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RÉSUMÉ

Avec l’avancement de la technologie matérielle et logicielle, l’application de l’automatisation
et de la robotique se développe rapidement. Les systèmes multi-robots sont particulièrement
prometteurs en raison de leur grande efficacité et robustesse. De tels systèmes peuvent être
utilisés pour aider les humains à effectuer efficacement des tâches dangereuses ou pénibles,
telles que l’intervention en cas de catastrophe, l’exploration souterraine, etc. Pour déployer
un système multi-robot dans un environnement sans GPS, la coordination des robots dans
le système est un défi crucial. Chaque robot doit avoir une estimation précise de sa pro-
pre position pour permettre aux robots du système de collaborer pour la réalisation de leur
tâche. Comme cette direction de recherche est relativement nouvelle, les approches existantes
ne sont pas encore abouties. Elles consistent principalement en des systèmes centralisés qui
reposent sur des signaux GPS. La dépendance sur un signal GPS limite l’application aux
espaces extérieurs ouverts. De plus, les systèmes centralisés sont confrontés au risque d’un
point de défaillance unique, qui limite la robustesse du système. Par ailleurs, un système cen-
tralisé n’est pas toujours approprié à une taille grandissante, comme lors d’ajout de nouveaux
groupes de robots ou lors de la fusion de différents groupes. Par conséquent, une solution
distribuée, décentralisée, et adaptée à de larges groupes de tailles variables pouvant produire
une estimation et un suivi du positionnement des robots dans un environnement sans GPS
est souhaitée. Dans ce travail, nous adoptons une stratégie descendante pour relever ces défis.

La première partie de la recherche est la stratégie au niveau macroscopique. Un système de
localisation distribué dynamique est proposé pour créer et maintenir un système de coor-
données unifié. Chaque robot du système est équipé d’un capteur de télémétrie qui mesure
la distance avec ses voisins. Pour le système de localisation bidimensionnel, tous les robots
sélectionnent trois robots en soumissionnant pour construire un système de coordonnées. En-
suite, chaque robot obtient sa position grâce à l’initialisation. Le système de coordonnées
est ajusté dynamiquement en fonction de la position des robots. Nous utilisons un filtre
de Kalman étendu (EKF) pour estimer de manière itérative la position de chaque robot.
Nous proposons également une fonction de reconfiguration du système de coordonnées pour
empêcher l’accumulation d’erreurs du suivi à long terme.

Les capteurs choisis utilisent la technologie Ultra Large Bande (ULB) en raison de la précision
des mesures produites. Cependant, en raison du temps relativement long requis pour la
mesure de télémétrie, le contrôle d’accès du support ULB partagé dans notre scénario fait
face à certains défis: une télémétrie haute fréquence est nécessaire entre les robots pour
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améliorer la précision du système; un ajustement rapide de la planification est nécessaire
pour s’adapter aux changements de topologie du réseau; les critères de distribution doivent
être suivis pour éviter un point de défaillance unique. Nous proposons un nouvel algorithme
d’accès multiple par répartition dans le temps (TDMA), qui permet de planifier rapidement
l’utilisation des médias ULB par un grand nombre de périphériques réseau sans conflits dans
le voisinage du réseau local et d’éviter les conflits avec les terminaux cachés. De plus, il
maximise l’utilisation des canaux du réseau ULB. Le système n’a pas de nœuds spéciaux
(tous les nœuds sont les mêmes) et il est adaptatif pour prendre en charge la localisation de
systèmes distribués.

Lorsque le système multi-robot dispose d’un système de coordonnées unifié et de mesures
de distance fiables, chaque robot estime sa position dans le système. Dans la localisation
collaborative, puisque chaque robot partage sa position avec ses voisins, une estimation pré-
cise de l’odométrie peut grandement améliorer la précision de localisation du système. Nous
étudions d’abord les performances de localisation et de suivi dans les paramètres minimaux,
comprenant une seule source de télémétrie ULB et un 9 unités de mesure inertielle DoF (IMU)
à faible coût. Nous proposons un estimateur de vitesse qui utilise la mesure de distance UWB
et dérive la vitesse du robot à partir des variations du signal. En combinant l’estimation de
la vitesse avec l’estimation de l’orientation du capteur IMU, la position et l’orientation du
robot peuvent être observée à l’aide de l’EKF. Cette solution permet également le suivi des
appareils à faible coût avec uniquement IMU et signaux ULB, tels que les appareils IoT.

Pour les robots équipés de caméras monoculaires supplémentaires, une méthode exploitant
l’odométrie visuelle-inertielle (VIO) est proposée pour un suivi précis. Les progrès récents
de l’odométrie visuelle-inertielle peuvent fournir une estimation précise des changements
de position du robot pendant une courte période. Cependant, sur de longues trajectoires,
l’estimation peut dévier de manière importante, en particulier dans des environnements vi-
suellement difficiles. En utilisant les capteurs ULB existants dans un système multi-robot,
nous proposons une optimisation conjointe des mesures de vision, d’inertie et de télémétrie.
Cette méthode utilise une seule ancre placée au hasard dans l’environnement et adopte une
approche de fenêtre coulissante à double couche, qui utilise efficacement les mesures de dis-
tance. Cette méthode peut corriger efficacement l’erreur accumulée à chaque réception d’une
mesure de l’ancre. Nous utilisons également cette configuration pour la localisation et la
cartographie collaboratives: différents robots utilisent la télémétrie mutuelle (si disponible)
et l’ancre commune pour estimer la transformation entre eux, permettant ainsi la fusion de
cartes.

En abordant la localisation d’un système multi-robot à la fois au niveau macroscopique et
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au niveau des robots individuels, cette recherche permet potentiellement à un grand groupe
de robots d’avoir une autonomie à long terme dans un environnement où aucun signal GPS
n’est disponible.
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ABSTRACT

With the advancement of hardware and software technology, the everyday applications of au-
tomation and robotics are developing rapidly. Multi-robot systems are particularly promising
because of their high efficiency and robustness. Such systems can be used to assist humans
in performing dangerous or strenuous tasks, such as disaster response, subterranean explo-
ration, etc. To deploy a multi-robot system in an environment without a global positioning
system (GPS), coordinating the robots in the system is a crucial challenge. Each robot needs
to have the correct tracking of its own and its teammates positions to enable the robots
to cooperate. Because this research direction is relatively new, there are not many mature
methods: existing approaches are mainly centralized systems that rely on GPS signals. The
dependence on GPS restricts the application to the outdoors or indoor spaces with expensive
infrastructure. Centralized systems also face the risk of a single point of failure, which is not
acceptable for critical systems. In addition, centralized systems can be hard to scale both
statically and dynamically (e.g. adding new groups of robots or merging different groups).
Therefore, a distributed and scalable solution with accurate positioning and tracking in a
GPS-denied environment is desired. In this work, we follow a top-down strategy to address
these challenges.

The first part of this research is a strategy at the macroscopic level. We propose a dynamic
distributed localization system to create and maintain a unified coordinate system assuming
each robot is equipped with a sensor that can measures the distance of other robots in the
system. For 2D localization, the system collectively select three robots, through a bidding
mechanism, which construct a common coordinate system and we use an extended Kalman
filter (EKF) to iteratively estimate the position of each robot. We also proposes a coordinate
system reconfiguration function to prevent error accumulation from long-term tracking.

Ultra-WideBand (UWB) is a technology that can provide accurate ranging capabilities, and
we selected it as our ranging sensor in the proposed system. However, due to the relatively
long time required for obtaining UWB measurements, the access control of the shared UWB
medium in our scenario faces some special requirements: high-frequency ranging between
robots to improve system accuracy, rapid adjustment to changes in network topology, and a
distributed architecture to avoid single points of failure. We propose a novel Time Division
Multiple Access (TDMA) algorithm, which can quickly schedule the use of UWB media on
a large number of network devices without conflicts in the local network neighborhood and
avoid conflicts with hidden terminals, all while maximizing the channel usage of the UWB
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network. Our system has no special nodes (all nodes are equal), and it is scalable to support
distributed system localization.

Once a multi-robot system has a unified coordinate system and reliable ranging measure-
ments, each robot can track its position. In collaborative localization, since each robot
shares its position with its neighbors, accurate odometry estimation can greatly improve the
overall localization accuracy of the system. We first study the localization and tracking per-
formance using minimal infrastructure, minimally using a single UWB anchor and a low-cost
9 DoF Inertial Measurement Unit (IMU). We propose a speed estimator which continuously
monitors the distance with the UWB anchor and derives the speed of the robot from its
change patterns. By combining the speed estimation with the orientation estimation from
the IMU sensor, the pose of the robot can be observed using an EKF. This solution also
enables the tracking of low-cost devices with only IMU and UWB, such as IoT devices.

For robots that are equipped with an additional monocular camera, we propose a method
fusing visual, inertial, and ranging measurements for accurate tracking. Recent advances in
visual inertial odometry (VIO) can provide accurate odometry estimation for short periods.
However, over long trajectories, drift can be significant, especially in environments that are
visually challenging. Using the existing UWB sensors in the multi-robot system, we propose
a joint optimization for visual, inertial, and ranging measurements. This method uses a
single anchor randomly placed in the environment and adopts a double layer sliding window
scheme, which uses distance measurements efficiently. This method can effectively correct
the accumulated error whenever the anchor is visible. We also use this setup for collaborative
simultaneous localization and mapping (SLAM): different robots use mutual ranging (when
available) and the common anchor to estimate the reciprocal map transformation, thereby
simplifying map fusion.

By addressing the localization for a multi-robot system both at the team level and for in-
dividual robots, this research potentially allows large groups of robots to have long-term
autonomy in a GPS-denied environment.
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CHAPTER 1 INTRODUCTION

This dissertation includes the research work pursued to fulfill the requirements of the degree
of Philosophiae Doctorate in computer engineering at Polytechnique Montréal, Université
de Montréal. It recollects the research work conducted within the MIST laboratory of Poly-
technique Montréal (Montreal, Canada), the Cognitive Systems Laboratory of the University
of Tübingen (Tübingen, Germany), and the Robotics, Artificial Intelligence and Embedded
System laboratory of The Technical University of Munich (Munich, Germany) from August
2016 to August 2020. This document follows the structure of a dissertation by articles —
covering 4 published and submitted papers presented as separate chapters.

1.1 Context and Motivation

Localization via the Global Positioning System (GPS) has become an indispensable part of
people’s daily life. The easy access to global location information allows ordinary people to
explore unknown places. As moving agents, robots also need to know their location to perform
their tasks. For robot systems used to help humans perform tasks in areas that are dangerous
and with limited access (such as disaster response or subterranean exploration), GPS cannot
always be taken for granted. With the advancement of hardware and software technology,
the application of automation and robotics to daily activities is developing rapidly, with
multi-robot systems being particularly promising. The inherent advantages of “swarms” of
robots in terms of robustness, flexibility, and scalability have attracted special attention.
However, one of the great challenges of robotics is to coordinate a large number of robots
in a distributed manner in a GPS-denied environment [1]. On top of this, a scalable system
with few or no dependencies on fixed infrastructure is highly desirable.

Imagine deploying multiple robots in an unknown area to automate some tasks, such as
searching for targets or establishing network infrastructure. To be efficient, robots need to
work collaboratively and avoid duplication of work. If there is a central node as a supervisor
that knows the state of all robots, it can optimally control operations. However, it is not
trivial to realize a central node in a large-scale multi-robot system since the capacity of a
single robot is always limited and a central node cannot obtain information from all nodes
without delay. In addition, a centralized system may suffer from a single point of failure
and cause the system crash. Therefore, a decentralized and distributed system is preferred,
where any robot makes decisions based on its local information. Coordination in distributed
systems faces the challenge of how to enable each robot to accurately locate itself in a common
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coordinate system.

Inertial measurement units (IMU) Camera Ultra-wideband pair (UWB)

Linear accelerations
Angular velocities

Distance between nodesImages

Ch. 3: Localization system

Ch. 4: TDMA MAC for UWB

Ch. 5 Tracking with IMU & UWB

Ch. 6 SLAM with IMU & UWB & Camera

Figure 1.1 This dissertation covers four modules: a) a dynamic coordination system using
ranging between robots to reach a common coordinate frame (Ch. 3); b) a distributed time
division multiple access (TDMA) algorithm for a mobile UWB network that allows the full
usage of the UWB channel (Ch. 4); c) a tracking solution with ranging to a single anchor
(Ch. 5); and d) a SLAM system using visual, inertial, and ranging measurements (Ch. 6).

Localization for multiple agents has been extensively studied by the wireless sensor networks
(WSN) community [2,3]. However, their approach focuses primarily on static sensor networks
and approximate positions. In robotics, relative localization between multiple robots has been
studied with a small numbers of robots [4]. Some algorithms (e.g., [5]) designed for swarm
robotics can handle a large number of robots. However, as the collective behavior is their
focus, the odometry of single robots and the estimated drift have received less attention [5].
Furthermore, swarm robotics research platforms are usually a large number of minimalist
robots, which cannot be used for real-world tasks.

In this research project, we build a multi-robot positioning system for the real-world applica-
tions in GPS-denied environments. We adopt a top-down localization strategy with ranging
sensors: first we establish a common coordinate system in a distributed manner, then we
localize each robot in this frame of reference, and finally we use sensor fusion to improve
tracking accuracy. The overall structure of this work is shown in Fig. 1.1.
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Localization with ranging measurements between robots is attractive both for relative local-
ization [6] and global localization [5]. EM-based localization is generally low-cost and suitable
for multi-robot systems, robot swarms, and IoT applications. Wifi, RFID, Bluetooth, and
UWB (Ultrawide Band) have their particular techniques for indoor positioning [7]. Wifi can
have good accuracy but requires a customized antenna array [8]. RFID is primarily intended
to automatically identify and track tags attached to objects, therefore a dense deployment of
RFID readers is needed to have good accuracy [9]. The latest version of Bluetooth (Bluetooth
5.1) comes with a range and direction-finding option, which is announced to have centimeter-
level accuracy [10]. Cominelli et al. [11] tested the new standard and achieved the sub-meter
accuracy with a customized testbed. UWB [12, 13] uses ultrashort pulses to achieve very
accurate (cm-level [14]) ranging as well as data transmission, which makes it an ideal choice
in our scenario.

Most commercial localization applications using UWB are anchor-based [15, 16], meaning
they require at least four calibrated anchors for 3D localization or three for 2D. Anchor-
based solutions work fine in an empty space within a structured environment. However, it
is not suitable for exploration of an unknown environment due to the pre-installed anchor
requirement. In addition, most anchor-based systems use the Time Difference of Arrival
(TDOA) method, which requires sub-nanosecond time synchronization in the system [17].
This high precision synchronization is not easy to maintain in a dynamic distributed system.

Localization with UWB can be done in different ways, such as Time of Arrival (TOA), TDOA,
and Two-Way Ranging (TWR) [18](detailed in section 2.2.1). TWR allows arbitrary pairs
of nodes to perform distance measurements. The main advantages of TWR are that it can
be used without fixed anchors and it does not require synchronization between nodes. On
the other hand, TWR takes a significant amount of time, which can reduce the number of
ranging measurements leading to a less accurate localization system. To maximize the num-
ber of measurements, one must maximithe the UWB channel usage, requiring an appropriate
Medium Access Control (MAC) mechanism among the robots in the system. Time division
multiple access (TDMA) is widely used in communication networks for shared medium con-
trol [19]. Applying TDMA allows multiple devices to share the UWB channel by assigning
time intervals (called time slots) in which nodes are allowed to communicate.

In this dissertation, we first address cooperative localization and accurate tracking of indi-
vidual robots fusing UWB and inertial measurements. A inertial measurement units (IMUs)
and UWB sensors are relatively cheap, this combination has the potential to be applied to
the localization of low-cost Internet of Things (IoT) devices.
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As many devices are also equipped with a camera, we design a simultaneous localization and
mapping (SLAM) algorithm that combines the three modalities (inertial, UWB, and visual).
Visual-inertial odometry (VIO) is accepted as the minimal sensor configuration for single
robot state estimation and navigation [20]. Recent technical advances [21–23] make VIO more
robust and stable. However, its drift caused by error accumulation is still hard to control
without pose graph optimization [24] based on loop closures. Although the loop closure is
a natural part of a SLAM system, the requirements to close a loop rely on the trajectory
followed by the robot and other environmental factors. For example, generating high-quality
closures requires revisiting the same location with a similar viewpoint and perception outliers
caused by illumination, self-similar environments, etc. can disrupt the optimization process.
Furthermore, detecting loop closures requires to keep a history of key frames [25], which adds
to the memory and computation requirements of the robots. The problem is exacerbated
when considering a multi-robot system that needs to detect inter-robot loop closures and
perform distributed optimization to determine the relative coordinate transformation between
robots in multi-robot SLAM [26]. In this dissertation, we propose a novel system to reduce
the accumulated error and estimate the relative transformations using a UWB sensor.

1.2 Problem Statement

The research work in this dissertation aims at a scalable, accurate localization service for a
distributed multi-robot system. In particular, we tackle the following challenges:

• lack of a localization strategy considering both the macroscopic (i.e. the robot team)
and microscopic (i.e. single robot) levels;

• shared medium control when applying UWB as a ranging sensor to a distributed,
dynamic multi-robot system;

• tracking and localization for robots that only have IMU and UWB;

• control of accumulated error from VIO and inter-robot transformation estimation from
UWB measurements.

In the opinion of the author, addressing and resolving these challenges have the potential to
substantially advance the application of multi-robot systems in real-world scenarios.

1.3 Research Objectives

The challenges listed in the previous section are addressed through the articles presented in
Chapters from 3 to 6, by pursuing the following objectives:
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1. propose a localization system to place robots in a common frame of reference. This
system must self-organize and reconfigure at the macroscopic level;

2. design a distributed TDMA algorithm for mobile UWB networks that can quickly
schedule the access of the shared UWB medium with high utilization;

3. design an algorithm for localization and tracking of robots using IMU and UWB;

4. design a SLAM solution that mitigates the accumulated error of VIO;

5. propose an algorithm that estimates the inter-robot transformations using UWB for
multi-robot SLAM.

1.4 Contributions and Impact

To the best of our knowledge, this system is the first system designed for accurate localization
service of a multi-robot system using UWB in a GPS-denied environment. We detail each
contribution and its impact as follows:

• a dynamic coordination system using ranging measurements between robots;

Our system allows robots to reach a consensus on a common coordinate frame and
each agent to locate itself in the frame reference. This system dynamically changes
the configuration to control the accumulated errors. This contribution has a potential
impact on the landing of swarm robotics for real-world applications. With this system,
robot swarms can perform long-term autonomy as a self-organized system. This work
was published as a journal paper in IEEE Access.

[27] Y. Cao, M. Li, I. Švogor, S. Wei, and G. Beltrame, “Dynamic range-only localiza-
tion for multi-robot systems,” IEEE Access, vol. 6, pp. 46527–46537, 2018.

• a novel distributed TDMA algorithm designed for mobile UWB ranging networks;

Our proposed TDMA algorithm can quickly schedule the access of the shared UWB
medium with high utilization. This algorithm results in a high range measurement
update rate. Beyond the impact on distributed UWB network, any wireless system
that requires high channel usage and has frequently changed topology can use this
algorithm. This work is submitted to IEEE Internet of Things Journal.

– Y. Cao, C. Chen, S.-O. David, and G. Beltrame, “Distributed TDMA for mobile UWB
network localization service,” IEEE Internet of Things Journal, 2020, (Submitted).
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We also propose a UWB based framework to do localization in large scale areas using
minimal infrastructure. This work shows the community a potential application sce-
nario. This work is published as a conference paper in 2020 18th IEEE International
New Circuits and Systems Conference. We do not include this paper in the body of
this dissertation since its contribution is included by the listed contribution.

[28] Y. Cao, D. St-Onge, and G. Beltrame, “Collaborative localization and track-
ing with minimal infrastructure,” in 2020 18th IEEE International New Circuits and
Systems Conference (NEWCAS), pp. 114–117, IEEE, 2020

• a novel solution for tracking robots using IMU and UWB;

We propose a speed estimator enables the localization and tracking of robots using
IMU and UWB. More than the impact on robots, any devices equipped with IMU and
UWB can apply this algorithm, especially considering the low-cost IoT devices. This
work is published in 2020 IEEE International Conference on Robotics and Automation
(ICRA).

[29] Y. Cao, C. Yang, R. Li, A. Knoll, and G. Beltrame, “Accurate position tracking
with a single UWB anchor,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2344–2350, IEEE, May 2020.

• a SLAM system combines vision, IMU, and ranging.

We design a novel two layers sliding window SLAM system using a camera, IMU, and
UWB. The system can effectively reduce the accumulated odometry error for VIO. This
work is submitted to Autonomous Robots journal.

– Y. Cao and G. Beltrame, “VIR-SLAM: Visual, Inertial, and Ranging SLAM for single
and multi-robot systems,” Autonomous Robots, 2020, (Submitted).

1.5 Thesis Organization

The dissertation follows the structure of a thesis by article which dictates that the body of
the contributed articles, published and submitted, is presented in separate chapters.

• Chapter 2 introduces the reader to the topics addressed throughout this dissertation
and situates the work presented among the current literature.

• Chapters 3 to 6 mark the body of the dissertation and presents the published/submitted
research articles:
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– Chapter 3 introduces a localization strategy for multi-robot system long-term au-
tonomy, presented as a journal paper published on IEEE Access in 2018.

– Chapter 4 details a UWB network control when we apply the system in Chapter
3 in hardware setup. The paper is submitted to IEEE Internet of Things Journal.

– Chapter 5 is a published article in 2020 IEEE International Conference on Robotics
and Automation. This paper details a novel solution for tracking devices that have
only IMU and UWB.

– Chapter 6 details a novel SLAM for robots equipped with a monocular camera,
IMU, and UWB. This paper is submitted to Autonomous Robots journal.

• Chapter 7 discusses the contributions of the previous chapters and highlights the rela-
tions among them.

• Chapter 8 wraps the dissertation with concluding remarks and future work outlook.



8

CHAPTER 2 LITERATURE REVIEW

This chapter is dedicated to a review of fundamental concepts, classic results, and the state-
of-the-art from three different directions: localization strategies for multi-robot systems,
applications of UWB radios, robot state estimation through sensor fusion with UWB, IMU,
and cameras. Each of these topics has its own related works detailed in the later chapters.
Here we focus on the inter-topic relations and application background.

2.1 Localization Strategies for Multi-Robot Systems

As a fundamental requirement for most mobile agents, localization has been extensively
explored in many different ways [2,30–33]. Different systems are used in different scenarios ,
such as GPS [34] for outdoor localization or motion capture system [35] in laboratories. These
systems are not suitable for exploration in unknown GPS denied environments. Localization
strategies for distributed multi-robot systems ask for particular requirements [36, 37]. In
this section, we provide a taxonomy on widely used localization systems and derive our
requirements by comparisons. Then we give state-of-the-art localization strategies applied to
distributed multi-robot systems.

2.1.1 Taxonomy

Different criteria have been used to categorize localization systems. Some surveys [2,3,38,39]
have provided detailed summaries in WSN and robotics. We focus on a few classifications
related to the motivations of this dissertation.

• Indoor Versus Outdoor Localization

The main factor that differentiates the indoor localization from the outdoor counterpart
is that indoor environments are usually known and controlled. Supportive infrastruc-
ture can be easily installed, such as Wi-Fi access points, RFID readers, camera arrays.
With the popularization of smart phones and IoT devices, indoor localization has seen
fast development within the last decade [3].

By comparison, outdoor environments are typically more difficult to control. Access to
GPS enables localization outdoors. However, because of the poor signal penetration
capability of GPS signal [34], mobile robots that deployed in certain urban settings,
underground, or off the planet cannot use it. Weather conditions can also limit the usage
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of GPS. Other terrestrial predecessors of GPS, such as LoRa [40], cellular network, has
a similar spirit. In addition, since these infrastructures are usually designed for long-
range communication, the localization accuracy with the default setup is limited.

• Static Versus Mobile Agents
Localization has been widely studied by the WSN community since 2000. However,
the localization [41] research in the early stage was mainly designed for static nodes
(or rarely moved nodes) in the network, especially for the range-free localization [42].
The range-free algorithms estimated the position based on hop distance or hop count
information between anchor nodes and the sensor nodes. The development of wireless
sensor networks, mobile sensors, and smart devices, promoted the research on the
localization for mobile wireless sensor networks (MWSN) [39]. Localization for mobile
agents faces other challenges. As the motion of agents keep changing the topology of the
system, the network structure needs to be considered in terms of connectivity, density,
etc. The amount of data to transmit, the connectivity between the nodes, access of
shared medium can affect the performance of the system. Localization for multi-robot
systems also fits into the MWSN localization, but usually requires higher accuracy.

• Infrastructure-Based Versus Infrastructure-Free
Infrastructure-based solutions dominate most of the localization services in our daily
life. GPS, with 31 satellites orbiting the planet [43], allows the receiver to locate itself.
Infrared camera arrays are widely used in motion capture system [35] to provide accu-
rate position estimation for reflective markers in the laboratory environments. Wi-Fi
localization based on measurement from access points (e.g., RSSI, fingerprint, ToF) is a
hot topic. UWB systems with preinstalled anchors have great potential for applications
both in industry or public service. Generally, most of the infrastructure-based local-
ization systems are designed to localize multiple agents with global position respect to
the anchors in a controlled environment.

Infrastructure-free localization is attractive because it requires minimal efforts to deploy
and has the potential as a self-organized system. Anchor-free [44] or beacon-free [45]
algorithms were proposed for WSN using relative localization. For a single robot,
SLAM is an infrastructure-free solution that robot estimates its pose and maps at the
same time. If there is no prior information about the map, SLAM works as relative
localization in a coordinate system aligned to the camera pose at the initial stage.
Using loop closure with a prior map or introducing absolute positions, the robot can
find its global position on the map. By sharing maps to other robots, multi-robot
SLAM systems can also create a global map and locate them on the map.
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• Centralized Versus Distributed
In centralized system, the locations of all agents are calculated by a central server. The
common application of centralized localization is monitoring. A server connected to
all anchors receives packets from the mobile agents and then calculates their positions.
Centralized systems are generally not scalable, and exposed to the risk of single-point
failures. Distributed systems allow each agent to calculate its position through its own
measurements. GPS can be seen as a distributed system from the perspective of users.
An agent with the GPS signal receiver infers its position based on the signals received
from a minimal number of four satellites. Both centralized and distributed systems
can be found in UWB anchor-based systems, depending on which side to estimate the
position, the anchors or the tags. Because there is no dependence on a central server,
a distributed system is scalable, with high robustness, and can be applied to large
networks.

From the discussion above, we can see the advantages and the limitations of different cat-
egories. For the exploration in an unknown environment, preinstalled infrastructure is not
practical. Multi-robot systems also require a high degree of robustness to achieve long-term
autonomy. In this dissertation, we seek an infrastructure-free distributed localization system
for a multi-robot system that is suitable for both indoor and outdoor environments.

2.1.2 Infrastructure-Free Distributed Localization System

Multi-robot and swarm robot systems have potential to solve various real-world challenges,
such as subterranean exploration, establishing network coverage, search and rescue mis-
sions [36]. A key advantage of swarm robotics in contrast to classical multiple robots system
is its distributed architecture. Swarm robot systems have inherent advantages in terms of
robustness, flexibility, and scalability [37]. We will use the term "swarm " and distributed
multi-robot system interchangeably throughout the dissertation.

When deploying a swarm of robots in an unknown area, the first thing is that the swarm
needs to agree on a common coordinate system. With this frame of reference, measurements
or information from neighbor robots can be used directly. A simple and straightforward
approach is to use a fixed reference frame [5,46–48]. This usually requires a set of beacons,
which can either be static robots or external devices which are not part of the swarm. Indel-
man et al. [49] used a probabilistic approach to reach a consensus on the reference frame when
dealing with spurious measurements (i.e., false negatives). In a recent publication, Shirazi
and Jin [50] developed a localization method that required several static robots which acted
as beacons to determine a common coordinate system. Using three robots, their algorithm
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provided coordinates for other robots within the team using relatively trilateration. This
work fits our scenario to start the localization, however, they mainly considered the appli-
cation for a swarm of minimalist robots. Qin et al. [17] designed a BLAS system that used
UWB for the localization of a multi-agent system. They divided the agents into parent and
child groups: the parent agents acted as moving anchors and created a coordinate frame for
the system. They proposed a distributed clock synchronization in parent agents to maintain
a high clock precision. Because the parent nodes were fixed, the child nodes had to be kept
within the range of parent nodes. In our system, we propose a dynamic way that allows the
robots to bid for the reference nodes in order to create the coordinate frame. Furthermore,
a reconfiguration strategy to maintain the coordinate center is designed to constrain the
accumulated error. The localization of single robots is also addressed.

2.2 Ultra-WideBand Radio

Modern UWB radio systems were developed based on the impulse radio technology [51], which
has been in development since the late 1960s [13]. Unlike the ME wave used in our daily life
(e.g., Radio, Wi-Fi, Bluetooth), UWB is based on the transmission of ultra short impulses
in the time domain (typically at nanosecond scale), but a wide bandwidth in the frequency
domain [12]. This provides two main benefits: a) low energy consumption and robustness to
interference (no carrier wave); b) excellent time resolution allowing accurately timestamped
to mitigate multipath effects (ultra shot impulses). UWB has a good performance both
in communication [52] and localization [53]. In this dissertation, we mainly focus on the
localization application of UWB technology.

2.2.1 Localization With UWB

As introduced above, the ultra shot impulses enable the receiver to have accurate measure-
ments for the timestamp when receiving packets. By leveraging the Time of Flight (ToF)
principles, UWB can be used to perform localization and tracking. We now introduce the
main strategies used for localization and explain their advantages and disadvantages.

• Time of Arrival (TOA)
TOA is the straightforward application of ToF. By recording the signal propagation
time, receivers can calculate the distance to the transmitters. Then the system can
apply trilateration to find the intersection of circles for multiple transmitters (or re-
ceivers), namely anchors, as shown in Fig. 2.1-a. The main limitation of this strategy
is the requirement of a very accurate synchronization among all transmitters and re-
ceivers. A nanosecond error in the synchronization can cause a 30 cm error in distance
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(a) TOA system (b) TDOA system

A B

C C

A B

Figure 2.1 UWB localization with Time of Arrival and Time-Difference of Arrival strategies.
Both strategies use anchor setup and need synchronization in some extend.

estimation.

• Time-Difference of Arrival (TDOA)
TDOA is based on measuring the time difference of arrival of two signals, which cor-
responds to the distance difference from the two anchors. As shown in Fig. 2.1-b, the
robot is located in the intersections of the hyperboloids from anchors. Compared with
TOA, TDOA is more practical because it only requires synchronization among all the
anchors. The application of TDOA can be either centralized or distributed. In a cen-
tralized setup, anchors receive the signal from the tags. A server connected to all anchor
calculates the position for the tag. In a distributed setup, anchors send signals in a
predefined periodic manner. The tag listens to the signals and calculates its position
(similar to how GPS works). Both solutions require precise synchronization among all
anchors.

• Two Way Ranging (TWR)
Different from the TOA and TDOA, TWR [18] just measures the distance between
two nodes. TWR leverages the round trip delay of the signal to avoid the requirement
of synchronization. As shown in Fig. 2.2, UWB device A first sends a message to B.
Then B replies a message including the timestamp when it received the message (tBRX)
and the timestamp when it replied the packet (tBT X). When A receives the reply, it can
calculate the distance as Equ. 2.1, where c is the speed of light.
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Figure 2.2 Principle of distance measurement with two way ranging. Assisted by the times-
tamp replied from UWB device B, device A can estimate the distance without any synchro-
nization requirement.

dAB = c · (tARX − tAT X)− (tBT X − tBRX)
2 (2.1)

where tiT X , tiRX refer to the timestamps when node i transmits or receives a packet in
its clock time.

Since no synchronization is required, TWR is very flexible and has mostly used in a
distributed system. The disadvantage of TWR is that the time used for the two-way
communication is higher than TOA or TDMA, which can limit the scalability of the
system.

UWB technology has attracted substantial attention due to its high localization accuracy.
Anchor-based UWB localization has been widely commercialized [15,16] using TDOA, a tech-
nique which requires a sub-nanosecond clock synchronization between anchors [17]. Com-
pared with TOA and TDOA [54,55], TWR [18] is a more flexible solution, enabling arbitrary
pairs of nodes to perform distance measurements at any time. Therefore, we choose TWR
ranging solutions in our work.

2.2.2 UWB Network Control

TWR has started receiving more attention on multi-robot localization [56–59]. These results
show the advantages of UWB for multi-agent systems. However, due to the small number of
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UWB nodes in the experiments, network usage has not yet been explored. Ridolfi et al. [60]
analyzed the scalability of UWB-based localization and showed that coordination protocols
had the huge impact on scalability. Qin et al. [17] designed a BLAS system that used UWB
for the localization of a multi-agent system. They divided the agents into parent and child
groups. They proposed a distributed clock synchronization in parent agents to maintain a
high clock precision. Then they used TOA to locate the child groups. The biggest advantage
of this system is that the number of child agents is theoretically unlimited because they only
passively receive the pings from the parents. Although the child nodes have no conflicts,
the communication between parent agents still needs to be coordinated. Qin et al. use
round robin as distributed TDMA to achieve collision-free broadcasting from parent agents.
However, this solution assumes all the parent agents are fully connected, which limits the
scalability of the system. Macoir et al. [61] also used an anchor-based TDOA strategy, but it
is designed for relatively large-scale networks. The authors divided the usage of the network
into multiple small cells to cover large areas. Unlike the passive child nodes from [17],
Macoir et al. [61] scheduled active slots for mobile tags to broadcast messages and use a
server connected with the anchors to calculate the positions. The server is also responsible
for slot assignment and thereby forming a centralized system.

Zhu and Kia [62] proposed a negotiation-based dynamic TDMA algorithm across the UWB
network, G.M. ter Horst [59] developed an anarchic TDMA algorithm based on the DESYNC
algorithm [63]. Both methods only consider one-hop collisions, so that collision can occur for
hidden nodes at neighborhood boundaries.

The most widely used MAC control on UWB is the IEEE802.15.4-2011 protocol [64], inte-
grated with the Decawave 1000 [18] chip, which is the most popular commercial UWB chip
on the market. The protocol uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA-CA) or slotted ALOHA [65, 66] to avoid collisions. However, these two strategies
are only applicable to lightly loaded networks that have a small probability of collisions. In
our case, we want to maximize channel usage for accurate localization. To the best of our
knowledge, this work is the first to apply dynamic TDMA for UWB localization in multi-hop
ad hoc networks with mobile devices.

Compared to the TDMA techniques available for communication networks, our application
has several additional requirements: 1. the maximization of channel usage to increase the
localization frequency; 2. rapid time slot scheduling to account for dynamic topologies; 3. de-
centralization to avoid the need for fixed infrastructure.

The TDMA slot assignment in a wireless network can be seen as an extension of the vertex
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colouring problem in graph theory, with the additional constraint of needing to avoid collisions
in 2-hop neighborhoods [67]. The problem was proven to be NP-complete [68], and several
heuristic solutions were proposed [67–69] to get the near-optimal results with full knowledge
of the network topology.

When considering a distributed system where nodes only receive messages from neighbors,
some works (FPRP [70], DRAND [71], DICSA [72], PCP-TDMA [73]) propose negotiation-
based algorithms to find the smallest frame with conflict-free scheduling. After scheduling,
all nodes in a network need to agree on the same frame size to execute the slot schedule
with the same frame of reference. We believe that this strategy is not the best strategy
for a highly dynamic network, as it would require fast global consensus of the frame size
across the network. Furthermore, when a node makes a proposal during negotiation, it has
to wait for the feedback of all neighbors, potentially leading to long convergence times if the
neighborhood size is large or the network topology is complex. For similar reasons, practical
mobile networks use fixed-length frames such as USAP [74] for military telephone networks
and VeMAC [75] for vehicular ad hoc networks (VANETs).

Since the size of the frame should be larger than the total number of nodes in the network,
these protocols may have several unused time slots. Researchers found a balance between
frame size stability and channel usage by doubling or halving the frame size, such as in
USAP-MA [76] and Dynamic-TDMA [77]. Cao and Lee proposed VAT-MAC [78], a VANET
with a changing frame size, relying on a roadside unit (RSU) infrastructure. In our method,
we use a fixed frame size that equals the total number of nodes allowed in the system. Despite
this static allocation, we have high channel usage since we always allocate all the available
time slots to the neighborhood’s devices.

2.3 Sensor Fusion with UWB/IMU/Camera

In this part, we assume the UWB network control allows each robot in the system can
have collision-free ranging to its neighbors. All robots in the system reach a consensus on a
coordinate frame. Then, we study how each robot can estimate its own odometry by fusing
UWB and IMU measurements without or with camera image inputs.

Starting with the minimal configuration, we explore the literature of tracking with only IMU
and UWB. Then we introduce the concept of SLAM to review the literature related to the
odometry estimation using IMU, UWB, and a monocular camera. At last, we introduce the
cooperative localization of the multi-robot systems.
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2.3.1 Tracking With IMU and UWB

By introducing the use of UWB and a static anchor in the environment, the problem is single
anchor localization or source localization.

Many researchers have studied single anchor localization, especially for underwater robotics [79,
80]. Underwater robots usually use acoustic sensors, top-of-the-line IMUs, and expensive
doppler sensors. Guo et al. [81] proposed a cooperative relative localization algorithm. They
used an optimization-based single-beacon localization algorithm to get an initial position for
collaborative localization. However, they only observed a sine-like moving pattern and they
required a velocity sensor. Similar with a recent work proposed by Nguyen et al. [82], they
also used odometry measurements from optical flow sensors. In our study, we only use UWB
and a low-cost IMU, dropping the need for a velocity sensor.

To better understand the single anchor localization problem, which is typically non-linear
because of distance and angle, an observability study is necessary. Based on the ground-
work of Hermann and Krener [83], researchers have studied the observability of range-only
localization system, from one fixed anchor [80] to the relative range and bearing measure-
ments between two mobile robots [84]. Bastista et al. [85, 86] used an augmented state to
linearize the problem, enabling classical observability analysis methods. A recent study [87]
explored the leader-follower experiment for drones with UWB ranging between robots, also
with velocity measurement either from the motion capture system or optical flow. However,
all these studies assumed the velocities were available as a direct measurement, which we do
not have.

Although we do not have velocity sensors, the system still needs velocity to be observable.
Getting a reliable velocity from a low-cost IMU or UWB is challenging: the integration of
acceleration drifts dramatically using low-cost MEMS IMU sensors [88, 89]. For position
estimation, IMUs are often combined with other sensor measurements, like GPS, multiple
anchors [90], and cameras [91].

One straightforward way to estimate velocity is the distance change from a UWB anchor
when the robot is moving along a radical line from the anchor. This situation is rarely
lasting in reality, but the range changing pattern can be used as a speed estimator. We
propose a method based on simple geometry relations under the assumption that the robot
moves at constant velocity. The estimated speed coupled with data from the IMU gyroscope
can provide a velocity estimate to keep the system observable. Finally, we use an EKF to
fuse range, orientation, and velocity estimation to get the robot pose.
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2.3.2 Simultaneous Localization and Mapping (SLAM)

SLAM has been studied intensively for more than thirty years [33, 92–94]. As the name
suggests, SLAM is a process by which a mobile robot can build a map of the environment
while localizing itself on the map. The map here represents a collection of features with
the location information. For example, it can be a set of 3D visual features from visual
sensors,or line and corner features from LiDAR sensors. We indicate this optimization state
as X = {X0,X1, . . . ,Xn, f0, fi, . . . , fk}, where Xi represent the pose of a robot at the time
step i, n is the current time step, fj represent the position of the feature j, and k is the
maximum number of features tracked, as shown in Fig. 2.3. The goal is to get the optimal
result of X with a set of measurements Z = {z0, z1, . . . , zq}.

X ∗ = argmax
X

p(X|Z) (2.2)

= argmax
X

p(Z|X )p(X ) (2.3)

For implementation, the architecture of a SLAM system can be divided into two parts called
the front end and the back end, shown in Fig. 2.4. The front end depends on the sensor,
which has a function converting the raw measurements into variables that the back end can
easily process. The nature of the back end is a Maximum a posteriori (MAP) optimiza-
tion as explained above. Taking vision-based SLAM as an example, the front end extracts
the pixel localization of some distinguishable points in the image, using feature descriptors
(BRIEF [95], ORB [96], etc.). The front end defines the measurement model zk = hk(X ) + ε,
where ε is the measurement noise and k indicates the kth feature. For the camera, h() is the
projection of a 3D point in a pixel in the image plane. With incoming observations, the back
end is employed to solve the MAP (Equ. 2.2) interactively to estimate the 3D localization of
the tracked points as well as the camera poses.

Assuming that the measurements in Z are independent, the MAP problem can be factorized
into a factor graph format [97] as :

X ∗ = argmax
X

p(X )
q∏

t=1
p(zt|X ) (2.4)

Since maximizing the posteriori is the same as minimizing the negative log posteriori, the
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Figure 2.3 SLAM is the problem of constructing a map of an unknown environment while
simultaneously localizing itself on the map.
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Figure 2.4 The architecture of a SLAM system. The front end is sensor dependent with a
function to transform the raw measurements into the variables that the back end can easily
process. The nature of the back end is a Maximum a posteriori optimization.
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MAP estimation in Equ. 2.4 can be written to :

X ∗ = argmin
X
−log

(
p(X )

q∏
t=1

p(zt|X )
)

(2.5)

= argmin
X

m∑
t=1

p(zt|X )− p(X ) (2.6)

Assume the measurement noise ε follows a zero-mean Gaussian distribution with an infor-
mation matrix Ω (inverse of the covariance matrix), the measurement likelihood element in
Equ. 2.5 follows :

p(zt|X ) ∝ exp(||ht(Xt)− zt||2Ωt
) (2.7)

p(X ) ∝ exp(||h0(X )− z0||2Ω0) (2.8)

Then Equ. 2.5 can be written into a more explicit nonlinear least squares problem as

X ∗ = argmin
X

m∑
t=0
||ht(Xt)− zt||2Ωt

(2.9)

The least square problem can be viewed as finding the set of robot poses and the map points
which have the minimal residual with measurement functions. Optimization solvers such as
Gauss-Newton are commonly used via successive linearization. Current SLAM libraries (e.g.,
GTSAM [98], g2o [99], Ceres [100]) are able to solve problems with large number variables
in a few seconds.

Even though, as the robot moving, the set of state variables becomes larger and larger, es-
pecially in long-term autonomy. It is not practical to estimate the entire trajectory from the
start. To keep the state size manageable, key frame selection [25, 101] and sliding window
techniques [102, 103] are used to limit the number of variables in the optimization problem.
When the old frames and features are removed from the sliding window, proper marginaliza-
tion [23,104] converts the marginalized factors into a prior factor for the optimization.

In our work in Chapter 6, we propose a novel double layer sliding window system to reduce
the accumulated error using UWB and integrate it with the state-of-the-art VIO SLAM
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framework.

2.3.3 SLAM with IMU, UWB, and Camera

Monocular visual-inertial odometry [20] is a popular choice as it provides good state esti-
mation performance with a minimal sensor configuration. Although state-of-the-art VIO
algorithms (e.g. SVO [22], VINS-Mono [23], DSO [105]) can reach very high accuracy in
relative translation and orientation, the accumulated drift can still be an issue: any small
orientation error can lead to large end-point error. Our system leverages UWB ranging
measurements to correct the accumulated error. We developed our system based on VINS-
Mono [23], which is a robust and versatile state estimator which uses a sliding window tightly
coupled nonlinear optimization for visual and IMU measurements.

UWB technology, as a localization solution on its own, has attracted a lot of attention in
recent years both in research and industry for its decimeter localization accuracy. However,
most results are based on a well-calibrated multi-anchor setup [54, 106–109], which is not
applicable for navigation in unexplored, unstructured environments. Single anchor setup
is desired as the easy deployment [29]. Wang et al. proposed a system using cameras,
IMU and UWB to bypass the complexity of loop closure [110] . However, they still used
multiple preconfigured UWB anchors. Their UWB module provided coarse drift-free global
position and VIO identifies the local trajectory. On the contrary, in this paper we use only
one anchor, placed in an unspecified location. A system by [111] had a similar spirit to
ours. They started with one UWB anchor and keep dropping anchors from a moving robot.
Unfortunately, their experimental results were available only in simulations for one sequence
of the EuRoC dataset [112], with five simulated anchors. A closely related work published
recently [113] combined monocular camera with UWB ranging to a single anchor. The system
was developed based on ORB-SLAM [25] and used UWB ranges to estimate the scale after
recording the first batch of data. In our case, we also integrate the ubiquitous IMU to enable
true scale all the time. We design a double layer sliding window algorithm, which effectively
fuses accurate VIO and range constraints along the trajectory.

2.3.4 Multi-robot SLAM

Multi-robot SLAM has gained recent attention for the increased viability and accessibility of
multi-robot systems. A survey [114] has shown a comprehensive survey of multi-robot SLAM
and points out one key issue: relative pose estimation. Most current multi-robot SLAM
systems solve this issue by analyzing inter-robot loop closures, either in centralized [115] or
distributed [116, 117] fashion. The distributed approach is more robust, but it is harder to
implement in practice: robots need to exchange map data to get the feature database for
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future loop closures, and distributed optimization usually requires additional communication
and computation. Ranging measurements can assist in relative pose estimation. Trawny et
al. provided theoretical proofs and simulations that showed how six range measurements can
be used to get the transformation matrix between two robots [6]. With the observed gravity
direction. [57] adopt it to 4DOF relative pose estimation with a UWB setup, and used it for
merging maps for VR applications. Both methods required mutual ranging measurements
over long trajectories. In our solution, robots can estimate the transformation matrix as
soon as they can get two measurements from their neighbors, which meets the requirement
of real-time transformation estimation during robot rendezvous. These two methods [6, 57]
are solutions when no common anchors are present in their records and can be combined with
inter-robot loop closures to improve the transformation results. A recent work [58] presented
a decentralized Visual-Inertial-UWB fusion for relative state estimation. They combined
VIO, UWB and vision detectors of YOLOv3 [118] to track the relative state of neighbors.
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CHAPTER 3 ARTICLE 1: DYNAMIC RANGE-ONLY LOCALIZATION
FOR MULTI-ROBOT SYSTEMS

Preface: The starting point of this research is from the emergence of multi-robot system
or swarm robotics. Multi-robot system have potential to help human in many applications,
such as disaster response. Coordination and localization is important for the system to
work collaboratively. In the article presented in this chapter, we propose a strategy for a
group of robot deployed in a unknown GPS-denied environment. With their communication
and ranging measurement, they can maintain a global coordinate frame and tracking their
position in a distributed manner.
Full Citation: Y. Cao, M. Li, I. Švogor, S. Wei, and G. Beltrame, “Dynamic Range-Only
Localization for Multi-Robot Systems,” IEEE Access, vol. 6, pp. 46527–46537, 2018.
Personal Contributions: Y. Cao conceived of the presented ideas, designed and imple-
mented the simulations. Y. Cao wrote the manuscript with support from M. Li, G. Beltrame,
and I. Švogor.

Abstract
The localization problem for multi-robot teams has been extensively studied with the goal
of obtaining precise positioning information, such as required by a variety of robotic ap-
plications. This paper proposes a dynamic localization approach which exploits multiple
robots equipped with range-only ultra–wideband sensors to create and maintain a common
self-adaptive coordinate system. For 2D localization, we use three robots with relative range
measurements to build a global coordinate system. We recursively apply an extended Kalman
filter, which results in accurate position estimates over time. We also propose a reconfigu-
ration approach that prevents error accumulation from ultra–wideband sensors. The appli-
cability of our approach is tested through a campaign of simulations, which show promising
results.

3.1 Introduction

Multi-robot and swarm robotics systems have a high potential to solve various real–world
challenges, such as underwater exploration, establishing network coverage, search and rescue
missions, etc. [36]. A key advantage of swarm robotics in contrast to traditional approaches,
is its decentralized architecture, which is most suited to highly dynamic and harsh environ-
ments, where it is hard to achieve sufficient system reliability and robustness using centralized
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systems. In addition, with a decentralized approach, solutions tend to be simpler and more
flexible [37]. In this paper, we focus on a decentralized system architecture for the purpose
of robot localization.

As one of the fundamental challenges in mobile robotics, robot localization has been exten-
sively studied in the past [119–121], using various approaches, sensors, and for different
application scenarios [30, 122–124]. In general, based on their architecture, current local-
ization methods can be classified in two main groups: global/centralized (e.g., using global
positioning system, overhead cameras, motion capture systems, etc.) or relative/decentralized
(e.g., using laser range finders, ultra–sonic sensors, onboard cameras, etc.).

Though a great number of publications address localization, there are still open challenges,
specifically in the context of fully decentralized systems, as are swarms of robots.

In this paper, we propose a decentralized localization system for swarm robotics with ultra–
wideband (UWB) ranging sensors in a two-dimensional plane. The selection of this particular
sensor is due to its accuracy, low cost, and the fact that it is not limited to line–of–sight.
However, localization using range-only information requires addressing of several issues.

First, the orientation of the robots needs to be estimated, and second, UWB range measure-
ments become less accurate with distance, which requires to mitigate error accumulation.
Our method addresses these issues in three stages: a) initialization, b) localization, and c)
reconfiguration as illustrated by Fig. 3.1. In our approach, the swarm collectively creates
and maintains a common coordinate system that is used for the localization of individual
robots, while being continuously updated to minimize the position error coming from UWB
measurements.

The primary goal of the initialization stage is to select three reference robots that are used to
create a coordinate system. Initially, the swarm members elect the first robot, also called the
leader. The choice of the leader is based on neighbor density, and the leader itself becomes one
of the reference robots. After this step, the leader selects two additional robots which are then
used to create a coordinate system. Finally, this coordinate system is shared with the other
members in the swarm, which use the information to compute their position1. As the robots
move to perform their tasks, their coordinates change and the distances can increase, thus
building up estimation errors. In practice, pure trilateration is not suitable for continuous
localization. This issue of the dynamics of the system is handled in the localization stage.

1The assumption used here is that all the robots within the swarm are able to communicate within the
operating area.
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Figure 3.1 The system structure of dynamic range-only localization of multiple robots

In the localization stage, an extended Kalman filter (EKF) is applied for localization estima-
tion. The EKF only requires the initial position of any given robot, and performs continuous
localization using the common coordinate system. As the robots are moving, the UWB mea-
surement error also builds up for the position of the reference robot, so this can potentially
introduce additional error.

In the final stage, reconfiguration, we select a new set of reference robots based on the cen-
troid of the swarm when the measurement uncertainty passes a given threshold, significantly
reducing the estimation error. In the following sections, we describe all stages in detail, and
show the accuracy measurements resulting from a simulation campaign.

To summarize, the contributions of this paper are:

(a) a dynamic self-adaptive approach for multi-robot localization based on range-only in-
formation,

(b) a method for determining a swarm central point and coordinate–system reconfiguration
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for the purpose of mitigating UWB sensor measurement error,

(c) a reconfiguration mechanism for the dynamic adaptation of the formation dynamics
and to avoid error accumulation, and finally,

(d) an application of EKF to obtain accurate position estimation of moving robots using
UWB sensors.

The rest of the paper is organized as follows: Section 3.2 makes a brief review of localization
sensors, strategies, and estimation models; Section 3.3 illustrates the proposed localization
system; in Section 3.4, we introduce the EKF and we detail the dynamic localization esti-
mation; we evaluate the proposed approach is evaluated in simulation in Section 3.5; finally,
Section 3.6 concludes the paper.

3.2 Related Work

Localization is a well known and explored research subject: to present a structured and
clear picture of the related work, this section is divided in three main topics in localization:
sensors, strategies, and estimation models.

3.2.1 Localization Sensors

The application of traditional sensors, such as RGB or IR cameras, laser range finders,
ultrasonic sensors, global positioning system (GPS), etc., in swarm robotics can be limiting.
This is due to the fact that these sensors typically require heavy processing, or can only be
used by a centralized system, or only work in certain types of environments.

Localization methods which use high-resolution RGB cameras usually rely on a vision sub-
system which recognizes a set of QR markers (e.g. AprilTags [125]), which have a significant
impact on processing resources [126]. To avoid this, researchers often use motion capture sys-
tems (e.g. Optitrack, Vicon [35,127]) with a set of robots carrying physical IR markers that
are unique for each robot. Although these methods are very precise, they are limited to a lab-
oratory environment. In addition, the camera–marker solutions usually require centralized
processing, which distributes the positions of the robots through a shared communication
channel.

The use of GPS and derivatives (DGPS, RTK) is a convenient options, but its application
is limited to a restricted set of environments. To ensure proper signal reception, it is often
necessary to have a clear view of the sky, which mandates outdoor usage, with a meter
scale precision. This is an ongoing issue for underwater, indoor, and robots for planetary
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exploration. In such environments, researchers often apply acoustic-based sensors or laser
range scanners to use relative measures of the robot’s environment for its localization. While
there have been numerous successful applications of these, the decision between the two
usually involves a tradeoff between precision and price. Since swarm robotics assumes tens,
hundreds, or even more robots, this can be an issue. In addition, the usage of these sensors
is limited to line–of–sight and requires significant processing capabilities.

Ultra-Wide Band (UWB) sensors are a promising solution for localization, considering the
cost per unit, accuracy, and the available bandwidth [54]. They are advantageous for their
inherent data transmission features, while not being restricted to line–of–sight. However,
UWB sensors did not receive much attention in robotics due to their drawbacks in resolution
and accuracy [128]. Recent works by Gonzalez, et al. [106], Hollinger et al [129], Prorok
and Martinoli et al. [54,130,131] have shown that UWB sensors can be successfully used for
localization, with accuracy around 5 cm. In particular, UWB sensors are suitable for swarm
robotics as they can be used in a fully decentralized manner [132].

3.2.2 Localization Strategies

To successfully perform localization, the swarm of robots needs to agree on a reference co-
ordinate system, which is used to transform all relative measurements into position data
for each member of the swarm. A simple and straightforward approach is to use a fixed
reference frame [46, 47]. This requires a set of beacons, which can either be static robots or
external devices which are not part of the swarm. However, with this approach the general
assumption is that a reference coordinate frame is known beforehand. This presents a major
challenge for a swarm which is to be deployed in an unknown environment, with no access to
global positioning, e.g. an underwater sensor array. Such scenario does not assume a-priori
information about the environment nor a consensus on the reference frame. While this issue
has been addressed in the past, current solutions require static swarm members that other
robots use for localization (e.g., [5, 48]). Indelman et al. [49] use a probabilistic approach to
achieve a consensus for the reference frame when dealing with spurious measurements (i.e.,
false negatives). In a recent publication, Shirazi and Jin [50] developed a localization method
that requires a swarm of robots to be surrounded by several static robots which act as beacons
to determine a common coordinate system. Using three robots, their algorithm provides co-
ordinates for other robots within the team using relative trilateration. While this approach is
promising, it requires that the robots be stationary in the localization stage. A good overview
of traditional distributed estimation techniques, such as Non-Bayesian, Bayesian and Factor
graphs is given by Wymeersch et al. However, in contrast to our approach, authors combine
communication networks with a positioning system [133]. In our paper, the communication
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network is used only for information sharing. The range sensors and non–linear Kalman
filters are then applied to perform localization and infer position information.

3.2.3 Estimation Models for Localization

In multi-robot system, collaborative localization is a more robust approach to the localization
problem [134]. While there are a variety of strategies, the prevailing methods use probabilistic
models, which caught on in the early days of simultaneous localization and mapping (SLAM).
Thrun et al. provided a general framework which used probabilistic methods, such as Monte–
Carlo and Markov chains to localize robots, while keeping track of uncertainty [31, 135]. In
such approaches, each robot is assigned a probabilistic cloud of particles representing its
position, which is reduced when a robot detects a known feature in the environment, or
another robot. Prorok et al. proposed a similar approach for multi-robot localization using
a range and bearing sensor [136]. Their goal was to minimize the overall complexity of the
particle filter based approach by defining reciprocal sampling which allowed to reduce the
number of necessary particles. Luft et al. recently proposed a fully decentralized localization
algorithm based on the EKF [137]. The algorithm tracks inter–robot correlations and it does
not require measurement storage. Their method focuses on localization, assuming limited
communication to neighboring robots. In this paper, we adopt a similar approach using EKF
filters while a relative coordinate system is built based on range-only UWB sensors.

3.3 Range-Only Self-Organized Localization

As a team of robots equipped with UWB sensors is deployed within an unknown area, their
localization becomes a challenge. These robots need to use only range information to create
a common coordinate system in which every robot can estimate its position and that of
its team members. To be applicable in the real world, the entire procedure should be fully
automated, self–organized, and maintained in time so that the robots can seamlessly perform
their tasks.

To complete this challenge, we propose a localization procedure divided into three consecutive
stages: a) localization system initialization, b) localization and state estimation using an
EKF, and c) the localization system dynamic reconfiguration.

3.3.1 Stage 1: Localization System Initialization

As initial state, we assume that all members of a multi-robot team are scattered in an
unknown region. To successfully perform localization, the robots first need to agree on a
common reference frame, i.e. robots need to develop a common coordinate system. Since we
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are dealing with range-only information, the approach to developing a common coordinate
system in this paper requires three robots, namely a leader and two reference robots. The
imaginary line connecting the reference robots then represents the x–axis, while the imaginary
line crossing through the leader robot as an orthogonal projection to x–axis, represents the
y–axis. After this, a common coordinate system can be shared between all robots, which can
infer their positions using trilateration.

In general, the robots in the multi-robot team are classified into three categories:

• reference robots – after initialization, each reference robot keeps estimating its position.
In addition, robots that have been localized can be added into a shared table as reference
robots;

• non-reference robots – use the position of reference robots to estimate an initial position
based on trilateration. The non-reference robots localized by the trilateration become
reference robots;

• marginal robots – represent the robots at the boundary of the current reference frame
(further described in the following).

The information between robots is shared by means of a bio–inspired distributed consensus
system called Virtual Stigmergy. The Virtual stigmergy can be seen as a tuple space shared
between all the robots in the swarm via a communication medium [138]. We refer to this
tuple space as the virtual stigmergy table (VST). This means that, once a robot stores some
data into the VST, this information will gradually propagate until it is shared by all swarm
members within communication range, although not instantly. For this work, we described
the robots’ behavior with a domain–specific programming language for swarm robotics called
Buzz, in which the VST and its propagation are built-in [139].

Using the VST, all robots reach a consensus on which robot is elected leader, along with
two additional reference robots. To clarify further, consider the initialization phase, which is
divided in three tasks: leader robot election, reference robot selection, and finally coordinate
system creation and propagation.

Leader robot election

The election for the leader robot is by bidding on neighbor density. Therefore, the robot
which has the most neighbors within a given range will be selected as a leader. Such choice is
based on two reasons: a) the range of the UWB is limited, meaning that picking any random
robot would not guarantee that it will have reference robots within its range, and also b)
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selecting robots which are clustered closer together reduces the initial measurement error of
the UWB (as it is increased with distance). We would emphasize that in the initialization
stage, we develop an initial (possibly sub-optimal) coordinate system that is improved in the
next stages.

Initially, each robot obtains the number of its neighbors and offers it as a bid in the VST.
This information is propagated between the robots, and once the robot with most neighbors
becomes known, it is selected as a leader, by its unique identifier (ID). Fig. 3.2 shows this
step, and illustrates several differently colored candidates. In this example, the red candidate
has the highest number of neighbors and it is selected as a leader.

Figure 3.2 Leader election based on distributed consensus

Reference robots selection

Once the swarm determines the leader, it needs two more reference robots to create a common
2D coordinate system. The reference robots are selected based on the following criteria: a)
a robot is within the UWB measurement range of the leader, b) robot is the closest to the
leader, so that it has lower measurement error from the UWB sensor. Fig. 3.3 illustrates two
selected robots (a, b, marked in yellow), which are used in the following step to create the
coordinate system.

To clarify the proposed approach, Algorithm 1 (lines 1–27) provides in-depth details. The
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Figure 3.3 Reference robots (red and yellow dots) create coordinate system

algorithm starts by initializing all the necessary local variables (lines 1–3);

where leader_id stores the identifier of the elected leader, reference_robot stores the selec-
tion of reference robots, leader_election is a flag which indicates whether the procedure of
electing the leader is finished, and finally, bid contains the number of neighbors of a current
robot within a certain range (using a UWB sensor).

Once they reach the main while loop (line 4), robots read the current highest bid, i.e. number
of neighbors that is shared via Virtual Stigmergy, using the VST.get_leader_bid() operation.
If the current bid is lower than the one that a current robot has, it will swap its value,
along with its identifier in the VST. This process is continuously repeated until a barrier is
triggered.

In this context, a barrier refers to a mechanism which halts the further execution of the pro-
gram until all robots reach consensus. In this case, they wait for everyone to have a chance
to compare its bid. The barrier is a direct implementation of consensus among robots in the
swarm. Essentially, it uses the VST, and a swarm table (a construct which contains the infor-
mation about all swarm members in a decentralized manner) [138]. Moreover, once the op-
eration VST.leader_barrier() returns True, the leader election is complete. Afterwards (lines
16–27), if the current robot is the leader robot, it sorts its neighbors based on distance and
makes a robot_list. Every couple of robots in the list is checked not to be forming a line with
the leader by function check_in_line. Finally, the leader selects its two closest non-colinear
neighbors as references and writes their identifiers into the VST. Also, (lines 28–30) the same
robot constructs the common coordinate system with the create_coordinate_system(), which
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Algorithm 1: Coordinate system initialization phase
input : Virtual stigmergy table (VST)
output: Virtual stigmergy table with robots l, a, b and a coordinate system.

1 leader_id, reference_robot(.a, .b)← ∅;
2 leader_election← true;
3 bid← neighbors.count();
4 while leader_election do
5 if bid < VST.get_leader_bid() then
6 leader_id← VST.get_leader_id();
7 else
8 VST.get_leader_bid()← bid;
9 VST.get_leader_id()← id;

10 leader_id← id;
11 end
12 if VST.leader_barrier() then
13 leader_election← false
14 end
15 end
16 if id == leader_id then
17 robots_list = neighbors.foreach().sort_by_dist();
18 for roboti, roboti+1 from robots_list do
19 if check_in_line() then
20 robots_list.delete(roboti)
21 end
22 end
23 reference_robots.a← robots_list[0];
24 reference_robots.b← robots_list[1];
25 VST.reference_robots.a← reference_robots.a;
26 VST.reference_robots.b← reference_robots.b;
27 end
28 if id == leader_id then
29 create_coordinate_system();
30 end
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uses the barrier mechanism to wait for all robots to confirm that the system was received.
The details on the coordinate system creation are given in the following.

Building a common coordinate system

After electing the leader along and two companion reference robots, we can create a coor-
dinate system. Although our approach was partially inspired by the work of Shirazi and
Jin [50], we propose a more intuitive way of creating a common coordinate system, which is
performed by the leader robot. Fig. 3.3 also illustrates that the reference robots a and b lie on
the x–axis, while the leader robot l lies on a positive y–axis, which is an orthogonal projection
on the x axis. We then define the coordinate system using the following equations:

z2
la = x2

a + y2
l = (dla + vla)2,

z2
lb = x2

b + y2
l = (dlb + vlb)2,

z2
ab = x2

a + x2
b = (dab + vab)2,

(3.1)

where zla, zlb, and zab represent the range measurements from robots l to a, from l to b, and
from a to b, respectively. dla, dlb, and dab represent the true distance between two robots,
while vla, vlb, and vab are the corresponding measurement noise, which are subsequently
corrected in the filter. From the above equations, the coordinates of the leader and the two
referent robots are solved in the following form; (0, yl), (xa, 0), and (xb, 0), respectively,
which are determined by the leader using the following equations:

xa = 1
2

(
zab + z2

la − z2
lb

zab

)
,

xb = 1
2

(
z2

la − z2
lb

zab

− zab

)
,

yl =
√
zla − xa

2 =
√
zlb − xb

2.

(3.2)

The leading robot l shares this information, along with the corresponding robot identifier
using the VST. After the propagation of the VST data, all robots share the common coordi-
nate system which is used to calculate their positions and positions of their neighbors. Fig.
3.4 shows how a robot c performs trilateration, i.e. signal intersection from the center points
of the leader robot l (dashed red circle), and reference robots a (green dashed circle) and b
(orange dashed line).

Only during this initial phase while creating the common coordinate system, we require the
robots to be stationary. Afterwards, all robots execute the same EKF localization algorithm
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Figure 3.4 Localization of other robots within the coordinate system

and perform collaborative localization.

Comparing to other similar work by Kurazume et al., Corenejo et al, or Shirazi et al. [5,48,50],
this is a significant improvement, as methods proposed in their work also require some robots
to be static during the entire localization phase. Also, our approach does not require that the
first three reference robots cover the distribution of the entire swarm. If the reference nodes
are not within UWB range, neighbors who are already localized are used for trilateration,
as implemented in our simulations. After the initialization, the robots use EKFs to estimate
their positions with UWB measurements from their neighbors.

3.3.2 Stage 2: Localization and Estimation with the EKF

After the initialization is completed, the initial positions of all robots are fed to the EKF to
continuously estimate their position. Further details on the EKF is provided in Section 3.4.

This concludes the process of creating a common coordinate system and performing the initial
localization. As the robots continue to perform their tasks, the UWB error contributes to the
overall localization error of each robot [140], so the following task is to mitigate the error by
optimizing the selection of robots that are used to create a new and more suitable coordinate
system.
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3.3.3 Stage 3: Dynamic Coordinate System Reconfiguration

Having initialized a common coordinate system, in this stage the swarm is able to use their
individual positions to mitigate erroneous measurements by the UWB, which are increasing
with the distance. In particular, robots are now able to reduce this error by re—electing a new
leader and new reference robots, that are roughly equally distant from all other members, i.e.
those that are closest to the centroid of their distribution within the operating area, rather
than just based on the neighbor density as in the initial stage.

We refer to this stage as the reconfiguration, and it takes place in two cases: immediately
after the initialization of the initial coordinate system and b) whenever the distribution of
the robots has drastically changed from the previous configuration.

The dynamic reconfiguration of the coordinate system involves three steps: marginal robot
selection, reconfiguration triggering, and coordinate system reconfiguration.

Marginal robot selection

While in operation, robots continuously move and consequently their pose estimation changes.
Therefore, the members of the multi-robot team need to keep track of their distribution, and
in particular the change of this distribution since the previous reconfiguration.

For this purpose, we developed an approach by which robots continuously select marginal
robots, i.e. robots closest to the edge of their distribution. This is performed in a similar way
as the bidding for the leader. However, in this case, using the VST, robots compare their
minimum and maximum x and y coordinates with the goal of determining the top-, bottom-,
left-, and right-most robots. Note that we assume that initially all robots are randomly
distributed within a 2D Euclidean plane. Therefore, each robot writes its position in VST
only if its position is further away than what already written in the VST, hence becoming a
marginal robot.

The position of marginal robots is then used to calculate the centroid dC of a tetragon
bounded by their position. This centroid position is assumed to be the center point of the
distribution of robots, and it is used as a candidate point around which the new leader should
be found. Such tetragon, along with the centroid, is illustrated in Fig. 3.5. The point cC
represents the origin of a current coordinate system.

Reconfiguration request trigger

The robots continuously calculate the distance between the current origin cC and the can-
didate origin dC, and if its value is beyond a given threshold, it triggers a reconfiguration
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Figure 3.5 Selection of marginal robots (red dots)

request.

Coordinate system reconfiguration

Robots are notified that the reconfiguration is about to take place via the VST and go into
the same process as in the initialization step described in Section 3.3.1.

Namely, robots start the selection process for the leader robot l, which is followed by the
selection of two new reference robots a and b, as depicted in Fig. 3.6. Note, however, that
the leader is selected as the robot closest to the calculated dC, as in this scenario the bidding
criterion is the positional information of dC, instead of the neighbor density.

Figure 3.6 Reconfiguration of coordinate system
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Furthermore, once the leader and reference robots are selected, the following procedure of
coordinate system propagation and continuous localization are the same as previously de-
scribed in Section 30. Only after the reconfiguration process is complete, robots start to use
the new coordinate system, along with the new position within that reference frame.

Algorithm 2 shows the details of the proposed approach for continuous coordinate system
reconfiguration. The input of the algorithm is the VST and the position of the robot.

Algorithm 2: Coordinate system reconfiguration
input : VST, position
output: VST with all robots sharing the new coordinate system

1 VST.marg_robots← ∅ ;
2 reconfiguration_distance← inf.;
3 new_ref_robots(.leader, .a, .b)← ∅;
4 while VST.marg_robots_barrier() do
5 if compare(position,VST.marg_positions) then
6 update(VST.marg_robots, position);
7 end
8 end
9 VST.marg_centroid = center(VST.marg_robots);

10 if dist(VST.marg_centroid, VST.cur_centroid) > VST.marg_rob.threshold then
11 if min(dist(position,VST.marg_rob.centroid)) then
12 robots_list = neighbors.foreach().sort_by_distance();
13 new_ref_robots.leader ← robots_list[0];
14 new_ref_robots.a← robots_list[1];
15 new_ref_robots.b← robots_list[2];
16 end
17 VST.ref_robots← new_ref_robots;
18 VST.leader_id← new_ref_robots.leader;
19 if id == VST.ref_robots.leader : then
20 VST.coord_system=create_coord_system();
21 end
22 end

The algorithm starts by initializing local variables: VST.marg_robots which is used to store
current marginal robots, and new_ref_robots(.leader, .a, .b) which stores the new set of
reference robots (i.e. leader and two references). The while loop (lines 4–8) uses the barrier
mechanism through which we ensure that all robots reach a consensus on marginal robots.
Specifically, all robots compare their positions with the current position of marginal robots
using the compare operation. This operation returns True if and only if the minimum
and maximum coordinates are such that a marginal robot needs to be replaced, which is
performed by the update operation. Once the barrier is reached, the following step (line 9)
calculates the centroid of the tetragon bound by the marginal robots, and this value is stored



37

in VST.marg_centroid. After this, all robots are aware of the centroid position and are able
to obtain reference robots. If the threshold is triggered (line 10), the closest robot (again
agreed through the VST, line 11) obtains the list of all their neighbors sorted by distance
(line 12). The first three robots are selected as reference robots (lines 13–15). Finally (lines
17–20), the new coordinate system is shared by the leader through the VST.

The proposed reconfiguration process is running continuously to minimize the erroneous
measurements by the UWB minimal on average, with respect to the distribution of robots.

3.4 Dynamic Localization Estimation with EKF

In our system, every robot continuously estimates its location in the coordinate system after
initialization or reconfiguration. In the beginning, a robot only needs the initial coordinates
provided by trilateration, which is kept updated with an EKF estimator. Other high-order
Kalman filters could also be considered as future work, when dealing with very high nonlin-
earities [141].

In this paper, we assume that a team of mobile robots is operating in a 2D Euclidean plane
and the position tracking is based on range-only measurements, which is a marked difference
from state-of-the-art scenarios using bearing information. It is reasonable to assume that the
initial position of each robot can be accurately computed based on the range measurements
in the initial frame of reference [142]. Assuming that robot i can move in 2D with speed vi,
in each time–step it can only move within a circular region centered in its position. Note
that since the motion of a target robot can be reliably predicted for the next time step only,
our objective is to locate and track the position of robots at consecutive time steps.

3.4.1 State Estimation

Extended Kalman filter

As physical processes and/or observation models are generally nonlinear, we cannot directly
apply a linear Kalman filter. To overcome this issue, the standard approach is to use a lin-
earized EKF model, obtained by continuously linearizing models before applying estimation
techniques [143–145].

Let xi(k) = [xi(k) ẋi(k) yi(k) ẏi(k)]T be the i-th robot state at time tk. (xi(k), yi(k)) is the
i-th robot position in Cartesian coordinates and the dot notation indicates differentiation
with respect to time. Considering a random walk, the motion model can be given in the
following form:
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xi(k) = Fkxi(k − 1) + wk,

Fk = I2 ⊗

1 Tk

0 1

 , (3.3)

where wk is the process noise, which we assume white Gaussian, Tk = tk − tk−1, I2 is a
2 × 2 identity matrix, and ⊗ denotes the Kronecker product. At time tk, a robot produces
range-only measurements to reference robots.

In most practical navigation applications, a reference trajectory does not exist beforehand.
Therefore, the EKF uses the current estimated state at each time step k as a linearization
point. If the filter operates properly, the linearization error around the estimated solution
can be maintained at a reasonably small value [145,146].

Generally, the EKF algorithm can be described as:

x̂k|k−1 = Fkx̂k−1,

Pk|k−1 = Fk−1Pk−1FT
k−1 + Gk−1Qk−1GT

k−1,

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + MkRkMT
k

)−1
,

x̂k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1, 0

))
,

Pk = (I−KkHk)Pk|k−1,

(3.4)

where ·̂ stands for an estimate, P is the state covariance matrix,Q the process noise covariance
matrix, R the measurement noise covariance matrix, F the state transition matrix, K the
Kalman gain, H the observation matrix, G the Jacobian matrix with respect to process noise,
andM the Jacobian matrix with respect to measurement noise. Note that the state-transition
function is linear, and the observation function h(·) is non–linear.

3.4.2 Measurement Model

At tk+1, robot-i measures its range dj(k + 1) to the reference robots, j = 1, · · · , N , where N
is the number of reference robots. Therefore the measurement equation is:

z(k + 1) =


d1(k + 1)

...
dN(k + 1)

+


wd1(k + 1)

...
wdN

(k + 1)

 , i = 1, · · · , N. (3.5)

dj(k + 1) =
√

∆x2
i,j(k + 1) + ∆y2

i,j(k + 1), (3.6)
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where ∆xi,j(k + 1) = xi(k + 1) − xj(k + 1) and ∆yi,j(k + 1) = yi(k + 1) − yj(k + 1) are
the relative positions of i–th and the j–th reference robot, respectively, expressed in current
coordinates. Note also that

w(k + 1) = [wd1(k + 1), · · · ,wdN
(k + 1)]T (3.7)

is the noise in robot i’s measurements, which we assume zero–mean white Gaussian noise
with covariance

Ri(k + 1) = E[wdi
(k + 1)wT

di
(k + 1)] = diag(δ2

di
) (3.8)

and
R(k + 1) = E[w(k + 1)wT (k + 1)] = diag(Ri(k + 1)). (3.9)

The measurement Equation (3.5) is a nonlinear function of the state variable xi. The
measurement-error equation, obtained by linearizing Eq. 3.4 is

z̃(k + 1|k) = z(k + 1)− ẑ(k + 1|k)

≈ Hk+1x̃i(k + 1|k) + w(k + 1),
(3.10)

where

ẑ(k + 1|k) = [ẑT
1 (k + 1|k), ẑT

2 (k + 1|k), · · · , ẑT
N(k + 1|k)]T

ẑT
i (k + 1|k) = [d̂i(k + 1|k)]T

d̂j(k + 1|k) =
√

∆x̂2
i,j(k + 1|k) + ∆ŷ2

i,j(k + 1|k)

∆x̂i,j(k + 1) = x̂i(k + 1|k)− xj(k + 1)

∆ŷi,j(k + 1) = ŷi(k + 1|k)− yj(k + 1)

x̃i(k + 1|k) = xi(k + 1)− x̂i(k + 1|k).

Note that the Jacobian matrix of measurement is given by the following expression:

Hdj ,k+1 =
∂hdj ,k+1

∂xk+1
,

hdj ,k+1 = [d1(k + 1), · · · , dN(k + 1)].

One can observe that the measurement Equation (3.6) is nonlinear and its first derivative
exist, which justifies the use of the EKF.
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3.5 Simulation Results

This section demonstrates and evaluates the proposed approach separately, with ARGoS [147]
and Matlab simulations. Matlab was mainly used as a proof–of–concept, while ARGoS is
a multi-physics simulator, which provides a concrete step towards the implementation of
the algorithm on a team of robots. In addition, ARGoS natively supports Buzz which, as
previously mentioned, implements the VST that is essential for this work.

3.5.1 Simulations of System Initialization and Reconfiguration

Consider a swarm of robots as shown in Fig. 3.7. Here, robots are involved in the bidding

Figure 3.7 System initialization stage: three robots are selected as reference robots to build
a coordinate system.

process to select a leader robot. Each robot has a range within which it can detect its
neighbors, and for this simulation it is set to 2 m (one-floor rectangle represents one meter).
All robots apply Algorithm 1 and achieve the consensus that the robot fb10 is the initial
leader. According to the proposed algorithm, its two closest neighbors, robots fb7 and fb11
are selected as reference robots which it uses to create the initial coordinate system (which
is also illustrated in Fig. 3.7).

Suppose that after the initialization, the reconfiguration process is triggered and a new co-
ordinate system needs to be constructed and shared with all robots. Since in this phase,
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all robots are aware of their positions in a previously constructed coordinate system, four
marginal robots are selected via distributed consensus. As shown in Fig. 3.8 these are fb0,
fb2, fb11, fb12, which together form a tetragon.

Figure 3.8 System reconfiguration stage: a new coordinate system is built with the help of
four marginal robots.

The centroid of this tetragon is marked with a green circle, and the robot nearest to this point
is selected as a new leader, i.e. robot fb5. Using the same strategy as in the initialization
stage, robots fb8 and fb9 become reference robots, which together form a new coordinate
system. Once this coordinate system is propagated to all the robots within the multi-robot
team, the old coordinate system is dismissed.

3.5.2 Validation of Dynamic Localization

As presented in the previous sections, the EKF estimator can be applied for dynamic lo-
calization. In this subsection, this approach is validated with Matlab, having the following
assumptions: a) all robots move randomly, b) the measurements are associated with the white
Gaussian noise to simulate the noise of the real sensor, and finally c) the entire simulation
(including measurements) are updated at 10 Hz.

In a first experiment, we place four robots randomly in an area of 40× 40 m2. The ground-
truth trajectory of each robot, and its estimation are shown in Fig. 3.9, while the localization
error and covariance matrix determinant of the EKF are given in Fig. 3.10. To statistically
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evaluate our results, we run 30 simulations and acquire around 72000 estimations. We divide
the localization error into 25 0.1-meter bins and we present the histogram of the error in
Fig. 3.11 and note that for more than half of our samples, the error falls into the bins around
0.3 meters.
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Figure 3.9 Localization of four robots with the EKF.

In our simulation, we assume that the range measurements arrive simultaneously at each
time step. However, in a distributed system, it is very challenging to achieve such synchro-
nization. This was analyzed by many researchers to provide performance limits [148] and
solutions [149]. Other approaches, such as Unscented Kalman Filters, can also be applied to
reduce the impact of poor synchronization. Since all of these approaches can be applied in
our system to improve the estimation accuracy and mitigate the impact of asynchronism, we
plan to address the issue in future work.

3.6 Conclusion

This work presents a dynamic localization approach based on range-only UWB sensors. By
using a bio–inspired decentralized consensus technique, our approach leverages the commu-
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Figure 3.10 Localization error and covariance trend.

nication between robots to build a common coordinate system which allows for localization
within an unknown region, with only three robots. Therefore, to the best of our knowledge,
the presented work offers an advantage to existing approaches which require static robots
which are used for localization. Furthermore, we developed an algorithm used for the ini-
tialization, and an additional algorithm which is used for the reconfiguration phase. During
the initialization, for a brief time instance, robots which are selected by consensus are static,
create a common coordinate system and propagate it to all other members of a multi-robot
team. After this, a second algorithm, continuously, dynamically and automatically improves
the localization by re–initializing the common coordinate system. The great advantage of
this approach is that in the localization phase, it doesn’t require robots to be static as it uses
the EKF for pose estimation.

Through simulations in Matlab and ARGoS, we have validated and demonstrated that the
EKF can be successfully applied in for the aforementioned purpose.

We plan further investigation into the error characteristics of UWB and robot formations
to extend the presented method to support a variety of robot distributions. We believe we



44

0.0 0.5 1.0 1.5 2.0 2.5
Error(m)

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y 
of

 e
rro

r

Figure 3.11 Histogram of the localization error over thirty experimental runs.

can achieve this by selecting a more appropriate algorithm to determine the marginal robots,
as the current approach can be greatly improved from the standpoint of the necessary data
exchange. Also, our goal is to implement the method on physical robots and consider different
dynamic and complex environments.
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Errata:
1. The third equation of Equ 3.1, "z2

ab = x2
a + x2

b = (dab + vab)2" is replaced by "z2
ab =

(xa − xb)2 = (dab + vab)2";
2. The third equation of Equ 3.2, "yl =

√
zla − xa

2 =
√
zlb − xb

2" is replaced by "yl =√
z2

la − xa
2 =

√
z2

lb − xb
2".

3. In page 37, paragraph 6, the "Considering a random walk" is replaced by "Considering
a constant velocity model".

4. In fifth line of Equ 3.4, the "x̂k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1, 0

))
" is replaced by

"x̂k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1

))
".
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CHAPTER 4 ARTICLE 2: DISTRIBUTED TDMA FOR MOBILE UWB
NETWORK LOCALIZATION SERVICE

Preface: To apply the system proposed in last chapter into real hardware, one serious chal-
lenge posed by available commercialized UWB system is the control of the network. MAC
required in a distributed localization system require high channel usage, dynamic scheduling,
and scalable performance. In this chapter, we propose a novel TDMA algorithm that well
supports UWB shared medium control for the localization purpose. Combining the initial-
ization stage in previous chapter, a real UWB based localization system is presented with
hardware experiments.
Authors: Yanjun Cao, Chao Chen, David St-Onge, and Giovanni Beltrame
Submitted to: Internet of Things Journal, IEEE
Personal Contributions: Y. Cao conceived of the presented ideas, developed the theory,
designed and carried out simulations and real hardware experiments. Y. Cao wrote the
manuscript with support from G. Beltrame and Chao Chen.

Abstract
Many applications related to the Internet-of-Things, such as tracking people or objects,
robotics, and monitoring require localization of large networks of devices in dynamic, GPS-
denied environments. Ultra-WideBand (UWB) technology is a common choice because of
its precise ranging capability. However, allowing access and effective use of the shared UWB
medium with a constantly changing set of devices faces some particular challenges: high
frequency of ranging measurements by the devices to improve system accuracy; network
topology changes requiring rapid adaptation; and decentralized operation to avoid single
points of failure.

In this paper, we propose a novel Time Division Multiple Access (TDMA) algorithm that
can quickly schedule the use of the UWB medium by a large network of devices without
collisions in local network neighborhoods and avoiding conflicts with hidden terminals, all
the while maximizing network usage. Using exclusively the UWB radio network, we realize
a decentralized system for synchronization, dynamic TDMA scheduling, and precise relative
positioning on a multi-hop network. Our system does not have special nodes (all nodes
are equal) and it is sufficiently scalable for real-world applications. Our method can be
applied to implement device localization services in a large spaces without GPS and complex
topologies, like malls, museums, mines, etc. We demonstrate our method in simulation and
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on real hardware in an underground parking lot, showing the effectiveness of its TDMA
schedule for relative localization.

4.1 Introduction

Indoor localization and tracking have the potential to unlock a plethora of new concepts and
applications for public space enhancement [150].

The rapid development of hardware and software technology needs to address a higher de-
mand for accurate localization services, such as person tracking and device localization. In
particular, a scalable system with few or no dependencies on fixed infrastructure is highly
desirable, allowing for faster deployment and reduced effort for users.

While many paths have been explored, it is still very challenging to deploy a scalable system
with mobile and dynamic nodes [59]. Accurate tracking can be acquired with expensive
sensors (e.g. multiple cameras, LiDARs, radars, etc.), but their cost limits their applicability
for the Internet-of-Things (IoT). Building infrastructure support to provide localizationd
services is the most common approach: satellite-based GPS or from cellular systems (5G,
LoRa) are mostly for outdoor use and can have low localization accuracy depending on the
environment. Camera arrays and radio beacon setups can provide indoor localization, but
can be expensive and labor-intensive to set up, limiting their scalability.

EM-based localization is usually lower cost and more suitable for IoT devices. Wifi, Blue-
tooth, and RFID have respective techniques for indoor positioning, however with limited
accuracy [7]. Ultra-Wide Band (UWB) is also used for localization, using ultrashort pulses
to achieve very accurate and high-frequency ranging as well as transmitting data, which
makes it an ideal choice for indoor localization.

Anchor-based UWB localization has been widely commercialized [15, 16]. Commercial sys-
tems mainly use Time Difference of Arrival (TDOA), a technique which requires nanosecond
clock synchronization between anchors [17]. This limits the scalability of the system as a
high level of synchronization accuracy is hard to maintain in distributed system. In addition,
the positions of agents are usually calculated by a server in centralized fashioned, requiring
an available low-latency communication infrastructure. To maximize scalability, we target a
distributed system with minimal infrastructure support.

Two way ranging (TWR) [18] is a more flexible ranging solution, enabling arbitrary pairs
nodes to perform distance measurements at any time. The key issue with TWR is the access
to a shared medium, i.e. the UWB communication channel. Ranging using TWR takes
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significantly longer than simply broadcasting a message, requiring a medium access control
(MAC) mechanism to coordinate the measurements across all devices at a given location.
Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and
Code Division Multiple Access (CDMA) are general strategy for MAC in many networks [19].
TDMA allows several devices to share the UWB channel by dividing the medium access into
different time slots. For accurate localization, we want to maximize the number of ranging
measurements, therefore requiring high utilization of the available time slots.

Our requirement of high channel usage for the system prevents the use of a contention-
based TDMA [65] as the potential of collisions is very high. Another major category of
distributed TDMA algorithms is based on request and response negotiations [70]. However,
these techniques usually require several iterations to converge, which makes them difficult
to apply in dynamic networks where the topology changes frequently. In this paper, we
propose a novel distributed TDMA algorithm that allows conflict-free scheduling with almost
full channel usage. In addition, our method supports multi-hop networks, where slots can
be multiplexed and used by nodes that are two hops apart. Another major advantage of
our method is that scheduling can be obtained and updated iteratively, making it suitable
for dynamic networks of mobile devices. Without loss of generality we apply our TDMA
algorithm to a UWB network.

The mobility of devices poses challenges not only for TDMA scheduling, but also for the
localization of nodes in the network. Cooperative localization can help improve the localiza-
tion performance for a large scale network [44]. In our system, each node cooperates with its
neighbors to construct a local topological map, which is broadcast to recover the global map
of the network, allowing for the localization of multi-hop device network.

Our contributions can be summarized as:

• a scalable decentralized system for relative localization in mobile ad-hoc networks;

• a novel TDMA algorithm that allows fast convergence and full channel usage;

• a neighborhood topological map construction algorithm for global cooperative global
map recovery.

4.2 Related Work

UWB technology has attracted substantial attention due to its high ranging accuracy. Beside
the centralized usage of anchor-based systems [54,55], point-to-point ranging started receiving
more attention [56–59]. These results show the advantage of UWB for multi-agent systems,
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but due to the small number of UWB nodes in the experiments, network usage has not yet
been explored. Ridolfi et al. [60] analyzed the scalability of UWB-based localization and
showed the huge impact of the coordination protocol on scalability. Qin et al. [17] designed
a BLAS system that uses UWB for the localization of a multi-agent system. They divided
the agents into parent and child groups: the parent agents act as moving anchors and create
a coordinate frame for the system. They proposed a distributed clock synchronization in
parent agents to maintain a high clock precision. This enables the child group to get the
position by time-of-arrival (TOA) measurements. The biggest advantage of this system is the
number of child agents is theoretically unlimited because they only passively receive the pings
from the parents. Although the child nodes have no conflicts, the communication between
parent agents still needs to be coordinated. Qin et al. use round-robin as distributed TDMA
to achieve collision-free broadcasting from parent agents. However, this solution assumes
all the parent agents are fully connected, which limits the scalability of the system. Macoir
et al. [61] also uses an anchor-based TDOA strategy, but it is designed for relatively large
scale networks. The authors divided the network into multiple small cells to cover large areas.
Unlike the passive child nodes from [17], Macoir et al [61] schedule active slots for mobile tags
to broadcast messages and use a server connected with the anchors to calculate the positions.
The server is also responsible for slot assignment and thereby forming a centralized system.

Zhu and Kia [62] proposed a negotiation-based dynamic TDMA algorithm across the UWB
network, G.M. ter Horst [59] developed an anarchic TDMA algorithm based on the DESYNC
algorithm [63]. Both methods only consider one-hop collisions, so that collision can occur for
hidden nodes at neighborhood boundaries.

The most widely used MAC control on UWB is the IEEE802.15.4-2011 protocol [64], inte-
grated with the Decawave 1000 [18] chip, which is the most popular commercial UWB chip
on the market. The protocol uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA-CA) or slotted ALOHA [65, 66] to avoid collisions. However, these two strategies
are only applicable to lightly loaded networks that have a small probability of collisions. In
our case, we want to maximize channel usage for accurate localization. To the best of our
knowledge, this work is the first to apply dynamic TDMA for UWB localization in multi-hop
ad-hoc networks with mobile devices.

Compared to the some TDMA techniques available for communication networks, our appli-
cation has several additional requirements: 1. the maximization of channel usage to increase
the localization frequency; 2. rapid time slot scheduling to account for dynamic topologies;
3. decentralization to avoid the need for fixed infrastructure.



50

The TDMA slot assignment in a wireless network can be seen as an extension of the vertex
colouring problem in graph theory, with the additional constraint of needing to avoid collisions
in 2-hop neighborhoods [67]. The problem was proven to be NP-complete [68], and several
heuristic solutions were proposed [67–69] to get the near-optimal results with full knowledge
of the network topology.

When considering a distributed system where nodes only receive messages from neighbors,
some works (FPRP [70], DRAND [71], DICSA [72], PCP-TDMA [73]) propose negotiation-
based algorithms to find the smallest frame with conflict-free scheduling. After scheduling,
all nodes in a network need to agree on the same frame size to execute the slot schedule
with the same frame reference. We believe that this strategy is not the best strategy for a
highly dynamic network, as it would require fast global consensus of the frame size across
the network. Furthermore, when a node makes a proposal during negotiation, it has to
wait for the feedback of all neighbors, potentially leading to long convergence times if the
neighborhood size is large or the network topology is complex. For similar reasons, practical
mobile networks use fixed-length frames such as USAP [74] for military telephone networks
and VeMAC [75] for vehicular ad-hoc networks (VANETs).

Since the size of the frame should be larger than the total number of nodes in the network,
these protocols may have several unused time slots. Researchers found a balance between
frame size stability and channel usage by doubling or halving the frame size, such as in
USAP-MA [76] and Dynamic-TDMA [77]. Cao and Lee proposed VAT-MAC [78], a VANET
with a changing frame size, relying on a roadside unit (RSU) infrastructure. In our method,
we use a fixed frame size that equals the total number of nodes allowed in the system. Despite
this static allocation, we have high channel usage since we always allocate all the available
time slots to the neighborhood’s devices.

The overall goal of our system is to localize nodes within the network. We use least square
optimization to find the coordinate of the nodes by carefully selecting reference nodes to
do trilateration [151] and iterative multilateration [27, 152] with located nodes. However,
considering the distributed and dynamic characteristics of our network, applying two-way
ranging between all nodes in the network in real-time can be challenging [41,153]. Therefore,
we propose a two-stage strategy: we create a local relative localization map and then merge
the local maps to get the whole network spatial information.
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4.3 System Overview

With the goal of accurate localization in a dynamic UWB ad-hoc network, we developed a
fully decentralized system that does not require any fixed infrastructure. By designing a novel
MAC protocol, nodes can make full use of the channel to get ranging measurements across
the network. Our system includes four main modules: synchronization (to align the frame
boundaries), distributed TDMA (to get collision-free slot assignments), relative localization,
and global map merging.

Synchronization and distributed TDMA are related to the MAC protocol of the UWB net-
work, while relative localization and global map merging combine the devices’ ranging mea-
surements and are executed in the time slots assigned by the MAC protocol.

Fig. 4.1 shows the system architecture from the perspective of a node with ID i. All nodes are
identified by a unique ID, are considered equal in the network, and run the same software.
The overall localization runs in a cycle with n time slots, where n is the total number of
nodes in the network. This choice is without loss of generality: this number is usually known
for a given application, and not all devices need to be active or present.

Each robot is automatically assigned the slot with the same ID as the robot. At the beginning
of each frame, each node checks its synchronization with the node with the lowest ID in range,
ensuring that all frames start at the same time.

All the time slots in a frame can be divided into: own time slot, extra time slots, and passive
time slots. The purpose of distributed TDMA is to find conflict-free extra slots to improve
node’s localization capability. Every time a device is in its own slot (predefined as the ID
of the device), the node broadcasts TDMA scheduling packets. Nodes listen to the network
during passive slots.

Finally the devices use relative localization to build a topological map of their neighborhood.
Distributed TDMA helps nodes to gain extra slots, which enables them to do ranging and
broadcast these measurements. Each node constructs the local map from its own ranging
measurements as well as the measurements received from its neighborhood. Each node broad-
casts its local map and merges the other nodes’ maps when received, progressively converging
to the global map.

4.4 Frame-Based Synchronization

Synchronization is usually needed for systems with pure TDMA scheduling [154]: nodes need
to have the same clock to wait for the time of their own slot. Considering that the network
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Figure 4.1 System architecture shown for a node with ID i. Each frame includes n time
slot and runs in a cycle. Synchronization is checked at the beginning of each frame period
to ensure the same start time for the whole neighborhood. All the slots in a frame can be
divided into own time slot, extra time slots, and passive time slots. In its own slot (slot i
for node i), a node broadcasts TDMA scheduling packets, and listen to neighbors in passive
slots. As a result of scheduling, a node can be assigned extra slots that are used for ranging
and broadcasting range measurements. Each node constructs a local node map from its own
ranging measurements as well as the measurements received from its neighborhood. Once
the map is stable, it is also broadcast. When a node receives a map, it can be merged into a
global map if the nodes have common neighbors.

might be large and highly dynamic, it is not easy to effectively synchronize the entire system.
In our case, we let the nodes synchronize the beginning of each frame instead of the true
clock. We use two techniques to achieve distributed synchronization:

• Each node broadcasts the time offset to the starting of its frame;

• Each node listens to the offset of its neighbors and adjusts its offset using the neighbor
with the smallest ID as reference.

The data usage used by transmitting an offset is less or at least not greater than for trans-
mitting the clock. Using a reference (the lowest ID node in the neighborhood in our case)
can also improve the synchronization speed with respect to a peer-to-peer gradient time
synchronization setup [155].
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4.5 Distributed TDMA

As long as all nodes in a neighborhood have the same frame start reference, the slot ID can be
used as an index of the unique time period for controlling the access to the shared medium.
Nodes also collect information from two-hop neighbors to avoid conflicts at the interface of
the neighborhood. Many TDMA algorithms [156,157] use two-hop neighborhood information
to assign unallocated slots: our main contribution is a strategy to quickly allocate all these
free slots with minimal conflicts in a distributed manner. To describe our algorithm, we need
some definitions:

• U = {u|u ∈ N, 1 ≤ u ≤ n}: the set of node IDs, with n the largest ID in the system;

• Nk
i : the k-hop neighbor set, consisting of the IDs of nodes exactly at k hops from node

i;

• aNk
i : the all neighbor set, consisting of the IDs of nodes at most at k hops from node

i:
aNk

i =
k⋃

j=1
N j

i ;

• sSi: the send slots set, consisting of the IDs of slots assigned to node i;

• fSi = U \ sSi: the free slots set, consisting of the IDs of slots that are not assigned to
node i;

• cSi: the candidate slots set, consisting of the IDs of slots that are not assigned to any
node in N2

i :
cSi =

⋂
j∈aN2

i

fSj;

• sNi: the sibling neighbor set, consisting of the IDs of nodes sharing the same candidate
slot sets in 2-hop range of node i:

sNi : {j|cSj = cSi,∀j ∈ aN2
i , i 6= j};

• shdSi: the shared slots set, consisting of the IDs of shared candidate slots of node i
that are within 2 hops but 1. are not in sNi 2. are in cSj that is not a superset of cSi:

Ω : {k|k ∈ (aN2
i \ sNi), cSk 6⊃ cSi}
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shdSi =
⋂

j∈Ω
cSj;

4.5.1 Frame Structure

Each frame contains two cycles of communication slots, one for immediate neighbors, and one
for two-hop neighbors. The number of slots in each cycle is equal to the maximum number
of nodes allowed in the system. This represents the lower bound of the frame size if all nodes
are to communicate in a fully connected network [68]. We believe that this constraint is
not critical as our system can assign arbitrarily large numbers of slots to each device and
fully use the available bandwidth, as well as guaranteeing that all devices get at least one
communication slot.

1 2 3 • • • n-1 n 1 2 3 • • • n-1 n

Frame Structure

Cycle A Cycle B

Slots:

Figure 4.2 The frame structure of the system. Each frame includes two cycles of slots from
1 to n. n is the maximum number of nodes allowed in the system.

As shown in Fig. 4.2, each frame has a two-cycle structure. Each cycle has n slots, with n is
the maximum number of nodes that the system can support.

By default in each cycle, node i takes slot i, i.e. the slot with the same ID (called own
slot). This ensures a lower bound of two slots per frame when all nodes share the same
neighborhood, meaning we have a fully connected network. When a node moves and leaves
some other nodes’ communication range, certain time slots become idle. When idle slots
are detected, the nodes dynamically assign these slots to improve their update frequency, as
described in Section 4.5.3.

The reason why we use two cycles (A and B) in each frame is to have a stable propagation of
information of 2-hop nodes. Each node broadcasts its own ID, used and potential slots in its
slot of cycle A, and the information of its neighbors in its slot of cycle B (see Fig. 4.3). Using
this two-cycle broadcasting, each node acquires the latest two-hop neighborhood information
at each frame. This information is fed into the distributed TDMA scheduler for conflict-free
scheduling. As the slots schedule for two cycles are the same, we explain frame as n slot for
simplicity.
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4.5.2 Data Packet Format

We use different packet formats for the own slots in cycle A and B, as well as for extra slots.
For own slots in cycle A the broadcast packet contains node ID, candidate slots (cS), and
send slots (sS). Every node reached by the broadcast collects the information in its local
memory. For own slots in cycle B, the packets contain every neighbor’s cS and sS, effectively
propagating 2-hop information across the network.

Self ID: Neib. ID: • • •

Self ID:

Self ID: Ranging meas. Ranging age • • •

Own slot in cycle A

Extra slots

Own slot in cycle B

cS j

cS i sSi

sS jj

i

i

i

i j

Figure 4.3 Communication data packet format used in three types of time slots in the system

The extra slots are used for ranging with neighbors. After the ranging task is completed,
each node broadcasts a timestamped ranging result. This transmission avoids repeating the
same measurement from two directions and provides global knowledge of inter-node distance
across a neighborhood.

4.5.3 Scheduling

With the goal to improve channel usage through rapid scheduling, we propose an algorithm
that solves the scheduling problem in small number of iterations. By listening to the data
broadcast by neighbors in their own time slots, each node knows the free slots it can take
over. The key idea behind how we solve the assignment is to first find the unique free slots
set for the node itself, and then evenly distribute the free slots with neighbors. As shown in
Fig. 4.4 where two nodes i and j have candidate slots cSi and cSj respectively. The idea is
that i takes {e|e ∈ cSi, e /∈ cSj}; j takes {e|e ∈ cSj, e /∈ cSi}, and then i and j evenly share
the remainder {e|e ∈ cSi, e ∈ cSj}.

However, when considering a real deployment with many nodes in a complex network topol-
ogy, this is difficult to achieve. We propose Alg. 3, that can safely and quickly complete the
allocation of all free slots. We show a complex but representative example of four nodes with
four different candidate time slots in Fig. 4.6.

The input of the algorithm is the received packets from all neighbors. The packets include
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cS i cS j

Figure 4.4 The key idea of how we solve the assignment is to first find the unique free slots
set of the node itself, and then evenly distribute the shared free slots with neighbors. Two
ellipses stand for the free candidate time slots cSi and cSj for nodes i and j respectively. The
idea is i takes {e|e ∈ cSi, e /∈ cSj}; j takes {e|e ∈ cSj, e /∈ cSi}, then i and j evenly share
{e|e ∈ cSi, e ∈ cSj}.

cS and sS for all neighbors in 2-hop range. As described in Section 4.5.1, this information
is guaranteed to be received in one frame. This scheduling algorithm is executed once at the
start of every frame based on the information received in last frame.

The algorithm has two key concepts among all definitions above: the sibling neighbor set
(sNi) and shared free slots (shdSi). sNi of a node i contains the neighbors within 2 hops
which have the same candidate slots as as i (as previously defined). One example of sibling
neighbors are nodes placed in close proximity that share the same neighbors and 2-hop
neighbors. shdSi are slots to be assigned, either shared between sibling neighbors or to i.

The process is formalized by Algorithm 3, which is also represented graphically in Fig. 4.5.
This algorithm is fully decentralized, and it is executed by every node independently (for this
reason, Algorithm 3 omits the subscript notation for the sets). After listening for neighbors
(line 1 in Alg. 3) for one frame, each node stores the received messages, including candidate
slots, send slots of its 1-hop and 2-hop neighbors.

Fig. 4.5 shows the cS sets of four nodes (ni, nj, nk, np) as ellipses, marking the possible
intersections between the ellipses with letters from A to G. Each intersection set represents
a set of time slots.

We call this initial state of the system step 0. Alg. 3 proceeds with the initialization of some
variables, including the creation of an empty set of sibling neighbors (sN , line 2), a candidate
slots set (cS, line 3) initialized with all slots from 1 to n ( with n the total number of nodes
in the network), and a set that includes all 1-hop and 2-hop neighbors (aN2, line 4). Then
the cS is updated by removing all the send slots (sS) of its neighbors and 2-hop neighbors.
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Figure 4.5 Slots scheduling process corresponding to explanation of Alg. 3. The candidate
slots set of four nodes (ni, nj, nk, np) are shown as ellipses with color, marking the possible
intersections between the ellipses with letters from A to G. The disappeared color means the
slots in the set are assigned after a step (step 0 → step1 → step2).

The remaining elements in cS are the free slots, which initialize shared slots (shdS, line 8).

The next loop identifies sibling neighbors and shared slots. Going through all neighbors, if
a node finds a neighbor ele with the same cS, it adds ele to the sS (lines 10-11). If the
neighbor is not a sibling and its cS is not a superset of the node’s cS, the node removes the
common candidate slots elements (i.e. the intersection) from shdS (lines 13-15). This rule
makes sure the nodes can find unique shared slots to allocate. Take node k in Fig. 4.5 as an
example: as no other node has the same cS, nk does not have sibling neighbors. The cSk

of nk are {C, D, E, G}, which are used to initialize shdSk. When nk compares its cSk with
those of ni and np, the intersection {C, D, E} is removed from shdSk. The comparison with
ni does not have any effect since the cSi of ni ({B, C, D, E, F, G}) is a superset of nk’s ({C,
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Algorithm 3: TDMA Schedule to for slots distribution
input : rcvPackets
output: cS, sS

1 listenNeighb(rcvPackets);
2 sS ⇐ ∅;
3 cS ⇐ {1, 2, 3, ..., n};
4 aN2 ⇐ N1 ∪N2;
5 forall ele ∈ aN2 do
6 cS ⇐ cS \ ele.sS
7 shdS ⇐ self.cS;
8 forall ele ∈ aN2 do
9 if self.cS == ele.cS then

10 sN.add(ele);
11 else if self.cS 6⊂ ele.cS then
12 shdS ⇐ shdS \ (self.cS ∩ ele.cS);

13 if size(sN) > 0 then
14 sS ⇐ distribute(shdS)
15 else
16 sS ⇐ sS ∪ shdS
17 cS ⇐ cS \ shdS
18 broadcast(cS, sS)

D, E, G}).

Similarly for ni, its shdSi is {F} after removing {B, C, D, E, G} as intersections. Doing so
for each node leads to unique shdS: {A} for nj, {F} for ni, {G} for Nk, and {E} for Np.

After performing the above operations, the elements in shdS are safe to use for each node.
Each node shares its shdS with its sibling neighbors if it has any (lines 18-19), or else adds
shdS to its own sS (lines 20-21). Then each node updates cS by removing the remaining
shdS. The new sS and cS are broadcast in the next frame. At this point, some slots are still
not assigned, like slots in {B, C, D}. These slots are assigned in the next frame.

After each node broadcasts its information in its own time slot, all nodes receive the results
from step 0 and reach the state as shown in step 1 in Fig. 4.5. In step 1, following the
same procedures for step 0, nodes ni and nj become sibling neighbors as they all have the
same cS {B, C, D}. After checking for intersections nk and np (that are not siblings), have
shdS={B}, as step 1-a of Fig. 4.5 shows in orange. The sibling neighbors distribute their
shared slots evenly (line 19), which means both ni and nj get part of {B} without collisions.
Shared slots can be distributed by fairness, ID, or other rules, as long as the rule allows for
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unique assignments from local decisions. nodes nk and np still do not have sibling neighbors
and therefore they just do the intersection check: nk ends with shdS={C} at step 1-b and
np with shdS={D} at step 1-c. All free slots are assigned and no candidate slots are left in
step 2.

A major advantage of our algorithm is that we can quickly and safely assign all free slots,
no matter how many slots in each set from A to G. This allows our system to have a fast
response to dynamic topology changes.

Let us consider a specific example of a multi-hop network in Fig. 4.6: the four nodes
(ni, nj, nk, np) are within each other’s communication range and form a cluster connected
by solid black lines. Other surrounding nodes with ID 1 to 6 are 2-hop neighbors for the
cluster. The dotted line between two nodes means they are in 2-hop range or that they are a
hidden node [19] for each other. Node 1 is connected with ni, and broadcasts in time slot 1
(its own slot). Therefore, ni must be silenced in time slot 1, otherwise the node between ni

and 1 would detect a collision. As the Fig. 4.6 illustrates, there exist candidate slots {2, 3,
4, 5, 6} for ni, {1, 2, 3, 4} for nj, {3, 4, 5, 6} for nk, and {4, 5} for np. It takes 3 iterations
to allocate all candidate slots as listed in Tab. 4.1.

It can happen that the shdS becomes empty after removing intersections with the cS of
neighbors. This situation can cause a deadlock: we let the node aggressively takes all the cS
when detecting no changes in cS for more than 3 frames to break the deadlock.

4.5.4 Node Arrival and Departure

Algorithm 3 allocates all free slots, which means that in any 2-hop sub-graph, the shared
channel medium is fully used. Therefore, when a new node enters the 2-hop neighborhood
of a cluster of nodes, it generates unavoidable conflicts: at a minimum, its sending slot

Table 4.1 Slots distribution process for example in Fig. 4.6

Step0 Step1 Step2 Step3

ni
cSi {2,3,4,5,6} {2,3,4,5,6} {2,3,4} ∅
sSi {si} {si} {si,2} {si,2}

nj
cSj {1,2,3,4} {1,2,3,4} {2,3,4} ∅
sSj {sj} {sj,1} {si,1} {si,1}

nk
cSk {3,4,5,6} {3,4,5,6} {3,4} ∅
sSk {sk} {sk,6} {si,6,3} {si,6,3}

np
cSp {4,5} {4,5} {4} ∅
sSp {sp} {sp,5} {si,5,4} {si,5,4}
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Figure 4.6 Example of the candidate slots of four nodes (ni, nj, nk, np) in a multi-hop network.
The number sets at the bottom are the candidate slots. A black solid line indicates that
nodes are in direct communication range, and the blue dotted line indicates they are at
2-hop distance.

collides with the schedule of the cluster. We provide a two-step solution to quickly resolve
the collision. Suppose node i enters the range of a cluster B, the first step is to have B
release i’s own slot. As we do not have precise clock synchronization, it is likely for nodes in
B to receive a message from i. When a node in B receives a message from i, it adds i to its
neighbor list and propagates its presence to the rest of B, freeing i’s own slot.

A second step is to avoid collisions between the extra slots of i and B. We set that the
node with the larger number of send slots must release the slots causing collisions. After i is
allocated its own slot, i broadcasts its cSi and sSi and receives the same information from
neighbors. When i finds it shares a slot s from sSj with a 1- or 2-hop neighbor j (assume
node j ∈ B, and i 6= j), namely s ∈ (sSi∩ sSj), i checks the number of its sSi: if it has more
slots in sSi than the conflicting neighbor, it removes s from sSi. Conversely, if j has more
sSj than i, j releases s. If both nodes have the same number of send slots, the node with
the lowest ID releases s:

sSi =



sSi if size(sSi) < size(sSj)

sSi if size(sSi) = size(sSj) and i > j

sSi \ s if size(sSi) = size(sSj) and i < j

sSi \ s if size(sSi) > size(sSj)

(4.1)
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With this solution, collisions can be solved in one frame. Note that the collision-free part
of the previous scheduling result is maintained, which allows the system to adapt to a new
schedule. This behavior is replicated if multiple nodes join the neighborhood at the same
time.

If a node leaves the neighborhood, its slots should be reassigned. When a node i stops
receiving messages from a neighbor j, i removes j from its neighbor list, as well as releasing
all slots assigned to j. These time slots become candidate slots and participate in TDMA
scheduling as described in Section 4.5.3.

4.5.5 Fairness and Extra Slots

Considering n number of slots in one frame, to guarantee a fair slot allocation, if a node i
has a number of send slots size(sSi) > 2n/size(aN2

i ), meaning more than twice the average
allotment of its neighborhood, ni releases as many slots as needed to reach size(sSi) =
n/size(aN2

i ). The released slots become candidate slots for its 2-hop neighborhood and
follow the scheduling algorithm in Section 4.5.3.

The role of the extra slots depends on the application. For our localization purposes, each
node performs two tasks in the extra slots:

1. ranging with one of its neighbors;

2. broadcast the ranging measurement.

Every node maintains an age list of its neighbors and selects the ranging target which has the
oldest ranging measurement. It is worth noting that the measurements are also updated from
the neighbors’ measurement broadcast, avoiding repeated mutual ranging in short intervals.

4.6 Relative Localization

Some wireless sensor network localization systems use anchors or landmarks with known
positions, and use centralized control to propagate the position results [158]. We propose a
collaborative localization system based on ranging using UWB sensors [27].

The proposed TDMA algorithm maximizes the use of the UWB channel, allowing ranging
measurements between all nodes at high frequency. Using the ranging information, each node
can construct a local topological map of its neighbors’ positions. By broadcasting, receiving,
and fusing the local maps, the nodes can converge towards a global map.

In this work, we consider the 2D localization for the nodes in the system. Node i has a
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neighbor set N1
i , and it creates a graph of its surroundings as Gi(Vi, Ei) where Vi = {vt|t =

i or t ∈ N1
i } and Ei = {ekj|k, j ∈ Vi, i 6= j}. For construction of a local map Mi, the goal is

to find:
Mi = {Xj|Xj = (xj, yj) ∈ R2, j ∈ Vi}

Similarly, for the recovery of the global map, the goal is to find:

MG
i = {Xj|Xj = (xj, yj) ∈ R2, j ∈ W}

where W = ⋃
j∈Ni

Vj.

4.6.1 Local Map Construction

To build the nodes’ local maps, we use a similar method as the initialization stage of our
previous work [27]. The difference in this work is that each node estimates the map locally.
Given our hypothesis of a highly dynamic system, waiting for all ranging measurements to
be propagated to build a global map as in [27] can introduce significant errors due to the use
of outdated measurements. Therefore, each node creates a local map using the latest ranging
measurements (which is therefore always up-to-date), and then merge the local maps at a
later stage.

To build a local map, each node selects two neighbors as reference nodes to initialize the
coordinate frame. The choice of reference nodes can greatly influence the localization accu-
racy. Yang [151] proposed the idea of the quality of trilateration to find appropriate reference
nodes from nodes with known positions. Priyantha [44] proposed a relative localization al-
gorithm by first selecting five reference nodes, and then applying an optimization process.
In our case, the nodes do not have any neighbor with known positions. We propose a refer-
ence node selection that considering the expected trilateration performance, the number of
neighbors, and the timestamps of the ranging measurements.

As showed in Algorithm 4, the system includes two parts: local map construction (lines 1-19)
and global map recovery (lines 20-24).

Each node creates a map of its neighbors based on its own ranging measurements (named
rangeMeas) as well as received measurements (named receivedMeas).

In Alg. 4, rangeMeas[tID, range, age] indicates an ego ranging measurement to the target
neighbor tID, and receivedRange[sID, tID, range, age] indicates the received range measure-
ment from node sID to node tID. All these range measurements are timestamped to allow
the node to use the latest measurements.
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Algorithm 4: Map construction for relative localization
input : neighbList, {rangeMeas[tID, range, age]}, {receivedMeas[sID, tID, range, age]},

receivedMaps
output: localMap, globalMap

1 Origin⇐ (0, 0);
2 X_Seed⇐ Top(sortedCommonNeighb(Origin)∩sortedRange(Origin)∩sortedRangeAge());
3 Y_Seed⇐

Top(sortedCommonNeighb(Origin) ∩ sortedRange(Origin,X_Seed) ∩ sortedRangeAge());
4 CS ⇐ coordinateFrame(Origin,X_Seed, Y_Seed);
5 locatedNodes.add(Origin,X_Seed, Y_Seed);
6 suspendSet⇐ ∅ ;
7 for ele ∈ neighbList \ locatedNodes do
8 if rangeTo(Origin,X_Seed, Y_Seed)exist then
9 elePos⇐ trilateration(Origin,X_Seed, Y_Seed);

10 locatdNodes.add(elePos);
11 else
12 suspendSet.add(ele) ;
13 end
14 end
15 for ele ∈ suspendSet do
16 elePos⇐ multilateration(ele, locatedNodes);
17 locatdNodes.add(elePos);
18 end
19 globalOptimization(locatedNodes, rangePairs);
20 for map ∈ receivedMaps do
21 if overlayV ertexNum(globalMap,map) > 3 then
22 globalGrap⇐Merge(globalMraph,map);
23 end
24 end
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Figure 4.7 Local map construction with nodes in different roles. Origin node and axis seeds
(reference nodes) are used to create the coordinate frame. Nodes that have measurements to
reference nodes use trilateration to find positions. For the rest, the position is estimated by
multilateration to nodes that already localized.

The construction of the local map is divided into three stages. Consider a node i: the first
stage is to find reference nodes to create the coordinate system (lines 1-5). Node i uses its
position as the origin of the coordinate frame (line 1). i then identifies another node X_Seed
to define its x axis. The selection of X_Seed is based on three criteria (line 2):

1. the number of common neighbors with node i should be large, which is found by sorting
size(N1

i ∩N1
j ), where j ∈ N1

i ;

2. the node should be as far as possible from i, which is selected by sorting eij, where
j ∈ Ni , eij ∈ rangeMeas;

3. the measurement should as recent as possible, which is selected by sorting the ages of
eij, where j ∈ Ni, eij ∈ rangeMeas.

Then node i uses similar criteria to select another node Y_Seed to define the y axis. Suppose
node i select node j as X_Seed and k as Y_Seed. The mutual distances between i, j, and
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k are [dij, djk, dik]. i calculates the coordinates of j and k as:

Xi = (0, 0),

Xj = (dij, 0),

Xk =
d2

ik + d2
ij − d2

ik

2dij

,±

√√√√d2
ik −

d2
ik + d2

ij − d2
jk

2dij


(4.2)

which corresponds to line 4 in Alg. 4. Note that we use the positive value for the Y coordinate
of Xk. Then X_Seed and Y_Seed are added to locatedNodes with their coordinates.

In a second stage, each node localizes the remaining neighbors with respect to the itself
and the two reference nodes by trilateration (lines 6-14). Sometimes neighbors do not have
ranging measurements to all reference nodes, or the ranging measurements are outdated. In
this case, the node cannot perform trilateration and it is added to suspendSet (line 12) to be
reexamined at a later stage. The nodes with successful trilateration are put into locatedNodes
(line 10).

In a third stage, each node attempts to localize the nodes j with j ∈ suspendSet using the
existing ranging measurements using least squares multilateration (lines 15-17) [27]:

X ∗j = arg min
Xj

∑
k∈locatedNodes

(djk − ‖Xj −Xk‖)2, (4.3)

with X ∗j the computed coordinates of node j. Following this procedure, a node can acquire
the coordinates of all neighbors that can be located in the local map. These nodes are added
to locatedNodes. However, these coordinates do not consider the error model of the ranging
sensor.

UWB sensors have two-way ranging error that depends on many factors [159]. Lederberger
et al. [160] introduce a Gaussian process error model for UWB ranging. However, this model
requires knowledge of the relative angle between UWB antennas, making it impractical for
our system. We apply a least square optimization to the coordinates of all nodes except
for the origin and the y coordinate of X_Seed (that are all zero). Equ. 4.4 shows the
globalOptimization step of line 19 in Alg. 4: all mutual distance measurements for nodes in
locatedNodes are used to find the optimal coordinate estimations. The coordinates from the
previous stages are used as the initial value for the least square optimization.
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X ∗ = min
X

∑
i,j∈locatedNodes

(dij − ‖Xi −Xj‖)2

X ∗ : [x∗X_Seed,X ∗t , ..], t ∈ locatedNodes \ X_Seed
(4.4)

4.6.2 Global Map Recovery

Once a node i has built its local map Mi, it broadcasts it to its neighbors. When a node
i receives a map from a neighbor j, it merges j’s map Mj to its local map Mi if the maps
share common nodes.

The key to merge different maps is to estimate translation, rotation and reflection with
respect to a given axis [4, 5]. In our case, reflection on the x axis might be induced since
nodes always select the positive value for the Y coordinate of the Y_Seed node. Therefore,
compared to a classical 2D transformation, we add an extra parameter related to reflection
to the transformation matrix. Suppose node i has its own map Mi and receives map Mj

from node j. The goal is to find the transformation T i
j = [R,T,F] from j to i in to place

the nodes that only exist in Mj in i’s coordinate frame:

T i
j = [R,T,F]

R =
 cos(θ) sin(θ)
− sin(θ) cos(θ)

 , θ ∈ (−pi, pi]

T =
tx
ty

 , tx, ty ∈ R

F =
1 0

0 γ

 , γ = 1 or − 1

(4.5)

where [R,T,F] correspond to the rotation, translation, and reflection matrices, respectively.

A node can start merging two maps if the maps have more than three common vertices (lines
20-24 in Alg. 4). We use V (Mi ∩Mj) to indicate the common vertices between Mi and Mj.
We use a least squares optimization to find the optimal transformation T ∗:

T ∗ = min
[R,T,F]

∑
t∈Vo

(Xi
t − (R · F ·Xj

t −T))2

where Vo = V (Mj ∩Mi).
(4.6)
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Xi
t stands for the coordinates of node t in node i’s coordinate frame. With T ∗, the node can

transform the vertices in V (Mj \Mi) to its coordinate frame to get a merged map MG
i :

mj\i = {Xi
t|t ∈ V (Mj \Mi),Xi

t = R · F ·Xj
t −T}

MG
i = Mi ∪mj\i,

(4.7)

where mj\i indicates the transformed map in ni’s coordinate frame consisting of the vertices
that are unique to Mj.

4.7 Experiments

4.7.1 Simulations

We perform a set of simulations to assess the scalability of the proposed algorithm. The
algorithm is run in a custom simulator written in Python and run on a laptop with 16GB
of memory and an Intel i7-6700HQ processor. We simulate different numbers of nodes in
an arena with a size of 50m × 50m. The communication range between nodes is 5m. The
nodes are randomly distributed in the arena, as shown in Fig. 4.8. We use three different
orders of magnitude (10, 100, 1000) for the number of nodes in the system to simulate
different deployment densities. We allow a maximum of 50 frames for the TDMA scheduling.
The length of each time slot (as tslot) is defined as 3 ms (the time for an UWB raging
operation [59]).

Fig. 4.9 shows the scheduling process for a system with a distribution of 100 nodes in Fig. 4.8,
meaning there are 100 slots in a frame. Each node starts with a send slots set with only its
own slot, and they have an average of 78 candidate slots available to assign. The number of
candidate slots decreases quickly over time, which means the slots are assigned. All candidate
slots are assigned around the 6th frame and each node is given 27 slots on average. The initial
peak in the send slots suggests some form collision. Collisions are resolved in one frame (by
releasing slots) and therefore the number of send slots quickly decreases.

The distribution with 1000 nodes is quite dense as shown in Fig. 4.11. Using the same setup
for the arena and slot size, we run each experiment 30 times and show the aggregate results
in Fig. 4.10 and Table 4.2.

Fig. 4.10 also plots the average number of frames needed to assign all the candidate slots
(“frames” in the plot). We can see the increase in the number of frame iterations is funda-
mentally linear even for an exponential increase in the number of nodes. The average number
of send slots increases significantly from 10 to 100 nodes, but due to the increase in density,
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Figure 4.8 Random distribution of 100 nodes in a area of 50m*50m arena

it is basically unchanged from 100 to 1000 nodes.

In Table 4.2, N_Frame is the number of slots in a frame, which has the same value of the
number of nodes (n) in the network, and N_Neighbors) is the average number of neighbors
of each node. Density is the ratio between the “communication area” occupied by all nodes
and the total area of the arena [161], as shown in Equ. 4.8. As the size of the arena is fixed,
it is linearly related to the number of nodes.

Density = N ∗ πR2

L2
(4.8)

where R = 5 and L = 50 in our experiment.

The average (Avg) and standard deviation (Std) for frame iterations (Frames) and resulting
send slots (sS) listed in Table 4.2 correspond to Fig. 4.10.
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Figure 4.9 Scheduling process of a system with 100 nodes, distributed in an area of 50m*50m.
The average number of send slots and candidate slots are plotted. At the start, each node
has 1 send slot and an average around 79 candidate slots. Around frame 6, all the candidate
slots are assigned and each node got around 27 on average.

Finally, we report some additional measurements:

T_Frame = tslot · N_Frame

avg_T_Frame = 2 · Avg_Frame · T_Frame

N_sS = Avg_sS
T_Frame

LN_sS = (1 + N_Neighbors) · N_sS

Total_N_sS = N_sS · N_Nodes

(4.9)

T_Frame is the time taken for each frame; Avg_T_Frame is the average time needed for
scheduling considering two cycles; N_sS is the average number of slots per node per second,
which indicates the number of range each node can measure per second; LN_sS is the
total number of slots used by a local neighborhood per second, including the node and its
neighbors; Total_N_sS is the total number of slots per second across the whole network,
indicating the total number of ranging measurements can be made in the system.
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From Table 4.2, we can see the number of frames used in scheduling (Avg_Frames) does not
increase significantly between 100 and 1000 nodes. However, the time duration (Avg_T_Frame)
is still large compared to a 100 nodes configuration: this result is acceptable considering the
extremely high density of devices (see Fig. 4.11 for an intuition).

In terms of network usage, N_sS is equal to 1/tslot (=333.3) when there are no neighbors.
For the 10 nodes configuration, which is quite sparse, the average number of slots (N_sS)
for each node is 263. The slots used by local neighborhoods on average (LN_sS) is 336.4.
This is because the average number of neighbors (N_Neighbors) is only 0.28.

For the other configurations, the LN_sS have a similar value. This is due to the fact that
some of the slots are used by two-hop neighbors. To find the maximum of Total_N_sS,
we give consider the maximum number of nodes Nmax allowed in the arena without any
intersections of their communication ranges, i.e. when each node can make full use of the
channel:

Nmax <
L2

πR2 = 50 · 50
π · 5 · 5 = 31.8 (4.10)

Nmax is less than the ratio between the area of the arena and the communication area.
Therefore, the maximum of Total_N_sS can not be larger than Nmax · 1/tslot, which is
10605. We can see in the configurations of 100 and 1000 nodes, the results are close to full
channel usage.

4.7.2 Hardware Setup

We test the system with a physical implementation with 12 nodes, as shown in Fig. 4.12-b.
Except for the unique ID of each module, all modules are identical. Each module consists of
a Raspberry Pi 3 A+ with a Decawave 1000 [18] UWB module from Pozyx [15] as its ranging
and communication sensor. All processing is performed on-board, with the exception of the
global map construction, which is done on a separate computer used by the system operator.
All communication between nodes is implemented through the UWB channel, while a 802.11
network is used for control and debugging. Please note that since the ceramic antenna of
the Pozyx modules is directional, we place the modules upright as shown in Fig. 4.12-a to
minimize orientation-related issues.

We conduct 3 sets of experiments to validate the system. To evaluate the performance of
TDMA scheduling and rescheduling, we consider three situations: new nodes joining, nodes
leaving, and multi-hop scenarios.
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Table 4.2 Scalability study

ID 10 nodes 100 nodes 1000 nodes
N_Frame , N_Nodes 10 100 1000

N_Neighbors 0.28 2.29 28.73
Density 0.31 3.14 31.41

Avg_Frames 1.00 6.41 20.76
Std_Frames 0.0 1.25 9.46
Avg_sS 7.89 27.01 28.28
Std_sS 0.89 1.71 8.66
T_Frame 0.03 s 0.30 s 3.0 s

Avg_T_Frame 0.06 s 3.84 s 124.8 s
N_sS 263 90.03 9.43
LN_sS 336.4 296.2 280.3

Total_N_sS 2630.0 9003.33 9433.33
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Figure 4.10 Scalability study with 10, 100, and 1000 nodes. Frames stands for the average
number of frames used before all the candidate slots are distributed. Send slots shows the
average number of result slots each node gets.

To show the fast response of our system to changes in high-traffic conditions, we test the
effect of joining and leaving nodes in a static, fully connected scenario, by placing the nodes
in proximity and turning on/off the nodes that are joining/leaving.
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Figure 4.11 Random distribution of 1000 nodes in a area of 50m*50m arena

We also test our algorithm in a dynamic environment by moving the nodes from a fully
connected network to a multi-hop network. This result shows the conflict-free scheduling
and slot multiplexing usage in a complex network topology.

Finally, we conduct a comprehensive experiment to test the spatial map construction for
a dynamic network with mobile devices. This last experiments shows that the system can
localize the devices using ranging in the assigned time slots. Each node can construct its
own local spatial map and recover the global map using local communication.

4.7.3 New Nodes Joining

Without TDMA (or with Carrier Sense [64]), the system may encounters a large number of
collisions since all nodes attempt to achieve high channel usage.

We place twelve modules together on a desk as shown in Fig. 4.12-b. Starting the nodes in
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Pozyx UWB module

Raspberry Pi 3 A+Power bank

(a)

(b)

Figure 4.12 The hardware modules used as nodes in our experiments. Each module consists
of a battery, a Raspberry Pi 3 A+, and a Pozyx module based on the Decawave 1000 UWB
chip. All the processing is done onboard and all the communication between nodes passes
through the UWB channel.

sequence, we can emulate new nodes joining the network. We start nodes 1, 3, 4, and 5 at
first. After two minutes, we start nodes 6, 8, 12, and 13. Finally, we start the remaining
nodes: 7, 9, 10, and 15.

The scheduling process results are shown in Fig. 4.13. The numbers from 0 to 29 on the
x axis represent the slot IDs. We use 30 slots in our system (with slot 0 is reserved the
processing of TDMA algorithm). We select the 30 to have a more visible scheduling result to
show. The system can be viewed as system supporting a maximum of 30 nodes, but only 12
nodes are studied. Each slot had a duration of 50 milliseconds due to firmware limitations of
the Pozyx module. Ter Horst et al. [59] show that a 3 ms slot is enough to perform ranging
measurements using the same Decawave 1000 UWB chip, but for a different type of module.
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Figure 4.13 TDMA scheduling results for a system with new nodes joining. Nodes group
{1, 3, 4, 5}, {6, 8, 12, 13} and {7, 9, 10, 15} are started gradually. This result is from
the perspective of node 4, but it is the same for everyone in the network as they are fully
connected. The X-axis is the slot ID and the Y-axis is the frame iteration, representing the
time. A total of 30 slots are configured. We can see that when a new group of nodes join the
system near frame 35 and 53, the system can quickly adapt to the new schedule. All slots
are occupied all the time to have full channel usage.

Our system could be set to similar values on different hardware.

Having 30 slots of 50 ms means each frame is 3 seconds due to our organization of two cycles
per frame (see Fig. 4.2). On the x axis, we show the 30 slots of the first cycle (cycle A) of
the frame as the scheduling is identical for both cycles. Considering 12 nodes and 50 ms slot
size, each node can be assigned at least 2 slots per frame (one own slot and one extra slot).
Therefore, the lower bound slot use for each node is 4 slots every 3 seconds. The y axis is the
frame count, increasing in time, meaning that the plane forms a grid showing the assignment
of slots in time with colours assigned according to the assigned node identity. This reporting
is a general way to show the scheduling speed, and it is independent from the slot size, which
can differ based on the system configuration.

From Fig. 4.13, we can see that slot scheduling can quickly adapt to network changes and
obtain a conflict-free schedules with full slot use in two to three frames. During the first 3
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frames, almost all slots except slots 3, 4, and 5 are assigned to the node with ID 1 (gray color).
This is because when the first 4 nodes are started, they first synchronize. However, since the
ID of node 1 is the smallest in the neighborhood, node 1 enters the TDMA scheduling phase
directly, while the other three nodes synchronize to node 1 instead.

Therefore, node 1 does not receive any candidate slots or sending slots information from the
other nodes and takes all idle slots. Note that node 1 does not occupy slots 3, 4, 5 since
its neighbors still broadcast heartbeat messages (i.e. they notify node 1 of their presence)
during synchronization. After the slot usage fairness check described in Section 4.5.5, node
1 releases some slots for its neighbors: nodes 3, 4, and 5 can get these extra slots after they
are synchronized. One can see that node 3 gets slot {6, 10, 14, 18, 22} as extra slots starting
from frame 3. Node 4 and 5 get {7, 11, 15, 19, 23 } and {8, 12, 16, 20, 24 }, respectively. All
the remaining slots are occupied by node 1. The four nodes share slots 6 and 25 periodically:
this is because they are sibling nodes, and get a shared slot set of {6-25} during scheduling.

Around frame 35, we turn on four additional modules with ID 6, 8, 12, and 13. We can see
that once the new nodes are detected, their own slots {6, 8, 12, 13} are released immediately.
As the number of neighbors increase, the older nodes notice they are using too many slots
during their fairness check and begin to release slots. The change of slot owner is reflected
with color changes for columns {9, 17, 21, 25, 26, 27}. Some collisions do occur during
scheduling on these slots, which are indicated by the colored dots next to the columns. We
can see that the collisions are resolved within five frames (mostly in two frames), leading
again to full slot usage. Following a similar process, we turn on the remaining four nodes,
which reach a new schedule after 3 frames. The resulting schedule for each node during the
three stages of the experiment is shown in Table 4.3. Please note some slots have a short
white gap: this is due to the initial synchronization of the newly added nodes.

4.7.4 Nodes Leaving

We tested the system with the same setting as the nodes joining experiment, but starting
with all modules turned on, after which we turn off two groups of 4 nodes in sequence. First,
nodes with ID 7, 9, 10, 15, followed by nodes 1, 3, 4, 5. The scheduling results are shown in
Fig. 4.14, with the same axes and content format as Fig. 4.13.

We can see that the slots are always fully used for the three stages: the system adapts to the
new schedule as soon as the nodes detect the departure of a set of nodes. The free slots are
allocated by the remaining nodes and reach a conflict-free schedule. The scheduling result of
each node in every stage is listed in Table 4.4.
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Table 4.3 Slot distribution for new nodes merging scenario

ID Stage 1 Stage 2 Stage 3
1 1,2,9,13,17,21,25,26,27,28,29 1,2,28,19 1,2,29
3 3, 6, 10, 14, 18, 22 3,9,10,14,18,22 3,11,22
4 4, 7, 11, 15, 19, 23 4,7,11,15,17,19,23 4,14,19
5 5, 8, 12, 16, 20, 24 5,16,20,21,24 5,16,24
6 6,25 6,1,25
8 8,26 8,20,26
12 12,27 12,27,28
13 13 13
7 7,18
9 9,21
10 10,23
15 15

Please note that the white gaps are mainly caused by the nodes leaving the system: we have
set a timeout of 3 frames without messages from a node before considering that it has left the
neighborhood to avoid rescheduling due to network noise. A short gap can also be caused by
synchronization induced by the departure of the node with the smallest ID (which is used as
a reference). This happens during the transition from stage 2 to stage 3, when the node 1 is
turned off. In this scenario, node 13 took three frames to synchronize with the new reference
node 6, leading to the gap for slot 13.

4.7.5 Multi-Hop TDMA Scheduling

We tested the system in the indoor parking lot at Polytechnique Montreal as shown in
Fig. 4.15. The parking lot has very thick walls and makes it easy to set up a multi-hop
network. We first put all modules together in one parking spot as depicted in Fig. 4.16-
a. They form a fully connected network with a TDMA schedule shown at the bottom of
Fig. 4.16-a in the column “Stage 1” of table 4.5. We can see they reach a conflict-free
schedule.

In a second stage of the experiment, we move the modules to other parking spots, forming
a multi-hop network topology as shown in Fig. 4.15. The connectivity graph of the nodes is
shown in Fig. 4.16-b with lines between nodes indicating a data and ranging connection.

The scheduling result is displayed in the color block of Fig. 4.16-b, as well as listed in the
column “Stage 2” in Tab. 4.5. The slot schedule shown in Fig. 4.16 is plotted using the log of
each node, which includes its own time slot and the slot schedule received from its neighbors.
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Figure 4.14 Scheduling result of experiment that nodes leave the network. Starting from all
modules powered on, we first turn off nodes with the ID of 7, 9, 10, 15 near the frame 10,
and then turn off nodes 1, 3, 4, 5 near frame 30. This plot is based on the logs from node
13. We can see when nodes left near frame 10 and 30, the released slots are allocated by the
rest nodes and reach a conflict-free schedule.

Figure 4.15 Multi-hop experiment testing field at parking place

Taking the top line as an example, node 10 receives the slot assignment of all its neighbors,
namely neighbors 5, 13, 3, 8, 12. Compared with the following row, node 5 only has neighbors
10 and 13. The advantage of our algorithm can be seen from nodes that are three hops away:
as an example, nodes 5 and 6 share slot 26 (there are two colors on column 26 of Fig. 4.16-b)
without collisions (the nodes are 3 hops apart, see the graph in Fig. 4.16-b).

For this schedule, 21 slots out of 29 are multiplexed (shared among multiple nodes), leading
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Table 4.4 Slot schedule for nodes leaving scenario

ID Stage 1 Stage 2 Stage 3
6 6,17,28 6,17,28 1,5,6,14,17,24,28,29
8 8,19 8,19 2,7,8,16,19,25
12 12,22 12,22 3,10,12,20,22,26
13 13,23 9,13,15,18,23 4,9,11,13,15,18,21,23,27
1 1,2,24,29 1,2,7,10,20,21,24,29
3 3,11,25 3,11,25
4 4,14,26 4,14,26
5 5,16,27 5,16,27
7 7,18
9 9
10 10,20,21
15 15

to full channel utilization.

4.7.6 Map Construction

So far, we have proved that our system can effectively perform real-time TDMA scheduling
with full channel usage. In this experiment, we explore the relative localization capability of
the system.

In a first stage, we put all nodes in a fully-connected grid formation, as shown in Fig. 4.17 and
in Fig. 4.18-a. Using all available ranging measurements, the nodes can easily recover their
local map. We show the map constructed by 4 randomly selected nodes (all the remaining
maps are similar) in Fig. 4.19. We can see that they all have the same relative structure, but
with different coordinates as each node uses its own coordinate frame.

When the nodes are moved to the configuration in Fig. 4.18-b, the network topology changes
and the nodes rescheduled the TDMA assignment with the same logic as in the previous
experiments. For this new configuration, we randomly select 3 nodes on the left side and
3 nodes on the right side to show their local map in Fig. 4.20. We can see they are able
to construct the correct relative map. Using the local map from node 5 and 1, node 8 can
recover the global map as shown in Fig. 4.21.

4.8 CONCLUSION AND FUTURE WORK

In this paper, we present a fully decentralized system that is able to do accurate localization
in a UWB-only network. We propose a novel distributed TDMA algorithm that can allocate
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Figure 4.16 Multi-hop network TDMA experiment. Twelve modules are moved from (a) to
(b). The slots scheduling is shown with the color block under the graph. In sub-figure (a),
all nodes have the same scheduling as they are fully connected. When moving nodes to form
the topology in (b), they build a multi-hop network. The slot scheduling of each node is
plotted from the log of each node. The log of each one includes its own slot and the slot
schedule received from its neighbors. Looking from the point of the slot, any slot that has
more than one color means there are more than one node use the time slot. For example, in
time slot 1, the green node 8 and gray node 1 use the slot at the same time. From the graph,
we can see nodes 8 and 1 are three hops apart. In this schedule, there are 21 slots out of 29
multiplexing used. For each node, there are no more slot can be used.

all the idle slots quickly to have full channel usage for the mobile networks. This high channel
usage results in high rate of measurement in the UWB network, leading to high localization
accuracy. Fast scheduling also makes the system suitable for a network with changing topol-
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Table 4.5 Slot distribution for multi hop network

ID Slots in Stage 1 Slots in Stage 2
10 10, 22 10,21,22
5 5,26,29 4,5,6,26,29
13 13,14,25 9,13,14,24,25
3 3,16,17 3,16,17
8 8,19 1,8,11,18,19,28
12 12,23 2,12, 15,20,23
7 7,27 7,27
6 6,24 6,7,14,24,26
9 9,21 9,13,25,29
4 4,18,20 4,8,12,18,19,20,23
15 15,28 15,28
1 1,2,11 1,2,11

15 4 7 12

8 1 9 6

5 13 3 10

Figure 4.17 Node distribution at the start of map construction experiments. Nodes are placed
in a grid formation occupying an area around 8*12m.
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Figure 4.18 The experiment involves 2 stages, corresponding to sub-figure (a) and (b). At the
start, all nodes are placed in a grid formation shows in (a). The network in this configuration
is a fully connected network. Then they are moved to the configuration (b). The maximum
of 3 hops is used in this configuration.
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Figure 4.19 Local map construction of nodes 6, 1, 13, and 10. They build their own coordinate
system and get the relative localization for other nodes. As they are fully connected, the
relative localization is the same, which is also the same for the rest nodes.
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Figure 4.20 Local map construction of nodes 12, 1, 6, 8, 5, and 4 at stage 2. Every node
build a relative location for its neighbors. We can see the map shows part of the map in
Fig. 4.18-b.
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Figure 4.21 Global map recovery for node 8 when receiving local maps from node 5 and 1.

ogy. We also separate the localization in the network into local relative localization and
global map merging. Although our system is designed for UWB localization, our TDMA
algorithm can also be applied to any networks requiring high channel usage, with static or
mobile nodes. One limitation for our system is the fixed size of slots in frame structure
initialized at the start, limiting the TDMA scheduling process to the update rate of frame
cycle. In future work, we will implement an adaptive frame size to improve the scheduling
update rate. Furthermore, to improve the localization and tracking performance, we will fuse
measurements from different sensors, such as Inertial Measurement Units (IMUs) or cameras.
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CHAPTER 5 ARTICLE 3: ACCURATE POSITION TRACKING WITH A
SINGLE UWB ANCHOR

Preface: In last two chapter, we solve the systematic strategy and the hardware challenge of
the application of UWB in a multi-robot system. With the position initialized from previous
result, we work on the odometry estimation of single robot. To have a minimal system, only
IMU sensor is used in this work. We propose a solution allow single robot to locate itself
with a ranging source from single one anchor in the environment. This method can be used
in low-cost devices with IMU and UWB only, such as IoT devices.
Full Citation: Y. Cao, C. Yang, R. Li, A. Knoll, and G. Beltrame, “Accurate position
tracking with a single UWB anchor,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2344–2350, IEEE, May 2020.
Personal Contributions: Y. Cao conceived of the presented ideas, developed the theory,
designed and implemented the simulations. Y. Cao designed and carried out real robot
experiments with support from C. Yang and R. Li. Y. Cao wrote the manuscript with
support from G. Beltrame.

Abstract
Accurate localization and tracking are a fundamental requirement for robotic applications.
Localization systems like GPS, optical tracking, simultaneous localization and mapping
(SLAM) are used for daily life activities, research, and commercial applications. Ultra-
wideband (UWB) technology provides another venue to accurately locate devices both in-
doors and outdoors. In this paper, we study a localization solution with a single UWB
anchor, instead of the traditional multi-anchor setup. Besides the challenge of a single UWB
ranging source, the only other sensor we require is a low-cost 9 DoF inertial measurement
unit (IMU). Under such a configuration, we propose continuous monitoring of UWB range
changes to estimate the robot speed when moving on a line. Combining speed estimation
with orientation estimation from the IMU sensor, the system becomes temporally observ-
able. We use an Extended Kalman Filter (EKF) to estimate the pose of a robot. With our
solution, we can effectively correct the accumulated error and maintain accurate tracking of
a moving robot.
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5.1 Introduction

Accurate localization and tracking are fundamental services for an autonomous system. Many
options are available for localization: GPS for open outdoor areas, motion capture systems in
a laboratory, visual systems. However, they are generally limited by the environment or time-
consuming and labor-intensive setup work and expensive infrastructure [162]. Ultra-wideband
(UWB) technology provides another venue to accurately locate devices both indoors and
outdoors. Most available UWB systems are based on multi-anchor arrangements, which
need some labor-intensive setup work, like mounting anchors and calibration. Furthermore,
it is often difficult to set up such systems outdoors or in an unstructured environment. We
believe that a localization system which can accurately track devices without complex setup
is highly desirable.

Tracking with a single anchor is attractive because one can easily drop an anchor in the
environment as reference. However, it is also quite challenging: a single source of distance
information is generally too limited for tracking. Current research in underwater robotics
proposes fusing distance to an acoustic anchor with odometry, but they usually rely on very
expensive sensors (e.g., high accuracy IMU, doppler anemometer) [79, 163]. Our goal is to
enable single anchor localization with low-cost UWB and IMU sensors. Robots and IoT de-
vices can easily be equipped with these two sensors, while velocity sensors (encoders, doppler
anemometers, etc.) are much more rare and generally too expensive for IoT devices. More-
over, nowadays UWB is becoming pervasive, being present in the latest Apple iPhone [164]
for spatial awareness at the time of writing.

Getting odometry from low-cost IMUs is challenging. Velocity, integrated from acceleration
coming from the IMU, drifts quickly and cannot be used for odometry. Unfortunately, velocity
is crucial for the observability of mobile robot localization system, especially for single anchor
localization [84]. To solve this problem, we propose a novel algorithm to estimate velocity by
combining UWB and IMU measurements. An EKF fuses the range, orientation, and speed
estimation to estimate the robot pose. Simulations and real-world experiments validate our
algorithm. We believe our system can unlock localization of a large number of devices in
practical applications.

5.2 Related Work

Using UWB technology to locate devices has recently become popular. Most applications are
based on a multi-anchor configuration [54,107,165–168]. We aim at simplifying the infrastruc-
ture to a single anchor as reference. Many researchers have studied single anchor localization,
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Figure 5.1 Trajectory of a real-world experiment with a differential wheel robot, Duckiebot.
The robot only has IMU and UWB sensors. A UWB anchor is placed on (0,0) in the right
bottom. There is no encoder or other velocity sensor used in the robot. The robot is controlled
manually to moving a "TUM" like trajectory in a basketball pitch in TUM Garching campus.

especially for underwater robotics [79, 80]. Underwater robots usually use acoustic sensors,
top-of-the-line IMUs, and expensive doppler sensors. Guo et al. [81] study a cooperative
relative localization algorithm. They propose an optimization-based single-beacon localiza-
tion algorithm to get an initial position for collaborative localization. However, they only
observe a sine-like moving pattern and they require a velocity sensor. Similar with a recent
work proposed by Nguyen et al. [82], they also use odometry measurements from optical
flow sensors. In our study, we only use UWB and a low-cost IMU, dropping the need for a
velocity sensor.

To better understand the single anchor localization problem, which is typically non-linear
because of distance and angle, an observability study is necessary. Based on the groundwork
of Hermann and Krener [83], researchers have studied the observability of range-only local-
ization system, from one fixed anchor [80] to the relative range and bearing measurements
between two mobile robots [84]. Bastista et al. [85, 86] used an augmented state to linearize
the problem, enabling classical observability analysis methods. A recent study [87] explores
the leader-follower experiment for drones with UWB ranging between robots, also with ve-
locity measurement either from the motion capture system or optical flow. However, all these
studies assume the velocities are available as a direct measurement, which we do not have.
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Although we do not use velocity sensors, the system still needs velocity to become observable.
Getting a reliable velocity from a low-cost IMU or UWB is challenging: the integration of
acceleration drifts dramatically using low-cost MEMS IMU sensors [88, 89]. For position
estimation, IMUs are often combined with other sensor measurements, like GPS, muti-anchor
UWB [90], and cameras [91].

One straightforward way to estimate velocity is the distance change from a UWB anchor
when the robot is moving along a radical line from the anchor. This situation is rarely
lasting in reality, but the range changing pattern can be used as a speed estimator. We
propose a method based on simple geometry relations under the assumption that the robot
moves at constant velocity. The estimated speed coupled with data from the IMU gyroscope
can provide a velocity estimate to keep the system observable. Finally, we use an EKF to
fuse range, orientation, and velocity estimation to get the robot pose. The contributions for
this paper are:

• a speed estimator using only UWB range information, which changes an unobservable
system to observable;

• error analysis for the speed estimator to help design a sensor fusion algorithm;

• a loosely coupled tracking algorithm fusing IMU, UWB, and the proposed speed esti-
mation;

• simulation and real-world experiments to validate our methodology.

5.3 Proposed method

5.3.1 System Definition and Observability Analysis

In this paper, we consider a robot moving on a 2D plane in proximity of a UWB anchor. The
robot has a state vector x = [x, y, θ, v, w], where x, y are the coordinates of the robot, θ is
the heading, and v, w are linear and angular velocities. The system kinematics are described
as:

ẋ =



ẋ

ẏ

θ̇

v̇

ẇ


=



v cos(θ)
v sin(θ)
w

a

b


(5.1)
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where a and b are linear and angular acceleration, respectively. The measurement functions
are

h(x) =
h1(x)
h2(x)

 =
√(x− xA)2 + (y − yA)2

θ

 (5.2)

where xA, yA are the coordinate of the UWB anchor. h1() is the range measurement function
for the UWB sensor. h2() is a heading measurement function that takes the output orientation
of a complementary filter, which fuses the measurements of the accelerometer, gyroscope, and
magnetometer as the heading measurement of the IMUs.

In control theory, the observability of a system refers to the ability to reconstruct its initial
state from the control inputs and outputs. For a linear time invariant system, if the ob-
servability matrix [C|CA|...|CAn−1] is nonsingular, the system is observable [169]. We refer
to an approach by Hermann [83] using differential geometry to analyze the observability of
non-linear systems.

To easily compare the impact of velocity, we extend the measurement functions (5.2) to a
typical system that has linear and angular velocity measurements like (5.3), similar with [80].
In addition, we define the anchor position as the origin and map distance measurement d to
d2

2 to simplify h1(x) like in [170]. Then we have:

h(x) =


h1(x)
h2(x)
h3(x)
h4(x)

 =


1
2(x2 + y2)

θ

v

w

 (5.3)

We rewrite the model in (5.1) to the following format [83]:

ẋ =
∑

fk(x)uk

with a state x = [x, y, θ, v, w] and control input u = [a, b]. Then we extract a vector field f
of the following functions on the state space:

f 0(x) =
[
v cos(θ), v sin(θ), w, 0, 0

]>
f 1(x) =

[
0, 0, 0, 1, 0

]>
f 2(x) =

[
0, 0, 0, 0, 1

]>



90

Next we find the Lie derivatives of the observation functions on state space along the vec-
tor field f . The zero order Lie derivatives are, L0h1 = 1

2(x2 + y2); L0h2 = θ; L0h3 = v;
and L0h4 = w, which are same as observation functions. Then we compute the first-order
derivative as L1

f0h1 = xv cos(θ) + yv sin(θ); L1
f0h2 = w; L1

f1h3 = L1
f2h4 = 1, and all the other

first-order Lie derivatives, L1
f0h3 = L1

f0h4 = L1
f1h1 = L1

f1h2 = L1
f1h4 = L1

f2h1 = L1
f2h2 =

L1
f2h3 = 0.

We write the observation space G spanned by Lk
fhi, for k = 0 : 1; f = 0 : 2; i = 1 : 4. Note

that all constant Lie derivatives are eliminated when computing the state derivative as dG
in (5.4). Finally, we compute the state derivatives of space G and get:

[
dG
]

=



o11 o12 0 0 0
o21 o22 o23 o24 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(5.4)

where o11 = x, o12 = y, o21 = v cos(θ), o22 = v sin(θ), o23 = −xv sin(θ) + yv cos(θ), o24 =
x cos(θ) + y sin(θ), and x, y 6= 0 because (0, 0) is occupied by the anchor.

dG is with full rank when v 6= 0 and y/x 6= tan θ, which are reasonable assumptions. If
the robot is static, it is difficult to locate the robot just from the range and the orientation.
The second condition means that the robot moves along a radial line from the anchor, which
is rarely lasting in practice. However, if we do not have velocity measurements, which is
the situation we proposed, the fourth row of the state space becomes 01×5. The dimension
of space is reduced to four, and therefore the system does not meet the observability rank
condition.

Therefore, velocity is crucial for system observability, and we estimate it from inertial mea-
surements and UWB ranging.

5.3.2 Speed Estimation Model

By observing the range change pattern as a robot moves on a straight line, we propose a
speed estimator based on simple geometric relations. As shown in Fig.5.2, three pairs of
range and time measurements, (r0, t0) , (r1, t1) and (r2, t2) are given when the robot passes
points A, B and C with a constant velocity. r = OP is the virtual distance from the anchor
to the motion line. x = PA is the length from starting point A to the virtual intersection P .
Based on the Pythagorean theorem, we can get the algebraic solution of the moving speed v:
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
r0

2

r1
2

r2
2

 =


r2 + x2

r2 + (x+ v∆t1)2

r2 + (x+ v∆t1 + v∆t2)2

 (5.5)

where
∆t1 = t1 − t0; ∆t2 = t2 − t1

From these three functions, we can solve r, x and v. As we are interested only in the velocity,
we just show:

v = ±

√√√√√√(r2
2 − r2

1)− ∆t2
∆t1
· (r2

1 − r2
0)

∆t1∆t2 + ∆t21
.

For simplicity, assuming the ranging measurements have a fixed frequency f, we have ∆t1 =
∆t2 = ∆t = 1/f. Then

v = ±
√
r2

2 + r2
0 − 2r2

1
2∆t2 (5.6)

The positive value is the current speed (as the kinematics model shows the robot can only
move forward). We present a simulation that includes ten stages, with different configurations
of linear and angular velocities, as shown in Fig.5.3. The velocities change at the beginning of
each stage and remain constant thereafter. The range measurements (cyan) is continuously
fed into the estimator. As we can see, the velocity can be correctly provided (green). The
changing pattern of the range in each phase suggests the speed value.

The peaks between stages are caused by velocity changes, and should be expected as the
changes break the constant velocity assumption. Even if we cannot estimate the velocity

Figure 5.2 An illustration of our speed estimator. Three pairs of range measurements are
used to calculate the speed.
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correctly when it is suddenly changing, our algorithm does not lose its generality, as constant
velocity motion is still the predominant motion in most real-world scenarios. One can esti-
mate the speed over these periods and maintain a correct pose estimate. Furthermore, our
sensor fusion algorithm also provides tolerance to velocity changes.

5.3.3 Speed Estimator Error Analysis

UWB ranging is considered as fairly accurate. This is true compared with WIFI or Bluetooth
technologies that provide meter accuracy, but UWB can only achieve decimeter accuracy.
For instance, DW1000 from Decawave [171] provides the accuracy of ±10 cm using two-way
ranging (TWR) time-of-flight (TOF) protocol, which is still too noisy to calculate the speed
from range measurements directly. In this section, we analyze the error propagation for the
speed estimator and design the speed estimation algorithm accordingly.

The range measurement model is expressed as r = R+e, where the measurement r is the true
range R plus some noise e. We represent standard deviation as δ∗, e.g., δr for the standard
deviation of r.

To determine the properties of δv from three range measurements with deviation δr, we
compute the error propagation as in [172] (Ch4). For (5.6). We get:

(δv)2 =
(
∂v

∂r0

)2
(δr0)2 +

(
∂v

∂r1

)2
(δr1)2 +

(
∂v

∂r2

)2
(δr2)2

this can be rewritten as:

(δv)2 =

 √
2r0∆t√

r2
2 + r2

0 − 2r2
1

2

(δr0)2

+

 √
2r2∆t√

r2
2 + r2

0 − 2r2
1

2

(δr2)2 +

2
√

2r1∆t√
r2

2 + r2
0 − 2r2

1

2

(δr1)2

Since δr0, δr1, and δr2 are measurements from the same sensor, we have δr0 = δr1 = δr2 = δr,
which is 0.2 for UWB sensors in our situation. ∆t is a constant variable depending on the
ranging update rate. Then we simplify the equation above as:

(δv)2 = (2r2
0 + 2r2

2 + 8r2
1)∆t

r2
2 + r2

0 − 2r2
1

2

(δr)2
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Figure 5.3 A simulation of speed estimation using noise-free ranging measurements to one
anchor. The speed can be tracked correctly during constant velocity phases. Speed estimation
produces erroneous peaks during speed change time, which can be avoided by filtering.
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Figure 5.4 The velocity amplitude is estimated only from range measurements. The robot
moves from the point (10,0) to (10, 250) at 10.0 m/s with a step of 0.01s. The anchor
is located at (0,0). The deviation of the direct speed estimation (blue) increases with the
range. Using a variable window size average filter, our speed estimator (green) gives the
correct speed.
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namely,

(δv)2 =
(

2 + 10r2
1

r2
2 + r2

0 − 2r2
1

)
(δr)2∆t2 (5.7)

From above equation, we can see if three measurements, r0, r1, and r2, are similar, the de-
nominator (r2

2 + r2
0 − 2r2

1) becomes small, and then the error becomes very large, a condition
we want to avoid. Similar r0, r1, and r2 can be caused by an excessively fast sample rate or
by very slow motion.

To avoid the arrival of similar ranging measurements, we update the speed based on the
ranging change, instead of updating at regular intervals as usual. In other words, when
the range measurement difference exceeds a given threshold, the estimator is triggered to
compute the speed. This way, the noise in the estimation can be effectively eliminated. Note
that the update rate depends on the speed of the robot and also the direction of motion.
If the robot moves quickly and on a radial line from the anchor, the range measurement
difference quickly reaches the threshold and the update rate is high, and vice versa.

Furthermore, we can also see the standard deviation of the speed is positively correlated with
r1 in the numerator in (5.7). The value of r1 is the intermediate measurement of the distance
from the robot to the anchor. As Fig.5.4 shows, the deviation of the speed estimation (blue)
increases as the range measurement increases. Thus, if the robot is very far away from the
anchor, the standard deviation becomes large, leading to noisy speed estimation.

To solve this problem, we implement a variable window size filter, based on the distance from
the robot to the anchor, to smooth the speed estimation. As Fig.5.4 shows, the deviation
of direct speed estimation increases as the range increases. However, our variable window
speed estimation can track the actual speed well.

5.3.4 Sensor Fusion System

The block diagram in Fig.5.5 shows our localization system. As mentioned above, the system
has two kinds of sensors: UWB sensors for range measurement and low-cost IMUs, with
gyroscopes, accelerators, and magnetometers, for orientation. The UWB range measurement
is used in two pipelines: first, it goes to the EKF; at the same time, it is fed to a Kalman
filter and then into the speed estimator. The speed estimation output goes into the EKF
(red line). The robot heading is estimated by a complementary filter [173] that provides
a quaternion estimation of the orientation using an algebraic solution from the observation
of gravity and magnetic field. Finally, the range measurements, robot heading, and speed
estimation are fed into the EKF to estimate the robot pose.
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Figure 5.5 Sensor fusion system

Algorithm 5 outlines the approach in detail. Sensor readings from the IMU are fed into a
complementary filter to obtain accurate heading in a non-magnetic field inferred environment,
as shown in line 10. The UWB range and the computed heading are fed into an EKF to do
a classical state estimation for position, heading, linear and angular velocities (lines 11-12 in
Alg. 5).

The novelty of our system is the speed estimation, which corrects the velocity estimation in
the EKF. As explained above, the UWB range measurements are fed into a separate Kalman
filter to obtain smooth range measurements as sRange (lines 13-14 in Alg.5). When a change
in sRange is greater than the threshold THdistance and the robot moves in a linear trajectory,
the speed estimator will calculate the speed. This speed is then used to correct the velocity
estimated from the EKF (lines 15-19). A variable window size filter is applied to get a smooth
speed estimate result (lines 6-7) as discussed in 5.3.3.

5.4 Experiments

We validate our algorithm through simulations and real robot experiments. We used two
types of robots: a DJI M100 quadcopter and a Duckiebot [174]. Robots are equipped with
Decawave DW1000 [171] based UWB modules [175]. The quadcopter experiment specifically
validated our speed estimation algorithm and gave quantitative localization error based on
GPS. The ground mobile robot experiment shows that our algorithm can track very simple
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Algorithm 5: State estimation algorithm from single UWB anchor.
input : time, ranget,acct, gyrot,magnt

output: xt

1 kRPs = ([range,timestamp],...) # keyRangePairs
2 Function VelEstimator(range, time):
3 newKeyPair = [range, time]
4 kRPs.append(newKeyPair)
5 velList← calculate_velocity(kRPsi−2, kRPsi−1, kRPsi);
6 windowLen = range ∗ ratio
7 vel = average(velList[windowLen])
8 return vel
9 while True do

10 headingt = complementaryF ilter(acct, gyrot,magnt)
11 x̂t = EKF.predict()
12 xt = EKF.update(ranget, headingt)
13 ˆsRange = KF.predict()
14 sRange = KF.update(ranget)
15 if |gyrot| < THlinear_motion and (fdRange− rangei) > THdistance then
16 i = i+ 1
17 rangei = sRange
18 vel = V elEstimator(fdRange, time)
19 xt.vel = w ∗ xt.vel + (1− w) ∗ vel
20 end
21 end
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robots even in complex trajectories. From the error summary in Table 5.1, we can see our
method has improved the accuracy by a factor 2 in simulations and real robot experiments.
Please note we use RMSE for simulation and absolute trajectory error (ATE) for real robots
experiments because we have exact ground truth from simulations, but not for real robot
experiments.

5.4.1 Simulation

In our simulations, we generate a random trajectory with a differential wheel robot kinematics
model [176]. There are five stages of motion, with different headings and speed settings. The
anchor is set at position (0,0) and the robot starts at the point (10,0). The range measurement
is corrupted by white Gaussian noise with 0.2 m standard derivation, which is similar to the
actual UWB measurement derivation. The noise added to orientation is with a deviation of
0.1 rad.

As the top of Fig. 5.7 shows, our method (green) can track the ground truth velocity (gray)
most of the time, which results in an accurate trajectory in Fig.5.6. However, the vanilla EKF
model (red) cannot recover from the drift errors accumulated during the first stage. This
proves that our algorithm can correct the accumulated error as long as the speed estimator
gives accurate estimations. More specifically, compared with the bottom figure in Fig. 5.7,
the RMSE of our method drops rapidly (starts from 1200 steps) when the speed estimation
is available (around 1200 steps). We reduce the RMSE of the vanilla EKF by more than 70%
and achieve the accuracy of 0.48 m, which is impressive given the limited information.

5.4.2 Speed Estimation for Flying Robot

We have used a quadcopter (DJI M100) to validate our tracking and speed estimation in
the real world, which also illustrates the potential use for 3D applications as well. We
programmed a triangle trajectory with a speed parameter of 2 m/s for the M100. First, we
compare the estimated results with the velocity feedback from DJI_SDK software. Fig.5.9
shows our algorithm can give correct speed estimation (red) based on range measurements
(cyan). Then we calculate ATE between our estimated trajectory and GPS trajectory. As
Fig.5.8 and table 5.1 show, the trajectory from our algorithm is much closer than that of the

Table 5.1 Error comparison between EKF with or without speed estimator.

Error (m) Simulation (RMSE) Drone Exp. (ATE)
Without speed estimator 1.73 2.81
With speed estimator 0.48 1.05



98

Figure 5.6 The trajectories of EKF with our speed estimator (proposed method, in green) and
without speed estimator (vanilla EKF, in red), refer to the ground truth trajectory (gray).

EKF without our speed estimator. With only one anchor setup, we get around 1 m ATE
error, which is much higher than the vanilla EKF with the accuracy of 2.8 m. Please also
note that the DJI velocity feedback in Fig.5.9 only works as reference, instead of ground
truth: for the first ten seconds, the robot is hovering but the speed indicated from DJI_SDK
is around 0.3 m/s.

5.4.3 Tracking of Ground Mobile Robot

The ground robot platform is a simple indoor robot, the Duckiebot [174]. Our version of
the Duckiebot has an RPi2 on-board computer. We add a 9DOF IMUs sensor and a UWB
module to the robot, as shown in Fig.5.1. The robot does not have wheel encoders to get
the speed or displacement. We manually control the robot to run a university logo trajectory
(TUM) in an outside basketball court. We use our localization system to track the robot
pose. Fig.5.1 shows that the algorithm can track the trajectory correctly. This experiment
shows a qualitative evaluation, indicating that our algorithm can be easily applied to simple
robots and IoT devices.
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Figure 5.7 The top figure shows the velocity estimations of our method and vanilla EKF. We
can see that although there are some delays, our algorithm can track the actual speed most
times. However, the EKF without speed estimator can only catch up the trend of speed. The
bottom figure is the comparison of RMSE. The error of our algorithm drops rapidly when
the correct speed estimation is available.
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Figure 5.8 Experiments with a DJI M100 quadcopter. The robot is programmed to fly in a
triangle trajectory. The anchor is placed on the ground. Our trajectory is much closer to the
GPS trajectory than the vanilla EKF without speed estimator.

Figure 5.9 In the quadcopter experiment, we can estimate the speed (red) simply by using
the range measurement (cyan). The reference from the DJI_SDK is plotted in green.



101

5.5 Conclusion and Discussion

In this paper, we propose a localization algorithm for robots that are equipped with low-cost
IMUs and UWB sensors in an environment configured with only a single UWB anchor. We
estimate the speed from UWB range changes, which makes the system temporally observable.
Our algorithm effectively reduces the accumulated errors by 60%. With this algorithm, a
large number of devices can be localized, including IoT devices or cellphones with IMU and
UWB sensors.

Erratum: In page 89, paragraph 2, the second sentence "For a linear time invariant
system, if the observability matrix [C|CA|...|CAn−1] is nonsingular, the system is observ-
able [169]." is replaced by "For a linear time invariant system, if the observability matrix
[C|CA|...|CAn−1] is full rank, the system is observable [169].".
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CHAPTER 6 ARTICLE 4: VIR-SLAM: VISUAL, INERTIAL, AND
RANGING SLAM FOR SINGLE AND MULTI-ROBOT SYSTEMS

Preface: In this chapter, we propose a system for robots equipped with IMU, UWB, and a
monocular camera. With the same goal with last chapter, improve the odometry accuracy,
this chapter builds on more sophistic method of SLAM. This chapter propose a different
strategy to integrate the UWB ranging measurements into a SLAM frame, which achieve
great improvement of odometry accuracy. Furthermore, the UWB ranging can assist the
multi-robot system to acquire relative information to merge their trajectories and maps.
Authors: Yanjun Cao and Giovanni Beltrame
Submitted to: Autonomous Robots, Springer
Personal Contributions: Y. Cao conceived of the presented ideas, developed the theory,
designed and carried out the simulations and the real robots experiments. Y. Cao wrote the
manuscript with support from G. Beltrame.

Abstract
Monocular cameras coupled with inertial measurements generally give high performance vi-
sual inertial odometry. However, drift can be significant with long trajectories, especially
when the environment is visually challenging. In this paper, we propose a system that lever-
ages Ultra-WideBand (UWB) ranging with one static anchor placed in the environment to
correct the accumulated error whenever the anchor is visible. We also use this setup for
collaborative SLAM: different robots use mutual ranging (when available) and the common
anchor to estimate the transformation between each other, facilitating map fusion. Our sys-
tem consists of two modules: a double layer ranging, visual, and inertial odometry for single
robots, and a transformation estimation module for collaborative SLAM. We test our system
on public datasets by simulating UWB measurements as well as on real robots in different
environments. Experiments validate our system and show our method can outperform pure
visual-inertial odometry by more than 20%, and in visually challenging environments, our
method works even when the visual-inertial pipeline has significant drift. Furthermore, we
can compute the inter-robot transformation matrices for collaborative SLAM at almost no
extra computation cost.
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6.1 INTRODUCTION

Robot localization is a fundamental topic in any mobile robot application. Recent advances
in robot hardware and software have boosted the opportunity and demand for multi-robot
systems for their inherent benefits, such as high efficiency and robustness.

With a monocular camera and low-cost inertial measurement units, Visual Inertial Odometry
(VIO) is accepted as the minimal sensor configuration for single robots state estimation and
navigation considering size, wight, power and cost [20]. Recent technical advances [21–23]
make VIO more and more robust and stable in many conditions. However, the drift caused
by accumulated error is still hard to control without loop closures. Although loop closure is a
natural part for SLAM system, the requirements to close the loop rely much on the trajectory
and environment. For example, generating high-quality closures requires revisiting the same
location with a similar viewpoint. Furthermore, perception outliers caused by illumination,
self-similar environments, etc. are challenging for loop closure. In addition, as the nature of
loop closure is to distribute the accumulated error alone the trajectory, proper maintenance
of the history key frames is needed to recovery accurate trajectory [25].

In this paper, we use a single extra sensor, a static Ultra-WideBand (UWB) anchor, to im-
prove the performance of robot localization. UWB technology has attracted a lot of attention
recent years for its accurate ranging performance and long-distance support. For example,
the latest Apple IPhone at the time of writing is equipped with a UWB chip (actually, it in-
cludes all sensors needed in this paper). Most available UWB systems (e.g. [177]) use several
(at least four for 3D and three for 2D) calibrated anchors as a Global Positioning System
(GPS) for specific areas. This type of infrastructure is not applicable for the exploration
in unknown environments, which is one of the primary objectives of SLAM. Therefore, we
design our system to rely only on one anchor, which can be dropped off at any moment, even
in an unknown location, by a robot during its mission. Our experiments show that this one
anchor can improve the localization accuracy significantly.

This setup has another significant benefit for multi-robot SLAM. One issue in multi-robot
SLAM is the estimation of relative transformation matrix between robots [114]. Most avail-
able works rely on common features to extract the relative pose of robots, which is a type
of inter-robot loop closure, which leads to similar constraints as single robot loop closures.
An additional challenge for inter-robot loop closure is the need to exchange the information
required for loop closure among all robots, which can be significant.

In our system, we can solve this challenge using the UWB sensor. When any two robots move
into their respective UWB ranging radii, they can exchange their anchor measurements and do
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Figure 6.1 System overview. The system is built on a state-of-the-art VIO algorithm (shaded
in gray). We apply the UWB sensor to get drift-free odometry with the help of a single
anchor placed arbitrarily in the environment. More than directly integrating the UWB
ranging measurement into the Sliding window optimization, we also collect the Marginalized
key frame into the Long window pose graph construction for a Joint optimization. The
running process of the system is shown at the bottom. After VIO initialization, robots start
the Anchor position initialization and then execute the VIR odometry or Long window VIR
Odometry when the long window pose graph is available.

mutual ranging. Using this information, the robots can estimate their respective coordinate
system transformations. Having the transformation matrix, a robot can correctly project
all the information from its neighbors onto its own frame. This solution greatly simplifies
multi-robot SLAM, minimizing the need for inter-robots loop closure, which requires the
exchange of feature databases, the identification of loop closures and distributed pose graph
optimization.

The last but not the least reason for choosing UWB is its inherent advantage in data associa-
tion. When a range measurement is received, the identity of the sender is recognized without
extra effort, which can be of great assistance for multi-robot systems. Moreover, UWB can
provide modest communication bandwidth while ranging. For example, the state estimation
of poses can be carried by UWB packets while performing ranging. In the future, we believe a
monocular camera, inertial measurement units (IMU), and UWB will be a standard minimal
configuration for multi-robot systems.
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6.2 RELATED WORK

6.2.1 Single Robot SLAM with Visual, Inertial and Ranging Measurements

SLAM has been the subject of intense research for more than thirty years [94]. Monocular
visual-inertial odometry is a popular choice as it provides good state estimation perfor-
mance with a minimal sensor configuration. Although state-of-the-art VIO algorithms (e.g.
SVO [22], VINS-Mono [23], DSO [105]) can reach very high accuracy in relative translation
and orientation, the accumulated drift can still be an issue: any small orientation error can
lead to large end-point error. Our system leverages UWB ranging measurements to correct
the accumulated error. We developed our system based on VINS-Mono [23], which is a
robust and versatile state estimator which uses a sliding window tightly coupled nonlinear
optimization for visual and IMU measurements.

UWB technology, as a localization solution on its own, has attracted a lot of attention in
recent years both in research and industry for its decimeter localization accuracy. However,
most results are based on a well-calibrated multi-anchor setup [54, 106–109], which is not
applicable for navigation in unexplored, unstructured environments. Single anchor setup
is desired as the easy deployment [29]. Wang et al. propose a system using a monocular
camera, IMU and UWB to bypass the complexity of loop closure [110] . However, they
still use multiple preconfigured UWB anchors. Their UWB module provides coarse drift-free
global position and VIO identifies the local trajectory. On the contrary, in this paper we
use only one anchor, placed in an unspecified location. [111] present an idea similar to to
ours: they start with one UWB anchor and keep dropping anchors from a moving robot.
Unfortunately, their experimental results are available only in simulation for one sequence of
the EuRoC dataset [112], with five simulated anchors. A closely related recently published
work [113] combines monocular camera with UWB ranging to a single anchor. The system
is developed based on ORB-SLAM [25] and use UWB ranges to estimate the scale after
recording the first batch of data. In our case, we also integrate the ubiquitous IMU and
effectively fuse accurate VIO and range constraints along the robot’s trajectory.

6.2.2 Multi-Robot SLAM

Multi-robot SLAM has gained recent attention for the increased viability and accessibility of
multi-robot systems. A review work [114] gives a comprehensive survey of multi-robot SLAM
and points out one key issue: relative pose estimation. Most current multi-robot SLAM
systems solve this issue by analyzing inter-robot loop closures, either in centralized [115] or
distributed [116, 117] fashion. The distributed approach is more robust, but it is harder to
implement in practice: robots need to exchange map data to get the feature database for
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future loop closures, and distributed optimization usually requires additional communication
and computation. Ranging measurements can assist in relative pose estimation. Trawny et
al. provide theoretical proofs and simulations that show how six range measurements can be
used to get the transformation matrix between two robots [6]. [57] adapt it to 4DOF relative
pose estimation with a UWB setup, and use it for merging maps for VR applications. Both
methods require mutual ranging measurements over long trajectories. In our solution, robots
can estimate the transformation matrix as soon as they can get two measurements from their
neighbors, which meets the requirement of real-time transformation estimation during robot
rendezvous. These two methods [6,57] represent a good solution when no common anchor is
present (or is not measured) and can be combined with inter-robot loop closures to improve
the transformation results. Recent work [58] presents a decentralized Visual-Inertial-UWB
fusion for relative state estimation: the authors combine VIO, UWB and vision detectors of
YOLOv3 [118] to track the relative state of neighbors.

In practice, many works in literature have explored the combination of multiple UWB anchors
with vision and IMU. In this paper, we focus on the use of a single anchor in an arbitrary
location, which is trivial to deploy as a beacon in real exploration tasks. We propose a double
layer sliding window technique to combine VIO with UWB ranging, which produces drift-free
state estimation by leveraging VIO for its accurate short time relative pose estimation, and
range constraints for longer trajectories. Moreover, recorded anchor ranges can help robots
find the transformation matrix efficiently with only two range measurements in multi-robot
settings. Our contributions can be summarized as:

• a UWB-aided SLAM system for single robots which outperforms pure VIO and has
drift-free odometry estimation;

• a double layer sliding window algorithm that combines relative pose estimation from
VIO and UWB ranging constraints;

• an efficient method to estimate the transformation matrix between multiple robots.

6.3 SYSTEM DESIGN

In this section, we explain the preliminaries and symbols used in this paper. We then detail
the formulation of our ranging-aided visual inertial SLAM, focusing on the cost factors of the
optimization problem. We also explain the techniques to tackle the noise of UWB measure-
ments. Finally, we introduce our solution for the estimation of the transformation matrix
between robots.
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Figure 6.2 Illustration of the scenario of VIR-SLAM, with a single anchor setup. Measure-
ments from sensors are shown with different lines. Robot poses with the camera and IMU
measurements belong to the short sliding window. All poses associated with UWB ranging
to the anchor are kept for the long sliding window.
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6.3.1 Single Robot Estimation Preliminaries

We assume a robot carries three kinds of sensors (a monocular camera, an IMU and UWB
module), and moves in a 3D environment, as shown in Fig. 6.2. A UWB anchor is placed in
the environment with an unknown initial position. We define the world frame of the robot
i as [ ]iw, which is usually aligned with the first camera frame when the robot starts its
mission. The position of the anchor is expressed in the robot world frame, denoted by Piw

A .
We use [ ]ib to indicate the body frame of robot i, and similarly [ ]ic for the camera frame.
Note that we do not define the UWB sensor frame because it is a scalar measurement. The
UWB ranging measurement is transferred to body frame by considering the 3D offset of the
UWB antenna in the body frame.

Classical VIO proposes an optimization formulation of states over a sliding window with size
n as:

X = [x0,x1, . . . ,xn, l0, l1, . . . , lm] (6.1)

xk = [piw
bk
,viw

bk
,qiw

bk
,bib

ak
,bib

wk
] k ∈ [0, n]

which includes the state x for all n frames and the visual feature inverse depth l. The kth
frame state xk includes the position piw

bk
, velocity viw

bk
, and orientation in quaternions qiw

bk
for

robot i in its world frame, plus accelerometer bias bib
ak

and gyroscope bias bib
wk

in its body
frame. li is the inverse depth of the ith feature amongm features from the visual observations
over the sliding window. If the sliding window includes all the camera frames since the start of
the mission, the optimization becomes a full smoothing estimation. Although full smoothing
offers the best accuracy, it is not scalable in reality, so we follow the key-frame approach that
discards similar frames while not losing tracking [25,101]. However, as the trajectory becomes
longer, the size of state keeps growing. For this reason, the old key frames are marginalized
into a prior factor in the optimization [23,104]. The drift from visual inertial odometry is still
hard to avoid, and pose graph optimization with loop closure becomes necessary to correct
the accumulating error.

To obtain an accurate localization system while avoiding to rely on loop closures, we design
a SLAM system that uses a novel double layer sliding window structure, with an implemen-
tation based on VINS-Mono [23] (shown by a gray area in Fig. 6.1).

6.3.2 Double Layer Tightly Coupled VIR Optimization

We propose a double layer sliding window tightly coupled SLAM optimization by considering
following aspects: high accuracy relative pose estimation from VIO, less accurate but absolute
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UWB measurements, and the computation cost for these factors. As shown in Fig. 6.1, the
ranging measurements are fed into the Sliding window optimization in the standard VIO
optimization. As the number of variables to optimize increase greatly with the number of
key frames in the sliding window, the computational resources limit the choice of sliding
window size. We keep the same size as the standard VIO sliding window for the visual
and inertial measurement optimization. However, we apply an extra UWB constrain to the
Marginalized key frames to leverage the distance constraint along the trajectory, as shown in
Fig. 6.1. A joint optimization combining standard sliding window optimization [178] and the
proposed long window pose graph compute the final odometry estimation.

Three kinds of variables are involved in our two sliding windows optimization:

X = [w0,w1, . . . ,ws,x0,x1, . . . ,xn, l0, l1, . . . , lm]

A short window Ψ, the same as the classical visual SLAM sliding window with size n from
Equ.6.1. The variables in this window include xk, k ∈ [0, n] and [l0, l1, . . . , lm], which have
the same meaning as the variables in Equ. 6.1.

xk = [piw
bk
,viw

bk
,qiw

bk
,bib

ak
,bib

wk
] k ∈ Ψ[0, n]

The novelty in our system lies in the addition of another long sliding window Ω, which carries
state wt:

wt = [piw
bt

] t ∈ Ω[0, s]

The size of the long sliding window is s, which is much larger than n. The state in this
window only contains the robot position piw

b in the robot world frame. Fig.6.3 shows the
factor graph of our system, corresponding to the scenario of Fig. 6.2. The short window
(in the gray area) includes the state from the camera and IMU measurements. The long
window (orange area) contains the state from the UWB measurements. Following the state
definition, we formulate a full nonlinear optimization problem as:
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Figure 6.3 Factor graph for the scenario in Fig. 6.2. The factor graph includes poses, UWB
factor, IMU factors and visual factors. The edges are the error. We have a UWB factor
for the poses with range measurements. Further, smooth edges (curves) are added between
poses.

min
X

{∑
t∈Ω
‖rU(ẑt,X )‖2

Piw
bt︸ ︷︷ ︸

UW B factor

+
∑
k∈Ψ
‖rB(ẑbk

bk+1
,X )‖2

Pbk
bk+1︸ ︷︷ ︸

IMU factor

+
∑

(l,j)∈C
ρ(‖rC(ẑcj

l ,X )‖2
P

cj
l

)
︸ ︷︷ ︸

V ision factor

}
(6.2)

This nonlinear optimization problem considers three factors, corresponding to the UWB
factor, the IMU factor, and the vision factor. The UWB residuals are calculated for the long
window Ω, while the IMU and visual residuals for the short window Ψ.

UWB Factor

UWB localization uses different protocols: time of arrival (TOA), time difference of arrival
(TDoA), and two-way ranging (TWR). In our system, we use TWR, which measures the
distance between two transceivers by sending a packet back and forth. Although the number
of nodes supported is limited because of the shared UWB communication medium, TWR
can be used without device synchronization, which makes the protocol widely used. Since
we are not considering hundreds of robots communicating simultaneously and we would like
to avoid synchronization (which can be difficult to implement in distributed multi-robot
applications), we choose TWR as our ranging mode. Similar to [106, 179], we model the
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ranging measurement of UWB modules as:

d̂ = d+ f(d) + e (6.3)

where d̂ is the UWB measurement, d is true distance, f(d) is distance based bias, and e is
the error following a Gaussian distribution N(0, σ2). Considering the properties of UWB
measurements, we apply an outlier rejection and smoothing technique before using them,
(see Section 6.3.2). With this UWB model, we define the UWB factor in Equ. 6.2 as:

rU(ẑt,X ) = γr · (‖piw
bt
−Piw

A ‖ − d̂t)︸ ︷︷ ︸
UW B ranging residual

+ γs · (
∑

j∈(t,t+s]
{piw

bj
− piw

bt
} − z̃bj

bt
)

︸ ︷︷ ︸
Relative transformation residual

(6.4)

The UWB factor above includes two residuals: a ranging measurement residual and a virtual
relative transformation measurement residual, with weights γr and γs, respectively. d̂t are
the UWB ranging measurements, which are compared with the predicted distance from
the robot body frame t to the anchor Piw

A in the world frame. To avoid the ranging factor
excessively affecting the optimizer and breaking the relative pose property from visual-inertial
estimation, we introduce a virtual relative transformation measurement z̃bj

bt
between frames

t and j ∈ (t, t + s], which is extracted from the short sliding window estimation result. We
select s = 3 in our experiments to create two consecutive links between poses, as can be seen
for example with pose xp7 in Fig. 6.3.

UWB Ranging Integration

Although the UWB measurement model in Equ. 6.3 holds true in theory, [180] pointed
out that real-world environment is much more complicated. Barral et al. have tested the
systematic bias in a semi-open environment (a sports hall) and showed the multipath impact
on the bias. In a more complicated environment with walls, ceilings, obstacles that partially
absorbs the transmit power, or even not in line of sight, large estimation errors can occur [181].
Therefore, we adhere to the basic distance-related bias model, but combine outlier rejection
and smoothing techniques to reduce the measurement noise.

To calibrate the systematic bias f(d), we first collect several datasets within (0,40 m) in
the atrium of our building (the configuration can be partially seen in Fig. 6.10). One of
the sequences is shown in Fig. 6.4. The ground truth distances are measured by laser range
finder in the static periods, corresponding to the horizontal segment in Fig. 6.4. We used an
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exponential model regression to find out the bias relation, similar to [106].

Many outliers can be encountered indoors, as the magnified part in Fig. 6.4 shows (inside the
orange box). This is very likely due to multipath or two-ray ground reflection [182]. To remove
these outliers, we propose an outlier rejection algorithm inspired by [183]. Considering the
multi-path phenomenon will only produce outliers with higher value than the true distance,
we track the lower limit of the most recent measurements in a range buffer. By applying an
acceptable bound considering the maximum motion of the node, we can reject the outliers.
Unlike the algorithm in [183], where the authors use a detailed motion model of the sensor to
select two valid previous measurements, our algorithm only needs a basic estimation of the
maximum speed. Fig. 6.5 shows the result of applying the outlier rejection module for the
noisy period in Fig. 6.4 (from 162s to 180s). We can see the accepted measurements (orange
dots) contains only the bottom envelope of the signal: peaks and large measurements are
rejected as outliers.

Another technique we use to reduce the error in this pre-processing stage is through smooth-
ing. We apply Gaussian smoothing [184] to all accepted measurements for the duration of the
long window. The smoothing result can be seen in Fig. 6.5. For the gap in the measurement
timeline, we interpolate the points based on the adjacent ends if they are close in time. The
smoothed value corresponding to the key frame timestamp is used to create the UWB factors
in the long window.

IMU Factor

IMU measurements are critical for monocular visual odometry. As the frequency of the IMU
is usually higher than the camera image frame rate, the IMU measurements are preintegrated
between two consecutive image frames [21]. By referring to the last body frame motion, this
technique avoids repeating the IMU reintegration and reduces computation during optimiza-
tion. Forster et al. extend this approach to manifold structures of the rotation group So3
for higher accuracy and robustness [22]. We follow the same method as [23] in quaternion
form.

The preintegrated IMU measurements between two consecutive frames of bk and bk+1 referring
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Figure 6.4 A sequence of raw ranging measurement to estimate the distance based UWB
ranging bias. A laser range finder is used to find the ground truth distance for the static
periods (horizontal segments). This figure shows an abnormal measurement happened in the
magnified period. This can happen in complicated indoor environment with multipath radio
wave propagation.

Figure 6.5 An example of outlier rejection and smoothing pre-processing for the measure-
ments in the abnormal period in Fig. 6.4. Filtered by the outlier rejection module, the
accepted values are the value that is small, considering the fact that multipath causes bigger
measurement than the true distance. Then we smooth the accepted measurements with a
Gaussian kernel before applying them to the UWB factors. Shaded areas are ±3σ for the
raw measurement (green) or the accepted measurements (orange).
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to frame bk can be expressed as:

αbk
bk+1

=
∫∫

t∈[tk,tk+1]
Rbk

t (ât − bat) dt2

βbk
bk+1

=
∫

t∈[tk,tk+1]
Rbk

t (ât − bat) dt

γbk
bk+1

=
∫

t∈[tk,tk+1]

1
2Ω (ω̂t − bwt) γbk

t dt

where

Ω(ω) =
 −bωc× ω

−ωT 0

 , bωc× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


ât and ω̂t are the accelerometer and gyroscope measurement vectors, respectively. These
three formulas correspond to relative the motion changes of position, velocity and orientation
to the local body frame of bk.

The IMU factor is the residual between predicted motion and the preintegrated results re-
ferring to the body frame:

rB
(
ẑbk

bk+1
,X
)

=



δαbk
bk+1

δβbk
bk+1

δθbk
bk+1

δba

δbg


=



pbk − α̂bk
bk+1

vbk − β̂
bk

bk+1

θbk ⊗ (γ̂bk
bk+1

)−1

bbk+1
w − bbk

w

bbk+1
a − bbk

a


where pbk = Rbk

w

(
pw

bk+1
− pw

bk
+ 1

2gw∆t2k − vw
bk

∆tk
)
, vbk = Rbk

w

(
vw

bk+1
+ gw∆tk − vw

bk

)
and

θbk = qbk
w ⊗ qw

bk+1
are the estimated position, velocity and orientation referred to the local

body frame of bk (see appendix in [23] for details).

Vision Factor

The vision factor consists of the reprojection error for the tracked features. We compare
the reprojection of all features in the current frame with their first observations. The visual
residual is as

rC
(
ẑcj

l ,X
)

= ‖ucj

lk
− π(Rcj

ci
,Tcj

ci
,Pci

lk
)‖

where ucj

lk
is the coordinate of features lk in the image of the camera frame j, π() is the

projection that converts homogeneous coordinates into image coordinates, Rcj
ci ,T

cj
ci represent
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the frame transformations (rotation and translation) from the camera frame i to j, which are
inferred from state poses, and Pci

lk
is the 3D position of the kth feature in the first observation

frame i. The vision factor iterates through all the frames and all the tracked features in the
estimated state.

Anchor Position Estimation

In the above discussion, we assume that the anchor coordinates are available to the optimizer.
As the anchor position is initially unknown, it needs to be estimated. Therefore, the state
vector to estimate at the start is X = [Piw

A ,w0,w1, . . . ,ws,x0,x1, . . . ,xn, l0, l1, . . . , lm]. The
cost function and factors are kept unchanged. The optimization result of Piw

A after the initial-
ization stage is saved as a fixed value. We fixed the anchor position with two considerations:
1. The anchor is static in practice, and 2. usually, the initialization phase can be controlled
and have the robot move in proximity of the anchor. Although the distance measurement
error is not correlated with the distance value, the estimation of the anchor position depends
on the distance. In other words, the ratio of trajectory length with the distance affects the
estimation. So we treat the initial estimate as fixed value after the initialization phase. A
time-varying wight as in [113] can also be applied to get stable anchor pose values.

6.3.3 Distributed Collaborative SLAM

Another obvious benefit of our ranging-aided system is that, with a common anchor, robots
can directly estimate inter-robot transformations when they rendezvous. Robots simply
need to send their current position and anchor position while ranging their neighbors. After
receiving this information twice, a robot can calculate the transformation matrix between
itself and the sender. Once the transformation matrix is correctly estimated, all information
received from neighbors can be correctly placed in the robot’s frame.

Estimating the transformation between robots is a critical requirement for multi-robot sys-
tems. We mark the transformation of coordinate systems from robot i to j as Tj

i = [Rj
i , t

j
i ],

where Rj
i is 3×3 matrix representing rotation and tj

i is 3×1 vector of translation. With the
help of accelerometers and gyroscopes, we can establish the direction of gravity and define the
same z axis for all robots. VINS-Mono [23] uses the same strategy: the z axis is aligned with
the opposite of gravity when creating the coordinate system. Therefore, only the yaw angle θ
and 3D offset tj

i between two coordinate systems need to be estimated. The transformation
Tj

i consists of:
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Rj
i =


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , tj
i =


tx

ty

tz


Using the estimation of the anchor position for two robots, we can easily get tz = (Pjw

A −Piw
A )z,

which is the projection of the difference vector on z axis. This leaves three parameters
(θ, tx, tz) to be estimated.
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Figure 6.6 Transformation matrix estimation for multiple robots scenario.

Fig.6.6 shows how the remaining parameters are estimated. Let us assume two robots i and j
moving independently in 2D for simplicity (without loss of generality, as we already know the
z axis offset tz). Both robots have their own coordinate systems, oixiyi and ojxjyj. They also
have the anchor A position after initialization, and have their own trajectory tracked in their
respective coordinate systems. When robot i passes point B and robot j passes point C, they
enter in communication range and they can both obtain a reciprocal distance measurement
d1. Simultaneously, they exchange their current position and A’s position (which are in their
own coordinate system).

We take the view of robot i to illustrate our solution. When robot i receives the position
of the anchor and the current position of robot j (point C) expressed in j’s frame, Pjw

bA
and

Pjw
bC
, respectively. Robot i then knows the origin of ojxjyj must be on the gray circle around
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the anchor with radius |Aoj| (known from Pjw
A ). In addition, robot i calculates |AC| from

Pjw
A and Pjw

bC
to find robot j’s position C must lie on a green circle around A with radius

|AC|. As we know, the distance between point B and C is the range measurement d1, and
point C also must lie on the orange circle around its current position B with radius d1.

Therefore, the current position lies at one of the intersections between the green and orange
circles, C and C ′. To find which intersection is the correct one, we take an additional
measurement d2 between two following points D and E. Following the same procedure, we
can find the candidates of E. For clarity, we did not draw these circles for D and E. By
comparing the relation between E, E ′, C and C ′ with the true motion from C to E, we can
find C and determine the transformation Ti

j. This is the same as solving:


Pjw
bA

= Tj
i ·Piw

bA

d1 = ‖Pjw
bB
−Tj

i ·Piw
bC
‖

d2 = ‖Pjw
bD
−Tj

i ·Piw
bE
‖

(6.5)

where Prw
bQ

represent the 3D position vector of points Q in world coordinate frame of robot
r.

6.4 EXPERIMENTS

We validate our algorithms using public datasets and real hardware experiments. We compare
our system with and without the long window optimization, marked as VIR Full and VIR
w/o LW. We also show the result of pure VIO VINS-Mono1 for reference. The result is
calculated using the TUM evaluation tool2. We compute the absolute trajectory error (ATE)
when ground truth is available. For our large area experiments we do not have ground truth,
and we start and end the experiment in the same location and then calculate the start-to-end
error.

6.4.1 EuRoC Dataset Experiments

We test our single robot tracking system on the EuRoC [112] dataset. We simulate the UWB
ranging measurements from ground truth data. The static anchor is assumed in the origin
of the frame created during robot initialization. We add Gaussian white noise N (0, 0.03) to
model the error of our UWB sensor. For our system, we tested with a short window size of
10 and a long window size of 100. The sliding window size of VINS-Mono is also set to 10.

1https://github.com/HKUST-Aerial-Robotics/VINS-Mono
2https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
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Table 6.1 shows the average translation error (ATE) results of VIR Full, VIR without long
window (VIR w/o LW ), and VINS-Mono. We can see full version of VIR outperform the
method without the long sliding window and VINS by a large amount in sequence 1, 2, and
4. The difference between VIR w/o LW and VINS-Mono is not extreme in sequences 4 and
5. As an example, we show the trajectory of the comparison for the EuRoC MH-05 sequence
in Fig.6.7. Although our method does not have big difference in terms of ATE, which is
calculated by aligning trajectories, our method is closer to the ground truth in red. From
the ellipse, we can see our estimation can correct the error even when drifting.

6.4.2 Single Robot Experiments

We also test our system with a Spiri robot [185] with Decawave DW1000 [171]-based UWB
sensors [175], shown in Fig. 6.8. The system has a D435 Realsense camera but we use it as
a monocular camera. The IMU measurements come from the Pixracer flight controller, and
the robot carries an Nvidia TX1 as an on-board computer. We test the system in our lab
with an OptiTrack motion capture system as ground truth.

We manually control the robot and collect two sequences: the results are listed in Table 6.1.
Full VIR achieves better accuracy than the version without the long window, which is also
much better than VINS. To clearly see the difference, we show the trajectories using the same
origin in Fig. 6.9. This is different from aligning the two trajectories to compute the ATE,
and as Fig. 6.9 shows, our estimator has less accumulated error than VINS-Mono.

We also test our system performance in a large atrium. The environment in the atrium is quite
challenging: featureless walls and ground, low light conditions, glass walls with reflections,
etc. As shown in Fig. 6.10-(a), the reflection of lights and structures can easily be regarded
as static features, which result in large reprojection errors in visual tracking. In (b), the lack
of features in the close range also brings a challenge to visual SLAM. We move the robot

Table 6.1 Error comparison between full version of VIR, VIR without the long sliding window,
and VINS-Mono.

ATE Error (m) VIR Full VIR w/o LW VINS-Mono
EuRoC MH_01 0.110 0.155 0.188
EuRoC MH_02 0.150 0.223 0.240
EuRoC MH_03 0.364 0.263 0.271
EuRoC MH_04 0.294 0.404 0.393
EuRoC MH_05 0.397 0.388 0.392

Lab Seq1 0.195 0.257 0.278
Lab Seq2 0.180 0.220 0.239
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VINS-MonoGround truth VIR SLAM

Figure 6.7 VIR results in EuRoC MH05 dataset. ATE error of our method is 0.291m,
compared to VINS-Mono (0.388m). We set our method is closer to the ground truth in
most sections, which testify the capability to correct the drift error.

Figure 6.8 For single robot experiments, we use the Spiri robot (w/ Pixracer and NVIDIA
TX1). We add a Realsense D435 camera (although we only use RGB) and UWB sensor
module. The IMU measurements are obtained from the Pixracer. The static is in the
middle, while the Realsense T265 on the right simulates a second robot in our multi-robot
experiment.
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Sequence 1

VINS-MonoGround truth VIR SLAM

Sequence 2

1m

1m

Figure 6.9 VIR indoor experiments with OptiTrack ground truth. The top and bottom figures
are two sequences. All trajectories start at the origin and are not aligned. Our estimator
does not present excessive drift.
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around in the atrium and make sure the robot ends at the same point as it starts. Then we
compare the start-to-end error. As Fig. 6.11 and Table 6.2 shows, the VINS-Mono estimation
has significant drift, more than 5.4 m. Although the loop closure version can correct the drift
as the loop closure is detected, there is still a clear error in the trajectory. However, our
VIR SLAM works correctly without any loop closure. The start and end point have a small
translation error (0.148 m) in 2D, but our system introduces a bigger accumulated error on
the z axis. We believe this is due to the anchor being close to the horizontal plane of the
robot, and the small difference in measurement does not help correct the z coordinate. We
manually checked the UWB ranging information along the top and bottom edges and we can
confirm that our estimation is at the right position on the boundaries.

(a)

(b)

Figure 6.10 Two snapshots illustrate the visually challenging environment in our atrium
experiment. The reflection of light and structure in (a) can easily be regarded as static
features (red dots in yellow ellipses), thereby increasing the reprojection error. In (b), the
lack of features in the close range also brings a challenge to visual SLAM.

Table 6.2 Start-to-end Error Comparison

End point 2D Error 3D Error
VINS (4.29, 3.35, 0.52) 5.439 5.465

VINS-LC (0.18, 0.43, -0.38) 0.464 0.602
VIR (-0.04, 0.14, 0.84) 0.148 0.853
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VINS-Mono VINS_LCVIR SLAM

5m

Figure 6.11 VIR results in the atrium, which is very visually challenging. The robot starts
and ends at the same point and we compare the start-to-end error. As the figure shows,
the start and end point of VIR-SLAM are overlapped. Although the VINS-Mono with loop
closure (VINS_LC) can close the loop, it does not eliminate the accumulated error from the
VIO.
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6.4.3 Multi-Robot Experiments

We also test our multi-robot technique, as shown in Fig. 6.12. We manually and indepen-
dently control two robots to make a trajectory similar to the "MIST", the name of our lab.
We place one static UWB anchor in the environment. The first robot is imply a Realsense
T265 and a UWB module, show in Fig. 6.8 (right). We move it to form an "M" shape. The
other robot, Spiri, moves along a "IST" and it controlled independently. Their trajectories
in each robot’s frame are shown at the bottom of Fig. 6.12. With simply two inter-robot
measurements (with data exchange), robot 1 can estimate the transformation of robot 2 and
map robot 2’s trajectory in its own frame as shown at the top of Fig. 6.12.

6.5 CONCLUSIONS AND DISCUSSIONS

In this paper, we propose VIR-SLAM, a novel SLAM paradigm combining vision, inertial,
and UWB sensors. By arbitrarily setting up a static UWB anchor in the environment, robots
can have drift-free state estimation and collaboration on SLAM. Our solution combines the
accurate relative pose estimation from VIO and enhances it using ranging to correct the
accumulated error. As our experiments show, the introduced static anchor can help correct
the drift effectively to improve localization accuracy. We also show an example with two
independent robots mapping each other’s trajectory to their own frame after obtaining two
range measurements. This technique allows the robots to find the inter-robot transformation,
which is extremely useful for multi-robot SLAM.

As we know, UWB works well under LOS conditions, so the system is limited by the visibility
and maximum range of the UWB anchor. When considering the level of a multi-robot system,
it is interesting to determine where to drop a UWB anchor. In future work, we will complete
the work for a multi-robot exploration scenario, also integrating loop closure for a more
robust system.
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2m

Robot1 Trajectory

Robot1 merges trajectory of robot 2 to form “MIST” formation.

Robot2 Trajectory

Figure 6.12 Two robots are manually controlled independently. The first robot with a Re-
alsense T265 and a UWB module draws an "M" in its own coordinate frame. The other robot,
carrying a Realsense D435, a UWB module and a Pixracer flight controller, draws "IST" in
its frame. One static UWB anchor is placed in the environment (the blue triangle shown in
Robot1 frame). Their trajectories are shown at the bottom. With two inter-robot commu-
nications and measurements, robot 1 can estimate the transformation matrix from robot 2,
and then map robot 2’s trajectory in its own frame as the top picture shows, forming "MIST"
(our lab).
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CHAPTER 7 GENERAL DISCUSSION

This chapter discusses the research work presented in the previous Chapters 3– 6 and high-
lights the findings of the experiments conducted. Table 7.1 wraps up this chapter in a
summary of the main contributions and their impacts.

7.1 On the Multi-Robot System

Although there exist some multi-robot systems and robot swarms on the market, such as light
shows with hundreds of drones, they usually rely on GPS and powerful central servers. These
requirements limit the applications in unstructured GPS denied environments. We aim at
multi-robot systems that are able to help humans in performing dangerous or strenuous tasks,
therefore they have to be robust and flexible. The systems shown in Chapter 3 and Chapter 4
are fully distributed and without relying on any central controller or other infrastructure.

To work collaboratively, it is important that the robots in the system are coordinated. The
work in Chapter 3 takes the advantage of multi-robot programming language, Buzz [139], and
realizes the consensus on a coordinate frame of the system by bidding the reference robots.
Reference robots create a coordinate frame and broadcast to the whole system. With a com-
mon coordination frame, robots can directly apply the information received from neighbor
robots. Combining with the relative odometry estimation methods of Chapter 5 and Chap-
ter 6, each robot can acquire its absolute location within the multi-robot systems. Through
broadcasting and receiving, they can perform collaborative localization. In Chapter 4, an-
other direction of multi-robot localization is proposed in a local to global manner. Each
robot creates a local coordinate system and locates its neighbors in its own frame, which
guarantees an up-to-date local map. By exchanging local maps with neighbors, all robots
can recover a global map. The transformation matrices between neighbors are estimated by
a least square optimization when they have common neighbors located in their local map.
We also show a solution integrated with SLAM in Chapter6. Robots leverage a common
anchor to estimate the transformation matrix with mutual ranging measurements. Having
the transformation matrices, a robot can correctly project the information received from its
neighbors on its own frame even when the common coordinate has not been created yet.

The simulation results in Chapter 3 show that the distributed localization system can build
a common coordinate frame in ARGoS simulator [147]. After the initial stage, robots get
their absolute coordinates, which can work as starting points for their odometry estimation.
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The robots use EKF to track their positions with inputs of odometry and inter robot ranging
measurements. In Chapter 4, we perform experiments using real hardware of UWB sensors
as ranging sources. Each node estimates the map locally and then broadcasts the constructed
local map. Experiments show that each node can create a local map and merge the maps
received from neighbors into a global map. Experiments combining IMU, UWB, and cameras
for multi-robot systems are shown in Chapter 6. The transformation matrices are estimated
for two robots with records of a common anchor. The estimated transformation matrices can
help the robots merge their neighbors’ trajectories into their own frame.

These three strategies in Chapters 3, 4, and 6 provide different solutions to different situa-
tions. To be robust and with great resilience, the system can combine three methods together.
For example, the system maintains the common coordinate frame, and meanwhile each robot
estimates relative transformation matrices based on its measurements. The relative trans-
formations help the system monitor the accumulated error and trigger the reconfiguration
stage if the error passes the threshold. Furthermore, the loop closure of multi-robot SLAM
systems can also be added to improve accuracy.

7.2 On the Application of UWB

UWB technology has attracted great attention in recent years for its accurate ranging per-
formance. For example, the latest Apple iPhone at the time of writing is equipped with a
UWB chip (actually, it includes all sensors needed in this dissertation). UWB is a promising
technology to assist multi-robot systems. Ranging and communication allow robots in the
system to have collaborative localization with relying on only the UWB medium. TWR [18]
is a flexible ranging solution used in UWB technology, enabling arbitrary pairs of nodes to
perform distance measurements without the requirement of synchronization. The key issue
with TWR is the access control to a shared medium, i.e., the UWB communication channel.
Ranging using TWR takes significantly longer than simply broadcasting a message, therefore
requiring an appropriate medium access control to coordinate the measurements across all
devices at a given location. The contention-based TDMA [65] cannot apply as the potential
of collisions is very high. Another major category of distributed TDMA algorithms is based
on request and response negotiations [62,70]. However, these techniques usually require sev-
eral iterations to converge, which makes them difficult to apply in dynamic networks where
the topology changes frequently.

One of the main contributions is the novel TDMA algorithm proposed in Chapter 4. This
algorithm eliminates the limitations, such as high conflicts rate and low channel usage, when
applying UWB to a fully distributed system. Compared to the available TDMA techniques
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for communication networks, our applications ask for several additional challenges: 1) the
maximization of UWB channel usage to increase the localization frequency; 2) rapid time
slot scheduling to account for dynamic topologies; 3) decentralization to avoid the need for
fixed infrastructure. We address these challenges with a novel distributed TDMA for the
UWB localization system. By applying set theory, this TDMA algorithm allows the system
to reach a conflict-free schedule quickly. In addition, the system maintains a full usage of the
shared UWB medium in any sub-graph, which means more measurements over the system.
With this system, the algorithms in Chapters 3, 5, and 6 can work without worries about
the collision of ranging measurements. The nearly full usage of the UWB medium allows the
robots to have a maximum number of ranging measurements for accurate localization.

Chapter 4 shows a campaign of experiments, both in simulations and with real hardware. The
simulations prove the scalability of the proposed algorithm. In the experiment of 1000 nodes,
which is a highly dense configuration, the system can still reach a conflict-free schedule with
around 20 frames. The real hardware experiments with UWB modules verify the performance
in dynamic environments, considering new nodes joining, nodes leaving, and for a multi-hop
network. The distributed TDMA algorithm is proved to be able to schedule the time slots in
a dynamic environment, with full usage of the channel. With this technique, the applications
of UWB ranging in dynamic mobile distributed systems become possible. This fills the gap to
adapt the simulation in Chapter 3 to real systems and paves the road for the other chapters.
Although the system is designed for UWB localization, this TDMA algorithm applies to any
wireless networks that require high channel usage for static or mobile nodes.

7.3 On the Single Robot Odometry

Accurate odometry estimation of each robot is important to a cooperative system since robots
keep exchanging their estimations with neighbors for better estimation. UWB sensors, as
additional sensors available in our system, can be applied to assist the odometry estimation.
We address the odometry estimation for two kinds of configurations: IMU and UWB, without
or with an extra monocular camera. IMU and UWB are relatively cheap, and it is trivial
to equip all robots with them. Cameras can be necessary for some robots designed for
special functions, such as object detection and place recognition. We propose odometry
estimation algorithms for these two kinds of minimal configurations. Starting with minimal
configurations, we can understand the limits of the systems, which are important for further
research.

In Chapter 5, we investigate the performance of localization and tracking with a single
UWB ranging source to a static anchor and a low-cost 9 DoF IMU. Many researchers have



128

studied single anchor localization, especially for underwater robots [79, 80]. Underwater
robots usually use acoustic sensors, top-of-the-line IMUs, and expensive doppler sensors. For
some research with ground robots or drones [81,82], velocity sensors, such as wheel encoders
or optical flow sensors, are used. However, in our first configuration, we only use UWB and
a low-cost IMU, dropping the need for a velocity sensor. Chapter 5 proposes an algorithm
using the changes of UWB range measurements to estimate the speed of the robot when
it moves in line. Combining the speed estimation with orientation estimation of the IMU
sensor, the system becomes temporally observable. Experimental results of both simulations
and hardware are shown in Chapter 5. This method improves the positioning accuracy by
three times. This solution has a major impact as it enables the tracking of simple robots in
the system, as well as any low-cost IoT devices with only IMU and UWB.

VIO leverages an IMU and a monocular camera to estimate odometry, which is proved to
have good tracking results [20]. However, drifts can still be significant for long trajectories,
especially when the environment is visually challenging. Any small orientation error can lead
to a large endpoint error. In Chapter 6, a visual, inertial, ranging solution is proposed by
leveraging the UWB range measurements to a static anchor. We design the SLAM optimiza-
tion solution by considering the following aspects: 1) accurate relative pose estimation from
VIO; b) less accurate but absolute UWB range measurements; and c) the computation cost.
A double layer sliding window technique is used to combine a standard VIO optimization
with UWB measurements. The marginalized key frames of the visual-inertial optimization
window are kept in a second layer sliding window enhanced by ranging factors. The system
is tested on public datasets as well as on real robots. Experiments show that our method can
outperform state-of-the-art VIO by more than 20%. The joint optimization can effectively
correct the accumulated error whenever the ranging measurements are available. For visually
challenging environments, our method works even the visual-inertial odometry has significant
drift.
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Table 7.1 Summary of the contributions and impact of the dissertation.

Ch. Ref. Contribution Impact
3 [27] A dynamic localization system for

multi-robot systems based on the
range-only information.

Providing researchers with a strat-
egy of localization for multi-robot
systems at the swarm level.

A distributed algorithm that gener-
ates a common coordinate system
for a swarm and a reconfiguration
function to mitigate accumulated er-
ror.

Allowing researchers to have a con-
sensus coordinate frame in multi-
robot systems, which paves the way
for the cooperation between agents.

Simulations using Buzz and ARGoS
demonstrating the localization sys-
tem of self-organized swarms.

Providing researchers an example
of the localization system with ad-
vanced tools.

4 – A scalable decentralized system for
relative localization in mobile ad hoc
networks.

Allow researchers to have a dis-
tributed localization system for
UWB networks.

A novel TDMA algorithm that can
quickly schedule the use of UWB
medium without collisions and max-
imize channel usage.

Providing a TDMA algorithm for
static or mobile networks requiring
full usage.

An algorithm for individual robots
to construct local maps and recover
the global map.

Enabling the localization service
of an infrastructure-free UWB net-
work.

5 [29] A speed estimator using only UWB
range information.

Enhance the information that can
be extracted from only ranging mea-
surements.

Error analysis for the speed estima-
tor to help design a sensor fusion al-
gorithm.

Unveiling error source to evaluate
speed from ranging.

A loosely coupled tracking algorithm
fusing IMU, UWB, using the pro-
posed speed estimation.

Push the limit of localization and
tracking for devices equipped with
just IMU and UWB.

6 – A UWB-aided SLAM system for in-
dividual robots, which can effec-
tively correct drifts.

Providing researchers and designers
with a system to reduce the accumu-
lated error in odometry.

A double layer sliding window algo-
rithm that combines relative pose es-
timation from VIO and UWB rang-
ing.

Insight into integration visual, iner-
tial, and ranging measurement for
accurate odometry.
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CHAPTER 8 CONCLUSIONS

This dissertation started with the aim of localization and tracking multiple robots, or robot
swarms, in unknown GPS-denied environments for real-world applications. The research
objectives identified in Chapter 1 were accomplished through the four research articles pre-
sented from Chapter 3 to Chapter 6, from macroscopic level to individuals, and verified in
simulations and real hardware. In particular, a system strategy for a swarm of robots to
generate a common coordinate system was proposed in Chapter 3; Chapter 4 solved a crit-
ical challenge of the access control of shared medium when applying the strategy into real
hardware with a novel TDMA; the odometry for single robot tracking was addressed in two
different configurations, IMU and UWB only in Chapter 5 and with an extra monocular
camera in Chapter 6.

The discussion performed in the previous chapter highlighted the findings of these works and
their impact. The significance of this research endeavor shines in these main outcomes:

• A localization strategy for multi-robot systems with robots equipped with range sensors.
The strategy can dynamically achieve a consensus on a coordinate frame and locate
robots in it. The coordinate system can reconfigure depending on the accumulated error
and robot locations. This strategy plays an important role in coordination when there
are numerous robots. The strategy has the potential to promote research of long-term
autonomy for a self-organized system.

• A novel distributed TDMA algorithm designed for MAC of a distributed UWB network
for localization. The TDMA algorithm can quickly schedule the use of UWB medium
without collisions and maximize the network usage, which results in a high measurement
update rate. The application of the TDMA algorithm is not limited to the UWB
network, any wireless network that requires high channel usage and has frequently
changed topology can use this TDMA algorithm.

• A novel solution to tracking robots using only IMU and UWB. A speed estimator from
ranging to a static anchor enables the system to be observable. More than the appli-
cation of robotics, any device has IMU and UWB can apply this algorithm, especially
considering the low-cost IoT devices.

• A SLAM system combines vision, IMU, and ranging. With a novel double layer sliding
window algorithm, the SLAM system can effectively reduce the accumulated odometry
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error. This system can be used to assist VIO to get drift-free odometry estimation.
With more and more applications of UWB, this system can enhance the localization
service for any user.

8.1 Open Questions

We have proposed a system facilitating the localization service of multi-robot systems in
different aspects. As the research advancing, a number of new questions are often discovered
on the surface. For a reliable localization system using UWB, two questions that appeared
but do not have been answered may affect our system.

• The property of UWB signal propagation. The UWB technology becomes popular
with its accurate ranging performance. However, this result usually comes from the
comparison between UWB with other EM-based techniques, such as Wifi, Bluetooth.
Although UWB does not have a strict constraint on LOS when communicating, NLOS
cause noise for the ranging measurements [180]. In a complex environment, multipath
and two-ray ground reflection [182] can introduce a lot of outliers. Furthermore, to
keep a small size, the ceramic antenna is used widely. However, the directional effect of
the ceramic antenna causes large systematic bias when ranging. Anton and Raffaello
[160] use the Gaussian process to compensate for the error based on known relative
orientation, which is not easy to apply to distributed systems. How to have stable
ranging measurements is still hard to tell.

• The resilience for the system to work robustly long-term autonomy. The system is
designed to achieve long-term autonomy in unstructured environments. In our system,
the self-organization and reconfiguration structure guarantee their inter-robot relation
and the odometry provides continuous tracking. Another important factor of long-term
autonomy is self-healing. If the system fails, how to retrieve from the previous status
and maintain the goal of the system are still an open question.

8.2 Future Ventures

With regard to future work, several known features in the system that can be improved. One
known limitation for the TDMA algorithm is the fixed size of slots in the frame structure
initialized at the start. Although the local update rate is not affected, the fixed frame size
constrains the TDMA scheduling process to the frame cycle. Designing an adaptive frame
size to improve the scheduling update rate is an interesting work to enhance the algorithm.
Furthermore, to improve the localization and tracking performance, we will integrate the loop
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closure function to improve the robustness, both in local and inter-robot. Another point that
we have not addressed is the map fusion. The robots in the system should be able to fuse
their maps for cooperation. At last, the eventual goal is to have a long-term autonomy test
with the full system in a GPS denied environment. Combining the odometry estimation for
single robots, the loop closure, map fusion, and the multi-robot coordinate system, a fully
autonomous exploration would be a good milestone for multi-robot localization.
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