
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Machine learning-driven hybrid optimization based on decision diagrams

JAIME ESTEBAN GONZALEZ JURADO
Département de mathématiques et de génie industriel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Mathématiques

Août 2020

c© Jaime Esteban Gonzalez Jurado, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Machine learning-driven hybrid optimization based on decision diagrams

présentée par Jaime Esteban GONZALEZ JURADO
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Michel GENDREAU, président
Louis-Martin ROUSSEAU, membre et directeur de recherche
Andrea LODI, membre et codirecteur de recherche
Andre CIRE, membre et codirecteur de recherche
Gilles PESANT, membre
Michela MILANO, membre externe

iii

DEDICATION

To Sandra, Emma, and Bianca

iv

ACKNOWLEDGEMENTS

First, I would like to thank my advisors Dr. Louis-Martin Rousseau, Dr. Andrea Lodi
and Dr. Andre Cire. This dissertation would not have been possible without your support,
collaboration, and guidance. I am honored to have learned from such a group of brilliant
researchers. My sincere gratitude goes to them for all the opportunities and lessons.

I am grateful to Professors Dr. Michel Gendreau, Dr. Gilles Pesant and Dr. Michela Milano
for agreeing to be on my dissertation committee and for all the feedback and suggestions. I
also thank Professor Dr. Andrés Medaglia for being a mentor during my years at Universidad
de los Andes. His guidance and support were fundamental in my decision to pursue a Ph.D.

A huge thanks to the CERC team. It was a pleasure to have spent time with such great people
and learned from the new generation of talented researchers, professionals, and professors.
I also extend my gratitude to the guys and all the technical and administrative staff in
CIRRELT, GERAD, Hanalog, and the CERC. I am delighted to have made great friends
and memories there. A huge thank you goes to Maria, Simon, Juan, Jorge, Dídac, Camilo,
Manuel, Jesus, Carlos, Daniel, Karim, Pedro, and Luciano. And to all the friends outside
André-Aisenstadt for their words of encouragement and support during these years.

Quiero agradecer a mis padres y a mi hermano por su amor y apoyo en todo momento. Y,
en general, a toda mi familia porque a pesar de la distancia siempre estuvieron cerca.

To my amazing wife Sandra, thanks for your love, patience, and support during this journey.
We made it! To my wonderful daughter Emma, for being there from the beginning making
these years more special and unique. And finally, to my second little one on her way, Bianca,
who has been an extra push of motivation in the final sprint.

v

RÉSUMÉ

Les problèmes d’optimisation combinatoire se posent dans de nombreux domaines des math-
ématiques et de l’informatique, ainsi que dans des applications telles que l’ordonnancement
et la planification. Malgré des décennies de développement des différentes technologies
d’optimisation, certains problèmes combinatoires restent encore difficiles à résoudre. Le
développement d’outils d’optimisation génériques pour résoudre ces problèmes difficiles est
donc un domaine de recherche actif et continu. Dans cette thèse, nous proposons de nou-
veaux mécanismes d’optimisation hybrides qui exploitent les avantages complémentaires de
différents paradigmes, à savoir, (i) l’optimisation basée sur les diagrammes de décision (ODD),
(ii) la programmation en nombres entiers (PNE), et (iii) l’apprentissage automatique (AA)
pour améliorer les méthodes d’optimisation.

Dans une première contribution, nous explorons l’utilisation de l’AA pour discriminer la diffi-
culté des instances uniquement en fonction de caractéristiques spécifiques du problème. Nous
montrons que l’AA peut effectivement révéler des patrons cachés sur le problème qui rendent
sa résolution facile ou difficile par un solveur de PNE. De plus, les fonctions apprises (clas-
sificateurs) se révèlent utiles pour fournir des informations au solveur de PNE afin d’ajuster
sa configuration et d’augmenter sa performance.

Deuxièmement, nous proposons une approche d’optimisation hybride en combinant l’ODD et
la PNE. Nous nous appuyons sur le rôle que les diagrammes de décision (DD) de taille limitée
peuvent jouer en tant qu’arbre de recherche. De plus, nous exploitons la machinerie très
developpée des solveurs PNE pour concevoir de nouveaux mécanismes permettant d’explorer,
de manière collaborative, l’espace de solution. En outre, l’AA est utilisé pour améliorer les
performances du solveur hybride en fournissant des informations utiles lors de l’exploration.
Les expériences de calcul montrent que si une structure appropriée est révélée, l’approche
intégrée est supérieure aux solveurs basées soit uniquement sur les DD, soit sur la PNE.

Enfin, dans une troisième contribution, une nouvelle représentation du problème basée sur
les DD est proposée pour le problème quadratique du stable maximum, une version plus
difficile et non linéaire du problème du stable maximum. De plus, un algorithme hybride
ODD-PNE est étendu en considérant les fonctionnalités de programmation quadratique d’un
solveur PNE et une intégration plus étroite de l’AA pour guider l’exploration de l’espace de
solution. L’algorithme proposé est plus performant qu’un solveur basé sur la programmation
semi-définie et deux solveurs PNE commerciaux majeurs.

vi

ABSTRACT

The discrete and finite nature of combinatorial optimization problems arises in many areas of
mathematics and computer science as well as in applications such as scheduling and planning.
Despite decades of development and remarkable speedups in general-purpose solvers, some
combinatorial problems are still difficult to be solved. The design of generic optimization
solvers to tackle such challenging problems is a continuous and active research area.

In this dissertation, we propose novel hybrid optimization mechanisms that exploit comple-
mentary strengths from different paradigms. The integrated mechanisms leverage (i) the
decision diagram-based optimization (DDO) solving approach, (ii) a more mature technol-
ogy such as mixed-integer programming (MIP), and, finally, (iii) the use of machine learning
(ML) to enhance optimization methods.

In a first contribution, we explore the use of ML for combinatorial optimization. We employ
a learning framework to discriminate instance hardness as a function of problem-specific
features. We show that ML can effectively reveal hidden patterns that make the problem
either easy or difficult to be solved through a MIP solver. Moreover, the trained classifiers
prove useful to adjust the MIP solver configuration and boost the performance.

Second, we propose a hybrid optimization approach combining DDO and MIP. We rely on
the role that limited-size DDs play as a search tree. We then exploit the mature machinery
of MIP solvers and design novel mechanisms to explore, in a collaborative way, the solution
space. In addition, ML is employed to enhance the hybrid solver performance by providing
useful information during search. Computational experiments show that if suitable structure
is revealed, the integrated approach outperforms both stand-alone DD and MIP solvers.

Finally, in a third contribution, a novel problem representation based on DDs is proposed for
the quadratic stable set problem, a more difficult and nonlinear version of the maximum inde-
pendent set problem. Furthermore, a hybrid DD-MIP algorithm is extended by considering
the quadratic programming capabilities of a MIP solver and a more tightly integration of ML
to guide the exploration of the solution space. The proposed algorithm provides state-of-the-
art results when compared with a semidefinite programming-based solver and two leading
commercial MIP solvers.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF SYMBOLS AND ACRONYMS . xiii

LIST OF APPENDICES . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Background and motivation . 1

1.1.1 Mixed-integer programming problems 2
1.1.2 Decision diagram-based optimization 4
1.1.3 Machine learning concepts . 7

1.2 Research objectives . 10
1.3 Thesis outline . 11

CHAPTER 2 RELATED WORK . 12
2.1 Integrated optimization methods . 12
2.2 Decision diagrams integration . 13
2.3 Machine learning for optimization . 15

CHAPTER 3 THESIS ORGANIZATION . 17

CHAPTER 4 LEARNING TO DISCRIMINATE PROBLEM-SPECIFIC INSTANCE
HARDNESS WHEN USING A MIP SOLVER . 19
4.1 Introduction . 19
4.2 Learning methodology for predicting instance hardness 21

viii

4.2.1 Stable set problems . 22
4.3 Learning to classify problem-specific easy/hard instances for a MIP solver . . 25

4.3.1 Classifying MSSP instance hardness 26
4.3.2 Classifying QSSP instance hardness 31

4.4 Learning to linearize/not-linearize the QSSP for a MIP solver based on QSSP-
specific features . 33
4.4.1 Comparison with the automated classifier in CPLEX 12.10 35

4.5 Conclusions . 36

CHAPTER 5 ARTICLE 1: INTEGRATED INTEGER PROGRAMMING AND DECI-
SION DIAGRAM SEARCH TREEWITH AN APPLICATION TO THEMAXIMUM
INDEPENDENT SET PROBLEM . 39
5.1 Introduction . 39
5.2 Preliminaries and notation . 41
5.3 A hybrid DD-ILP approach . 44

5.3.1 Supervised learning to identify complementarity 47
5.3.2 Learning to explore within a hybrid DD-ILP for MISP 50

5.4 Computational experiments with the DD-ILP approach 53
5.4.1 Comparison versus a traditional portfolio-based algorithm selection ap-

proach . 57
5.4.2 Sensitivity analysis on the ILP-based pruning strategy 58

5.5 Conclusion . 61

CHAPTER 6 ARTICLE 2: BDD-BASED OPTIMIZATION FOR THE QUADRATIC
STABLE SET PROBLEM . 63
6.1 Introduction . 63
6.2 The quadratic stable set problem . 65
6.3 A decision diagram representation for the QSSP 67

6.3.1 A dynamic programming model for the QSSP 68
6.3.2 Constructing the BDD representation for the QSSP 69
6.3.3 Approximate decision diagrams for the QSSP 71

6.4 A BDD-based hybrid optimization approach for the QSSP 72
6.4.1 BDD-based search scheme . 72
6.4.2 Hybrid BDD-MIP mechanisms . 74

6.5 Computational experiments on the QSSP . 79
6.6 Conclusions . 88

ix

CHAPTER 7 GENERAL DISCUSSION . 90

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 93
8.1 Summary of works . 93
8.2 Limitations and future research . 94

REFERENCES . 96

APPENDICES . 105

x

LIST OF TABLES

4.1 Label distribution in each dataset for the E/H learning experiments for
the MSSP . 29

4.2 Performance measures for the three classifiers when predicting E\H for
dataset MSSP-EH-1 . 30

4.3 Top-5 features ranked by importance score from RF for the E\H classi-
fier for MSSP in dataset MSSP-EH-1 30

4.4 Performance measures for the three classifiers when predicting E\H for
dataset MSSP-EH-2 . 30

4.5 Top-5 features ranked by importance score from RF for the E\H classi-
fier for MSSP in dataset MSSP-EH-2 30

4.6 Label distribution in each dataset for the E/H learning experiments for
the QSSP . 32

4.7 Performance measures for the classifiers when predicting E\H for the
QSSP . 33

4.8 Top-5 features ranked by importance score from RF classifier when
discriminating E\H for the QSSP . 33

4.9 Label distribution in each dataset for the LIN/NLIN learning experi-
ments for the QSSP . 34

4.10 Performance measures for the classifiers when predicting LIN\NLIN for
the QSSP . 35

4.11 Top-5 features ranked by importance score from RF classifier for the
QSSP when classifying LIN\NLIN . 35

4.12 Comparison between CPLEX 12.10 with its automated classifier and
CPLEX 12.10 with the trained classifier of Section 4.4 37

5.1 Performance measures for the three classifiers when predicting ILP or DD 49
5.2 Top-5 features ranked by importance score from RF 49
5.3 Performance measures for the three classifiers when predicting ILP or

NO-ILP . 49
5.4 Performance measures for the three classifiers when predicting E or H 50
5.5 Top-5 features ranked by importance score from RF 50
5.6 Comparison between ILP, DD, and Hybrid DD-ILP solvers for each

group of instances . 56

xi

5.7 Comparison between DD-ILP and Portfolio approach on number of
solved instances and average solving time for each family 57

6.1 Performance measures for the classifiers when predicting MIP/BDD . . 77
6.2 Comparison between the hybrid BDD-MIP algorithm and other opti-

mization paradigms for the QSSP . 83
6.3 Comparison between the hybrid BDD-MIP and Gurobi for QSSP in-

stances with n ∈ {175, 200} . 87
A.1 Comparison between the hybrid BDD-MIP algorithm and other opti-

mization paradigms for the QSSP . 106
A.2 (Continued) Comparison between the hybrid BDD-MIP algorithm and

other optimization paradigms for the QSSP 107
A.3 (Continued) Comparison between the hybrid BDD-MIP algorithm and

other optimization paradigms for the QSSP 108
A.4 Comparison between the hybrid BDD-MIP and Gurobi for QSSP in-

stances with n ∈ {175, 200, 250} . 109
A.5 (Continued) Comparison between the hybrid BDD-MIP and Gurobi

for QSSP instances with n ∈ {175, 200, 250} 110
A.6 (Continued) Comparison between the hybrid BDD-MIP and Gurobi

for QSSP instances with n ∈ {175, 200, 250} 111

xii

LIST OF FIGURES

1.1 DD representations for the illustrative example (1.7)-(1.12) 6
4.1 Illustrative example of a MSSP instance 23
4.2 Distribution of solving times for 500 MSSP instances with the same

number of vertices (175) and density value (10%) 26
5.1 Undirected graph for the MISP . 41
5.2 Exact DD for MISP instance of Figure 5.1 42
5.3 Relaxed DD for MISP instance of Figure 5.1 42
5.4 Compiled DDs after branching on DD nodes in C = {ū1, ū2} 46
5.5 Integrated DD-ILP search tree. 46
5.6 Decision tree to be evaluated at each DD node within the DD-ILP

framework . 53
5.7 DD-ILP solver (using 5 different thresholds) versus the ILP solver in

terms of solution time per instance of group ERHK-300-20 59
5.8 DD-ILP solver (using 5 different thresholds) versus the DD solver,

in terms of the number of DD nodes explored for instances of group
ERHK-300-20 . 60

5.9 Number of subILPs solved in the DD-ILP solver (using 5 different
thresholds) for instances of group ERHK-300-20 61

6.1 Undirected graph and matrix Q for an illustrative QSSP example . . 67
6.2 Exact BDD for the QSSP instance of Figure 6.1 70
6.3 Relaxed BDD for the QSSP instance of Figure 6.1 73
6.4 Performance profile for different solvers when tackling the QSSP . . 84
6.5 Hybrid BDD-MIP solver versus the best benchmark in terms of solution

time per instance in log scale . 85
6.6 Hybrid BDD-MIP solver versus both stand-alone BDD solver and the

best benchmark for the sparsest instances 86
7.1 Illustrative scheme of contributions in this dissertation and their relation. 90

xiii

LIST OF SYMBOLS AND ACRONYMS

BDD Binary Decision Diagram
CP Constraint Programming
DD Decision Diagram
DDO Decision Diagram-based Optimization
DP Dynamic Programming
DT Decision Tree
DUM Dummy Classifier
ILP Integer Linear Programming
IP Integer Programming
k-NN k-Nearest Neighbors
LR Linear Regression
MDD Multivalued Decision Diagram
MIP Mixed-Integer Programming
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Nonlinear Programming
MIQP Mixed-Integer Quadratic Programming
MISP Maximum Independent Set Problem
ML Machine Learning
MSSP Maximum Stable Set Problem
QP Quadratic Programming
QSSP Quadratic Stable Set Problem
RF Random Forest
SAT Boolean Satisfiability
SDP Semidefinite Programming
SVM Support Vector Machine

xiv

LIST OF APPENDICES

Appendix A Extended computational experiments - BDD-based optimization for
the quadratic stable set problem . 105

1

CHAPTER 1 INTRODUCTION

Optimization has become ubiquitous in science and engineering. Recent advances in al-
gorithms and computer hardware have opened up new possibilities for the design of more
efficient algorithms to tackle challenging decision-making problems. In this chapter, we first
motivate the importance of combinatorial optimization problems and the effort from different
communities to efficiently deal with them. Next, we present introductory concepts on the
central topics of this dissertation. Finally, we describe the research objectives to provide an
overview of the content of this document.

1.1 Background and motivation

A combinatorial optimization problem consists of finding the best solution among a discrete,
finite set of possible alternatives. The different solutions, which typically correspond to
assignments or orderings, are characterized by a set of feasibility constraints and evaluated by
an objective function that measures their quality. More formally, we consider a combinatorial
optimization problem P of the form min{f(x) : x ∈ S} where x = (x1, . . . , xn) is a tuple of
variables, S ⊆ Rn is the set of feasible solutions, and f is a function that assigns to each
solution x ∈ Rn an objective function value f(x).

The discrete and finite nature of combinatorial problems arises in many areas of mathematics
and computer science as well as in application domains such as scheduling, timetabling, and
planning. A special category is that of combinatorial optimization problems over graphs.
They are an important case of problems with well-known examples such as the traveling
salesman problem and the maximum clique problem. In general, combinatorial optimization
problems are NP-hard and the number of feasible solutions grows exponentially with the
problem size. Thus, solving such problems through an exhaustive enumeration of the solution
set is intractable. Given their relevance, combinatorial problems have received significant
attention from the theory and algorithm design communities over the years [1].

Different optimization paradigms coming from operations research (OR) and computer sci-
ence have been proposed for solving combinatorial optimization problems. To mention some
of such paradigms, mixed-integer programming (MIP), constraint programming (CP) and
Boolean satisfiability (SAT) are among the most mature ones with several years of develop-
ment. However, despite recent significant progress on modern generic solvers (e.g., in MIP
[2]), many combinatorial optimization problems remain difficult to be solved.

2

Among the main reasons why optimization solvers struggle, when tackling some challenging
problems, we find (i) scalability issues, (ii) the lack of mechanisms to exploit the problem
structure, and (iii) the absence of systematic ways to identify such a structure. Thus, the
design of hybrid optimization technology integrating complementary strengths of different
paradigms can be an effective strategy to solve and achieve the highest performance [3]. For
instance, the integration of artificial intelligence and OR has been one of the most successful
cases of integrated optimization methods [4, 5]. Along these lines, in this dissertation, we fo-
cus on designing hybrid optimization mechanisms based on both MIP and decision diagrams,
the latter are the basis of a much more recent technology in the OR community.

Decision diagrams (DDs) for optimization [6] is a problem-solving paradigm which is built
from elements of dynamic programming, mathematical programming, and computer science.
We investigate hybrid optimization mechanisms that rely heavily on DD features. Moreover,
we explore how machine learning (ML) can be useful to both understand hidden patterns
when tackling combinatorial problems and enhance optimization methods. Next, we present
basic notions on mixed-integer programming, decision diagrams for optimization, as well as
general concepts in ML.

1.1.1 Mixed-integer programming problems

Mixed-integer programming is an area of mathematical optimization which comprises several
decades of algorithmic development in the OR community [2]. It has become a strong,
reliable, and well-known solving paradigm due to its generic-purpose nature and sophisticated
algorithms. The MIP technology has then allowed the modeling and efficient resolution of a
broad number of complex real-world applications [7, 8].

When using the MIP paradigm, a combinatorial optimization problem (P) is represented as
a general mixed-integer program of the form:

min
x

f(x) (1.1)

subject to, Ax ≥ b, (1.2)

xi ∈ Z, ∀i ∈ I, (1.3)

where variables x ∈ Rn and I ⊆ N = {1, . . . , n} is the index set of the variables required to be
integer. The problem constraints (1.2) are modeled by a system of linear inequalities where
A ∈ Rm×n is the matrix of constraints coefficients and b ∈ Rm the right-hand sides. A solution
x is called feasible if it satisfies constraints (1.2) and (1.3). Finally, a function f : Rn → R is
minimized to find the optimal solution x∗ with optimal objective value f(x∗) = z∗.

3

MIP formulations can be classified according to the properties of the objective function (1.1).
The most studied case is that of a linear objective function which, in the OR community,
is indifferently referred to as a Mixed-Integer Linear Programming (MILP) formulation and
takes the form

min {cTx : Ax ≥ b, xi ∈ Z ∀i ∈ I}, (1.4)

where c ∈ Rn is a vector of objective coefficients. We also remark that when all variables
are required to be integer, i.e., |I| = n, the resulting problem can be referred to as a (pure)
integer program (IP) or integer linear programming (ILP) model for the case of a linear
objective. In this dissertation, although we mainly experiment with models which are pure
IPs, we use as well the general term MIP.

Since MIP is NP-hard, a fundamental concept to solve MIP problems is its linear program-
ming (LP) relaxation that has the form

min {cTx : Ax ≥ b}, (1.5)

i.e., it is the resulting polynomially solvable problem where the integrality requeriments are
dropped. Let x∗LP be the optimal solution of (1.5) and f(x∗LP) = z∗LP its optimal solution
value. Then, z∗LP provides a lower bound on the optimal solution value of (1.4), i.e., z∗LP ≤ z∗.

For our purposes, another case of special interest is Mixed-Integer Quadratic Programming
(MIQP),

min
{

1
2x

TQx+ cTx : Ax ≥ b, xi ∈ Z ∀i ∈ I
}
, (1.6)

in which we minimize a quadratic objective function, where Q ∈ Rn×n is a symmetric matrix.
It is well known that problem (1.6) is NP-hard too, as it contains problem (1.4) as a special
case.

Currently, state-of-the-art MIP solvers tackle an optimization problem by using a machinery
composed of different significant building blocks. The main component is a branch-and-bound
search tree, i.e., a divide-and-conquer approach where all possible solutions of an optimization
problem are implicitly enumerated to search for the optimal one. In the case of MILP, the
standard solving method is the so-called branch-and-cut scheme. The latter mainly consists
of a LP-based branch-and-bound tree enhanced with cutting planes, presolving, and primal
heuristic procedures.

4

The implicit exploration is achieved by storing partial solutions and partioning the solution
space (i.e., branching) into smaller subproblems in a tree-structure fashion. In parallel,
the scheme computes and updates global lower and upper bounds on the optimal solution
value. Therefore, at each node of the tree, the LP relaxation provides information on the
node’s optimal solution value so it is possible to prune provable suboptimal regions of the
search space (i.e., bounding). In case that a node subproblem cannot be discarded, its LP
optimal solution also provides information about which variables are still fractional and can
be selected to branch on and partition further the solution space.

On the other hand, in the case of solving a MIQP problem, a MIP solver has different
options depending on the properties of (1.6). In general, modern MIP solver engines have
also incorporated mechanisms to directly solve a MIQP model by means of a nonlinear
programming-based branch-and-bound search tree. In such a scheme, a node subproblem
corresponds to a quadratic programming (QP) relaxation, i.e., a problem similar to (1.6)
but removing the integrality constraints xi ∈ Z ∀i ∈ I, following branching and bounding
procedures. Alternatively, state-of-the-art MIP solvers can also linearize the MIQP model
and exploit the more mature MILP machinery with the trade-off of a resulting larger problem.

In any case, several decisions become critical within a branch-and-bound scheme in MIP
solvers. We mention among others the node selection which refers to the choice of the
subproblem to look at next, and the variable selection, i.e., the strategy to determine the
next variable to branch on and create new subproblems. We remark that many of such
decisions are usually guided by heuristic mechanisms. Thus, an area with growing attention
is the design of more systematic and automatic ways of improving the search scheme by
making better decisions related to it.

1.1.2 Decision diagram-based optimization

Decision diagrams are data structures initially used to manipulate Boolean functions and
introduced for applications in circuit design, verification, and model checking [9, 10, 11].
They have been widely studied in computer science; and a survey can be found in [12] and
[13, Chapter 3]. For the discrete optimization community a DD can also be interpreted as a
compact graphical representation of the solution set of a combinatorial problem. Thus, they
have been introduced for discrete optimization and constraint programming [14, 6].

Although DDs were proposed in the end of 1950s, DD-based optimization (DDO) is rela-
tively new in the OR field. The DDO modeling framework is strongly connected to the
recursive formulations in dynamic programming (DP) [15], however, DDO also incorporates
mathematical optimization features such as bounding procedures to mitigate the typical DP’s

5

curse of dimensionality. A DD can be interpreted as a compact graphical representation of
the solution set S of a discrete optimization problem P where, for our purposes, the variables
x1, . . . , xn have finite domains D1, . . . , Dn, respectively.

Specifically, an ordered decision diagram representation of P is a layered directed acyclic
graph whose nodes are partitioned into (n + 1) layers. The first and terminal layers are
made up by only one node, the root node r and the terminal node t, respectively. In its
most general version, arcs only connect nodes of consecutive layers and there is a one-to-one
correspondence between the variables and the layers’ outgoing arcs. Such arcs then represent
value assignments of the corresponding decision variable. In addition, we can associate
weights with the arcs of a DD to model the objective function f(x). In that case, each path
from r to t represents a feasible solution of S; and consequently, the shortest path from r to
t corresponds to the optimal solution of P .

Moreover, if every domain Di, i = 1, . . . , n, contains no more than two values, it implies
that every node in the DD has at most two outgoing arcs and such DD is then referred to
as a binary decision diagram (BDD). On the other hand, if there exists at least one variable
domain Di containing more than two values (i.e., at least one node in the DD with more
than two outgoing arcs), the associated DD is referred to as a multivalued decision diagram
(MDD).

For an illustrative example, we describe a DD representation for a combinatorial optimization
problem represented by the following MIP formulation:

min
x

2x1 + 4x2 + 5x3 + 3x4 (1.7)

subject to, x1 + x3 ≥ 1, (1.8)

x2 + x3 ≥ 1, (1.9)

x3 + x4 ≥ 1, (1.10)

x1 + x2 + x4 ≥ 1, (1.11)

xi ∈ {0, 1}, i = 1, ..., 4. (1.12)

Figure 1.1(a) shows a weighted binary decision diagram B representation for the model
defined by (1.7)-(1.12). The nodes of B are partitioned into 5 layers, where layers 1 and 5
contain the root node r and the terminal node t, respectively. The dashed arcs represent
that the associated variable is assigned to 0, and solid arcs model assignments to 1. For
instance, the dashed and solid arcs going out from the root node r represent x1 = 0 and

6

x1 = 1, respectively. Thus, every path p from r to t represents an assignment to the variables
x1, x2, x3, x4, and we denote this assignment xp. In addition, costs are assigned to arcs of B
to represent the objective function. For example, a weight 2 is assigned to the solid arc going
out from r because any path crossing such an arc implies that the coefficient of variable x1 in
the objective function (i.e., 2) is collected. Conversely, every dashed arc has weight equals to
0. For our purposes, a relevant feature of a DD is its width. The width of a DD layer is the
number of nodes in the layer, then the width ω(B) of a decision diagram B is the maximum
width among all its layers. Considering again the BDD B in the Figure 1.1(a), ω(B) = 4.

Note that the 8 feasible solutions (x1, x2, x3, x4) of problem (1.7)-(1.12), namely, (0, 0, 1, 1),
(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), and (1, 1, 1, 1); are exactly
represented by the 8 paths from r to t in the BDD of Figure 1.1(a). In addition, as the
length of a r− t path p in B is equal to the objective value f(xp), this implies that there is a
complete correspondence between r− t paths in B and the feasible solutions in the problem.
We then say that B is an exact DD for the model (1.7)-(1.12). In this manner, an exact DD
representation reduces a discrete optimization problem to a shortest-path computation. For
the illustrative example, note that the path x = (x1, x2, x3, x4) = (1, 0, 1, 0) corresponds to
the shortest path with length 7, which is the optimal solution value of the problem.

2

4 4

5 5 5 5

3 3 3

x1

x2

x3

x4

r

t

(a) Exact DD

2

4 4

5 5

3 3

r

t

(b) Relaxed DD

Figure 1.1 DD representations for the illustrative example (1.7)-(1.12)

Although an exact DD reduces the optimization problem to a shortest-path computation,
such DDs can grow exponentially with the problem size. To overcome this challenge, Ander-
sen et al. [14] introduced the concept of relaxed DDs which are graphs of controllable size
that represent an over-approximation of the feasible solution space. In this case, the size

7

of the DD is kept under control by defining a maximum width (W) such that ω(B) ≤ W ,
which is observed when compiling the DD representation. In a relaxed DD, there is a path
associated with each feasible solution, however, there are other paths that are not necessarily
feasible solutions of the problem. Hence these limited-size decision diagrams become a dis-
crete relaxation of the problem because the combinatorial (graph) representation is relaxed
and can be used to obtain bounds on the optimal solution value. Figure 1.1(b) presents a
relaxed BDD of maximum width 2 for the problem (1.7)-(1.12). Note that all the r− t paths
in Figure 1.1(a) are included in the relaxed BDD of Figure 1.1(b), however, there are also
present paths that correspond to infeasible solutions. Nevertheless, while the shortest path
defined by the path (1, 0, 0, 0) is infeasible because of constraints (1.8) and (1.10), it provides
a lower bound of 2 on the optimal solution value.

Another type of limited-size decision diagrams are the so-called restricted DDs which were
introduced in [16]. A restricted DD is an under-approximation of the solution set of a problem
and is obtained by heuristically removing nodes from a layer once the maximum width W

is reached. In such a procedure, we remove feasible solutions and possibly the optimal one
too. However, a shortest path computation on a restricted DD provides a feasible solution
and then an upper bound on the optimal solution value of a minimization problem.

In addition of being a useful bounding technique, DDs can also be perceived as the search tree
within a branch-and-bound procedure. Such a branching scheme brings up a different way
of exploring the solution space of a problem. The DD-based search consists of recursively
branching on decision diagram nodes (i.e., set of partial solutions) rather than branching
either on a fractional variable which must be integer like in traditional linear-programming-
based branch and bound, or on a variable-value pair like in a CP search tree. Since DD-
based technology provides the main components of an optimization solver, i.e., a modeling
framework, bounding procedures, and a branching scheme; [17] introduce a stand-alone DD
method for solving discrete optimization problems based exclusively on limited-size decision
diagrams. Such a paradigm has shown to be highly competitive with generic optimization
solvers and is extensively exploited in this dissertation.

1.1.3 Machine learning concepts

Machine learning (ML) is the discipline focused on using statistical techniques to design
computer systems that automatically improve through experience [18]. The recent explosion
and success of ML is mainly attributed to both the development of new learning algorithms
and the availability of data and computational power [19]. Consequently, ML algorithms and
methodologies have appeared in several contexts and applications, and the field of combina-

8

torial optimization is no exception.

Broadly speaking, ML algorithms learn from (training) data to infer a function that predicts
an output (label). They can be divided into three main categories, namely, supervised,
unsupervised, and reinforcement learning [20]. Such categories are defined based on the
objective of the learning task and the characteristics of the provided data from which the
algorithm aims to learn. In supervised learning, an algorithm learns from labeled data. In
unsupervised learning, the training data has no target label and the goal is more related
to find similarities (i.e., clustering) or distribution of data within the input space. Finally,
in reinforcement learning, the algorithm learns to take actions (i.e., make a sequence of
decisions) in a given game-like situation in order to maximize a reward. In this case, the
algorithm is not provided with examples of the right output, instead it must discover them
by a trial-and-error process.

We are particularly interested in supervised learning, where a ML model is trained with
pairs of input-output examples to learn a function that maps an unseen input to a predicted
output. The input is usually referred to as features, while the output is a special feature
denoted by label. More formally, consider a set of training data D = {(xi, yi)}m

i=1 with m

examples, where the ith example is given by a n-dimensional vector of features values xi and
a label yi. Let X and Y be the input and output space, respectively, such that xi ∈ X

and yi ∈ Y for i = 1, . . . ,m. The goal of a supervised ML algorithm is to learn a function
h : X → Y that minimizes a loss function which measures how good h is when used as
a predictor. The function h is typically called a classifier if the output is discrete and a
regression function if the output is continuous.

We focus on supervised classification tasks with two class labels which are commonly re-
ferred to as binary classification problems. Supervised learning algorithms for classification
can be categorized based on the similarity of their mapping functions and how they work.
We mention, among others, tree-based methods, kernel-based methods, neural-network-based
methods, instance-based learning methods, and ensemble methods. Nevertheless, such cat-
egories are not exclusive and a ML algorithm can belong to different ones. Moreover, when
tackling a classification problem, a relevant question is related to the selection of the ML
model to learn a classifier. Each ML algorithm has its advantages and limitations depend-
ing on the dataset and application; therefore, in this dissertation, we will follow a typical
approach in supervised learning. Namely, we assess different algorithms tuning their specific
parameters to obtain the best model according to pertinent performance metrics. We will
employ some of the most well-known ML algorithms, specifically, logistic regression, support
vector machine, decision tree, k-nearest neighbors, and random forest. We refer the reader to

9

[20] and [21] for a comprehensive description of the mentioned ML algorithms. Nevertheless,
we provide a short description of such ML algorithms for completeness.

• Logistic Regression (LR) [22]. This method is an extension of the linear regression
model for the case of classification. In LR, instead of using a linear equation to explain
the relationship between a dependent variable (label) with the independent variables
(features), a logistic sigmoid function is employed to model probabilities and make the
output binary. One important advantage of LR is that it provides explicit probabilities
of classification rather than just the label information. However, as its main limitation,
LR performs poorly in non-linear problems and requires a good selection of relevant
features.

• k-Nearest Neighbors (k-NNs) [23]. This is an instance-based learning algorithm that
uses the nearest neighbors of a data point for prediction and can be used for regression
and classification. In the classication case, k-NNs algorithm assigns as prediction the
most common label of the nearest neighbors of an example. k-NNs algorithm is also
a non-parametric method, this means that there are no parameters to be learned and
it is difficult to get some interpretability from the classification (i.e., degree of human
understanding of the cause of a model’s result).

• Decision Tree (DT) [24]. In this tree-based method, the data is split multiple times
based on threshold values in the features. From this procedure, different subsets are
generated in such a way that each data example belongs to one subset. The final
subsets are denoted leaf nodes, each associated with a class label. Paths from the root
node of the tree to a leaf node denote the classification rules which are used to make a
prediction. The main advantage of this method is its simplicity and interpretability due
to the classification rules and easy computation of importance scores for the features,
i.e., their relevance for the prediction. However, the main disadvantage is that, usually,
DT has high risk of overfitting, i.e., it does not generalize well on unseen examples.

• Support Vector Machine (SVM) [25]. In its simplest version, a SVM is a linear model
for classification. Given a set of training labeled data points, a SVM-algorithm first
generates a feature space which represents a finite dimensional vector space where each
dimension corresponds to a particular feature. The objective of a SVM is to find a
hyperplane (i.e., the decision boundary) that separates the data points into regions
(i.e., the classes) in which they belong. A major advantage of SVM is that it also works
in non-linearly separable data. The latter is achieved by using the so-called kernel trick,
i.e., by mapping the original feature space into a higher-dimensional space. The SVM

10

is widely used due to its good performance on nonlinear problems, however, it is often
difficult to interpret because it does not provide a direct probabilistic interpretation for
the classification.

• Random Forest (RF) [26]. This is an ensemble learning method, i.e., it combines one
or several base models to produce a better predictive performance. In the case of
RF, the base model corresponds to the described above decision tree. A RF algorithm
generates several decision trees from randomly selected subsets of the training data. The
algorithm then considers the predicted class labels of the set of DTs and aggregates them
to make a final prediction based on the mode of the labels, i.e., by taking the majority
vote. As one of its main advantages, a RF tends to correct the overfitting problem in
DT, keeping the interpretability. However, a RF is difficult to train, requiring more
computational resources than other algorithms previously described.

Due to its nature, combinatorial optimization has become an important source of applications
where ML can be leveraged. The mechanisms of SAT, CP, and MIP solvers can be enhanced
through the integration of ML-based decisions. For instance, algorithmic questions, that arise
while solving an optimization problem with MIP solvers, have been recently tackled using
machine learning approaches. Finally, as ML for combinatorial optimization is a component
further explored in this dissertation, we will extend the discussion on recent literature in
Chapter 2.

1.2 Research objectives

The primary objective of this dissertation is the design of novel hybrid optimization mech-
anisms that mainly integrate DD-based optimization with more mature paradigms from
classical operations research such as MIP. We aim at identifying complementary strengths
from paradigms to devise hybrid strategies that exploit, in a collaborative way, both differ-
ent search schemes and problem structure. Moreover, we investigate how machine learning
can discriminate suitable problem structure for a stand-alone optimization solver. Our main
goal is to design optimization technology that efficiently solve difficult discrete optimization
problems by exploiting the integration of DD-based optimization, MIP, and ML.

We rely on limited-size DDs by further emphasizing their role as approximations of the search
tree of a problem. In addition, we explore how a mature technology such as MIP could be
further exploited within a DD-based search scheme. Next, we explore how machine learning
techniques can become an important component to understand problem hardness and be
incorporated alongside hybrid optimization mechanisms.

11

Finally, we evaluate the proposed optimization mechanisms on combinatorial optimization
problems and, specially, problems over graphs. In particular, we select two challenging
case studies, the maximum independent set problem and the quadratic stable set problem.
Such well-known problems have been studied from different optimization paradigms and they
can be used to properly compare different solving methods. Finally, we develop extensive
computational experiments to validate the competitiveness of the mechanisms proposed in
this dissertation.

1.3 Thesis outline

The remainder of this document is organized as follows. In Chapter 2, we discuss related
works on integrated optimization methods, DD-based methodologies, and the role of ma-
chine learning for understanding solvers’ performance and designing discrete optimization
algorithms. Chapter 3 describes the structure of this document and the contributions of
the main chapters of this dissertation. Chapter 4 investigates the use of supervised learn-
ing to discriminate problem-specific instance hardness when using a MIP solver. Chapter 5
describes a novel hybrid algorithm based on the integration of decision diagrams and mixed-
integer programming which is enhanced with machine learning-based decisions. Chapter 6
tackles a relevant problem in quadratic programming by providing a novel representation and
adapting a hybrid approach that combines DDs, quadratic programming capabilities of MIP,
and ML. In Chapter 7, we provide a general discussion on the contributions of this thesis
from a unified perspective. Finally, in Chapter 8, we conclude and layout the future work in
the area resulted from this dissertation.

12

CHAPTER 2 RELATED WORK

Although the main chapters in this dissertation are self-contained, we provide here a brief
discussion on related literature to the topics covered in this work. In order, we focus on (i)
integrated optimization methods, (ii) approaches that incorporate DD technology for solving
optimization problems, and (iii) the use of ML for discrete optimization.

2.1 Integrated optimization methods

The main building blocks of an optimization solver are a modeling framework, a relaxation
technique, inference procedures, primal heuristics, and a search scheme. The significant
progress made by individual disciplines has allowed to understand and identify in which
components their main advantages lie. To give some examples, mathematical programming
has made significant contributions in relaxation methods and concepts such as duality theory.
Constraint programming, on the other hand, has provided strong inference techniques and a
more flexible modeling framework, while dynamic programming has been good at modeling
recursive structure. Thus, it is natural to think about optimization methods that can handle
several of these advantages in a unified approach.

Integrated (hybrid) optimization methods is not a new area in the OR community [3]. In
recent years, much emphasis has been given to the integration of techniques coming from
different areas such as CP, SAT, and MIP (see, e.g., [27]). Two main forms of integration
can be identified. First, in a simpler case, the integration is employed to enhance only small
components of an independent solving technology, e.g., the use of CP-based techniques to
strengthen the bounds on variables during presolving in a MIP solver. In a second place,
a tighter integration can lead to the development of strong novel algorithms whose hybrid
mechanisms are based on the independent paradigms.

Several optimization problems can be efficiently tackled by leveraging multiple solution ap-
proaches with complementary strengths. For instance, the integration of MIP and CP is
one the most successful cases [4, 5]. Related to tightly integrated techniques, these methods
commonly involve a problem decomposition into two or more subproblems, which defines in
advance the component that is more suitable for existing techniques.

We can mention as a significant example of such a-priori decomposition, the case of logic-
based Benders decomposition [28] which has been successful in different contexts such as
machine scheduling [29]. The main idea of this algorithm is to decompose the problem into a

13

master problem and a set of subproblems providing a natural framework for the integration
of different disciplines. The different problems are then tackled by using different paradigms
with an important inference component to communicate information between them.

In the same sense, other classical decomposition techniques in MIP, such as column gen-
eration, can profit from the complementary strengths from other technologies. In a pure
column generation procedure, a problem is decomposed in a restricted master problem with
as few variables as possible whereas an auxiliary problem generates interesting variables for
the master problem at each iteration. In the case of hybridization, successful applications
have appeared in the literature in the context of CP-based branch and price. In this case,
a column generation procedure is embedded at each node of a branch-and-bound tree where
the subproblems are more efficiently solved by using CP [30, 31].

Given the nature of its mechanisms, decision diagram-based optimization is closely involved
with the concepts behind integrated methods. Since their introduction in the OR and CP
communities [32, 33, 14] and after proving an effective stand-alone optimization method
[34, 16, 17, 6], decision diagrams have grown in interest, becoming a fruitful research area.
In general, for this discussion on related literature, most of the works integrate in some way
the DD paradigm within MIP or CP approaches to boost the performance of optimization
algorithms.

2.2 Decision diagrams integration

The constraint programming community has been fundamental for the development of DD-
based techniques for combinatorial problems. One of the main reasons is the seminal work
in [14] introducing the concept of relaxed DDs for CP. The authors use limited-size DDs as a
more flexible alternative to replace the traditional constraint store (usually based solely on the
variable domains) and show a very effective DD-based filtering procedure for AllDifferent
constraints. Since then several works have been developed using DD-based constraint prop-
agation and filtering [35, 36, 37].

Also in the context of CP, and particularly related to solving sequencing and scheduling
optimization problems, multivalued DDs have been embedded as global constraints in CP
models [38, 39] to exploit such a graphical representation of the problem. More recently, for
a variant of the traveling salesman problem, Castro et al. [40] propose a MDD-based method
that leverages the DD representation within a Lagrangian method [41]. The approach profits
from information of both the DD and the linear programming representation.

Cutting-plane is a fundamental component of state-of-the-art MIP solvers and DD-based

14

cut generation is a research trend that has been reinforced in recent years, starting with
the work of Becker et al. [32]. Several methods have been proposed to use limited-size DDs
to exploit the problem structure and generate cuts. In this setting, [33] made significant
contributions (i) connecting BDD for generating cuts for 0-1 integer programming models as
well as (ii) proposing a network-flow reformulation of a BDD which has been exploited in
several BDD-based cutting-plane procedures. Tjandraatmadja and van Hoeve [42] extract
target cuts from relaxed DDs by providing a connection between DDs and polar sets. An
extension of the previous work and the one in [33] is proposed in [43]. The authors use DDs
to derive valid inequalities for non-linear constraints by deriving a DD representation for only
specific substructures rather than the entire solution set.

DD-based optimization has been also employed as a stand-alone solving technique for par-
ticular components of classical decomposition methods in MIP. In particular, Morrison et al.
[44] use DDs to solve the pricing problem in a branch and price scheme when tackling the
graph coloring problem. In such a decomposition, each branching node of a traditional linear
programming-based branch-and-bound tree is solved through a column generation procedure.
Within the column generation, the pricing problem corresponds to the maximum independent
set problem which is solved through DD-based technology. In this procedure, the DD-based
solver is repeatedly used to tackle the same general structure in a regular basis, highlighting
the importance of improving the solver’s performance.

DD-based decomposition [45] is another interesting way in which DDs have been used to
represent and solve optimization problems. The main idea is to represent components of a
problem through different decision diagrams and then employ a lifting procedure based on a
network-flow reformulation such that the paths in the DDs are linked to the original problem
variables through constraints. For nonlinear optimization, DDs have been used to strengthen
MIP models through their equivalent linear reformulation as shortest paths [46] and also for
modelling problems with quadratic constraints [47].

In a final category, DD-based optimization has been used for stochastic optimization and
particularly in the context of two-stage stochastic programming, an effective approach when
tackling decision-making problems under uncertainty. Lozano and Smith [48] derive Benders-
like cuts by modelling the second-stage decisions through DDs which consider first-stage
information. Moreover, Serra et al. [49] model both the first and second stage decisions using
DDs. In this case, the DDs representations are linked through channeling constraints that
are optimized by using an IP formulation.

We observe an extensive body of research exploiting DD-based features within different op-
timization paradigms and traditional methods. As an alternative research direction, in this

15

dissertation, we explore hybrid optimization mechanisms where the DD-based branch and
bound [17] is a core component in the integrated method. Moreover, we aim at designing
collaborative and complementary mechanisms that profit from a more mature paradigm such
as MIP. Finally, since we explore ML to design automatic mechanisms to identify comple-
mentarity between different solving paradigms, we proceed to discuss literature related with
the role of ML and OR.

2.3 Machine learning for optimization

Another significant component of this thesis is the idea of using ML techniques for enhancing
combinatorial optimization approaches. Recently, different works have proven the success and
yet promising character of the ML-for-OR research paradigm. Bengio et al. [50] present a
comprehensive survey that categorizes how the machine learning framework can be exploited
for optimization algorithms and places different contributions in the literature within different
types of integration.

We focus on two different trends when using ML, namely, (i) to improve optimization algo-
rithms prior to its execution and (ii) to tightly integrate it alongside a solving algorithm [50].
In the improvement of optimization algorithms, the objective is to use a learning framework to
provide additional information to the combinatorial optimization algorithm and, accordingly,
adjust it before the resolution process starts. On the other hand, in a tighter integration,
a ML model is systematically and repeatedly employed through the resolution process of
the combinatorial optimization algorithm. Such an integration implies that the optimization
algorithm’s performance relies heavily on the assistance provided by the ML-based decisions.
Along these lines, ML-based approaches have been used to make a wide range of decisions
in configuration, selection, and design of optimization solvers.

In algorithm configuration, MIP solvers are relevant because, despite their exact nature, many
heuristic decisions are made during the branch-and-cut scheme. Several ML-based approaches
to strengthen MIP solvers have been investigated in the literature, such as in variable selection
[51, 52], and running heuristics [53] in a branch-and-bound tree. Remarkably, as another
example within the DDO paradigm, Cappart et al. [54] propose a ML framework to improve
the dual bounds obtained from relaxed decision diagrams which are a main component in
DD-based solvers.

Another relevant area where ML has been used for discrete optimization is that of algorithm
design. In [1], both reinforcement learning and graph embedding are employed to learn
heuristics for solving optimization problems over graphs such as the minimum vertex cover,

16

maximum cut, and traveling salesman problem (TSP). In the same category, Kruber et al.
[55] define a ML framework to determine whether or not a MIP model should be decomposed.
In case several reformulations are possible, the ML approach also decides which one should
be selected.

We also highlight ML applications for algorithm selection [56]. Xu et al. [57] introduce the
portfolio-based algorithm selection approach for SAT solvers. Given a set of SAT solvers,
the authors use ML to predict an approximate solver runtime for a given problem based on
features of the instance and the algorithms’ previous performances. On another case, Bonami
et al. [58] propose a ML application to make a relevant decision when tackling MIQP models
with CPLEX, a state-of-the-art MIP solver. The authors learn a classifier to predict whether
to linearize a quadratic programming (QP) model. Such a linearize/not-linearize decision
is analogous to algorithm selection because it ultimately determines the algorithm to be
employed by the solver for the resolution process.

Finally, ML has been also useful to predict algorithm performance. Hutter et al. [59] use
machine learning techniques to build regression models that predict algorithm runtime for
SAT and MIP solvers. The prediction is based on features coming from the algorithm partial
progression and the generic problem representation. The authors present an extensive em-
pirical analysis on different types of instances with several ML techniques. In a more specific
approach for MIP, Fischetti et al. [60] define a binary classification framework and use ML
methods to predict whether or not a generic mixed-integer linear programming instance will
be solved to optimality within a given time limit. In this case, MIP-generic features are
defined and collected from the partial progression of the branch-and-bound tree search.

Throughout the remaining chapters of this thesis, we will discuss how different contributions
converge to a unified framework. Finally, we will also discuss how such contributions fit into
the literature and fill different gaps.

17

CHAPTER 3 THESIS ORGANIZATION

In the following chapters, we develop hybrid optimization mechanisms that tightly integrate
decision diagrams and mixed-integer programming for solving challenging combinatorial op-
timization problems. Moreover, the use of ML to either improve or automatize elements of
an optimization solver is also a significant component of this dissertation.

Chapter 4 focuses on the ML-for-OR approach. We use supervised machine learning to
discriminate problem-specific instance hardness when using a MIP solver. In the classification
approach, data examples correspond to problem instances while the MIP solver performance
when tackling such instances is used to define a target label for each data point as either easy
or hard. We then aim to learn a function (classifier) that for unseen instances discriminates
their hardness for a MIP solver depending solely on problem-specific instance features related
to the problem at hand.

As case studies, we select challenging combinatorial optimization problems over graphs,
namely, the maximum independent set problem (MISP) and the quadratic stable set problem
(QSSP). We get insights from the trained classifiers on the graph properties that impact the
instance hardness for the MIP solver the most. In particular for the QSSP, we answer an
important algorithm-selection question when tackling mixed-integer quadratic programming
models. In this case, the classification label is defined by the linearization or not of the QSSP
model when tackled with a state-of-the-art MIP solver. We then build a predictive model that
determines whether to linearize or not the QP model based only on QSSP-specific instance
features. In addition, when comparing against the out-of-the-box classifier that decides on
the linearization of a MIP solver, we show that our predictive model is useful for algorithm
configuration, improving the solver’s performance on QSSP instances.

In Chapter 5, we introduce a novel hybrid optimization algorithm that mainly integrates
decision diagrams and integer linear programming to explore, in a collaborative way, the
solution space. The hybrid solver strongly relies on a DD-based branching scheme where an
approximate DD plays the role of the search tree. Instead of branching on fractional variables
like in traditional linear programming-based branch and bound, we branch on sets of partial
solutions (nodes of relaxed DDs). The mechanisms in the hybrid solver allow to obtain primal
and dual solutions from the two different representations triggering novel pruning strategies
when recursively generating limited-size DDs. The hybrid framework raises an algorithm-
selection question which is cast as a machine learning problem. ML-based procedures are
employed to guide the exploration of the solution space as the hybrid algorithm progresses.

18

First, trained classifiers are invoked in the root DD node and then the relevant features,
revealed during the training phase with a tree-based ML-model, are used to define a simple
decision tree to guide the exploration in the remaining DD nodes. We use as case study
the MISP. The numerical experiments show that, in presence of suitable problem structure,
the integrated DD-ILP approach exploits complementary strengths and improves upon the
performance of both a stand-alone DD solver and a MIP solver.

Chapter 6 focuses on the nonlinear and more challenging QSSP. We present a novel problem
representation for the QSSP through BDDs which is based on a proposed dynamic program-
ming formulation for the problem. Furthermore, we adapt the hybrid approach that combines
DDs and MIP by highlighting the modeling flexibility offered by decision diagrams to han-
dle a nonlinear problem. Machine learning also becomes a significant component within
the method for the QSSP. We train offline a support vector machine model to include the
trained classifier alongside the hybrid method and guide, on-the-fly, the search mechanisms
at each BDD subproblem. In the computational experiments, the hybrid approach shows
to be superior, by at least one order of magnitude, to two leading commercial MIP solvers
with quadratic programming capabilities and also a semidefinite programming (SDP)-based
branch-and-bound solver.

Finally, Chapter 7 presents a synthesis of the different contributions from a unified perspec-
tive. In Chapter 8, we present the main conclusions along with a discussion of the limitations
and future research.

19

CHAPTER 4 LEARNING TO DISCRIMINATE PROBLEM-SPECIFIC
INSTANCE HARDNESS WHEN USING A MIP SOLVER

Authors: Jaime E. González, Andre A. Cire, Andrea Lodi, Louis-Martin Rousseau
To be submitted.

Abstract: In this chapter, we present a machine learning (ML) application to predict
problem-specific instance hardness when using a Mixed-Integer Programming (MIP) solver.
We cast this prediction as a binary classification task based on the performance of a MIP
solver when tackling the problem at hand. In particular, traditional supervised ML methods
are used to learn a classifier that predicts instance easiness/hardness for a MIP solver as a
function of problem-specific instance features. We focus on the Maximum Stable Set Problem
and the Quadratic Stable Set Problem as case studies. Learning experiments show that the
learned classifiers capture a statistical pattern on the problem-specific structure, which in
turn could be relevant for algorithm design and selection.

Keywords: Supervised machine learning, Mixed-integer programming, Instance hardness,
algorithm performance prediction

4.1 Introduction

The integration of machine learning (ML) and operations research has established itself
as a productive and growing research area (see, e.g., [50] for a recent survey). ML-based
methodologies have been used to make a wide range of decisions in configuration, selection,
and design of optimization solvers. Two different approaches have been discussed on the
ML-for-OR research trend, namely, (i) when ML improves optimization algorithms prior to
its execution, and (ii) when it is tightly integrated alongside a solving algorithm.

In the improvement of optimization algorithms, the objective is to use a learning framework
to provide additional information to the combinatorial optimization algorithm. Then, the
configuration of the algorithm is adjusted accordingly before the resolution process starts. For
instance, in [55, 58, 59], ML-models guide decisions related to the choice of the decomposition
or configuration that the optimization algorithm should use to tackle the problem at hand.

On the other hand, in a closer integration, a ML model is repeatedly employed within the
combinatorial optimization algorithm. In this case, the optimization algorithm’s performance

20

relies heavily on the assistance provided by the ML-based decisions. A relevant case is the
branch-and-cut scheme of MIP solvers, where several works have proposed the use of ML
models to make decisions related to the branching and search strategies [51, 52].

For our purposes, we are particularly interested in successful ML applications for per-instance
algorithm selection problems. In such a context, given a set of algorithms that can tackle a
computational problem and a specific instance that has to be solved, the problem consists
of determining which algorithm is expected to perform best on that particular instance.
In the context of SAT, Xu et al. [57] define a portfolio solver by using ML algorithms to
predict the solvers’ performances which in turn are based on problem features of the instance.
Similarly, Bonami et al. [58] develop a ML application to decide on the linearization of a MIQP
model when tackled by a state-of-the-art MIP solver. The linearize/not-linearize decision is
analogous to algorithm selection because it determines the algorithm used by CPLEX to
tackle an instance problem.

Partially related to algorithm selection, ML has been also employed to predict algorithm
performance. In Hutter et al. [59], ML is employed to build regression models and predict
algorithm runtime for SAT and MIP solvers. The learned function is based on features
coming from both the problem representation and the algorithms partial progression. In the
MIP context, Fischetti et al. [60] design a learning framework to classify whether or not a
MILP instance will be solved to optimality by a general-purpose MIP solver within a given
time limit. The prediction is based on MIP-generic features that are either static or dynamic,
the latter, collected from the partial progression of the branch-and-cut scheme.

Understanding the problem-specific instance structure of a combinatorial problem and how
such a structure affects the solution performance is relevant for algorithm design. This
chapter points in that direction and is partially related with ML approaches for algorithm
performance and selection. As prediction models for algorithm performance could be useful
for gaining insights on the hardness of an instance [59], our work explores the use of ML to
predict instance hardness through an assessment of the MIP solver performance. As case
studies, we tackle two classical combinatorial optimization problems over graphs such as
the maximum stable set problem (MSSP) and the quadratic stable set problem (QSSP). In
addition, related with [58] and specifically for the QSSP, we use the learning framework to
understand the problem-specific instance features that better discriminate the decision on
the linearization of the QP formulation when tackled by a MIP solver.

Instead of using MIP-generic features (such as in [59, 60]) as the input of the predictive
models, we focus on problem-specific characteristics for each case study. We contribute with
a supervised learning framework which aims to understand instance hardness for a MIP solver

21

by performing a binary classification task. Learning experiments show that problem-specific
features are worth to be considered when predicting instance hardness in MIP technology, and
also that automated predictive models can capture problem structure to make a meaningful
discrimination. Finally, getting insights on the characteristics that affect problem solvability
using a MIP solver can contribute in several ways. For instance, (i) in the design of new
optimization methods which could consider MIP technology as a component, (ii) in the
development of fair benchmark datasets [61], and (iii) to support the configuration of a MIP
solver for tackling a problem based on its instance structure.

The remainder of this chapter is organized as follows. In Section 4.2, we describe both the
supervised learning application and the case studies. Section 4.3 presents details on the
methodology and experimental results when learning a classifier to discriminate instance
hardness. Next, Section 4.4 describes a second learning task associated with gaining insights
on instance hardness based on the possible linearization of the QSSP. Finally, we conclude
in Section 4.5.

4.2 Learning methodology for predicting instance hardness

Supervised ML is the process of learning a function from a given set of examples (i.e., the
training dataset) and assigning a discrete class label to an unseen instance. Each data
example is described by a set of features (attributes) and an associated class. The learned
function (classifier) then maps the features of new instances to the available classes revealing
a possible hidden structure within the training dataset.

We aim at investigating problem-specific instance hardness for MIP solvers by formulating
such algorithmic question as classification tasks. We will then address those tasks using
ML techniques. In this way, predictive models based on both problem-specific features as
well as the MIP solver performance could provide insights about the instance hardness of
a combinatorial optimization problem. Such insights, in turn, are useful in both algorithm
design and solving the problem.

One of the main distinctions with previous studies in ML for algorithm selection and perfor-
mance (e.g., [59, 58, 60]) is that our defined features are solely based on specific properties
of the problem instances. We hypothesize that this type of features could be useful to get
an understanding about instance hardness and that a trained classifier can capture possible
patterns. Thus, we do not rely on MIP-generic probing/dynamic features [59]. A probing
feature is the one computed by briefly running the algorithm for the given problem instance
to extract characteristics from the algorithm’s partial progression.

22

We define two different classification tasks and select as case studies the Maximum Stable
Set Problem and its quadratic version, the Quadratic Stable Set Problem. In a first learning
framework, we aim at classifying a problem-specific instance as either hard or easy when
tackled by a MIP solver for the MSSP and QSSP. Second, we explore another algorithmic
question formulated as a classification task specifically for the QSSP. We seek to learn a
classifier that predicts whether to linearize or not the quadratic programming (QP) model
representation of the QSSP when tackled with a MIP solver but relying only on problem-
specific features.

We propose to use, in an offline fashion, traditional supervised learning techniques to build
models for both classification tasks. The general supervised learning methodology corre-
sponds to five main steps: (i) problem representation and instance generation, (ii) feature
design from the problem-specific representation, (iii) the label definition for the learning task,
(iv) dataset definition and composition, and finally, (v) the learning experiments.

We define below the combinatorial problems selected as case studies for the ML application.
In addition, we present the mathematical formulations used in the experiments with the MIP
solver.

4.2.1 Stable set problems

We use two classical combinatorial problems, namely, the Maximum Stable Set Problem and
the Quadratic Stable Set Problem. Such problems are well-known in the discrete optimization
community with several applications domains such as telecommunications, scheduling, and
social networks. Moreover, these problems have appeared as auxiliary problems in different
decomposition approaches [62, 63] and have been employed as benchmarks for optimization
solvers [17].

Gaining insights on instance easiness/hardness for these combinatorial problems could be
relevant for several applications. For instance, if the combinatorial problem is present as a
subproblem in a decomposition approach, then it is likely solved several times on a regular
basis keeping the same general structure and only varying its data. Then, the study of
instance hardness is relevant to efficiently tackle the problems, design new optimization
methods, and even, to extend over the ideas presented here for other combinatorial problems
over graphs.

23

Maximum Stable Set Problem (MSSP)

Given an undirected graph G = (V , E) with vertex set V and edge set E , a subset of vertices
S ⊆ V is called a stable set (also referred to as independent set or vertex packing) of G iff
there is no edge in E with its two endpoints in S. Moreover, let wi be a weight (or profit)
associated with each vertex i ∈ V that is collected if vertex i is included in the stable set S.
In the so-called unweighted version, i.e., wi = 1 for i = 1, . . . , |V|, the maximum stable set
problem (MSSP) consists of finding the stable set S of maximum cardinality [64]. It models
application in scheduling, biomedical engineering, and information retrieval, to name a few
[65]. As an illustrative example, the optimal MSSP solution to the graph in Figure 4.1 is
{1, 2, 5}.

A classical MIP representation to address the MSSP is the so-called edge formulation
[64]. Let xi be a binary variable that takes the value of 1 if vertex i belongs to the
maximum stable set and 0 otherwise. A MIP model with |E| constraints is given by
max

{∑
i∈V wixi : xi + xj ≤ 1,∀(i, j) ∈ E ;x ∈ {0, 1}|V|

}
.

For this study, we use a stronger integer linear programming formulation referred to as the
clique formulation. The latter is obtained by partitioning the vertices of G into cliques [64],
i.e., subsets of V where the vertices in each subset are pairwise adjacent. Let xi be a binary
variable that takes value 1 if vertex i belongs to the maximum stable set and 0 otherwise.
Let K be a collection of (inclusion-wise) maximal cliques that cover V . If K spans all edges
in E , the resulting mathematical formulation is as follows:

1

2 3

4

5

Figure 4.1 Illustrative example of a MSSP instance

24

max
∑
i∈V

wixi (4.1)

subject to
∑
i∈K

xi ≤ 1, ∀K ∈ K, (4.2)

xi ∈ {0, 1}, ∀i ∈ V . (4.3)

Each maximal clique K can be computed in a greedy fashion following, e.g., the procedure
in [6]. We initially select the vertex with highest degree and then include iteratively adjacent
vertices (also with highest degree) to every vertex so far in K until no more additions are
possible. Next, we add clique K to K, remove from G all the edges belonging to the added
clique, update the vertices degrees, and repeat the procedure.

Quadratic Stable Set Problem (QSSP)

The QSSP is a difficult variant of the maximum stable set problem where additional profits
are associated with pairs of vertices. The QSSP is a key component of modern applications
(e.g., protein structure prediction [66] and marketing [67]), and its quadratic nature takes
the problem to a more challenging level in comparison to classical stable set problems. In
addition, given the relationship between stable sets and cliques (i.e., induced complete sub-
graphs) in a graph, the study of the QSSP can also contribute to approaches for solving
clique related problems.

Consider again an undirected graph G. Moreover, we consider a symmetric matrix Q =
{qij}i,j=1,...,n ∈ Rn×n (here not restricted to be positive semidefinite), where the profit qij for
each pair of vertices i, j ∈ V is collected if both vertices are included in S. The QSSP asks
for the stable set in G that maximizes the total profit.

Let xi be a binary variable that takes value of 1 if vertex i ∈ V belongs to the stable set
S and takes value 0 otherwise. Similarly to its linear case, a clique cover-based formulation
for the QSSP is obtained by profiting from the fact that at most one vertex in any maximal
clique K ∈ K can be part of the stable set. The QSSP can be formulated as the following
binary quadratic program (BQP):

25

max
x

n∑
i=1

wixi +
n−1∑
i=1

n∑
j=i+1

2qijxixj (4.4)

subject to,
∑
i∈K

xi ≤ 1, ∀K ∈ K, (4.5)

xi ∈ {0, 1}, ∀i ∈ V . (4.6)

Note that x2
i = xi for all i and the linear profits wi can be easily obtained by adjusting the

terms qii in Q, i.e., the main diagonal of Q. In fact the QSSP reduces to the the MSSP when
qij = 0 for all i 6= j.

4.3 Learning to classify problem-specific easy/hard instances for a MIP solver

In this section, we present the learning methodology to classify problem-specific instance
hardness for a MIP solver. Before describing the learning approach for each case study,
i.e., the MSSP and QSSP, we first present a simple motivating experiment to illustrate that
problem structure could hide interesting patterns to be revealed.

Motivating example. We generate 500 MSSP instances based on random Erdös-Rényi
graphs with the same number of nodes (n = 175) and graph density (p = 10%). We solve
each instance 5 times (changing the random seed to deal with performance variability issues
[68]) using CPLEX as MIP solver. The solving time for each instance is the average CPU
time of the runs. Figure 4.2 presents the distribution of computational times for all the
instances (i.e., each data point corresponds to the solving time of an instance).

By observing formulation (4.1)-(4.3), it is expected that the number of vertices and the
graph density have a significant impact in the MIP solver performance due to their direct
relationship with the number of variables and constraints in the MIP model. Thus, as every
instance has the same type of graph, size, and density, we would expect little to no variation
in the solving times in this motivating experiment. However, note that the CPU time (y-axis)
ranges between 41.11 and 830.48 seconds, i.e., instances which are very similar in structure
present dramatic differences in MIP performance. We hence conjecture that, in addition to
size and density, more characteristics of the problem instance reveal the reasons for the CPU
time differences and provide insights about MSSP-instance hardness.

We use a ML methodology to learn a classifier which discriminates when a problem-specific
instance could be efficiently solved by a MIP solver. We frame such a discrimination as a

26

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500

CP
U

tim
e

(s
)

MSSP instance

Figure 4.2 Distribution of solving times for 500 MSSP instances with the same
number of vertices (175) and density value (10%)

classification task and rely on the MIP performance to label an instance as either easy or hard.
Therefore, a data point consists of a problem instance, its vector of features is defined by
problem-specific properties, and its label is defined according to the MIP solver performance.
We present details on the different learning steps and experiments for the MSSP and QSSP
in Section 4.3.1 and 4.3.2, respectively.

4.3.1 Classifying MSSP instance hardness

We now present methodological details of the learning task of classifying a MSSP instance as
either easy or hard. As a data point corresponds to a MSSP instance, we define how MSSP
instances are generated, the specific feature design for this problem, how each instance is
labeled, and the dataset selection and composition. Finally, we extend on the experimental
results for this learning task.

i. MSSP instances generation

We consider a set of randomly defined test cases to train our classifiers. Since a MSSP
instance is mainly described by an undirected graph, we generate instances defined from
random graphs according to different graph generator schemes, namely, the Erdös-Rényi
(ER) [69], Watts-Strogatz (WS) [70], Barabási-Albert (BA) [71], and Holme-Kim (HK) [72]

27

models. The instances are generated varying the number of nodes (n) and the graph density
(p). In addition, we only consider unweighted MSSP instances, i.e., the weight for every
vertex is 1.

ii. Feature design for the MSSP

As mentioned above, feature design is one of the main distinctions in this study. We only
define and extract problem-specific features from graph metrics and other properties of the
instance. In addition, this type of features could be particularly useful in portfolio-based
algorithm selection. Suppose we aim at discriminating instance hardness when tackling a
problem with different optimization paradigms (i.e., when the problem representation is not
the same), in such a setting, we could rely only on problem-specific instance features.

Since a MSSP instance corresponds to an undirected graph G, we select 17 specific features
based on graph properties and metrics. We note that as we experiment with the unweighted
version of the MSSP, we do not extract features from the vertex weights wi. We now provide
a more detailed description of all the considered features.

• Number of vertices. Number of nodes in the undirected graph G, i.e., n = |V|.

• Number of edges. Number of edges in G, i.e., |E|.

• Density. Denoted by p, it is the ratio of the number of edges and the number of possible
edges. For undirected graphs, the density is defined as p = 2|E|

|V|(|V|−1) . In such a way, a
dense graph has a number of edges which is close to the number of possible edges (i.e.,
p closer to 1), whereas a sparse graph has only few edges (p closer to 0).

• Vertex degree. The degree of a vertex (also called the valency) is the number of adjacent
vertices, i.e., the number of edges that are incident to the vertex. Having the degrees
for all the vertices in G, we derive seven features by computing their mean, median,
standard deviation (SD), minimum, maximum, the interquartile range (IR), and the
variability score (SD/mean).

• Graph assortativity. Defined as the assortativity of a graph by degree [73]. It measures
the tendency for vertices of being connected to other vertices that are similar in terms
of the vertex degree.

• Vertex connectivity. It computes the minimum number of vertices that must be re-
moved to disconnect G or make it trivial [74]. In general, algorithms to compute vertex
connectivity are based on max-flow subroutines.

28

• Edge connectivity. Similarly to vertex connectivity, it computes the minimum number
of edges that must be removed such that G is disconnected or trivial [74].

• Graph transitivity. The fraction of all possible triangles in G. The graph transitivity
relies on triads which are defined when two edges shared a vertex. The transitivity of
a graph is then computed as the ratio of the number of triangles and the number of
triads.

• Average clustering coefficient. The local clustering of a vertex is the fraction of trian-
gles over the number of possible triangles in its neighborhood. The average clustering
coefficient of G is then the mean of local clusterings. This feature computes an approx-
imate average clustering coefficient considering a number of trials in the procedure as
defined in [75].

• Number of triangles. For each vertex, we compute the number of triangles that include
it as one of the vertices. We derive two features by calculating the mean and the
maximum among the number of triangles of all the vertices.

iii. Label definition for classifying E/H MSSP instances

As we cast the learning task as a binary classification problem, we define a procedure to
binarize the label. Each MSSP instance is solved with CPLEX version 12.8 (5 times with a
different random seed each) to get the MIP solving time MIPtime. In addition, a threshold
value t is defined to binarize the label. For each instance, we assign either the label E (easy)
if MIPtime ≤ t or H (hard) otherwise (i.e., MIPtime > t). Such a threshold t could, for
example, correspond to how much time we are allowed to use, within an iterative approach,
to solve an instance.

iv. Dataset definition and composition

As in any learning process approach, datasets should be meaningful for the classification task.
We evaluate the distribution of solving times and binarization thresholds to generate bal-
anced and purposeful datasets. We define two of them, namely, MSSP-EH-1 and MSSP-EH-2.
MSSP-EH-1 contains a wider range of instances in terms of size (n) and graph density (p)
and is formed by 17, 000 MSSP instances with number of nodes n ∈ {100, 125, 150, 175, 200},
graph density (in percentage) p ∈ {10, 20, 30, 50, 70}, and threshold t = 10 seconds for label
binarization. On the other hand, MSSP-EH-2 has 4, 000 MSSP instances with n ∈ {200},
p ∈ {20, 30}, and t = 40 seconds. Note that, in the latter, we fix n and slightly vary p in

29

order to understand which are the features that could better discriminate MSSP hardness,
when n and p should present low impact in the dataset composition. Table 4.1 shows, for
each dataset, the percentage of E and H instances.

Table 4.1 Label distribution in each dataset for the E/H learning experiments for the MSSP

Dataset E(%) H(%) Total
MSSP-EH-1 8590 (50.52) 8410 (49.48) 17000
MSSP-EH-2 2479 (61.77) 1529 (38.23) 4000

v. Learning experiments when classifying E/H MSSP instances

For each dataset, we construct the classifier using traditional supervised learning method-
ologies. We randomly split the dataset into training (75%) and test set (25%). To obtain
features in the same range, we apply feature scaling and mean normalization so, each feature
is normalized to have mean 0 and standard deviation 1. Each experiment consists of a train-
ing phase with 5-fold cross validation and grid search method for hyperparameter tuning, and
a test phase on the neutral test set. We test Logistic Regression (LR), k-Nearest Neighbors
(k-NN), Support Vector Machine (SVM) with RBF kernel [25], and Random Forests (RF)
[26], an ensemble method based on decision trees. As a measure of baseline performance,
we compare both methods versus a dummy classifier (DUM) which makes random guessing
using simple rules. In our case, we follow a stratified strategy, i.e., DUM makes predictions
respecting the class distribution of the training dataset.

We implemented this methodology using Python with Scikit-learn [76] and used NetworkX
[77] for the feature extraction. Table 4.2 presents the standard performance measures of
binary classification, namely, accuracy, precision, recall and f1-score, for dataset MSSP-EH-1.
Similarly, Table 4.4 shows the performance metrics for dataset MSSP-EH-2.

In the learning experiments, we use RF due to its interpretability. We then retrieve the
importance scores which rank features based on their importance for the prediction using
RF. In Table 4.3 and Table 4.5, we report the top-5 features of the learning experiment for
datasets MSSP-EH-1 and MSSP-EH-2, respectively.

We remark that both SVM and RF achieve high performance metrics. We conclude that
both methods are able to capture enough about the MIP solver performance on training set
to make meaningful predictions on test set. That is, most of the times, easy (E) instances are
predicted as easy and, hard (H) instances tend to be predicted as hard. This corroborates that
there is a statistical pattern to be learned when classifying easy and hard MSSP instances

30

Table 4.2 Performance measures for the three clas-
sifiers when predicting E\H for dataset MSSP-EH-1

DUM LR k-NN SVM RF
Accuracy 0.495 0.928 0.947 0.957 0.959
Precision 0.509 0.925 0.957 0.967 0.971
Recall 0.504 0.937 0.939 0.949 0.948
F1-score 0.507 0.931 0.948 0.958 0.960

Table 4.3 Top-5 features ranked by
importance score from RF for the
E\H classifier for MSSP in dataset
MSSP-EH-1

Feature Score
Number of nodes 0.267
Number of edges 0.116
Avg. clustering 0.081
Graph transitivity 0.076
Degree SD 0.067

Table 4.4 Performance measures for the three clas-
sifiers when predicting E\H for dataset MSSP-EH-2

DUM LR k-NN SVM RF
Accuracy 0.532 0.991 0.987 0.991 0.991
Precision 0.608 0.988 0.988 0.988 0.988
Recall 0.637 0.996 0.990 0.996 0.996
F1-score 0.622 0.992 0.989 0.992 0.992

Table 4.5 Top-5 features ranked by
importance score from RF for the
E\H classifier for MSSP in dataset
MSSP-EH-2

Feature Score
Avg. clustering 0.368
Graph transitivity 0.163
Avg. number of triangles 0.101
Degree SD 0.092
Degree var. score 0.059

31

for a MIP solver and the selected problem-specific features can capture such discrimination.

Additionally, from the feature importance scores, we observe that the importance score of
the number of nodes is, by far, the most relevant feature in the discrimination of easy/hard
instances for the MIP solver when we consider MSSP instances with a high variation in the
number of nodes (n) which is the case of dataset MSSP-EH-1. However, for dataset MSSP-EH-2,
the most important feature is the average clustering, indicating that such a graph property
has a high incidence in the MSSP-instance hardness when we analyze instances with little
variation in number of vertices and density.

We remark that the type of model (ER, WS, HK, etc) used to generate the random graph of
the different instances is not a feature in the learning task. We also note that more random
graph generator schemes exist (e.g., the p̂–generator [78]), so more type of random graphs
could be considered for the training data. Nevertheless, the performances of the classifiers
suggest that the selected features successfully capture the differences in degree distributions
and particular structures and also their relations with the MIP solver performance.

4.3.2 Classifying QSSP instance hardness

Similarly to the previous section, we develop the learning task of classifying a problem in-
stance as either easy or hard, this time, for the QSSP. We describe details and results of the
learning methodology for this problem.

i. QSSP instances generation

A QSSP instance mainly corresponds to an undirected graph plus a symmetric matrix of
quadratic profits. We randomly generate instances to train the classifier. QSSP instances
are generated following the Erdös-Rényi (ER) [69] model for the undirected graphs. In
addition, each linear profit wi is an integer uniformly distributed between −100 and 100.
Finally, each profit term qij is uniformly distributed between −50 and 50 and a percentage
of positive coefficients (v) in matrix Q is defined when generating the symmetric matrix.

ii. Feature design for the QSSP

We rely on the 17 graph features defined for the MSSP in Section 4.3.1 for undirected graphs.
In addition, as noted in the instance generation, we define extra features associated with the
quadratic profits. An important property which is reported in [79] when tackling the QSSP
is the percentage of positive coefficients in Q. Moreover, we obtain features associated with

32

the linear profits wi. For the latter, we define the mean, median, standard deviation (SD),
minimum and maximum, for a total of 23 features.

iii. Label binarization for classifying E/H QSSP instances

The label is defined following the same criteria used in the previous section for the MSSP.
Each QSSP instance is solved with CPLEX version 12.8 using its nonlinear programming-
based branch and bound. The MIP solving time MIPtime for each instance is the average of
5 runs with a different random seed. Similarly, a threshold value t is defined to binarize the
label, i.e., we assign the label E if MIPtime ≤ t or H, otherwise.

iv. Dataset definition and composition

We assess the distribution of solving times and binarization threshold to gener-
ate again a meaningful dataset which is named QSSP-EH-1. The dataset is
composed of 9, 900 QSSP instances where n ∈ {50, 60, 70, 80, 90, 100, 150}, p ∈
{10, 15, 20, 25, 30, 40, 45, 50, 60, 65, 70, 75}, v ∈ {25, 50, 75}, and binarization threshold t =
10. Table 4.6 shows the percentage of E and H instances in the dataset.

Table 4.6 Label distribution in each dataset for the E/H learning experiments for the QSSP

Dataset E(%) H(%) Total
QSSP-EH-1 4311 (43.55) 5589 (56.45) 9900

v. Learning experiments when classifying E/H QSSP instances

We follow the same experimental setup from Section 4.3.1. We use the same ML techniques
to build the classifiers, define the same training-test ratio, and follow the same good learning
practices. Table 4.7 presents the standard performance metrics for SVM and RF and also
the baseline DUM. In particular, we also obtain the importance scores from RF and report
in Table 4.8 the features appearing in the top-5 of the experiment.

From the experiments, we can observe that the classifiers exhibit good performance. We con-
clude after comparing with the baseline performance that the classifier does learn from the
problem-specific features to make meaningful predictions on the hardness of new instances.
From the feature importance scores, the number of nodes and percentage of positive coeffi-
cients in matrix Q appear as the most significant attributes when making predictions for this
dataset.

33

Table 4.7 Performance measures for the classifiers
when predicting E\H for the QSSP

DUM LR k-NN SVM RF
Accuracy 0.501 0.934 0.842 0.942 0.958
Precision 0.430 0.915 0.859 0.918 0.966
Recall 0.431 0.938 0.764 0.953 0.938
F1-score 0.430 0.927 0.808 0.936 0.952

Table 4.8 Top-5 features ranked by
importance score from RF classi-
fier when discriminating E\H for the
QSSP

Feature Score
Number of nodes 0.184
Perc. of positive coeff. in Q 0.168
Number of edges 0.082
Graph density 0.071
Avg. clustering 0.070

4.4 Learning to linearize/not-linearize the QSSP for a MIP solver based on
QSSP-specific features

When solving a quadratic programming (QP) model with a state-of-the-art solver as CPLEX,
the linearization or not of the QP model determines which algorithm will be used by the MIP
solver. In case that the QP is not linearized, CPLEX uses a nonlinear programming-based
branch and bound where a QP relaxation is solved at each node. On the other hand, if the
QP is linearized, a reformulated linear MIP model is solved with a standard branch-and-cut
scheme. This algorithmic question can be crucial in the resulting solver performance. We
refer the reader to [58] for more details about how a QP model is tackled by a state-of-the-
art solver as CPLEX. In addition, Bonami et al. [58] present a ML framework to make a
decision on this linearization alternative and a learned classifier is incorporated in the most
recent version (12.10) of CPLEX. The classifier is based on static and dynamic MIP-specific
features and then generic for any MIQP model.

In this section, we propose to use the QSSP-specific features of the learning task developed
in Section 4.3.2 with the algorithmic question and learning framework proposed in [58]. In
this way, we build a predictive model to classify whether to linearize or not the QSSP model
(clique formulation) based only on QSSP-specific instance features. Such learned classifiers
could then provide insights about QSSP structure that impacts the linearization decision in a
MIP solver and then its hardness. As in previous sections, we now detail some methodological
aspects of the learning methodology.

The generation of QSSP instances and the feature design is defined exactly as in Section 4.3.2
(so subsections i. and ii. are omitted). We proceed to describe the label definition for this
specific task, the dataset composition, and the learning experiments.

34

iii. Label definition for deciding on linearization for the QSSP

The binary labeling scheme is based on the MIP performance when it linearizes and does
not linearize the QSSP as proposed in [58]. Along these lines, each QSSP instance is solved
twice, i.e., linearizing and not-linearizing the QP. Such decision is defined in CPLEX through
the parameter QToLin. For each alternative, every instance is solved 3 times with a differ-
ent random seed to get the solving time linearizing (resp., not-linearizing) LINtime (resp.
NLINtime) as the average time of the runs. Finally, for each instance, we assign a label
either LIN or NLIN according to the minimum solution time between both solving times.

iv. Dataset composition

The dataset named QSSP-LIN-1 comprises 3600 QSSP instances with different val-
ues for the number of nodes (n), graph density (p), and percentage of positive co-
efficients in Q (v). Specifically, n ∈ {50, 60, 70, 80, 90, 100, 110, 120, 130, 140}, p ∈
{20, 25, 30, 35, 40, 50, 60, 70, 80}, and v ∈ {25, 50, 75}. Table 4.9 shows the percentage of
LIN and NLIN instances in the dataset.

Table 4.9 Label distribution in each dataset for the LIN/NLIN learning experiments for the
QSSP

Dataset NLIN(%) LIN(%) Total
QSSP-LIN-1 3318 (92.16) 282 (7.84) 3600

We observe that we deal with a highly imbalanced dataset. In this case, most of the instances
are labeled as not-linearize (NLIN) and the analysis on the performance metrics will have to
consider this fact.

v. Learning experiments

Once again, we follow the learning setup from previous sections. We then use the same ML
techniques to build the classifiers (DUM, SVM, and RF), define the same training-test ratio,
and follow the same good learning practices when training the classifiers. Table 4.10 presents
the standard performance metrics. Again, we obtain the importance scores from RF and
report them in Table 4.11 for features appearing in the top-5 of the experiment.

As we tackle an imbalanced classification task, the accuracy is not a suitable performance
metric for evaluating the model performance. We observe in Table 4.11 that even the dummy
classifier presents a good accuracy because it relies on the class distribution of the training

35

Table 4.10 Performance measures for the classifiers
when predicting LIN\NLIN for the QSSP

DUM LR k-NN SVM RF
Accuracy 0.838 0.981 0.917 0.975 0.986
Precision 0.058 0.884 0.456 0.863 0.892
Recall 0.071 0.871 0.371 0.814 0.942
F1-score 0.064 0.877 0.409 0.838 0.916

Table 4.11 Top-5 features ranked by
importance score from RF classi-
fier for the QSSP when classifying
LIN\NLIN

Feature Score
Perc. of positive coeff. in Q 0.362
Graph density 0.099
Graph transitivity 0.085
Avg. clustering 0.074
Avg. number of triangles 0.074

set. Conversely, we search for a model which performs well at finding the relevant cases within
the dataset, i.e., the ones where the solver should linearize the QP model by reformulating
it as a MILP model. In this case, the precision and recall are better metrics, and we can
observe that the trained classifiers present a high performance in those. The models find
most of the QSSP instances of interest within the dataset and the high precision indicates
the models’ ability to rightly classify the QSSP instances to linearize.

Furthermore, we observe in Table 4.11 that the feature importance scores reveal that the
percentage of positive coefficients in Q is by far the most important feature involved when
using the random forest classifier.

4.4.1 Comparison with the automated classifier in CPLEX 12.10

In this experiment we compare the trained LIN\NLIN classifier versus the automated out-
of-the-box classifier incorporated in CPLEX version 12.10. We take into production the
LIN\NLIN SVM classifier and implement the QSSP in C++ using the Concert Technology
Library of CPLEX version 12.10. All experiments are run on a Linux machine, Intel(R)
Xeon(R) Gold 6142 CPU @ 2.60GHz and 512 GB of RAM.

For the benchmark, we generate a challenging testbed focused on QSSP instances of interme-
diate size n = {80, 100, 120}, sparse graphs p = {20, 25, 30}, and wide range of percentage of
positive coefficients v = {25, 50, 75}. We generate 10 instances for each combination (group)
(n, p, v) for a total of 270 instances (27 groups).

Table 4.12 reports the computational experiments. Column 1 corresponds to the group id.
Columns 2, 3, and 4 present, for each group, the number of nodes, density, and percentage of
positive coefficients in Q. For each case, i.e., CPLEX 12.10 with both automated classifier

36

and LIN\NLIN classifier, we report two values. In the first column, the number of instances
classified as linearized (LIN) and not linearized (NLIN) using and exponent with such a quan-
tity. In the second column, we present the average performance for each group where the
base number corresponds to the average computational time employed for solving the ten
instances. If an exponent appears, it indicates how many of those instances could not be
solved to optimality within the time limit of 7, 200 seconds. Columns 5 and 6 correspond
to CPLEX with its automated out-of-the-box classifier. Columns 7 and 8 are associated
with CPLEX but deciding on the linearization based on the trained classifier presented in
Section 4.4.

As we previously highlighted, the main difference between the two classifiers is that the
one presented in this chapter is based only on problem-specific features of the QSSP. The
automated classifier used in CPLEX 12.10 ([58]) is evidently a generic predictor suitable
for any type of QP model tackled by the solver. Nevertheless, it is worth evaluating if the
problem-specific features can capture relevant structure about the instance when deciding on
whether CPLEX should linearize or not.

We observe from Table 4.12 that the automated out-of-the-box classifier in CPLEX decides
that no QSSP instance in the testbed should be linearized. On the other hand, the trained
LIN\NLIN classifier predicts instances on some groups as LIN. We can observe that the lin-
earization can really payoff in some cases such as in groups 21 and 24. For such groups,
linearizing the QP translates not only in reducing computational time but also in increasing
the number of solved instances. The classifier then predicts an effective strategy on the lin-
earization of the QP model when the QSSP is tackled by CPLEX. This experiment remarks
the importance of problem-specific features to discriminate instance hardness.

4.5 Conclusions

We present a machine learning application to identify problem-specific instance hardness
when using a MIP solver. We formulate the discrimination on instance hardness through
classification tasks and use two classical combinatorial optimization problems as case studies.
In a first learning framework, we classify a combinatorial problem as either easy or hard for a
MIP solver based on problem-specific instance features and the MIP performance. Next, in
a second classification task, we gain insights on instance hardness when classifying the best
algorithm (configuration) for solving a QSSP model by CPLEX, i.e., if it should be either
linearized or not to be solved.

Learning experiments show that the learned classifiers do capture a statistical pattern based

37

Table 4.12 Comparison between CPLEX 12.10 with its automated classifier and CPLEX
12.10 with the trained classifier of Section 4.4

Instances
CPLEX 12.10 CPLEX 12.10 with

out-of-the-box classifier trained classifier

Group n p v Prediction CPU time (s) Prediction CPU time (s)
1 80 20 25 LIN0 − NLIN10 23.76 LIN0 − NLIN10 24.59
2 80 20 50 LIN0 − NLIN10 31.15 LIN1 − NLIN9 65.31
3 80 20 75 LIN0 − NLIN10 184.75 LIN10 − NLIN0 308.94
4 80 25 25 LIN0 − NLIN10 16.21 LIN0 − NLIN10 17.27
5 80 25 50 LIN0 − NLIN10 18.88 LIN0 − NLIN10 19.78
6 80 25 75 LIN0 − NLIN10 124.31 LIN10 − NLIN0 228.03
7 80 30 25 LIN0 − NLIN10 8.99 LIN0 − NLIN10 9.47
8 80 30 50 LIN0 − NLIN10 13.65 LIN0 − NLIN10 14.70
9 80 30 75 LIN0 − NLIN10 59.81 LIN4 − NLIN6 93.81
10 100 20 25 LIN0 − NLIN10 190.45 LIN0 − NLIN10 194.20
11 100 20 50 LIN0 − NLIN10 303.46 LIN1 − NLIN9 412.19
12 100 20 75 LIN0 − NLIN10 2625.39 LIN10 − NLIN0 2180.12
13 100 25 25 LIN0 − NLIN10 111.10 LIN0 − NLIN10 113.53
14 100 25 50 LIN0 − NLIN10 142.34 LIN0 − NLIN10 147.89
15 100 25 75 LIN0 − NLIN10 1089.56 LIN10 − NLIN0 922.20
16 100 30 25 LIN0 − NLIN10 57.16 LIN0 − NLIN10 57.92
17 100 30 50 LIN0 − NLIN10 90.31 LIN0 − NLIN10 90.83
18 100 30 75 LIN0 − NLIN10 443.36 LIN5 − NLIN5 555.07
19 120 20 25 LIN0 − NLIN10 1399.85 LIN0 − NLIN10 1417.22
20 120 20 50 LIN0 − NLIN10 2792.59 LIN0 − NLIN10 2713.06
21 120 20 75 LIN0 − NLIN10 7200.00(10) LIN10 − NLIN0 6741.91(7)

22 120 25 25 LIN0 − NLIN10 653.57 LIN0 − NLIN10 662.27
23 120 25 50 LIN0 − NLIN10 1172.76 LIN0 − NLIN10 1205.27
24 120 25 75 LIN0 − NLIN10 6948.45(7) LIN10 − NLIN0 5656.36(2)

25 120 30 25 LIN0 − NLIN10 276.41 LIN0 − NLIN10 281.35
26 120 30 50 LIN0 − NLIN10 398.16 LIN0 − NLIN10 403.77
27 120 30 75 LIN0 − NLIN10 2598.94 LIN5 − NLIN5 2267.15

Geom. mean 234.44 257.24

38

only on problem-specific features. Hence, the predictive models allow to gain insights on
instance hardness for specific problems. In addition, computational experiments show that
such problem-specific features are relevant to discriminate performance when tackling MIQP
models by comparing the trained classifier with an automated out-of-the-box classification
feature in CPLEX.

Insights on problem-specific instance hardness for an optimization solver can be useful in
several applications such as algorithm design and selection, as well as to generate harder
benchmarks. In particular, we envision that the insights and learned classifiers in this work
could be very useful when designing an optimization solver that incorporates MIP technology.

We select two well-known optimization problems as case studies. These problems are general
enough that it is possible that features and insights obtained here could be useful for other
problems. Then, the ML application could be adapted to be used with another combinatorial
optimization problem over graphs.

The learning framework used in this chapter could be extended to another optimization
solver that replaces the MIP solver. Furthermore, the framework can be adapted for another
setting related to an algorithm-selection decision. In that case, the problem-specific features
are worth to be considered because they are solver- and representation-independent. In
addition, the performances from the different solvers could be used to define the target label
and answer the algorithmic question of interest.

39

CHAPTER 5 ARTICLE 1: INTEGRATED INTEGER PROGRAMMING
AND DECISION DIAGRAM SEARCH TREE WITH AN APPLICATION TO

THE MAXIMUM INDEPENDENT SET PROBLEM

Authors: Jaime E. González, Andre A. Cire, Andrea Lodi, Louis-Martin Rousseau
Published: Constraints, 2020.1

Abstract: We propose an optimization framework which integrates decision diagrams
(DDs) and integer linear programming (ILP) to solve combinatorial optimization problems.
The hybrid DD-ILP approach explores the solution space based on a recursive compilation
of relaxed DDs and incorporates ILP calls to solve subproblems associated with DD nodes.
The selection of DD nodes to be explored by ILP technology is a significant component of the
approach. We show how supervised machine learning can be useful to detect, on-the-fly, a
subproblem structure for ILP technology. We use the maximum independent set problem as a
case study. Computational experiments show that, in presence of suitable problem structure,
the integrated DD-ILP approach can exploit complementary strengths and improve upon the
performance of both a stand-alone DD solver and an ILP solver in terms of solution time
and number of solved instances.

Keywords: Decision diagrams, Integrated methods, Integer linear programming, Supervised
Learning.

5.1 Introduction

Several optimization problems can be addressed efficiently by leveraging multiple solution
approaches with complementary strengths, such as integer linear programming (ILP) and
constraint programming (CP) [3, 4]. Within this extensive area, successful hybrid techniques
often involve an a-priori decomposition of the problem into two or more subproblems that
are more amenable for existing techniques, such as in the case of logic-based Benders decom-
position for machine scheduling [29] and CP-based branch and price [30, 31].

In this paper, we propose a novel hybrid methodology that combines elements from decision
diagrams (DDs) (see, e.g., [9], [10], [11]) with ILPs for discrete optimization problems. While
ILPs have an extensive body of work, only recently decision diagrams have been established as

1Available at [80]

40

viable data structure in optimization solution approaches [6]. Specifically, DD techniques are
based on discrete approximations of the solution space denoted by relaxed decision diagrams
(relaxed DDs) [14].

We contribute to the literature on decision diagram-based approaches that integrate different
optimization paradigms. Relaxed DDs are used as a replacement of the linear programming
relaxation in branch-and-bound methods [17], and also to strengthen ILP models through
their equivalent linear reformulation as shortest paths [46]. In addition, DDs have been em-
bedded as global constraints in CP models for sequencing problems [38, 39], as a cutting
plane method for integer programming [42], and to solve the pricing problem in a branch and
price scheme [44], to name a few. Furthermore, in the context of two-stage stochastic pro-
gramming, DDs have also been used to model second-stage decisions which are parameterized
by the first-stage variables [48].

Our methodology, in turn, provides an alternative way of exploiting relaxed DDs by further
emphasizing their role as approximations of the branch-and-bound search tree of a problem.
In particular, we perceive the nodes of a relaxed DD as subproblems that may involve some
structure that is more suitable to another technology (in our case, ILPs), which is invoked
to prune the node in advance. This process therefore involves a dynamic identification of
subproblems as opposed to an a-priori one, and may both strengthen the relaxed DD approx-
imation (by removing undesired nodes) as well as provide primal solutions that can further
speed-up solution time.

We represent each subproblem at a node by a dynamic programming state, currently the
standard for a DD formulation. Using such a state representation, we follow a supervised
learning methodology to get insights and define criteria to detect a structure that is more
efficiently solvable by ILP. Specifically, we describe an algorithm-selection problem where,
given a node of a relaxed DD, we use a decision tree inferred from predictive models to
determine the best method to solve its associated subproblem. This approach has similarities,
e.g., with the concept of algorithm portfolios in SAT solvers [57].

We present a case study on the maximum independent set problem (MISP), which is typically
used as a basis for novel DD methodologies due to its well-understood representation [81].
We show that, under particular structure, DD-ILP can dominate either the typical DD-based
branch and bound or a leading commercial ILP solver. Most importantly, it suggests a way to
enhance DD-based solvers when its relative effectiveness with respect to ILP can be evaluated
efficiently and dynamically with Machine Learning.

The remainder of this paper is organized as follows. Section 5.2 describes preliminary concepts
in decision diagrams for optimization. In Section 5.3, we introduce the proposed DD-ILP

41

framework and the supervised learning methodology used to exploit the DD-ILP algorithm.
Section 5.4 presents computational experiments on MISP instances. Finally, we conclude in
Section 5.5.

5.2 Preliminaries and notation

Maximum Independent Set Problem. Given an undirected graph G = (V , E) with
vertex set V and edge set E , an independent set of G is a subset of vertices S ⊆ V such that
no edge in E has its two endpoints in S. The maximum independent set problem (MISP)
asks for the independent set with the largest cardinality [64]. For instance, the optimum
MISP solution to the graph in Figure 5.1 is {1, 2, 5}. We let n := |V| and denote by S(G)
the set of independent sets of G (i.e., the solution set of the problem).

A classical ILP model to address the maximum independent set problem is the so-called edge
formulation [64]. Let xi be a binary variable that takes the value of 1 if vertex i belongs to
the maximum independent set and 0 otherwise. An integer programming formulation with
|E| constraints is given by max

{∑
i∈V xi : xi + xj ≤ 1,∀(i, j) ∈ E ;x ∈ {0, 1}|V|

}
. However,

a stronger ILP formulation for the MISP is obtained by partitioning the vertices of G into
cliques [64], i.e., subsets of V where the vertices in each subset are pairwise adjacent. Let xi

be a binary variable that takes value 1 if vertex i belongs to the maximum independent set
and 0 otherwise. Let K be a collection of (inclusion-wise) maximal cliques that cover V . The
resulting ILP formulation is max

{∑
i∈V xi : ∑

i∈K xi ≤ 1,∀K ∈ K;x ∈ {0, 1}|V|
}
.

Each maximal clique K is computed in a greedy fashion (as in [6]) by initially selecting the
vertex with highest degree and then adding iteratively adjacent vertices (also with highest
degree) to every vertex so far in K until no more additions are possible. Then, we add clique
K to K, remove from G all the edges belonging to the added clique, update the vertices
degrees, and repeat the procedure.

1

2 3

4

5

Figure 5.1 Undirected graph for the MISP

42

r

u1 u2

u3 u4 u5

u6 u7 u8

u9 u10

t

x1

x2

x3

x4

x5

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {2, 3, 5}

{3, 4, 5} {5} {3, 5}

{4, 5} ∅ {5}

∅ {5}

∅

{3, 5}

{3, 5}

Figure 5.2 Exact DD for MISP in-
stance of Figure 5.1

r

ū1 ū2

ū3 ū4

ū5 ū6

ū7

t

x1

x2

x3

x4

x5

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {2, 3, 5}

{3, 4, 5} {3, 5}

{4, 5} {5}

{5}

∅

{3, 5}

{3, 5}

Figure 5.3 Relaxed DD for MISP in-
stance of Figure 5.1

Exact and Approximate Decision Diagrams. A decision diagram D = (N ,A) is a
directed graph with node setN and arc setA that encodes a set of solutions of an optimization
problem. For the case of the MISP, the node setN is partitioned into n+1 layers L1, . . . , Ln+1.
The first and last layers are singletons and contain the root node r and the terminal node
t, respectively. Arcs emanating from nodes in L1, . . . , Ln are associated with the variables
x1, . . . , xn, respectively. Let l(u) be the index of the layer associated with node u ∈ N .
Each arc a = (u, u′) ∈ A only connects adjacent layers, i.e., l(u′) = l(u) + 1, and its layer
corresponds to the one of its tail node, l(u). Moreover, a label d(a) ∈ {0, 1} of an arc a at
layer i represents the assignment xi = d(a); we denote an arc with d(a) = 0 and d(a) = 1
by 0-arc and 1-arc, respectively. An arc-specified path (a1, . . . , an) from the root node to the
terminal node encodes the solution (d(a1), . . . , d(an)) to the MISP. Finally, a DD is called
exact if the set of solutions encoded in D is S(G).

Dynamic programming (DP) is used as the conceptual basis to compile exact DDs. We follow
the same DP formulation presented in [34] for the MISP. Let N(i) be the neighborhood of
vertex i ∈ V including i, i.e., N(i) = {i′|(i, i′) ∈ E}∪{i}. With each node u of D we associate
a state information s(u) ⊆ V that represents the vertices that can be added to the partial
independent set encoded by any path from the root to u. The root node’s state is fixed
as s(r) = V . Each node u ∈ Li has an outgoing 0-arc that leads to a node u′ with state

43

s(u′) := s(u) \ {i} (i.e., we exclude the vertex from the independent set). If i ∈ s(u), then u
also has an outgoing 1-arc that leads to a node u′′ with state s(u′′) := s(u) \ N(i) (i.e., we
include the vertex and remove its neighbourhood). No two nodes in a layer have the same
state. Typically exact DDs are constructed in a top-down fashion, where layers are processed
in the order L1, . . . , Ln one at a time, adding arcs and merging nodes with the same state as
required.

Exact DDs are in general of exponential size and, in practice, we prefer to manipulate ap-
proximate (controllable-size) decision diagrams such as the relaxed [17] and restricted [16]
versions. A decision diagram is called relaxed if it over-approximates the solution set of a
problem (S(G) for the MISP case). Figures 5.2 and 5.3 depict an exact and a relaxed DD
for the graph in Figure 5.1, respectively, where solid arcs represent d(a) = 1 and dashed arcs
represent d(a) = 0.

Relaxed DDs can be obtained similarly as exact DDs when using a top-down approach. In
particular, if the number of nodes in a layer (i.e., the layer width) exceeds a given pre-specified
limit W during its construction, two nodes u and u′ are heuristically selected and merged
into a new node u′′. The state of this node is set as s(u′′) := s(u) ∪ s(u′) to ensure all valid
independent sets are preserved. The strategy used to define which nodes are merged consists
on selecting DD nodes u and u′ with the partial longest path from the root node. Once
nodes are merged, all previous incoming arcs to u and u′ are directed to the new merged
node. Figure 5.3, in particular, presents a relaxed DD with maximum width of 2 (W ≤ 2).
Notice that, if the length of an arc is set as d(a), the longest path of an exact DD provides
the optimal MISP, while the longest path value of a relaxed DD provides an upper bound to
the problem.

Another type of approximate decision diagrams are the so-called restricted DDs which are
under-approximations of the solution set of a problem. Restricted DDs can also be obtained
in a top-down construction. Once the maximum width W is reached when constructing a
layer, we heuristically remove nodes from such a layer. In this procedure, we evidently remove
feasible solutions and possibly the optimal one too. However, a longest path computation on
a restricted DD provides a feasible solution and a lower bound on the optimal solution value.

DD-based Branch and Bound. Relaxed DDs can play the role of a search tree in a
branch-and-bound scheme [17]. The main idea is that the solution space of a problem can
be divided and explored by branching recursively on decision diagram nodes as opposed to
branching on a variable-value pair.

Specifically, consider a relaxed decision diagram D̄ of an optimization problem. For every

44

pair of nodes u, u′ ∈ D̄ such that l(u) < l(u′), we define D̄uu′ as the decision diagram induced
by all the nodes and arcs that lie on directed paths from u to u′; e.g., D̄rt = D̄. We say that a
node u in D̄ is exact if all r−u paths lead to the same state s(u), and is relaxed otherwise. A
cutset of D̄ is a subset of nodes C such that any r− t path in D̄ contains at least one node in
C. In particular, C defines an exact cutset if all nodes in C are exact. Note that the removal
of C from D̄ disconnects r and t. Several strategies exist for obtaining cutsets [6], such as the
frontier cutset (FC) and the last exact layer (LEL). The frontier cutset of a relaxed decision
diagram D̄, FC(D̄), is the set of exact nodes in D̄ such that, for each node, at least one of its
outgoing arcs’ heads is a relaxed node. For instance, FC(D̄) in the relaxed DD of Figure 5.3
is defined by {ū1, ū4}. The LEL cutset LEL(D̄), in turn, is defined by the last layer where
all nodes are exact (i.e., where no two nodes were forcefully merged to impose the maximum
width). For the case of Figure 5.3, LEL(D̄) is defined by {ū1, ū2}.

Let C be an exact cutset obtained either by FC or LEL. DD-based branch and bound explores
each node in C separately to find and prove optimal solutions. Namely, for each u ∈ C, let
v∗(u) be the longest-path value from r to u. If z∗u is the optimal value of the subproblem
for which its solutions are exactly encoded in Dut, then v∗(u) + z∗u is the value of the best
solution across all r− t paths that contain u. Since all r− t paths of a decision diagram must
contain some node in C, we can solve the subproblems associated with Dut separately for all
u ∈ C to search for the optimal solution, each subproblem leading to a smaller and hence
more tractable DD. Such a procedure can be applied recursively for each u if required.

5.3 A hybrid DD-ILP approach

We propose a novel strategy named ILP-based pruning to integrate ILP technology into DD-
based branch and bound. Once we define a cutset C and select a node u ∈ C to explore,
we can solve the subproblem associated with u using ILP as opposed to recursively relaxing
and exploring Dut, since only its optimal solution z∗u is required for our purposes. Such a
decision is made based on the properties of the subproblem encoded by the state s(u). In
particular for the MISP, a subproblem corresponds to a vertex-induced subgraph defined by
the vertices in s(u). In a nutshell, once an exact cutset C is defined, we explore each node
of C either by recursively applying DD-based branch and bound, or by directly invoking an
ILP model to prune the node in advance.

For solving the MISP instance in Figure 5.1 using the DD-ILP framework, we initially compile
a relaxed decision diagram D̄ (like the one in Figure 5.3) to compute an upper bound on the
optimal solution. For this case, the longest path from r to t is equal to 4 which provides a
dual bound on the optimal value of the objective function. Then, we identify all DD nodes

45

in an exact cutset which are included in a list of branching nodes to explore further e.g.,
C = {ū1, ū2}. Next, in a pure DD solver scheme, we would select a DD node to branch on
from the list of open branching nodes. For instance, Figures 5.4(a) and 5.4(b) present the
decision diagrams recursively obtained when branching on ū1 and ū2. Following a branch
and bound scheme, we would update the upper and lower bounds whereas we recursively
explore the solution space until we prove that the incumbent solution is optimal. Note that,
for instance, the DD rooted in ū1 (Fig. 5.4(a)) is relaxed and following a pure DD-based
exploration, we would have to compile new relaxed decision diagrams from a selected exact
cutset in Dū1t.

Nevertheless, in the context of our proposed hybrid DD-ILP framework, the evaluation of
properties of the subproblem encoded by a DD node can lead us to determine that such a
node should be pruned by solving it with ILP technology. For instance, after evaluating DD
nodes properties, one possible scenario could be applying the ILP-based pruning strategy to
DD node ū1 but not to DD node ū2. Figure 5.5 illustrates how the solution space exploration
is done within the DD-ILP approach. On the one hand, we generate a relaxed DD which is
rooted in ū2; on the other hand, we prune ū1 by solving an ILP subproblem with a classical
LP-based branch and bound tree (small subtree with green and red nodes rooted in ū1).
Note that solving to optimality the ILP subproblem associated with ū1 allows us to prune
the DD node, get a feasible solution (i.e., a lower bound equals to v∗(ū1) + z∗ū1), and avoid
the compilation and further exploration of more relaxed DDs.

Furthermore, the DD-ILP framework can be enhanced by different strategies that combine
information from the ILP and the partial solutions enumerated by the DD. For instance,
assume that we define a time cut-off to solve the ILP at a node u, obtaining a lower bound
zu and an upper bound zu as opposed to the optimal solution z∗u. Recalling that v∗(u) is the
optimal longest-path value from r to u, we derive two simple methodologies:

ILP-cutoff Pruning. The value v∗(u) + zu corresponds to an upper bound to the solutions
encoded by r − t paths crossing u. If such a value is lower than the current incumbent
solution, the node can be pruned from the DD without losing optimality. We can also
update the relaxed states of a DD after the removal of a node, which by itself can lead to
additional pruning based on DD filtering methods.

ILP-cutoff Heuristic. Since u is exact, v∗(u) + zu corresponds to a primal heuristic value
to the MISP and can be used to update the current incumbent, also possibly triggering the
pruning of other nodes.

When the optimal solution value z∗u is found, we can immediately prune the node and update

46

ū1

x2

x3

x4

x5

{2, 3, 4, 5}

t

{3, 5}

{3, 5}(a) DD rooted in ū1

ū2

x2

x3

x5

{2, 3, 5}

t

{3, 5}

{3, 5}

(b) DD rooted in ū2

Figure 5.4 Compiled DDs after branching on
DD nodes in C = {ū1, ū2}

r

ū1 ū2

t

x1

x2

x3

x5

Figure 5.5 Integrated DD-ILP search tree.

the incumbent solution, if needed. Otherwise, we can use the bounds as above and proceed
with DD-based branch and bound.

In addition, the complementarity offered by the hybrid DD-ILP scheme reveals an additional
procedure to speed-up the subproblems’ solution when calling the ILP solver. For any of the
three ILP-based strategies, we can provide a global incumbent solution to the ILP solver,
namely, a lower cutoff c. This lower cutoff indicates that the objective value of a given
subproblem has to be at least c. Let LB be a global incumbent solution obtained from the
hybrid DD-ILP exploration. Each time the ILP solver is called to solve a subproblem u, we
include the constraint zu ≥ c to the corresponding ILP model. In particular for the MISP,
we include the constraint

∑
i∈s(u)

xi ≥ LB − v∗(u). (5.1)

The constraint (5.1) takes into account that c = LB − v∗(u) and zu = ∑
i∈s(u) xi since the

vertices considered in the subproblem are the ones defined by the state s(u). As a result of this
procedure, when exploring a subproblem, the ILP solver may terminate significantly earlier
with the proof that no feasible solution exists, which leads to prune the DD node. Note that
the ILP-based pruning strategy involves solving to optimality several ILP problems associated
with DD nodes. In general, integer linear programming is NP-hard and a straightforward
application of the ILP-based pruning could be computationally very expensive. Therefore, a
systematic identification of subproblems that can be efficiently solved by ILP technology is

47

key for the hybrid method to pay off. In Section 5.3.1, we define a machine learning approach
useful to design the exploration mechanisms within the hybrid DD-ILP algorithm.

5.3.1 Supervised learning to identify complementarity

Recently, machine learning (ML) has served as an important tool to enhance discrete opti-
mization solvers, see, e.g., [53, 58] and [50] for a recent survey. We propose to use ML to build
predictive models which lead us to define a decision-making tool that classifies when a node
should be explored by an ILP model or by a DD-based branch and bound. This approach
is similar to a portfolio-based algorithm selection [57]. The distinction, however, is that our
subproblems are defined dynamically during search, as driven by our DD construction. The
classification is based on the node state s(u), which contains all the information required to
define the subproblem associated with u (i.e., Dut).

We present three different learning experiments which lead to three different classifiers. The
first two classifiers aim at predicting the most suitable method (either ILP or DD solver) for
tackling a particular instance. They are closely related and presented in Section 5.3.1. Next,
in a third experiment, we focus only on the ILP solver performance and learn a classifier to
discriminate when an instance could be efficiently solved by an ILP solver. This classifier is
presented in Section 5.3.1. The methodology for all the experiments consists of four steps:
dataset generation, features design, label definition, and learning experiments.

Learning to classify between ILP or DD solver

We describe, for the case of MISP, the four steps in the methodology.

1. Dataset Generation. We consider a set of randomly defined test-cases to train our classifier.
Since subproblems related to DD nodes correspond to vertex-induced subgraphs, we generate
a dataset composed of random graphs according to different graph generator schemes, namely,
the Erdös-Rényi (ER) [69], Watts-Strogatz (WS) [70], Barabási-Albert (BA) [71], and Holme-
Kim (HK) [72] models. In addition, to include even more different graph structures in the
test bed, we generate additional instances as follows. We create two graphs (G1, G2) resulting
from different graph generator models. We then connect both graphs by defining a number of
edges e which link randomly selected nodes from G1 and G2. We combine each pair of graph
models from the named four generators, giving us a total of six new graph types, that we
name ERWS (i.e., combination of an ER graph and a WS graph), ERBA, ERHK, WSBA,
WSHK, and BAHK. The number of nodes (n) is defined as n = {100, 125, 150, 175, 200} and
the density (p), in percentage, takes values from the set p = {10, 20, 30, 50, 70}. Finally, our

48

dataset has 18, 500 instances.

2. Feature Design. We define and extract features that could better discriminate the per-
formance between ILP and DD-based branch and bound. As we compare two different
representations of the problem, we only define features from graph metrics and properties of
the instance. Since an instance for the MISP corresponds to an undirected graph, we select
17 specific graphical features: number of nodes (n), number of edges (|E|), density (p), graph
assortativity, vertex connectivity, edge connectivity, graph transitivity, the average clustering
coefficient, and the average and maximum number of triangles. We also derive seven features
that come from node degrees: mean, median, standard deviation (SD), minimum, maximum,
the interquartile range (IR), and the variability score (SD/mean).

3. Label Definition. We now need to establish the performance of each method based on our
instance set. We solve each MISP instance with both ILP and DD solvers. For ILP solver
and to deal with performance variability issues [68], we solve each instance 5 times with a
different random seed using IBM-CPLEX 12.8. Then, the ILP solution time for each instance
is the average of the 5 runs. Finally, for each instance, we assign a label (either ILP or DD)
according to the minimum solution time between both methods.

4. Supervised Learning Experiments. Finally, we construct the classifier using traditional
supervised learning methodologies. We randomly split the dataset into a training set and a
test set, with 13875 (75%) and 4625 instances (25%), respectively. Each feature is normalized
to have a mean 0 and a standard deviation 1. Each experiment consists of a training phase
with 5-fold cross validation to grid search the hyper-parameters, and a test phase on the
neutral test set. We test Support Vector Machines (SVM) with RBF kernel [25] and Random
Forests (RF) [26]. As a measure of baseline performance, we compare both methods versus
a dummy classifier (DUM), which follows a stratified strategy.

We implemented this methodology using Python with Scikit-learn [76]. Table 5.1 presents
the standard performance measures for binary classification, namely, accuracy, precision, re-
call and f1-score. We observe high accuracy scores obtained from both SVM and RF. This
corroborates that there is a statistical pattern to be learned when selecting the best method
between ILP and DD solvers. In addition, the designed features can capture such discrimina-
tion. In the experiments, we use RF due to its interpretability. Scikit-learn provides scores
which rank features based on their importance for the RF prediction. We report them in
Table 5.2 for features appearing in the top-5 of the experiment.

We observe in Table 5.2 that features related to density (1st), number of triangles (2nd),
average clustering (3rd), graph transitivity (4th) and the degree of nodes (5th) significantly
discriminate ILP and DD.

49

Table 5.1 Performance measures for the
three classifiers when predicting ILP or DD

DUM SVM RF
Accuracy 0.543 0.963 0.962
Precision 0.309 0.936 0.944
Recall 0.330 0.951 0.937
F1-score 0.319 0.943 0.941

Table 5.2 Top-5 features ranked by importance
score from RF

Feature Score
Density 0.2179
Avg. number of triangles 0.2147
Avg. clustering 0.1481
Graph transitivity 0.1090
Avg. degree 0.0661

In a second learning experiment, we learn a classifier that predicts whether solving an in-
stance with an ILP solver is significantly easier than using a DD solver. From the previous
experiment, we slightly modify the label definition based on the solving times as follows. For
each instance, we assign the label ILP if the ILP solver is x times faster than the DD solver,
otherwise we assign the label NO-ILP. Following the same methodology for the previous
learning experiment, we obtain the performance metrics presented in Table 5.3.

Table 5.3 Performance measures for the three classifiers when predicting ILP or NO-ILP

DUM SVM RF
Accuracy 0.656 0.989 0.989
Precision 0.222 0.983 0.981
Recall 0.212 0.967 0.969
F1-score 0.216 0.975 0.975

We observe that both the SVM and RF models achieve high performance metrics in the
classification. In addition, such metrics are significantly better than the baseline performance
obtained by the dummy classifier showing that the learning models are actually learning
something useful from the data.

Learning to classify easy/hard MISP instances for an ILP solver

In a third learning experiment, we aim at classifying whether a MISP instance will be effi-
ciently solved by an ILP solver. For this experiment, we use the same dataset and features
than in subsection 5.3.1, so steps 1 and 2 of the methodology are already described. However,
in this case, we redefine the label to focus on the ILP solver explaining this in steps 3 and 4.

3. Label Definition. Each MISP instance is solved with IBM-CPLEX 12.8 (5 times with a

50

different random seed to deal with performance variability issues) to get the ILP solving time
ILPtime. In addition, a threshold value t is defined to binarize the label. Finally, for each
instance, we assign the label E (easy, i.e., ILPtime ≤ t) or H (hard, i.e., ILPtime > t).

4. Supervised Learning Experiments. We construct the classifier using the three supervised
learning algorithms presented in subsection 5.3.1. In addition, we follow the same strategy
for splitting the dataset, normalizing the features, and performing the training phase.

Table 5.4 presents the standard performance measures for binary classification. Similarly
to the previous experiment, we remark that SVM and RF achieve high performance scores.
Therefore, we conclude that both methods are able to capture enough about the ILP solver
performance on training set to make meaningful predictions on test set. This is, most of the
time, easy (E) instances are predicted as easy and, hard (H) instances tend to be predicted
as hard.

Additionally, we report the top-5 most important features from RF in Table 5.5. We observe
that the importance score of the number of nodes is, by far, the most involved feature in the
discrimination of easy/hard instances for the ILP solver in this dataset.

From here, the three trained classifiers (i.e., ILP/DD, ILP/NO-ILP, and E/H) and the insights
obtained from them are used to guide the node exploration into the hybrid method and
benchmark its performance.

5.3.2 Learning to explore within a hybrid DD-ILP for MISP

The hybrid approach proposed for the MISP profits from the learning experiments in Section
5.3.1 to incorporate mechanisms to guide, on-the-fly, the exploration of the solution space.
The hybrid is presented in Algorithm 1.

At the beginning, we include the initial DD root node r (which corresponds to the initial

Table 5.4 Performance measures for the
three classifiers when predicting E or H

DUM SVM RF
Accuracy 0.505 0.976 0.977
Precision 0.461 0.954 0.956
Recall 0.461 0.997 0.997
F1-score 0.461 0.975 0.976

Table 5.5 Top-5 features ranked by importance
score from RF

Feature Score
Number of nodes 0.483
Number of edges 0.082
Degree SD 0.069
Avg. clustering 0.046
Degree IR 0.044

51

Algorithm 1 Hybrid DD-ILP for MISP
Input: MISP instance, ILP/NO-ILP classifier, decision tree (nILP , pILP)
Output: zopt

1: initialize L = {r}, where r corresponds to the DD root node (initial state)
2: let zopt = −∞ and v∗(r) = 0
3: extract features ft(r) from subproblem associated with r
4: prediction ← ILP/NO-ILP classifier(ft(r))
5: if prediction = ILP then
6: z∗r ← solve_ILP(r)
7: zopt = v∗(r) + z∗r
8: return zopt

9: while L 6= ∅ do
10: u← select_node(L), L← L\{u}
11: extract features size nu and density pu

12: if decision_tree(u) = ILP then
13: z∗u ← solve_ILP(u), v∗(Dut) = v∗(u) + z∗u
14: if v∗(Dut) > zopt then
15: zopt ← v∗(Dut)
16: else
17: create relaxed DD Dut with root u and vr = v∗(u)
18: if Dut is exact then
19: if v∗(Dut) > zopt then
20: zopt ← v∗(Dut)
21: if Dut is not exact then
22: if v∗(Dut) > zopt then
23: let C be an exact cutset of Dut

24: for all u′ in C do:
25: let v∗(u′) = v∗(u) + v∗(Duu′), add u′ to L
26: create restricted DD D′ut with root u and vr = v∗(u)
27: if v∗(D′ut) > zopt then zopt ← v∗(D′ut)
28: return zopt

52

state) on the list of open nodes L. Next, we initialize the optimal solution value zopt and the
longest path from the root node to itself v∗(r). For such initial subproblem, we want to predict
if solving it by ILP technology could be much easier than using a pure DD branch-and-bound.
For this purpose we use once the trained ILP/NO-ILP classifier developed in Section 5.3.1. If
the classifier predicts ILP, we simply prune the root node with ILP technology solving the
problem to optimality. This automated ML-driven feature of the hybrid framework allows
to avoid an unnecessary DD-based exploration.

Conversely, if the classifier predicts the root node as NO-ILP, we start the DD-based explo-
ration. While open DD nodes remain in L, we select a node u ∈ L to be explored. The search
strategy used to select nodes from L follows a best-first search algorithm which is based on
the upper bound obtained from the relaxed DD in which u was created. Let v∗(Dru) = v∗(u)
be the longest path from the root node r to u and v∗(Dut) the longest path from u to the
terminal node t. Since u is an exact node which was identified in an exact cutset from a
previously computed relaxed DD, v∗(u) is known. Next, we have to determine if (a) we solve
node u to optimality by finding v∗(Dut) with an ILP solver, or (b) if we create a new relaxed
DD Dut to compute an upper bound v∗(Dut) on v∗(Dut).

Thus, we must predict whether we invoke the ILP solver to prune the node with the ILP-
based pruning strategy or not. This prediction could possibly be performed by evaluating
both the ILP/DD and E/H classifiers. However, these classifications require collecting, on-the-
fly, expensive graph features for every selected DD node and the computational cost does
not pay off for the overall DD-ILP performance. Therefore, we propose to get a proxy for
the classifiers predictions by evaluating a unique and computationally inexpensive decision
tree, specifically defined from significant features identified when training the classifiers.

The feature importance scores obtained during training of the ILP/DD and E/H classifiers
are useful to get insights and select the features to use in a simple decision tree. We select
the most important feature during training for each classifier, i.e., the density (Table 5.2)
and size (number of nodes in Table 5.5) of the graph. Thus, in the DD-ILP framework, we
only compute two features, the size nu and density pu of the subproblem (i.e., associated
vertex-induced subgraph) encoded by each selected DD node u. In addition, we define two
threshold values, the maximum size (nILP) and maximum density (pILP) to fully describe
the decision tree. To sum up, the evaluation, on-the-fly, of the decision tree presented in
Figure 5.6 determines whether the ILP solver is invoked to prune a particular DD node.

53

nu ≤ nILP ?

Relaxed DD

no

pu ≤ pILP ?

Relaxed DD

no

ILP call

yes

yes

Figure 5.6 Decision tree to be evaluated at each DD node within the DD-ILP framework

In case the decision tree evaluates node u as ILP call, we prune the node by finding the
optimal solution for such subproblem z∗u with an ILP call. Solving the ILP subproblem
associated with the DD node u provides v∗(Dut) which is used to compute z∗u as v∗(Dut) +
v∗(u). Note that z∗u is a lower bound on zopt and no more exploration from u is needed.
Otherwise, we create a relaxed DD Dut. If Dut is exact (i.e., the maximum width W is
never exceeded during compilation) there is no need of further branching from node u and
we update the lower bound if necessary. On the contrary, if Dut is not exact, we compute an
upper bound on the optimal solution for such subproblem u and identify an exact cutset C
of Dut to include the nodes in C to the list L. In addition, we obtain a lower bound on the
optimal solution of subproblem u by compiling a restricted DD D′ut.

5.4 Computational experiments with the DD-ILP approach

We perform experiments in order to compare the performance of the DD-ILP framework with
respect to both the stand-alone DD solver proposed in [17] and a commercial ILP solver. We
use IBM-CPLEX 12.8 as ILP solver in single-thread mode with default parameter settings. We
implement the DD-ILP approach in C++, solving the ILP subproblems also with IBM-CPLEX
12.8. All experiments are run on a Linux machine, Intel(R) Xeon(R) CPU E5-2637 v4 at
3.50GHz (16 threads) and 128 GB RAM.

Our purpose is to evaluate the DD-ILP approach performance against both the ILP solver and
DD-based branch and bound, in order to verify the effectiveness of our hybrid framework.
The only strategy used in the DD-ILP solver is the ILP-based pruning, i.e., we solve the
subproblems without any time limit when the ILP solver is called. We also consider the
lower cutoff procedure. The variable ordering and exact cut selection strategies used for all
the experiments, both for the DD-ILP and for the stand-alone DD solver, are the minimum
number of states (MIN) and the frontier cutset (FC), respectively. We refer the reader to

54

[6] where different variable ordering heuristics and exact cutset strategies are defined. The
maximum width W in both cases is 128.

From the experiments in Section 5.3.1, we determine that small-size (n ≤ 150) instances are
efficiently solved by either the DD solver (specially, dense cases) or the ILP solver (mainly
in sparse cases). Instances which are very sparse (p ≤ 10%) represent the hardest case to
be solved. On the other hand, really dense instances (where p > 40%) are efficiently solved
by both the ILP and, specially, the DD solver. For that reason, in this section, we focus on
intermediate-size instances.

We generate random instances with n = {250, 300} and p = [15, 30]% according to the
different 10 families defined in Section 5.3.1, namely, ER, WS, BA, HK, ERWS ERBA,
ERHK, WSBA, WSHK, and BAHK. We define a group as a tuple family-size-density and
consider 25 instances for each of the 28 groups considered in this test bed, for a total of 700
MISP instances2. For example, group ER-250-20 corresponds to Erdös-Rényi instances with
250 nodes and density 20%.

All the instances are processed three times by solving them with: the ILP solver, the stand-
alone DD solver, and our DD-ILP framework. Each solver run uses only one thread with
a time limit of 7, 200 seconds. For the DD-ILP solver, we exactly use the Algorithm 1
(presented in Section 5.3.2). Specifically, the SVM presented in Section 5.3.1 is used as the
trained ILP/NO-ILP classifier for the DD root node. Regarding the decision tree (Figure 5.6)
evaluated at each DD node explored in the DD-based branching tree, after experimentation
with the threshold values, we set nILP = 180 and pILP = 20 for all groups of instances.

Table 5.6 compares the performance of the three methods for the 25 instances of each group.
Column 1 presents the group label. Columns 2 and 3 are related to the ILP solver and show,
for each family, how many instances out of 25 were solved to optimality within time limit and
the average solving time of the 25 instances (in seconds). Columns 4, 5, and 6 are associated
with the stand-alone DD solver and present the number of instances solved to optimality, the
average number of DD nodes explored, and the average solving time, respectively. Finally,
columns 7, 8, 9, 10, and 11 are related to the hybrid DD-ILP solver performance for each
group of instances. Column 7 presents the number of instances solved to optimality within
time limit. Column 8 shows the number of instances (out of 25) where the root DD node
was predicted by the classifier as ILP. Columns 9, 10, and 11 present the average number of
DD nodes explored, the average number of ILP subproblems solved, and the average solving
time.

2This set of instances is available at https://github.com/jaimegonzalezj/
Instances-MISP-DDILP-paper.git

https://github.com/jaimegonzalezj/Instances-MISP-DDILP-paper.git
https://github.com/jaimegonzalezj/Instances-MISP-DDILP-paper.git

55

First we focus on analyzing the three solvers in terms of number of instances solved and
average solving time (columns 2, 3, 4, 6, 7, and 11). For example, group ER-250-20 (i.e.,
Erdös-Rényi (ER) instances with 250 nodes and density 20%), ER-300-20, and BA-300-20
are the hardest groups of instances to be solved no matter the method. For all methods, the
25 instances of each group hit the time limit before being solved to optimality.

In 10 out of 28 groups, ILP outperforms both DD and DD-ILP. However, in 4 out of those
10 groups, namely BA-250-30, BA-300-30, HK-250-30, and HK-300-30, all instances are
efficiently solved (on avg. in less than 8 seconds) by any of the three methods, solving to
optimality the 25 instances in each of these groups.

On the other hand, in 4 out of the 28 groups (ER-250-30, ER-300-30, WS-250-30, WS-300-
30), DD solver outperforms both ILP and DD-ILP solvers. Specifically, note that for group
WS-300-30, the DD-ILP and the DD solvers perform almost equally and the average solving
time is much better than the one obtained with the ILP solver.

Interestingly, the proposed DD-ILP approach outperforms both the ILP and the DD solvers
in 11 out of 28 groups. For example, for group ERBA-300-20, the DD-ILP approach solves
to optimality all 25 instances whereas the ILP solver and the DD solver solve, 18 and 19,
respectively. It is even more remarkable if we observe the overall performance (700 instances),
the proposed hybrid DD-ILP approach solves more instances to optimality than the other
two methods with the smallest average solving time.

It is worth mentioning that we also tested the hybrid DD-ILP without providing a lower
cutoff (i.e., constraint (5.1) in Section 5.3) each time the ILP solver is called. On average for
all the groups, the version presented in Table 5.6 (with respect to the hybrid version without
the lower cutoff) has an improvement of 11.8% on the solving time and for some groups this
improvement is up to 30%.

In conclusion, for groups of instances where ILP seems much better than DD, the hybrid DD-
ILP profits from the algorithm-portfolio feature incorporated through the ILP/NO-ILP trained
classifier at the root DD node. Furthermore, the most interesting fact is that for some family
of instances (e.g., ERWS, ERBA, ERHK), the algorithm-portfolio feature is not enough.
Then, the hybrid mechanisms (i.e., ILP-based pruning strategy) exploit the complementary
strengths when integrating two different representations to get the best performance.

56

Table 5.6 Comparison between ILP, DD, and Hybrid DD-ILP solvers for each group of instances

Family group
ILP solver DD solver Hybrid DD-ILP

instances Avg. CPU # instances Avg. DD Avg. CPU # instances # classified Avg. DD Avg. # Avg. CPU
solved time (s) solved nodes explored time (s) solved ILP at root nodes explored of subILPs time (s)

ER-250-20 0 7200.00 0 4759587 7200.00 0 0 277653 2100 7200.00
ER-250-30 22 4598.24 25 1283024 225.30 25 0 1283024 0 233.03
ER-300-20 0 7200.00 0 3535260 7200.00 0 0 3679 322 7200.00
ER-300-30 0 7200.00 25 5880746 1235.96 25 0 5880746 0 1278.64
WS-250-20 25 1040.45 25 641324 2279.15 25 0 641324 0 2371.83
WS-250-30 25 656.78 25 47732 60.87 25 0 47732 0 62.74
WS-300-20 6 6708.84 9 711026 6464.05 9 0 711026 0 6457.05
WS-300-30 25 3878.02 25 160139 205.64 25 0 160139 0 213.75
BA-250-20 5 6610.66 0 2591519 7200.00 25 0 18125 1769 2368.19
BA-250-30 25 6.42 25 5377 6.56 25 0 4741 7 7.89
BA-300-20 0 7200.00 0 2398494 7200.00 0 0 14886 3165 7200.00
BA-300-30 25 2.62 25 4353 7.20 25 12 1925 2 4.92
HK-250-20 25 288.13 0 2020336 7200.00 25 25 1 1 322.09
HK-250-30 25 2.80 25 5165 8.11 25 19 1223 1 4.20
HK-300-20 16 4593.45 0 1787542 7200.00 6 6 76140 8368 5908.74
HK-300-30 25 1.95 25 3687 8.58 25 24 105 1 2.47
ERWS-250-20 25 1125.28 25 1424150 3543.42 25 17 8213 118 824.15
ERWS-300-21 4 6996.75 0 2208236 7200.00 25 0 361452 1562 3631.58
ERBA-250-20 25 754.79 25 1402841 1199.26 25 0 30519 304 486.39
ERBA-300-20 18 5650.41 19 6132721 5761.62 25 0 358830 1617 2706.06
ERHK-250-20 25 657.10 25 1497968 1217.93 25 3 25978 284 441.55
ERHK-300-20 22 5175.26 21 5708902 5313.47 25 0 358705 1457 2437.91
WSBA-250-14 25 158.00 24 493894 2201.70 25 25 1 1 127.64
WSBA-300-15 25 1873.90 7 508490 6290.94 20 17 157450 17 2770.48
WSHK-250-14 25 153.28 24 316572 1499.97 25 21 1822 7 127.72
WSHK-300-15 25 1508.87 12 511939 5947.28 24 21 52217 5 1603.00
BAHK-250-14 25 327.51 0 1108809 7200.00 25 25 1 1 311.65
BAHK-300-15 3 6977.28 0 1055527 7200.00 0 0 116538 10601 7200.00
Total 496 88546.79 416 48205360 108277.01 559 215 10594195 31710 63503.67
Average 3162.39 3867.04 2267.99

57

5.4.1 Comparison versus a traditional portfolio-based algorithm selection ap-
proach

In this experiment, we compare the hybrid DD-ILP with a classic portfolio-based algorithm
approach. For this purpose, we deploy into production the ILP/DD trained classifier (described
in Section 5.3.1) to define the portfolio algorithm as follows.

At the root node, we classify the problem either as ILP or DD. Then, we simply solve the
problem using the corresponding solver according to the prediction. The comparison of the
portfolio version with the hybrid approach allows us to assess the impact of the ILP-based
pruning strategy within the hybrid DD-ILP algorithm.

Table 5.7 presents the performance metrics for the hybrid DD-ILP and the portfolio approach.
The instances are aggregated by family instead of group as in Table 5.6. Column 1 presents
the family label and column 2, the number of instances per family. Columns 3, 4, and 5 are
related to the hybrid DD-ILP algorithm whereas columns 6, 7, and 8 are associated with
the portfolio approach. Column 3 shows, for each family, how many instances were solved
to optimality within time limit. Column 4 presents the number of instances where the root
DD node was predicted as ILP by the ILP/NO-ILP classifier. Column 5 shows the average
solving time for each family. Column 6 presents the number of instances solved to optimality
by the portfolio approach. Column 7 shows the number of instances predicted as ILP by the
ILP/DD classifier. Finally, column 8 presents the average solving time.

Table 5.7 Comparison between DD-ILP and Portfolio approach on number of solved instances
and average solving time for each family

Instances Hybrid DD-ILP Portfolio Approach
Family # of instances # solved instances ILP/NO-ILP Avg. CPU time (s) # solved instances ILP/DD Avg. CPU time (s)

ER 100 50 0 3977.92 50 50 3975.31
WS 100 84 0 2276.34 84 2 2216.68
BA 100 75 12 2395.25 56 97 3456.25
HK 100 81 74 1559.38 93 100 1088.19
ERWS 50 50 17 2227.87 32 50 3875.8
ERBA 50 50 0 1596.23 44 48 3040.47
ERHK 50 50 3 1439.73 46 49 2914.96
WSBA 50 45 42 1449.06 50 50 734.46
WSHK 50 49 42 865.36 50 50 610.45
BAHK 50 25 25 3755.83 31 50 3532.66

Total 700 559 536

We observe the benefits of the hybrid DD-ILP, through its ILP-based pruning strategy,
mainly for families BA, ERWS, ERBA, and ERHK. The performance on these families shows

58

that there is a significant difference between applying a classic algorithm portfolio and the
proposed hybrid approach.

5.4.2 Sensitivity analysis on the ILP-based pruning strategy

We also want to observe the effect of varying the threshold values of the decision tree
(nILP , pILP) on the overall hybrid DD-ILP performance. To illustrate the algorithm per-
formance on a per-instance basis, we take the 25 instances of group ERHK-300-20 and solve
them with the DD-ILP framework by using 5 different (nILP , pILP) combinations. Note that
for all these instances the ILP/NO-ILP classifier never leads us to prune the DD root node
with ILP (column 7 in Table 5.6). Thus, we can analyze a similar behavior of the hybrid
DD-ILP only considering the effect of the ILP-based pruning strategy in this group.

We consider the combination (nILP = 180, pILP = 20) as the base case since those were the
threshold values set in the previous experiments. Then, we evaluate four additional threshold
combinations: (nILP = 180, pILP = 17), (nILP = 180, pILP = 15), (nILP = 150, pILP = 20),
and (nILP = 210, pILP = 20). We choose such values to aim at evaluating the effect of small
variations of nILP and pILP with respect to the base case combination. Note that the nILP

threshold must be between 0 and n. On the other hand, the density of induced subgraphs
does not generally differ much from the density of the original instance graph so, pILP should
be close to p.

Figure 5.7 compares the solution time of the ILP solver versus the DD-ILP approach for
the 25 instances of group ERHK-300-20. We only compare the running time with the ILP
solver’s time because, on average for this group, the ILP solver dominates the DD solver
(Table 5.6). Each marker corresponds to a MISP instance where the color and shape indicates
the (nILP , pILP) combination used in the DD-ILP algorithm. The marker location above the
diagonal means that DD-ILP approach outperforms the ILP solver in such instance for the
corresponding (nILP , pILP) combination.

In general, we can observe that the parameters (nILP , pILP) used in the decision tree do
affect the DD-ILP framework due to the significant differences in performances between
the five combinations. We remark that several points are located far and above from the
diagonal implying that DD-ILP approach is much better in those instances in comparison
with the ILP solver. We also notice that the DD-ILP approach with (nILP , pILP) = (180, 20)
(represented by blue rhombus) achieves the best performance. None of those 25 instances
are located below the diagonal. Conversely, if we observe the DD-ILP performance with
either (nILP , pILP) = (180, 15) (green triangles) or (nILP , pILP) = (150, 20) (yellow circles),
we can observe more markers below the diagonal, i.e., for the related instances, ILP solver

59

outperforms DD-ILP framework for such threshold combination.

1,500

2,500

3,500

4,500

5,500

6,500

7,500

1,500 2,500 3,500 4,500 5,500 6,500 7,500

IP
 so

lv
er

 -
So

lv
in

g
tim

e
(s

ec
.)

DD-ILP | (nILP,pILP) - Solving time (sec.)

DD-ILP | (180,20)
DD-ILP | (180,17)
DD-ILP | (180,15)
DD-ILP | (150,20)
DD-ILP | (210,20)

Figure 5.7 DD-ILP solver (using 5 different thresholds) versus the ILP solver in terms of
solution time per instance of group ERHK-300-20

The solving time reduction obtained by the DD-ILP approach is explained by a smaller
number of DD nodes explored in the DD-based branch and bound. Evidently, by the way
in which the ILP-based pruning strategy is defined, there exists a trade-off between the
number of ILP subproblems solved and the number of DD-nodes explored. The latter, in
comparison with a pure DD solver. It is then worth mentioning the computation time
spent solving the ILP subproblems within the hybrid DD-ILP. For the base case combination
(nILP , pILP) = (180, 20) in this group of instances, the average total solution time is 2, 437.91
seconds while the average total time solving the ILP subproblems is 1, 555.29. That is, the
64% of the algorithm time is consumed solving the ILP subproblems that are on average
1, 457 ILPs for this group.

The box plot presented in Figure 5.8 compares the stand-alone DD solver (red box) against
the DD-ILP framework with the five different combinations varying the (nILP , pILP) thresh-
olds. The plot shows, in log scale, the five-number summary (minimum, first quartile, median,
third quartile, and maximum) of the number of DD nodes explored for the 25 instances of
group ERHK-300-20. On the other hand, Figure 5.9 presents a box plot for the number of
ILP subproblems solved for the same group (ERHK-300-20) using the different (nILP , pILP)
combinations in the DD-ILP solver. To ease the analysis, note that we use the same color
for each combination (nILP , pILP) in Figures 5.7, 5.8, and 5.9.

60

1.00E+04

1.00E+05

1.00E+06

1.00E+07

DD solver DD-ILP | (180,20) DD-ILP | (180,17) DD-ILP | (180,15) DD-ILP | (150,20) DD-ILP | (210,20)

Nu
m

be
r o

f D
D

no
de

s e
xp

lo
re

d
(lo

g
sc

al
e)

Figure 5.8 DD-ILP solver (using 5 different thresholds) versus the DD solver, in terms of the
number of DD nodes explored for instances of group ERHK-300-20

From Figure 5.8, we observe that the number of DD-nodes explored with the pure DD solver
is greater than such number for any combination of the DD-ILP approach. For example,
on average, we can reduce 98.7% of the DD-nodes explored with the stand-alone DD solver
(red box) by using the proposed DD-ILP approach with (nILP , pILP) = (210, 20) (black
box). If we compare the DD-ILP solver with (nILP , pILP) = (180, 20) (blue box) and the
DD-ILP solver (nILP , pILP) = (210, 20) (black box), we note that the latter remarkably ex-
plores less DD-nodes. When we notice the number of ILP subproblems solved per instance
by each configuration (Figure 5.9), DD-ILP (nILP , pILP) = (210, 20) (black box) is close
to the number reported by DD-ILP (nILP , pILP) = (180, 20) (blue box). However, for the
(nILP , pILP) = (210, 20) combination, the ILP calls occur in DD nodes associated at sub-
problems with a larger number of vertices which are likely located in higher layers in the
relaxed DD representations.

61

100

600

1,100

1,600

2,100

2,600

3,100

DD-ILP | (180,20) DD-ILP | (180,17) DD-ILP | (180,15) DD-ILP | (150,20) DD-ILP | (210,20)

Nu
m

be
r o

f (
su

b)
IL

Ps
 so

lv
ed

Figure 5.9 Number of subILPs solved in the DD-ILP solver (using 5 different thresholds) for
instances of group ERHK-300-20

For this particular case, such earlier ILP calls (i.e., with the ((nILP , pILP) = (210, 20)) com-
bination) lead to prune more DD-nodes which is consistent with the behavior observed in
Figure 5.8. However, by observing Figure 5.7, we note that this strategy does not pay off
because DD-ILP with (nILP , pILP) = (180, 20) outperfoms (nILP , pILP) = (210, 20). In par-
ticular, on average for these instances, DD-ILP with (nILP , pILP) = (180, 20) is faster than
the DD-ILP with (nILP , pILP) = (210, 20). We can observe such a superior performance in
Figure 5.7 because in general the blue markers are located to the left of the black markers.
This analysis indicates that a good approach is not just to prune as much as we can with the
ILP calls but to use the ILP-based pruning in a more strategical way where it really exploits
complementary strengths.

As we anticipated, the mechanism to classify the DD nodes in which the ILP-based pruning
is performed is a critical component for the hybrid DD-ILP performance. In particular with
this experiment, we can observe the significant impact when varying the threshold values
in the classification. Moreover, the most remarkable fact is that the hybrid DD-ILP works
effectively when using this simple decision tree.

5.5 Conclusion

In this paper, we propose a generic hybrid DD-ILP approach that is in principle suitable to
any discrete optimization problem for which both a (mixed) integer programming formulation

62

and a decision diagram representation are available. Our methodology consists of identifying
DD nodes as subproblems through their associated states. We then introduce an original
way to profit from an ILP representation when solving such subproblems. In addition, we
use a supervised learning approach to derive a trained classifier and a decision-making tool
which guide the exploration by verifying whether an ILP would efficiently prune a DD node.

The supervised learning experiments (Section 5.3.1) are essential for designing the proposed
hybrid approach. From the trained classifiers and their feature importance scores, we incor-
porate mechanisms for node selection into the DD-ILP algorithm. The ILP/NO-ILP trained
classifier is used at the DD root node, as a ML-driven black-box predictor to incorporate an
algorithm-portfolio like feature that proves to be effective. Moreover, we profit from the fea-
ture importance scores (obtained when training the ILP/DD and E/H classifiers) to get insights
and derive a decision tree that effectively proxies the classification needed for applying the
ILP-based pruning strategy. Finally, the ILP/DD trained classifier is deployed in a traditional
portfolio-based algorithm selection to benchmark the hybrid DD-ILP.

Computational results on the maximum independent set problem show that the DD-ILP
approach can be effective if the DD representation reveals a problem structure that the ILP
exploits well. In addition, we show that the framework works effectively even when using a
simple decision tree to classify DD nodes. For the group of instances where the hybrid DD-ILP
is shown to be superior, we observe that the problem structure is exploited by complementary
strengths that are only leveraged through the proposed methodology. Then, it could be worth
to include families of instances proposed in this paper, in other combinatorial optimization
problems over graphs to compare the algorithms’ performance.

We highlight that there is still room for research to define a unique and efficient trained
classifier to identify DD nodes that can be pruned by ILP technology. In any case, the
classification mechanism to be included within the hybrid algorithm is problem-specific and
a feature where another machine learning approach (e.g., reinforcement learning) can be
adopted. In addition, another research direction from the proposed hybrid DD-ILP is related
to the search strategy. We experiment with a best-first search algorithm but novel search
strategies could exploit the complementarity offered by the hybrid approach.

This work suggests a research avenue where decision diagrams are used to explore and enumer-
ate subproblems which can be tackled by other technologies, such as mixed-integer program-
ming or constraint programming. In future research, we plan to extend the hybrid algorithm
to other cases where a DD representation could be advantageous, such as in sequencing and
scheduling problems.

63

CHAPTER 6 ARTICLE 2: BDD-BASED OPTIMIZATION FOR THE
QUADRATIC STABLE SET PROBLEM

Authors: Jaime E. González, Andre A. Cire, Andrea Lodi, Louis-Martin Rousseau
Published: Discrete Optimization, 2020.1

Abstract: The quadratic stable set problem (QSSP) is a natural extension of the well-
known maximum stable set problem. The QSSP is NP-hard and can be formulated as a binary
quadratic program, which makes it an interesting case study to be tackled from different
optimization paradigms. In this paper, we propose a novel representation for the QSSP
through binary decision diagrams (BDDs) and adapt a hybrid optimization approach which
integrates BDDs and mixed-integer programming (MIP) for solving the QSSP. The exact
framework highlights the modeling flexibility offered through decision diagrams to handle
nonlinear problems. In addition, the hybrid approach leverages two different representations
by exploring, in a complementary way, the solution space with BDD and MIP technologies.
Machine learning then becomes a valuable component within the method to guide the search
mechanisms. In the numerical experiments, the hybrid approach shows to be superior, by
at least one order of magnitude, than two leading commercial MIP solvers with quadratic
programming capabilities and a semidefinite-based branch-and-bound solver.

Keywords: Decision Diagrams, Hybrid Optimization, Quadratic Stable Set Problem, Binary
Quadratic Programs, Dynamic Programming.

6.1 Introduction

A stable set is a pairwise non-adjacent subset of vertices in a graph and defines a fundamen-
tal structure in discrete optimization. Classical problems associated with stable sets, such
as the maximum stable (or independent) set problem, have been extensively studied in the
optimization literature and arise in applications such as social networks [83], data mining [65]
and computational biology [84], to name a few. We refer to Wu and Hao [85] for a survey of
existing methodologies and other applications.

Of growing interest in the optimization community is the quadratic stable set problem (QSSP),
a difficult variant of the maximum stable set problem where additional profits are associated

1Available at [82]

64

with pairs of vertices. The QSSP is a key component of modern applications (e.g., protein
structure prediction [66] and marketing [67]), but its related computational methodologies
are still limited in comparison to classical stable set problems. Moreover, given the natural
relationship between stable sets and cliques (i.e., induced complete subgraphs) in a graph,
the study of the QSSP can contribute to approaches for solving clique related problems. To
the best of our knowledge, the QSSP first appeared as a subproblem when estimating the
quality of cellular networks [86], later addressed through mixed-integer programming (MIP)
reformulations [63]. Karimi and Ronagh [87] also investigate Lagrangian methods and report
experiments for instances of up to 30 vertices.

The QSSP can also be formulated as a binary quadratic problem (BQP) and addressed via
non-linear solvers. In this context, Furini and Traversi [88] develop a semidefinite program-
ming (SDP) relaxation that is used as a bounding mechanism in a branch-and-bound search,
solving instances with up to 100 vertices. In a related approach, another generic methodol-
ogy for solving the QSSP is BiqCrunch [89], a state-of-the-art semidefinite-based solver which
has solved instances having up to 150 vertices. The QSSP was also used as a benchmark
in a computational study of different linearization techniques for BQPs [79] using a MIP
solver, demonstrating that current generic methodologies are still limited to graphs with 150
vertices. Nevertheless, leading commercial MIP solvers incorporate flexible quadratic pro-
gramming (QP) capabilities that allow to directly tackle the BQP formulation of the QSSP
through nonlinear programming (NLP) based branch and bound. Such an alternative is
worth being considered as another benchmark for this problem.

In this paper, we propose a novel QSSP solution approach based on decision diagrams (DDs).
The theory and practice of DDs for optimization has been gradually established as a fruitful
research area in operations research [6]. A variety of stand-alone methodologies, decomposi-
tion approaches, and integrated techniques based on decision diagrams contributed to novel
state-of-the-art methods in a large array of applications [17, 80, 39, 42, 49, 40]. In particular,
decision diagrams have been effective for non-linear integer optimization problems [46, 47] as
they provide a discrete type of relaxation which can be leveraged as an alternative bounding
mechanism.

Our exact methodology exploits the strength of both DD-based relaxations and QP capabil-
ities in MIP technology to solve the QSSP more efficiently. Specifically, we model and solve
the QSSP via a hybrid approach which integrates binary decision diagrams (BDDs), MIP, and
machine learning, following the generic framework proposed in [80]. The hybrid BDD-MIP
algorithm is based on a BDD-based search mechanism that branches on underlying equiv-
alent classes of variable assignments, here represented as states in a dynamic programming

65

reformulation of the problem. We describe a novel BDD representation for the QSSP and
highlight the flexibility of the decision diagram modeling framework to deal with quadratic
problems. We also remark how the hybrid approach leverages two different representations
of a problem in a collaborative framework.

Moreover, supervised learning plays an important role within the hybrid approach to guide
the exploration of the solution space. In our algorithm, we use traditional machine learning
to train a classifier which dynamically selects whether a branch should be explored either by
MIP or BDD technology. We present computational experiments using the proposed BDD-
MIP algorithm and compare its performance against general-purpose approaches; namely,
two leading commercial MIP solvers with QP capabilities and, a competitive semidefinite-
based solver. Numerical results show that the BDD-MIP can significantly outperform such
solvers in existing benchmarks.

The remainder of the paper is organized as follows. Section 6.2 defines the quadratic stable
set problem and introduces relevant notation. Section 6.3 presents the decision diagram
representation for the problem, which relies on a novel dynamic programming reformulation
of the problem. Section 6.4 describes the hybrid BDD-MIP optimization approach adapted
for the QSSP. Finally, the experimental evaluation is presented in Section 6.5, while Section
6.6 contains concluding remarks.

6.2 The quadratic stable set problem

Let G := (V , E) be an undirected graph where V := {1, . . . , n} is a set of n vertices and
E ⊆ V × V is a set of edges. A stable set of G is a subset of vertices S ⊆ V where no
two vertices are connected by an edge in E . With each vertex i ∈ V we associate a profit
wi that is collected if vertex i is included in S. Moreover, we consider a profit qij for each
pair of vertices i, j ∈ V that is collected if both vertices are included in S. We denote by
Q = {qij}i,j=1,...,n ∈ Rn×n the profit matrix, here not restricted to be positive semidefinite.

The quadratic stable set problem (QSSP) asks for the stable set in G with maximum total
profit. For a mathematical formulation, let us define xi as a binary variable that takes value
of 1 if vertex i ∈ V belongs to the stable set S and 0 otherwise. The QSSP can be formulated

66

as the following binary quadratic program (BQP):

max
x

n∑
i=1

wixi +
n−1∑
i=1

n∑
j=i+1

2qijxixj (6.1)

subject to xi + xj ≤ 1, ∀{i, j} ∈ E , (6.2)

xi ∈ {0, 1}, ∀i ∈ V . (6.3)

Note that x2
i = xi for all i ∈ V then the linear profits wi can be easily adjusted and consider

the terms qii in Q, i.e., its main diagonal. An alternative formulation for the QSSP is obtained
by leveraging the concept of a clique cover, i.e., a partition of the vertices of G into cliques.
Namely, let K be any collection of cliques that covers G. Since each stable set can contain
at most one vertex in a clique K ∈ K, the clique formulation for the QSSP is obtained by
replacing inequalities (6.2) with:

∑
i∈K

xi ≤ 1, ∀K ∈ K, (6.4)

which is well-known to provide stronger relaxations when only linear costs are considered [64].
The set K is typically constructed using maximal cliques that can be computed efficiently,
e.g., by a greedy procedure [6]. In particular, a maximal clique K is obtained by initially
selecting the vertex with highest degree. Next, we iteratively include adjacent vertices (sorted
by highest degree) to each vertex in K until no more inclusions are possible. We then add
clique K to set K and remove from G all the edges belonging to the included clique. We
update the vertices degrees, and repeat the procedure.

As an illustrative example, consider the QSSP instance defined by an undirected graph
with 5 vertices and 5 edges presented in Figure 6.1. Red numbers next to each vertex
i ∈ V correspond to the vertex profit wi. We also provide the matrix of quadratic profits
Q. In the figure, vertices 1, 2 and 5 form a stable set whose total profit is -3 yielded by
w1 + w2 + w5 + 2 · q12 + 2 · q15 + 2 · q25. The optimal stable set for the illustrative example
consists of vertices 1 and 2 with optimal objective value of 9.

67

Q =

0 3 2 0 -4
3 0 -2 -5 -3
2 -2 0 0 1
0 -5 0 0 2
-4 -3 1 2 0

1

2 3

4

5

1

2 3

2

2

Figure 6.1 Undirected graph and matrix Q for an illustrative QSSP example

For notation purposes, we denote by z∗ the optimal objective value of the QSSP. We also note
in passing that the problem reduces to the classical maximum weighted stable set problem
either when Q = 0, or when the quadratic profits are non-positive, i.e., Q ≤ 0, the latter
case requiring a non-trivial transformation of the original graph [86]. In addition, we observe
that when only quadratic profits are considered (i.e., wi = 0, i ∈ V), the resulting particular
QSSP could be reformulated as amaximum edge-weighted clique problem [90, 91, 92, 93] in the
complement graph Ḡ where profits qij become the weights on edges (i, j) ∈ Ē . Nevertheless,
since the maximum stable set problem is NP-hard in the strong sense [94], the same is true
for the QSSP, which in turn is generally more computationally challenging than the classical
linear version.

6.3 A decision diagram representation for the QSSP

Conceptually, a decision diagram is a compressed representation of the state-transition graph
of a dynamic programming (DP) model [6]. In this section, we begin by deriving a novel
problem representation for the QSSP through a DP formulation (Section 6.3.1). Next, we
describe how to extract the resulting decision diagram representation from such formulation
(Section 6.3.2), which will be central to our exact methodology.

68

6.3.1 A dynamic programming model for the QSSP

Before introducing our DP formulation to QSSP, we first reformulate (6.1)-(6.3) in order to
reveal recursive structure. Namely, note that the quadratic model

max
x,s

n∑
i=1

wixi +
n−1∑
i=1

xisi (6.5)

subject to xi + xj ≤ 1, ∀{i, j} ∈ E , (6.6)

si =
n∑

j=i+1
2qijxj, ∀i ∈ V , (6.7)

xi ∈ {0, 1}, ∀i ∈ V . (6.8)

is also valid to QSSP, where the difference with respect to the original model is the introduc-
tion of variables si representing the inner sum within each quadratic term i of the objective
function (6.1).

Using model (6.5)-(6.8), we can now evaluate the marginal impact of adding a vertex i ∈ V
to a given stable set as follows. Suppose that variables x1, . . . , xi−1 are fixed to values that
can be extended to a feasible solution (e.g., by appending variables xi, . . . , xn and setting
them to zero), thereby defining a stable set S := {k ∈ {1, . . . , i− 1} : xk = 1}. This, in turn,
leads to the eligible set

I := {j ∈ V : {j, k} 6∈ E for all k ∈ S}

of all vertices that can still be added to the stable set S; i.e., vertex i can be added to S (i.e.,
xi set to one) only if i ∈ I. Furthermore, if i ≥ 2 is added to S, we collect a profit wi + si

(and only a profit of wi if i = 1). Thus, to evaluate whether i can be added to a (partial)
stable set and the resulting profit, it suffices to have the set I of eligible vertices and the
partial sum si as defined in (6.7).

This leads to the following DP reformulation of QSSP. Given a fixed vertex ordering 1, . . . , n,
we consider a system of n+ 1 stages where, at each stage i, we decide whether to add or not
a vertex i ∈ V , as represented by the value of variable xi ∈ {0, 1}. The state of the system
at each stage i is a pair (I, s), where I ⊆ V is the set of eligible vertices according to the
assignment in stages 1, . . . , i − 1 and s = (si, si+1, . . . , sn) is a vector of n − i + 1 elements
with the sums (6.7) indexed from i to n. We remark that the definition of state s is related
to the state information defined for unconstrained binary quadratic programming in [45].
When assigning xi (i.e., deciding whether to include i or not), we transition to a new state

69

defined by the function

gi(I, s, xi) :=

 (I \Ni, (si+1 + 2qi+1 i, . . . , sn + 2qni)), if xi = 1,
(I, (si+1, . . . , sn)), otherwise.

where Ni = {i} ∪ {j ∈ V : {i, j} ∈ E} is the neighborhood of i including the vertex itself.
That is, we update the eligible set I according to xi and the sum state s according to (6.7).
The total profit in terms of xi is

hi(I, s, xi) := wixi + I(i ≥ 2)sixi,

where I(C) is an indicator function that evaluates to 1 if condition C is true and 0 otherwise.
Finally, a vertex i can only be added if it belongs to the eligibility set I, i.e., the set of
feasible assignments at a stage i is

Fi(I) := {0} ∪ { I(i ∈ I) }.

Equipped with Fi(·), the transition function gi(·), and the profit function hi(·), an optimal
solution x∗ to QSSP solves the Bellman equations

Vi((I, s)) = max
xi∈Fi(I)

{hi(I, s, xi) + Vi+1(gi(I, s, xi))} , i = 1, . . . , n, (6.9)

Vn+1((I, s)) = 0, (6.10)

where V1((V ,0)) yields the optimal solution value of the QSSP. In particular, we denote
(V ,0) by root state of the system.

6.3.2 Constructing the BDD representation for the QSSP

We now describe how to generate the decision diagram representation based on the dynamic
program presented above. For notation purposes, let S(G) be the family of stable sets of G.

A binary decision diagram for a QSSP instance is a layered directed acyclic graph B = (N ,A)
where N is the node set and A is the arc set. The node set N is partitioned into n+ 1 layers
L1, . . . , Ln+1, where the first and last layers L1 and Ln+1 are singletons containing a root
node r and a terminal node t, respectively. We denote by l(u) the index of the layer of a
node u ∈ N , i.e., u ∈ Ll(u). A BDD arc a ∈ A only connects nodes in adjacent layers and
is equipped with a binary label da ∈ {0, 1} and a profit ha. We refer to arc a by 1-arc if
d(a) = 1 and by 0-arc otherwise.

70

A BDD is a compact graphical representation of the state transition graph of the DP (6.9)-
(6.10). Specifically, each node in N represents a state (I, s) and the layer Li contains the
nodes associated with the states that are reachable at stage i, i = 1, . . . , n. In particular,
the root node r is associated with the root state (V ,0). Arcs encode the transition gi(·), i.e.,
there exists an arc a = (u, u′) ∈ A with label da iff, given the state (I, s) associated with
u, we have da ∈ F(I) and the state associated with u′ is gl(u)(I, s, da). The profit of such
arc is ha := hl(u)(I, s, da). The terminal node t, in turn, represents all terminal states of
(6.9)-(6.10), i.e., they are perceived as merged into a single node.

In such a representation, we have a one-to-one mapping between stable sets in G and paths
of the BDD. Namely, for every arc-specified path (a1, a2, . . . , an) starting from the root r
and ending at the terminal t, the arc labels yield a feasible assignment x := (da1 , . . . , dan) by
validity of the DP. Conversely, every such feasible assignment must be encoded in some path
of the BDD. This implies that the QSSP now reduces to finding a longest-path problem over
the BDD, where arc lengths are the arc profits ha.

Figure 6.2 illustrates the exact BDD for the instance in Figure 6.1. States are included on
top of each of their corresponding nodes in each layer. Solid and dash arcs represent d(a) = 1
and d(a) = 0, respectively, and arc profits ha are included (in blue) on top of each arc.

r

u1 u2

u3 u4 u5 u6

u7 u8 u9 u10

u11 u12 u13

t

x1

x5

x2

x3

x4

1+0

2+0 2-8

2+0 2-6 2+6 2+0

3+0 3+4

2+0
2+4

{1, 2, 3, 4, 5},(0, 0, 0, 0, 0)

{2, 3, 4, 5},(0, 0, 0, 0) {2, 3, 5},(6, 4, -8)

{2},(0){2, 3, 4},(0, 0, 0) {2, 4},
(-6, 4)

{2, 3},
(6, 4)

{3, 4},(0, 0) ∅,∅{4},
(4)

{3},
(4)

{4},(0) ∅,∅{4},
(4)

∅,∅

Figure 6.2 Exact BDD for the QSSP instance of Figure 6.1

The variable ordering in the decision diagram of Figure 6.2 is established by x1, x5, x2, x3, x4,

71

i.e., these are the variables associated with outgoing arcs from layers L1,L2, L3,L4,L5, re-
spectively. To illustrate the BDD compilation, we observe that the root node r has state
information ({1, 2, 3, 4, 5}, (0, 0, 0, 0, 0)). Note that, at the beginning, all vertices are candi-
date to be added to the stable set and, no matter the vertex associated with outgoing arcs
of layer L1 only the vertex weight wi is collected. Next, for instance, there is an outgoing
1-arc which represents x1 = 1 and leads to node u2 with state information (I(u2), s(u2)) =
({2, 3, 5}, (6, 4, -8)). The latter indicates that by including vertex 1 in the partial stable set,
we get to a state where we remove vertex 1 and 4 from the possible vertices, updating states
accordingly.

In addition, note that variable x5 is associated with L2. Consequently, the weight of the
outgoing 1-arc (u2, u6) is 2− 8, this is, the profit of vertex 5 (i.e., w5 = 2) plus “-8” which is
associated with the sum of quadratic contributions for vertex 5 in the state component s(u2).

In the BDD in Figure 6.2, the longest path is given by the arc-specified path ((r, u2), (u2, u5),
(u5, u10), (u10, u13), (u13, t)) indicating that the optimal stable set for the problem is {1, 2}
with optimal objective value z∗ = 9.

Compiling BDDs We follow a typical top-down procedure for constructing an exact BDD,
which is equivalent to a forward recursion over the DP. The procedure is defined as follows.

Let us denote by (I(u), s(u)) the state associated with the BDD node u ∈ N . Layers are
compiled one at a time in the order L1, . . . , Ln+1. At each iteration i = 1, . . . , n, we calculate
all state transitions from the states associated with nodes in Li to generate nodes in Li+1,
adding arcs as necessary. We also ensure that no two nodes have the same state, i.e., either
I(u) 6= I(u′) or s(u) 6= s(u′) for any two nodes u, u′ at the same layer. Finally, all nodes in
the last layer Ln+1 are merged into a single terminal node t.

6.3.3 Approximate decision diagrams for the QSSP

In general, exact BDDs grow exponentially large on the problem input and are not com-
putationally tractable. Because of this, we instead manipulate the so-called approximate
versions, i.e., relaxed and restricted decision diagrams. Such diagrams are key as a bounding
mechanism since they exploit discrete structure to relax the state space.

A DD is relaxed if it over-approximates the solution set of a problem, encoding all feasible
solutions but also allowing infeasible ones. Relaxed BDDs are obtained similarly as exact
BDDs when using a top-down approach. In particular, if the number of nodes in a layer
(i.e., the layer width) exceeds a given pre-specified limit W during its construction, two non-

72

identical nodes u and u′ are heuristically selected and merged into a new node u′′. Next, the
longest (resp., shortest) path value in a relaxed BDD yields a dual bound for a maximization
(resp., minimization) optimization problem. Note that the maximum width W is then a
relevant parameter because it allows to trade-off computational effort and bound quality,
i.e., the larger the W value, the better the bound that is obtained. More details on the
experiments leading to a suitable value of W are reported in Section 6.5.

For the QSSP, we propose a valid merging operator which guarantees that no feasible
solution is lost meanwhile keeping the relaxed BDD size under control. The state of
the merged node u′′ is set as the pair (I(u′′), s(u′′)) where I(u′′) := I(u) ∪ I(u′) and
s(u′′) := max{{s(u)}j, {s(u′)}j}j∈I(u)∪I(u′). The strategy used to define which nodes are
merged consists of selecting BDD nodes u and u′ with the partial longest path from the root
node. Once nodes are merged, all previous incoming arcs to u and u′ are directed to the
new merged node u′′. The proposed merging operator assures that all valid stable sets are
preserved and that a longest path computation in the resulting relaxed BDD provides an
upper bound on the optimal objective value z∗.

Furthermore, we also manipulate restricted decision diagrams to obtain feasible solutions. A
restricted BDD under-approximates the solution set of a problem i.e., it only allows feasible
solutions but could miss the optimal one. They can be also compiled through a top-down
construction. In the restricted-version case, when reaching the maximum widthW in a layer,
instead of merging nodes, we heuristically select nodes to be removed from such a layer. A
longest path computation in this case provides a lower bound on z∗.

6.4 A BDD-based hybrid optimization approach for the QSSP

Given relaxed and restricted BDD representations as well as a BQP formulation of the QSSP
(presented in Sections 6.2 and 6.3), we propose to deploy a hybrid BDD-MIP ([80]) algorithm
as a solution methodology. The integrated BDD-MIP method leverages two problem repre-
sentations and BDD-based search mechanisms to exploit complementary strengths coming
from the different optimization paradigms. In Section 6.4.1, we initially describe a typi-
cal BDD-based exploration of the solution space. Next, we focus on the hybrid algorithm
mechanisms considered for the QSSP (Section 6.4.2).

6.4.1 BDD-based search scheme

A key component of the combined framework is the BDD-based exploration in which a relaxed
binary decision diagram plays the role of a search tree in a branch-and-bound scheme. In

73

such a search mechanism, the solution space is divided and explored by recursively branching
on suitable BDD nodes (i.e., set of partial solutions) instead of branching on variable-value
pairs as in traditional linear programming-based branch and bound.

We now describe the general idea of a BDD-based search mechanism in the context of a
stand-alone decision diagram approach [17]. Consider a relaxed binary decision diagram B̄ of
the QSSP as the example provided in Figure 6.3, for the illustrative instance in Figure 6.1,
where the maximum width is set as W = 2. For every pair of nodes u, u′ ∈ B̄ such that
l(u) < l(u′), let B̄uu′ be the binary decision diagram induced by all the nodes and arcs that
lie on directed paths from u to u′, e.g., B̄rt = B̄. We say that a node u in B̄ is exact if all
r − u paths lead to the same state s(u), and is relaxed otherwise. In addition, a cutset of
B̄ is a subset of nodes C such that any r − t path in B̄ contains at least one node in C. In
specific, C defines an exact cutset if all nodes in C are exact. Several strategies have been
proposed for obtaining exact cutsets, such as the frontier cutset (FC) and the last exact layer
(LEL) (we refer the reader to [6]).

Figure 6.3 illustrates an exact cutset C defined by the LEL and formed, in this case, by BDD
nodes ū1 and ū2 (in orange). Note that nodes in blue, ū3 and ū4, were forcefully merged to
meet W using the merging operator proposed in Section 6.3.3.

r

ū1 ū2

ū3 ū4

ū5 ū6

ū7 ū8

t

x1

x5

x2

x3

x4

1+0

2+0 2-8

2+0

2+6

3+0 3+4

2+4

{1, 2, 3, 4, 5},(0, 0, 0, 0, 0)

{2, 3, 4, 5},(0, 0, 0, 0) {2, 3, 5},(6, 4, -8)

{2, 3, 4},(0, 0, 4) {2, 3},(6, 4)

{3, 4},(0, 4) {3},(4)

{4},(4) ∅,∅

∅,∅

Figure 6.3 Relaxed BDD for the QSSP instance of Figure 6.1

Given an exact cutset C, a BDD-based branch and bound explores each BDD node in C to

74

find and prove the optimal solution. Let v∗(u) be the longest-path value from r to u for each
u ∈ C. Let z∗u be the optimal value of the subproblem for which its solutions are exactly
encoded in But, therefore v∗(u)+z∗u is the value of the best solution across all r− t paths that
contain BDD node u. Since all r − t paths of a decision diagram must contain some node
in C, we search the optimal value z∗ of the problem by solving the subproblems associated
with But. Such subproblems (every u ∈ C) are solved separately and each subproblem then
leads to a smaller and hence more tractable binary decision diagram. This procedure can be
applied recursively for each u if the relaxed BDD rooted in u is either not exact (i.e., if the
maximum width is reached while its construction) or cannot be implicitly pruned.

As an illustration of the BDD-based exploration scheme in Figure 6.3, we have to explore
BDD nodes ū1 and ū2 further to continue searching for the optimal solution. In a stand-
alone BDD-based search, such an exploration implies the compilation of two different relaxed
decision diagrams, each rooted in ū1 and ū2, respectively.

6.4.2 Hybrid BDD-MIP mechanisms

In the integrated approach, MIP technology is incorporated into the BDD-based exploration
scheme. Namely, a MIP solver can directly prune BDD nodes by solving them up to opti-
mality while also providing lower bounds. Meanwhile, the incumbent solution found so far
in the BDD-based branch and bound can be used to define a lower cutoff in the objective
function of the subproblems explored by the MIP solver.

MIP-based pruning strategy

We specifically propose to adapt the IP-based pruning strategy in [80]. Consider a BDD-
based branch and bound and a relaxed BDD which has to be explored further. Once a cutset
C is defined and selected, a node u ∈ C can be directly explored and pruned in advance
by finding its optimal solution z∗u. Along these lines, the strategy consists of solving the
subproblem associated with u using a MIP solver as opposed to recursively relax and explore
But through BDD technology. In addition, once the subproblem associated with node u is
solved, v∗(u) + z∗u also establishes a lower bound on z∗.

For the QSSP, a subproblem encoded in a BDD node u corresponds to a vertex-induced
subgraph defined by the vertices considered in the state component I(u). Note that such
a subproblem also leads to a BQP model if it is tackled with MIP technology. Thus, the
mechanisms within the hybrid BDD-MIP algorithm leads to an algorithm-selection decision
during the exploration. There are three important aspects to be considered, (i) the subprob-

75

lems (i.e., BDD nodes to be explored) are dynamically generated during search, (ii) solving a
BQP subproblem up to optimality may be computationally too expensive, and (iii) such an
algorithm-selection decision is made based on the subproblem features encoded by the state
(I(u), s(u)). Determining whether to apply the MIP-based pruning at each BDD node plays
a central role in the hybrid approach, and we cast this algorithmic question as a classification
task.

In [80], when solving the maximum stable set problem, machine learning (ML) is used to
derive trained classifiers and a decision tree to determine when to use the MIP-based pruning
strategy. At the root node, a classifier automatically detects whether the related subproblem
(i.e., the instance itself) is simply solved by MIP technology. Then, at the remaining BDD
nodes, a computationally cheap decision tree determines if each BDD node is either pruned
using a MIP solver or the BDD continues the exploration further. In this paper, we take
a further step and propose using ML to guide the exploration within the hybrid BDD-MIP
algorithm but at every BDD node subproblem.

ML-driven exploration

We rely on the recent connection between ML and discrete optimization (see, e.g., [50] for a
survey). Specifically, we cast the algorithm-selection decision within the hybrid BDD-MIP
algorithm as a classification task which is addressed by ML. We employ traditional supervised
ML techniques and learn a classifier to decide which technology should be used (i.e., a BDD
relaxation or a MIP representation) to explore, on-the-fly, a BDD subproblem.

In a supervised classification problem, the objective is to learn a function which assigns a
discrete class label to an unseen instance, given a set of already classified examples (i.e., the
training data). Each example in the training set is described by a set of features (attributes)
and an associated label. The learned function (classifier) then maps the features to the
available classes revealing a possible hidden structure of the training dataset. In our case, an
example corresponds to a QSSP instance and we define two class labels that represent the
BDD and MIP technology.

We perform the learning experiments offline to train the classifier which is later incorporated
in the hybrid BDD-MIP algorithm. Thus, we proceed to describe the supervised learning
methodology and the experiments to learn such a classifier. The methodology comprises five
main steps, (i) the generation of instances, (ii) the feature design, (iii) the label definition
for the learning task, (iv) the dataset composition, and finally, (v) the learning experiments.

76

Instances generation As previously mentioned, a QSSP instance mainly corresponds
to both an undirected graph and a symmetric matrix of quadratic profits. We randomly
produce examples for the training dataset by generating graphs following the Erdös-Rényi
(ER) [69] model where we vary the number of nodes (n) and graph density (p). Moreover, for
each instance, we generate a symmetric matrix Q where we define its percentage of positive
coefficients (v).

Feature design Since we label an instance between two different problem representations
(i.e., BDD and MIP), the prediction should be a function of only problem-specific features.
For the QSSP, we rely on the graph properties as well as attributes associated with the
symmetric matrix Q. As the trained classifier is a component of the BDD-MIP algorithm and
it is potentially invoked several times during search, we target features that can be efficiently
computed for new instances that will be dynamically generated when exploring the solution
space. For the graph properties, we select 10 features, namely, number of nodes (n), number
of edges (|E|), density (p), and seven features derived from node degrees, specifically, their
mean, median, standard deviation (SD), maximum, minimum, the interquartile range (IR),
and the variability score (SD/mean).

Conversely, for the features associated with Q, we select the percentage of positive coefficients
inQ (v) and also characteristics associated with its main diagonal which is related to the linear
profits wi. For features coming from wi, we define the mean, median, standard deviation (SD),
minimum and maximum. Finally, we use a total of 16 features for the learning experiments.

Label definition Since we cast the algorithmic question as a binary classification problem,
we now define a procedure to binarize the label, which is a function on the performance of
the two optimization technologies. Each QSSP instance is solved with both the MIP and a
stand-alone BDD solver based on the representation proposed in this paper. For MIP, each
QSSP example is solved with CPLEX version 12.8 (5 times with a different random seed to
deal with performance variability issues [68]) using its nonlinear programming-based branch
and bound to get the MIP solving time MIPtime as the average of the five runs. Next, each
instance is also solved with the stand-alone BDD solver (by settingW = 128 for all instances)
to obtain the BDDtime. Finally, for each example, we assign the label MIP if the MIP solver
is α times faster than the BDD solver (i.e., if MIPtime · α ≤ BDDtime), otherwise we assign
the label BDD.

Dataset composition We assess the distribution of solving times and binarization pa-
rameter α to generate a dataset that is meaningful for the learning task. The dataset

77

is composed of 12, 500 QSSP instances where n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 120},
p ∈ {10, 15, 20, 25, 30, 40, 45, 50, 60, 65, 70, 75}, v ∈ {25, 50, 75}, and label binarization pa-
rameter α = 5. Finally, the number (resp., percentage) of instances labeled as MIP and BDD
in the dataset is 9110 (72.88%) and 3390 (27.12%), respectively.

Supervised learning experiments We construct the classifier using a Support Vector
Machine (SVM) with RBF kernel [25], a classical supervised learning algorithm. We randomly
split the dataset into training (75%) and test set (25%). To obtain features in the same range,
we apply feature scaling and mean normalization so, each feature is normalized to have a
mean of 0 and a standard deviation of 1. Each experiment consists of a training phase with
5-fold cross validation and grid search method for hyperparameter tuning, as well as a test
phase on the neutral test set. We compare the SVM versus a dummy classifier (DUM),
which follows a stratified strategy, i.e., it makes predictions based on the class distribution
of the training set. The benchmark with DUM is a good practice as a measure of baseline
performance for the trained classifier.

The learning methodology is implemented using Python with Scikit-learn [76]. Table 6.1
presents the standard performance measures of binary classification, namely, accuracy, pre-
cision, recall, and f1-score.

We highlight that the SVM classifier achieves high performance metrics. It compares favor-
ably versus a dummy classifier corroborating that there is a statistical pattern to be learned
when discriminating either a MIP or BDD solver for tackling a QSSP instance. We remark
that, for this particular application, false positives are computationally expensive, even more
once a classifier is taken to production within the hybrid BDD-MIP. In this case, metrics dif-
ferent than accuracy could provide a better insight on the classifier performance. Precision,
which is defined as the true positives divided by all positive predictions can be a good metric
to analyze. A high precision indicates a low number of false positives, and we observe that
the classifier presents a very good precision.

Table 6.1 Performance measures for the classifiers when predicting MIP/BDD

DUM SVM
Accuracy 0.607 0.976
Precision 0.257 0.953
Recall 0.289 0.954
F1-score 0.272 0.953

78

The classifier is able to capture enough about the discrimination from the selected features
on training set to make meaningful predictions on test set. We conclude that the learning
experiments support the selection and inclusion of the trained classifier within the BDD-MIP
optimization algorithm.

BDD-MIP cutoff

Moreover, we incorporate another strategy used in [80]. We let LB denote a global incumbent
solution obtained from the hybrid BDD-MIP exploration. Next, when each subproblem
(associated with BDD node u) is explored through a MIP solver, i.e., the trained classifier
predicts MIP, the corresponding BQP subproblem is modified by including the following
constraint:

∑
i∈I(u)

wixi +
∑

i∈I(u)

∑
j∈I(u)|i 6=j

2qijxixj ≥ LB − v∗(u). (6.11)

Constraint (6.11) establishes a lower bound on the objective function for the subproblem,
considering the global incumbent solution and the longest-path value from r to u. The lower-
cutoff procedure already proved effective in [80] to speedup a hybrid BDD-MIP algorithm.
In such a case, subproblems terminate significantly earlier the solving procedure, sometimes
with the proof that no feasible solution meets the modified BQP conditions, also leading to
prune the BDD node.

Algorithm 2 describes the hybrid BDD-MIP algorithm for the QSSP. At the beginning, the
list of nodes to be explored consists of only the root node r. In line 2, while either L is not
empty or the best bound is not less than or equal to the best incumbent solution we have to
search for the optimal solution value. We take a BDD node u from L and evaluate in line
4, if the MIP-based pruning strategy should be applied to by calling, on-the-fly, the trained
MIP/BDD SVM classifier described in Section 6.4.2. If the classifier predicts MIP, we use the
MIP representation of the BDD subproblem and a MIP solver to prune the node in advance,
updating the best incumbent if necessary. Otherwise, in line 9, we create a relaxed decision
diagram rooted in u.

Next, if the BDD is exact we have found a feasible solution, update the incumbent solution
if necessary and no further exploration is needed from the generated BDD. On the contrary
(line 15), if the BDD is relaxed because the maximum width was reached when constructing
any layer, we check if the node can be pruned by bound. If the best bound yielded by the
relaxed BDD is greater than the incumbent solution, we must explore further by identifying
an exact cutset C, and including the BDD nodes in C to L. The algorithm keeps exploring

79

the solution space until the stopping criterion is met and the optimal solution is provided.

Algorithm 2 Hybrid BDD-MIP solver for the QSSP
Input: QSSP instance
Output: Optimal value

1: Initialize list of nodes to be explored (L) with BDD root node
2: while stopping criteria not met do
3: take node u from L

4: if MIP-based pruning strategy applied to u then
5: if best incumbent found then
6: update incumbent
7: Prune node u
8: create relaxed BDD rooted in u
9: if BDD is exact then

10: if best incumbent found then
11: update incumbent
12: Prune node u
13: if BDD is not exact then
14: if Best bound greater than incumbent then
15: Identify an exact cutset C
16: for all nodes in C do:
17: Add node to L
18: create restricted BDD rooted in u
19: if best incumbent found then
20: update incumbent
21: return optimal value

Note that depending on the subproblem properties and hence the MIP/BDD classifier predic-
tion, it may occur that no complementarity is identified by the algorithm, i.e., the MIP solver
is never called to prune a BDD node (step 4 of Algorithm 2). In such a case, the behavior of
the hybrid algorithm actually reduces to a stand-alone decision diagram solving procedure.

6.5 Computational experiments on the QSSP

In this section, we benchmark the hybrid BDD-MIP algorithm against other general-purpose
solvers coming from different optimization paradigms. In particular, we compare the hybrid

80

approach versus two leading commercial MIP solvers with QP capabilities and a competitive
SDP-based solver. We use IBM-CPLEX 12.8 and Gurobi 9.0.0 as the MIP solvers and we
refer to them as CPLEX and Gurobi, respectively. We also implement the hybrid BDD-MIP
approach in C++ and solve the MIP subproblems with CPLEX. All experiments are run on
a Linux machine, Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz and 512 GB of RAM.

As it is described in [58], CPLEX can solve a BQP, such as the QSSP, in different ways. Let
us denote the QSSP relaxation as the continuous problem where the integrality constraints
(6.3), in Section 6.2, are relaxed. The semi-definiteness of matrix Q determines whether the
QSSP relaxation is convex and therefore, the way CPLEX can tackle the problem.

In case the QSSP relaxation is convex, i.e., Q is positive semi-definite (Q � 0), the problem
can be solved by NLP-based branch and bound where a BQP relaxation is solved at each
node of the search tree. Also in the convex case, CPLEX can linearize the BQP by trans-
forming it into a MIP model by means of the McCormick inequalities and tackle the resulting
formulation with standard MIP techniques. On the other hand, if the problem is not con-
vex (Q � 0), CPLEX has two alternatives. First, the problem can be convexified through
the augmentation of the main diagonal of Q and then be solved by NLP-based branch and
bound. Finally, CPLEX can also linearize the BQP and tackle the resulting larger MILP
model via a traditional branch and bound. In the numerical experiments, we solve the QSSP
using both alternatives i.e., linearizing and not linearizing the QSSP which can be simply
selected through the CPLEX parameter QToLin2. The linearization mode allows us to evalu-
ate the performance of a generic linearization technique (aiming at considering this approach
as proposed in [79] where different linearization techniques are used to solve the QSSP). In
addition, we tackle the instances using the CPLEX’s NLP-based branch and bound algorithm
whose performance has not been evaluated for the QSSP in the literature. For both modes,
all internal CPLEX’s capabilities (i.e., presolving, heuristics and cuts) and remaining default
parameter settings are enabled.

We also solve the QSSP instances using Gurobi as MIP solver. The Gurobi version used in this
experiments, like CPLEX, allows to solve to global optimality both convex and non-convex
binary quadratic programmming models. As reported in its technical documentation, Gurobi
implements a MIP solver where simplex and barrier algorithms tackle continuous BQPs. In
addition, Gurobi’s presolve may either convexify a problem by using bilinear constraints or
linearize the problem so it can be solved by standard MIP techniques. Gurobi is also used
with the default parameter settings and all internal capabilities (i.e., presolve, heuristics and
cuts) enabled to make the comparison even more sound.

2Recently, CPLEX version 12.10 incorporates a ML algorithm to make this decision.

81

In addition to MIP solvers, BiqCrunch [89] becomes an interesting and natural alternative
to be considered. This SDP-based branch and bound has also been used for the QSSP [95].
BiqCrunch is executed in the generic problem setup enabling internal heuristics 1, 2, and 3.

Regarding the Hybrid BDD-MIP solver, we use the MIP-based pruning strategy. The trained
SVM classifier is invoked to label each BDD node subproblem as either MIP or BDD to define if
the MIP-based pruning is performed. In addition, we implement the lower cutoff procedure
and when the MIP solver is called to prune a BDD node, we solve the equivalent BQP
subproblem using the clique formulation and CPLEX as MIP solver without any time limit.
The variable ordering and exact cut selection strategies used are the minimum number of
states (MIN) and the last exact layer (LEL), respectively. We refer the reader to [6] for
details on different variable ordering heuristics and exact cutset strategies.

As mentioned before, the decision diagram width (W) is a critical parameter when manip-
ulating limited-size DDs. Moreover, the mechanisms within the hybrid BDD-MIP approach
generate an interesting dynamic between the DD-based branching scheme, the width, the
bound quality, the size of the exact cutsets, the MIP-based pruning strategy, and the clas-
sifier predictions guiding the exploration. For instance, a very small width can dramatically
deteriorate the bound quality, lead to a greater number of DD nodes to explore, and increase
the computing time of the whole optimization process, up to one order of magnitude slower
in the denser instances. Conversely, a very large width can improve the bounds and lead to
a smaller number of DD nodes to explore. However, it can also trigger a greater computa-
tional effort when compiling each relaxed DD in the procedure which might not payoff when
observing the whole computing time. Nevertheless, the effect of selecting a wrong value of
W could be mitigated and indeed exploited in the hybrid BDD-MIP algorithm by calling
more or less frequently the MIP-based pruning strategy. After exploring and exploiting this
trade-off, the maximum width W for all instances is set to 64.

The testbed presented in these computational experiments corresponds to the dense instances
used in the computational experiments in [79] plus, a set of sparser (and hence harder)
instances which are also considered in [95]. The set of instances has number of nodes n =
{100, 150}, density p = {25, 50, 75}%, and percentage of positive coefficients in Q, v =
{25, 50, 75}%. The testbed considers 3 instances per combination (n, p, v) for a total of 54
instances. Every instance is processed five times by solving it with: BiqCrunch, CPLEX
for the clique formulation (linearizing and not linearizing the BQP), Gurobi for the clique
formulation, and finally, the proposed hybrid BDD-MIP solver. Each solver run uses only
one thread with a time limit of 7, 200 seconds.

Table 6.2 compares the performance of the different solvers for the testbed instances. We

82

present the average performance by combination (n, p, v) for a total of 18 different group of
instances. Column 1 corresponds to the group id for the three instances of each combination
(n, p, v). Columns 2, 3, and 4 present, for each group, the number of nodes, density, and
percentage of positive coefficients in Q. Each solver is represented by a column where the base
number corresponds to the average computational time employed for solving the 3 instances
of the corresponding group. An exponent, in case it appears, indicates how many of those
instances could not be solved to optimality within the time limit. In this way, column 5 is
associated with BiqCrunch. For such an SDP-based solver, we generated the model from both
MIP formulations, the edge and clique models. The edge formulation presents slightly better
results and it is the one reported in these experiments. Columns 6 and 7 correspond to the
performance of CPLEX solving the clique formulation of the problem both linearizing and
not linearizing the QSSP, respectively. Next, column 8 corresponds to Gurobi’s performance.
For the MIP solvers, we use the clique formulation which reported 4% better results than
the edge formulation. Column 9 relates to the performance of the hybrid BDD-MIP solver.
Finally, column 10 shows the average speedup reached by the hybrid BDD-MIP solver with
respect to the most competitive benchmark for each instance of the group. For example,
the value in the seventh column “6555.89(2)” of group #10 indicates that, within the time
limit, CPLEX (when non linearizing the BQP) solved only 1 of the instances of the group
n = 150, p = 25, v = 25, and the average solving time of the 3 instances is 6555.89 seconds.
We present the detailed computational experiments for each instance in Appendix A.

We can observe from Table 6.2 that the hybrid solver outperforms all the benchmarks. The
hardest instances are the sparsest ones (p = 25) where the speedups obtained with the hybrid
solver are the smallest ones but greater than 1x. In addition, for group 12 (n = 150 − p =
25− v = 75), the hybrid solver is the only one able to solve the 3 instances to optimality. On
the other hand, when the instance is denser (p = {50, 75}) the BDD-based approach achieves
remarkable speedups of at least one order of magnitude faster than the MIP solvers and the
SDP-based solver.

Note that the percentage of positive coefficients v is related to the definiteness of matrix Q
and evidently seems to be a very important feature of the instance. Let us observe instances
with n = 150 and p = 50 (i.e., groups 13, 14, and 15 in Table 6.2) to analyze this behavior.
In such instances, if we observe the performance of the hybrid algorithm, no matter the
value of v, the solving time is almost equivalent for the three groups. However, this is not
the case for CPLEX and Gurobi where the v value greatly impacts how the model is solved
and hence the resulting performance. Noteworthy, the proposed BDD representation for the
QSSP embeds the problem nonlinearity making no difference in the performance with respect
to the semi-definiteness of matrix Q.

83

Table 6.2 Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instances BiqCrunch CPLEX Gurobi Hybrid Speedup
Linearize Non Linearize BDD-MIP

Group n p v CPU time (s) CPU time (s) CPU time (s) CPU time (s) CPU time (s) vs. best benchmark
1 100 25 25 1139.31 272.65 113.13 84.75 24.50 3.50
2 100 25 50 7200.00(3) 728.37 138.56 287.55 36.16 4.03
3 100 25 75 7200.00(3) 1009.52 1388.85 184.00 167.02 1.10
4 100 50 25 829.49 18.28 9.67 11.09 0.72 13.53
5 100 50 50 4832.11 54.55 13.50 11.63 0.83 13.94
6 100 50 75 6677.62 89.59 30.51 14.37 0.74 19.50
7 100 75 25 461.94 3.89 4.18 1.03 0.06 18.34
8 100 75 50 1356.93 17.33 4.26 1.57 0.06 27.86
9 100 75 75 1162.46 30.49 6.12 1.71 0.05 32.28
10 150 25 25 7200.00(3) 4776.18 6555.89(2) 1607.86 560.80 2.87
11 150 25 50 7200.00(3) 7200.00(3) 7200.00(3) 6918.76(2) 888.37 7.92
12 150 25 75 7200.00(3) 7200.00(3) 7200.00(3) 7200.00(3) 2958.74 2.47
13 150 50 25 6901.33(2) 130.06 135.64 46.01 7.45 6.19
14 150 50 50 7200.00(3) 1184.23 182.24 96.15 7.39 13.03
15 150 50 75 7200.00(3) 1752.94 582.37 91.46 6.83 13.38
16 150 75 25 2895.55 40.35 23.09 16.18 0.21 54.63
17 150 75 50 7160.97(2) 79.11 26.49 43.05 0.19 139.37
18 150 75 75 7200.00(3) 87.21 38.58 48.94 0.21 179.39

Geom. Mean 3763.68 210.96 100.49 55.55 3.95 12.74

84

Figure 6.4 presents a performance profile to benchmark each solver in terms of the percentage
of instances solved (out of the total 54 instances) within the execution time which ends at
the time limit of 7, 200 seconds. Each of the five lines corresponds to one of the solvers
considered in the comparison.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1200 2400 3600 4800 6000 7200

%
 o

f p
ro

bl
em

s s
ol

ve
d

CPU time (s)

BiqCrunch
CPLEX Linearize
CPLEX Non-Linearize
Gurobi
Hybrid BDD-MIP

Figure 6.4 Performance profile for different solvers when tackling the QSSP

The performance profile shows the considerable dominance of the hybrid BDD-MIP solver
with respect to the other solvers. The hybrid approach is the only method able to solve all
instances long before the time limit is reached, solving each of the 54 instances within 3, 300
seconds.

Figure 6.5 compares the solution time of the hybrid BDD-MIP solver versus the solution time
of the best benchmark across the different solvers (BiqCrunch, CPLEX linearizing, CPLEX
non-linearizing, and Gurobi). We color instances by density value so that, green, red, and
gray points correspond to p = 25, p = 50, and p = 75 instances, respectively. In a similar
way, shapes are associated with the problem size n. Triangle and circle markers are related
to n = 100 and n = 150 instances, respectively. A point located above the diagonal means
that the hybrid BDD-MIP approach outperforms the best benchmark in such an instance for
the corresponding n − p group. As we use log scale to be able to represent all instances in
one chart, some group of instances are represented by superimposed points, e.g., instances
with n = 150−p = 50 (red circles) appear represented by one red point to the most left side.

85

Such a point indicates that the hybrid performs much better than the best benchmark.

1

10

100

1000

10000

1 10 100 1000 10000

Be
st

 b
en

ch
m

ar
k

-T
im

e
(lo

g.
 sc

al
e)

Hybrid solver - Time (log. scale)

n=100 - p=25
n=150 - p=25
n=100 - p=50
n=150 - p=50
n=100 - p=75
n=150 - p=75

Figure 6.5 Hybrid BDD-MIP solver versus the best benchmark in terms of solution time per
instance in log scale

Nevertheless, Figure 6.5 allows us to focus on the hardest instances, i.e., the sparsest ones
with p = 25 (green markers). All but one instance are above the diagonal indicating that
even for the hardest cases, the hybrid algorithm achieves a better performance than the
benchmarks. For a fix density value, circle markers appear above triangle markers indicating
in that case that larger instances are naturally harder.

Although, the BDD representation is one of the contributions in this paper, we evaluate the
global effectiveness of the hybrid framework in comparison with a stand-alone BDD solver.
We continue focused on the hardest (i.e., sparsest) subset of 18 instances with p = 25.
Figure 6.6(a) and Figure 6.6(b) compare the solution time of the hybrid method versus a
pure BDD solver but considering as well the best benchmark. As we analyze instances of
the same density, solving times have the same magnitude and we generate the scatter plot
not using the log scale. Figure 6.6(a) and Figure 6.6(b) are related to n = 100 and n = 150
instances, respectively. In both cases, instances related to the best benchmark are associated
with filled markers, while those related to the stand-alone BDD solver correspond to markers
with no fill.

We can observe that the hybrid method consistently outperforms the stand-alone BDD solver.

86

0

100

200

300

400

500

0 100 200 300 400 500

Be
st

 b
en

ch
m

ar
k

-B
DD

 so
lv

er

(T
im

e)

Hybrid solver (Time)

Stand-alone BDD solver
Best benchmark

(a) Instances n = 100− p = 25

400

2100

3800

5500

7200

400 2100 3800 5500 7200

Be
st

 b
en

ch
m

ar
k

-B
DD

 so
lv

er

(T
im

e)

Hybrid solver (Time)

Stand-alone BDD solver
Best benchmark

(b) Instances n = 150− p = 25

Figure 6.6 Hybrid BDD-MIP solver versus both stand-alone BDD solver and the best bench-
mark for the sparsest instances

This is even more evident for large instances (n = 150) where the hybrid method really pays
off. For some instances, we go from hitting the time limit with the pure BDD solver, to
getting the best performance using the hybrid algorithm.

In a last computational experiment, we evaluate the performance of the BDD-based optimiza-
tion approach on larger QSSP instances. We compare Gurobi, which is the best benchmark
in the set of instances from the literature (Table 6.2), versus the hybrid BDD-MIP. The
new set of instances has number of nodes n = {175, 200}, density p = {25, 50, 75}%, and
percentage of positive coefficients in Q, v = {25, 50, 75}%. Similarly to the previous dataset,
we consider 3 instances per combination (group) (n, p, v) for a total of 54 instances and 18
groups. Table 6.3 shows the computational experiments. The first four columns correspond
to the instance information for each group. Column 5 and 6 report the performance of Gurobi
and the hybrid BDD-MIP, respectively. Once again, if an exponent appears, it indicates how
many of those instances were not solved to optimality within the time limit. Finally, column
7 presents the speedup by group. We present the detailed computational experiments for
each instance in Appendix A.

For experiments reported in Table 6.3, the hybrid BDD-MIP uses the same trained classifier
and maximum width W than in the previous experiment. Gurobi is also employed with the
default parameter settings enabling all its internal capabilities to make the comparison more
stringent. For n = 175, we note that Gurobi can solve only 1 out of 9 of the sparsest (p = 25)
instances within time limit, whereas the Hybrid approach struggles with 2 (i.e., it solves 7
out of 9). When we increase the number of vertices to 200, we observe that neither Gurobi
nor the Hybrid BDD-MIP can solve the challenging sparse instances. However, the lower and

87

Table 6.3 Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with
n ∈ {175, 200}

Instances Gurobi Hybrid BDD-MIP Speedup
Group n p v CPU time (s) CPU time (s)

19 175 25 25 6821.25(2) 4132.60 1.70
20 175 25 50 7200.00(3) 4686.14 1.55
21 175 25 75 7200.00(3) 6733.51(2) 1.08
22 175 50 25 117.35 14.97 7.89
23 175 50 50 223.18 24.01 9.31
24 175 50 75 260.92 19.90 13.14
25 175 75 25 58.07 0.35 166.56
26 175 75 50 75.74 0.35 216.22
27 175 75 75 83.60 0.37 222.73
28 200 25 25 7200.00(3) 7200.00(3) 1.00
29 200 25 50 7200.00(3) 7200.00(3) 1.00
30 200 25 75 7200.00(3) 7200.00(3) 1.00
31 200 50 25 263.15 37.91 6.92
32 200 50 50 576.81 54.58 10.39
33 200 50 75 504.95 44.11 11.65
34 200 75 25 107.89 0.53 203.68
35 200 75 50 128.78 0.53 245.02
36 200 75 75 161.21 0.56 290.24

Geom. Mean 581.01 42.74 13.64

88

upper bounds obtained within time limit are, in general, better for the Hybrid BDD-MIP.
Gurobi obtained slightly better lower bounds for only 3 out of the 81 instances, and this
corresponds to the group (200, 25, 25). Then, as the percentage of positive coefficients in
Q increases, the bounds are more favorable for the Hybrid approach. For denser instances,
no matter the size, the speedups show that BDD-based technology is significantly superior.
It reaches, in some cases, more than 2 orders of magnitude faster computing times than a
state-of-the-art commercial MIP solver. Instances of size 200 seem to be the current limit
the Hybrid algorithm can reach within a 2-hour time limit on sparser instances. Instead, the
method scales very well for instances of size 250 (and bigger) on denser graphs (see Table
A.6 in the appendix).

Different elements of the hybrid BDD-MIP solver, such as the BDD-based branching scheme
and, mainly, the black-box classifier guiding the exploration, make getting insights from
the method’s performance and evolution a complex task. However, we observe that the
mechanisms of the hybrid BDD-MIP are mainly exploited for the sparsest (hardest) instances.
On average, for instances with p = 25, the MIP solver prunes 91.56% of the total number
of BDD nodes explored. In such a case, the MIP solver is frequently invoked indicating
that the classifier possibly identifies a special pattern in sparse instances that leads to the
complementarity leveraged by the hybrid method. As the graph density increases, the MIP
calls drastically decrease to the extent that the MIP-based pruning strategy is not employed
in very dense instances. We can infer that calling the MIP solver for such instances could
be a computationally expensive strategy. Nevertheless, the ML-based exploration seems to
detect such a pattern.

6.6 Conclusions

We solved the quadratic stable set problem (QSSP) via BDD-based optimization contributing
with both a BDD representation and an adapted hybrid BDD-MIP solver for the problem.
We performed extensive computational experiments to compare the proposed hybrid method
with other general optimization paradigms such as a semidefinite-based solver and two leading
commercial MIP solvers with QP capabilities. We have shown that the hybrid BDD-MIP
provides state-of-the-art results for solving the QSSP.

In addition, the BDD-based optimization technology shows high flexibility to represent
quadratic problems. One important distinction of the proposed BDD representation is that
it does not assume any special structure for the quadratic cost matrix which is an usual as-
sumption in quadratic programming. Indeed, the proposed modeling to handle the quadratic
profits in the state variables could be extended to any binary quadratic programming model

89

where the Markov property holds in the conceptual DP model used to compile the decision
diagram. We also contribute with a machine learning application to cast an algorithmic ques-
tion within the hybrid BDD-MIP into a classification task. In an offline fashion, we train a
classifier that is invoked, on-the-fly, by the hybrid algorithm to guide the exploration.

Therefore, when tackling an optimization problem, if both a representation from a different
paradigm such as MIP or SDP and a mechanism to identify complementarity are available, a
BDD-based hybrid approach could stand up as an effective solving method. This work opens
up more research avenues where DD-based approaches, integrated methods, and machine
learning are considered to tackle other quadratic combinatorial optimization problems.

90

CHAPTER 7 GENERAL DISCUSSION

Hybrid optimization that combines complementary strengths from different paradigms into
unified frameworks can be shown superior to independent solving technologies. Nevertheless,
to achieve the highest performance, the designed mechanisms must be advantageous enough
that the computational cost of handling different problem representations actually pays off.

Figure 7.1 presents an illustrative summary of the main elements of this dissertation, the main
chapter associated with each contribution, and how all contributions are related between
them. Contribution I, II, and III correspond to Chapters 4, 5, and 6, respectively. The
different contributions are closely interconnected and allow a unified view of the subject of
this dissertation: machine learning driven hybrid optimization based on decision diagrams.

Contribution I: ML for
discriminating instance

hardness for a MIP solver Contribution II: Hybrid DD-
ILP

Contribution III: Hybrid BDD-
MIP for the QSSP

• Use of ML to classify instance
hardness

• Relevance of patterns based on
problem-specific features

• ML for MIP solver configuration

• Novel integrated search tree
method

• Collaborative hybrid mechanisms
• ML to get insights and guide

exploration
• Integration of ML-based

mechanisms

• Novel BDD problem
representation for the QSSP

• Extended hybrid approach for a
QP problem

• Tight integration of ML to guide
the exploration

• State-of-the-art results for the
QSSP

Figure 7.1 Illustrative scheme of contributions in this dissertation and their relation.

The tight integration of ML within optimization solvers is a key element of the hybrid ap-
proach presented in Chapters 5 and 6. Along these lines, Chapter 4 is fundamental to explore
how machine learning can address optimization algorithmic questions as learning tasks. We
present a supervised learning framework which is flexible enough to be adapted to different
purposes such as algorithm configuration in a MIP solver and algorithm-design decisions
in hybrid optimization. In addition, the importance and usage of problem-specific features
within ML approaches for OR is presented in all given contributions.

91

The main hybrid optimization method and mechanisms, which integrate approximate DDs
and MIP, are presented in Chapter 5 and validated through a linear combinatorial problem.
Then, such approach is adapted in Chapter 6 where its generic nature is validated in a
more difficult and nonlinear problem. The only requirements of the hybrid approach are
both a DD and MIP representations along a systematic mechanism to identify and exploit
complementary strengths which in this case corresponds to ML.

The hybrid DD-MIP framework emphasizes the role of limited-size DDs as approximations
of the branch-and-bound search tree of a problem. In particular, the approach perceives the
nodes of a relaxed DD as subproblems that may involve some problem structure that is more
suitable to another technology (in our case, MIP), which is invoked to prune the node in
advance. The approach turns into an integrated search tree that combine information from
DD-like search trees and a more traditional lp-based branch and bound. This integration
triggers additional pruning and bounding strategies for DD-based technology. In such a way,
even the LP relaxation can provide information to prune unpromising subtrees in the DD
representation. Conversely, information from the partial exploration can improve the MIP
search such as the lower cutoff.

A relevant difference of the hybrid mechanisms is that the node subproblems are dynam-
ically generated as opposed to an a-priori decomposition which is typical in the literature
of integrated methods. We then reveal an algorithm-selection decision that must be made,
on-the-fly, to explore the solution space. Therefore, the role of ML stands as a significant
component in the approach. We show that the interpretability provided by some ML-models,
and studied in Chapter 4, leads to the selection of relevant features which are the basis of
exploration mechanisms for the hybrid approach in Chapter 5 and 6.

As an important contribution in Chapter 6, we prove the generic nature of the hybrid ap-
proach (proposed in Chapter 5) by adapting it for a harder nonlinear problem. For this
purpose, a novel DD representation for the nonlinear problem is presented to exploit the
modeling benefits of DDs. In addition, we consider the quadratic programming capabilities
of MIP solvers to completely adapt the hybrid approach for the problem. Moreover, we also
profit from the mature technology and remarkable speedups of MIP solvers, by using them
to solve integer QP models as subproblems within the hybrid method, a new perspective
brought by this thesis.

Furthermore, the ML framework developed in Chapter 4 is extended in the context presented
in Chapter 6 and shows being even more significant to achieve a tighter integration alongside
the hybrid approach. In this case, a trained classifier is invoked, on-the-fly, at each BDD
node to guide the exploration.

92

Finally, computational experiments are performed for the MISP and QSSP to validate the
efficiency of the proposed integrated method. For the MISP, the numerical results indicate
that, in presence of suitable structure, the hybrid DD-MIP approach is competitive versus
both a stand-alone BDD and MIP solvers. On the other hand, for the QSSP, the hybrid
approach presents state-of-the-art results when it is compared with leading commercial MIP
solvers and a SDP-based branch-and-bound solver.

93

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

Integrated optimization approaches are an effective alternative to exploit problem struc-
ture. We proposed hybrid optimization mechanisms to solve challenging combinatorial op-
timization problems by leveraging the decision diagrams-based optimization technology, a
more classical paradigm such as mixed-integer programming, and machine learning. In Sec-
tion 8.1, we summarize the contributions derived from this dissertation. We then conclude
by discussing, in Section 8.2, the main limitations for each of the proposed contributions and
suggest potential research avenues to be further explored.

8.1 Summary of works

Motivated by the research opportunities of the recent and fruitful ML-for-OR approach,
Chapter 4 presents a machine learning framework to discriminate problem-specific instance
hardness when using a MIP solver. The learning framework allows to learn a function based
on both problem-specific features and the MIP solver performance. The interpretability
properties of tree-based models are used to understand which problem features are the most
relevant when discriminating instance hardness. In addition, the computational experiments
show that the trained classifiers can determine the configuration of a MIP solver and boost
its performance when solving the quadratic stable set problem. Finally, the framework is
flexible enough to be extended to the context of algorithm selection which allows a tight
integration of ML alongside hybrid optimization methods.

In Chapter 5, we propose an integrated optimization algorithm based on DDs and MIP for
solving combinatorial optimization problems. The designed hybrid mechanisms profit from
the two problem paradigms (i.e., DD and integer linear programming representations) to
explore the solution space through an integrated search tree. The hybrid framework brings up
novel pruning strategies for stand-alone DD solvers as well as tightly collaborative strategies
to exploit information coming from the DD for the MIP representation, and vice versa. We
use the maximum independent set problem as case study. The numerical experiments show
that the hybrid DD-ILP approach is shown to be superior to a stand-alone DD approach and
a leading MIP solver when suitable problem structure is identified.

Finally, in Chapter 6, we address the quadratic stable set problem and provide a novel
problem representation for it through approximate DDs. Moreover, we adapt the hybrid
DD-MIP by considering the QP capabilities of a MIP solver and test its efficiency in a more

94

difficult nonlinear setup. Remarkably, we achieve a tight integration of ML alongside the
hybrid approach. A ML model is used to train offline a SVM classifier that is invoked, on-
the-fly, at each BDD subproblem within a branch-and-bound scheme. The computational
experiments indicate that the hybrid BDD-MIP provides state-of-the-art results for solving
the QSSP when compared against both leading commercial MIP solvers and a SDP-based
branch and bound.

8.2 Limitations and future research

A natural extension of this dissertation is to adapt the proposed hybrid mechanisms for more
challenging optimization problems and cases where a DD representation could be advanta-
geous, such as in sequencing and scheduling problems. In principle, the only requirements
other than a DD model are an additional problem representation from a different paradigm
and a mechanism (e.g, machine learning based) to identify and exploit possible complemen-
tary strengths.

Nevertheless, the proposed hybrid mechanisms require a recursive formulation of the entire
solution space to build the DD representation. Future work should consider recent threads on
DDO where only subsets of constraints are modeled through DDs, extending its applicability
to a more general class of discrete problems. Next, the hybrid mechanisms could be adapted
to strengthen the DD representation of individual constraints.

The proposed hybrid algorithm relies heavily on MIP representations of the DD nodes during
search. Possible future work concerns the integration of another paradigm such as constraint
programming to replace the MIP paradigm. Nevertheless, given the flexible and generic
nature of the proposed hybrid approach, it could be adapted to handle even more than two
problem representations. The latter is worth to be considered as long as complementary
strengths are identified and exploited.

The results of this dissertation suggests that the role of DDs as a means to explore the
solution space and enumerate subproblems in a divide-and-conquer approach should be fur-
ther explored. One possible direction is to profit from the DD representation in a multilevel
optimization setting where different DDs can represent the solution space.

Related to the machine learning component, we could further improve the integration of ML
within the hybrid method’s performance by considering a multi-class classification framework.
In this way, the learning task could consider different configurations of the DD representation
based mainly on the performance when using different maximum width values. Similarly, for
quadratic optimization problems and the MIP solver, the learning task could also consider

95

the performance of the linearization option. The labels would then correspond to more than
the two DD or MIP classes but, take into account different configurations of the solvers that
could exploit further the problem structure.

96

REFERENCES

[1] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial op-
timization algorithms over graphs,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6351–6361.

[2] A. Lodi, “Mixed integer programming computation,” in 50 Years of Integer Programming
1958-2008: From the Early Years to the State-of-the-Art, M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A.
Wolsey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 619–645.

[3] J. N. Hooker, Integrated Methods for Optimization. Boston, MA: Springer US, 2012.

[4] J. N. Hooker and W.-J. van Hoeve, “Constraint programming and operations research,”
Constraints, vol. 23, no. 2, pp. 172–195, Apr 2018.

[5] M. Milano and M.Wallace, “Integrating operations research in constraint programming,”
Annals of Operations Research, vol. 175, no. 1, pp. 37–76, 2009.

[6] D. Bergman, A. A. Cire, W.-J. v. Hoeve, and J. Hooker, Decision Diagrams for Opti-
mization, 1st ed. Springer International Publishing, 2016.

[7] Y. Pochet and L. A. Wolsey, Eds., Production Planning by Mixed Integer Programming,
1st ed. Springer-Verlag New York, 2006.

[8] P. Toth and D. Vigo, Eds., Vehicle Routing: Problems, Methods, and Applications,
2nd ed., ser. MOS-SIAM Series on Optimization. SIAM, 2014, no. 18.

[9] S. Akers, “Binary decision diagrams,” Computers, IEEE Transactions on, vol. C-27,
no. 6, pp. 509–516, June 1978.

[10] C. Lee, “Representation of switching circuits by binary-decision programs,” Bell System
Technical Journal, The, vol. 38, no. 4, pp. 985–999, July 1959.

[11] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, vol. C-35, no. 8, pp. 677–691, Aug 1986.

[12] H. Andersen, “An introduction to binary decision diagrams,” Lecture notes for Efficient
Algorithms and Programs, 1999.

97

[13] I. Wegener, Branching Programs and Binary Decision Diagrams. Society for Industrial
and Applied Mathematics, 2000. [Online]. Available: http://epubs.siam.org/doi/abs/
10.1137/1.9780898719789

[14] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, “A constraint store
based on multivalued decision diagrams,” in Principles and Practice of Constraint Pro-
gramming – CP 2007: 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007. Proceedings, C. Bessière, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 118–132.

[15] J. N. Hooker, “Decision diagrams and dynamic programming,” in Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
C. Gomes and M. Sellmann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 94–110.

[16] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes, “Bdd-based heuristics for
binary optimization,” Journal of Heuristics, vol. 20, no. 2, pp. 211–234, Apr 2014.
[Online]. Available: https://doi.org/10.1007/s10732-014-9238-1

[17] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker, “Discrete optimization with
decision diagrams,” INFORMS Journal on Computing, vol. 28, no. 1, pp. 47–66, 2016.

[18] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[19] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015. [Online]. Available:
https://science.sciencemag.org/content/349/6245/255

[20] C. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
mining, Inference and Prediction, 2nd ed. Springer-Verlag New York, 2009.

[22] J. B. M.D., “Application of the logistic function to bio-assay,” Journal of the American
Statistical Association, vol. 39, no. 227, pp. 357–365, 1944.

[23] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on
Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[24] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106,
1986.

http://epubs.siam.org/doi/abs/10.1137/1.9780898719789
http://epubs.siam.org/doi/abs/10.1137/1.9780898719789
https://doi.org/10.1007/s10732-014-9238-1
https://science.sciencemag.org/content/349/6245/255

98

[25] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, 1995.

[26] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[27] T. Achterberg, “Constraint integer programming,” Ph.D. dissertation, Technische Uni-
versität Berlin, 2007.

[28] J. N. Hooker and G. Ottosson, “Logic-based Benders decomposition,” Mathematical
Programming, vol. 96, no. 1, pp. 33–60, 2003.

[29] J. N. Hooker, “Planning and scheduling by logic-based Benders decomposition,” Oper-
ations Research, vol. 55, no. 3, pp. 588–602, 2007.

[30] C. E. Cortés, M. Gendreau, L. M. Rousseau, S. Souyris, and A. Weintraub, “Branch-and-
price and constraint programming for solving a real-life technician dispatching problem,”
European Journal of Operational Research, vol. 238, no. 1, pp. 300–312, 2014.

[31] K. Easton, G. Nemhauser, and M. Trick, “Cp based branch-and-price,” in Constraint
and Integer Programming: Toward a Unified Methodology, M. Milano, Ed. Boston,
MA: Springer US, 2004, pp. 207–231.

[32] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer, “Bdds in a branch and cut frame-
work,” in Experimental and Efficient Algorithms, S. E. Nikoletseas, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 452–463.

[33] M. Behle, “Binary decision diagrams and integer programming,” Ph.D. Thesis, Saarland
University, Saarbrücken, Germany, 2007.

[34] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker, “Optimization bounds from
binary decision diagrams,” INFORMS Journal on Computing, vol. 26, no. 2, pp. 253–
268, 2014.

[35] T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann, “Approximate compilation of
constraints into multivalued decision diagrams,” in Principles and Practice of Constraint
Programming, P. J. Stuckey, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 448–462.

[36] T. Hadzic, J. N. Hooker, and P. Tiedemann, “Propagating separable equalities in an mdd
store,” in Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, L. Perron and M. A. Trick, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 318–322.

99

[37] S. Hoda, W.-J. van Hoeve, and J. N. Hooker, “A systematic approach to mdd-based
constraint programming,” in Principles and Practice of Constraint Programming – CP
2010, D. Cohen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 266–280.

[38] J. Kinable, A. A. Cire, and W.-J. van Hoeve, “Hybrid optimization methods for time-
dependent sequencing problems,” European Journal of Operational Research, vol. 259,
no. 3, pp. 887 – 897, 2017.

[39] A. A. Cire and W.-J. van Hoeve, “Multivalued decision diagrams for sequencing prob-
lems,” Operations Research, vol. 61, no. 6, pp. 1411–1428, 2013.

[40] M. P. Castro, A. A. Cire, and J. C. Beck, “An MDD-based lagrangian approach to the
multicommodity pickup-and-delivery TSP,” INFORMS Journal on Computing, 2019.

[41] D. Bergman, A. A. Cire, and W.-J. van Hoeve, “Lagrangian bounds from decision
diagrams,” Constraints, vol. 20, no. 3, pp. 346–361, 2015. [Online]. Available:
https://doi.org/10.1007/s10601-015-9193-y

[42] C. Tjandraatmadja and W.-J. van Hoeve, “Target cuts from relaxed decision diagrams,”
INFORMS Journal on Computing, vol. 31, no. 2, pp. 285–301, 2019.

[43] D. Davarnia and W.-J. van Hoeve, “Outer approximation for integer nonlinear programs
via decision diagrams,” Mathematical Programming, 2020.

[44] D. R. Morrison, E. C. Sewell, and S. H. Jacobson, “Solving the pricing problem in
a branch-and-price algorithm for graph coloring using zero-suppressed binary decision
diagrams,” INFORMS Journal on Computing, vol. 28, no. 1, pp. 67–82, 2016.

[45] D. Bergman and A. A. Cire, “Decomposition based on decision diagrams,” in Integration
of AI and OR Techniques in Constraint Programming, C.-G. Quimper, Ed. Cham:
Springer International Publishing, 2016, pp. 45–54.

[46] D. Bergman and A. A. Cire, “Discrete nonlinear optimization by state-space decompo-
sitions,” Management Science, vol. 64, no. 10, pp. 4700–4720, 2018.

[47] D. Bergman and L. Lozano, “Decision diagram decomposition for quadratically
constrained binary optimization,” Preprint optimization-online, 2018. [Online].
Available: http://www.optimization-online.org/DB_FILE/2018/10/6837.pdf

[48] L. Lozano and J. C. Smith, “A binary decision diagram based algorithm for solving a
class of binary two-stage stochastic programs,” Mathematical Programming, pp. 1–24,
2018.

https://doi.org/10.1007/s10601-015-9193-y
http://www.optimization-online.org/DB_FILE/2018/10/6837.pdf

100

[49] T. Serra, A. U. Raghunathan, D. Bergman, J. Hooker, and S. Kobori, “Last-mile schedul-
ing under uncertainty,” in Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, L.-M. Rousseau and K. Stergiou, Eds. Cham: Springer In-
ternational Publishing, 2019, pp. 519–528.

[50] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization:
a methodological tour d’horizon,” Preprint arXiv:1811.06128, 2018.

[51] E. B. Khalil, P. L. Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to branch
in mixed integer programming,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 724–731.

[52] M. Gasse, D. Chetelat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combi-
natorial optimization with graph convolutional neural networks,” in Advances in
Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. dAlché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates,
Inc., 2019, pp. 15 580–15 592. [Online]. Available: http://papers.nips.cc/paper/
9690-exact-combinatorial-optimization-with-graph-convolutional-neural-networks.pdf

[53] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao, “Learning to
run heuristics in tree search,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 659–666.

[54] Q. Cappart, E. Goutierre, D. Bergman, and L.-M. Rousseau, “Improving optimization
bounds using machine learning: Decision diagrams meet deep reinforcement learning,”
in Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. AAAI
Press, 2019, p. 1443–1451.

[55] M. Kruber, M. E. Lübbecke, and A. Parmentier, “Learning when to use a decomposi-
tion,” in Integration of AI and OR Techniques in Constraint Programming, D. Salvagnin
and M. Lombardi, Eds. Cham: Springer International Publishing, 2017, pp. 202–210.

[56] L. Kotthoff, “Algorithm selection for combinatorial search problems: A survey,” in Data
Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach,
C. Bessiere, L. De Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, and D. Pedreschi, Eds.
Cham: Springer International Publishing, 2016, pp. 149–190.

[57] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based algo-
rithm selection for SAT,” J. Artif. Int. Res., vol. 32, no. 1, pp. 565–606, 2008.

http://papers.nips.cc/paper/9690-exact-combinatorial-optimization-with-graph-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/9690-exact-combinatorial-optimization-with-graph-convolutional-neural-networks.pdf

101

[58] P. Bonami, A. Lodi, and G. Zarpellon, “Learning a classification of mixed-integer
quadratic programming problems,” in Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research, W.-J. van Hoeve, Ed. Cham: Springer
International Publishing, 2018, pp. 595–604.

[59] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime prediction:
Methods evaluation,” Artificial Intelligence, vol. 206, pp. 79 – 111, 2014.

[60] M. Fischetti, A. Lodi, and G. Zarpellon, “Learning milp resolution outcomes before
reaching time-limit,” in Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, L.-M. Rousseau and K. Stergiou, Eds. Cham: Springer
International Publishing, 2019, pp. 275–291.

[61] C. McCreesh, P. Prosser, K. Simpson, and J. Trimble, “On maximum weight clique
algorithms, and how they are evaluated,” in Principles and Practice of Constraint Pro-
gramming, J. C. Beck, Ed. Cham: Springer International Publishing, 2017, pp. 206–225.

[62] A. Mehrotra and M. A. Trick, “A column generation approach for graph coloring,”
INFORMS Journal on Computing, vol. 8, no. 4, pp. 344–354, 1996.

[63] T. Hemazro, B. Jaumard, and O. Marcotte, “A column generation and branch-and-
cut algorithm for the channel assignment problem,” Computers & Operations Research,
vol. 35, no. 4, pp. 1204 – 1226, 2008.

[64] M. Grötschel, L. Lovász, and A. Schrijver, “Stable sets in graphs,” in Geometric Algo-
rithms and Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1988, pp. 272–303.

[65] S. Butenko, “Maximum independent set and related problems, with applications,” Ph.D.
dissertation, University of Florida, USA, 2003.

[66] L. Xiaoli, W. Min, K. Chee-Keong, and N. See-Kiong, “Computational approaches for
detecting protein complexes from protein interaction networks: a survey,” BMC Ge-
nomics, vol. 11, no. 1, 2010.

[67] L. Cavique, “A scalable algorithm for the market basket analysis,” Journal of Retailing
and Consumer Services, vol. 14, no. 6, pp. 400 – 407, 2007.

[68] A. Lodi and A. Tramontani, “Performance variability in mixed-integer programming,”
in Theory Driven by Influential Applications. INFORMS, 2014, pp. 1–12.

102

[69] P. Erdös and A. Rényi, “On the evolution of random graphs,” in Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, 1960, pp. 17–61.

[70] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature,
vol. 393, pp. 440–442, 1998.

[71] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol.
286, no. 5439, pp. 509–512, 1999.

[72] P. Holme and B. J. Kim, “Growing scale-free networks with tunable clustering,” Physical
Review E, vol. 65, no. 026107, 2002.

[73] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E, vol. 67, p. 026126, Feb
2003.

[74] A. Esfahanian, “Connectivity algorithms,” in Topics in Structural Graph Theory, L. W.
Beineke and R. J. Wilson, Eds. Cambridge University Press, 2012, pp. 268–281.

[75] T. Schank and D. Wagner, “Approximating clustering coefficient and transitivity,” Jour-
nal of Graph Algorithms and Applications, vol. 9, no. 2, pp. 265–275, 2005.

[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1953048.2078195

[77] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,
and function using NetworkX,” in Proceedings of the 7th Python in Science Conference
(SciPy2008), G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA,
2008, pp. 11–15.

[78] M. Gendreau, P. Soriano, and L. Salvail, “Solving the maximum clique problem using a
tabu search approach,” Annals of Operations Research, vol. 41, no. 4, pp. 385–403, 1993.

[79] F. Furini and E. Traversi, “Theoretical and computational study of several linearisation
techniques for binary quadratic problems,” Annals of Operations Research, vol. 279,
no. 1, pp. 387–411, Aug 2019.

[80] J. E. González, A. A. Cire, A. Lodi, and L.-M. Rousseau, “Integrated integer program-
ming and decision diagram search tree with an application to the maximum independent
set problem,” Constraints, vol. 25, no. 1, pp. 23–46, 2020.

http://dl.acm.org/citation.cfm?id=1953048.2078195

103

[81] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, “Variable ordering for
the application of BDDs to the maximum independent set problem,” in Integration
of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation
Problems, N. Beldiceanu, N. Jussien, and É. Pinson, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 34–49.

[82] J. E. González, A. A. Cire, A. Lodi, and L.-M. Rousseau, “Bdd-based optimization for
the quadratic stable set problem,” Discrete Optimization, p. 100610, 2020.

[83] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique relaxations in social network
analysis: The maximum k-plex problem,” Operations Research, vol. 59, no. 1, p. 133–142,
Jan. 2011.

[84] J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A. Langston, “The maximum clique
enumeration problem: Algorithms, applications and implementations,” in Bioinformat-
ics Research and Applications, J. Chen, J. Wang, and A. Zelikovsky, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 306–319.

[85] Q. Wu and J.-K. Hao, “A review on algorithms for maximum clique problems,” European
Journal of Operational Research, vol. 242, no. 3, pp. 693 – 709, 2015.

[86] B. Jaumard, O. Marcotte, and C. Meyer, “Estimation of the quality of cellular networks
using column generation techniques,” GERAD Technical Report, vol. G-98-02, 1998.

[87] S. Karimi and P. Ronagh, “A subgradient approach for constrained binary optimization
via quantum adiabatic evolution,” Quantum Information Processing, vol. 16, no. 8, p.
185, 2017.

[88] F. Furini and E. Traversi, “Hybrid SDP bounding procedure,” in Experimental Algo-
rithms, V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 248–259.

[89] N. Krislock, J. Malick, and F. Roupin, “Biqcrunch: A semidefinite branch-and-bound
method for solving binary quadratic problems,” ACM Trans. Math. Softw., vol. 43, no. 4,
pp. 32:1–32:23, Jan. 2017.

[90] S. Hosseinian, D. B. M. M. Fontes, S. Butenko, M. B. Nardelli, M. Fornari, and S. Cur-
tarolo, “The maximum edge weight clique problem: Formulations and solution ap-
proaches,” in Optimization Methods and Applications : In Honor of Ivan V. Sergienko’s
80th Birthday, S. Butenko, P. M. Pardalos, and V. Shylo, Eds. Cham: Springer Inter-
national Publishing, 2017, pp. 217–237.

104

[91] P. S. Segundo, S. Coniglio, F. Furini, and I. Ljubić, “A new branch-and-bound algorithm
for the maximum edge-weighted clique problem,” European Journal of Operational Re-
search, vol. 278, no. 1, pp. 76 – 90, 2019.

[92] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko, “A lagrangian bound on the clique
number and an exact algorithm for the maximum edge weight clique problem,” IN-
FORMS Journal on Computing, 2019.

[93] S. Shimizu, K. Yamaguchi, and S. Masuda, “A branch-and-bound based exact algorithm
for the maximum edge-weight clique problem,” in Computational Science/Intelligence
& Applied Informatics, R. Lee, Ed. Cham: Springer International Publishing, 2019,
pp. 27–47.

[94] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[95] N. Krislock, J. Malick, and F. Roupin. (2019) BiqCrunch numerical results. [Online].
Available: https://www-lipn.univ-paris13.fr/BiqCrunch/results

https://www-lipn.univ-paris13.fr/BiqCrunch/results

105

APPENDIX A EXTENDED COMPUTATIONAL EXPERIMENTS -
BDD-BASED OPTIMIZATION FOR THE QUADRATIC STABLE SET

PROBLEM

Tables A.1, A.2, and A.3 present the extended computational experiments associated with the
summarized Table 6.2 which is discussed in Section 6.5. Columns 1, 2, and 3 are associated
to the instance properties, size n, density p, and percentage of positive coefficients in Q v,
respectively. Columns 4 and 5 correspond to the instance id for a given n − p − v and the
optimal objective value. Columns 6, 7, 8, 9, and 10, present the solving time when using
BiqCrunch, CPLEX linearizing, CPLEX non-linearizing, Gurobi, and the Hybrid BDD-MIP,
respectively. The time limit is set to 7, 200 seconds. Finally, column 11 presents the speedup
obtained by the BDD-MIP algorithm with respect to the best solving time between all the
benchmarks.

Similarly, Tables A.4, A.5, and A.6 present the extended computational experiments on larger
instances with size n ∈ {175, 200, 250} associated with the summarized Table 6.3 which is
discussed in Section 6.5. Columns 1, 2, and 3 are associated to the instance properties, size n,
density p, and percentage of positive coefficients in Q (v), respectively. Column 4 corresponds
to the instance id for a given n− p− v. Columns 5, 6, 7, and 8 are associated with Gurobi
and present the best lower bound (LB), the best upper bound (UB), the optimality gap
(calculated as (UB-LB)/UB), and the computing time. Columns 9, 10, 11, 12, 13, and 14 are
related to the hybrid BDD-MIP. They present, in order from 9 to 14, the number of BDD
nodes explored, the number of BDD nodes pruned by the MIP solver, the best lower bound
(LB), the best upper bound (UB), the optimality gap, and the computing time, respectively.
The time limit is set to 7, 200 seconds. Finally, column 15 presents the speedup obtained by
the BDD-MIP algorithm with respect to Gurobi.

106

Table A.1 Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch CPLEX Gurobi Hybrid Speedups
Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark
100 25 25 1 882 525.68 234.79 83.75 62.26 17.22 3.62
100 25 25 2 813 1106.77 318.86 130.86 97.60 25.49 3.83
100 25 25 3 792 1785.48 264.29 124.78 94.40 30.80 3.06
100 25 50 1 2576 7200.00 845.72 119.33 259.56 23.68 5.04
100 25 50 2 2468 7200.00 662.94 163.72 369.53 40.01 4.09
100 25 50 3 2509 7200.00 676.46 132.64 233.55 44.78 2.96
100 25 75 1 4758 7200.00 1257.45 1516.95 189.03 175.52 1.08
100 25 75 2 4877 7200.00 951.13 1606.76 218.82 168.34 1.30
100 25 75 3 5014 7200.00 819.99 1042.85 144.14 157.21 0.92
100 50 25 1 607 831.41 17.61 10.35 10.89 0.68 15.22
100 50 25 2 459 814.58 18.94 9.90 11.64 0.70 14.14
100 50 25 3 542 842.47 18.30 8.76 10.74 0.78 11.23
100 50 50 1 1163 4100.00 48.09 13.00 11.46 0.80 14.33
100 50 50 2 1138 4493.42 55.01 11.72 10.36 0.80 12.95
100 50 50 3 1002 5902.90 60.56 15.78 13.08 0.90 14.53
100 50 75 1 1829 7038.16 90.58 29.85 12.72 0.73 17.42
100 50 75 2 2047 5948.31 84.30 27.43 14.38 0.70 20.54
100 50 75 3 1748 7046.40 93.89 34.25 16.02 0.78 20.54

107

Table A.2 (Continued) Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch CPLEX Gurobi Hybrid Speedups
Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark
100 75 25 1 267 527.32 5.04 4.68 1.01 0.05 20.20
100 75 25 2 378 440.87 3.19 3.86 0.97 0.06 16.17
100 75 25 3 273 417.62 3.45 4.00 1.12 0.06 18.67
100 75 50 1 483 1435.61 15.82 4.69 1.57 0.05 31.40
100 75 50 2 507 1335.20 18.28 3.96 1.52 0.06 25.33
100 75 50 3 525 1299.99 17.90 4.13 1.61 0.06 26.83
100 75 75 1 607 1255.21 29.69 5.95 1.66 0.05 33.20
100 75 75 2 757 1148.03 36.99 6.14 1.79 0.05 35.80
100 75 75 3 843 1084.15 24.79 6.28 1.67 0.06 27.83
150 25 25 1 1248 7200.00 5638.62 7200.00 1749.09 531.48 3.29
150 25 25 2 1229 7200.00 4117.49 5267.68 1726.29 585.53 2.95
150 25 25 3 1116 7200.00 4572.44 7200.00 1348.20 565.40 2.38
150 25 50 1 3322 7200.00 7200.00 7200.00 7200.00 824.74 8.73
150 25 50 2 3016 7200.00 7200.00 7200.00 7200.00 1078.56 6.68
150 25 50 3 3225 7200.00 7200.00 7200.00 6356.28 761.80 8.34
150 25 75 1 6962 7200.00 7200.00 7200.00 7200.00 2490.08 2.89
150 25 75 2 6438 7200.00 7200.00 7200.00 7200.00 3295.71 2.18
150 25 75 3 6332 7200.00 7200.00 7200.00 7200.00 3090.42 2.33

108

Table A.3 (Continued) Comparison between the hybrid BDD-MIP algorithm and other optimization paradigms for the QSSP

Instance BiqCrunch CPLEX Gurobi Hybrid Speedups
Linearize Not Linearize BDD-MIP

n p v # Opt. Value CPU (s) CPU (s) CPU (s) CPU (s) CPU (s) vs. best benchmark
150 50 25 1 665 6303.99 133.97 123.42 46.13 7.29 6.33
150 50 25 2 627 7200.00 134.50 135.07 44.77 7.85 5.70
150 50 25 3 642 7200.00 121.71 148.43 47.13 7.22 6.53
150 50 50 1 1500 7200.00 1166.65 168.72 82.57 7.03 11.75
150 50 50 2 1317 7200.00 1134.84 188.60 108.58 7.20 15.08
150 50 50 3 1322 7200.00 1251.19 189.40 97.30 7.94 12.25
150 50 75 1 2377 7200.00 804.81 540.03 89.54 6.52 13.73
150 50 75 2 2053 7200.00 2937.07 633.60 102.46 7.26 14.11
150 50 75 3 2293 7200.00 1516.94 573.47 82.39 6.70 12.30
150 75 25 1 451 2235.84 40.68 20.91 4.67 0.21 22.24
150 75 25 2 384 2971.97 34.10 23.21 4.61 0.21 21.95
150 75 25 3 347 3478.83 46.26 25.14 39.25 0.21 119.71
150 75 50 1 787 7200.00 79.54 25.75 44.67 0.18 143.06
150 75 50 2 873 7082.92 69.25 24.54 39.15 0.19 129.16
150 75 50 3 663 7200.00 88.54 29.18 45.32 0.20 145.90
150 75 75 1 895 7200.00 94.96 38.96 36.14 0.20 180.70
150 75 75 2 877 7200.00 99.28 37.58 65.96 0.22 170.82
150 75 75 3 888 7200.00 67.40 39.20 44.73 0.21 186.67

109

Table A.4 Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances
Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs
Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)
175 25 25 1 1298 1298 0 6063.74 100104 96669 1298 1298 0 2983.63 2.03
175 25 25 2 1118 2188 0.96 7200.00 136983 131702 1118 1118 0 4639.45 1.55
175 25 25 3 1043 2649 1.54 7200.00 138306 133879 1043 1043 0 4774.72 1.51
175 25 50 1 3207 9869 2.08 7200.00 117025 113546 3774 3774 0 4410.49 1.63
175 25 50 2 2803 9832 2.51 7200.00 109835 106377 2995 2995 0 5192.52 1.39
175 25 50 3 3671 9238 1.52 7200.00 114012 110094 3671 3671 0 4455.41 1.62
175 25 75 1 7680 15409 1.01 7200.00 83874 81458 7680 7680 0 5798.34 1.24
175 25 75 2 6349 16314 1.57 7200.00 45098 42883 6587 13787 1.09 7200.00 1.00
175 25 75 3 6482 16216 1.50 7200.00 53546 51560 6686 13022 0.95 7200.00 1.00
175 50 25 1 717 717 0 87.59 7771 0 717 717 0 15.29 5.73
175 50 25 2 895 895 0 119.58 5631 0 895 895 0 12.85 9.31
175 50 25 3 728 728 0 144.89 8112 0 728 728 0 16.77 8.64
175 50 50 1 1263 1263 0 227.98 15932 1 1263 1263 0 23.38 9.75
175 50 50 2 1351 1351 0 231.20 16065 6 1351 1351 0 23.79 9.72
175 50 50 3 1249 1249 0 210.36 17719 1 1249 1249 0 24.87 8.46
175 50 75 1 2298 2298 0 262.08 12384 9 2298 2298 0 19.13 13.70
175 50 75 2 2145 2145 0 251.34 14259 4 2145 2145 0 18.96 13.26
175 50 75 3 2335 2335 0 269.36 14161 3 2335 2335 0 21.62 12.46
175 75 25 1 371 371 0 53.68 255 0 371 371 0 0.34 157.88
175 75 25 2 402 402 0 61.77 246 0 402 402 0 0.33 187.18
175 75 25 3 409 409 0 58.75 260 0 409 409 0 0.38 154.61
175 75 50 1 642 642 0 88.12 373 0 642 642 0 0.36 244.78
175 75 50 2 621 621 0 62.12 308 0 621 621 0 0.35 177.49
175 75 50 3 713 713 0 76.97 285 0 713 713 0 0.34 226.38
175 75 75 1 900 900 0 102.81 528 0 900 900 0 0.40 257.03
175 75 75 2 917 917 0 72.70 387 0 917 917 0 0.35 207.71
175 75 75 3 1048 1048 0 75.28 376 0 1048 1048 0 0.37 203.46

110

Table A.5 (Continued) Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances
Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs
Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)
200 25 25 1 1233 5102 3.14 7200.00 98742 91409 1228 5495 3.47 7200.00 1.00
200 25 25 2 1229 5587 3.55 7200.00 91540 83594 1226 5651 3.61 7200.00 1.00
200 25 25 3 1255 5436 3.33 7200.00 89152 81142 1239 5612 3.53 7200.00 1.00
200 25 50 1 3171 16197 4.11 7200.00 72480 64032 3849 12251 2.18 7200.00 1.00
200 25 50 2 3136 16659 4.31 7200.00 63830 55759 3373 13135 2.89 7200.00 1.00
200 25 50 3 3001 15599 4.20 7200.00 73882 66552 3558 11944 2.36 7200.00 1.00
200 25 75 1 5850 25718 3.40 7200.00 20924 15712 7170 20751 1.89 7200.00 1.00
200 25 75 2 7556 24668 2.26 7200.00 33217 26997 7822 19175 1.45 7200.00 1.00
200 25 75 3 7448 25614 2.44 7200.00 35343 29168 7896 19121 1.42 7200.00 1.00
200 50 25 1 733 733 0 227.33 15466 0 733 733 0 36.39 6.25
200 50 25 2 755 755 0 252.20 14753 0 755 755 0 35.42 7.12
200 50 25 3 712 712 0 309.93 16279 0 712 712 0 41.92 7.39
200 50 50 1 1443 1443 0 813.54 30418 1 1443 1443 0 61.04 13.33
200 50 50 2 1433 1433 0 490.51 26524 0 1433 1433 0 52.33 9.37
200 50 50 3 1570 1570 0 426.39 25492 1 1570 1570 0 50.36 8.47
200 50 75 1 2550 2550 0 478.93 22468 9 2550 2550 0 46.65 10.27
200 50 75 2 2445 2445 0 522.66 19816 1 2445 2445 0 36.93 14.15
200 50 75 3 2410 2410 0 513.28 25190 8 2410 2410 0 48.76 10.53
200 75 25 1 484 484 0 106.55 351 0 484 484 0 0.52 204.90
200 75 25 2 390 390 0 100.98 394 0 390 390 0 0.54 187.00
200 75 25 3 546 546 0 116.14 251 0 546 546 0 0.53 219.13
200 75 50 1 905 905 0 129.93 374 0 905 905 0 0.54 240.61
200 75 50 2 956 956 0 112.08 367 0 956 956 0 0.53 211.47
200 75 50 3 714 714 0 144.32 399 0 714 714 0 0.51 282.98
200 75 75 1 1106 1106 0 158.00 558 0 1106 1106 0 0.61 259.02
200 75 75 2 1050 1050 0 153.22 539 0 1050 1050 0 0.56 273.61
200 75 75 3 1219 1219 0 172.42 339 0 1219 1219 0 0.51 338.08

111

Table A.6 (Continued) Comparison between the hybrid BDD-MIP and Gurobi for QSSP instances with n ∈ {175, 200, 250}

Instances
Gurobi Hybrid BDD-MIP

SpeedupsBDD-nodes subMIPs
Group n p v Best LB Best UB Opt. Gap CPU time (s) explored solved Best LB Best UB Opt. Gap CPU time (s)
250 50 25 1 898 898 0 1149.65 34998 3 898 898 0 157.53 7.30
250 50 25 2 826 826 0 733.51 44231 1 826 826 0 192.68 3.81
250 50 25 3 874 874 0 1184.44 34912 1 874 874 0 164.12 7.22
250 50 50 1 1557 1557 0 2208.99 84926 3 1557 1557 0 428.82 5.15
250 50 50 2 1532 1532 0 2159.86 84933 4 1532 1532 0 463.70 4.66
250 50 50 3 1645 1645 0 2372.39 81951 8 1645 1645 0 432.17 5.49
250 50 75 1 2744 2744 0 2889.24 86741 77 2744 2744 0 476.84 6.06
250 50 75 2 2678 2678 0 2950.96 97142 77 2678 2678 0 427.36 6.91
250 50 75 3 2751 2751 0 2546.23 77539 30 2751 2751 0 416.00 6.12
250 75 25 1 560 560 0 447.82 429 0 560 560 0 1.27 352.61
250 75 25 2 446 446 0 356.40 723 0 446 446 0 1.42 250.99
250 75 25 3 426 426 0 369.74 775 0 426 426 0 1.50 246.49
250 75 50 1 771 771 0 422.91 1343 0 771 771 0 1.54 274.62
250 75 50 2 828 828 0 418.07 1135 0 828 828 0 1.41 296.50
250 75 50 3 709 709 0 670.93 2096 0 709 709 0 1.72 390.08
250 75 75 1 1103 1103 0 533.13 1543 0 1103 1103 0 1.52 350.74
250 75 75 2 1067 1067 0 501.15 2273 0 1067 1067 0 1.69 296.54
250 75 75 3 1176 1176 0 580.04 1367 0 1176 1176 0 1.40 414.31

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Background and motivation
	1.1.1 Mixed-integer programming problems
	1.1.2 Decision diagram-based optimization
	1.1.3 Machine learning concepts

	1.2 Research objectives
	1.3 Thesis outline

	2 RELATED WORK
	2.1 Integrated optimization methods
	2.2 Decision diagrams integration
	2.3 Machine learning for optimization

	3 THESIS ORGANIZATION
	4 LEARNING TO DISCRIMINATE PROBLEM-SPECIFIC INSTANCE HARDNESS WHEN USING A MIP SOLVER
	4.1 Introduction
	4.2 Learning methodology for predicting instance hardness
	4.2.1 Stable set problems

	4.3 Learning to classify problem-specific easy/hard instances for a MIP solver
	4.3.1 Classifying MSSP instance hardness
	4.3.2 Classifying QSSP instance hardness

	4.4 Learning to linearize/not-linearize the QSSP for a MIP solver based on QSSP-specific features
	4.4.1 Comparison with the automated classifier in CPLEX 12.10

	4.5 Conclusions

	5 ARTICLE 1: INTEGRATED INTEGER PROGRAMMING AND DECISION DIAGRAM SEARCH TREE WITH AN APPLICATION TO THE MAXIMUM INDEPENDENT SET PROBLEM
	5.1 Introduction
	5.2 Preliminaries and notation
	5.3 A hybrid DD-ILP approach
	5.3.1 Supervised learning to identify complementarity
	5.3.2 Learning to explore within a hybrid DD-ILP for MISP

	5.4 Computational experiments with the DD-ILP approach
	5.4.1 Comparison versus a traditional portfolio-based algorithm selection approach
	5.4.2 Sensitivity analysis on the ILP-based pruning strategy

	5.5 Conclusion

	6 ARTICLE 2: BDD-BASED OPTIMIZATION FOR THE QUADRATIC STABLE SET PROBLEM
	6.1 Introduction
	6.2 The quadratic stable set problem
	6.3 A decision diagram representation for the QSSP
	6.3.1 A dynamic programming model for the QSSP
	6.3.2 Constructing the BDD representation for the QSSP
	6.3.3 Approximate decision diagrams for the QSSP

	6.4 A BDD-based hybrid optimization approach for the QSSP
	6.4.1 BDD-based search scheme
	6.4.2 Hybrid BDD-MIP mechanisms

	6.5 Computational experiments on the QSSP
	6.6 Conclusions

	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATIONS
	8.1 Summary of works
	8.2 Limitations and future research

	REFERENCES
	APPENDICES

