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RÉSUMÉ

Network Time Protocol (NTP) est un protocole responsable de la synchronisation du temps
dans les environnements de réseautique. Il est utilisé depuis plus de trente ans afin d’aider
les appareils connectés à acquérir l’heure correcte depuis le réseau. Ce protocole sert entre
autre à garantir les informations d’horodatage et la cryptographie des fichiers journaux.
Il a également fait l’objet de nombreuses études visant à rendre ce pilier des réseaux et
télécommunications plus sûr et plus robuste.

Ceci dit, la synchronisation du temps est l’un des composants essentiels au bon fonction-
nement des réseaux d’objets connectés (IoT) aussi. Il est primordial pour la planification des
tâches, la tenue des journaux, la surveillance des différents comportements et la mise à jour
du temps lors de l’utilisation de protocoles de chiffrement ou de mise en file d’attente dans
ces réseaux. L’importance de ces facteurs clés peut être ressentie lorsqu’ils sont rendu non
valides à cause de la composante temps, par exemple si l’heure est décalée ou est incorrecte
lors de l’utilisation de dispositifs précis dépendant du temps. Cela entraîne un retard ou une
négligence totale de la tâche, ce qui peut être dangereux si ces appareils sont utilisés dans
une chaîne d’action au service de la vie humaine (soins de santé ou circulation de véhicules).

Bien que la synchronisation du temps au moyen du protocole NTP et sa sécurité soient
importantes dans les réseaux IoT, à notre connaissance, les recherches existantes en synchro-
nisation du temps en IoT ne concernent que la création de nouvelles méthodes et protocoles
sans l’analyse des défauts existant et de possibles mesures de sécurité orientées vers NTP.
Cela amplifie l’hétérogénéité déjà présente au niveau de la panoplie des protocoles IoT et ne
résout pas les problèmes de sécurité NTP des appareils intelligents existants.

Dans ce but, nous nous concentrons dans cette thèse sur l’étude des différentes façons dont
NTP est utilisé dans les réseaux IoT. Nous effectuons également une analyse empirique de la
méthode utilisée par les objets connectés afin de choisir leur port réseau NTP et les serveurs
NTP publiques auxquels ils synchronisent leur horloge. Cette analyse nous donne une idée
de la façon dont la synchronisation NTP peut être utilisée pour attaquer et tirer profit des
appareils intelligents connectés. C’est également un moyen de recueillir des informations sur
la variété des implémentations de ce protocole utilisées par différents fournisseurs.

Afin de compléter l’étude empirique de la synchronisation temporelle correcte à l’aide de
NTP dans les réseaux d’objets connectés, nous avons mis en place différents environnements
de test basés sur différents types de dispositifs IoT. Nous étudions leur utilisation normale de
NTP à des fins de comparaison. Nous appliquons ensuite des attaques sur ces architectures
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afin de prouver leur insécurité face aux décalages dans le temps. Cela présente également
les possibilités d’utiliser ces attaques pour affecter les tâches humaines automatisées qui
dépendent de la précision du temps, mettant ainsi en danger certains aspects de notre vie
qui dépendent de ces appareils.

En se basant sur les vulnérabilités utilisées dans ces attaques, nous suggérons deux dif-
férentes architectures sécurisées pour répondre à ce problème. Elles dépendent de nouvelles
implémentations de versions sécurisées de NTP étudiées dans les réseaux traditionnels. Ces
architectures utilisent Network Time Security (NTS), une version authentifiée de NTP qui
utilise TLS pour le tunneling. Dans notre première architecture, nous l’appliquons séparé-
ment de l’appareil IoT et dans la deuxième architecture, nous l’incluons directement dans
l’appareil. Nous étudions la faisabilité des deux solutions et ce qui est nécessaire pour que
l’objet connecté puisse établir une communication NTP sûre et sécurisée avec le serveur NTP.

En proposant ces solutions, nous atteignons nos trois objectifs de départ. Nous aurons
ainsi étudié l’importance du temps dans les services fournis par les appareils IoT. Nous
aurons, à travers des tests et une évaluation des ensembles de données, envisagé et utilisé les
vulnérabilités des communications de synchronisation du temps en IoT. Enfin, nous aurons
élaboré une proposition pour deux architectures sécurisées possibles qui traitent ce problème
de deux manières différentes.
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ABSTRACT

Network Time Protocol (NTP) is a protocol responsible for time synchronization in network-
ing environments. It has been used for over three decades in order to help connected devices
acquire the correct time over the network.It is implemented to ensure log file time stamp
information and cryptography. It has also been the topic of many studies aiming at making
this pillar of networking and telecommunications more secure and robust.

Time synchronization is one of the essential ingredients needed for Internet of Things (IoT)
networks to function correctly. It is important for scheduling tasks, keeping logs, monitoring
different behaviors and for keeping the time concept up to date when using encryption or
queuing protocols in these networks. These key factors can be noticed when they are tam-
pered with such as if the time is incorrectly shifted during the use of accurate time dependent
devices. This leads to the task being delayed or overlooked completely which can be dan-
gerous if these devices are used in life-dependent chains of action (healthcare or traffic for
example).

Although NTP, time synchronization and their security are important in IoT networks, to
our knowledge, the existing research in IoT time synchronization only concerns creating new
methods and protocols. This adds to the heterogeneity of the field’s components and does
not solve the NTP security issues in existing smart devices.

For these reasons, we focus in this thesis on studying the different ways NTP is used in IoT
networks. We also run an empirical analysis of how IoT devices pick their NTP network
source port and the servers they choose to synchronize to. Doing this analysis gives us an
idea about how NTP synchronization can be used to tamper with and take advantage of
connected smart devices. It is also a way of gathering information about the variety of
protocol implementations and policies used by different vendors.

In order to complete the empirical study of correct time synchronization using NTP in these
networks, we put together different test environments of IoT devices. We study their normal
use of NTP for comparison purposes. We then apply attacks on these devices in order to
demonstrate their insecurity towards time shifting attacks. This also showcases the possibil-
ities of using these attacks to affect human automated tasks that depend on time accuracy,
thus endangering some life aspects for which these devices are needed.

With the same process of using existing regular networks’ NTP attacks in IoT networks, we
suggest two different secure architectures for this issue that depend on studied implemen-
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tations of secure NTP. These architectures use Network Time Security (NTS) which is an
authenticated version of NTP that uses Transport Layer Security (TLS) for tunneling. In our
first architecture, we apply it separately than the IoT device and in the second architecture
we include it directly in the device. We study the feasibility of both solutions and what is
required in order for the device to complete a safe and secure NTP communication with the
NTP server.

By suggesting these solutions we achieve our three research objectives. We have studied the
importance of time in services provided by IoT devices. We have, through tests and data set
evaluation, contemplated and used IoT time synchronization communications’ vulnerabilities.
And finally, we elaborated a proposition for two possible secure architectures that deal with
this issue in two different ways.
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CHAPTER 1 INTRODUCTION

1.1 General concepts

Today, Internet of Things (IoT) devices are considered a bigger part of our daily lives than
they have ever been. They are expected to be even more present in the future. For a world
population of a little over 8 billion people [1], it is estimated that we will have over 75 billion
connected devices by the year 2025 [2]. Which averages more than 9 network-connected
devices per person.

What is surprising about those numbers, other than how big they are, is how practicable
they seem when we consider how we live our lives in the present time. From a smartphone to
a connected watch, a smart lock, a door security camera, a smart vehicle, a voice controller
at home and a connected baby monitor or a simple connected plug, we see an interesting
diversity of daily used objects inside the same households. Many people have already reached
5 to 8 IoT devices without including the devices we share with people outside the comfort of
our homes and vehicles.

These devices are now almost essential to our day to day interactions from playing music
at home to paying electricity bills at the store using banking credentials that are saved
on a smartwatch. It is no longer about the amount of data that we exchange over these
devices, it is now about the severity and security of such data. An estimated 90 Zettabytes
of data, billions of Terabytes, will be processed by IoT devices by 2025 [3]. Those devices
will be exchanging information as important as identification, social security numbers, license
numbers and banking information of not only individuals but also firms and companies. We
can only wonder how safe it is for our information to be out there and if there are any
measures implemented to keep it secure from current and future cyber threats.

The features which generally attract users to IoT devices are mobility and efficiency. Con-
nected devices are mostly small if not integrated into bigger devices such as ovens, fridges
or even cars. Their small size, a big selling-point, makes it so that the processing power and
CPUs used to make them are a lot smaller since they can not fit. The downgrade of the CPU
leads to the use of weaker protocols and security measures. In certain cases, the security
aspect is only achieved by the first authentication and no other process.

This lack of good cyber protection in connected devices added to their network capability
turns them into easy prey for attackers. These attackers do not only have access to IoTs but
to the network they are connected to and all the critical data it contains. In which case these
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attacks can be quite dangerous for the victim.

Another feature of IoT devices is how they highly depend on time precision and correctness
for calibration needs or scheduling tasks. For example, a surveillance camera that needs
the correct time to keep coherent logs of events. For scheduling task that depends on time
correctness, we have, among other devices, a network-connected infusion pump that releases
a certain drug into a patient’s system at specific times during the day. If such devices were to
have issues related to tampering with its time precision, the patient’s life could be endangered
due to either a big dose of medicine or not enough.

This feature is shared with “traditional/regular networking systems” such as laptops and
routers. Their high reliance on the correct time for correct reliable network communication
has been the subject of many studies. A number of which centered around the security of
the time component and how it can become the weak link used by attackers to have access
to the network if tampered with. The industry of these “traditional system”, being much
older, is well aware of some drawbacks in time-dependent services and has been producing
ways of securing them such as encryption or more complex algorithms.

Another point of connection between IoT networks and traditional networking systems is the
protocols used for their different services. Although IoT uses a larger spectrum of protocols,
the network-oriented protocols are mostly dependent on the same ones used for traditional
networks. They can be the exact same ones if they are of lower complexity or privately
developed lighter versions of them.

Seeing how these two types of networks, traditional and IoT, connect on two features: pro-
tocols and time correctness importance, the time component for IoT devices can be used as
a way to hack these networks especially if the protocol used is paired with less security. The
cyberattacks used to tamper with regular time-dependent protocols in traditional networks
could be used to tamper with IoT networks’ critical services in such cases.

So far there is no collection of time-based attacks such as the ones studied for traditional
networks. Their impact, just like the IoT field itself, is a grey area that is open for research.
It is essential to venture into these attacks and how they can affect the daily services we use
IoT devices for. Thus, leading to an open door for measures to counter these vulnerabilities
and for the deployment of standardization of IoT security.
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1.2 Elements of the problematic

From the foregoing, it seems that the new embracing of IoT networks and the ease of their
use have been made to the detriment of the security component. As a result, it is now
necessary to guarantee the users the integrity and confidentiality of their data. Companies in
the industry that do not take protective measures can run considerable risks to their products
and clients.

Individuals are also prone to being victims of the misuse of connected or smart objects in
our society. They are unaware of the level of security that is needed and trust the vendors
to take into consideration their needs on all aspects. These same users use those devices in
fields that are closely related to their well-being and daily tasks. Thus, they intensify the
risk they run.

One of the many points of view interesting in the security assessment of IoT devices has to
do with the concept of time and how it is implemented. This mainly concerns the devices
that depend on correct and accurate time synchronization in order to accomplish the tasks
they were made for. These tasks can concern either scheduling features offered by the device
or even monitoring.

A few examples of situations where correct time synchronization is considered necessary in
IoT networks can be discussed. The first one being in the health care field where we have
smart infusion pumps connected. These devices are now included in the process of treating
patients as they are programmed with schedule to supply the patients with correct medicine
dozes on correct times. The pumps are therefore managed by doctors for those elements. If
these devices were to be attacked through tampering with their time and changing it to a
less favorable time for the patient to either give them more medicine or less medicine, it can
lead to dangerous situations.

Another threatening situation where the use of correct time dependent connected devices can
be seen as life threatening is in smart cities. If we set the stage as two consecutive connected
traffic light where the first one needs to be red before the second one is green or at least at
the exact same time. If the first light is set through an attack on the time protocol to be just
a few seconds delayed compared to the second and it goes off late due to that delay, there
could be a serious accident as consequence of that.

There are many more situations where today’s connected devices that depend on time can
be used to impact the real world negatively. This fact leads us to think of how the concept of
time is taken for granted in the process of securing smart IoT devices. It is also a situation
that motivates us to look into helping vendors realize the severity of ignoring time correctness
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in the making of their devices.

That is why it is vital for the IoT fields to take into consideration certain steps in response
to one of the main problems concerning connected devices security: Time protocols must be
looked into and studied in IoT in as much detail as they have been in traditional networks
due to their growing importance.

On another side of the issue of time correctness, we know how diverse Iot devices and net-
works are especially when it comes to their software and protocol. The time synchronization
protocols developed for them are no different. There exists a big variety of protocols that
are described as time accurate and smart devices oriented.

The downside to this diversity in time protocols is that it is unclear which ones are the most
used by vendors and which ones are secure or how they are implemented. It is also clear that
one of the main time synchronization protocols used in the field is NTP.

NTP is a protocol that has been around for a long time but weaknesses are finally being shown
through certain security assessment studies. These studies only show the implementations
in regular networks. The latest of which gave a more secure authenticated version of this
protocol in the year 2019 [4].

The implementation of NTP in these types of networks has yet to be studied. This protocol
has shown to be vulnerable to a number of attacks throughout the 35 years of its use in
regular networks. How different it is and how its RFC tests are done in IoT networks is not
certain.

For this research work, we are focusing on the importance of studying and evaluating the
security of time use in connected devices. We are also studying the most popular time
protocol in regular networks, in IoT networks. To do so we ask the following questions:

• How do IoT devices rely on time in their use and which services can this use affect?

• To which degree can time be the weak link in the IoT network connected architecture?

• How can NTP be used to tamper with/abuse the services that are made available by
these devices?

We intend for this work to attract the attention to the security issue that can be time in
internet of things networks. We also work on opening the door for more future research in
this area by suggesting possible security measures to be taken in this specific area.
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1.3 Research objectives

In response to the questions asked, the main objective of this thesis is to conduct a study of
the empirical use of the network time protocol in internet of things networks. This will help
show the role time plays in the IoT field and to which degree it can be trusted and secured.

Moreover, keeping in mind how immense this field has become in the last two decades, we
intend on proceeding with a risk analysis from a security point of view of the main tasks time
is used for in these devices. This analysis will be achieved by accomplishing the following
objectives:

1. Defining the range of importance of time in services provided by IoT devices and their
importance in human daily use;

2. Drilling down through IoT time synchronization communications and their vulnerabil-
ities;

3. Elaborating a possible protection / security architecture that takes into consideration
the time component as well as the mobility service of IoT devices.

1.4 Thesis outline

This thesis contains 5 chapters, the first being the introduction. The second chapter is
a literature review discussing IoT time synchronization and NTP security as well as the
advances made in linking these two fields. Then, the third chapter is an analysis of a data
set of 50 diverse devices, mainly IoT smart devices, and their use on NTP implementation
and security components.

Chapter 4 capitalizes on the conclusions from chapter 3 to demonstrate NTP vulnerability in
IoT networks through different attacks. We analyze their results and possible repercussions
on the use of connected devices in both IoT networks and the physical world through human
lives. In this chapter we also , based on the precious vulnerabilities discussed, push forward
2 security architectures to help have a better use of NTP in this field.The final chapter
provides an overview of our results and opens our work to limitations and challenges that
can be further studied in future works.



6

CHAPTER 2 LITERATURE REVIEW

This chapter reviews relevant works in the NTP and NTP security literature in IoT networks.
We include papers that discuss time synchronization measures and security in connected
devices. We note that while the field of network-based time synchronization dates back
several decades, we concentrate on recent works as they address the challenges in emerging
IoT devices and networks as well as the use of advanced security methods in the NTP protocol.

2.1 General concepts in IoT security

This section provides a context for this research work as well as an overview of the state of
the art of IoT security with a focus on network-based time synchronization.

To start, for a clearer and more focused analysis, a spectrum of the type of devices the
research includes is defined. We then discuss some of the reasons stopping IoT companies
from including complex security measures in their connected devices. And finally, we provide
an introduction to how accurate time dependency plays a major role in connected devices
functioning.

2.1.1 Spectrum of studied IoT devices

A single, unified definition of IoT devices has been the subject of deliberation in the research
field ever since they have become such an imminent part of our daily lives. That is mainly
due to the variety of forms and services offered by those devices as well as their features
and capabilities. They go from simple sensors with just enough processing power to send a
specific number to complex systems that run lightweight software to process intelligent data
through complex protocols while still being lightweight.

According to Patel and al. [5], one general definition of an IoT network is a “type of network
capable of connecting anything with the Internet based on stipulated protocols through
information sensing equipment to conduct information exchange and communications in order
to achieve smart recognition, positioning, tracking, monitoring, and administration.”.

Although such definition does not specify an exact science by which we can choose the specific
“smart objects” to call IoTs, Barrera and al. [6] have stated during their study that there
are different scopes for different definitions of IoT devices that can go beyond consumer
IoT – devices that an end-user could purchase and connect to their home network to include
industrial control systems, supervisory control and data acquisition systems (SCADA), smart
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grid devices like smart meters, and vehicular systems.

Many research studies have tried to achieve a detailed categorization of IoT devices. The
latest of which introduces machine learning by Desai and al. [7] to develop a framework
of fundamental statistical tests on various IoT devices features to rank these features and
coming up with an algorithm for device classification based on network traffic data collected
from a real testbed.

A second method by Gigli [8] depends on the types of services provided by IoT devices to
differentiate between 4 types of IoT devices:

• Identity-Related Services

• Information Aggregation Services

• Collaborative-Aware Services

• Ubiquitous service

These types of services, although Data and flow-oriented, do not include the complexity of
the devices and its processing power, which are in most cases the decisive factor when it
comes to the use of certain security methods.

A third method suggested by Patel and al. [5] looks at the IoT as a network and applies
a layer model to it with 4 layers (Application, Service support, Network layer, and Smart
object/sensor). The devices are categorized as three different types of “Technologies” going
from the least powerful and smallest devices to devices that support network sharing and take
into consideration capacity and latency, to finally a group of devices that is management-
capable and supports IoT applications. Although such categorization is the closest to the
level of detailed categorization needed for the field it is still lacking the thresholds from which
we can make the decision as well as it is very closely related to the models used for traditional
networks (networks without smart embedded devices).

A fourth way of Categorizing IoT devices is introduced by Zuener and al. [9] and is a model
prototype “aimed at maintaining commercial, operational, but also social, legal and regula-
tory transparency”. It consists of a method of labeling devices depending on a description
of data flow direction, storage options, economic and technological life cycle as well as social
acceptance issues. It is a fine-grained method using certain subjective criteria that do not
necessarily depend on machine measurements.

The final method on this list is the one described on the IETF RFC7228 by Keranen and
al. [10]. It contains a detailed classification of IoT nodes according to their power usage
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strategies (normally off, low power and always on) as well as their energy limitations (Event
energy-limited, Period energy-limited, Lifetime energy-limited, and No direct quantitative
limitations to available energy). This standard uses the nodes classes described as follows :

• Class 0 devices: very constrained sensor-like nodes. They are limited in memory
and processing capabilities. With not enough resources for secure internet-capable
communications. They depend on larger devices for monitoring and “management”.

• Class 1 devices: quite constrained in code space and processing capabilities, using
lightweight internet protocols. They have limited existing security capabilities for use
in larger networks.

• Class 2 devices: less constrained and able to supporting most protocol stacks used on
notebooks or servers. They might have lightweight protocols that are energy-efficient
for the purpose of consuming less bandwidth. Furthermore, using fewer resources for
networking leaves more resources available to applications. Thus, using the protocol
stacks defined for more constrained devices on Class 2 devices might reduce development
costs and increase interoperability.

Our research will be focusing more on classes 1 and 2 since they are more likely to be
using time protocols that deal with synchronization and latency issues. These classes include
devices such as connected light bulbs, connected refrigerators, smart traffic lights, or even
connected medical infusion pumps. They cover a wide range of life aspects and are close
to human daily use. These devices also depend on time for accuracy and completion of
their services. This can be shown in the smart traffic lights example which need to all be
synchronized and have the same time to avoid accidents or driver confusion. This shows the
possible vital importance of time accuracy in such IoT devices.

2.1.2 IoT security vulnerabilities

These connected devices defined above, according to Alarwi and al. [11], are based on tra-
ditional mobile network capable computing systems which themselves have proved to be
vulnerable to certain attack vectors in addition to the ones that are induced by the IoT de-
vices architecture. These vulnerabilities are mostly due to limitations that can be described
in three categories defined by Hossain and al. [12]:

• Limitations based on hardware: most connected devices have computational, en-
ergy and memory constrain because they function using batteries, low power CPUs
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and limited RAM and Flash memory. Therefore, it is rare to use protocols based on
algorithms depending on high computational power. This leads to complicated security
methods such as those based on cryptography;

• Limitations based on software: security modules designed for IoT devices’ protocol
stack are thin and fault tolerant to allow tasks to be done efficiently;

• Limitations based on network: high mobility features on IoT devices come with
security threats as the device favors connection over protection when looking for a new
network. In addition, the heterogeneity of the networking protocols connected devices
use to either communicate with IP or non-IP protocols-based networks makes the use
of traditional security policies and rules difficult.

It is now clear that the biggest drawback in the studied IoT devices and the origin of most
of the security threats is, as described in what Geneiatakis and al. [13] concluded, their
low processing power especially when their attack surface area varies according to several
vectors described in Gai and al.’s work [14] which include the ecosystem access control,
device memory, web interface, firmware, third party Application Programming Interfaces
(API) and cloud interfaces and as many security analyses the more vectors you include in
the functioning of a system the greater the attack surface area is.

According to Baker and al. [15] an example of how the low power constrain plays against
the efficiency of these devices is apparent in the operability of photoplethysmographic (PPG)
wrist-wearable sensors, which are wearable smart devices with sensors capable of measuring
arterial pulse in the wrist but "As motion affects the accuracy of pulse readings from PPG
sensors, an accelerometer is used to check for movement. When motion is high, the device
goes into a low power state and does not record pulse." The PPG wristband stops sending
information that could include the person seizing or having cardiac issues during a high
motion state such as running. This device that was supposed to accurately monitor a patient’s
conditioning could be sending false data that could put the patient’s life in danger.

This specific CPU issue has been described as well as part of the Challenges for a Secure IoT
in the RFC8576 [16] along with fragmentation [17] and bandwidth constraints. The first
being the under-usage of the resources on the gateway since the offloading levels on the IoT
edge nodes are discrete and coarse-grained. That is due to the inability of IoT devices to
change their offloading level with not enough power, which would result in unused resources
on the gateway. The reverse end of this issue is the bandwidth constraint leading to a need
for smaller packet-size limits which give leeway for more attack vectors.
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2.1.3 IoT dependence on accurate time synchronization

All connected devices, whether on regular traditional networks or IoT networks, depend on
accurate time precision to complete correct tasks when communicating with each other and
with cloud services. That can be explained by the fact that each device on either end is set
to wait for a request from the other that usually has a timestamp. There are instances where
this can be seen such as timeouts, scheduling services, keeping logs and queuing mechanisms
in IoT devices that depend on time to keep working.

The dependence of sensor networks on correct time synchronization has been presented in
[18] [19] [20] in their efforts to conduct an in-depth security analysis of sender-receiver
synchronization protocols. It is considered a major middle-ware service in these networks
especially for cases such timekeeping of logs of events conducted by sensors or the measure-
ments of events that depend on the time referential such as time-of-flight of sound (time
taken by sound to travel a specific distance) or the coordination of future events. In case
an attack was to tamper with these time values, nodes will not be capable of estimating the
correct time for their services which could lead to loss of important packets or a denial of
service.

Such examples show the importance of time synchronization correctness in the security of
the devices, the service as well as the information communicated.

On the other hand, when it comes to the IoT connected devices that are studied for this thesis
(classes 1 and 2 IoTs), their always-on, always-connected nature according to OConnor and
al. [21] adds more complications to their security and privacy from a time synchronization
point of view. These devices, usually directly connected to sensors on one end and edge
devices on the other, are responsible for communicating sensor, state and heartbeat data
(low bandwidth message exchange to monitor connectivity health of a device). Data that
depends on time synchronization for logging and forensic evidence as well as for periodically
keeping tabs on the connectivity health.

2.2 NTP security in traditional networks

This section discusses time synchronization protocols in traditional networks by stating what
they are, how they work, the reason behind their use as well as giving a brief security
evaluation of these protocols from their vulnerabilities to their security measures. This
section also emphasizes the characteristics of NTP and its security in traditional networks.
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2.2.1 Time synchronization protocols over the internet

In traditional networks, the notion of time synchronization has been introduced with the start
of communication possibilities over the networks between computers and network devices.
One of the first means to standardize the measurement of time during these communications
was according to RFC868 [22] describing the Time Protocol back in 1983 built on both TCP
and UDP. It is a simple poll of several independent sites on the network to determine the
system’s idea of the correct time.

Aside from the Global Positioning System (GPS), the main protocols used for time synchro-
nization over the internet are NTP and precise time protocol (PTP). They are also the basis
for the development of many other lighter or more complex versions of them.

Precise Time Protocol

Precise Time Protocol (PTP) [23] [24] was developed for networks needing highly precise
time synchronization without having access to satellite navigation signals such as mobile
phone towers. PTP (see figure 2.1) is based on BEST Primary Clock Algorithm [25].It is an
algorithm to help choose which clock to use as the source of timing on your network in case
we have more than one in the same network. This is helpful as it pushes to avoid the cases
of no clock redundancy where loss of the GPS means no clock synchronization. A redundant
primary clock takes over in this case. The choice of which clock is primary is defined through
the process of both clocks sending a message to the network to detect other clocks. A data
set comparison is then performed based on information such as time source accuracy, offset
and variance.

PTP is considered a relatively new protocol and is more used for SCADA systems rather
than the IoT devices we are studying.

A security analysis conducted on this protocol by Tsang and al. [26] shows that the non
application of cryptographic integrity protection on all PTP messages leads to being vulner-
able to modification attacks allowing Denial of Service (DoS), incorrect re-synchronization
and altering hierarchy of the primary and secondary clocks.

Another vulnerability is present in the lack of a centralized authentication process which
makes it easy for an attacker to take on the role of the primary clock and launch an attack
on all the network.

The absence of a backup plan in case the time messages are not received allows for attackers
to use delay threats as well as replay attacks because of the non-encryption of the network
path (spoofing and packet injection).
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Figure 2.1 PTP Primary clock-Secondary clock communication

Network Time Protocol

The Network Time Protocol (NTP) (see figure 2.2) introduced in 1985 [27] [28] [29] is a
UDP only protocol that introduced the notion of reference clocks that could be connected
to “gateways”, connected themselves to each other and to other nodes on the networks.
Depending on certain values measured, these gateways verify the time and communicate it
to the rest of the network.

NTP introduced the notion of a stratum (see figure 2.3) which is a number indicating how
far the gateway is from the reference clock. Reference clocks are considered stratum 0 and
the number keeps increasing with every previous gateway the current device is getting its
time from. Between 1 and 15, the device can still be considered and NTP server for the next
device.

An NTP packet as shown in figure 2.4 also consists of a number of important fields that come
into play in the application of its algorithm:

• Version: NTP versions go from 1 to 4 but the first two are known to be obsolete and
only versions 3 and 4 are currently used with 4 being predominant.

• Mode: an NTP device can be in 3 different states (symmetric, client/server or broad-
cast). These states then vary into the 6 different modes of NTP (symmetric passive,
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Figure 2.2 NTP Client-Server communication

Figure 2.3 NTP Stratums
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symmetric active, client, server, broadcast client, broadcast server). The most fre-
quently used modes are client and server (modes 3 and 4).

• Reference ID: the meaning of this field varies from IPv4 to IPv6. For IPv4, the
reference ID is the IP address of the server the NTP server is getting its time from. For
IPv6, it is a 32-bit code identifying the server. Usually the first 4 octets of the MD5
hash of the NTP server’s server’s IPv6 address.

• Timestamps: there are 4 types of timestamps in an NTP packet, Reference, origin,
receive and transmit, and are shown on the figure below as T1, T2, T3 and T4.

Figure 2.4 Typical NTP packet as presented in RFC5905 [30]
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The polling interval of an NTP device is the time it takes for the device to request a syn-
chronization cycle after the previous one is over. Most devices take between 64 seconds and
15 minutes to request time another time from their NTP server. According to the NTP RFC
[30], this period can go to a maximum of 36 hours.

In order for an NTP client to accept time from an NTP server, 7 tests have to be done on
the packet. The main tests are tests 2 and 3:

• Test 1: the packet is at best an old duplicate or at worst a replay by a hacker

• Test 2: the client checks the origin timestamp field on the packet received from the
server with the transmit times tamp it sent the server to verify the validity of the
packet. That is what makes the origin timestamp the NONCE element for NTP.

• Test 3: the packet is dropped if one or more timestamps are invalid

• Test 4: the access controls have the packet source "blacklisted"

• Test 5: the cryptographic message digest does not match the MAC

• Test 6: the server’s source is not valid

• Test 7: one or more header fields are invalid

These two tests (among others) have been at the origin of Distributed denial of service
(DDoS) attacks on NTP because of how vague their interpretation can be depending on the
implementation of NTP and the OS distribution.

It is also interesting to make mention of the fact that NTP public servers as well as the
protocol progression are managed by volunteers and researchers. This community provides
public pools which are a gathering of NTP servers that are made available for private devices
to synchronize to.

While the algorithm of NTP kept being developed and improved for better precision, another
protocol was developed based on it: Simple Network Time Protocol (SNTP) in 1992 [31]. It
consisted at first of a clarification of certain design features of NTP to allow operations in a
simple and stateless mode. SNTP moved on to become one of the many implementations of
NTP with fewer checks and a less complex synchronization algorithm. As the NTP became
more complex depending on a much more complex algorithm [30] and getting to a precision
degree of milliseconds to microseconds [32], SNTP kept its simplicity to become today known
as the lighter version of NTP.



16

2.2.2 NTP vulnerabilities and attacks

The protocol that is used the most with IoT devices for reasons of ease of use and implemen-
tation is NTP and the sub-protocols based on it such as SNTP.

Deemed one of the Internet’s oldest still in use protocol, NTP has been the subject of many
security analyses since 1985 [33] [34]. This protocol has been improved into different versions
through time, but it still proves to be vulnerable to certain attacks aiming to use the unau-
thenticated NTP such as the tool called Delorean developed by Selvi [35] that makes use of
the unauthenticated NTP packets to attack certificate validity period in HTTPS.

Malhotra and al. [33] conduct an assessment of NTP security by applying a total of 6 attacks
divided into two main categories:

• on-path attacks, where the attacker occupies a privileged position on the path between
NTP client and one of its servers or hijacks traffic to the server;

• off-path attacks, where the attacker can be anywhere on the network and does not
observe the traffic between the client and any of its servers.

NTP is also a protocol based on UDP using reserved port number 123. It is, therefore,
connection-less and inherits vulnerabilities allowing attacks such as:

• DoS / Distributed Denial of Service attacks (DDoS) / Flooding / Amplifi-
cation attacks: the most commonly used for NTP protocol. The attacker floods the
victim device by sending a great number of packets consecutively or simultaneously,
rendering the victim incapable of functioning correctly.

• IP spoofing: they are attacks that replace the source IP or destination IP addresses
by another chosen by the attacker to disturb the normal use of NTP.

• Replay attacks: This attack usually relies on test 1 of the NTP algorithm. Because
NTP can only keep up to the one previous synchronization cycle transmit timestamp,
the device does not test for the timestamps before that. This can be used to replay the
previous packets.

• Person in The Middle (PiTM)1 attacks: An attacker that can have an idea of what
is happening on the network and can sniff traffic on it is capable of using techniques such
Address Resolution Protocol (ARP) spoofing/poisoning to tamper with NTP packets.

1Also known as Man in The Middle (MiTM).
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• Delay attacks: attacks in which packets between the server and client are delayed for
some time (can be either constant or can change) without tampering with the packet.

A detailed explanation of certain of these of these attacks will follow in chapter 4 as they
are at the root of proving NTP weakness in IoT networks. The goals of these attacks are
to either step time, hijack servers to create back doors, or to cause a DoS which can have
a direct costly effect on services and companies especially with the rise of this malicious
behavior since 2013 [36].

2.2.3 NTP security measures

The fact that NTP has been developed and deployed in traditional networks for over 30 years
gave researchers time to study it more and introduce security measures for it that counter the
current threats. That being said, there aren’t many secure authenticated implementations
of NTP that are in use today over the public NTP servers’ pools.

RFC7384 [37] and RFC 8633 [38] discuss those measures in detail for traditional networks by
adding encryption and authentication and authorization techniques to NTP for both masters
and slaves. In addition, they refer to integrity protection to avoid packet delay and spoofing.

Certain research studies worked on developing new secure protocols based on the NTP with
emphasis on the vulnerabilities such Authenticated Network Time Protocol (ANTP) dis-
cussed by Dowling and al. [39] based on two different authentication methods and part of
today’s NTP and Network Time Security (NTS) [4] which uses a form of Transport Layer
Security (TLS) tunneling for regular NTP communications.

Authenticated NTP

ANTP or Authenticated NTP is today part of the NTP RFC authentication mode for version
4. it offers two types of authentication, Symmetric key and Autokey. Both of these have
been proved vulnerable to attacks that can change the time or stop the time service.

• Symmetric key: This method, although secure, does not offer easy scalability. The
NTP use of symmetric key must have the client and the server both mapped to the
same key. Therefore, the addition of one client introduces changes on the server-side
and thus, changes to all the other clients as well. Another downside of the use of this
method is how organisms with working ANTP servers using it exchange symmetric keys
with their clients. We have an example of that in NIST’s instructions for using their
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ANTP servers. Suffice to say that it requires fax or/and postal offices to exchange key
information [40].

• Autokey: Also based on an implementation of symmetric keys. Each key is only valid
for one packet. The server sends the key in an encrypted message to the client and
it is from then on used as a cookie with the server signing the extension fields of the
NTP packets. This approach has been proven to be vulnerable to DoS attacks as well
as time tampering [41].

NTS - Network Time Security

Still in draft phase [4], NTS is a secure implementation of NTP. In its current mode, it
depends on the unicast use of the protocol and focuses on working with the extension fields
of NTP to protect the time information in the packets. It is also not as common yet and the
first implementations of it are just coming out.

NTS is based on a combination of TLS and NTP and starts by a TLS handshake, followed
by NTS client/server key establishment and then the NTS-secured NTPv4 communication
happens. Although NTP itself is a connection-less protocol, the NTS key establishment stays
on until the NTPv4 communication is no longer happening due to packets dropping or the
connection is terminated.

The main idea behind these phases is to have a TLS tunneling with a first handshake for an
NTP type of handshake while also the communications with the NTP packets are signed by
the server. All these steps of security are put in place to avoid any IP fragmentation attacks
during the transmission of large certificates.

2.3 Time synchronization in IoT devices

This final section discusses the existing achievements in the establishment of time synchro-
nization protocols and methods for connected smart devices. It outlines how these methods
came to be, their background in relation to the existing protocols used in traditional networks
described above as well as the security level they are aiming for.

2.3.1 Time synchronization methods and protocols in IoT

Similar to how the majority of IoT protocols came to be, time synchronization protocols
are inherited from traditional networks and used as or developed in lightweight versions to
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be more accessible for devices with lower CPU power. Most of these methods are clock
synchronization methods.

These protocols can be summarized in what follows [42] [43] [44]:

• Network Time Protocol (NTP)

• Precision Time Synchronization Protocol (PTP)

• Global Position System (GPS)

• Reference Broadcast Synchronization (RBS): a method in which the receiver uses the
physical layer broadcasts for comparing the clocks.

• Timesync Protocol for Sensor Networks (TPSN): aims at providing network-wide time
synchronization in a sensor network. The algorithm works in two steps. In the first
step, a hierarchical structure is established in the network and then a pair wise synchro-
nization is performed along the edges of this structure to establish a global timescale
throughout the network.

• Tiny-Sync and Mini-Sync: two lightweight Synchronization algorithms

• Lightweight Treebased Synch (LTS)

• Flooding Time Synchronization Protocol (FTSP)

• Energy-Efficient Time Synchronization Protocol (ETSP)

• Maximum consensus-based time synchronization (MTS)

2.3.2 NTP and time synchronization protocols security solution in IoT

A critical issue regarding the time synchronization methods described above is their hetero-
geneity and dependence on specific vendors and developers. This makes them hard to adapt
to all architectures and networks.

To our knowledge, there has been no adaptation of any of the current secure versions of NTP
(eg. NTS, ANTP) to IoT platforms.

The way the IoT world is evolving makes standardization very hard to achieve although it is
the closest way possible to having secure protocols and stacks. Most work being done today
mostly concerns coming up with new methods and ways of security instead of assessing the
existing protocols and adding components to them to have a more stable secure environment.
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The following includes a list of variable protocols and architectures developed for IoT devices
for a more secure time synchronization:

• Gore and al. [44] suggested software-based Kalman filter-based synchronization scheme
on an industrial platform to avoid existing protocols containing security issues;

• He and al. [19] Defined a new secure protocol based on MTS called secured maximum
consensus-based time synchronization (SMTS) protocol which solves the issue found in
MTS of not detecting message manipulation attacks;

• Liu and al. [20] proposed a protocol where a broadcast synchronization packet makes
all sensor nodes in the network synchronize with the trusted source while taking into
consideration the delay due to these sensors not being capable of doing all synchroniza-
tion in time, similar to traditional networks.

The common factor between these protocols is the recognition of issues in existing proto-
cols and the creation of new ones instead of working on developing the preexisting time
synchronization protocols.

IoTs in general and time synchronization specifically suffers from a standardization issue, as
discussed by Barrera and al. [45]. This leads to the existence of methods and protocols that
are not necessarily compatible with each other and are in most times specific to products
created by specific companies. This variety goes on to create even more security issues the
industry does not invest in solving as it efficiency and portability overtake security in IoT
networks.

2.4 Conclusion

In this chapter we have reviewed literature discussing the dependence of IoT networks and
devices on the correct use of time synchronization methods, especially NTP protocol. We
have also defined concepts related to NTP and IoT security. It is fairly clear that the
research done in this field can be pushed further to have a more inclusive security of correct
time synchronization depending on NTP in IoT networks.
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CHAPTER 3 EMPIRICAL ANALYSIS OF NTP USE IN IoT NETWORKS

In this chapter, we discuss the way IoT devices use NTP protocol and the repercussions of
such use from a security point of view. We base our analysis on network traces collected
from a data set of 50 devices. We study the possible patterns these devices follow in choosing
their NTP servers and network ports. We also analyze some NTP packets’ components as
well and their relationship with TLS and DNS packets.

3.1 Dataset presentation

The main dataset used for the analysis of the empirical use of NTP by IoT devices is the one
provided by Alarwi and al. [11]. It consists of 50 connected devices 46 of which are either
class 1 or 2 [10] which we focus on for the analysis. They are devices with lightweight use of
network stack at different levels as well as a possibility for security measures implementation
to limited extents as explained in the RFC7228.

The authors also provide PCAP captures, which are network traces stored in PCAP format,
over a period of 13 days (March 20, 21, 25, 2018 and April 10-19 of 2018). It is a total
of 3744 files and 303 Gigabytes of data. Based on these PCAP files we can filter the NTP
communications happening between the IoT devices and the servers and analyze data such us
NTP versions, protocol ports and servers used. This information will provide a baseline NTP
behavior of medium sized IoT network. Using this behavior, we can then infer communication
patterns which will help inform the proposed solutions in chapter 5.

The dataset is also characterized by the variety of types of IoT devices used (such as light-
bulbs, hubs, voice controllers and TVs) as well as the companies behind them which also
helps in providing a more generic analysis.

For a more advanced application of the vulnerabilities and to showcase the patterns that we
have noticed we will work on, in addition to the dataset provided, virtual machines that are
Linux-based and similar to most IoT devices as well as a few real IoT devices for tests. These
environments will be introduced in the following chapter.

3.1.1 Identifying devices that use NTP in the dataset

We collect all the 288 PCAP files of each day in one file and apply a protocol filter in
Wireshark, a packet analyzer/sniffer, named ntp to show only NTP communications between
the devices in the network. We collect the result in the form of CSV files that we then filter
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to only contain iterations of devices with the IP address starting with 192.168.0. as it is the
subnetwork we are studying.

The only devices left from this analysis are the devices using the protocol NTP in their
communications on that day. We collect them on a list and compare them to the devices
identified in the network by Alarwi and al. Table 3.1 provides an overview of the dataset as
well the use of NTP by its devices.

We notice that out of the 50 devices present in the table, only 7 devices do not use NTP
to synchronize their time. it is an average of 86% of the total devices that use this protocol
and it can be explained by the previously stated popularity of it in networks. Thus another
reason that shows how important to analyze its security in IoT networks as well.

It is fair to say that there are still a few missing pieces in the PCAP files such us certain
DNS queries as well the constant reappearance of a specific device (192.168.0.200) that was
later explained to be a tablet containing the applications to control the IoT devices. Certain
IoT objects connect and sync to it as if it were an NTP server.

3.1.2 NTP version use in the dataset

following the same analysis used in identifying which devices use NTP, we identify which
version of NTP every device uses in its synchronization requests. Wireshark gives an overview
of this field as well because it is part of the NTP packet.

We represented the results in table 3.1.

Most devices use either version 3 or version 4 as they are the most common versions and
very similar. The only additions in version 4 are the compatibility with IPv6 environments
and the corrections of certain bugs.

We also notice that there are two devices, Bose SoundTouch 10 and Koogeek light bulb,
that are using NTP version 1. It is an obsolete version of the protocol along with version
2. Being the 1st iteration of a protocol that dates more than 3 decades ago, it is prone to
many security issues and it is not capable of either asymmetric or symmetric authentication
methods.

We tested a new Koogeek light bulb for more information about the use of this version. This
new bulb does not use the protocol NTP anymore.
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Table 3.1 Dataset analysis

IP ADDRESS DEVICE NAME IoT CLASS NTP NTP version

192.168.0.2 Google OnHub 2 No /

192.168.0.4 Samsung SmartThings Hub 2 Yes 3

192.168.0.5 Philips HUE Hub 2 Yes 3 and 4

192.168.0.6 Insteon Hub 2 Yes 3 and 4

192.168.0.7 Sonos 1 Yes 3

192.168.0.8 Securifi Almond 2 Yes 4

192.168.0.10 Nest Camera 1 Yes 4

192.168.0.12 Belkin WeMo Motion Sensor 1 Yes 3

192.168.0.13 LIFX Virtual Bulb 1 Yes 4

192.168.0.14 Belkin WeMo Switch 2 Yes 3

192.168.0.15 Amazon Echo 2 Yes 4

192.168.0.16 Wink Hub 2 No /

192.168.0.18 Belkin Netcam 1 Yes 3

192.168.0.19 Ring Doorbell 1 Yes 4

192.168.0.21 Roku TV 2 Yes 3

192.168.0.22 Roku 4 2 Yes 3

192.168.0.23 Amazon Fire TV 2 Yes 3

192.168.0.24 nVidia Shield 2 Yes 3

192.168.0.25 Apple TV (4th Gen) 2 Yes 4

192.168.0.26 Belkin WeMo Link 1 Yes 3

192.168.0.27 Netgear Arlo Camera 1 Yes 3

192.168.0.28 D-Link DCS-5009L Camera 1 Yes 3

192.168.0.29 Logitech Logi Circle 1 Yes 3 and 4

192.168.0.30 Canary 2 Yes 3

192.168.0.31 Piper NV 1 Yes 4

192.168.0.32 Withings Home 1 Yes 3

192.168.0.33 WeMo Crockpot 1 Yes 3

192.168.0.34 MiCasaVerde VeraLite 2 Yes 3

192.168.0.35 Chinese Webcam 1 Yes 3

192.168.0.36 August Doorbell Cam 1 Yes 3

192.168.0.37 TP-Link WiFi Plug 1 Yes 4

192.168.0.38 Chamberlain myQ Garage Opener 1 Yes 3

192.168.0.39 Logitech Harmony Hub 2 Yes 3

192.168.0.41 Caseta Wireless Hub 1 Yes 4

192.168.0.42 Google Home Mini 2 Yes 3

192.168.0.43 Google Home 2 Yes 3

192.168.0.44 Bose SoundTouch 10 1 Yes 1

192.168.0.45 Harmon Kardon Invoke 2 Yes 3

192.168.0.47 Apple HomePod 2 Yes 4

192.168.0.48 Roomba 1 No /

192.168.0.49 Samsung SmartTV 2 No /

192.168.0.50 Koogeek Lightbulb 1 Yes 1

192.168.0.51 TP-Link Smart WiFi LED Bulb 1 Yes 4

192.168.0.52 Wink 2 Hub 2 Yes 4

192.168.0.53 Nest Cam IQ 1 No /

192.168.0.54 Nest Guard 2 Yes 4

192.168.0.113 Ubuntu Desktop Desktop No /

192.168.0.138 Android Tablet 2 Yes 4

192.168.0.151 iPhone 2 No /

192.168.0.159 iPad 2 Yes 4
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3.2 NTP importance in IoT networks

Time correctness is essential to several processes for networks and especially IoT networks.
Our analysis of the IoT devices in the dataset as well as the general spectrum of connected
smart devices led us to identify 3 main uses for Time synchronization and NTP in IoT devices.
This analysis was based on identifying and categorizing IoT devices into 11 fields with a total
of 53 types of devices. We focused on their dependence on time accuracy, how it is used, and
a possible risk scenario if the time is incorrect. The main important tasks depending on time
concluded from this study are:

• Scheduling tasks: Certain IoT devices offer scheduling services to program them for
specific tasks to be done at times. This helps avoid manually activating them for either
distance, comfort, or optimization reasons. the importance of time correctness shows in
the validity of the schedules and them being applied on the real time. This can be seen
in the behavior of certain devices such as connected light bulbs, connected switches,
industrial IoTs, connected traffic lights or even connected infusion pumps. Thus, the
necessity of applying schedules on correct times varies depending on the purpose of use
of the device as well as the field it is used in.

• Authentication / encryption / networking protocols: Certain protocols depend
on timestamping to function correctly. They use time to verify components’ validity
such as digital certificates and queues. We can see that in the behavior of protocols
like TLS, HTTPS and Message Queuing telemetry transport protocol (MQTT). The
fact is, unlike regular networks, IoT devices rarely have an expected behavior when it
comes to functioning with digital certificates or encryption protocols for which the time
validity window has expired. When a regular network service would stop, according
to experiments we have conducted, for IoT devices this could either stop the device’s
service, continue its use as if nothing has changed or continue working with certain
hindrances. All these states were analyzed on the same device in different situations
explained later on in our work. This exposes another important role correct NTP
synchronization plays in keeping an IoT device functioning correctly as well as the
importance of keeping encryption data up to date.

• Logs / monitoring: For a number of IoT devices keeping timed logs of tasks, requests
and general behavior is part of the OS as well as the function of the device. Hubs for
example, keep timed logs of the tasks they accomplish. Another example of this is
connected wireless cameras, which are used for monitoring and for which the time
information is important in keeps logs of video saved. If we have a camera for which
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the time is incorrect or has been shifted purposefully, it could lead to errors in decision
making.

3.3 Analysis of NTP communication in IoT devices

3.3.1 Interplay between NTP and DNS

Devices using NTP for time synchronization need to access time servers over the internet or
local time servers defined in an internal network in order to obtain an authoritative reference
time. The most commonly used public pools of NTP are made available over pool.ntp.org
or time.nist.gov. The first being a public pool of NTP servers managed by volunteers and
the second is owned and managed by the National Institute of Standards and Technology
(NIST). In addition to these pools, certain vendors make available their own public NTP
servers for users to connect to as shown in table 3.2.

Table 3.2 Examples of public NTP vendor pools

Vendors Time server
GOOGLE time.google.com
MICROSOFT time.windows.com
APPLE time.apple.com
CLOUDFLARE time.cloudflare.com
FACEBOOK time.facebook.com
HUAWEI CLOUD ntp.myhuaweicloud.com

In order for a device to reach these servers, NTP implementations usually offer the NTP
configuration files where the implementation of the protocol can be instructed to reach specific
pools.

For these connected devices to be able to know which NTP servers they can contact as well
as their IP address, they send a query to the DNS server for the IP address of the pool and
receiving a response with the IP address of one or many NTP servers in the said pool to
choose from.

Figure 3.1 shows an example of a connected light bulb requesting the IP address of pool.ntp.org
and receiving 4 IP addresses of NTP servers available in it.

This light bulb then uses one of the servers IP’s received from the DNS query for it’s NTP
time synchronization as shown in figure 3.2.
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Figure 3.1 IOT DNS query and response for pool.ntp.org

Figure 3.2 IOT NTP query and response for pool.ntp.org
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Note that devices may use different algorithms for selecting which server IP to use. A popular
approach is to use thee first returned IP, but devices may also randomly select a server from
the list or change servers after a few synchronization cycles.

In traditional networks, in addition to the use of DNS by NTP, DNS also relies on NTP to
keep the cache information up to date. Attacks about time shifting affecting DNS have been
studied in works such as the cache expiration attack and cache sticking attacks [46].

3.3.2 Real time clock in IoT devices and its effect on NTP communication

Real time clocks (RTC) are hardware components, as shown in figure 3.3, used to keep track
of the current time in devices such as computers. Their size makes it difficult to include them
in smaller IoT devices.

The RTC is used as a reference clock in devices to save time after the device is powered off.
When the device is powered back on, the time kept by the RTC is used to compare it with
the new time the device gets from synchronizing to an NTP server. If the time is coherent,
within a few seconds of difference depending on the OS used, the device continues with the
time it gets from the NTP server.

Figure 3.3 Real Time Clock (RTC) hardware

If the time the device’s RTC is showing and the time it receives from the NTP server are
different by an unacceptable margin, the device keeps sending time synchronization requests
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until a sufficient number of responses is showing the same time. Each implementation of
NTP uses a different algorithm in synchronizing time and comparing it to the RTC time.
they differ in the accepted time difference between NTP and RTC and they also differ in the
number of synchronization cycles or servers needed to accept a different time than the one
saved in an RTC.

Thus, the more precise an RTC in a device is and the more complex the algorithm of new time
acceptance is, the more secure time synchronization on a device is either in regular or IoT
networks. This translates in network traces of NTP communications by the RTC populating
the reference timestamp (the last time at which the local clock was last corrected) and
transmit timestamp (the time at which the query was sent). the transmit timestamp is then
used by the server as an origin timestamp and it is also used to authenticate which device
the response belongs to.

The absence of this component can be noticed in the form of a NULL value in all the
timestamps in NTP packets coming from IoT devices. Figures 3.4 and 3.5 show how
a device with no RTC, in this case, a smart TP-link bulb, uses NTP timestamps in its
communication with the NTP server of its choice.

Figure 3.4 NTP request of a TP-Link smart WiFi LED bulb with no RTC showing a NULL
value in the transmit timestamp field

The algorithms that are used in NTP communications that compare time kept by RTCs on



29

Figure 3.5 NTP response of a TP-Link smart WiFi LED bulb with no RTC showing a NULL
value in the origin timestamp field

devices containing this component to compare the time sent by the server with the local
time cannot be used in this case. And since there is no transmit timestamp from the client’s
request, the response does not contain an origin timestamp and therefore no check is done
on the server from which time is received by the IoT client. This also means that the client
will accept any time provided by the server is it connected to the first time it receives since
it has no other time to compare it to.

The nature of this type of synchronization where any time value received by the client IoT is
considered correct can lead to making time shifting attacks easier. There are no additional
checks that will be done and any incorrect time value sent by an attacker that has succeeded
to infiltrate the NTP communications will be accepted from the first try.

3.3.3 NTP port analysis

Seeing as the concept of the five-tuple (network protocol, source and destination IP and
ports) is one of the main mechanisms used to identify a network flow, it is a major security
interest to assess the behavior of connected devices from the dataset regarding the patterns
IoT devices follow in choosing its 5 components.

Because the protocol studied is the connection-less protocol NTP, the source IP is the device,
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the destination IP is an NTP server and the destination port is always 123 (the default port
for NTP communications). From a security perspective, poor entropy in source port selection
can create vulnerabilities. We are thus interested in analyzing the behavior of port selection
on NTP use in IoT.

If the NTP source port is predefined on the connected device, added to the UDP nature of
NTP, it can be the cause of successful blind attacks seeing as the last variable in the 5-tuple
is now constant. A blind attack is one where it is not needed to see the network packets to
successfully tamper with the network the way the attacker intends to. If the attack is based
on spoofing the IP address and the source port, which is now fixed, it is easy to achieve.

We focused on the dataset from the work of Alarwi and al. [11]. The 50 devices studied
through a period of 13 days gave way to 13 (1 per day) folders of 288 PCAP files of 5
minutes each. It is a total of 303 Gigabytes of data. Our purpose is to have a clear graph
of a pattern of choosing the NTP network port for each device in the dataset that uses
NTP for time synchronization. The methodology we followed to achieve our purpose was the
following:

• We used a packet analyze t-shark1 to extract only the NTP packets in all the PCAP files.
this was done in every folder for every day separately by using these bash commands:

1 #mergcap *.pcap -w mergedday1.pcapng

2 #tshark -r mergedday1.pcapng -w day1.pcap ntp

3 #tshark -T fields -n -r day1.pcap -E separator=, -e ip.src -e

4 udp.srcport > day1.csv

the first line merges all the PCAP files existing in the folder in one folder. The second
command applies an NTP filter on the merged PCAP file and prints it into a new one
called day1.pcap. the last command prints out the NTP packets in the day1.pcap file
in a CSV file showing source IP and the source port only of every packet filtered. We
apply this process on each folder of the 13 captured days to end up with 13 CSV files
of all the NTP communications between the network’s devices.

• We then use Office Excel to merge all the 13 CSV file into one file. On this file we apply
a filter to only keep the packets with the IP source addresses included in our list of
devices. we then apply another Excel filter to organize the devices so that we can have
all the packets from the same device/IP address grouped with under one another. This
file, named ports.csv, contained a total of 25780 rows with a total size of 1.7 Megabytes.
It had NTP packets from the 39 devices that used NTP out 50 devices in the dataset.

1https://www.wireshark.org/docs/man-pages/tshark.html
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• In order to have a more meaningful presentation of the ports of choice for each device,
we used the BASE function in Excel to convert the port numbers into 16-bits binary
values (0-65535). We then split this column into two columns, the first containing the
higher 8-bits of the binary 16-bits data and the second column contain the lower 8-bits.
We then changed each column’s values back to decimal.

• We used bash commands to split our ports.csv file into different files for each device

1 awk -F\, ’{print>$1}’ ports.csv

2 mmv 192.168.0.\*\#1.csvls

3 for i in *.csv

4 do

5 sed -i !i"ip,port,high,low" $i

6 done

This created 39 different files for the 39 different devices using NTP.

• In order to graphically show the results of port choices and to decide which patterns
we can view, we use a python script that we applied on the 39 files.

1 for filename in glob.glob(’*.csv’):

2 data = pd.read_csv(filename)

3 plt.scatter(data.high, data.low)

4 plt.title(filename)

5 plt.xlabel("high")

6 plt.ylabel("low")

7 plt.xlim(0,256)

8 plt.ylim(0,256)

9 plt.show()

the results from this script gave us a total of 39 graphs showing the ports each device
picked for its NTP communications

After manipulating the CSV files, we observed that the source port allocation strategies for
each of the devices fell into one of 4 patterns/categories. Figure 3.6 shows these patterns.

The devices’ distribution according to their pattern of port choice is represented on the table
3.3.

All the graphs in Figure 3.6 consist of patterns shown only on the right half. That can
be explained by the definition given to ephemeral ports by the Internet Assigned Numbers
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Table 3.3 Patterns of dataset devices’ choice of NTP UDP ports

Patterns of ports choice Devices

Multiple ports during synchronization period

Random port number for every request

192.168.0.159

192.168.0.54

192.168.0.52

192.168.0.47

192.168.0.43

192.168.0.42

192.168.0.34

192.168.0.31

192.168.0.15

192.168.0.10

192.168.0.5

Random port every few requests

192.168.0.138

192.168.0.46

192.168.0.45

192.168.0.44

192.168.0.41

192.168.0.33

192.168.0.26

192.168.0.23

192.168.0.18

192.168.0.8

Random first port choice with a predefined pattern in choosing the next port
192.168.0.50

192.168.0.13

One same port during the whole synchronization period

All NTP requests using the UDP source port 123 (2+)

192.168.0.29

192.168.0.25

192.168.0.14

192.168.0.12

192.168.0.6

All NTP requests using one random port number (2+)

192.168.0.51

192.168.0.37

192.168.0.19

One NTP request for the whole time of use of the device using a random port number

192.168.0.36

192.168.0.35

192.168.0.32

192.168.0.28

192.168.0.27

192.168.0.24

192.168.0.7
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Figure 3.6 Main port patterns in the dataset

Authority (IANA) as well as the ranges chosen for best practices. The dynamic or private
ports are from port number 49152 to 65535. The registered ports start from 1024 and include
ephemeral ports. Port UDP 123 is part of the well-known ports (1 to 1023)2.

• Pattern 1: Random port number for every request

The devices using this type of pattern for their choice of the source port number for NTP
requests rely on a randomization algorithm, making it almost impossible to predict the
ports used in subsequent NTP (or other communication) requests. This results in an
added layer of security stopping attackers from having an easy way to spoof replies to
the victim’s requests if it does not use a common port number such as UDP port 123

• Pattern 2: Random port every few requests

Here we have devices that do depend on a level of randomization for their choice of
source port for NTP requests except, for a number of successive requests (in the case of
this graph: every 20 to 25 requests), the devices keep using the same port number. An
easy way for the attacker to counter the randomization used here is by monitoring the
traffic and choosing the right time to attack using the port number already picked by

2Network port number 0 is a reserved system port not to be used by TCP or UDP messages
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the device, for example right after the first request after switching to another random
port number.

• Pattern 3: Random first port choice with a predefined pattern in choosing the next
port

This pattern is the least seen in the dataset (only 2 devices out of 39) . It is mainly
only hard to guess the device port at the beginning. The security here depends on the
randomization of the first port choice and the complexity of the relation between it
and the next one. For the example picked here, device 50 chooses port number 63049
and adds 1 to port number after every request. If an on-path attacker is capable of
monitoring such traffic, it is easy to predict the port of choice for the next request and
thus, the possibility of performing a blind attack using this port number is high.

• Pattern 4: Using a single port for all NTP communication

This type of pattern can be divided to 3 sub-patterns:

– 1 NTP request for the whole time of use of the device. In which case the attacker
can try and use the same port number from the request seeing as the device will
not be changing this port later on as it is relying solely on the time fetched from
the first and only request and its internal clock. These devices run the risk of
time drifting naturally which is a security issue if they have services depending on
time accuracy such as logs (Netgear Arlo Camera for example uses this pattern of
synchronization through one NTP request using UDP source port number 46757)

– All NTP requests using the UDP source port 123 (Belkin Wemo Motion Sensor for
example). Other than the lack of randomization in this case, an additional threat
would be relying on the use of port 123 as it is an easy target for attackers looking
into NTP communication. It highly reduces the efforts they need to produce a
successful blind attack

– All NTP requests using one random port number. This is a mix between pattern
2 and pattern 4b as it can be easily used by the attacker by identifying the port
number after the first request and the lack of randomization afterwards leaves
space for successful but time and effort consuming attacks.

3.3.4 NTP server analysis

In this section we analyze the behavior of our dataset in regard to the devices’ choice of NTP
servers to synchronize their time. We also discuss the regional distribution of NTP servers
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present in the pool pool.ntp.org.

Regional distribution of NTP servers

Through analyzing the use of NTP servers in the NTP ecosystem [47], it is clear that the
pool.ntp.org is used by most open-source operating systems as well as well-known vendors for
regular and IoT networks.

We conduct a collection of server IPs on this pool to assess which areas in the world have the
most servers as well as how responsive the pool is. to do so we create a file with the domain
names (see APPENDIX B) from the pool. Each pool is in the form of x.region.pool.ntp.org
with x being a number from 0 to 3 and run a continuous dig command on those names until
we collect the total servers. It took a total of 2 days to collect all the servers present in the
pool at the time of the study.

The script we run to collect server domains and IP addresses is:

1 for j in {1..2}

2 do

3 echo $j

4 for N in $(cat servernames.txt);

5 do printf "$N is %s\\n" $(dig +short "$N");

6 echo;done >> serverips.ods

7 sleep 3

8 done

We collected a total of 4205 server IPs belonging to 4 domains (0, 1, 2 and 3) in each of the
6 regions of the NTP pool project (Africa, Asia, Europe, North America, Oceania and South
America). Figure 3.7 shows the distribution of the collected servers in the different regions
and how certain regions share a number of servers.

Europe and North America show the biggest concentrations of NTP servers which can be
explained by the presence of more vendors and IT companies. We also notice that all regions
share some servers except Africa.

We then compared the existence of these servers in the different regions according to their
domains. We used the Show Me add-on in the tool Tableau to draw a network graph presented
in figure 3.8 based on the data collected from running our script between NTP pool domains
and regions.

This figure confirms the results from Figure 3.7 as it shows the difference of server numbers
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Figure 3.7 Distribution of NTP pool project servers in the 6 regions

between Europe and North America and the rest of the regions. This can lead to an intensive
use of the servers existing in the other regions as the number of IoT devices and regular devices
is increasing constantly. NTP pool project links the device requiring synchronization with
the closest available server in the pool. More research needs to be done in cases of servers
not available to give responses to client queries.

Choice of NTP servers by dataset devices

Being part of the 5-tuple, NTP servers are a main component of the security analysis of NTP
communication with IoT devices. Based on the dataset, here is the summary of the state of
NTP server use on IoT devices:

• All NTP-capable devices are using publicly available NTP. They are either being made
available by private companies, NIST or pool.ntp.org. Making them reachable by the
public can cause these servers to be the target of attacks such as DoS attacks that
render a specific server unreachable by other devices. In case this server is the only one
hard coded in a device, it can push the device to drift in time until the NTP server is
back on.
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Figure 3.8 NTP pool regional distribution of servers over domains
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• 15 out of the 50 devices use NTP servers from the public NTP pool pool.ntp.org.
Which can lead to a smaller number of NTP servers to target as this pool contains
around 4000 servers (servers are constantly added and removed as they are managed
by volunteers). They can be tampered with to either deny all time synchronization
services they provide or push them to deny service for specific devices by using the
example of an attack explained by Malhotra and al. [33]. This attack uses the Kiss of
Death (KoD) packet to force the client to stop sending time requests to its server. The
kiss of death is packet made to help reduce the rate at which certain clients query one
server. Once a client is known to do so too frequently, the server sends a KoD packet
stopping the client for a duration of 2P oll seconds, where Poll is the poll value defined
on the received NTP KoD packet.

• 10 devices use the 192.168.0.200 device, their gateway, as an NTP server. This is a
Tablet that is contains some of the applications needed to control certain IoT devices
in the dataset. Using this device to synchronize time adds another stratum for NTP
communications. An additional stratum induces additional network delays as well as
a bigger offset compared to the precise correct time. Although this can range from a
few milliseconds to seconds, it is a delay that can be relatively important depending
on the situation. In case of a delayed traffic light, taking into consideration the human
reaction time of the order of 1.5 seconds seconds [48], the few seconds of delay can be
the cause for a life-threatening accident.

• 8 devices used servers that are no longer reachable. 2 devices used a previous NIST
NTP server (not available since 2012). If these servers were the only ones coded in
the IoT device, not being able to reach them can lead to the device depending on its
local time. The device will then have a time precision depending on the precision of its
reference clock and will be left to drift in time until the user realizes that.

• None of the devices used a server that requires authentication. The packets exchanged
between the server and client in this can easily be spoofed and the many attacks
become possible. We investigate the impact of this security issue further in chapter
4 through applying attacks that are only feasible if there is no authentication in NTP
communication.

• Certain devices synchronize to servers that are present on more than one domain even
though they are closer to one domain that contains many servers. There are two
possibilities in this case, either the server belongs to both domains or the server is
hard coded in the device. If the server is hard-coded into them it could lead to issues
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explained in previous remarks. An example of these devices is the MiCasaVerde device
in figure 3.9. On the opposite side, we have devices that only call for servers belonging
to one domain only such as the nest camera in figure 3.10. In this case, we can think
of a possible downside to this being if an attacker has access to the network traffic from
this device and realizes its server preference, it will make recognizing a possible NTP
server for it easier and thus spoofing a response packet for it with the wrong time more
doable. The number of servers from the pool to pick goes down from over 4000 servers
to 1053 server (all 4 domains of North America region). A possible solution for picking
a domain in this case is to have all domains available for more randomness and to not
hard code any specific servers.

Figure 3.9 Example of a device with more than one domain/region (MiCasaVerde VeraLite)

The information about servers varies from one device to the other in a way that makes it
difficult to apply the same analysis used for port randomization in to assess vulnerabilities
in this particular aspect. It is mainly due to the constantly rising number of existing public
NTP servers as well as the variation of stratum possible. According to Malhotra and al. [33]
there were 11 728 656 IPs that potentially run NTP servers back in 2015.

Although more public servers could mean a better chance of randomization it could also
mean a higher chance of requesting time from a bad timekeeper for the sole reason that it
was randomly picked from the pool of servers defined in the NTP configuration on the device.

Another vulnerability caused by the choice of servers is hard-coding one specific server in the
device instead of a pool or using an implementation of NTP that configures the device to
keep synchronizing to the first NTP server it receives from DNS.
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Figure 3.10 Example of a device with only one domain/region (Nest Camera)

3.4 Conclusion

In this chapter, we analyzed the empirical use of NTP in IoT devices by studying a number
of its components and how IoT devices deal with them. We presented our dataset of 50
smart devices from various fields and with different vendors. We assessed the number of
devices that use NTP version 4. We noticed how certain devices were using obsolete versions
of the protocol which is considered a security vulnerability. We also emphasized on the fact
that none of the NTP queries were authenticated or used available authentication methods
in both NTP versions 3 and 4.

We also discussed how these devices use NTP packets to communicate with their NTP
servers that are either hard-coded into them or for which they have pool names. In the
second case, we discussed how DNS informs NTP clients which server IP addresses they can
use for time synchronization. This depends on which servers are geographically closer to the
device and how they free they are to be able to handle requests from it. We also presented
a categorization of the use of NTP and time synchronization in general in IoT networks and
how important it can be to their operations.

While tackling NTP packets fields from a security point of view, we discussed the way IoT
devices choose their network source ports and how random they can be. This can make it
harder for an attacker to tamper with time information destined for an IoT device. In this
context, we have analyzed the patterns used by our dataset and concluded 4 main patterns
of which we discussed impact on security and possible blind attacks.
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These packets also showed how an RTC can help an IoT device do more checks on time
information sent by the server it is synchronizing to. The check can be done through reference
and transmit timestamps. the first one is used to compare time information and accept the
closest ones and the second is used to authenticate the server’s response. Some IoT devices
do not dispose of an RTC and thus they can accept any response from an NTP server. This
can lead to easier time shifting attacks.

Through this analysis, we conclude that for an IoT device to have a more secure NTP time
synchronization they require an RTC or a reference clock on the route to the device to check
the time correctness and server authenticity. It is also important to use a higher randomness
pattern in choosing the network source ports these devices call for in their NTP requests.
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CHAPTER 4 ATTACKING NTP IN IoT

This chapter investigates weaknesses in NTP protocol when used in IoT networks. Our find-
ings showcase the importance of keeping correct time in IoT devices for tasks depending on
it. To do so we created our own IoT test environments. We also implemented an attack tool
that was used to demonstrate NTP vulnerabilities in regular networks in these environments.
These vulnerabilities were discussed in different attack situations (on-path and off-path at-
tackers). We discussed their feasibility outside the test environments and their repercussions
as well. At the end of this chapter we suggest two architectures based on authenticating
NTP for securing time synchronization in IoT networks.

4.1 Threat model

NTP vulnerabilities are prevalent in IoT, as shown in Chapter 3. The absence of port
and server randomization or secure authenticated implementations of NTP opens vulnerable
devices to attacks.

The main purpose behind this research work is to shed light upon the faulty/insecure behavior
of these devices while using NTP to synchronize time. In order to investigate the impact
and scope of these weaknesses, we will be applying attacks used for regular networks on
sets simulating the general behavior of IoT networks. This process will be coupled with our
devices’ vulnerabilities such as previously discussed nonrandomized NTP servers or NTP
UDP ports.

We define two types of possible scenarios: On-path and off-path attacks. Each scenario has
its feasibility and requirements.

4.1.1 Attacker goal

The malicious entity in our threat model aims to shift time in a way that does not attract
the attention of the IoT device user. If the user can see the time change on their device,
they will actively change it or not take it into consideration in the tasks done by the device.
In the IoT devices used on an everyday basis such as smart light bulbs, switches or locks,
this is not an issue for the attacker because of the fact that many do not have a screen at all
or their screens are only big enough to show the state at which they are (example: a smart
light bulb with no display, display only big enough to show the temperature in a connected
air conditioner and basic menu in a WiFi printer).
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There are many existing possibilities for the attacker to shift time:

• The same day in the future or past

• Second, minutes, hours, days or years in the past or the future

• A specific day chosen by the attacker

In the threat model we are implementing, each one of these possibilities is used depending
on the purpose of the malicious entity.

The purpose of picking a time shifting attack is to emphasize the possibility of causing greater
harm than a DoS attack. This is achieved through controlling schedule times on a device that
could be used for safety-critical tasks such as home security or health. Therefore, the attack
aims to change the time on an IoT device with a secondary objective of making a change in
the physical world. For example, affecting a patient’s health by changing the frequency at
which a connected infusion pump is used.

4.1.2 Attack assumptions

To accomplish this attack, the malicious user relies on two key assumptions that we have
gathered through studying the 50-devices dataset:

• The devices do not use authenticated NTP synchronization methods. Indeed, none of
the devices in our dataset were seen using these secure variants of NTP.

• The devices do not have an RTC. Many of the devices did not have a reference times-
tamp or a transmit timestamp which was previously explained as a direct consequence
of not having an RTC as a local reference clock.

4.1.3 Attacker capabilities

Depending on the type of attack the malicious user is using, the have different capabilities:

• On-path: The attacker in an on-path attack is inside the local network. Thus, they
have access to the network and are capable of sniffing, and selectively dropping, replay-
ing or manipulating any packets sent between a legitimate server/client in the network.
They are positioned between the victim and the gateway to apply a PiTM attack with
these two as the targets through ARP poisoning.
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Once the attacker obtains the NTP request sent by the victim IoT to the NTP server
outside the network, the attacker creates a fake response to the request using an NTP
attack tool called Delorean created by Selvi [35] (we explain more how Delorean works
in section 4.3.1) with the server’s IP address and the victim’s IP address address as
well as the port number used in the request.

The origin timestamp is not important since most IoT NTP request timestamps are
NULL. This reduces the security of the device because the origin time-stamp (NTP
nonce) check is not done.

Figure 4.1 On-path threat model

• Off-path: The attacker in an off-path attack is outside the local network. Because
they don’t have access to the network, they cannot see the NTP traffic between the IoT
device and the NTP server. This leads to the attacker having to go through a phase
of reconnaissance to acquire the 5-tuple information needed for the NTP time shifting
attack to succeed. There are a few ways they can do that such as Border Gateway
Protocol (BGP)-hijacking or IP spoofing from external machines.

Following the reception of the information needed, the attacker can fake a big number
of NTP responses with the time shift needed and keep sending them as many times as
possible until one of them is accepted by the victim.
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The nonce check is not important here as well since the request timestamps are all
NULL. For this attack to succeed quickly, the device needs to be using the same NTP
servers for all requests or a specific pattern for servers’ choice which is the case for a
number of the devices we have studied in our dataset.

Figure 4.2 Off-path threat model

In this thesis, we implemented the on-path attack as it is the closest to what can be easily
done by an attacker targeting connected objects as well as for how accessible IoT networks are.
The purpose of this attack is to apply it in different situations in order to assess the behavior
of a typical IoT device that does not use port randomization and uses server randomization.

4.2 Testbed presentation and normal NTP usage

To shed light on different components such as: NTP traffic, time changes and multiple
vendors, we have put together 3 different test environments in our testbed that we identify
as sets. On each set we will be applying NTP attacks in order to demonstrate IoT NTP
communication vulnerability. These sets are:

• Set 1: A network of 3 virtual machines. This set is for a regular network reference in
using the NTP protocol.
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• Set 2: A network of 1 Arduino based IoT clock, a gateway and a Kali machine to apply
the attack. In this set, we have an IoT environment but a non-commercial device that
only works using NTP to show time and no other purpose. This environment is used
to push for tests on an environment where NTP protocol is as isolated as possible from
other network stack protocols.

• Set 3: A network of 1 IoT device (connected light bulb), a gateway, an android phone
to control the IoT and a Kali machine to apply the attack. This set represents everyday
life IoT use and the different limitations we have when trying to study or secure NTP
protocol use in commercial smart devices.

4.2.1 Set 1 presentation and use of NTP

Set 1 presentation

In this set we used VMware Workstation 15.5.2, a hypervisor that enables users to set up
virtual machines, on a Kali Linux 2020.1 release with a Linux 5.4.0-Kali4-amd64 kernel. Kali
is a Linux distribution based on Debian and it is used for the purpose of advance penetration
testing and auditing networks and machines. It comes with installed tools and software. We
will discuss how we used some of them later in this chapter.

We set up 3 virtual machines on VMware, that we show on figure 4.3, for different purposes:

• Ubuntu virtual machine: 18.04 release and a Linux 5.3.0-51-generic kernel. This
machine is used as the victim machine. It uses NTP to request time synchronization
and is configured to only ask for a specific server (Kali server virtual machine). This
machine uses the IP address 192.168.170.137.

• Kali server virtual machine: 2020.2 release with a Linux 5.4.0-Kali4-amd64 kernel.
This machine is used as the NTP server we synchronize the Ubuntu machine’s time to.
Kali machines already have NTP installed on them. This server uses the IP address
192.168.170.128.

• Kali attacker virtual machine: 2020.2 release with a Linux 5.4.0-Kali4-amd64 ker-
nel. This is considered the malicious entity in our setup and we are using different
tools installed on it to position ourselves, as the attacker, in the traffic between the two
previous machines. Our Kali attacker machine uses the IP address 192.168.170.129.

The different arrows on figure 4.3 are there to allow us to see the different types of traffic
we will be looking into in this set (gateway, NTP and attack traffic). It also demonstrates
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Figure 4.3 Set 1 presentation

how all 3 machines are on the same network because we will be implementing an on-path
time shifting attack on this set. They all use the same gateway 192.168.170.2 provided by
the hypervisor sub-network.

How NTP protocol is used in set 1

To set up this environment we have to first turn the Kali virtual machine into an NTP
server. As NTP is part of the Kali Linux suite, we don’t need to install it. We make sure we
are synchronizing to lower stratum levels to ensure that our target can synchronize to this
machine later on. For this set we chose to synchronize to the closest pool.ntp.org servers by
using the following pools in the ntp.conf file:

1 server 0.ca.pool.ntp.org

2 server 1.ca.pool.ntp.org

3 server 2.ca.pool.ntp.org

4 server 3.ca.pool.ntp.org

We then restart the NTP service in the server machine using the shell command:

1 $ sudo service ntp status
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To control the server to which our Ubuntu machine synchronizes its time, we configure the
Ubuntu machine NTP implementation to do so. We first specify the IP and hostname of our
NTP kali server machine in the hostname file using the shell command:

1 $ sudo nano /etc/hosts

After which we add a line naming our server in the hosts file as follows:

1 192.168.170.128 kali

We also add the server to the ntp.conf file the same way we added the pool to ntp.conf file
in the Kali virtual server.

We then force the Ubuntu machine to synchronize to the NTP kali server with the command:

1 $ sudo ntpdate -u kali

To this the Ubuntu machines answers with the offset between its time and the time it is
receiving from our Kali server.

Finally, we restart the NTP service on the Ubuntu machine and check again if it is receiving
time from the Kali server. The command used here is:

1 $ ntpq -p

The response to this command is shown in figure 4.4. We can also see on it the different
delays we can have between the server and the client as well as the ID of the Kali server our
Ubuntu machine connects to and its stratum among other information.

Figure 4.4 Synchronization result on Ubuntu machine in set 1

For the Kali attacker virtual machine, we set up NTP on it the same way we set it up on
our server as it is going to try and act as a server during the attach.

While the Ubuntu machine is synchronizing its time to the Kali server, we start Wireshark to
see how the traffic and packets are exchanged. We notice how actively the Ubuntu machine
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is seeking time from the server. it is at a rate of at least 2 requests per minute but it can go
up to 5 requests. These requests use different ports depending on how time is being required:

• UDP source port number 123 is used for all spontaneous requests.

• Random UDP source port number is used for every request we actively make from the
command line window using the command ntpdate -u kali.

We also see that every NTP packer (request and response) has all timestamps populated as
shown in the figures 4.5 and 4.6.

Figure 4.5 NTP spontaneous request from Ubuntu machine to Kali server machine
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Figure 4.6 NTP spontaneous response from Kali server machine to Ubuntu machine

4.2.2 Set 2 presentation and use of NTP

Set 2 presentation

In this second set we put in place a test environment that is based on an IoT device and
a network similar to one that is deployed by users. This network is based on 3 different
components that we present in figure 4.8:

• Arduino IoT LCD clock: An IoT device that we programmed using Arduino 1.8.12
IDE. It is a clock with a screen that tells the current date and time through an imple-
mentation of NTP protocol as shown in figure 4.7. We used a Longruner 20x4 LCD
display module IIC/I2C/TWI serial 2004 with screen panel expansion board white on
blue. We connected this display to an ESP8266 NodeMCU WiFi shield. We configured
the shield to request time from 2.ca.pool.ntp.org and display specific information (time
of the day and date). The code is shown in APPENDIX A.

• Network gateway: To be more in control of the network, we use a Lenovo laptop
running Windows 10 as a hotspot for the wireless network our devices are connected
to.

• Kali attacker machine: We use the same Kali Linux machine that was used to host
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Figure 4.7 Arduino IoT LCD clock

the virtual machines from set 1 with the spoofing and PiTM tools for an NTP attack
that we explain during the attack’s presentation.
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Figure 4.8 Set 2 presentation

How NTP protocol is used in set 2

To build this environment, we turn on the hotspot on our Lenovo gateway, connect the
Arduino device to it. This device is set to automatically connect to the NTP server IPs it
receives through DNS queries shown in figures 4.9 and 4.10.

We monitor the NTP communication of this device with NTP servers it received from the
DNS server. The pattern used is one request for time synchronization every minute with a
different server IP from the list received. The device also uses the same UDP source port
number 1337 for all NTP requests.

We also recognize the non-existence of an RTC, because we did not use one, in the form of the
NULL value of all timestamps of the NTP request sent by the device as shown in figure 4.11.
It is also present in the origin timestamp in the NTP response shown in figure 4.11.

The use of this device is important because we can access its code and add configurations
accordingly, providing more flexibility to test security measures or attacks.
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Figure 4.9 DNS request of Arduino device to receive NTP server IP address

Figure 4.10 DNS response to Arduino device request with NTP server IP addresses from
2.ca.pool.ntp.org
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Figure 4.11 NTP request of Arduino device with NULL timestamps

Figure 4.12 NTP response for Arduino device request with NULL origin timestamp
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4.2.3 Set 3 presentation and use of NTP

Set 3 presentation

This set is a replication of the second set but with the replacement of the configured Arduino
device with a smart light bulb. it is a TP-Link WiFi light bulb series A-19 LB120. it takes
the local area network IP address 192.168.137.249. We use the same architecture as the one
used in set 2 and we show in figure 4.13.

Figure 4.13 Set 3 presentation

How NTP protocol is used in set 3

Like our Arduino device and many IoT devices, the connected light bulb, once connected to
the hotspot wireless network through our Lenovo gateway, shows defined patterns in using
the NTP protocol. It uses the UDP source port 1490 for time synchronization requests which
were being sent every 30 minutes to servers belonging to different pools. The NTP public
pools we have recognized from DNS queries are pool.ntp.org and time.nist.gov.

Another information we have from monitoring NTP traffic by this device is that it doesn’t
have an RTC as shown on figure 4.14 with NULL timestamps.
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Figure 4.14 NTP request of smart TP-Link light bulb in set 3 with NULL timestamps

4.3 On-path time shifting

4.3.1 Attack architecture

The architecture of the attack we are using to evaluate how vulnerable the implementation
of the NTP protocol is in IoT devices consists of a man in the middle attack. We are using
ARP spoofing coupled with the tool Delorean [35].

Delorean is an NTP hacking tool we are running on the Kali attacking machine, both virtual
and hardware. It is based on the fact that most NTP communications do not use use the
authenticated version. Thus, if a malicious user connected to the same local area network
has access to Delorean and can see the NTP traffic, they can also use this tool coupled with
a PiTM tool to spoof NTP packets and send them to the IoT device. These packets will have
the shifted time either to the future or to the past to accomplish their goal.

In most IoT devices it is rare to have a screen showing the time and date. This is why in set
3 we chose a connected light bulb with scheduling properties and our set 2 was connected to
an LCD screen that shows the time.

In applying the attack, whether it is a virtual or hardware Kali attacking machine, the process
is the same. Once we infiltrate the victim network, the Kali attacker machine is configured
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Figure 4.15 On-path attack architecture

to PiTM all traffic between the victim and the NTP server (or gateway). We additionally
configure the Kali attacker machine to intercept outbound NTP queries and redirect them
to the Delorean tool listening on UDP port 123. This is done as follows:

1 #echo 1 > /proc/sys/net/ipv4/ip_forward

2 #PREROUTING -p udp -dport 123 -j REDIRECT -to-port 123

Line 1 in the code enables IP forwarding. Line 2 redirects NTP queries to the Delorean tool.

For our attack we chose to use Ettercap to apply a MITM ARP spoofing attack. The
command used for Delorean time shifting attack 5 minutes to the future is :

1 #/usr/bin/python delorean.py -s 5m

4.3.2 Shifting time effect on scheduling

We executed the time shifting attack on the 3 sets in two ways. We configure the Delorean
tool through the command shell to respond to victim NTP queries with packets containing
time shifts into the future or the past. We applied these versions of the attack and noted the
results on the different sets as follows:
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• When applying the attack on set 1, although Ubuntu sends time synchronization re-
quests every minute, the time sent by Delorean is taken into consideration every time
a network interface goes up. After that it takes the Ubuntu victim machine in our
environment an average of 2 synchronization cycles with the attack applied for it to
accept the shifted time as it is comparing it to the reference clock and sending more
requests to apply NTP checks.

Although this machine is TLS capable, it does not make use of it or any encryption
in the NTP traffic. This is explained by the implementation of unauthenticated NTP
protocol. The victim computer reacts in the same manner to both future and past
time shifts. Time changes can be seen on the machine’s clock as well as on Delorean’s
command line window in the Kali attacking virtual machine. Figure 4.16 shows the
Ettercap and Delorean tools together while applying a time shifting attack on the
Ubuntu virtual machine from Kali attacker virtual machine to send it 10 minutes into
the future.

Figure 4.16 Attack on NTP on the Kali machine: Ettercap and Delorean
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• We configured set 2 in a way that makes the Arduino IoT device request time every
minute using NTP version 4. This device is a simple clock and does not use TLS.
Therefore, it does not use authentication for its NTP queries either. This makes the
device vulnerable to PiTM attacks.

In addition to that, The Arduino IoT clock is modeled on most IoTs in our dataset and
does not have an RTC. Because of the absence of checks due to the NULL value caused
by the absence of RTC, once we apply our on-path time shifting attack on this set, the
first synchronization cycle sends the device into the shifted time without any checks.
The shifted time can be seen on the screen of the Arduino device, the Delorean attack
screen and the packets captured using Wireshark as for set 1.

• We test the same attack on our final set (set 3) to showcase the effects it has on real
manufactured connected devices. Because our device is a connected light bulb that
does not have a screen to show time, we are testing the effects of the attack on the
scheduling service provided by the app monitoring the light bulb. The IoT device reacts
to the attack in the same manner our Arduino device does because they both don’t
have an RTC to check the shifted time against.

Once we set the attack to send the time 5 minutes into to the future on the light bulb,
we wait for the first synchronization cycle. It sets the time on the light bulb 5 minutes
ahead. We set a schedule for the light bulb to turn on at 15:55 and it lights up at 15:50.
That demonstrated that the time on it adopted the attack’s time as the correct time.
Once we disconnect the light bulb from the internet with an already set schedule with
the shifted time and while keeping it with connected to a power source, it continues
working according to the shifted time.

4.3.3 Shifting time effect on TLS certificates

In Set 3, the connected TP-link light bulb uses TLS handshake to make regular contact with
the app as well as for every "lights on" and "lights off" command. Figure 4.17 shows the
different packets exchanged between the light bulb and its servers during a "lights off" com-
mand. In these packets there is a TLSv1.2 handshake that is made. During the handshake,
the client and server exchange keys and the server also sends 4 certificates to the client. They
range in time from the year 2004 to the year 2034 and are shown in figure 4.18.

These same certificates are exchanged during every handshake. That is why we thought of
testing how far the use of the light bulb can be affected by tampering with certificates validity
start and end dates.Thus, in this part of the on-path time shifting attack, we aim to disturb
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Figure 4.17 Packets exchanged between Light bulb and TLS and TCP servers during the
"lights off" command sent from app on phone

Figure 4.18 Validity duration of the 4 TLS certificates on TP-Link light bulb
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the use of TLS by sending the device beyond the validity time of its TLS certificates. We
chose the years 2000 and 2038 for the attack as they are 4 years before or after the widest
validity range of the certificates that we mentioned above. Both attacks went through and
we had the following results:

• Time shifting to 2000: both scheduling and commands services are functioning the
same as with normal correct time. The TLS exchange we notice during the handshake
continues with the same certificates although they not valid yet. On the side of the
attacking machine, we can see the time on the response is the year 2000 as well as
intercepted NTP packets.

• Time shifting to 2038: Similar to the previous time shifting to the year 2000 attack,
both scheduling and commands services still function as they should with the correct
time and the TLS certificates exchanged are the no longer valid. The difference between
the two attacks is there are no intercepted NTP packets on the side of the attacker
machine. There are also no responses for the 3-time synchronization requests sent by
the light bulb for every synchronization cycle.

As a result of these attacks, it appears that the device does not check the validity of the
certificates. Although tampering with NTP will not render the device useless, it is a security
issue when it comes to TLS itself. A few questions about the efficiency of the TLS imple-
mentation used by this IoT device and whether or not the certificates are doing their security
task.

4.4 Off-path time shifting

4.4.1 Attack architecture

Although off-path attacks are harder to deploy because of the number of unknown variables
in the 5-tuple there are, they are still part of the attack spectrum possible on IoT networks.
This can be explained by the fact that IoT networks lack security measures and are usually
apart from the traditional networks which are secured by firewalls.

The off-path attack we are discussing relies on an extensive sending of NTP response packets
to a specific device until this device accepts said packets and synchronizes its time to the
attack time.
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Figure 4.19 Off-path attack architecture

4.4.2 Requirements

As discussed in the threat model of the off-path attack, acquiring the 5-tuple is one of the
main requirements for the success of this attack. The requirements for this attack are:

• Target IoT device’s internal IP address: the attacker needs to go through a phase
of reconnaissance to acquire it. This can be done through several methods such as
BGP-hijacking.

• Server IP address: the attacker can use public servers’ IP addresses. If they know
the specific server then it is easier. If the server is unknown, the attacker can either
choose one server and keep sending packets with its spoofed IP (if the IoT randomizes
server choice, it is possible) or go through all the servers one after the other until the
attack succeeds.

• Target IoT device’s NTP port: if the attacker recognizes the IoT device in question,
they can figure out the port it uses for NTP communication if it does not randomize
port choice. If port choices are randomized, the current attack can be coupled with a
fragmentation attack where the missing field is the IoT device’s NTP port as explained
by Malhotra and al. [33] (see APPENDIX C). NTP communications make it so that
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fragmented packets are assembled when received and certain missing fields are added
with the correct components.

• Server NTP port: the NTP port used by servers is the default NTP port number
123.

4.4.3 Feasibility

The feasibility of this attack depends mainly on the reconnaissance phase. if the attacker
can’t recognize a specific target then their choice will be blind attacking the IoT network.

Blind attacks require time and patience especially because of the no-RTC feature of IoT
devices. If one packet succeeds in going through and changing the time, then the attacker
needs to continue sending that same packet because the device will switch back to the true
correct time as soon as it goes through another synchronization cycle. This means the
attacker needs to have the means of sending continuous similar packets and knowing when
the device accepts them.

Such off-path attacks are mostly used for DoS attacks because of the repetitive behavior and
the lack of information about the destination. A similar concept has been used for recent
NTP amplification attacks where the attacker used bots to simulate clients and spoof their
IP addresses to render a server out of service.

Although very demanding in computing power, they are still feasible even if it means getting
the device to change time for a short period of time.

If we take into consideration an IoT device that is only request time from the public pool.ntp.org
with its current 4039 servers, the probability of the attacker guessing the correct server that
we label S is 2.4x10−4.

Our light bulb IoT uses the port 1049 and synchronizes its clock every 30 minutes. The
Arduino clock synchronizes its time every 1 minute and uses port 1337. If we consider an
IoT device synchronizing its clock every 5 minutes using only one random port of the 64513
possible ports (from 1024 to 35535 adding the possibility of using default NTP UDP port
number 123). This leads to a probability of guessing the right source port number P of
1.55x10−5.

The probability of then having the correct server and correct port number is B = SxP =
3.72x10−9. This demonstrates how randomization of both values can be a highly appreciated
feature of security.

To have an idea about how long this attack could take to succeed we proceed as follows: If
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we consider the attacker capable of providing 100 spoofed packets every second, coupled with
the fact that it takes 300 seconds for the IoT device to send a request, the attacker can send
3x104 spoofed packets during that time therefore the possibility of having the right spoofed
packet during the 300 seconds is C = Bx3x104 = 1, 116 ∗ 10−4. For this to become true it
will therefore take up to 32 days of continuous spoofing attack (300/C).

Although clearly time and effort consuming, these attacks are still feasible especially with
the use of bots that can focus on different UDP source ports and servers and thus reduce the
time needed.

4.5 Defenses

We have, so far through our literature review as well as the experiments done on different
types of devices, demonstrated how the IoT field can be vulnerable to attacks and misuse
of a protocol such as NTP. It is difficult to trust these devices to do their job as should be
when they rely on insecure time synchronization.

It is also important to take into consideration the challenges we face in securing such a
ubiquitous especially when developers don’t appear to use best practices. That is why we
discuss the possibility of two classes of solutions: backward compatible ones, and backward
incompatible one.

4.5.1 Backward compatible NTP IoT security measures

Because of the great numbers of IoT companies and devices already in the wild, there is a
big diversity in components and implementations as well. These devices use different OSs,
microcontrollers, embedded systems and different versions of NTP protocol with different
patterns of choice of UDP source ports as well as NTP servers.

One way of securing the NTP implementation in these devices would be to include the
manufacturers in this process. They can recall and upgrade their products. But this is
highly expensive and not always inclusive, especially for end-of-service devices that are still
used by customers or companies that have gone out of business during that time. It makes
this option unthinkable from an industry point of view alone.

A second way of dealing with the issue of securing NTP could be through reverse engineering
the most popular devices and including secure implementations of NTP in them. While this
is possible for the IoT developers’ community, this option is not user friendly as it requires
bringing sophisticated changes to the software through methods the average user of a smart
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device does not need to have. It is also not inclusive towards the other existing devices that
are being used by a smaller number of people.

Therefore, the logical way to go about protecting IoT devices from time-shifting attacks is
by working on adding security features to their gateways. These gateways have an already
existing more powerful resources that can accept advanced updating. Gateways are also a
cost effective (1 gateway for all devices), they scale well (any new device only needs to connect
to it) and do not require an advance user knowledge of the device. They have been used to
solve security issues before in this field as well [49] [50].

We propose an architecture for securing NTP traffic in IoT devices that relies on the advances
already made in traditional networks security without affecting the connected devices. This
can be done by applying security measures on the router-side or adding a gateway box with
adequate security option to do so.

The gateway box needs to be capable of monitoring and redirecting NTP traffic to either
internal NTP servers or trusted public servers. This box should also be TLS capable to
force authentication of time synchronization traffic and communication with servers that
only accept authenticated NTP requests.

Figure 4.20 Proposed NTP security gateway for IoT devices that cannot be modified

The way this architecture works is by following these steps:
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1. The IoT device is connected to the NTP gateway which is connected to the router.

2. The IoT device sends its NTP request to the NTP server through the NTP gateway
box.

3. The NTP gateway box intercepts the request and redirects it to the correct secure NTP
server with authentication information.

4. The server responds to the request.

5. The IoT device receives the NTP response.

to prevent ARP spoofing between the NTP gateway box and the IoT device, we include
ARP spoofing detection and alert tools in the gateway. These attacks can be detected by
Wireshark packet sniffing or by listing the ARP table (if one MAC address is shared by
two IP addresses, it is more than likely ARP poisoning). An existing tool that does this is
arpwatch1. After the attack packets are detected, they can be dropped using filters and
firewalls.

This solution achieves the goals of securing NTP time synchronization in IoT networks and
protecting these devices. It allows incremental deployment, and in general appears easy to
use even for non-experts as it should only require as much interaction as connecting an IoT
device to the home router.

4.5.2 Backward incompatible NTP IoT security measures

One secure NTP infrastructure for IoT devices is to include NTP security at device man-
ufacturing time. This can be done by configuring IoTs to connect to secure NTP servers
using secure methods. The latest of NTP security in traditional networks is the use of NTS
described in chapter 2. We can reproduce NTS for IoT networks. To do so we can depend on
the same public NTS server that exists or use the NTS implementation made public because
IoT devices depend on the same pools used by traditional networks.

TLS is complex protocol, but it is making its way into even very embedded IoT devices. Our
connected TP-Link light bulb is also using as described in chapter 4. There are also more and
more libraries describing different implementations of this protocol in Arduino IoT devices.

NTS depends on the use of NTP and TLS. IoT devices can be TLS-capable which we notice
in the connected light bulb’s communication we have in our set 3. The light bulb uses TLS
v1.3 as well as certificates to communicate with the server. The total size of the certificates

1https://linux.die.net/man/8/arpwatch
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transferred from the server and used by the light bulb is 6053 bytes. This can be seen in the
screen shot from the TLS handshake between the light bulb and the server in figure 4.21.

Figure 4.21 TLS certificates total size in a connected light bulb

Similar certificates can be used in our Arduino set up with the ESP8266 WiFi shield. We
ran a code on the shield that shows the free memory size in it. the results of this code are
shown in figure 4.22 The total Memory size in this device is 4194304 bytes. It is enough for
the use of a certificate with a minimum of code for the essential functioning of the device as
an NTP clock.

In addition of the code and the certificates (average of 5.12 Kbytes per certificate), using
NTS relies on the creation of a library that is responsible for creating the TLS tunneling,
using the certificates for signing and authenticating the communication as well as introducing
NTP packets inside the TLS tunnel with signed fields. One of the libraries allowing the using
of TLS is BearSSL2. A minimal server implementation using this library can run about 20
kilobytes of compiled code and 25 kilobytes of RAM leaving more space for tunneling and
NTP to create an NTS library based on it.

This rundown of memory size available in an Arduino device only showcases how it is possible
to use an implementation of NTS secure NTP protocol in more advanced resources we have
in everyday IoT devices.

2https://bearssl.org/
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Figure 4.22 ESP8266 memory size

4.6 Conclusion

We have been able to tamper with the time service in different types of IoT device sets by
shifting time according to attack schedules. We were able to confuse connected devices and
push them towards either being delayed or early in doing their tasks from the first synchro-
nization request. This highlights how insecure and easy to access IoT NTP communications
are, thus motivating the need for including more correct time synchronization security fea-
tures.

For this purpose, we proposed two different ways of securing NTP time synchronization in
IoT devices. The first was inclusive to even existing devices that are today in customer
homes. The second architecture deals with including a secure implementation of NTP such
as NTS inside IoT devices.
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CHAPTER 5 CONCLUSION

In this chapter, we discuss the results of our experiments as well as their possible effect
on the day to day use of IoT devices. We also review the accomplishment of our research
objectives and discuss the possibilities our work offers for future advances in the area of IoT
time synchronization security. Finally, we list the limitations and challenges we faced in the
process of working on this thesis project.

5.1 Overview of results

To study NTP security in IoT devices and to demonstrate its importance, we have studied
an existing dataset of 50 IoT devices [11] as well as built 3 different testing environments.
Based on the analysis of the dataset information we concluded that NTP is broadly used
in IoT devices and we observed how they use it. We also did an extensive investigation
into the reasons why this protocol is important from a security point of view and concluded
that it is critical. Our investigation not only included the dataset of 50 devices but it also
discussed several devices used in different fields in human daily life. This study gave way to
a categorization of NTP use in IoT:

• Scheduling tasks

• Authentication / encryption / networking protocols

• Logs / monitoring

This categorization is based on a breakdown of reasons why the devices make NTP queries
and where the information received from their servers is used later on in either task that the
user can notice such as schedules or tasks that are essential to the functioning of different
network stack protocols or finally information that is stored inside the device for a later
purpose such as log files.

Out of the 50 devices in the first dataset, we had 39 devices that used NTP for time synchro-
nizations which are 78% of the variety of devices we had. This goes to showcase even more
the important use of this protocol in IoT networks.

Based on the 50-device dataset we have also concluded the existence of different patterns of
NTP port choice in IoT devices depending on the design and security priorities chosen. these
patterns are:
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• Multiple ports during the synchronization period

– Random port number for every request

– Random port number for every few (2 to 8) requests

– Random first port number choice with a predefined pattern in choosing the next
ports

• One port during the synchronization period

– Port 123 for all requests

– One random port depending on the vendor’s choice different than port 123

– One NTP request during the whole time of use, thus one port choice

This led us to think about the non-randomization of NTP port choice effect on IoT security
as it is an important part of the 5-tuple concept and could be used for spoofing attacks. These
attacks are made especially easier because NTP is a UDP protocol, therefore connection-less,
is coupled with the attacker knowing the rest of the 5-tuple components.

From analyzing these patterns, we notice that, to a certain extent, these devices show more
variety and randomization in port choice than regular network devices which are set to use
the default UDP port number 123. IoT devices have different algorithms in picking their
NTP source port for NTP queries. The risk in these choices goes up as the randomization
value goes down. For devices using the same UDP port number 123 or a UDP port that is
predefined by the vendors and never changing, it is higher. Certain devices are more secure
because for every NTP request they use a different, randomly chosen UDP port.

It is important to note that these different algorithms and patterns in choosing NTP UDP
source ports can only add more variety to the pool of IoT devices. As the NTP community
is used to port 123 being used for NTP communications, certain firewalls are specifically
configured to only allow NTP requests or responses from this port. This practice can lead to
certain IoT NTP queries being dropped and so these devices either drift in time depending
on their reference / local clocks or they are out of service if their network stack depends on
time information reception.

Another component of the 5-tuple that we have analyzed in this work is the choice of the
server IP address in NTP IoT communications. Out of the 39 devices using NTP, at least
26 (66.66%) were using servers from public vendor (GOOGLE, MICROSOFT) or volunteer-
managed pools and at least 15 devices (38.6%) were using servers from the pool.ntp.org pool.
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This goes to say that the presence of public servers in the NTP communications is predomi-
nant. It is also important to note that these were unauthenticated servers/communications,
including the ones with NIST servers.

As for the patterns of choosing NTP servers, it depends on many factors such as the pool
hard-coded into the device, the pools’ rules, the DNS servers’ responses including NTP
servers’ IP addresses as well as possible restrictions added by IoT vendors. The latter ones
can force devices to connect to specific servers, sometimes open to the public. This process
of hard coding an NTP server or more in devices made by specific companies can lead to
spoofing attacks such the use of the KoD (Kiss of Death) NTP packet with spoofed known
NTP server to stop the device from requesting time or to render the server itself out of service
(DoS attack).

We can compare 3 different situations regarding hard coding servers IPs in an IoT device:

1. Hard-coding one open public NTP server IP address in an IoT device.

2. Hard-coding an NTP pool in an IoT device.

3. Hard-coding an IP address of a server that only accepts authenticated requests (au-
thenticated NTPv4 or NTS servers).

The first option leads to easier DoS attacks as the server component of the 5-tuple is known.
the second option can also lead to a DoS attack, but it is harder to achieve. This is explained
by the number of servers in the pool and the randomization factor of the algorithm used to
pick the NTP server by the device can make the possibility of DoS attack even less likely.
It takes longer and more spoofed queries from the attacker to make send a packet with the
right server IP from the pool to achieve a DoS attack.

The third option used a secure NTP connection. This type of connection requires encryption
for an authenticated query to be accepted and a response to be issued and accepted by
the device as well. It is even less likely, although possible, for an attacker to successfully
target such communication. None of the devices in the dataset and test environments used
authenticated NTP queries. This is a security issue in both regular and IoT networks.

When analyzing the NTP packets of the communications in the different test sets, we con-
cluded the effect of not having an RTC in most IoT devices or any reference clock was the
reason behind the NULL value of all timestamps in NTP communication. These timestamps
are used by NTP to verify basic checks to authenticate servers and clients. The NULL value
makes it impossible to properly complete these checks and The IoT device accepts the first
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time response it gets from the server’s IP. Thus, it is easier to shift time in IoT devices than
it is in regular networks.

We then set up 3 different sets to test IoT devices with a time shifting attack using the tool
Delorean. This tool targets devices using unauthenticated NTP for time synchronization.
The first set is that of 3 virtual machines (NTP server, Ubuntu client, Kali attacking machine)
to test the reaction of a regular network to the attack. The second set is an Arduino IoT
with a kali attacking machine and a gateway. This device uses a public NTP server similar
to the third set which replaces the Arduino device with a smart TP-Link light bulb.

We studied the feasibility of two types of attacks regarding these 3 sets: On-path and Off-
path time shifting attack. As we conducted the on-path attack, we tested different time shifts
as shown on figure 5.1:

Figure 5.1 On-path attack time shifts

All these attacks succeeded and demonstrated the ease of time shifting in IoT devices as well
as how it can affect these devices compared to regular networks.

After finishing the attacks, we discussed two types of possible solution architectures that
can protect IoT devices from NTP time shifting attacks. The first architecture is backwards



73

compatible and focuses on securing the elements surrounding IoT devices to be more user-
friendly and to include the devices already in use. This architecture uses an NTP gateway box
that can be included in the router or separated but to which the IoT devices are connected
first. This box needs to support NTS for NTP communication authentication and IP spoofing
prevention. All the NTP requests coming from the IoT devices connected to it will be
redirected to a trusted NTP server (accepting authenticated requests only) either internal or
public.

The second architecture for NTP communication security in IoT devices requires adding
changes to the way IoT devices use this protocol and including a new implementation of
NTS. We have checked TLS and certificates requirements for use in IoT devices and one way
of including the is to use certificate fingerprints rather than a full certificate to not take as
much memory space. It is also important to note that the use of a reference clock in IoT
devices is important to avoid security issues caused by the NULL timestamps value.

5.2 Overview of thesis objectives

IoT devices are considered an important part of our lives in all fields. They are used in
households as well as outside in hospitals, schools, military, sports, and the streets. They are
also becoming more trusted in the heart of tasks on which human lives can depend such as
connected pacemakers or connected traffic lights. If either one of these two example devices
has an issue or is tampered with, it could harm us greatly.

A great part of the correct functioning of these devices is the correctness of the time they
have. This also depends on their correct and secure time synchronization. This feature has
been studied and proved to be vulnerable in traditional networks but, as far as our research
is concerned, it has not been tested in IoT networks.

Under these circumstances, we started this thesis project with three main objectives :

1. Defining the range of importance of time in services provided by IoT devices and their
importance in human daily use;

2. Drilling down through IoT time synchronization communications and their vulnerabil-
ities;

3. Elaborating a possible protection/security architecture that takes into consideration
the time component as well as the mobility service of IoT devices.

At the end of this work we have achieved each of the objectives respectively in the following
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way :

1. We have studied existing IoT communication data sets as well as our environments to
analyze the importance and the roles time synchronization plays in IoT usage. We have
especially focused on the nature of protocols and tasks that require accurate time from
NTP. We have also worked on showing the possible impact tampering with time in IoT
networks could have.

2. In attempting to showcase how vulnerable NTP is in IoT networks, we have analyzed
its use of the 5-tuple components and how predictable the patterns of choosing them
can be. More than 60% of the devices studied use known public servers and predictable
rules of choosing NTP port if not going for the default port 123. In addition, we have
shown how the absence of an RTC inside these devices leads to additional insecurity
lying in the NULL value of timestamps and voiding necessary NTP checks. After these
packets checks, we have set a testing environment to apply attacks on IoTs with the
tool Delorean (making use of the unauthenticated nature of NTP communications)
that are used on regular networks. We were thus able to demonstrate and show NTP
vulnerabilities through time shifting and changing the correct functioning of a preset
schedule to obey the schedule set by the attacker.

3. Based on the vulnerabilities noticed in the studied devices, we have analyzed and
suggested two possible architectures for secure IoT NTP communication. The first
is backwards compatible and includes already in use connected devices through the
addition of an NTP gateway for authenticated and secure NTP queries. The second
architecture requires adding NTS authentication features into IoT devices.

The possible future goals of this work include but are not limited to working on creating an
implementation of NTS for IoT networks’ use and testing it with the attacks we have tried so
far. This also includes working on elaborating a more precise implementation of the protocol
TLS/SSL.

5.3 Open questions/remaining challenges

After showing the importance of NTP and its security in IoT networks and suggesting possible
solution architectures as well as their feasibility, a few challenges are left to tackle. These
challenges require more time to put into work. We can mention:

• Finding a way to force existing IoT devices to randomize their choice of NTP port
numbers.
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• Making a more inclusive list of all networking protocols that depend on time accuracy
and acquire it from NTP.

• Including NTP authentication measure in existing IoT devices.

• Helping IoT industry professionals as well as the vendors to include NTP security checks
in their devices.

Most of the challenges for Future IoT advancements is related to including security measures
in the already in production IoT devices. To do so, it is important to put into action and
verify the backwards compatible security solution architectures.

5.4 Limitations of thesis

While working on this research project we were able to come to several conclusions important
in NTP security in IoT networks as shown in the previous sections. We also had a few limi-
tations due to time constraints as well as the current world environment. These limitations
can be summarized in what follows:

• More 5-tuple patterns: Although the patterns noticed for NTP port choice and
server choice were analyzed on 50 devices, it is not possible to say that this is the most
inclusive list of patterns possible. A bigger dataset would be needed to do such analysis
as well as support from vendors to have access to their devices’ software as well as their
hardware

• Application of off-path attack: Because the off-path attacks were already shown
to be possible through an example of amplification attacks known for NTP, we have
analyzed of the feasibility of these attacks without being able to try them in the 3 sets
we have built.

• Application of security measures: We have conducted a feasibility analysis for
both security measures as well by studying their different components but were not
able to test them as they require extensive coding in the form of the development of
an implementation of NTS in Arduino.

The IoT field is diverse. We demonstrated how vulnerable its implementation of NTP pro-
tocol can be. As we have experimented with attacks on both scheduling services and TLS
implementation, we concluded that certain elements can be used in IoT devices to help solve
security issues. We can introduce an RTC as well as an implementation of NTS to at least
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have the device do more checks before accepting time during synchronization cycles. De-
velopers and manufacturers should include NTP synchronization in their security priorities
list.

Connected Smart devices will continue to be used, especially with the ever-evolving needs
humanity has, to conform to our environment. The latest of these devices include smart
ventilators being worked on to help assist medical staff in curing COVID-19 patients. If
these ventilators were to depend on time synchronization as the connected devices we have
studied in this research work do, the patients can run an additional risk of being at the mercy
of cyber attackers. Taking the security of time synchronization into consideration is a step
that needs to be done to assure a safe usage and dependency on IoT devices.
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APPENDIX A LCD-CLOCK IOT ARDUINO CODE

In order to create our LCD clock IoT device based on NTP, we used Arduino to synchronize
our NodeMCU V3 ESP8266 to reach 2.canada.pool.ntp.org and request time from it.

1 #include <Time.h>

2 #include <TimeLib.h>

3 #include <NTPClient.h>

4 #include <ESP8266WiFi.h>

5 #include <WiFiUdp.h>

6 #include <LiquidCrystal_I2C.h>

7
8 LiquidCrystal_I2C lcd(0x27,20,4);

9
10 const char *ssid = "my_hotspot";

11 const char *password = "iotattack2020";

12
13 int GMT = 5;

14 int DAY, MONTH, YEAR, Seconds, Hours;

15 long int time_now;

16 WiFiUDP ntpUDP;

17 NTPClient timeClient(ntpUDP, "2.canada.pool.ntp.org");

18
19 void setup() {

20 Serial.begin(115200);

21 WiFi.begin(ssid, password);

22 lcd.begin(20,4);

23 lcd.clear();

24 lcd.init();

25 lcd.backlight();

26 lcd.setCursor(5, 0);

27
28 while ( WiFi.status() != WL_CONNECTED ) {

29 delay ( 500 );

30 Serial.print ( "." );
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31 }

32 timeClient.begin();

33 }

34
35 void loop() {

36 timeClient.update();

37 time_now = timeClient.getEpochTime() - 14400;

//get epoch time and adjust it

according to your GMT

38 DAY = day(time_now);

39 MONTH = month(time_now);

40 YEAR = year(time_now);

41 Hours = hour(time_now);

42 Seconds = second(time_now);

43
44 LCD_DISPLAY(String(DAY), String(MONTH), String(YEAR));

45 delay(1000);

46 }

47
48 void LCD_DISPLAY(String DAY, String MONTH, String YEAR)

49 {

50 lcd.setCursor(5, 0);

51 if (Hours > 9)

52 lcd.println(String(Hours) + ":" + timeClient.getMinutes() + "

:");

53 if (Hours < 10)

54 lcd.println("0" + String(Hours) + ":" + timeClient.getMinutes

() + ":");

55
56 lcd.setCursor(11, 0);

57 lcd.println(String(Seconds));

58
59 lcd.setCursor(14, 0);

60 if (isPM(time_now))

61 lcd.println("PM");

62 if (isAM(time_now))
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63 lcd.println("AM");

64
65 lcd.setCursor(6, 1);

66 lcd.println(DAY + ":" + MONTH + ":" + YEAR);

67 }
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APPENDIX B NTP POOLS NAMES

The text file servername.txt used in section 3.3.4 for regional distribution of NTP servers
contains the following NTP pool names:

0.africa.pool.ntp.org

1.africa.pool.ntp.org

2.africa.pool.ntp.org

3.africa.pool.ntp.org

0.asia.pool.ntp.org

1.asia.pool.ntp.org

2.asia.pool.ntp.org

3.asia.pool.ntp.org

0.europe.pool.ntp.org

1.europe.pool.ntp.org

2.europe.pool.ntp.org

3.europe.pool.ntp.org

0.north-america.pool.ntp.org

1.north-america.pool.ntp.org

2.north-america.pool.ntp.org

3.north-america.pool.ntp.org

0.oceania.pool.ntp.org

1.oceania.pool.ntp.org

2.oceania.pool.ntp.org

3.oceania.pool.ntp.org

0.south-america.pool.ntp.org

1.south-america.pool.ntp.org

2.south-america.pool.ntp.org

3.south-america.pool.ntp.org
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APPENDIX C NTP ATTACKS IN REGULAR NETWORKS

Tables C.1 and C.2 explain the different attacks on NTP vulnerabilities, how they work and in some cases the possible security
measures that can be taken to counter them according to Malhotra and al. [33].

Table C.1 Denial of service and fragmentation attacks on NTP in regular networks

Attack concept Kiss-Of-Death : Denial of service attack (KOD packet makes the client refrain from requesting time from its
server for some time)

Off-path NTP fragmentation attack

Attack Exploiting KoD packet Low rate off path DoS attack on ntp
clients

Pinning to a bad timekeeper Off-path NTP fragmentation attack

How to Spoof KoD packet (Only need IPs
of client and server) + setting
poll value on spoofed KoD to high
value to stop client from getting
time from server for a long time.
Priming the pump : spoof mode 3
client requests to make them look
from server like the client has too
many requests and wait for the
client to send the last request be-
fore the KoD from the server.

Off path attacker can use this to turn off
NTP from the client which will be pushed
to use local clock or drift during the at-
tack :
- attacker sends mode 3 NTP query to
victim client which responds with mode
4 NTP response : giving attacker client’s
server from ref ID
-attacker makes the server send KoD
packet to client to stop sync for some
time. If client gets another server, at-
tacker does the same again. Attacker
learns IPs of all client servers and does
a KoD attack periodically to stop client
from sync

Same process from previous attack
to learn about all servers and check
them to see if they are good or bad
using a mode 3 query : the client at
this moment should be sync-ing to
the bad timekeeper

Attack works against specific clients
that use specific classes of ipv4 frag-
mentation policies + client is config-
ured with only one server

Notes If priming the pump is used then
attacker can’t control polling in-
terval of KoD message

Attack surface small but non negli-
gible

Security Forcing validation of origin timestamp on client side as well as server side
to avoir PiTM attacks + authenticate all communication with the server

Authentication to avoid spoofing Avoid fragmentation of packets
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Table C.2 Stepping time attacks on NTP in regular networks

Attack concept STEP time with NTP

Attack Time skimming Exploiting reboot

How to On-path traffic highjacking
And
Step threshold (S.T) smaller than
STEP smaller than panic thresh-
old (P.T)

_g option allows client when initialized
and before sync to accept any time shift
(even more than panic T).
On-path attacker knows exact time of re-
boot bcs of INIT in ref ID of all NTP
packets + shift before sync : feel free to
panic.
Small step big step: clients reboot + init
start + sync server + server sends decent
step bigger than S.T and smaller than
P.T + client accepts sending "STEP" in
ref ID + Server sends big step because al-
low_panic never set to false (2 syncs with
less than S.T turn allow_panic to false).
Stealthy time shift: use small step big
step to expire an object on the client and
get back to regular time.

Notes Takes too long and is complicated
Stepout went from 15 to 5 min-
utes
P.T is 16 minutes
S.T is 125 ms

Can make the client shift for a year in
one step
Attacker has to be on path for it to work

Security Authentication to avoid spoofing Remove _g option
Set allow_panic to flse after 1st clock up-
date
No INIT in ref ID
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