engineer’s degree Project manager 9 years Business and IT

recommendations. Table 6.2 presents their demographics. All interviewees have strong expe-
rience with multi-language systems as well as change-impact analysis. Their work experience
varies between five and nine years. They have as well a professional software background
where six of them hold software engineer positions, and two of them are project managers.

6.4.2 Multi-language in Companies

Multi-language development is more and more used today in the industry. Most
of the participants in the survey are dealing with this kind of systems. The results
of Q10 “Have you used multi-language development in your past projects ?” show that 65
(94,2%) participants used multi-language development during their development. The follo-
wing answers concern only the 65 participants that answered Yes to Q10.

From Q11 “What is the number of software systems your company worked on per year, that
involved developing multi-language software systems ?”. we observed that participants were
involved in many multi-language systems in their companies. From Figure 6.11, we report
despite the prevalence of multi-language development that more than 40% of participants
reported that their companies deal with less than 25 multi-language systems per year (the
minimum is two projects per year that can reach up to 25). In future work, we plan to inves-
tigate the reasons behind this small number of software systems that may be related to the
difficulties of developing a multi-language system, but it could also that such development
requires more experience with more than more programming languages and a good manipu-
lation of the technique used to integrate the desired languages. In this question, we chose 25
as a selection threshold for the number of multi-language software systems being developed,
because it is nearly equivalent to two completed software systems per month.

70

Figure 6.11 Number of Multi-language systems per year

Based on these quantitative numbers, we interviewed the eight developers directly about their
opinions regarding the number of multi-language systems being developed in the industry
nowadays. All of them noticed that the number is increasing quickly. They mentioned that
nowadays, almost all systems developed within their current companies are multi-languages
which was not the case in their first job. I2, I3, I5, and I6 said that, during their develop-
ment tasks, they usually prefer to include external libraries written in different programming
languages. They believe that this kind of mix allows them to not reinvent the wheel and
to respect the deadline. However, I1, I4, I7, and I8 mentioned that if they had the choice,
they would choose to work with a single programming language. Because, according to them,
dealing with communication between different parts of the system is a challenging task.
Moreover, multi-language development implies having excellent skills in many programming
languages. I1 added that all the software systems in the company where he currently works
involve more than one programming language. His tasks are in general related to the main-
tenance or the update of the existing multi-language software systems e.g., a given platform
written in Java where it is required to add new functionality for which Python (and Python
libraries) seemed to be a more appropriate language.

Second, we inquired about the percentage of the increase in the multi-language systems that
are developed within their companies. Only I8 was able to give us a rough rate because he
is managing a development team for nine years. He said that this year (2019) there is an
increase of nearly 60% compared with 2010 when he started holding his position. Moreover,
our interviewees confirmed that indeed applying changes in multi-language systems is al-
most a daily task. The software systems within their companies are updated and maintained

71

Figure 6.12 Percentage of Multi-language code change reasons

continuously before and after the delivery.

6.4.3 Challenges of change-impact analysis in multi-language systems

“Requirements change” (86.4%) presents the main recurrent reason for a multi-
language change. The maintenance phase presents the most challenging activity
during change impact analysis in multi-language systems.

We asked in Q13 “What are recurrent situations that you faced and that demanded changes
be applied in multi-language systems ?”. Multiple answers per participant are allowed in
this question. Figure 6.12 shows that “requirements change” (86.4%) takes the first place.
For example : a new functionality must be added/edited/deleted, new legislation or rules,
new customers’ needs. The second one is related to “faults/errors/bugs fixing” (61%) with
changes required to improve the code, correct the bugs, and improve the quality. “Missing
features” takes the third place (45.8%) ; this situation happened mainly when there is no
communication between the teams working on the same software, when the testing steps are
ignored or even the last validation of the requirements is missed. Finally, “misunderstanding
of requirements” (17%) takes the fourth place. Misunderstanding of requirements can be
represented in the following situations :

— A lack of understanding of the client’s requirements.
— An underestimate of change requirements.
— The wrong choice of the methodology that does not satisfy the requirements.

We also asked in Q14 “How do you evaluate the challenges of change-impact analysis for the

72

Figure 6.13 Multi-language change impact analysis challenge

following four phases ?” From the answers, we observed that change impact analysis makes
the maintenance phase more challenging than the other phases. In the second position came
the implementation phase. Then, the testing phase takes the third position while the design
phase is less challenging according to the surveyed developers as illustrated in Figure 6.13.

Through the interview, we want to ask directly the interviewees more about the difference
between change impact analysis in multi-language systems and change impact analysis in
mono-language systems according to the interviewees’ experiences. All the interviewees confir-
med that CIA in multi-language systems is more challenging and risky. The results show six
differences :

— Testing a change in multi-language system is hard. P2 said : “testing and debugging
changes in multi-language systems is harder than mono-language because you need to
consider how the data is called and used especially when the data is common between
files written in diverse programming languages".

— Maintaining a multi-language system requires knowledge in diverse programming lan-
guages at the same time. P3 affirmed : “More languages in a system means having to
know more about the whole architecture to know how a change could render another
language interaction broken or vulnerable. Also, most tools are good to analyze basic
vulnerabilities in a single language, but cross languages validation is much harder to
predict".

— Managing the incompatibility of many languages in the same software is challen-
ging. P5 said : “The compatibility of the parameters/variables that are exchanged

73

can become obsolete after changes that impacted many components written in many
languages".

— Multi-language systems propagate more quickly the changes and impact more entities
compared with mono-language. The impact of a tiny change in multi-language systems
can be vast and propagate between other components written in different programming
language’s where it will be hard to detect the impacted artifacts i.e., there is no
dedicated tool for that. In mono-language systems, the impact is more limited because
it touches only components written in the same language where it is more easier to
detect the impacted parts even using traditional means.

— Multi-language systems are more vulnerable to cyber-security issues compared with
mono-language systems. One of the interviewees affirmed that “interfaces between
languages to communicate and transfer information introduces potential entry points
and vulnerabilities".

— Multi-language systems are facing more quality problems compared with mono-languages
i.e., bugs. One of the interviewees said : “programmers are not often experts in all em-
ployed languages. The language that we have less knowledge/experience with increases
the chances to create breaches or mistakes".

6.4.4 Methods used for change-impact analysis in Multi-language systems

Testing methods and manual checks are the main techniques used to analyze
the impact of changes in multi-language systems. The use of dedicated tools or
IDEs is not common. From Q17, Q18, Q22, Q23 presented below, we surveyed the specific
means that developers used during their change-impact analysis in multi-language systems.
The number of answers is higher than the number of participants because participants were
allowed to put more than one answer. For example, when implementing a change on a system,
a developer may use manual checks in addition to a specialized testing method.

— Q17 : What important method(s) do you consider before changing a line of code on a
particular programming language embedded in a multi-language software system ?

— Q18 : What important method(s) do you consider after changing a line of code on a
particular programming language embedded in a multi-language software system ?

— Q22 : Have you used any specific means to make your changes and to measure its
impact in multi-language systems ?

— Q23 : If no, please specify your means being used.

Our results, which are summarised in Figure 6.14, show that 32 (49.23%) out of the 65
participants are using testing methods (i.e., system and integration testing methods to test

74

Figure 6.14 Percentage of Means followed by developers on their CIA

the integration of multi-language components), while 21 (32.30%) are using manual checks.
Only 12 (18.46%) participants are using special methodologies and tools to analyze the
impact of their changes that are developed within the company. Participants refrained to
provide the names of their tools because of legal restrictions in the company. We observe
that the use of specific tools to perform a change impact analysis is limited. Developers are
using standard means as testing methods followed by manual verification. Thus, we were
interested to investigate more about the change impact analysis tools, hence, we asked in
Q25 “Does your company put into place specific means to conduct change-impact analysis
in multi-language systems ?” and Q26 “Please describe them.”, to know if the developers’
companies provide some specific methodologies or tools to guide them and to ensure the
success of CIA. Only 10 participants (15.38%) affirmed that their companies put into place
specific CIA means that are developed within the company to conduct their change analysis.
These means are mixed between a specific list of testing methods, code review guidelines
that developers should follow, and some internal tools. We elaborate more on these answers
in the interview section.

During the interview session, we confirmed the survey results by asking developers about their
strategies to perform a change-impact analysis in multi-language systems. We identified from
the answers three categories :

— Internal tools : I1, I4, I6, and I8 reported using four different internal tools that were
developed within the industry (for the information confidentiality, we will name them
X1, X2, X3, and X4). All these tools have in common the following options : depen-
dency call graphs, testing methods, and detection of the coupled files. I1, I4, and I6
argued that their internal tools (X1, X2, and X3) have a limitation in terms of the

75

number of programming languages that they support. Until today, these tools are up-
dated and maintained according to the company new requirements. I8 mentioned that
X4 supports only Java Native Interface systems (JNI) i.e., the combination between
Java and C/C++, and according to him the tool provides him all that he needs to
make his changes in multi-language systems since he and his teammates work only
with JNI systems. He also said that X4 is even able to measure specific metrics to
JNI systems and ready to give percentages related to the quantity of the changes in a
given JNI system.

— Manual analysis and testing methods : I2, I3, I5, and I7 confirmed using manual code
analysis and code review in addition to testing methods implementation. They argued
that manual code analysis is an alternative solution to reveal the different dependant
system artifacts. However, all of them believe that these methods are not enough
for the case of multi-language systems because they can not be exhaustive, and it is
impossible to cover all the parts of a given multi-language system. Also, manual code
review and manual testing are always likely to have many human errors compared
with automatic testing or tools use.

— Documentation and knowledge share : I6 and I8 mentioned that they relied a lot on
the documentation shared between teammates when a change should be applied in
a given multi-language system. Given the complexity to analyze the dependency and
the coupling between components written in different languages, they try to ensure
good communication and to share information amongst teams in order to facilitate
the migrations of tasks from one developer to another. They indeed have the internal
tools that support multi-language systems but also believe that sharing knowledge is
a very important step i.e., each system developed within the company should have its
documentation that should include information related to the software system hierar-
chy, languages used, dependant parts, as well as information related to the different
versions, commits, bugs, new requirements, problems faced, solutions applied, etc.

Furthermore, we asked the interviewees about the frequency of the use of the CIA research
tools in their companies. All of them (I1, I2, I3, I4, I5, I6, I7, I8, and I9) affirmed that they
never used any academic tools in their change-impact analysis in multi-language systems
or even in mono-language systems. They added that in general, they do not have enough
time to search for an existing academic tool, to test it, then apply it in the change tasks. I1
and I6, who have an academic background e.g., researchers, argued that there is a rupture
between industry and research. I4 and I8 reported that in their companies, they do not have
the choice to choose their preferred CIA means, so they need to follow the instructions of
project managers to do the job.

76

6.4.5 Consequences of a lack of change impact analysis in multi-language sys-
tems

51 of the participants (78.46%) experienced issues in their company, because of a
lack of change-impact analysis, and these issues negatively impacted the project
progress, its quality, and its security. We surveyed the consequences related to a lack of
change-impact analysis in multi-language systems. Results of Q15 “Have you faced, in your
department/team, problems caused by a lack of change-impact analysis in multi-language
systems ?” and Q16 “What were these problems ?”, shows that 51 participants (78.46%)
experienced issues in their company, because of a lack of change-impact analysis, and these
issues negatively impacted the project progress, its quality, and its security. We coded these
answers and we categorized them into four groups. We summarize the result below :

— Decrease in quality : 20 participants reported that, in their previous projects, a lack
of change-impact analysis in multi-language systems let to a decrease in code quality.
From the received answers, we cite the following as example : e.g., “Delay in the release
of a product due to avoid evaluating the impact of a change request".

— Introduces of security vulnerabilities : Five participants reported that, according to
their personal experience, multi-language systems are more susceptible to vulnerabi-
lities. One of the participants believes that it will mainly touch the segmentation ; he
said : “... segmentation faults principally". Another developer said : “... entry points
such as code injections that become exploitable because of the need of the languages
to exchange data". The others affirmed facing cyber security issues caused by a change
applied in multi-language systems which mostly were : code injections, memory dump,
or incorrectly released memory.

— Increase in software costs : Eight participants reported that, because of a lack of CIA
in their multi-language systems, they had to restart some parts of a project from the
beginning and this caused an increase of the software cost. An example of the received
answers : “staying as general as possible to include all possible outcomes and taking
into account the augmented Budget".
In some situations, a lack of analysis of the impact of changes can negatively impact
the whole functionality of the multi-language system or affect some components and
their coupling. It may force the developer to restart developing the component from the
beginning with another methodology and with consideration of the change. Restarting
some part of a project will always lead to an increase in the development budget as
cited by one of the participants : “We had to rework a feature that were supposed to
be done since something changed in the back end side and we weren’t expecting these

77

types of changes".
Furthermore, they reported being involved in maintenance activities that impacted the
cost negatively. Migration to new technologies also led to cost increase, e.g., “changes
of used technologies...".

— Introduction of bugs : Nine developers explained how ignoring change-impact analysis
in multi-language systems led to the introduction of issues in their system. They
commented that a lack of tests, analysis, team communication, CIA experience, and
knowledge in multiple programming language may result in bugs being introduced in
the system. One of the participants said that : “Not enough regression testing during
the maintenance phase...Not understanding the scope of a change".

— Introduction of incompatibilities : Nine participants discussed issues related to the
introduction of incompatibilities in the system. They explained how they faced some
incompatibility issues between modules, components, languages, and platforms be-
cause of a lack of CIA in multi-language systems. One of the participants reported a
faced problem as : “Code desynchronisation and incompatibility between code com-
ponents".

Our interactive interview led to discuss more in depth the issues faced by developers due to
a lack/miss of change-impact analysis, and highlighted by them during the survey. We had a
long discussion with I6, where he told us a story when he was a developer for almost six years
before being promoted as a project manager. At that time, there was an application written
mainly with Objective-C that contained a component written in JavaScript. During one year,
several changes had been made to the application to update it and to add missing features to
meet the need of their client. However, the whole team did not realize that there was a part
in the application written in JS that must be considered during the changes ; otherwise, the
new changes may break some features. Indeed, they delivered the application with the latest
changes well tested and analyzed, but they never investigated the impact of this change by
analyzing the coupling between the different components written in different languages other
than Objective-C e.g., the part written in JS. Thus, this error led the client to lose data and
then, it led the team to rework on it one more month to fix it because the changes made
were not compatible with the component written in JS. This lack/miss of the analysis of the
impact of the change between parts written in different languages led the company to lose
future projects with that client.

78

Table 6.3 Requirements needed for a multi-language CIA tool

Easily realisable Medium realisable Hardly realisable
1- Analyse dependencies 1- Detect bugs 1- Include business impact
2- Measure metrics 2- Propose tests 2- Include change cost
3- Integrate in an IDE 3- Detect vulnerabilities 3- Evaluate risks
4- Support different OS 4- Perform coherent changes 4- Propose potential

changes automatically
5- Ensure traceability 5- Ensure usability
6- Identify components 6- Ensure scalability
to be changed
7- Rollback a false change 7- Propose design conception

6.4.6 Requirements for a multi-language change-impact analysis approach

The majority of the participants call for the development of dedicated CIA tools
for multi-language systems where dependency analysis option consists of the
major requirement. Despite the numbers of participants (i.e., 51) who reported having
faced problems caused by a lack of change impact analysis, 62 participants expressed a need
for change-impact analysis tools that support multi-language development (even developers
who did not face issues with CIA in multi-language systems, need a supportive tool to help
them manage their impact analysis in an multi-language systems). From Q27 “Imagine that
a change-impact analysis software is being developed, what aspects should this software
consider for a good change analysis in a multi-language system ?”, we extracted a list of
requirements for a CIA tool for multi-language systems. We summarize these requirements
in Table 6.3, organizing them in three groups based on their feasibility : “Easily realisable”,
“Medium realisable”, and “Hardly realisable”. We discussed our assessment of feasibility with
other researchers from the community. We found that 53 out of 62 (85,48%) asked firstly for
a support within the dependency analysis to help them in tracking the propagation of their
changes in the hidden source code parts.

In addition to the survey results, we were interested in getting the opinions of the eight
interviewees regarding the requirements for a CIA tool that support multi-language systems,
collected from the online survey’ answers. I1, I2, I3, I4, I5, and I7 thought that among all the
proposed tool requirements : (1) analyzing dependencies e.g., building call graph dependency
between component written in different languages, extracting the dependency hierarchy, de-
tecting the potential impacted dependent artifacts, and (2) supporting different OS platforms
are the most critical requirements for them as developers. I6 and I8 mentioned that evaluating

79

the risks, the change cost, and analyzing the business impact before performing any changes
to a multi-language system, are excellent options, and for a project manager, it matters a lot.
The interviewed people believe that considering these requirements when developing a new
CIA tool for multi-language systems is necessary. These requirements reflect the real need
of developers. Hence, we strongly encourage researchers and practitioners to consider them
when designing change-impact analysis tools for multi-language systems.

6.4.7 Scenario of change-impact analysis in multi-language systems

35 (62.5%) participants used change-impact analysis implicitly. System testing is
the main test (21.57%) used by developers to test a multi-language change.

The last section of the survey presents a short case study where the scenario of a change in
a multi-language system is presented. We proposed a simple case study where the developer
does not need to do a hard analysis or invest a lot of effort in order to have more chance that
the participants answer all the questions related to this scenario and to not ignore them. This
case study contains three programming languages (Java, C, and Perl) that interact together
in the same program as shown in Figure 6.15. Our questions were limited to the JNI part
(the interaction between Java and C functions). We also provided participants with a tutorial
of JNI development in case. The program was accompanied by a descriptive text explaining
the role of each method. The provided program uses two methods printTemperature() and
printHumidity() to display temperature and humidity rate. Their respective signatures in C
are the following :

JNIEXPORT void JNICALL Java_weather_printTemperature (JNIENV ∗, jobject);

JNIEXPORT void JNICALL Java_weather_printHumidity (JNIENV ∗, jobject);

We asked developers to make a change in the Java method printTemperature() that had
dependencies with C source code. The change involved the signature of the method by adding
a new integer argument, to identify weekdays, and analysing the impact of this modification.
So, the native method signature should become :

JNIEXPORT void JNICALL Java_weather_printTemperature (JNIENV ∗, jobject, jint);

We asked the following three open-ended questions to participants, corresponding to Q28,
Q29, and Q30 in the survey :

— Q28 : What steps will you follow when applying this change ?
— Q29 : What are the different tests that you would implement and execute in this case ?

80

Figure 6.15 Multi-language scenario [3]

81

— Q30 : How will you identify and analyze the impact of this change (i.e., tools, tech-
niques, or methodologies that would be used) ?

Regarding the first question, we received 56 answers that we categorized in three categories :
— “Implicit change-impact analysis” where CIA has been implicitly made. It means that

developers followed the steps required to do a CIA using a manual approach or without
knowing that they were doing a change-impact analysis.

— “Explicit change-impact analysis” where the mechanisms of the change analysis have
been clearly used.

— “Do not provide information” where answers are too general and–or do not provide
enough information to analyze.

An example of this categorization is given in Table 6.1 from Section 6.2. Results show that
35 (62.5%) participants used change-impact analysis implicitly, while nine (16.07%) used it
explicitly. 12 (21.42%) did not provide detailed answers.

Regarding the second question, 49 answers were received. Table 6.4 presents a summary of the
results. We ignored seven of the answers (13.73%) that did not provide specific test methods.
In their answers, participants could provide more than one testing method. 3,92% of the
answers were not enough detailed, developers declared using functional testing in general
which can be any of the testing techniques presented above. We present in the following the
top 3 testing methods identified by the participants :

— System testing was the main test (21.57%) that a developer would implement to test
a change. This test validates the complete integrated software components. System
testing is important in the case of multi-language systems as it ensures that multi-
language components are correctly connected together and that the dependency is not
broken.

— Unit testing takes the second position (19.61%). Unit testing is essential as it validates
that each component (in our case multi-language components) of the software system
performs as expected.

— Integration testing takes the third position (13.73%). Within the context of multi-
language development, this test is very important as it allows to test the interaction
between integrated multi-language components.

Regarding the third question, we categorized the means followed by the 49 participants who
answered this question. 19 participants (38.77%) said that they would start by applying some
test methods, 12 participants (24.48%) by analyzing the code (static analysis, dependencies
analysis, etc.), and eight (16.32%) by using an IDE. Six (12.24%) participants stated that the
change could be identified manually, while four (8.16%) of participants reported that they
would use metrics and code review techniques to ensure the safety of the changes. In general,

82

Table 6.4 Different tests used to analyze the impact of changes

Test methods Percentage
System test 21.57%
Unit test 19.61%
Integration test 13.73%
Manual test 7.84%
Regression test 5.88%
Validation test 5.88%
Functional test 3.92%
Dependency test 1.96%
Interface test 1.96%
Sanity test 1.96%
Alpha test 1.96%

we can observe that developers identified diverse needs ; (1) tools such as : Visual Paradigm,
LTTNg ; (2) techniques like : dependency analysis, slicing, graph use ; and (3) methodologies
as : Static analysis, Code review, Testing. These results support our previous findings of
testing methods as the main techniques used by developers when conducting a change.

6.5 Discussion

We discuss the technical survey findings per research question.

RQ5.1. What are the challenges of change-impact analysis in multi-language
systems? The first result shows that multi-language development is common in the
industry despite its low coverage in the literature. We argue that many open-source
software systems are multi-language systems, but in this survey, we focused in indus-
trial systems and not open-source systems which might not all be representative for
industry software. However, CIA in multi-language systems is challenging especially
in the maintenance phase, which is greatly impacted by a change.
One of the unexpected results is the fact that many of the surveyed developers did
not know the term of change-impact analysis. The majority of these developers
are making change-impact analysis implicitly in their multi-language de-
velopment, i.e., without knowing that they are doing a real analysis of the impact ;
meaning that they do not have a good understanding of the existing means of change-
impact analysis especially in the context of multi-language systems. We believe that
performing the change-impact analysis implicitly in multi-language systems is more
critical than mono-language systems. This lack of understanding of the benefits of the

83

change-impact analysis in general and in multi-language systems in particular makes
their performed changes risky (i.e., subject to faults, bugs, security vulnerabilities),
more complicated, and more challenging.
Furthermore, Many participants did not report using any specific (either
external or internal) tool to prevent their changes from negatively affecting the
software quality, however they rely on testing to assess the impact of their
changes in multi-language systems. From the answers to our open-ended ques-
tions, we observed that developers in a large majority, use System test, Integration
test, or Interface test to ensure a coherent behavior of their systems, after a change.
We conclude that developers are aware of the importance of the use of specific tes-
ting methods dedicated to CIA in multi-language systems. However, we believe also
that companies have to be aware of the risks of a lack of change-impact analysis in
multi-language systems. In particular its potential negative impact on the quality of
the systems, as well as on the software’s budget.

RQ5.2. What are the existing means for change-impact analysis in multi-
language systems? One unexpected result is the high rate of participants who re-
ported using manual checks and testing methods compared with the small percentage
who use specific IDE or tools. This outcome may suggest that existing testing methods
and manual validation are enough for the type of CIA that our survey participants
conducted in their activities. However, the need to support multi-language develop-
ment, to automate this manual checking, and to have a tool that saves time, is real
in companies, given the large proportion of participants who requested it. We believe
that the automation of these activities will help developers improve the reliability of
their changes as well as the overall quality of their systems.
Also, as we see in Table 6.4, manual testing is ranked fourth ; before some necessary
testing methods for multi-language systems such as “dependency testing”, “interface
testing”, etc. We believe that using manual testing in the scope of multi-language
systems that contain different source-code entities written in different programming
languages, is not a good practice. Manual tests can ignore or forget dependency testing
between these entities. Hence, it is not enough to track and test the change propa-
gation between the different entities level in a software, it can generate as well errors
because of the different languages available in the same software system, or it might
not be adequate for some big software systems. We recommend developers to prioritize
automated testing rather than manual testing, following recommendations from the
literature [91–93].
Nowadays, CIA in mono-language systems has progressed substantially, many static

84

code analysis tools have been put into place to cover these challenges such as Rigi,
Modisco, and Jtracker tools. Moreover, analyzing files written in the same language
is easier than files written in different languages because the developer has to deal
with each programming language rules e.g., lexical, semantic, and syntactical, which
lead to a challenging analysis of the association links between them.
We also observed that the few existing multi-language research tools/ap-
proaches are not commonly used in the industry. These tools have not been
read or cannot be read by industry, so they cannot re-implement or build commercial
products based on them.

6.6 Threats to validity

Threats to construct validity : The survey collects and analyses the developers’ open-
ended answers to learn about their personal experiences and behavior in a given scenario.
More specifically, it relies on our evaluation of developers’ reported opinions, experiences,
and solutions. We started by following a coding methodology to code the different develo-
pers’ answers (in the online survey and during the interview sessions). We then categorized
the target keywords. To ensure high confidence in the validity of this analysis, we did a co-
ding process [18], thus, we performed it in three rounds and validated the results through
discussions with other researchers. The first round was dedicated to read all the answers and
try to extract the keywords, then the answers, one by one, were assigned to a target group.
The last round was dedicated to the validation of the final result.

Threats to internal validity : We manually validated the criteria of the participants’
selection, the survey and the interview questions, and possible answers in the case of close-
ended questions. We relied on the literature to extract the information needed to build
the survey content regarding the scope of this study. We also performed a pilot with some
researchers and students from our research team. We improved the survey based on the
results of this pilot study. We believe that the use of LinkedIn also is an adequate choice,
as the majority of the practitioners have a LinkedIn account. LinkedIn, allows specifying
keywords to select participants. We validate the keywords used to select the participants
that satisfy the requirements of this study. We guaranteed to the survey participants as well
as the interviewees their anonymity and we highlighted that all the answers would be kept
only for research use.

85

Threats to external validity : Our results from the survey may not be representative of
all software practitioners, since we only received responses from 69 participants. We accept
this threat as participants’ answers could vary depending on different criteria. However, to
mitigate this threat, we have shared the survey via LinkedIn, which includes a huge variety
of people from different domains and different countries. The respondents are from different
backgrounds and skills. We have also diversified the keywords to contact different profiles and
to broaden the scope of our participant selection. The case study used in this survey may
also present a threat to validity to generalise the behavior of developers when analysing a
change-impact due to the size of the experiment. Regarding dedicated change impact analysis
tools, we believe that it may be possible that some surveyed developers are not aware of these
tools.

Threats to conclusion validity : We discussed all websites, platforms, and tools used in
our methodology, such as CheckMarket, LinkedIn, and Microsoft Excel. We are aware that
other websites could be used to perform the survey and for this reason, we explained and
supported our choices within the methodology to create the questions, collect the participants,
and share the survey.

From all the survey, we focus only on asking and interviewing participants about the change
impact analysis within multi-language development context and we did not investigate their
difference with mono-language development. Some of the findings, could be also applied
for both mono- and multi-language development, however, we tried in the interview to ask
about examples, languages used, emphasize about dependencies through components written
in different languages and not same language, etc.

Threats to reliability validity : To mitigate the reliability threat, we provide all the
needed information to replicate this study (the questions are provided in the appendix). We
used online and mostly free websites such as CheckMarket to create the survey and LinkedIn
to reach participants. The list of the participants could be different from one researcher to
another. Searching for people on LinkedIn depends on different criteria such as : friends in
common, location country, number of contacts for each profile, etc. We also provided the
different steps followed during the study either to collect data or to analyse the findings. We
assessed as well the reliability of the survey answers by performing an interview with eight
participants to validate their answers and to mitigate possible contradiction answers.

86

6.7 Chapter Summary

To investigate change impact analysis in multi-language systems, we performed a survey that
contained 30 questions and that we sent to 200 developers in eight countries. We received
69 participants’ answers (34.5%) and we interviewed eight of them. We selected participants
from different backgrounds and with different experience years to diversify the population
under study.

Our study shows that there is a high need for CIA tools dedicated to multi-language sys-
tems in industry ; most developers currently are using testing methods and manual checks
to perform their change impact analysis. This lack of formalized CIA processes makes multi-
language systems more susceptible to be negatively impacted by vulnerabilities through
changes. We believe that our results may help researchers and companies to improve the
quality of their multi-language development research in order to better cope with their in-
herent complexity.

87

CHAPTER 7 EMPIRICAL STUDY ON THE INTER-LANGUAGE
DEPENDENCIES IN THE JAVA NATIVE INTERFACE (Sub-hypothesis 2)

7.1 Chapter Overview

As discussed in the previous chapter, it is necessary and important to perform change impact
analysis during the software system maintenance while introducing changes to the software
[94]. Change impact analysis relies mainly on the dependency analysis between the component
being changed and the potentially impacted components. Our results from the survey and
interviews discussed above show that dependency analysis is the most requested CIA feature
by developers. They argue that identifying the dependant components (written in different
programming languages) is a challenging task. Hence, in this section we perform an empirical
study with the goal to help developers overcome the dependency analysis in multi-language
development.

The dependencies within a system reveal the entities potentially impacted by a maintenance
task, assist developers in their maintenance activities, and allow tracking the propagation
of their changes [52, 95]. Since each programming language has its own rules (i.e., lexical,
semantic, and syntactical), dependency analysis becomes difficult. This is because generic
dependency analyses are no longer able to follow direct and indirect function calls in order to
determine dependencies, i.e., developers need to understand the specific calling convention
between, for example, Java and C++ [8,38]. In contrast to the dependency analyses in mono-
language systems that have been studied extensively [47,56,88] using a variety of techniques
such as static code analysis and mining software repositories, dependency analysis for multi-
language systems is not well established yet [8] and is still subject to further research [55].

Thus, we empirically study ten Java Native Interface (JNI) open-source multi-language sys-
tems, to identify the inter-language dependencies (dependencies between components written
in different programming languages), analyze their prevalence in multi-language systems, and
their impact on software quality and security. We also introduced two approaches based on
historical dependency analysis (H-MLDA) and static dependency analysis (S-MLDA). We
focus, in this study, on the Java Native Interface since we found in Chapter 4 that JNI is
the technique used the most by developers. Consequently, we address the following research
questions :

88

RQ7.1. How common are direct and indirect inter-language dependencies in
multi-language systems?

The goal of this research question is to measure the prevalence of direct and indirect inter-
language dependencies. Unlike direct dependencies, indirect dependencies are difficult to
identify using static analysis approaches. The goal of this RQ is to augment static analysis
with historical analysis to enable us measure (and compare) the prevalence of both direct
and indirect inter-language dependencies. We aim to compare the prevalence of static direct
dependencies to indirect dependencies (potentially hidden from the static analysis).

RQ7.2. Are inter-language dependencies more risky for multi-language software
system in terms of quality?

Dealing with dependencies in multi-language systems is a challenging task and requires spe-
cific effort as different programming languages are involved. Through this research question,
we aim to understand if bug introduction is frequent in these kinds of dependencies (a case
study of JNI) and its consequence on the system quality.

RQ7.3. Are inter-language dependencies more risky for multi-language software
system in terms of security?

A major concern of practitioners and researchers nowadays is security vulnerabilities espe-
cially since the emblematic “Heartbleed bug", which is a security flaw that exposed millions of
passwords and personal information. As today almost the software systems are multi-language
systems, security vulnerabilities in those systems became a priority for developers [78]. This
research question aims to identify the impact of inter-language dependencies on the security
of multi-language systems. For this, we present the relationship between the inter-/intra-
language dependencies with vulnerabilities.

7.2 Study Design

A dependency is a relationship link between entities inside the same software software. In
this study, we consider the following types of dependencies :

— Inter-language dependency (inter-LD) : a relationship between files, written in dif-
ferent programming languages, where the dependency identification relies on the (third
party) technology used to integrate different programming languages (e.g., Python -
C extension). Inter-language dependencies could be direct or indirect.

89

Table 7.1 List of the studied multi-language software systems.

Systems Commit Commit #SLOC #Commits
start date end date

Conscrypt 2008/12/18 2019/08/27 64,6K 3860
RethinkDB 2013/04/10 2019/08/26 1,15M 19898
JatoVM 2005/09/24 2014/05/13 339K 4135
Libgdx 2010/03/31 2019/08/23 830K 13580
Lwjgl 2002/08/09 2016/12/08 88,9K 3884
Openj9 2017/08/31 2019/08/27 1,47M 6219
React-native 2015/01/30 2019/03/29 283K 16298
Realm 2012/04/30 2019/07/21 107K 8172
Seven-Zip 2007/12/19 2015/10/07 300K 909
VLC 2010/11/10 2019/05/26 96,1K 11866

— Direct inter-language dependencies (DILD) : an inter-language dependency en-
suring a direct communication between two files according to the multi-language
conventions (e.g., a change in native Java class requires changing the native C/C++
function). We use S-MLDA to identify them.

— Indirect inter-language dependencies (IILD) : an inter-language dependency that
is hidden from the static code analysis (e.g., a change in Java class propagated to
the native C/C++ function, that in turn impacted foreign C/C++ and/or Java
files). We use H-MLDA to identify these dependencies.

— Intra-language dependency (intra-LD) : a relationship between files written in the
same programming language. There is no specific (third party) technology used to
ensure the communication between them.

We used the OpenHub API 1 for querying all OpenHub’s systems to get the list of the systems
that have at least two programming languages, in particular Java and C/C++ (they could
have others in addition). We chose OpenHub because it provides the list of the programming
languages involved in each open source system. From the obtained results, we took the first
100 systems sorted by “Rating” (an option provided by Openhub). We further used the system
status to exclude inactive or abandoned systems from the 100 selected software systems. We
analysed different systems based on their size (number of lines of code). We picked four
systems ≤ 100k LoC (i.e., Conscrypt, Lwjgl, VLC, and Realm), four systems between 100k
and 1M LoC (i.e., Seven-Zip, React-native, Libgdx, and JatoVM), and two systems ≥ 1M
LoC (i.e., Openj9 and RethinkDB).

Figure 7.1 shows, for each of the ten selected systems, the programming languages used with

1. https://www.openhub.net/

https://www.openhub.net/

90

Figure 7.1 Percentage of programming languages used in each software system.

Figure 7.2 Dependency call graph of a part of Conscrypt generated by S-MLDA.

their respective proportions. We limit the presentation of our analysis in Figure 7.1 to three
languages per system. The “Others” category combines the rest of programming languages.
We present an overview of the collected systems in Table 7.1.

We use static and historic code analysis to identify the inter-language dependencies. We
designed a first approach called S-MLDA based on JNI’s rules as defined by Liang [27] to
identify the direct inter-language dependencies. We designed a second approach called H-
MLDA to identify the indirect inter-language dependencies that are hidden for static code
analysis using the changes history.

7.2.1 Static dependency analysis

Overview : S-MLDA is a static analyzer written in Java and based on PADL (Pattern and

91

Figure 7.3 S-MLDA approach.

Abstract-level Description Language) [96]. It takes as input a set of multi-language files and
statically analyzes their source code using an algorithm based on JNI rules. It provides as
output a set of data, i.e., sets of files involving direct inter-language dependencies, presented
in a dependency call graph showing the general relationships between files and the specific
ones between methods. Figure 7.2 illustrates an example of S-MLDA output.

Motivation : To the best of our knowledge, there is no existing static analysis tool that
analyzes the inter-language dependencies for JNI systems and generates a dependency call
graph output [55]. Thus, S-MLDA is the first static analyzer able to report static dependencies
between artefacts written in different languages.

Approach : S-MLDA consists of the following steps as shown in Figure 7.3 :

92

Figure 7.4 S-MLDA matching rules.
(M-Java : Java method name ; M-C : C function name ; RT-Java : Java method return type ; RT-C : C
function return type ; P-Java : Java method parameters ; P-C : C function parameters ; PT-Java : Java
method parameter types ; PT-C : C function parameter types)

1. Parsing : We parse a given JNI system to create a model that contains all constituents
of that system e.g., packages, classes, methods, parameters, fields, and relationships
(inheritance, implementation, etc.).

2. Extracting : We identify the Java methods and C++ functions. From the obtained Java
methods, we identified the JNI native methods i.e., methods that contain the keyword
“native” in their signatures, and from the obtained C++ functions, we identified the
native implementation functions, i.e., functions that implement the native methods.

3. Matching : We identify the matched Java native methods with the respective imple-
mentations in C++ files based on the JNI rules that we illustrate in Figure 7.4 :
— Rule A : we verify if the Java method names (M-Java) match with the C++

function names (M-C) using the JNI naming convention.

93

Figure 7.5 Mono/multi-language co-changes analysis.

— Rule B : we verify the return types (using the JNI mapping types) from the obtained
Java (RT-Java) and C++ methods (RT-C) from the previous step to keep only
the matching types.

— Rule C : we verify the number of parameters. We consider the matching when the
number of parameters of the C++ function (P-C) equals the number of parameters
of the Java method (P-Java) plus two. In JNI, the C++ function implementing
the native method contains two more JNI parameters e.g., JNIEnv, jobject.

— Rule D : Last, we verify the parameter types of the Java method (PT-Java) and
the C++ method (PT-C). We consider the methods/functions when we found that
the mapping of the parameter type in both methods is matching.

We built, using the obtained relationships, a dependency call graph (example shown in Figure
7.2) with different hierarchy levels : classes level and file level. In each class, nodes are the
methods and the edges are the dependencies. Edges between nodes across two sub-graphs
are inter-language dependencies at methods level. We consider two files having direct inter-
language dependencies if they involve at least one edge across the two sub-graphs. From the
obtained sets, we remove the redundant dependent files.

7.2.2 Historical Dependency Analysis

Overview : H-MLDA studies the change history of a multi-language system’s Git repository
to reveal the indirect inter-language dependencies. It identifies the multi-language co-changes
(involving multi-language files), converts them into sets of multi-language files, and removes
the sets in common with the output of S-MLDA (example is shown in Figure 7.7). These
steps allow retrieving the indirect inter-language dependencies not detected by S-MLDA (i.e.,

94

potentially hidden for static analysis).

Motivation : Historical code analysis is one of the common methodologies followed to ana-
lyze dependencies [56, 97, 98]. In particular, the concept of co-change is a useful method to
recommend dependent files potentially relevant to a future change request when they are
detected by static code analysis. The purpose in this analysis is to identify a set of files chan-
ging together over time often enough (within commits) to derive an assumption that these
files could be historically dependent. Several studies such as Abdeen et al. [37] and Hassan
et al. [99] studied the dependency structure as an predictor and metric for co-changes in
software systems.

Approach : H-MLDA consider a co-change to be a commit involving source code files that
have been observed to change together [100] (set of files changing together) to exhibit some
form of logical coupling, i.e., a temporal relationship among files changed over time [101].
Let’s consider Figure 7.5, which shows four different co-changes in a given multi-language
system. Commit 1 and 3 are instances of the same changed three files i.e., a co-change,
involving the same three files. Commit 2 is a mono-language co-change i.e., involving mono-
language files. Commit 4 presents the case of a multi-language files with only one instance
i.e., a set of files changed together only once. To reduce the number of false positives, we did
not consider the cases where files are co-changed accidentally without a significant reason
i.e., files appeared changing together (at commit level) only one time.

Figure 7.6 presents a summary of the main parts of H-MLDA. We query Git repository for
extracting all the commits and analyze the data obtained. We split the co-changed set of files
in two groups : one for the inter-language co-changes involving Java and C/C++ files and
the second one for the intra-language co-changes involving Java or C/C++ files.

To allow a logical comparison at files level between S-MLDA and H-MLDA outputs (since,
by default, H-MLDA concerns commits, while S-MLDA concerns files) and to identify the
indirect inter-language dependencies, we convert the multi-language co-changes into sets of
multi-language files as shown in Figure 7.7 in step (1). Then, we remove the ones in common
with S-MLDA sets i.e., the direct inter-language dependencies as presented in step (2) in
Figure 7.7, and last, we consider the remaining sets the indirect inter-language dependencies.
This is illustrated in step (3) in the same Figure 7.7.

7.2.3 Quality Issues and Security Vulnerabilities

We aim to understand if the inter-language dependencies in multi-language systems introduce
more bugs and/or security vulnerabilities than intra-language dependencies. We also study

95

Figure 7.6 H-MLDA approach.

the relation between DILD and IILD with the system quality (introduction of bugs) and the
system security (introduction of security vulnerabilities). To achieve this, we collected the
bug reports of the studied systems (during the collection step of the systems, we ensured
that their respective bug reports as well as their commit messages are accessible).

We take advantage of the existing SZZ algorithm [100] to identify bug-introducing depen-
dencies. The SZZ algorithm identifies changes that are likely to introduce issues, it uses the
issue report information to find such bug-introducing changes. Using the results of the SZZ
algorithm, we prepared an issue data-set that contains essential information about the bug
such as its bug ID, files affected, when it was reported and fixed.

Regarding security issues, we analyzed five vulnerabilities : memory faults, null-pointer ex-
ceptions, initialization checkers, race conditions, and access control problems [102]. We imple-
mented a script where we used these vulnerabilities as search keywords (in the collected bug
reports and commit messages) in addition to the following keywords : threat(s), vulnerabi-

96

Figure 7.7 Identification of indirect dependencies.

lity(ies), and security. It should be noted that, to increase the confidence in our results, none
of the bug reports identified by the vulnerability search are present in the aforementioned
issue data-set (the two data-sets are completely disjoint.

7.3 Results

The following section presents our results and summarizes them per research question.

RQ7.1. How common are direct and indirect inter-language dependencies in
multi-language systems?

Approach : We present in Table 7.2 the results related to the commits identified by H-
MLDA. We show the total number of the multi-language commits and the total number of
the mono-language commits, with their respective percentage out of all the commits. The
results of the inter-LD and intra-LD are illustrated in Table 7.3, where the two columns
show the percentage of inter-LD and intra-LD identified out of the total number of multi-
language commits. Table 7.4 shows (i) the number of DILD (identified by S-MLDA) and
(ii) the number of IILD (generated via H-MLDA). Lastly, we evaluate the performance of
S-MLDA and H-MLDA in order to validate their precision and recall.

97

Table 7.2 Number of Mono-/Multi-language Commits.

Systems #Total #Multi-language #Mono-language
Commits Commits Commits

1 Conscrypt 3860 2952(76,47%) 908(23,53%)
2 RethinkDB 19898 13,002(65,34%) 6896(34,66%)
3 JatoVM 4135 2996(72,45%) 1139(27,55%)
4 Libgdx 13580 11,332(83,40%) 2248(16,60%)
5 Lwjgl 3884 2108(54,27%) 1776(45,73%)
6 Openj9 6219 4992(80,27%) 1227(19,73%)
7 React-native 16298 6772(41,55%) 9526(58,45%)
8 Realm 8172 5893(72,11%) 2279(27,89%)
9 Seven-Zip 909 432(47,52%) 477(52,48%)
10 VLC 11866 8676(73,11%) 3190(26,89%)

Table 7.3 Proportions of identified inter-LD and intra-LD.

Systems %Inter-LD %Intra-LD
(out of multi- (out of multi-

language commits) language commits)
1 Conscrypt 70,59 29,41
2 RethinkDB 73,33 26,67
3 JatoVM 83,34 16,66
4 Libgdx 68,74 31,26
5 Lwjgl 51,61 48,38
6 Openj9 71,99 28,01
7 React-native 55,55 44,45
8 Realm 62,07 37,93
9 Seven-Zip 63,63 36,36
10 VLC 48,27 51,73

Results :We observed thatmulti-language co-changes are common in multi-language
systems, with values ranging between 47,52% and 83,40% (relative to the to-
tal number of commits). Developers are changing files written in diverse languages at
the same time, which indicates a strong logical coupling between these multi-language files.
Multi-language commits involve more than 50% of inter-LD in 90% of the systems (except
the case of VLC where the %inter-LD is 48,27%). The values range between 48,27% and
83,34%.

The results from Table 7.4 show that the number of indirect inter-language depen-
dencies is higher (average of 2.7 times) than the number of direct inter-language
dependencies in 90% of the cases (nine systems), while it is nearly equal for

98

the case of Libgdx. The high number of indirect inter-language dependencies can be pre-
carious for system maintenance activities ; since these dependencies are hidden from static
code analysis tools, any change to them can negatively impact the system.

During the IILD identification (i.e., generation of sets of files from co-changes and removal
of the common sets with DILD), we found that all of the DILD (i.e., the sets of files
Java and C/C++) were included i.e., a part of in the multi-language co-changes
(SMLDA ⊂ HMLDA).

Evaluation of the accuracy of H-MLDA and S-MLDA results : We discuss the
accuracy of the results of H-MLDA and S-MLDA by evaluating the precision and the recall.

We manually evaluate the precision by randomly selecting a sample of data for each approach
(using the sampling methodology in [103]). To select the sample, we set a confidence level
of 95% and an error margin of 5%. Our final samples contained 379 DILD for S-MLDA and
382 IILD for H-MLDA.

1. Case of S-MLDA : We manually checked the source code of the direct inter-language
dependencies sets for the existence of one or more of the following JNI elements as
they identify the existence of JNI source code [27] : JNI header (i.e., #include <jni.
h>) ; JNI pointer (i.e., JNIEnv) ; JNI keyword (i.e., native(; and JNI functions (i.e.,
FindClass(), GetMethodID(), etc.).

2. Case of H-MLDA : We manually reviewed the source code to verify that no JNI
dependencies were present in the sample of 382 IILD. Then, we validated the file
dependencies based on one of the following elements :
— Similarity of the files names. We checked if the IILD files in these sets could have

a same or similar names e.g., a sub-string of a file name A included in file B.
— The intent of the source code files. We reviewed the source code and the comments

inside for each set i.e., Java and C(++), to find if there is a behavior between the
files that could explain the indirect dependency.

— Existence of external information sources. We searched in the bug reports and
developers discussions if the files indirectly dependent were involved in the same
issue or were reported as related.

For the recall, we considered all the sets (DILD and IILD) presented in Table 7.4.

1. Case of S-MLDA : We implemented a script to count occurrences of the JNI header
presented in all the source code and compared it with the number of JNI headers
found in C(++) files involved in the IILD sets.

2. Case of H-MLDA : We implemented a script to identify all the inter-language depen-

<jni.h>
<jni.h>

99

dencies sets that have similar names and that are not JNI. From the sets found, we
excluded the sets successfully detected by H-MLDA. The remaining ones are the inter-
language dependencies not detected by H-MLDA which are considered in calculating
the recall.

The final results show a precision of 100% and a recall of 78% for S-MLDA, and a precision
of 68% and a recall of 87% for H-MLDA.

Figure 7.8 Percentage of Buggy dependencies.

RQ7.2. Are inter-language dependencies more risky for multi-language software
system in terms of quality?

Approach : Considering the result of RQ7.1 (i.e., S-MLDA is a subset of H-MLDA), in the
following, we studied the interaction between the (intra)inter-language dependencies and the
quality issues.

We show in Table 7.5 the percentage (out of %inter-LD and %intra-LD) of the buggy
inter-/intra-language dependencies. Results : The percentage of bug-introducing co-
changes was as high as 46,66% in inter-language dependencies and 13,7% in the
case of intra-language dependencies. We report that when the number of inter-language
dependencies increased, the number of bug-introducing commits increased with a significant
correlation of 0,918 and vice-versa. Conversely, we observe that bug-introducing co-changes

100

Table 7.4 Number of (In)Direct Inter-language Dependencies.

Systems #DILD #IILD
(S-MLDA) (H-MLDA)

1 Conscrypt 1341 2827
2 RethinkDB 4321 8299
3 JatoVM 1128 3154
4 Libgdx 6232 5803
5 Lwjgl 733 3149
6 Openj9 4438 7364
7 React-native 2116 6416
8 Realm 2266 6177
9 Seven-Zip 174 513
10 VLC 3172 9004

Table 7.5 Percentage of Bugs and vulnerabilities within co-changes.

%Buggy %Buggy %Vulnerable %Vulnerable
Systems Inter-LD Intra-LD Inter-LD Intra-LD
Conscrypt 33,33 12,03 21,66 5,02
RethinkDB 40,90 10,72 22,18 3,76
JatoVM 46,66 11,42 0 9,44
Libgdx 18,18 10,33 19,27 8,33
Lwjgl 12,5 13,7 15,5 4,31
Openj9 38,88 12,66 21,11 7,83
React-native 13,33 9,77 16,66 3,52
Realm 16,66 11,82 0 0
Seven-Zip 16,66 9,78 18,57 11,27
VLC 7,14 12,87 11,45 0

are constant for intra-language dependencies, with values range between 9,77 and 13,70.
Hence, there is no significant correlation between bugs and intra-language dependencies.

The box-plot in Figure 7.8 shows the difference between the median of each set i.e., bugs
in inter-LD and bugs in intra-LD. Moreover, the scatter-plot in Figure 7.9 allows a better
analysis to answer the research question with the following : The more the X axis in
Figure 7.9a increases for inter-language dependencies, the higher the risk of bugs
(blue color) being introduced, while this risk remains constant for intra-language
dependencies (Figure 7.9b).

We used the Mann-Whitney U test [104] with a 95% confidence level (i.e., α = 0.05) to
determine if there is a significant difference between inter-LD and intra-LD in terms of bugs.
The test shows a significant difference (p-value = 0.017) between the percentage of bugs

101

(a) Inter-language dependencies (b) Intra-language dependencies

Figure 7.9 Percentage of Quality and security issues detected in intra- and inter-language
dependencies.

presented in the inter-LD and the percentage of bugs presented in the intra-LD.

The results in Figure 7.9b show no correlation between bugs and intra-LD. Thus, we focus
our next analysis on buggy (in)direct inter-LD. We illustrate the obtained results in a scatter-
plot presented in Figure 7.10a. We can observe that the more the X axis increases for
inter-LD, the higher the risk of quality bugs introduced in both indirect inter-
LD(IILD) and direct inter-LD(DILD).

RQ7.3. Are inter-language dependencies more risky for multi-language software
system in terms of security?

Approach : Security software vulnerabilities are weaknesses in software systems that can
be exploited by a threat actor, such as an attacker, to perform unauthorized actions within
a computer system. Software vulnerabilities can be defined as incorrect internal states de-
tected in the software source code that could allow an attacker to compromise its integrity,
availability, or confidentiality. Most software security vulnerabilities fall into one of a small
set of categories :

— Memory faults : such as buffer overflows and other memory corruptions which impact
the security of a software system.

— Null-pointer exceptions : which can threat the system confidentiality when it is used
to reveal debugging information.

— Initialization checkers : which can threat the system integrity when the software com-
ponents are used without being properly initialized.

— Race conditions : related to weak time checking between software tasks and can allow

102

(a) Buggy DILD and IILD (b) Vulnerable DILD and IILD

Figure 7.10 Percentage of Quality and security issues detected in (in)direct inter-language
dependencies.

an attacker to obtain unauthorized privileges.
— Access control problems : related to weak specifications of privileges defining the access

or the modification of software files .
We show in Table 7.5 the percentage (out of inter-LD and intra-LD) of the dependencies
involving vulnerabilities.

Results : We observe that 80% of the studied systems revealed security issues introduced
within inter- and intra-language dependencies.

The percentage of vulnerabilities in inter-language dependencies can reach up to
nearly 22,18%, and 11,27% in intra-language dependencies. We present the findings
in a scatter-plot, Figure 7.9, for a better visual analysis. We observe that the more we
have inter-language dependencies, the higher the risk of vulnerabilities being
introduced. Without considering JatoVM and Realm (where vulnerabilities could not be
found), a correlation of 0,961 was found between inter-language dependencies and security
vulnerabilities.

The box-plot presented in Figure 7.11 and the p-value of the Mann-Whitney U test (p-value
= 0.007) shows a significant difference between the percentage of vulnerabilities in inter-LD
and the percentage of vulnerabilities in intra-LD. Regarding the difference between the risks
of vulnerabilities in direct inter-LD and indirect inter-LD, we report from Figure 7.10b that
the more we have inter-LD the higher is the risk of vulnerabilities introduced
in indirect inter-LD comparing with direct intra-LD where it remains nearly the
same.

103

Figure 7.11 Percentage of Vulnerable dependencies.

7.4 Discussion

we discusses now the empirical study performed on ten open source Java Native Interface to
analyze the inter-language dependencies.

RQ7.2. Are inter-language dependencies more risky for multi-language soft-
ware system in terms of quality? The percentage of quality issues in inter-language
dependencies (46,66%) is higher nearly to three times compared with quality issues
in co-changes involving intra-language files (13,7%). Several previous works suggested
that combining programming languages presents always a challenging activity as it
increases the complexity of the software and leads to hard maintenance [9]. Thus,
analyzing the impact of a change through multi-language files is important to avoid
software issues. In many cases, indirect dependencies could be risky to the quality of
the system as these kinds of dependencies are hard to identify via static analysis. Our
results show that the risk of introducing bugs are 1.5 times higher in indirect inter-LD
(not detectable by static analysis) than direct ones.
The following are two examples of bugs introduced within inter-language dependencies.
— The first example was extracted from Conscrypt. It presents a co-change that

involved four files written in Java and C++. It was responsible for the intro-
duction of a bug because of a miss of a change in the native function Native-
Crypto.EVP_DigestVerifyFinal() implemented in org_conscrypt_NativeCrypto.cpp.
The author of the change modified the signature of the native Java method EVP_DigestVerifyFinal()
and missed the corresponding modification in the CPP file that results from the

104

inter-language dependency. We explain it by the fact that the author of the change
was not able to identify the JNI dependencies and to track the change propagation
i.e., a miss of the dependency analysis.

— The second example concerns a co-change extracted from Realm. It involved inter-
language dependencies with a total of six Java files and three CPP files. Our
analysis shows that this change introduced a bug when the new return type of
the Java native method in Realm.java did not match with the old return type of
the corresponding implementation of CPP file. These kinds of changes are subject
to bugs especially when several changes are involved (i.e., on nine files that were
indirectly dependent). JNI practices [1] should be well mastered by the developers
as they present another way to protect the source code from quality decrease.

RQ7.3. Are inter-language dependencies more risky for multi-language soft-
ware system in terms of security?
From the results, we observe that vulnerabilities in inter-language dependencies (22,18%)
are twice as common as in intra-language dependencies (11,27%). This leads to the
conclusion that inter-language dependencies are more risky than intra-language de-
pendencies and developers should consider the challenge provided with multi-language
systems.
We observe from Table 7.5 that no vulnerabilities were found in inter-language depen-
dencies of Realm and JatoVM. Realm is written mostly in Java (82.3%) where C++
presents 8%. Java does memory management automatically, the compiler catches more
compile-time errors, and it does not allocate direct pointers to memory. We observed
that the selected software written mostly in Java is less vulnerable than C or C++ to
memory security vulnerabilities. Indeed, a similar observation was reported previously
by other researchers [105]. The results of Lwjgl are similar to Realm. Lwjgl is mostly
written in Java (85,1%) but the difference is that the second language used is C and
not C++ (Object-oriented programming (OOP)). We are exploring in an ongoing
work if the fact of having dependencies among files written in Java and procedural
programming language instead of an OOP language may increase the existence of
vulnerabilities in multi-language systems.
JatoVM is the implementation of the Java virtual machine. Vulnerabilities have not
been found within inter-language dependencies, however, they were detected within
intra-language dependencies. JatoVM is written mostly in the C language (73%). C
is a low-level programming language that provides access to low-level IT infrastruc-
ture. We noticed that previous researchers reported that manipulating C language is
critical in the software security context [106]. Conduction further empirical studies

105

can better explain the fact that we are founding several security vulnerabilities pro-
pagated between C files. In future work, we will study the reasons behind not finding
vulnerabilities within the inter-language dependencies to investigate whether if this
low vulnerabilities is related to the architecture of the system i.e., how it is designed
or if it is related to the domain, as it is a java virtual machine.
Figure 7.12 shows the distribution of the percentage of the vulnerabilities for each
category i.e., Memory faults, Null-pointer exceptions, Initialization checkers, Access
control problems, Race conditions. We can observe from the bar-plot that the most
vulnerabilities in inter-LD are the Memory faults and the Access control
(presented in 80% of the systems) followed by Race conditions (presented
in 40% of the systems) while the rest are shown in less than 30% of the
systems. However, for intra-LD, Memory faults and Initialization checkers are pre-
sented in 50% of the systems while Null-pointer exceptions were found in 40% of the
systems and the rest are under of 30%. Abidi et al. through their study [84], support
this finding as Memory faults e.g., buffer_overflow are the most known vulnerability
subject of security issues in multi-language systems. The pool of practitioners who
participated in that survey explained this fact by claiming that these programming
languages do not provide security protection against overwriting data in memory and
do not automatically check that data written to an array is within the boundaries
of that array. Moreover, Tan et al. [107] discussed the importance of caring about
violating access control rules in JNI systems as native methods can access and modify
any memory location in the heap.

7.5 Threats to validity

Threats to internal validity We relied on the literature to extract the JNI rules and to
apply the co-changes method. We evaluate the accuracy of the approaches used through the
study where we found precision (recall) values of 100% (68%) for S-MLDA and 68% (87%)
for H-MLDA.

Threats to construct validity : The process followed in collecting the data may introduce
some inaccuracies. The use of PADL meta-model, co-changes method, SZZ algorithm, and
vulnerability classification may present a threat to construct the study and it may exist
other means. However, we mentioned that many previous works relied on these means and
validated them. For this reason, the precision and the recall of these means is a concern that
we agree to accept.

106

Figure 7.12 Distribution of the five security vulnerabilities categories.

Threats to external validity Our results may not be representative of all multi-language
software systems, since we only studied the case of JNI on ten open-source systems. We accept
this threat as software system’ characteristics could vary depending on different criteria.
However, to mitigate this threat, we varied the selected systems based on the software status,
size, and languages used.

7.6 Chapter Summary

Building on the survey’s findings from the previous chapter, this chapter focused on de-
pendency analysis, the most challenging analysis for change impact analysis within multi-
language systems. Thus, we analyzed inter-language dependencies i.e., dependencies between
components written in different programming languages and their relation with the software
quality and security. We empirically applied two approaches based on historical dependency
analysis (H-MLDA) and static dependency analysis (S-MLDA) on ten open-source multi-
language systems (i) to identify the inter-language dependencies and to (ii) study their impact
on the quality and the security of multi-language systems.

We evaluated the accuracy of the results and we found precision (recall) values of 100% (68%)
for S-MLDA, and 68% (87%) for H-MLDA. We find that IILD are 2.7 times more common
than DILD. The more inter-LD, the higher the risk of bugs and vulnerabilities, while this
risk remains constant for intra-LD. The number of bugs introduced in inter-LD is three times
higher than in intra-LD while the number of security vulnerabilities introduced in inter-LD
are two times higher than in intra-LD. We recommend to multi-language developers to first

107

use specific approaches (i.e., S-MLDA) during their multi-language changes to identify the
inter-LD, especially the (hidden) indirect ones. Secondly, they are recommended to take care
of the quality aspect while changing a multi-language software system as the impact is higher
than in the mono-language software systems i.e., specific approaches are needed to help spot
quality issues during the change tasks.

108

CHAPTER 8 WHAT IS THE IMPACT OF MULTI-LANGUAGE
ADOPTION IN MACHINE LEARNING FRAMEWORKS VS.

TRADITIONAL SYSTEMS? (Sub-hypothesis 3)

8.1 Chapter Overview

In the previous chapters, we studied the prevalence of multi-language development within
traditional systems i.e., non-Ml systems, its associated challenges with respect to change
impact analysis, and its impact on the quality and security of systems. In this chapter, we
extend these prior analyses to the domain of machine learning applications.

Given the complex nature of machine learning (ML) frameworks, the artificial intelligence
(AI) community has been taking advantage of multiple languages in a single machine learning
framework. In particular, while Python has evolved into the most commonly used language
for developing machine learning frameworks due to its large range of powerful features [65],
there are some inconveniences of using Python alone i.e., it lacks computational performance
needed for high-frequency real-time predictions [66], it takes significant CPU time for in-
terpretation, etc. Hence, the Python C extension is often used as a solution to interface
with highly performant C code for frequently executed low-level algorithms, as required, for
example, by the gaming industry [67], multi-agents [68], and so on.

Despite the benefits of using multi-language development in developing machine learning fra-
meworks, there are also several challenges associated with it as we already showed in previous
chapters on the challenges of multi-language development in traditional systems. The major
issue concerning this paradigm is that multi-language programs do not necessary obey the
semantics of the combined languages [68] and it is the developer’s responsibility to deal with
the different programming calling conventions to avoid introduction of diverse issues that can
harm the software. Such concerns are not necessarily new, since multi-language development
has been used for a long time for developing more traditional systems as discussed in our
systematic literature review (Chapter 4) and by several works in the literature [10,78,85].

However, in the case of ML frameworks, the traditional issues of multi-language development
are further corroborated by the inherent complexity of ML frameworks. For example, they
implement highly specialized mathematical operations that are challenging to test and debug,
and even require interdisciplinary collaboration between scientists and developers [108,109].
Hence, how multi-language development is adopted in machine learning frameworks ? Are
these frameworks following the multi-language trend ? Does the practice of multi-language

109

development increase the difficulty of dealing with machine learning frameworks ?

To the best of our knowledge, in this chapter we present the first study that investigates the
prevalence and the impact of multi-language development on the development of machine
learning frameworks in terms of their ability to solicit high-quality open source contribu-
tions. More specifically, we study the impact of multi-language development in terms of the
volume, acceptance rate, review process duration, and bug-proneness of pull requests (PR).
Thus, we empirically analyze the ten largest open source multi-language machine learning
frameworks (Cat-I) and the ten largest open source traditional systems (Cat-II). In addition,
we considered a set of seven mono-language open source machine learning frameworks (Cat-
III) that served as a control group for the comparison between Cat-I and Cat-II. We address
the following research questions :

— RQ8.1. What is the prevalence of multi-language development in machine learning
frameworks?

— RQ8.2.What is the impact of multi-language development on pull request acceptance
in machine learning frameworks?

— RQ8.3. What is the impact of multi-language development on the time taken to
accept pull requests in machine learning frameworks?

— RQ8.4. Are multi-language pull requests more bug-prone than mono-language pull
requests in machine learning frameworks?

8.2 Methodology

This section discusses our methodology to empirically analyze the impact of multi-language
development on open-source machine learning frameworks. An overview of our methodology
is presented in Figure 8.1.

8.2.1 Project selection and cloning

In this empirical study, we analyzed a total of 27 open source projects hosted on GitHub.
Our selected projects include the ten largest multi-language machine learning frameworks and
seven mono-language machine learning frameworks identified by Braiek et al. ’s study [65],
as well as the ten largest multi-language traditional systems from Grichi et al. ’s study [1].
The seven mono-language machine learning frameworks serve to control for bias and any
confounding factors in our comparison of multi-language machine learning and multi-language
traditional systems.

We clone each project from GitHub and extract the following information : total number

110

Figure 8.1 Overview of the methodology.

of lines of code, all pull requests (PR), all commits, and the percentage of programming
languages used.

8.2.2 Project categorisation

For clarity, the selected projects are grouped into 3 categories : Cat-I constitutes the ten
largest multi-language open source machine learning frameworks, Cat-II constitutes the
ten largest multi-language traditional systems, and Cat-III constitutes the seven mono-
language open source machine learning frameworks. Table 8.1 gives an overview of the three
categories.

8.2.3 Preprocessing and filtering

Accepted and Rejected Pull requests — We categorize pull requests as either accepted
or rejected based on the pull request status (i.e., Merged, Closed). Pull requests with both
closed and merged status are classified as accepted pull requests. We identify a rejected pull
request as being closed but not merged. We do not consider open pull requests in this study
as they are still under review. For the rest of the chapter, we call accepted pull requests
“accept-PR" and rejected pull requests “reject-PR".

Multi- and Mono-language Pull requests — We identify the set of changed files
for each commit linked to a pull request, as well as the programming language(s) used in
each file. A pull request that has at least one multi-language commit is considered as a multi-
language pull request. Conversely, a pull request with no multi-language commit is considered
a mono-language pull request. A commit is tagged as multi-language if it has files written in

111

Table 8.1 Selected case study projects, grouped by category and, per category, ordered from
largest to smallest in terms of total number of lines code.

Project #Code #Commits #Pull
lines Requests

Cat-I

Spacy 6.02M 10,382 1057
Tensorflow 2.49M 61,240 12,393
Pytorch 817K 19,559 16,999
Incubator-mxnet 414K 9869 7,965
CNTK 327K 16,108 547
Paddle 290K 24,724 10,858
Caffe2 275K 3680 1260
Theano 155K 28,081 4094
Scikit-learn 153K 24,299 7971
Caffe 76,3K 4154 2204

Cat-II

NativeScript 1.93M 16,150 2435
Openj9 1.47M 8239 4519
Godot 1.15M 19,898 12,057
Libgdx 830K 13,580 2779
RethinkDB 486K 33,402 363
Mapbox GL 399K 14,976 7707
React-native 395K 18,038 8623
Play !framework 394K 14,059 1943
RocksDB 346K 8341 4012
VLC 196.1K 11,866 1884

Cat-III

Nltk 228K 13,884 1128
Keras 50.8K 5342 3918
Neon 49.4K 1118 88
Torch7 29K 1337 510
Pattern 23.6K 1433 118
Tflearn 10.4K 605 247
Sonnet 7.42K 764 39

112

more than one programming language, while it is tagged as mono-language when it has files
written in only one programming language. For example, a pull request P1 that contains
two commits C1 (file1.java, file2.c) and C2 (file3.c, file4.c) is considered as a multi-language
pull request. A pull request P2 that contains two commits C3 (file5.java, file6.java) and C4
(file7.c, file8.c) is considered as a mono-language pull request.

An alternative definition of multi-language PR would have been “any PR for which the union
of changed files covers at least two programming languages". However, according to the rules
for inter-language dependencies (e.g., , between Java and C), the (multi-language) dependant
files should change together in order to compile and run, hence our commit-level definition
is more realistic. For the rest of the chapter, we call multi-language pull requests “multi-PR"
and mono-language pull requests “mono-PR".

8.2.4 Pull request analysis

Pull request acceptance period — We calculate the period spent (in hours) for a pull
request to be accepted or rejected based on the difference between the pull request submission
date and when the pull request was closed.

Bug-inducing pull requests — We collect the log messages of all pull requests and
their contained commits. We split each message into words, the search for keywords and
references to bug reports. Examples of the common keywords used were : ’“fix", “correct",
“bug", “error", “issue", “mistake", “blunder", “incorrect", “fault", “defect", “flaw", “bugfix",
“bugfix :"’. As soon as a pull request was found to refer to a bug report, it was considered to
be a bug fix.

Then, once we identified the pull requests that contain a fix to a bug, we applied the SZZ
algorithm [100] to determine the initial bug-introducing pull request. The SZZ algorithm
uses git-blame on the revision history to identify commits that are likely to have introdu-
ced bugs to determine first what changed in the bug-fix, then to locate the origins of the
deleted or modified source code change that introduced this bug [110]. Finally, all identi-
fied bug-introducing pull requests are tagged automatically and assigned to the right group
(multi-PR or mono-PR). We statistically compared the bug-introducing multi-PR to the
bug-introducing mono-PR.

8.2.5 Statistical tests

We use the non-parametric Mann-Whitney U statistical test [104] with a 95% confidence
level (i.e., α = 0.05). We considered Bonferroni correction [111] to control the family-wise

113

error rate when we perform more than one comparison on the same data. According to this
correction, we divide the confidence level α by the number of tests. We also compute the Cliff’s
Delta effect size [112] if a significant difference is obtained. An effect size, r, is classified as
"negligible" if r<0.2, as "medium" if 0.2<r<0.5, and as "large" if 0.5<r<0.8.

The larger the effect size the stronger the relationship between the two variables. Table 8.2
shows the obtained p-values and effect sizes of the various tests used in this study.

8.3 Results

The following section presents our results and summarizes them per research question.

RQ8.1. What is the prevalence of multi-language development in machine lear-
ning frameworks?

Approach : This research question aims to identify the presence/absence of the practice of
multi-language development in ML frameworks. We investigate the different languages used
and the prevalence of multi-language contributions (pull requests) in machine learning frame-
works, then compare the results with those of multi-language traditional software systems.

Results : Both Cat-I and Cat-II projects have similar percentages of main pro-
gramming languages involved, i.e., the two sets of projects are comparable. Figure
8.2 shows that the distribution of programming languages involved in the studied Cat-I (Fi-
gure 8.2a) and Cat-II (Figure 8.2b) projects are similar. We found that regarding Cat-I, the
main languages are Python and C, while Java and C/C++ are the main languages for Cat-II.
Other languages, especially Objective-C and Perl are the least common for both categories.

Cat-I and Cat-II projects are also comparable in terms of the total number of
PRs and the number of multi-language PRs.

Figure 8.3 presents the total number of pull requests (PR) in the studied Cat-I and Cat-II
systems, respectively. The number of pull requests of Cat-I is not significantly different from
Cat-II (p-value=0.6305) i.e., the categories are similar to each other. As shown in Figure
8.4, we observe that Cat-I and Cat-II systems have a similar proportion of multi-language
pull requests (multi-PR) : both Cat-I and Cat-II have the same median (39,08 for Cat-I and
39,09 for Cat-II), while the variance of Cat-I is larger.

114

Figure 8.2 Percentage of the programming languages used.

The sets of Cat-I and Cat-II are comparable according to the usage of multi-language de-
velopment (Figure 8.2), the number of pull requests (Figure 8.3), and the percentage of
multi-language pull requests (Figure 8.4).

RQ8.2. What is the impact of multi-language development on pull request ac-
ceptance in machine learning frameworks?

Approach :

Existing research shows that multi-language development requires substantial additional ef-
fort from software developers [1]. Rahman and Roy [113] also report that programming
languages involved in pull requests can influence the success and failure rates of the pull
requests. Since pull requests represent the process through which a collaborator contributes
in a software project, this research question aims to study the impact of multi-PR and mono-
PR on the pull request acceptance rate of Cat-I projects. We compare our results to those of

115

Figure 8.3 Total number of pull requests.

Figure 8.4 Distribution of the percentage of multi-language pull requests

Cat-II and Cat-III (mono-PR only) projects.

Results : There is no significant difference between the proportion of accepted
pull requests in both Cat-I and Cat-II. Figure 8.5 shows the total percentage of all
accepted pull requests (both multi-PR and mono-PR) in the two system categories. While
the Figure shows that the acceptance rate in Cat-II generally exceeds the acceptance rate
in Cat-I, the Mann-Whitney U test shows an insignificant difference with a p-value = 0,16.
Hence, both Cat-I and Cat-II are, in general, equally likely to accept PRs.

Given this inconclusive result, we performed further analysis to compare the acceptance rate
of multi-PR and mono-PR (relative to the totality of pull requests).

There is no significant difference between the acceptance rate of either multi/mono-
PRs between Cat-I and Cat-II. We observe from Figure 8.6a that Cat-II systems have
a generally higher multi-PR acceptance rate than Cat-I systems. Also, mono-PR in Cat-II
seems to have a higher acceptance rate than mono-PR in Cat-I, as shown in Figure 8.6b. Ho-
wever, the Mann-Whitney U test did not show a significant difference in either the multi-PR
acceptance rate (p-value=0,85) or the mono-PR acceptance rate (p-value=0,53) comparisons
between Cat-I and Cat-II systems. This finding shows that ML (Cat-I) and non-ML (Cat-II)

116

Figure 8.5 Percentage of accepted pull requests.

systems have similar acceptance rates even at the finer granularity of mono- and multi-PRs.

In Figure 8.6b, we further compare the acceptance rate of mono-PR in Cat-III with the
mono-PRs in Cat-I and Cat-II. We observe that the median percentage of accepted mono-
PR of Cat-III systems is lower than that of Cat-II systems, but higher than the median
accepted mono-PR of Cat-I systems. The Mann-Whitney U test shows that these differences
are significant, with p-values of 0,0068 (with a large effect size of 0,6) and 0,025 (with a
medium effect size of 0,5), respectively.

Mono-PR have a significantly higher acceptance rate than multi-PR in Cat-I
systems, while there is no such difference in Cat-II systems. Multi-PR in Cat-I and
mono-PR in Cat-I show a significant difference with a p-value of 0,022 and a small effect
size of 0,2. However, multi-PR and mono-PR in Cat-II did not show a significant difference
(p-value = 0,35).

Multi-language pull requests are significantly harder to get accepted in ML frameworks than
in traditional software systems.

RQ8.3. What is the impact of multi-language development on the time taken to
accept pull requests in machine learning frameworks?

Approach :

While the previous RQ’s observations in terms of PR acceptance rate are able to provide some
insights, they do not tell the full story, since a multi-language PR that took a lot of time
and effort to be accepted might still indicate a kind of overhead imposed by multi-language
development. This motivated us to investigate the time taken for a multi- or mono-PR to
be accepted or rejected. Since the time until a PR is accepted/rejected could be impacted

117

Figure 8.6 Acceptance rate in multi-/mono-language pull requests.

by several factors, we control the time required with (1|) the effort required to review each
specific PR (approximated by the number of changed files in the PR), as well as (2) the size
of the developer community.

Results : Pull requests take longer to be rejected than accepted in both Cat-I
and Cat-II, for both mono- and multi-PR.

Figure 8.7 shows the time taken (in hours) by a developer to accept or reject a mono-
PR/multi-PR in all three software system categories. From the figure, we can see that the
period taken by the reviewers to reject a mono-PR (multi-PR) in Cat-I or to reject a mono-
PR (multi-PR) in Cat-II is higher than the period taken to accept them. These observations
are confirmed by the Mann-Whitney U tests, which yield p-values of 0,00033 (0,0068) and
0,00032 (0,00049), respectively. The effect size shows a large effect in all cases of r=0,87
(r=0,65) and r=0,87 (r=0,84), respectively.

Rejecting a multi-PR takes longer than rejecting a mono-PR in both Cat-I and
Cat-II. Figure 8.7 shows that reviewers spend a significantly longer amount of time to reject
a multi-PR in Cat-I than to reject a mono-PR in Cat-I , with a p-value of 0,016 and a medium
effect size of 0,54. A similar observation can be made for Cat-II systems : it took longer for
reviewers to reject multi-PR in Cat-II than to reject a mono-PR in Cat-II, with p-values of
0,00073 and a large effect size of 0,75.

118

Figure 8.7 Period taken (in hours) to accept/reject a multi-/mono-PR. (It should be noted
that two outliers were removed from Cat-III’s Accept Mono-PR (value = 1352.5) and Reject
Mono-PR (value = 1552.5) to improve the presentation of the figure.)

Only in ML frameworks, multi-PR take significantly longer to accept than mono-
PR. While we obtained a p-value of 0,00018 (and a large effect size of 0,83) for the comparison
of multi-PR and mono-PR acceptance times in ML frameworks (Cat-I), the p-value for the
corresponding comparison in traditional software systems (Cat-II) did not show a significant
difference (0,037. This finding shows that not only do multi-PRs have it harder to get accepted
(as reported in RQ8.2), the PRs that are accepted generally take more time to do so as well.

We did not find significant differences between Cat-I and Cat-II in terms of the
period taken to accept/reject mono-PRs. Hence, even though our comparisons within
both categories showed some differences, the categories again are similar to each other, just
like in RQ8.1.

ML frameworks (Cat-I) take longer to accept and reject a multi-PR than tradi-
tional systems (Cat-II). The period to accept (Reject) multi-PR in Cat-I is higher than
Cat-II, with significant p-values : 0,0052 (0,023) with a large effect size of 0,62 and a medium
effect size of 0,5, respectively.

119

The acceptance (rejection) of mono-PRs in Cat-III systems take equally long
(and significantly longer) than the corresponding periods of Cat-I and Cat-II,
respectively. We perform further analysis based on the mono-PR of Cat-III systems to
understand whether earlier findings in this RQ apply across all ML frameworks (since Cat-
III contains only mono-language pull requests). The Mann-Whitney U tests comparing the
mono-PR acceptance/rejection times of Cat-III to the corresponding Cat-I and Cat-II times
all are significant (see Table 8.2 for details). However, there is no significant difference between
the mono-PR acceptance and rejection times within Cat-III (p-value of 0.41).

These findings suggest that the observed differences in terms of the period to accept multi-
PR compared to mono-PR for Cat-I are not necessarily due to the fact that the ML domain
is more complex, since Cat-III systems seem to suffer much more from longer accept/reject
periods than Cat-I/II. One possible confounding factor might be that the Cat-III systems
receive larger pull requests than Cat-I/II, potentially explaining their slower review process.
Hence, we explore this confounding factor next.

The more file changes in a PR, the longer its acceptance period and the shorter
its rejection period (in both Cat-I and Cat-II). In Figure 8.8(a), we compare the
relationship between the median number of changed files in multi-PRs (discussed in Section
8.2.3) and the accepted (rejected) periods of multi-PR in both Cat-I and Cat-II systems. We
can see that when the median number of multi-language files increases (X axis), the period
spent (Y axis) to accept a multi-PR in Cat-I (red dots) and multi-PR in Cat-II (blue dots)
increases as well. Spearman rank correlation showed a strong positive relationship with the
following respective coefficient, p=0,88 and p=0,84.

However, the period spent to reject a multi-PR in Cat-I (yellow dots) and a multi-PR in Cat-
II (gray dots) decreases when the number of multi-language files increases. Spearman rank
correlation showed a strong relationship (p=-0,90) only for Cat-I (p=-0,57 for Cat-II). This
may be because when a pull request has many files, the reviewer does not invest much time
to review it and instead asks to slice the large pull request in more manageable chunks [114].

For mono-PRs, including Cat-III, there is no correlation between the size of a
PR and its acceptance/rejection period. In Figure 8.8(b), we compare the relationship
between mono-language files and the accepted (rejected) periods of mono-PR in all three
project categories. Spearman rank correlation showed a significant correlation only between
the median of mono-language changed files (X axis) and the period taken for reject mono-
PR in Cat-III (p=0,95). As future work, we will conduct more in-depth investigations to
understand the reason behind this finding.

Cat-III systems have significantly fewer contributors than Cat-I and Cat-II. As

120

Figure 8.8 Comparing period to accept/reject a multi-/mono-PR according to the changed
files.

an alternative explanation to the different PR acceptance/rejection periods between Cat-III
and Cat-I/Cat-II (see Figure 8.7), we consider the size of a project’s community i.e., the
number of contributors involved in each software system. For example, a project with 100
contributors would have a larger pool of reviewers than a project with only 50 contributors,
and hence might be more effective in reviewing, regardless of multi- or mono-PRs.

Figure 8.9 presents the distribution of the number of contributors per studied system. It
shows that Cat-III projects have the least number of contributors compared to contributors
in Cat-I and Cat-II. Our Mann-Whitney U tests show significant differences between both
Cat-III vs. Cat-I (p-value= 0.014, effect size = 0.26) and Cat-III vs. Cat-II (p-value = 0.025,
effect size = 0,51) comparisons. We conclude that the differences between the ML frame-
works (Cat-III and Cat-I) in terms of mono-PR periods are not specific to the complexity
or other characteristics of ML code, but rather due to the size of the developer community.
A low number of contributors could cause delays in the revision process because there are
not enough contributors for all the pull requests and this is what may causes pull requests
to remain under revision for a long time before being accepted or rejected.

In ML frameworks, multi-language PRs take longer to be accepted than mono-language PRs
and ML frameworks take longer to accept/reject a multi-PR than traditional systems.

RQ8.4. Are multi-language pull requests more bug-prone than mono-language
pull requests in machine learning frameworks?

Approach : Despite the diverse advantages of multi-language development, it presents some
challenges to developers such as decreasing the quality and security of software systems [78].

121

Table 8.2 P-value of the Mann-Whitney U test.

Compared Compared analysis P-value
categories

Acceptance

Cat-I vs. Cat-I Accept multi-PR vs. Accept mono-PR 0,02175626

rate

Cat-II vs. Cat-II Accept multi-PR vs. Accept mono-PR 0,3526814
Cat-I vs. Cat-II Accept multi-PR vs. Accept multi-PR 0,8534283
Cat-I vs. Cat-II Accept mono-PR vs. Accept mono-PR 0,5288489
Cat-I vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,00678733
Cat-II vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,02498972

Acceptance

Cat-I vs. Cat-I Accept multi-PR vs. Reject multi-PR 0,006841456

period

Cat-I vs. Cat-I Accept multi-PR vs. Accept mono-PR 0,000181651
Cat-I vs. Cat-I Reject multi-PR vs. Reject mono-PR 0,01552552
Cat-I vs. Cat-I Accept mono-PR vs. Reject mono-PR 0,000328133
Cat-II vs. Cat-II Accept multi-PR vs. Reject multi-PR 0,000487129
Cat-II vs. Cat-II Accept multi-PR vs. Accept mono-PR 0,03749167
Cat-II vs. Cat-II Reject multi-PR vs. Reject mono-PR 0,000725281
Cat-II vs. Cat-II Accept mono-PR vs. Reject mono-PR 0,000324753
Cat-I vs. Cat-II Accept multi-PR vs. Accept multi-RP 0,005196042
Cat-I vs. Cat-II Reject multi-PR vs. Reject multi-PR 0,02323064
Cat-I vs. Cat-II Accept mono-PR vs. Accept mono-PR 0,8796494
Cat-I vs. Cat-II Reject mono-PR vs. Reject mono-PR 0,03546299
Cat-II vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,000102838
Cat-II vs. Cat-III Reject mono-PR vs. Reject mono-PR 0,000102838
Cat-I vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,000754633
Cat-I vs. Cat-III Reject mono-PR vs. Reject mono-PR 0,000719868
Cat-III vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,4057174

Bug-inducing

Cat-I vs. Cat-I Accept multi-PR vs. Accept mono-PR 0,4358722

pull requests
Cat-II vs. Cat-II Accept multi-PR vs. Accept mono-PR 0,08920955
Cat-I vs. Cat-II Accept multi-PR vs. Accept multi-PR 0,3930481
Cat-I vs. Cat-II Accept mono-PR vs. Accept mono-PR 0,02280556
Cat-I vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,03301111
Cat-II vs. Cat-III Accept mono-PR vs. Accept mono-PR 0,000719868

122

Figure 8.9 Number of contributors per software system.

In this research question, we aim to understand the correlation between multi-language de-
velopment and the introduction of bugs in ML frameworks, compared to traditional systems.
Our analysis focuses only on the accepted pull requests (rejected pull requests are incapable
of introducing bugs since they are never merged into the code base). We compare our results
across all three project categories.

Results : We only found a significant difference between the bug-proneness of
mono-PRs of ML frameworks (Cat-I/III) and Cat-II. Figure 8.10 shows the per-
centage of bug-introducing multi-PRs and mono-PRs (relative to the total number of pull
requests) in the studied software system categories. As shown in Figure 8.10a, the median
percentage of the bug-introducing multi-PR (mono-PR) of Cat-I projects is generally higher
than the percentage of bug-introducing multi-PR (mono-PR) of Cat-II projects. However,
only a significant difference was found between mono-PR of Cat-I and mono-PR of Cat-
II (p-value = 0,023) with a medium effect size of 0,48. No significant difference was found
between both Cat-I’s buggy multi-PR vs. mono-PR (p-value = 0,44) and Cat-II’s buggy
multi-PR vs. mono-PR (p-value = 0,089) comparisons. Furthermore, statistical tests sho-
wed a significant difference between the buggy mono-PRs in Cat-II and Cat-III (p-value =
0,000719868) with a large effect size of 0,82, but no significant difference was found between
the buggy mono-PRs in Cat-I and Cat-III (p-value = 0,033).
Despite the longer acceptance period and lower acceptance rates of multi-PR, no difference
was found between the bug-proneness of Cat-I and Cat-II multi-PR. However, mono-PR in
ML frameworks seem to be more bug-prone.

123

Figure 8.10 Percentage of Bug-inducing pull requests.

8.4 Discussion

We observed from the results that machine learning frameworks follow the same multi-
language development trend as traditional projects. Out of the top 20 open source machine
learning frameworks identified by Braiek et al. ’s study [65], we analyzed their source code
and defined the different languages used. We find that only 35% (seven frameworks) are
mono-language frameworks, while 65% (13 frameworks, of which we studied the largest 10
frameworks for our study) are multi-language. In other words, machine learning developers
are generally aware of the benefits of multi-language development, and are equally able to at-
tract open-source contributions just like the traditional (i.e., non-ML) open-source projects.
The next RQs analyze to what extent those contributions are successful in getting accepted
and of high quality (bug-free).

Multi-language development has been presented as a solution for diverse problems, but, at the
same time, it represents a difficult practice that needs to be used carefully. ML is a relatively
new domain and the development of ML systems requires competences of both software
developers (experience in programming languages) and data scientists (experience in ML
algorithms and the involved data). Pull request reviewers could be either data scientists or
software developers, and either volunteers or employees, as as discussed by Braiek et al. [65].

124

Thus, the acceptance rate of a multi-PR could vary depending on the difference in expertise of
the reviewers involved. In other words, the findings in this RQ highlight that the interaction
between the complexity of the ML domain and of multi-language development can have an
impact on the contribution review process. Future work should consider this issue in order
to support ML framework developers and reviewers in dealing with multi-PRs.

The results show also a correlation between mono-PR and the introduction of bugs in ML
frameworks. The lack of correlation between multi-PR and bug introduction could be explai-
ned by the fact that multi-PR in ML systems are less accepted than mono-PR as shown in
(RQ8.2). Also, the longer time spent by reviewers before rejecting a multi-PR (as shown in
RQ8.3) shows that reviewers pay more attention when reviewing multi-PR due to its com-
plexity (i.e., inter-language dependencies between the multi-language changed files) and the
potential risks (bug introducing) it can cause. Since we analyze only the accepted PRs in
this research question, we argue that a big percentage of risky multi-PR may already been
cleaned in the review process.

8.5 Threats to validity

Threats to internal validity : Threats to the internal validity of our study concern the
selected projects, the scripts used, and the pull requests analysis methodology. To mitigate
these threats, we relied on the literature to identify projects shown to be among the largest
projects in terms of lines of code and contributions. We developed diverse python scripts
that we ran on GitHub API. We ensured the validity of the scripts’ outcome by performing
a manual validation on a sample.

Threats to external validity : Threats to external validity concern the factors that could
affect the generalizability of our findings. Our findings may not be generalizable for all the
existing multi-language systems (including machine learning and traditional systems) since
we only studied a sample of 27 open-source projects. Software system’ characteristics could
vary depending on different criteria and factors. However, to mitigate this threat, we selected
the largest ML frameworks [65] and Java/C systems [1] and we ensured that subjects of both
categories are comparable regarding programming languages and pull requests.

Threats to conclusion validity : Threats to conclusion concern the relationship between
the treatments and the findings. To mitigate this threat, we used Mann-Whitney U test, a
non-parametric test, to compare the different analysis results across the three project catego-

125

ries. For the control of family-wise error rate, we used the Bonferroni correction to calculate
an adjusted p-value whenever the same sample is tested more than once.

8.6 Chapter Summary

In this chapter, we studied the prevalence of the multi-language practice in machine learning
(ML) frameworks. Since the challenges of multi-language development in traditional systems
were a subject of interest of several existing research studies as we show in Chapter 4, we
performed, throughout our study, a comparison of our analysis results between ML and tra-
ditional multi-language systems. Our major results show that (1) Multi-language PRs in ML
frameworks have a lower acceptance rate than mono-language PRs ; (2) multi-language PRs
in ML frameworks take longer to be accepted than mono-language PRs, and ML frameworks
take longer to accept/reject a multi-PR than traditional systems ; and (3) mono-language
PRs of ML frameworks are more bug-prone than traditional systems. Other characteristics
were found to be similar between the studied ML and traditional projects. The study’s fin-
dings provided a correlation between the existence of multi-language development with ma-
chine learning while multi-language development influences the software contributions (pull
requests) to ML frameworks as discussed in RQ8.2 and RQ8.3.

126

CHAPTER 9 CONCLUSION

In this thesis, we conducted a set of studies to understand the prevalence and the process
of integrating multi-language development within traditional systems. Thus, we studied the
main elements that a developer needs to consider when developing multi-language systems
e.g., the languages to integrate, the techniques that allow the communication between the
languages, the best practices, and the dependencies that ensure a safe maintenance between
the different components. We also investigate the impact of multi-language development on
software quality and security, and the risk that it could involve.

In recent years, multi-language development has been adopted massively in the domain of
AI-based software systems. Thus, we also analyzed the prevalence of multi-language develop-
ment in machine learning frameworks (ML) where we studied the impact of multi-language
adoption in these frameworks and compared them with traditional systems (i.e., non-ML
systems). Our research hypothesis stated :

Thesis Hypothesis :
We hypothesize that (1) multi-language development is common, spanning many combina-
tions of languages through specific techniques, and, over time, has led to a catalog of best
practices ; (2) the integration of multiple languages with different development rules (semantic
and lexical) makes maintenance activities, such as change impact analysis, more complex and
bug/vulnerability-prone ; (3) the impact of multi-language development on software contri-
butions and bug introduction is larger in machine learning frameworks than in traditional
systems.

We will go more in detail on each sub-hypothesis, however, in general, based on our results,
we were able to validate our research hypothesis.

In particular, we found that multi-language development is everywhere nowadays and is in-
carnated even in modern software systems that are using machine learning frameworks. We
found also that multi-language developers face an important number of challenges when using
multi-language development, in particular maintenance challenges that lead to complex de-
pendencies between the integrated languages with different semantic and lexical rules. Our
findings show that multi-language development exposes software systems to higher risks of
being buggy, especially because of the inter-language dependencies i.e., dependencies between
the different languages used in the system. Furthermore, we found that multi-language deve-
lopment impacts open-source software contributions, in the case of ML frameworks, in terms

127

of the acceptance rate of the pull requests, in the sense that multi-language pull requests are
likely to introduce more bugs to the software than mono-language pull requests.

9.1 Sub-hypothesis One (Chapters 4 and 5)

Sub-hypothesis : Multi-language development is common, spanning many combinations of
languages through specific techniques, and, over time, has led to a catalog of best practices.

We conducted a systematic literature review (SLR) on multi-language development usage
from Engineering Village, starting with 3964 research papers and ending up with 138 papers
after exclusions and inclusions. 138 papers published during 10 years seems a limited number
compared to the prevalence and importance of multi-language development nowadays.

The findings showed that the number of published papers involving multi-language deve-
lopment is increasing over time with a large increase between 2017 and 2019. We found
that 66,66% of the papers belong to the “Software analysis” category and 22,46% of the
papers claimed that change impact analysis is the major concern of developers as reported
by researchers. Furthermore, we identified 60 combinations of languages discussed in the li-
terature where most papers focused on the analysis of the combination of Java and C/C++
(37.68%), through the Java Native Interface, following by Python/C(++) (9,42%), through
Python-C-extensions.

We then conducted a qualitative study on the Java Native Interface, as it was found, through
the systematic literature review, to be the most used technique for integrating languages.
Thus, we semi-automatically studied the source code i.e., the JNI part of 100 software sys-
tems using Java Native Interface collected from GitHub. The goal of this second study is to
identify development practices that the JNI users follow. We considered a practice to be any
methodology of the implementation of JNI functions, a recurrent or a common JNI piece of
code, a recurrent security check, or a common use of specific attributes identified in ten or
more of the studied JNI systems. To classify a practice as a good one, it should verify the
following requirements : it respects the JNI specifications, the programming language rules,
and the design patterns. We mined for practices in JDK v9, considered as our oracle, then
checked their occurrences in the other JNI software systems. We believe that JDK could be
an appropriate repository of good practices as it is a large code base that includes many
usages of JNI and written by experts.

The qualitative study identified 11 JNI practices that seem to be followed the most by
the developers of the studied software systems. They are mainly related to library loading,

128

exceptions management, return types management, local and global references management,
String uses, and the JNI different implementation ways.

Based on these findings, we validated our first sub-hypothesis by showing through our syste-
matic literature review that multi-language development is common and prevalent nowadays.
We also validated that diverse techniques are available to support developers in integrating
languages together with different programming rules. Through the qualitative study, we va-
lidated that there are good practices of multi-language development (a case study of Java
Native Interface) used sometimes by developers and ignored by others.

9.2 Sub-hypothesis Two (Chapters 6 and 7)

Sub-hypothesis : The integration of multiple languages with different development rules (se-
mantic and lexical) makes maintenance activities, such as change impact analysis, more
complex and bug/vulnerability-prone.

While it is highly recommended by the multi-language development practitioners to adopt
solid practices for impact analysis of changes within multi-language systems, we found in
the previous study that it still presents a challenge and a topic of debate in the literature.
Change impact analysis in multi-language systems needs to account for interactions between
components written in different programming languages. A lack of understanding of the
impact of a change in a multi-language system can lead to a higher negative impact on
system performance than in a mono-language system.

Hence, we technically surveyed 69 experienced developers and interviewed six of them for the
validation of the survey’s answers, to understand their current practices and needs regarding
their daily process when maintaining a multi-language system. Our survey contained 30
questions grouped into four parts. We identified, firstly, the different challenges and issues
of change impact analysis in multi-language systems ; secondly, the steps followed by the
developers when changing such systems ; thirdly, we investigated the existing change impact
analysis means used by developers in the industry ; and last, the requirements for a change
impact analysis tool dedicated for multi-language systems.

We found that, in general, developers are performing change-impact analysis in multi-language
systems implicitly i.e., they are aware about the use of the right testing methods adequate
for multi-language systems but without knowing that they are doing a part of the change im-
pact process. They opt solely for testing methods and manual checks to analyze the impact of
their changes in multi-language systems as they are worried that their companies do not pro-

129

vide enough specific tools to guide them during their changes within multi-language systems.
Thus, the need to have a change-impact analysis tool that supports multi-language systems
and analyse the dependencies is still very high. Furthermore, we found, from the developer’s
experiences, that multi-language systems are more susceptible to be negatively impacted by
vulnerabilities through changes i.e., code injections, memory dump, or incorrectly released
memory, etc.

To answer developer’s needs and minimize the negative impact of the maintenance process
i.e., software changes, within multi-language systems, we introduced two approaches for
multi-language dependency analysis : S-MLDA (Static Multi-language Dependency Analyzer)
and H-MLDA (Historical Multi-language Dependency Analyzer), which we apply on ten open-
source multi-language systems to empirically analyze the prevalence of the dependencies
across languages i.e., inter-language dependencies and their impact on software quality and
security. These two approaches could be combined to ensure higher precision and recall. We
evaluated the accuracy of the approaches and we found precision (recall) values of 100%
(68%) for S-MLDA, and 68% (87%) for H-MLDA.

Regarding the empirical study, we selected 10 open-source Java Native Interface systems to
analyse as Java Native Interface was shown in our first study i.e., the systematic literature
review, as the most used technique for combining languages. We found that the more inter-
language dependencies i.e., dependencies between components written in different languages,
in a system, the higher the risk of bugs and vulnerabilities being introduced, while this risk
remains constant for intra-language dependencies i.e., dependencies between components
written in the same language. Furthermore, we found that the percentage of bugs within
inter-language dependencies is three times higher than the percentage of bugs identified
in intra-language dependencies while the percentage of vulnerabilities within inter-language
dependencies is twice the percentage of vulnerabilities introduced in intra-language depen-
dencies.

Our findings confirmed the second sub-hypothesis : our survey shows that the maintenance
phase is the most challenging phase during the life cycle of a multi-language system (see
figure 6.13). We validated that change impact analysis becomes more complex due to a
complex multi-language dependency analysis between the components written in different
languages. Furthermore, from the survey we confirmed that the mishandling of change impact
analysis in multi-language development can lead to serious problems such as a decrease in
quality, introduce of security vulnerabilities, increase in project costs, the introduction of
incompatibilities, as discussed in Section 6.4.5. The empirical study on the multi-language
dependencies validated also the findings of the survey and the sub-hypothesis by confirming

130

that multi-language dependencies are more bug-prone than mono-language dependencies and
risks to face the system to several vulnerabilities.

9.3 Sub-hypothesis Three (Chapter 8)

Sub-hypothesis : The impact of multi-language development on software contributions and
bug introduction is larger in machine learning frameworks than in traditional systems.

The role of machine learning frameworks in software applications has exploded in recent years.
Similar to non-machine learning frameworks, those frameworks need to evolve to incorporate
new features. The use of multiple programming languages in their code base enables scientists
to write optimized low-level code while developers can integrate the latter into a robust fra-
mework using a higher-level programming language. While, in the previous studies we showed
that multi-language code bases have an impact on the development process in the traditio-
nal multi-language systems, here we empirically analyzed the prevalence of multi-language
development in the ten largest open-source multi-language machine learning frameworks and
we compared their findings with those of ten large open-source multi-language traditional
systems in terms of software contributions i.e., the volume of pull requests, their acceptance
rate, review process duration, and bug-proneness.

We found that multi-language development is indeed used in machine learning frameworks.
We showed that multi-language pull requests are significantly harder to get accepted in multi-
language machine learning frameworks than in multi-language traditional systems. Also, we
showed that multi-language pull requests in multi-language machine learning take longer
to be accepted than mono-language pull requests while machine learning frameworks take
longer to accept/reject a multi-language pull requests than traditional systems. Furthermore,
in both machine learning and traditional systems, multi-language pull requests are less likely
to be accepted than mono-language pull requests ; it also takes longer for both multi- and
mono-language pull requests to be rejected than accepted. Finally, we find that pull requests
in machine learning frameworks are more bug-prone than those of traditional systems.

The above findings validate our third sub-hypothesis. We validated that software contribu-
tions (multi-language pull requests) are significantly harder to get accepted in ML frameworks
than in traditional systems. Multi-language development in ML frameworks also slows sown
the decision to accept or reject a multi-language software contribution, which makes the
multi-language adoption in ML frameworks hard and challenging.

131

9.4 Limitations

This thesis provides results regarding the impact of multi-language development in software
systems. However, during this dissertation we studied only two types of multi-language sys-
tems : traditional systems where we focused on Java native interface systems and machine
learning frameworks where we focused on the Python-C-extension.

Other well-known types of multi-language systems are distributed J2EE systems. Such sys-
tems rely on the J2EE platform and containers that offer infrastructure and architectural
services to ensure correct functionality. They present similar challenges as Java native inter-
face systems, i.e., hidden dependencies, higher risk of bug introduction, difficult static code
analysis, etc [8] as they combine several languages : (1) Java, for both server and client code
(embedded in HTML, JSP, or JSF tags), (2) JavaScript, on the client side, embedded in
HTML, JSP, or JSF tags, (3) various property files (key/value pairs), and (4) various XML
configuration files (web.xml, ra.xml, ejbjar.xml) [63]. J2EE systems heavily rely on dynamic
tracing as they rely on dynamic binding-techniques, using a combination of : (1) reflection
or introspection, (2) data-driven control, where data-values control calls between clients and
servers, in a message-driven style, (3) run-time input where control-data values control calls
between clients and servers, and (4) runtime code-generation where executable code is gene-
rated at load-time or runtime from configuration files [63]. That combination of techniques
requires more advanced analysis, both static and dynamic.

One could also argue that any Java program in fact is multi-language, since each Java program
requires functionality of the underlying Java VM to be executed at run-time, where this VM
typically is implemented in C or C++. While it is true that the VM code is executed at run-
time, it is not a part of the code base of the Java project (which is why we do not consider this
to be an instance of multi-language development). The difference with our multi-language
development definition is that the interaction of a Java system with the VM is performed
through the stable byte-code specification that is implemented and maintained by the Java
language implementers, i.e., not application developers. On the other hand, the code that
uses foreign function interfaces like JNI and Python-C-extension has to be implemented by
regular application developers, which puts more maintenance burden on them. This is why
our definition of multi-language development explicitly focuses on multi-language code that
is part of a project’s code base.

132

9.5 Future work

Our research contributions open a wide range of opportunities for future work. This section
discusses some of them.

First, we plan to develop a tool in order to cover the requirements asked by the surveyed
developers in Chapter 6, such as : proposing adequate testing methods, proposing potential
changes automatically, etc. It could also be interesting to integrate the use of machine learning
in such tool as it could help to learn from bugs and the changes already made, thus, proposing
new changes safer to the software.

Most of our case studies through this dissertation focus on the combination of Java and
C/C++, through the Java Native Interface. This choice was based on the findings of the
systematic literature review presented in Chapter 4. However, today we observe a large
volume of modern software systems being developed e.g., machine learning frameworks, where
the combination of python and C/C++, through the Python C extension, takes the lead.
It is known that Python is the most commonly used programming language in machine
learning [65], thus, we believe that replicating our studies presented in Chapters 4 and 5 on
these frameworks can reveal interesting development practices and particular challenges as
each combination of languages follows its own developing rules.

Thus, we plan to replicate the state of the practice study on the top 10 largest open-source
machine learning frameworks used in the study presented in Chapter 8 to identify a new set of
practices and to provide a guideline to the machine learning users i.e., developers and data-
scientists to improve the software quality. On the other hand, the S-MLDA and H-MLDA
approaches presented in Chapter 7 could be extended to systems written in Python and C
by implementing the programming rules of Python-C-extension technique for S-MLDA and
considering co-changes involving Python and C files for H-MLDA.

Furthermore, it could be interesting to evaluate the best practices for multi-language deve-
lopment by performing a user study where two groups of developers are asked to perform
two different coding tasks on machine learning frameworks. The user study will consist of
a comprehension task on a version of a system following practices and a version without,
to check accuracy, completion time, etc. Thus, we will record coding attributes to measure
the relevance of such identified practices i.e., we will measure coding time, the percentage
of errors, access to developers’ blogs to look for information, code smells e.g., if the lack of
use of such practices involves blob class, etc. Based on that, we will measure the accuracy
of our guideline. A prototype recommending developers the relevant best practices for their
multi-language development could be developed, and perhaps released as an open-source IDE

133

plugin. Such a plugin will recommend refactoring opportunities to developers based on the
identified JNI best practices in Chapter 4.

Through the survey presented in Chapter 6, we found that developers are mainly using
manual validation and testing for their multi-language dependency analysis. As S-MLDA
and H-MLDA are two approaches that identify these dependencies, it will be interesting to
evaluate them through a user study in order to confirm their efficiency and how they could
perform better than manual analysis.

In order to better cater for machine learning frameworks users, we will investigate the existing
bugs and problems in machine learning frameworks developed with multiple programming
languages identified by researchers in the literature and by developers in developing blogs
i.e., Stack Overflow. We want to understand the kind of bugs encountered by developers
when implementing a multi-language machine learning framework. We plan to propose re-
commendations and suggestions on how they should manage this kind of development.

In addition, we plan to propose debugging processes specific for multi-language development.
Despite the advances of automated testing techniques for complex multi-language systems,
locating the causes of multi-language bugs is difficult and consumes significant human effort
[115]. Debugging these systems is very important ; establishing such debugging processes will
help users to easily identify the location of a suspected multi-language bug and suggest an
automatic program repair and program fix that makes the test case succeed.

134

Related Publications

The following is a list of our publications related to this dissertation.

1. Manel Grichi, Mouna Abidi, Yann-Gaël Guéhéneuc, Foutse Khomh
STATE OF PRACTICES OF JAVA NATIVE INTERFACE, Published in the 29th
Annual International Conference on Computer Science and Software Engineering (CAS-
CON19).
This paper is presented in Chapter 5.

2. Manel Grichi, Mouna Abidi, Fehmi Jaafar
CHANGE IMPACT ANALYSIS IN MULTI-LANGUAGE SYSTEMS : AN INDUS-
TRIAL PERSPECTIVE, Submitted to the Software : Practice and Experience Journal
(Special issue of JSPE).
This paper is presented in Chapter 6.

3. Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E.Eghan, Bram Adams
ON THE IMPACTOF INTER-LANGUAGEDEPENDENCIES INMULTI-LANGUAGE
SYSTEMS : EMPIRICAL CASE STUDY ON JAVA NATIVE INTERFACE APPLI-
CATION(JNI), Accepted in the 20th IEEE International Conference on Software qua-
lity, Reliability, and security (QRS20), and one out of six accepted papers included in
the IEEE Transactions on Reliability.
This paper is presented in Chapter 7.

4. Manel Grichi, Ellis E.Eghan, Bram Adams
ON THE IMPACTOFMULTI-LANGUAGEDEVELOPMENT INMACHINE LEAR-
NING FRAMEWORKS, Accepted in the 36th International Conference on Software
Maintenance and Evolution (ICSME20).
This paper is presented in Chapter 8.

The following publications are not directly related to the material in this dissertation, but
were produced in parallel to the research contained for this dissertation.

1. Mouna Abidi, Manel Grichi, Foutse Khomh
BEHIND THE SCENES : DEVELOPERS’ PERCEPTION OF MULTI-LANGUAGE
PRACTICES, Published in the 29th Annual International Conference on Computer
Science and Software Engineering (CASCON19). Best Student Paper Award.

2. Mouna Abidi, Manel Grichi, Foutse Khomh, Yann-Gaël Guéhéneuc

135

CODE SMELLS FOR MULTI-LANGUAGE SYSTEMS, Published in the 24th Euro-
pean Conference on Pattern Languages of Programs (EuroPLoP19)

3. Ellis E.Eghan, Manel Grichi, William Glazer Cavanagh, Zhen Ming Jack Jiang,
Bram Adams
MACHINE LEARNING MODELS, FROM RESEARCH PAPERs TO APPLICA-
TIONs, Submitted to the ACM Transactions on Software Engineering and Methodo-
logy Journal (TOSEM).

4. Manel Grichi, Fehmi Jaafar, Jean Decian, Yasir Malik, Caesar Jude Clemente
DEMYSTIFYING THE SECURITY BUGS IN SOFTWARE SYSTEMS : AN EM-
PIRICAL STUDY, Submitted to the IEEE Software journal.

136

REFERENCES

[1] M. Grichi, M. Abidi, Y.-G. Guéhéneuc, and F. Khomh, “State of practices of java native
interface,” in Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, ser. CASCON ’19. IBM Corp., 2019.

[2] Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented Pro-
gramming - Volume 8586. Berlin, Heidelberg : Springer-Verlag, 2014.

[3] F. Boughanmi, “Change impact analysis of multi-language and heterogeneously-
licensed software,” publications.polymtl.ca, 2010.

[4] B. D. Burow, “Mixed language programming,” in Computing in High Energy Physics’
95 : CHEP’95. World Scientific, 1996, pp. 610–614.

[5] “Application of mixed language programming,” Computer Physics Communications,
vol. 61, no. 1, pp. 150 – 162, 1990.

[6] P. Mayer, M. Kirsch, and M. Anh, “On multi-language software development, cross-
language links and accompanying tools : a survey of professional software developers,”
Journal of Software Engineering Research and Development, vol. 5, pp. 1 :1–1 :33, 2017.

[7] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software development, cross-
language links and accompanying tools : a survey of professional software developers,”
Journal of Software Engineering Research and Development, vol. 5, no. 1, p. 1, 2017.

[8] A. Shatnawi, H. Mili, M. Abdellatif, Y.-G. Guéhéneuc, N. Moha, G. Hecht, G. E.
Boussaidi, and J. Privat, “Static code analysis of multilanguage software systems,”
arXiv preprint arXiv :1906.00815, 2019.

[9] F. Boughanmi, “Multi-language and heterogeneously-licensed software analysis,” in
17th Working Conference on Reverse Engineering, 2010.

[10] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes : Developers’ perception of
multi-language practices,” in Proceedings of the 29th Annual International Conference
on Computer Science and Software Engineering, ser. CASCON ’19. USA : IBM Corp.,
2019, p. 72–81.

[11] K. G. Cheetancheri and H. H. Cheng, “Mixed language programming in c/c++ and
java for applications in mechatronic systems,” in 2006 2nd IEEE/ASME International
Conference on Mechatronics and Embedded Systems and Applications. IEEE, 2006,
pp. 1–6.

137

[12] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming
languages and code quality in github,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA : Association for Computing Machinery, 2014, p. 155–165.

[13] P. Mayer and A. Bauer, “An empirical analysis of the utilization of multiple pro-
gramming languages in open source projects,” in Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, 2015, pp. 1–10.

[14] S. Hassaine, F. Boughanmi, Y. G. Guéhéneuc, S. Hamel, and G. Antoniol, “A
seismology-inspired approach to study change propagation,” in 2011 27th IEEE In-
ternational Conference on Software Maintenance (ICSM), Sept 2011, pp. 53–62.

[15] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley, “Debugging mixed-environment
programs with blink,” Softw. Pract. Exper., vol. 45, no. 9, p. 1277–1306, Sep. 2015.

[16] D. Zhang and J. J. Tsai, “Machine learning and software engineering,” Software Quality
Journal, vol. 11, no. 2, pp. 87–119, 2003.

[17] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature re-
views in software engineering,” 2007.

[18] R. Bluff, “9 rosalind bluff grounded theory : the methodology,” in 9 ROSALIND BLUFF
Grounded theory : the methodology, 2005.

[19] Z. Mushtaq and G. Rasool, “Multilingual source code analysis : State of the art and
challenges,” in 2015 International Conference on Open Source Systems Technologies
(ICOSST), Dec 2015, pp. 170–175.

[20] D. Binkley, “Source code analysis : A road map,” in Future of Software Engineering,
2007. FOSE ’07, May 2007, pp. 104–119.

[21] E. Flores, A. Barrón-Cedeño, P. Rosso, and L. Moreno, “Towards the detection of
cross-language source code reuse,” in Proceedings of the 16th International Conference
on Natural Language Processing and Information Systems, ser. NLDB’11. Springer-
Verlag, 2011, pp. 250–253.

[22] M. Harman, “Why source code analysis and manipulation will always be important,”
in 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation,
Sept 2010, pp. 7–19.

[23] H. M. Kienle, J. Kraft, and H. A. Müller, “Software reverse engineering in the domain
of complex embedded systems,” in Reverse Engineering-Recent Advances and Applica-
tions. InTech, 2012.

138

[24] N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing using island
grammars,” in Proceedings of the 2003 Conference of the Centre for Advanced Studies
on Collaborative Research, ser. CASCON ’03. IBM Press, 2003, pp. 266–278.

[25] M. Furr and J. S. Foster, “Checking type safety of foreign function calls,” in Procee-
dings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2005.

[26] “Java 8 jni specification - design overview,” http://docs.oracle.com/javase/8/docs/
technotes/guides/jni/spec/design.html, 2017, (Accessed on 07/10/2017).

[27] S. Liang, Java Native Interface : Programmer’s Guide and Reference. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[28] S. Li and G. Tan, “Finding reference-counting errors in python/c programs with affine
analysis,” in Proceedings of the 28th European Conference on ECOOP 2014 — Object-
Oriented Programming - Volume 8586. New York, NY, USA : Springer-Verlag New
York, Inc., 2014, pp. 80–104.

[29] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension in multi-
language systems,” in Proceedings Fifth Working Conference on Reverse Engineering
(Cat. No.98TB100261), Oct 1998, pp. 135–143.

[30] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popularity, interope-
rability, and impact of programming languages in 100,000 open source projects,” in
Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th An-
nual. IEEE, 2013, pp. 303–312.

[31] D. L. Moise and K. Wong, “Extracting and representing cross-language dependen-
cies in diverse software systems,” in 12th Working Conference on Reverse Engineering
(WCRE’05), Nov 2005, pp. 10 pp.–.

[32] L. Gong et al., “Java security architecture (jdk 1.2),” Draft Document, revision 0.8,
Sun Microsystems, March, 1998.

[33] G. Tan and J. Croft, “An empirical security study of the native code in the jdk,” in
Proceedings of the 17th Conference on Security Symposium, ser. SS’08. Berkeley, CA,
USA : USENIX Association, 2008, pp. 365–377.

[34] G. Kondoh and T. Onodera, “Finding bugs in java native interface programs,” in Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis, ser.
ISSTA ’08. New York, NY, USA : ACM, 2008, pp. 109–118.

[35] S. Li and G. Tan, “Finding bugs in exceptional situations of jni programs,” in Procee-
dings of the 16th ACM Conference on Computer and Communications Security. ACM,
2009, pp. 442–452.

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html

139

[36] S. Jiang, C. Mcmillan, and R. Santelices, “Do programmers do change impact analysis
in debugging ?” Empirical Sof. Eng., 2017.

[37] H. Abdeen, K. Bali, H. Sahraoui, and B. Dufour, “Learning dependency-
based change impact predictors using independent change histories,” Information
and Software Technology, vol. 67, pp. 220 – 235, 2015. [Online]. Available :
http://www.sciencedirect.com/science/article/pii/S0950584915001305

[38] P. K. Linos, “Polycare : a tool for re-engineering multi-language program integrations,”
in Proceedings of First IEEE International Conference on Engineering of Complex
Computer Systems. ICECCS’95, 1995, pp. 338–341.

[39] J. W. Wilkerson, “A software change impact analysis taxonomy,” in 2012 28th IEEE
International Conference on Software Maintenance (ICSM), Sept 2012, pp. 625–628.

[40] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti : A tool for change
impact analysis of java programs,” in Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’04. New York, NY, USA : ACM, 2004.

[41] A. Srivastava, “Unreachable procedures in object-oriented programming,” ACM Lett.
Program. Lang. Syst., pp. 355–364, Dec. 1992.

[42] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented programs using
static class hierarchy analysis,” in Proceedings of the 9th European Conference on
Object-Oriented Programming, ser. ECOOP ’95. London, UK, UK : Springer-Verlag,
1995, pp. 77–101.

[43] D. F. Becon, Fast and effective optimization of statically typed object-oriented languages.
University of California, Berkeley, 1997.

[44] O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D. dissertation, 1991.

[45] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change impact analysis
techniques,” Software Testing, Verification and Reliability, vol. 23, no. 8, pp. 613–646,
2013.

[46] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “Jripples : a tool for program
comprehension during incremental change,” in 13th International Workshop on Program
Comprehension (IWPC’05), May 2005, pp. 149–152.

[47] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version histories to
guide software changes,” in Proceedings of the 26th International Conference on Soft-
ware Engineering. IEEE Computer Society, 2004.

http://www.sciencedirect.com/science/article/pii/S0950584915001305

140

[48] S. Gwizdala, Y. Jiang, and V. Rajlich, “Jtracker - a tool for change propagation in
java,” in Proceedings of the Seventh European Conference on Software Maintenance
and Reengineering, ser. CSMR ’03. Washington, DC, USA : IEEE Computer Society,
2003, pp. 223–.

[49] S. Zhang, Z. Gu, Y. Lin, and J. Zhao, “Celadon : A change impact analysis tool for
aspect-oriented programs,” in Companion of the 30th International Conference on Soft-
ware Engineering, ser. ICSE Companion ’08. New York, NY, USA : ACM, 2008, pp.
913–914.

[50] O. C. Chesley, X. Ren, and B. G. Ryder, “Crisp : a debugging tool for java programs,” in
21st IEEE International Conference on Software Maintenance (ICSM’05), Sept 2005,
pp. 401–410.

[51] S. Zhang, Z. Gu, Y. Lin, and J. Zhao, “Autoflow : An automatic debugging tool for
aspectj software,” in 2008 IEEE International Conference on Software Maintenance,
Sept 2008, pp. 470–471.

[52] S. Hassaine, F. Boughanmi, Y. Gueheneuc, S. Hamel, and G. Antoniol, “Change impact
analysis : An earthquake metaphor,” in 2011 IEEE 19th International Conference on
Program Comprehension, 2011, pp. 209–210.

[53] M. C. O. Maia, R. A. Bittencourt, J. C. A. d. Figueiredo, and D. D. S. Guerrero, “The
hybrid technique for object-oriented software change impact analysis,” in 2010 14th
European Conference on Software Maintenance and Reengineering, March 2010, pp.
252–255.

[54] M. Bano, S. Imtiaz, N. Ikram, M. Niazi, and M. Usman, “Causes of requirement change
- a systematic literature review,” in 16th International Conference on Evaluation As-
sessment in Software Engineering, 2012.

[55] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting source code
changes by mining change history,” IEEE Transactions on Software Engineering, Sep.
2004.

[56] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Detecting asynchrony and
dephase change patterns by mining software repositories,” Software : Evolution and
Process, 2014.

[57] F. Angerer, “Variability-aware change impact analysis of multi-language product lines,”
in Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA : ACM, 2014, pp. 903–906.

141

[58] L. Deruelle, M. Bouneffa, N. Melab, and H. Basson, “A change propagation model and
platform for multi-database applications,” in Proceedings IEEE International Confe-
rence on Software Maintenance. ICSM 2001, 2001, pp. 42–51.

[59] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-language program slicing for dy-
namic web applications,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. New York, NY, USA : ACM, 2015, pp. 369–380.

[60] B. Cossette and R. J. Walker, “Polylingual dependency analysis using island grammars :
A cost versus accuracy evaluation,” in 2007 IEEE International Conference on Software
Maintenance, Oct 2007, pp. 214–223.

[61] L. Moonen, “Generating robust parsers using island grammars,” in Proceedings Eighth
Working Conference on Reverse Engineering, 2001, pp. 13–22.

[62] A. Shatnawi, H. Mili, G. E. Boussaidi, A. Boubaker, Y.-G. Guéhéneuc, N. Moha,
J. Privat, and M. Abdellatif, “Analyzing program dependencies in java ee
applications,” in Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR ’17. IEEE Press, 2017, p. 64–74. [Online]. Available :
https://doi.org/10.1109/MSR.2017.6

[63] G. Hecht, H. Mili, G. El-Boussaidi, A. Boubaker, M. Abdellatif, Y. Guéhéneuc, A. Shat-
nawi, J. Privat, and N. Moha, “Codifying hidden dependencies in legacy J2EE appli-
cations,” in 25th Asia-Pacific Software Engineering Conference, APSEC 2018, Nara,
Japan, December 4-7, 2018. IEEE, 2018, pp. 305–314.

[64] M. Sayagh and B. Adams, “Multi-layer software configuration : Empirical study on
wordpress,” in 15th International Working Conference on Source Code Analysis and
Manipulation, 2015.

[65] H. Ben Braiek, F. Khomh, and B. Adams, “The open-closed principle of modern ma-
chine learning frameworks,” in 2018 IEEE/ACM 15th International Conference on Mi-
ning Software Repositories (MSR), May 2018, pp. 353–363.

[66] G. Varisteas, T. Avanesov, and R. State, “Distributed c++-python embedding for fast
predictions and fast prototyping,” in Proceedings of the Second Workshop on Distributed
Infrastructures for Deep Learning, 2018, pp. 9–14.

[67] A. M. Phelps and D. M. Parks, “Fun and games : Multi-language development,” Queue,
vol. 1, no. 10, pp. 46–56, 2004.

[68] S. Buro and I. Mastroeni, “On the multi-language construction,” in European Sympo-
sium on Programming. Springer, 2019, pp. 293–321.

https://doi.org/10.1109/MSR.2017.6

142

[69] A. Poggi and G. Adorni, “A multi language environment to develop multi agent appli-
cations,” in International Workshop on Agent Theories, Architectures, and Languages.
Springer, 1996, pp. 325–339.

[70] S. Tasharrofi and E. Ternovska, “A semantic account for modularity in multi-language
modelling of search problems,” in International Symposium on Frontiers of Combining
Systems. Springer, 2011, pp. 259–274.

[71] F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software engineering
for machine-learning applications : The road ahead,” IEEE Software, vol. 35, no. 5, pp.
81–84, 2018.

[72] A. B. Dhasade, A. S. M. Venigalla, and S. Chimalakonda, “Towards prioritizing github
issues,” in Proceedings of the 13th Innovations in Software Engineering Conference on
Formerly known as India Software Engineering Conference, 2020, pp. 1–5.

[73] E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically prioritizing pull re-
quests,” in 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 2015, pp. 357–361.

[74] G. Zhao, D. A. da Costa, and Y. Zou, “Improving the pull requests review process
using learning-to-rank algorithms,” Empirical Software Engineering, vol. 24, no. 4, pp.
2140–2170, 2019.

[75] F. Boughanmi, “Multi-language and heterogeneously-licensed software analysis,” in
2010 17th Working Conference on Reverse Engineering, Oct 2010, pp. 293–296.

[76] T. Arbuckle, “Measuring multi-language software evolution : A case study,” in Procee-
dings of the 12th International Workshop on Principles of Software Evolution and the
7th Annual ERCIM Workshop on Software Evolution, ser. IWPSE-EVOL ’11. New
York, NY, USA : ACM, 2011, pp. 91–95.

[77] D. Zhang and J. J. P. Tsai, Machine Learning Applications In Software Engineering
(Series on Software Engineering and Knowledge Engineering). USA : World Scientific
Publishing Co., Inc., 2005.

[78] M. Abidi, M. Grichi, F. Khomh, and Y. Guéhéneuc, “Code smells for multi-language
systems,” in Proceedings of the 24th European Conference on Pattern Languages of
Programs, EuroPLoP 2019, Irsee, Germany, July 3-7, 2019, T. B. Sousa, Ed. ACM,
2019, pp. 12 :1–12 :13.

[79] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-ism in github,”
in Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE ’14, 2014.

143

[80] E. Syriani, L. Luhunu, and H. Sahraoui, “Systematic mapping study of template-based
code generation,” Computer Languages, Systems Structures, vol. 52, pp. 43
– 62, 2018. [Online]. Available : http://www.sciencedirect.com/science/article/pii/
S1477842417301239

[81] M. Staples and M. Niazi, “Experiences using systematic review guidelines,” J. Syst.
Softw., vol. 80, no. 9, pp. 1425–1437, Sep. 2007.

[82] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review on the usage
of eye-tracking in software engineering,” Inf. Softw. Technol., pp. 79–107, Nov. 2015.

[83] S. Liang, “Java native interface : Programmer’s guide and specification,” 1999.

[84] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes : Developers’ perception of
multi-language practices,” ser. CASCON ’19, 2019, p. 72–81.

[85] M. Abidi, F. Khomh, and Y. Guéhéneuc, “Anti-patterns for multi-language systems.”
ACM, 2019, pp. 42 :1–42 :14.

[86] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA, USA : IEEE
Computer Society Press, 1996.

[87] S. S. Yau, R. A. Nicholl, J.-P. Tsai, and S.-S. Liu, “An integrated life-cycle model for
software maintenance,” Mathematical and Computer Modelling, vol. 12, no. 9, p. 1177,
1989.

[88] B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vásquez, D. Poshyvanyk, and
H. Kagdi, “Impactminer : A tool for change impact analysis,” in Companion Proceedings
of the 36th International Conference on Software Engineering, ser. ICSE Companion
2014, New York, NY, USA, 2014, pp. 540–543.

[89] R.-H. Pfeiffer and A. Wasowski, “Texmo : A multi-language development environment,”
in Proceedings of the 8th European Conference on Modelling Foundations and Applica-
tions, ser. ECMFA’12. Berlin, Heidelberg : Springer-Verlag, 2012, pp. 178–193.

[90] A. Fink, The survey handbook. Sage, 2003, vol. 1.

[91] H. Sharifipour, M. Shakeri, and H. Haghighi, “Structural test data generation using a
memetic ant colony optimization based on evolution strategies,” Swarm and Evolutio-
nary Computation, vol. 40, pp. 76 – 91, 2018.

[92] A. Thakur and G. Sharma, “Neural network based test case prioritization in software
engineering,” in International Conference on Advanced Informatics for Computing Re-
search, vol. 956, Shimla, India, 2019, pp. 334 – 345.

[93] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An empirical evaluation
and comparison of manual and automated test selection,” in Proceedings of the 29th

http://www.sciencedirect.com/science/article/pii/S1477842417301239
http://www.sciencedirect.com/science/article/pii/S1477842417301239

144

ACM/IEEE international conference on Automated software engineering, Vasteras,
Sweden, 2014, pp. 361 – 371.

[94] M. M. Lehman and L. A. Belady, Program evolution : processes of software change.
Academic Press Professional, Inc., 1985.

[95] S. Hassaine, F. Boughanmi, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “A
seismology-inspired approach to study change propagation,” in 27th IEEE Interna-
tional Conference on Software Maintenance, 2011.

[96] Y. Guéhéneuc and G. Antoniol, “Demima : A multilayered approach for design pattern
identification,” IEEE Transactions on Software Engineering, 2008.

[97] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining co-change infor-
mation to understand when build changes are necessary,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, Sep. 2014, pp. 241–250.

[98] N. Ali, F. Jaafar, and A. E. Hassan, “Leveraging historical co-change information for re-
quirements traceability,” in 20th Working Conference on Reverse Engineering (WCRE),
2013.

[99] A. E. Hassan and R. C. Holt, “Predicting change propagation in software systems,”
in 20th IEEE International Conference on Software Maintenance, 2004. Proceedings.,
2004, pp. 284–293.

[100] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes ?” SIG-
SOFT Softw. Eng. Notes, 2005.

[101] F. Jaafar, Y. Gueheneuc, S. Hamel, and G. Antoniol, “An exploratory study of macro
co-changes,” in 2011 18th Working Conference on Reverse Engineering, Oct 2011, pp.
325–334.

[102] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code analysis to detect
software security vulnerabilities,” in Conference on Availability, Reliability and Secu-
rity, 2009.

[103] R. L. Scheaffer, W. Mendenhall III, R. L. Ott, and K. G. Gerow, Elementary survey
sampling. Cengage Learning, 2011.

[104] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John
Wiley & Sons, 2013, vol. 751.

[105] G. Tan, S. Chakradhar, R. Srivaths, and R. D. Wang, “Safe Java Native Interface,” in
In Proceedings of the 2006 IEEE International Symposium on Secure Software Engi-
neering, 2006, pp. 97–106.

145

[106] G. Tan and J. Croft, “An empirical security study of the native code in the jdk,” in Pro-
ceedings of the 17th Conference on Security Symposium. USA : USENIX Association,
2008.

[107] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and D. Wang, “Safe
java native interface,” in Proceedings of IEEE International Symposium on Secure Soft-
ware Engineering, vol. 97, 2006, p. 106.

[108] K. Patel, J. Fogarty, J. A. Landay, and B. L. Harrison, “Examining difficulties software
developers encounter in the adoption of statistical machine learning.” in AAAI, 2008,
pp. 1563–1566.

[109] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu, “Why is deve-
loping machine learning applications challenging ? a study on stack overflow posts,”
in 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 2019, pp. 1–11.

[110] S. Kim, E. J. Whitehead,, and Y. Zhang, “Classifying software changes : Clean or
buggy ?” IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 181–196,
2008.

[111] Analysis of Clinical Trials Using Sas R© : A Practical Guide, 1st ed. SAS Publishing,
2005.

[112] N. Cliff, “Dominance statistics : Ordinal analyses to answer ordinal questions.” 1993.

[113] M. M. Rahman and C. K. Roy, “An insight into the pull requests of github,” in Pro-
ceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA : Association for Computing Machinery, 2014, p. 364–367.

[114] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it ? and how fast ? – case
study on the linux kernel,” in Proceedings of the 10th IEEE Working Conference on
Mining Software Repositories (MSR), San Francisco, CA, US, May 2013, pp. 101–110.

[115] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, and M. Kim, “Museum : Debugging
real-world multilingual programs using mutation analysis,” Information and Software
Technology, vol. 82, pp. 80 – 95, 2017.

146

ANNEXE A SURVEY QUESTIONNAIRE

147

148

149

150

151

152

153

154

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Thesis Hypothesis
	1.2 Summary of Thesis Contributions
	1.2.1 Contribution of Chapter 4 (Sub-hypothesis 1)
	1.2.2 Contribution of Chapter 5 (Sub-hypothesis 1)
	1.2.3 Contribution of Chapter 6 (Sub-hypothesis 2)
	1.2.4 Contributions of Chapter 7 (Sub-hypothesis 2)
	1.2.5 Contribution of Chapter 8 (Sub-Hypothesis 3)

	1.3 Organization of the Thesis

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 Background
	2.1.1 Java Native Interface
	2.1.2 Python-C-extension

	2.2 Literature Review
	2.2.1 Multi-language Development in Traditional Systems
	2.2.2 Change Impact Analysis in Multi-language Systems
	2.2.3 Multi-language Development in Machine Learning Frameworks

	2.3 Chapter Summary

	3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS
	3.1 Part 1: Why and how is multi-language development used in practice? (Chapters 4 and 5)
	3.1.1 Investigating multi-language usage, the possible combined languages, and the techniques used
	3.1.2 Studying the best practices in multi-language development

	3.2 Part 2: How can we overcome the challenge of change impact analysis in multi-language development? (Chapters 6 and 7)
	3.2.1 Investigating the change impact analysis from developers' perspective
	3.2.2 Investigating the inter-language dependencies in multi-language systems

	3.3 Part 3: What is the impact of multi-language development in machine learning vs. traditional systems? (Chapter 8)
	3.4 Chapter Summary

	4 WHY AND HOW IS MULTI-LANGUAGE DEVELOPMENT USED IN PRACTICE? (Sub-hypothesis 1)
	4.1 Chapter Overview
	4.2 SLR Design
	4.2.1 Automatic analysis
	4.2.2 Manual analysis

	4.3 SLR results
	4.4 Discussion
	4.5 Threats to validity
	4.6 Chapter Summary

	5 IDENTIFICATION OF THE PRACTICES OF JAVA NATIVE INTERFACE DEVELOPMENT (sub-hypothesis 1)
	5.1 Chapter Overview
	5.2 Study Design
	5.2.1 Data collection
	5.2.2 Data analysis
	5.2.3 Practices identification

	5.3 Study Results: Catalogue of identified practices
	5.4 Discussion
	5.5 Threats to validity
	5.6 Chapter Summary

	6 HOW IS CHANGE IMPACT ANALYSIS PERFORMED IN THE CONTEXT OF MULTI-LANGUAGE DEVELOPMENT? (Sub-hypothesis 2)
	6.1 Chapter Overview
	6.2 Study design
	6.2.1 Questionnaire Design
	6.2.2 Questionnaire implementation
	6.2.3 Interview Sessions
	6.2.4 Participant Selection

	6.3 Data Analysis
	6.3.1 Answer Collection
	6.3.2 Coding Method

	6.4 Results
	6.4.1 Demographics
	6.4.2 Multi-language in Companies
	6.4.3 Challenges of change-impact analysis in multi-language systems
	6.4.4 Methods used for change-impact analysis in Multi-language systems
	6.4.5 Consequences of a lack of change impact analysis in multi-language systems
	6.4.6 Requirements for a multi-language change-impact analysis approach
	6.4.7 Scenario of change-impact analysis in multi-language systems

	6.5 Discussion
	6.6 Threats to validity
	6.7 Chapter Summary

	7 EMPIRICAL STUDY ON THE INTER-LANGUAGE DEPENDENCIES IN THE JAVA NATIVE INTERFACE (Sub-hypothesis 2)
	7.1 Chapter Overview
	7.2 Study Design
	7.2.1 Static dependency analysis
	7.2.2 Historical Dependency Analysis
	7.2.3 Quality Issues and Security Vulnerabilities

	7.3 Results
	7.4 Discussion
	7.5 Threats to validity
	7.6 Chapter Summary

	8 WHAT IS THE IMPACT OF MULTI-LANGUAGE ADOPTION IN MACHINE LEARNING FRAMEWORKS VS. TRADITIONAL SYSTEMS? (Sub-hypothesis 3)
	8.1 Chapter Overview
	8.2 Methodology
	8.2.1 Project selection and cloning
	8.2.2 Project categorisation
	8.2.3 Preprocessing and filtering
	8.2.4 Pull request analysis
	8.2.5 Statistical tests

	8.3 Results
	8.4 Discussion
	8.5 Threats to validity
	8.6 Chapter Summary

	9 CONCLUSION
	9.1 Sub-hypothesis One (Chapters 4 and 5)
	9.2 Sub-hypothesis Two (Chapters 6 and 7)
	9.3 Sub-hypothesis Three (Chapter 8)
	9.4 Limitations
	9.5 Future work

	REFERENCES
	APPENDIX

