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RÉSUMÉ

De nombreux problèmes de la vie courante comportent des décisions discrètes, et peuvent être
modélisés sous la forme de programmes d’optimisation en nombres entiers. De tels modèles
peuvent désormais être résolus efficacement à l’aide de solveurs matures comportant un vaste
arsenal algorithmique, ce qui explique l’utilisation quotidienne de la programmation mathé-
matique mixte en nombres entiers (PNE) dans de multiples secteurs. Alors que les techniques
d’apprentissage automatiques (à partir d’exemples) sont de plus en plus mises en œuvre pour
l’analyse de données et la predicion, une attention nouvelle est donnée à l’apprentissage
dans le contexte d’algorithmes d’optimisation, notamment dans les choix algorithmiques des
solveurs de PNE. Cette thèse s’inscrit dans ce courant de recherche : nous analysons et pro-
posons de nouvelles méthodes pour intégrer des techniques d’apprentissage automatique au
sein d’algorithmes d’optimisation, et explorons le potentiel de cette interaction.

Premièrement, nous passons en revue l’état de l’art quant à l’utilisation de techniques
d’apprentissage automatique pour la sélection de variables et de nœuds dans un arbre de
branchement. Plusieurs travaux de PNE sont identifiés comme précurseurs d’approches
basées sur l’apprentissage automatique. En discutant les hypothèses et questions sous-
jacentes de ces décisions, nous proposons un nouveau cadre pour analyser les approches
récentes d’apprentissage, et soulignons des nouvelles perspectives quant à l’utilisation de
l’apprentissage pour guider le branchement.

Deuxièmement, nous développons un modèle de classification pour identifier si un programme
d’optimisation quadratique convexe avec variables mixtes doit être linéarisé ou non. En par-
ticulier, cette approche vise à exploiter, au sein du processus d’apprentissage, la connais-
sance de l’algorithme d’optimisation. Comme le montre l’implémentation au sein du solveur
IBM-CPLEX, ces travaux décrivent plus largement une méthodologie pour combiner des
technologies d’apprentissage et de PNE.

Troisièmement, nous employons une approche basée sur la classification des séries temporelles
pour prédire, après avoir utilisé une fraction du temps de calcul alloué, si un problème de
PNE sera résolu ou non dans le temps imparti par l’utilisateur. Plus généralement, ces
expériences sont un point de départ pour explorer comment des algorithmes d’apprentissage
automatique peuvent utiliser l’information du processus de branchement pour en identifier
les tendances, et éventuellement influencer la résolution.

Enfin, nous présentons un nouveau cadre d’apprentissage par imitation pour le problème
de sélection de variable dans un arbre de branchement. Afin d’obtenir des stratégies de
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branchement pouvant être généralisées à des instances de PNE génériques, nous introduisons
un nouveau modèle d’aprentissage qui prend en compte l’évolution de l’arbre de branche-
ment et le rôle des variables candidates. En plus d’atteindre les performances recherchées,
cette approche offre de nouvelles bases pour de futures recherches sur les algorithmes de
branchement.
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ABSTRACT

A variety of real-world tasks involve decisions of discrete nature, and can be mathematically
modeled as Mixed-Integer Programming (MIP) optimization problems. Daily deployed in
multiple application domains, MIP formulations are nowadays solved effectively and reliably,
thanks to the complex and rich algorithmic frameworks developed in modern MIP solvers.
With machine learning (ML) being extensively leveraged to “learn from examples”, new
attention has been given to the application of learned predictions in optimization settings,
especially in the context of MIP solvers’ algorithmic design. The present thesis contributes
to this thread of research: we discuss and propose novel methods on the theme of using ML
algorithms alongside MIP ones, and explore some opportunities of this fruitful interaction.

First, to document ML attempts addressing the decisions of variable and node selection in
Branch and Bound (B&B), we present a survey on learning and branching. By interpreting
previous MIP literature contributions as forerunners of ML-based works, and discussing the
assumptions and concerns underlying these critical heuristic decisions, we provide an original
canvas to analyze recent learned approaches and outline new points of view.

Second, we develop a classification framework to tackle the algorithmic question of whether to
linearize convex quadratic MIPs, aiming at a tight integration of the optimization knowledge
in the learning pipeline. As experiments practically led to the deployment of a classifier in the
IBM-CPLEX optimization solver, the work more generally outlines a reference methodology
for the combination of ML and MIP technologies.

Third, we employ a feature-based sequence classification approach to predict, after only a
fraction of the available computing time has passed, whether a MIP will be solved before
time-limiting. From a broader perspective, the experiments represent a starting point for
exploring how statistical learning algorithms could utilize data from B&B to identify trends
in MIP optimization, and possibly influence the resolution process.

Finally, we contribute a novel imitation learning framework for variable selection. With the
goal of learning branching policies that generalize across generic MIP instances, we introduce
a new architectural paradigm that places at its center the evolution of B&B search trees and
the role of candidate variables within it. On top of establishing the sought generalization
capabilities, the approach offers fresh and promising ideas for future research on branching.
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CHAPTER 1 INTRODUCTION

Mixed-Integer Programming (MIP) problems are optimization problems in which some de-
cision variables represent discrete or indivisible choices. Formulations of this kind naturally
model a number of real-world situations, making MIP a very successful paradigm to tackle
decision-making tasks that arise from a wide variety of application domains – from trans-
portation and energy, to healthcare and logistic operations.

Despite beingNP-hard problems, MIPs can nowadays be solved in reliable and effective ways:
MIP computation witnessed dramatic advances over the last decades [1,2], and modern MIP
solvers now tackle a wide range of instances by leveraging an extensive collection of both exact
and heuristic algorithms. Notably, even exact methods employed to solve MIPs – among all,
Branch and Bound (B&B) [3] – comprise a number of heuristic decisions in their design, to
the extent that one could consider MIP solvers as systems that solve problems exactly while
being intrinsically heuristic in nature [4]. In addition, many ideas from different domains (e.g.,
constraint programming, metaheuristics, satisfiability) have been successfully incorporated
in MIP algorithms over the years [5], outlining an ongoing hybridization process of MIP
techniques. As a result, the MIP algorithmic framework stands out today as a data-rich,
interconnected and complex environment.

At the same time, the machine learning (ML) concept of “learning from examples” has been
effectively leveraged in several domains to develop algorithms that learn from experience
(i.e., from data, observations) how to perform a given task. While mathematical optimiza-
tion intrinsically lies at the core of ML methods, recent years have also seen a rise in the
application of learned predictions to optimization settings [6]. In particular, a fascinating
question concerns the use of ML techniques in the algorithmic design of optimization solvers,
independently of the application domain in which such algorithms are used.

The present thesis aims to explore this question, and focuses on applying ML to the MIP
algorithmic framework. We see the ML paradigm as a way of complementing the capabili-
ties of a general-purpose MIP solver and providing operational indications about structural
decisions for which we lack in-depth understanding. In this sense, we believe ML algorithms
could provide new tools for MIP computation, and lead it towards even more flexible and
sophisticated outcomes.

The general goal of this research is thus to identify and analyze some original opportunities
ML techniques may offer within the MIP algorithmic ecosystem, and subsequently develop
and implement novel methods combining both technologies.
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The rest of this chapter introduces basic definitions and concepts on MIP resolution methods
and ML approaches, which are essential to discuss our research contributions and objectives.

1.1 Background and motivation

We define a general Mixed-Integer Program (MIP) as the optimization problem

z∗ = min{f(x) : Ax ≤ b, xj ∈ Z ∀j ∈ I}, (1.1)

where a real-valued objective function f : Rn −→ R is minimized over variables x ∈ Rn,
A ∈ Rm×n, b ∈ Rm and I ⊆ N = {1, . . . , n} is the set of indices of variables that are required
to be integral. We refer to XMIP = {x ∈ Rn : Ax ≤ b, xj ∈ Z ∀j ∈ I} as to the set of feasible
solutions1 of MIP (1.1). A feasible solution x∗ ∈ XMIP is called optimal if f(x∗) = z∗.

When integrality requirements xj ∈ Z ∀j ∈ I are dropped, one obtains the continuous
relaxation of MIP (1.1),

zP = min{f(x) : x ∈ XP}, XP = {x ∈ Rn : Ax ≤ b}. (1.2)

Note that
XMIP ⊆ XP =⇒ zP ≤ z∗, (1.3)

i.e., the objective function value of the continuous relaxation (1.2) provides a lower bound to
the optimal value of a MIP solution.

Different types of MIPs arise depending on the properties of the objective function (and, in
general, also on the types of constraints, which we fix here as a system of linear inequalities
Ax ≤ b). In particular, when f is linear, f(x) = cTx for some c ∈ Rn, one obtains a so-called
Mixed-Integer Linear Program (MILP),

z∗ = min{cTx : Ax ≤ b, xj ∈ Z ∀j ∈ I}, (1.4)

and its corresponding continuous relaxation is usually referred to as a Linear Programming
(LP) relaxation. While a MILP is in general NP-hard, its LP relaxation is polynomially
solvable, and it is routinely dealt with efficiently in MIP solvers. Though most of the thesis
focuses on MILPs, we will also encounter Mixed-Integer Quadratic Programs (MIQP), i.e.,
MIPs in which a quadratic objective function f(x) = 1

2x
TQx+ cTx, Q ∈ Rn×n, is minimized

1Being (1.1) a minimization problem, one should call solution to it a proper minimizer that also satisfies
the constraints; however, the MIP community historically utilizes the term to identify all feasible points, i.e.,
the solutions of the satisfiability problem expressed by the constraints of (1.1).
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under a set of linear constraints (see Chapter 4). The algorithmic framework for solving
MIQPs significantly relies on MILP technology, which is (older and) overall more mature.
We thus present in what follows the fundamental components of modern general-purpose
MI(L)P solvers; for further details, the reader is referred to [7, 8].

1.1.1 Solving MILPs

The backbone algorithm of any modern MILP solver is the exact tree search method of Branch
and Bound (B&B) [3]. Simply put, B&B follows a divide-and-conquer approach to partition
the solution space of a MILP: branching refers to the operation of iteratively splitting the
feasible region into smaller and easier-to-solve subproblems, each of which is mapped into a
node of a decision tree. In addition, a bounding mechanism is used to prune unpromising
branches from the search, avoiding the need of a full enumeration of the exponentially many
solutions of a MILP and thus making B&B an implicit enumeration algorithm.

Starting with the initial MILP formulation (1.4) as the root node, at every node (including
the root) integrality requirements are dropped and the LP relaxation is solved to obtain an
optimal LP solution x∗. If x∗ satisfies x∗j ∈ Z ∀j ∈ I then it is also a feasible solution for
the original MILP, and it provides an upper bound to the optimal value z∗. Otherwise, some
variable with index in I must be violating the integrality requirements, and its fractional
value in x∗ can be used to split the variable’s domain. More formally, C = {i ∈ I : x∗i /∈ Z}
defines the index set of fractional variables which are candidates for branching at a given
node, after the LP relaxation is solved. The branching problem (variable selection) consists
in selecting a variable j ∈ C to create child nodes according to the split

xj ≤ bx∗jc ∨ xj ≥ dx∗je. (1.5)

Child nodes inherit a lower bound estimate from their parent, and (1.5) ensures that x∗ is
removed from their solution spaces (Figure 1.2a). Note that while the theoretical complexity
of the created subproblems remains the same of the parent’s one, the partition mechanism
makes sub-MILPs smaller (and easier to solve) as the algorithm proceeds. After extending
the tree by branching, the algorithm moves on to choose a new node from a list of open nodes,
i.e., leaves in the search tree yet to be explored (node selection). A new relaxation is solved,
and the exploration continues.

Maintaining global upper and lower bounds (called incumbent and best bound, respectively)
and solving LP relaxations at each node allow the pruning of large portions of the search
space. Specifically, node fathoming happens in three possible ways: by integrality, when the
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Figure 1.1 Example of a MILP branch-and-bound tree.

relaxed solution x∗ is also feasible for (1.4); by infeasibility of the sub-problem, i.e., when
no x∗ is found; by bound, when the comparison of the node’s lower bound to the incumbent
proves that its sub-tree is not worth further exploration (Figure 1.1). At any point of the
resolution process the gap between the global bounds allows to measure the quality of the
present solution, and an optimality certificate is ultimately reached when the global bounds
converge.

Besides applying the branching dichotomy (1.5) to rule out the LP solution x∗ of a subproblem
from future exploration, one can also try to tighten the relaxation itself by introducing cutting
planes [9]. A cut is a linear inequality αTx ≤ β that separates x∗ from the convex hull of
XMIP (see Figure 1.2b), in the sense that

αTx∗ > β and αTx ≤ β is valid for (1.4). (1.6)

Even though a pure cutting plane algorithm is guaranteed to converge in a finite number
of iterations [9–11], neither cuts nor branching are in practice used alone: on the one side,
adding too many cuts can result in larger LPs and numerical issues for the solver; on the
other side, LP relaxations are rarely good approximations of the convex hull of XMIP , and
some amount of strengthening (especially at the root node) can greatly help before and
during the branching procedure. The resulting branch-and-cut (B&C) paradigm [12] is what
general-purpose MILP solvers are nowadays based on.

Clearly, an incumbent found early on in the resolution process can significantly help to prune
the B&C tree, and consequently reduce the number of nodes needed to prove optimality. Be-
sides, sometimes a proof of optimality may not be computationally viable, and a good feasible
solution becomes practically more important. Another valuable component of MILP solvers
consists of primal heuristics [13], i.e., algorithms that aim to find (good) integer feasible so-
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Figure 1.2 (a) Branching on the fractional value of variable x1, from the solution x∗ of the LP
relaxation. (b) Separation of x∗ from the convex hull of integer feasible solutions conv(XMIP)
via cutting plane.

lutions quickly – arguably the first goal one has in mind when starting to solve a MILP [14].
These procedures range from being very simple to very complex, and often incorporate con-
cepts such as rounding, diving, and local search. Within MILP solvers, heuristics are usually
run as periodic subroutines throughout the B&B search or as standalone procedures; paired
with increasingly more sophisticated presolve and domain propagation steps [1, 5], they all
contribute to the rich technology available today to tackle MILPs.

1.1.2 Machine learning in the picture

Even though general-purpose MIP solvers reached a mature and stable performance over
the last decades, their algorithmic environment is anything but rigid: the flexibility of the
MIP framework is highlighted in [4], and it is decisively linked to the fact that heuristic
techniques and choices are everywhere in state-of-the-art algorithms. For example, the two
crucial decisions of variable and node selection in B&B follow heuristic rules, which have
been expertly tuned over many years and many computational studies (e.g., [5, 15]) to be
effective across widely heterogeneous problem instances. When branching, though, a single
bad decision at the beginning of the search could lead to no improvement and a doubled tree
size, so employing clever branching schemes is critical for B&B success.

In some way, the intrinsically heuristic nature and the resulting flexibility of MIP algorithms
can be viewed at the same time as a blessing and a curse for modern solvers: tie breaking
mechanisms are far from perfect, and seemingly neutral changes (e.g., the order in which
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variables are specified in the mathematical model) can have unpredictable consequences due
to performance variability [16,17]. On the one hand, works like [18,19] showed that variability
should not be viewed as an altogether bad phenomenon in MIP solving, and that it can be
leveraged to stabilize and ultimately improve the solver performance. On the other hand, the
sequential character of B&C and the tight connection between different solver components
can produce unchecked cascade effects from individual heuristic decisions. An example of
this is the choice of an LP basis among equivalent optimal ones at every relaxation, but in
particular at the root node: which cuts are generated, which variable is branched on and
which heuristics are applied, are all choices that depend to some extent from the selected
initial LP basis. In some other situations, one may also lack theoretical understanding of
more structural algorithmic decisions, as it might not be evident which solution method
should be used or which formulation should be preferred to tackle a problem effectively.

Machine learning naturally lends itself as a tool to approach this type of concerns. As already
mentioned, ML leverages the paradigm of learning from examples to infer a prediction rule,
following a decision function that is acquired via optimization of a specific criterion. A little
more formally, if we denote by D = {z1, . . . , zn} a set of examples and by F a parameterized
family of functions (e.g., that of all linear hyper-planes), the aim is to fit a map f ∈ F over
points in D, according to a loss functional L : F × D −→ R that evaluates the quality of
the fitting. The ultimate ML goal is to find (learn) a predictive function that will generalize,
i.e., perform well on future, unseen examples.

Different types of prediction targets characterize different ML tasks [20]. In supervised learn-
ing, examples are features-label pairs: features describe a sample in order for it to be quali-
tatively labeled among a number of categories (classification), or quantitatively assigned to
a real value (regression). When targets are not specified in the data (unsupervised learning),
the goal is to discover patterns, similarities and alternative representations for the samples.
In reinforcement learning [21], instead, an agent has to learn from its own collected experi-
ence how to interact with an uncertain environment in order to maximize a reward function:
perceiving information about the environment in the form of a state representation, the agent
follows an internal policy to select the next state-changing action.

Learning process and predictive functions can utilize various techniques, ranging from tra-
ditional regression or tree-based models, to ensemble and Bayesian methods. More recently,
there has been substantial effort in developing deep learning algorithms, which rely on arti-
ficial neural network architectures to process raw input features and automatically extract
additional information that is valuable for the predictive task [22].

While a detailed introduction to ML and its paradigms can be found in Chapter 3 (Section
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3.2), we note here how the ML approach could be leveraged in MIP computation, in partic-
ular in the algorithmic design of general-purpose solvers. Indeed, learned predictive models
could be used where heuristic decision making is currently performed, to either refine or
replace existing hard-coded rules, formulas and fixed algorithms’ parameters. As we already
observed, the MIP solving environment is inherently full of possibilities in this sense: variable
and node selection, cutting planes and primal heuristics management are only some of the
most intuitive options. Moreover, the integration of ML tools in the algorithmic system could
involve different learning paradigms and approaches, and occur on various levels. For exam-
ple, when tackling variable selection in B&B one could aim at mimicking existing branching
schemes in a supervised way (e.g., with the goal of speeding up computations), or instead
seek to learn how to flexibly utilize existing rules and adjust their parameters, or even learn
an altogether new policy by reinforcement learning.

Libraries for MIP benchmarks have been growing their instance count (see, e.g., [23,24]), and
although gathering a dataset requires some careful considerations, so many decisions happen
during the MIP optimization process that data itself – the foundation of ML approaches – is
not missing. In fact, information from the resolution process is abundant yet mostly unex-
ploited by state-of-the-art MIP solvers; in particular, it is not typically used in any statistical
way to support decision making. While heuristic components are natural candidates for ML
applications, outputs from the overall B&C optimization could be leveraged to identify trends
and performance issues, monitoring (and, ideally, strategically conditioning) the search itself.

Finally, the combination of ML into MIP algorithmic design well fits into the ongoing hy-
bridization of MIP (exact) techniques, which has proven to be a successful approach to
develop more flexible and highly integrated solving environments.

1.2 Objectives and contributions

The general objective of this thesis is to explore opportunities in the application of statistical
learning methods to MIP algorithmic design. Specifically, this dissertation contributes four
works on the theme. The presented articles investigate different research questions and
develop novel experimental frameworks to tackle them, thus adding to the growing literature
of this recent research area, and extending its scope. The thesis is composed of self-contained
chapters, which articulate the general research goal into four different ideas; for each of them
we highlight their specific objectives as well as their achieved contributions.

On learning and branching: a survey (Chapter 3, [25])
Our first contribution consists of a survey documenting the early attempts in the application
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of ML to the B&B framework, in particular those addressing the two decisions of variable
and node selection. For each topic, we take the perspective of interpreting some fundamental
MILP contributions in the light of ML approaches; we identify their concerns and assump-
tions, and show how recent ML-based works address (or dismiss) them. The motivation for
this work comes from the need of organizing the initial ML contributions on the branching
theme: by including them within a single framework, we aim to promote their understanding
and discussion, as well as the identification of future research directions. To achieve that,
the survey includes an introduction to ML and its paradigms, together with a discussion of
transversal ML notions (e.g., feature engineering, generalization) that will be examined in
the subsequent chapters as well.

A classifier to decide on the linearization of MIQPs in CPLEX (Chapter 4, [26,27])
The second work tackles the question of whether to linearize the quadratic part of convex
MIQPs when solving them with the IBM-CPLEX solver [28]: the decision deals with the
reformulation of a MIQP during the preprocessing phase, and substantially conditions the
downstream resolution algorithms employed by the solver. While CPLEX provides its users
a switch parameter to decide on the linearization step, the decision is not clear cut: the goal
of the paper is to use ML statistical tools to cast a prediction on this algorithmic choice. To
pursue this objective, we frame the question linearize vs. not linearize as a classification one,
and explore it by building a dataset of synthetic and real-world instances, proposing labeling
schemes and carefully engineer features. The ML experiments and the evaluation metrics are
designed to tightly integrate the optimization knowledge in the learning pipeline, and, as a
result, a learned classifier is deployed in CPLEX (v12.10.0) to control MIQP linearization.
These contributions allow us to establish the first example of an end-to-end integration of ML
tools into a leading commercial solver: in this sense, the work also provides a methodological
process for the combination of ML and MIP technology which we hope will serve as a reference
in the area.

Learning MILP resolution outcomes before reaching time-limit (Chapter 5, [29])
The objective of our third contribution is to explore how information from the B&C opti-
mization could be leveraged to identify trends and performance issues when solving MILPs.
The work focuses on predicting, after only a fraction of the available computing time has
passed, whether a generic MILP instance will be solved to optimality before time-limiting.
More specifically, we use CPLEX to collect data from the first portion of the B&C tree,
and apply feature-based sequence classification to predict a binary optimization outcome.
Feature design is a key step of the process: the developed features attempt to describe the
behavior of a MILP run in a quantitative way, taking into account the interplay of different
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solver’s components. While the current framework is limited to an offline setting, the work
opens promising scenarios for MILP algorithmic design, as discovering early in the resolution
process that a run will not terminate with a proof of optimality appears valuable for both
MILP developers and end-users. The good predictions achieved also support the idea of
there being a pattern in general-purpose B&C solving that is shared by heterogeneous MILP
problems, and the fact that data from the optimization process could be used in a more
structured, statistical way to get insights, trends, and ideally modify the solver behavior.

Parameterizing B&B search trees to learn branching policies (Chapter 6, [30])
The last presented work puts into practice what studied in [25] (Chapter 3) and contributes
to the learning to branch theme. While most papers on the topic propose to imitate the
strong branching rule and specialize it to distinct classes of problems, we aim instead at
learning a branching policy that generalizes across heterogeneous MILPs. Building on the
intuition gained from [29] (Chapter 5), our hypothesis is that parameterizing the state of the
B&C tree can significantly aid this type of generalization. To explore the idea, we employ
the SCIP [31] default branching scheme as the “expert” rule to be mimicked and propose
a novel imitation learning framework. We contribute new input features as well as deep
neural network architectures to represent variable selection; in particular, features contain
a description of the status of the resolution process, and architectures can handle ever-
changing inputs from the search tree. Experimental results clearly show that incorporating
information from the B&C optimization leads on average to smaller explored trees and to
better generalization properties of the learned branching policies. The developed paradigm
appears to be promising: the idea and the benefits of parameterizing the search tree could
be expanded even more in future experiments, especially in reinforcement learning settings.

1.3 Thesis outline

The remainder of this document is organized as follows. Chapter 2 contains a brief literature
review on the application of ML to MIP, and provides useful pointers to related works.
Chapters 3, 4, 5 and 6 form the main body of this thesis, and contain the four contributions
outlined above. In particular, the survey on ML-based approaches for branching (Chapter 3)
also includes a general introduction on ML paradigms and concepts, together with a review of
state-of-the-art methods for variable and node selection in B&B; both contents are relevant
for the rest of the chapters as well. In Chapter 7, we further discuss our contributions from a
broader, unified perspective, and recognize the transversal themes that emerge in the different
articles. Finally, Chapter 8 summarizes the dissertation work, comments on its limitations,
and identifies future research directions and outlooks.
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CHAPTER 2 RELATED WORKS

The idea of combining ML and discrete optimization is not new; indeed, the fields of Artificial
Intelligence (AI) and Combinatorial Optimization (CO) have been influencing each other for
decades, most notably through research in satifiability (SAT) and search algorithms. With
ML emerging as a successful AI paradigm, the last few years witnessed a renewed interest
in their integration: the probabilistic approaches of ML appeared promising in a variety of
optimization settings, so the scope of the original AI-CO interaction has extended to new
application domains and methodologies.

A considerable amount of work has been produced on the topic of algorithm configuration
(see, e.g., [32,33]): complex optimization solvers usually employ a large number of parameters
to control the interactions and executions of their algorithms, and parameters values can
dramatically impact a solver’s performance. Predictive methods have thus been applied to
find good parametric configurations, and automatize the process of tuning solvers to special
families of instances [34]. These problems are often studied together with that of runtime
prediction; in [35], for example, runtime modeling techniques and features are discussed for
SAT, MIP and travelling salesperson (TSP) instances.

The use of ML to complement and improve optimization solvers gained particular attention
in MIP-specific settings. Given the prominence of B&B in the MIP algorithmic framework,
it should not come as a surprise that the first applications of statistical learning tools in
MIP concerned precisely B&B-related heuristic decisions. In particular, works on variable
selection have been appearing at a steady pace over the last years (see, e.g., [36–40]), making
learning to branch an established theme in the present literature. Other algorithmic tasks
have also been addressed: node selection [41, 42]; the choice of running primal heuristics at
B&B nodes [43]; the decision of whether a reformulation should be applied to a MIP, and
which decomposition to choose among multiple available ones [44]. More recently, there has
been some interest in learning to select cutting planes [45,46].

Related to B&B explorations and to the already mentioned problem of runtime prediction is
the idea of estimating the difficulty of an instance, for example by taking into account the size
and shape of its explored search tree. While this type of prediction does not directly modify
the optimization process (as instead does, e.g., variable selection), its practical impact is
indeed relevant, especially when dealing with hard instances and limited computing resources.
This topic has in fact interested both AI and optimization communities since the work of [47];
in the MIP context, we highlight the works of [48, 49] and [50].
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The recent survey in [6] examines these and other works in a structured way, organizing
them along methodological and algorithmic axes, and more generally discussing relevant
issues that emerge when integrating ML into CO settings. Overall, the contributions that
we mentioned so far employ various predictive models, and more generally combine ML and
optimization according to different methodological paradigms; in addition, they also differ in
terms of which types of problems they apply to (e.g., special combinatorial classes of instances
or general MILPs). Despite their numerous differences, these works share the intention of
using ML alongside optimization to improve or automatize some algorithmic decisions. Their
predicted outcomes are embedded into exact algorithmic frameworks, with the integration
happening on different levels that range from the isolated task of parameterizing an algorithm
to repeatedly making decisions in solver’s subroutines.

It is in this fruitful thread of research that the works of the present dissertation can be po-
sitioned. Broadly speaking, the classification question of Chapter 4 can be interpreted as a
parameterization of the solver on the decision of linearizing convex MIQPs. On the topic of
learning to branch, Chapters 3 and 6 contribute a survey on the theme and a novel experi-
mental framework, respectively. Chapter 5, instead, deals with a more general prediction on
the outcome of MILP optimization, which could be leveraged to guide the resolution process
and better utilize computing resources.

The interplay between ML and discrete optimization can also be interpreted in alternative
ways. Another explored approach is that of training ML models to heuristically solve MIP
instances, e.g., by directly predicting their solutions. This paradigm has been used for design-
ing heuristics algorithms for CO problems like TSP [51,52] and other optimization problems
over graphs [53], where structure can be exploited to build solutions. Other works aim instead
to predict solution-related outcomes: in the stochastic setting of [54] a neural network learns
“tactical” aggregated solutions, while in [55] ML is used to estimate the value of optimized
solutions, without practically running the optimization.

Conversely, ML and discrete optimization can be combined the other way round, i.e., with
discrete optimization techniques being embedded in ML models. In [56,57], for example, MIP
formulations are employed to learn optimal and explainable decision trees; in [58], instead,
the column generation method is leveraged to search over exponentially many clauses when
learning a Boolean rule. Finally, the works of [59, 60] embed optimization in deep learning
frameworks by conceiving CO problems as distinctive neural network layers.
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CHAPTER 3 ARTICLE 1 – ON LEARNING AND BRANCHING: A
SURVEY

Authors: Andrea Lodi and Giulia Zarpellon1

Published in TOP, 2017.2

Abstract This paper surveys learning techniques to deal with the two most crucial decisions
in the branch-and-bound algorithm for Mixed-Integer Linear Programming, namely variable
and node selections. Because of the lack of deep mathematical understanding on those
decisions, the classical and vast literature in the field is inherently based on computational
studies and heuristic, often problem-specific, strategies. We will both interpret some of those
early contributions in the light of modern (machine) learning techniques, and give the details
of the recent algorithms that instead explicitly incorporate machine learning paradigms.

3.1 Introduction

In the last decade we have experienced the impressive development of powerful artificial
intelligence algorithms able to perform complex tasks in the form of so-called “predictions”
in contexts as diverse as image recognition, natural language interpretation, word alignment,
etc. Those algorithms are not only theoretical but, in addition, they have been effectively
deployed into reliable software packages commonly used by all sort of intelligent devices,
computers, sensors, smart TVs, and smart phones. This revolution, whose potential is not yet
fully understood and not yet fully realized, has been possible because of two main ingredients.
On the one side, the impressive increase of computing power (especially Graphical Processing
Units) paired with the enormously extended technological (hardware and software) capability
of collecting data, often in the form of examples. On the other side, the shift by (part
of) the artificial intelligence community, that of machine learning (ML, in short), of the
learning paradigm from “knowledge formalization” to “learning by examples”, which enables
perception and a form of learned intuition.

Of course, that stream of success has attracted the attention not only of the business world
but also of other scientific communities that became interested in exploring the possibility
of using ML techniques within their algorithms and methods, to be able to tackle structural
challenges that have resisted traditional approaches. Clearly, this applies to the context of

1Authors are listed alphabetically, as is standard practice in Operations Research journals and conferences.
2Available at [25].
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using ML algorithms within domain applications as healthcare, transportation, energy, and
virtually anywhere a knowledge acquisition is required by the decision-making process.

However, for mathematical optimization, one of the most fascinating question concerns the
use of ML techniques in the algorithmic design, independently of the application domain
in which optimization algorithms are used. This question can be asked in many contexts
and it is certainly related to the fact that breaking ties in optimization algorithms is far
from perfect, see, e.g., [16] and [17]. Indeed, learning mechanisms able to discover structural
properties of seemingly equivalent components of an algorithm would certainly be very useful.
For example, given the Mixed-Integer Linear Programming problem (MILP)

min{cTx : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (3.1)

learning a “better” initial basis among the equivalent (optimal) ones of the linear program-
ming (LP) relaxation

min{cTx : Ax ≥ b, x ≥ 0}, (3.2)

could lead to a reduction of the so-called performance variability (see again [17]) as well as
be beneficial from the performance standpoint (see, e.g., [19]).

In this survey, we concentrate on the questions, within such a flavor that we can call learning
for optimization, that can be asked concerning the crucial decisions of the most well-known
exact method for discrete optimization, i.e., the branch-and-bound algorithm [3].

In its basic version, the branch-and-bound algorithm iteratively partitions the solution space
into sub-MILPs (the children nodes) which have the same theoretical complexity of the
originating MILP (the father node, or the root node if it is the initial MILP). For MILP
solvers, branching usually creates two children by using the rounding of the solution of the
LP relaxation value of a fractional variable, say x`, constrained to be integral, ` ∈ I,

x` ≤ bx∗`c ∨ x` ≥ dx∗`e, (3.3)

where x∗ denotes the optimal solution of (3.2). The two children above are often referred
to as left (or “down”) branch and right (or “up”) branch, respectively. On each of the sub-
MILPs the integrality requirement on the variables xi,∀i ∈ I is relaxed and the LP relaxation
is solved. Despite the theoretical complexity, the sub-MILPs become smaller and smaller due
to the partition mechanism (basically, some of the decisions are taken) and eventually the
LP relaxation is integral for all the variables in I. In addition, the LP relaxation is solved
at every node to decide if the node itself is worthwhile to be further partitioned: if the LP
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relaxation value is already not smaller than the best feasible solution encountered so far,
called incumbent, the node can safely be fathomed because none of its children will yield a
better solution than the incumbent. Finally, a node is also fathomed if its LP relaxation is
infeasible.

Paired with the cutting plane algorithm [9] to obtain variations of the branch-and-cut paradigm
[12], the branch and bound is the most basic structural component of modern MILP solvers
(see, e.g., [2, 61]). As pointed out in [4], the exact computation performed by MILP solvers
relies on a somehow surprising collection of heuristic decisions, two of the most crucial ones
being those associated with the branching scheme outlined above, namely

· variable selection, which of the variables x`, ` ∈ I among those fractional at any node,
to branch on in (3.3), and

· node selection, which of the currently open nodes to process next.

In Section 3.3 the most traditional and effective strategies to deal with the two decisions above
are discussed. This survey documents the recent attempts to incorporate sophisticated learn-
ing mechanisms within those strategies. In order to do that, we present in Section 3.2 a brief
overview of the machine learning concepts that are required to understand the algorithms
surveyed in Sections 3.4 and 3.5. Finally, Section 3.6 discusses a few additional references re-
lated to learning within a branching tree and draws some conclusions outlining some possible
research directions.

3.2 A brief overview of machine learning

As already mentioned in Section 3.1, machine learning is the subfield of artificial intelligence
devoted to develop intelligent systems that learn from experience (i.e., from examples, or
observations) how to perform a given task. In ML, the prediction process is performed in an
operational way, using information coming from data and following some specified criterion;
optimization is undoubtedly one of the cores of this process.

The aim of this section is to make the reader familiar with the essential concepts of learning:
we will introduce the traditional learning framework and its standard tasks of supervised and
unsupervised learning in Section 3.2.1. We will then mention in Section 3.2.2 some issues
and pitfalls of learning that every researcher using ML should be aware of while developing
an application, and we will conclude the section with a brief introduction to another learning
paradigm called reinforcement learning in Section 3.2.3.

For more details and material we refer to [20–22,62].
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3.2.1 The standard learning setting and tasks

We can formalize the traditional learning framework starting with a set of n examples Dn =
{z1, z2, . . . , zn}, where we denote with zi the realization of a random variable Zi under an
unknown process P (Z). Each zi is supposed to be independently drawn from the distribution
specified by P (Z).

One wishes to learn a function f exploiting some characteristics of Dn (and hence P (Z)),
with the aim of employing it to make future predictions on new examples. The search for f is
performed among the members of a certain (parametrized) family of functions F . Together
with F , a loss functional L : (F ,Dn) → R is specified in order to evaluate the quality of
different available f ∈ F .

The ultimate goal would be to find f ∗ as a minimizer of E[L(f, Z)], the expected value of
L(f, Z) under P (Z), following the so-called expected risk minimization principle. However,
being compelled to work in a restricted space of functions F and not knowing P (Z) a priori,
one aims instead at minimizing the empirical risk, using the examples of the finite set Dn to
learn a function

fDn ∈ argminf∈F
1
n

n∑
i=1
L(f, zi), (3.4)

which will then be employed as a predictor.

The examples z ∈ Dn, the loss functional L and the prediction goal of the to-be-learned
function f ∈ F can be various: such differences in forms and intents are what characterize
different ML tasks. Not pretending to be exhaustive, we will briefly go through two main
types of learning: supervised and unsupervised ones. The intent is to familiarize with the
general framework, in order to properly locate the algorithms that will be considered later
on.

Supervised learning In supervised learning, data in Dn consist of pairs z = (x,y); we
call x ∈ Rd the input or features vector, and y the output or target. Depending on the output
type, two main predictive tasks can be identified:

· Classification: the target is a qualitative label, used to differentiate between m ∈ N
classes or categories. The scalar label y ∈ {1, . . . ,m} ⊂ Z can be encoded in y ∈ Zm,
and one could for example choose to measure the accuracy of a classifier f by means of
the classification error rate: often, the expected 0-1 loss is evaluated by considering the
loss of an example as L(f, (x,y)) = I{f(x)6=y}, where I{·} denotes the indicator function.

· Regression: the target is a quantitative output y ∈ Rm; the prediction f(x) ∈ Rm of
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a regressor f estimates the expected value of y given x. An example of loss functional
commonly used in this setting is the quadratic error L(f, (x,y)) = ‖f(x)− y‖2.

Unsupervised learning As the name suggests, in the paradigm of unsupervised learning
the prediction is performed without a “supervisor” knowing the correct answers: data does
not come with a specified target, but only as input of features z = x ∈ Rd. The aim is
to learn a function f describing in some way the unknown process P (Z) from which the
examples were drawn. Some common tasks in this setting are:

· Density estimation: f is an estimator of the distribution of input data. Since the
concept of error rate is not suited for this unlabeled context, one could aim at maxi-
mizing the (log-)likelihood of the observed data, i.e., their probability with respect to
the underlying distribution P (Z).

· Clustering: the purpose of the learning is to discover similarities within the input space.
Data can be grouped in hard-cut clusters or within a soft partition of the space; for a
new point one could predict its memberships to one or several groups.

· Dimensionality reduction: a new representation of the input data is constructed, usually
in a lower dimensional sub-space of the original input space (aiming at data visualiza-
tion, for example). The goal is to identify some important characteristics of the input
x, e.g., via selection or extraction.

Among the numerous resources available for implementing ML algorithms, it is worth men-
tioning few open-source libraries, easily accessible by not-necessarily-expert users. For exam-
ple, scikit-learn [63], mlr [64], and MachineLearning [65], which are built on the commonly
used ML programming languages Python, R, and Julia, respectively.

3.2.2 Few things to keep in mind

Undertaking a project involving ML can be a non-smooth path to pursue, especially for
beginner practitioners with a non ML-related background. The purpose of this subsection is
to warn the reader against some non-trivial issues that could easily be encountered along the
way.

The extensive discussion of those issues and the methods to overcome them is beyond the
scope of this paper. Instead, we point out the importance of performing learning with
awareness, i.e., by following the best practices of the field. An interesting outlook of these
and other concerns can be found in [66].



17

Features engineering A key step in every ML application is the design of what the input
data represent, i.e., what are the shape and the meaning of the examples z that the learned
function fDn should be receiving as argument in order to make a prediction. Often, one
would pre-process raw data x into φ(x) by means of a features extraction procedure, in order
to find a better suited representation of the problem, to be fed to a learning algorithm with.
With a minor abuse of notation, we will treat input and features indifferently, denoting them
as x or φ(x) or φ, depending on the context.

The features vector x encoded in the sample z should represent the problem at hand accu-
rately: features are domain-specific and require some a priori knowledge about the nature of
the problem, thus they are most often manually designed. Systems like those used in Deep
Learning [22] are able to learn valuable features automatically, but the human intervention is
still needed in the task of tuning the resulting complex architecture. In learning, it is possible
for a single feature to be irrelevant if considered alone, and to become very significant when
combined with other traits.

While the intuition suggests that the more features one has, the more information one will
gain and the better the prediction will be, things are not as trivial. The risk is to incur in
the so-called curse of dimensionality [67]: having many features corresponds to working in a
high-dimensional space, where a limited dataset could result in a very sparse sampling, and
the locally-based assumption that similar examples lead to similar predictions might fail.

Anyhow, features engineering is an aspect of learning that requires care and an iterative trial
process, during which some features could be added, some discarded, some others combined,
without a precise recipe to follow.

Generalization, overfitting and model selection The ability to achieve generalization
(i.e., the ability to perform well on previously unseen examples) is the fundamental property
to look for in a learned predictor. However, the fact that one is bound to search within F ,
and the availability in Dn of only a finite number of observations, make the learning of an
optimal predictor a delicate task. One of the most frequent trap when dealing with learning
is overfitting.

Broadly speaking, the phenomenon of overfitting represents the inability of a learned function
to generalize: this occurs because fDn as in (3.4) is optimized to fit the specific dataset Dn,
making 1

n

∑n
i=1 L(fDn , zi) an underestimate of the expected risk (also called generalization

error), which is computed on new never-seen examples. In particular, the more the learned
function fits the data in Dn, the more the generalization error will be optimistic. Overfitting
is strictly related to the choice of model complexity and the so-called bias-variance trade-off,
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and makes it necessary to use some caution when establishing the “best” learning model
among many.

In order to compare the performances of different learning models, a proper model selection
procedure prescribes to divide the dataset into three parts, to be used in distinct train-
ing, validation and test phases. Different hyper-parameters versions of a chosen model are
considered; each version’s parameters are optimized during the training phase on the first
share of the dataset. The learned models are then ranked with respect to their predicting
performance on the validation set, and the hyperparameters setting resulting in the best per-
formance is selected. Finally, to determine the generalization performance of the ultimately
chosen model, a neutral test set is employed; examples that were never faced before are used
in order to avoid a biased, optimistic estimation.

For further details on overfitting, standard procedures to avoid it and additional references,
we refer to [62], ch. 7.

3.2.3 Another paradigm: reinforcement learning

We introduce now a third type of learning scheme, deviating from the traditional super-
vised/unsupervised settings we outlined in Section 3.2.1. Reinforcement learning is con-
cerned with how an agent learns while interacting with an uncertain environment in order to
maximize its reward. The agent is able to perceive some information about the state of the
system it lives in, and can take state-changing actions that result into a reward signal (or
a punishment one), evaluating its behavior. Each action affects later inputs of the system,
and hence subsequent rewards; the goal is that of finding a policy maximizing the long-term
return.

The setting of a Markov decision process to be optimally controlled provides a (partial)
theoretical framework for reinforcement learning. At discrete time steps t = 0, 1, 2, . . . , the
agent observes the environment state st ∈ S, and subsequently takes an action at ∈ A(st) with
probability π(at|st). The state changes into st+1 with probability P at

st,st+1 , and an immediate
reward Rat

st,st+1 is received. The goal is to learn an optimal policy π : S → A typically
maximizing the expected long-term discounted return

G(s0, π) = E[Ra0
s0,s1 + γ Ra1

s1,s2 + · · ·+ γt Rat
st,st+1 + . . . ], (3.5)

where γ ∈ [0, 1) is the discount rate. The concept of discounting is useful in this framework
to model the fact that a future reward is worth less than an immediate one. In particular, if
γ = 0, the impact of future actions is not taken into account, i.e., the agent is short sighted
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and maximizes at each step the immediate reward only, potentially reducing its total gain.
Usually, G(s0, π) is referred to as the value of state s0 following the policy π.

A classical reference for reinforcement learning is [21]; additional material can be found in [68]
and [69].

Note that this third paradigm is inherently different from the previous two: while in super-
vised learning one is provided with examples correctly labeled with their “optimal” response,
in reinforcement learning an agent has to learn from its own experience what a good behavior
is, by a process of trial and error. Moreover, though an agent indeed discovers some implicit
characteristics of its environment, the ultimate goal of reinforcement learning is that of max-
imizing a reward, and not that of finding hidden structures within the unlabeled examples,
as it is instead for unsupervised learning.

A peculiar concern of reinforcement learning is the trade-off between exploration and ex-
ploitation. On the one hand, the agent should explore the space by trying new actions to
know if they are valuable, whereas, on the other hand, it should exploit those actions yielding
a high reward that it has already experienced. Any kind of unbalanced learning will produce
poor results.

3.3 The branch-and-bound framework

As anticipated in Section 3.1, the variable and node selections are largely seen as the most
crucial decisions in exact methods for MILP. On the one hand, branching on a variable
that does not lead to any serious simplifications on any of the (two) children can be seen
as doubling the size of the tree with no improvement, thus leading to extremely large (out
of control) search trees. On the other hand, effective MILP solvers need to provide a good
compromise between finding good solutions quickly and the chance of proving optimality in
the short-to-medium term, a trade-off which is of course related to the way the search tree
is explored.

Variable selection problem This is the task of deciding how to partition the current
node, i.e., on which variable to branch on in order to create the two children. For a long
time, a classical choice has been branching on the most fractional variable, i.e., in the 0-1 case
the closest to 0.5 (sometimes referred to as most infeasible branching, MIB in short). That
rule has been computationally shown in [70] to be worse than a complete random choice.
However, it is of course very easy to evaluate. In order to devise stronger criteria one has to
do much more work. The extreme is the so called strong branching (SB, in short) technique
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(see, e.g., [15, 71]). In its full version (FSB, in short), at any node one has to tentatively
branch on each candidate fractional variable and select the one on which the increase in the
bound on the left branch times the one on the right branch is the maximum. Of course, this
is generally very time consuming but its computational effort can be easily limited in two
ways: on the one side, one can define a much smaller candidate set of variables to branch on
and, on the other hand, can limit to a fixed (small) amount the number of simplex pivots to
be performed in the variable evaluation. Another technique is pseudocost branching (PC, in
short) which goes back to [72] and keeps a history of the success (in terms of the change in the
LP relaxation value) of the branchings already performed on each variable as an indication of
the quality of the variable itself. Among the most recent effective and sophisticated methods,
reliability branching (RB, in short) [70] integrates strong and pseudocost branchings. The
idea is to define a reliability threshold, i.e., a level below which the information of the
pseudocosts is not considered accurate enough and some strong branching is performed.
Such a threshold is mainly associated with the number of previous branching decisions that
involved the variable. Finally, hybrid branching [73] computes for each candidate variable five
different measures, chosen among typical branching scores of MILP, constraint satisfaction
and satisfiability technologies. The measures are first normalized and then combined into a
single score by means of a weighted sum.

Node selection problem This is the most classical task of deciding how to explore the
tree: one extreme is the so called best-first strategy in which one always considers the most
promising node, i.e., the one with the smallest LP value, while the other extreme is depth-first
where one goes deeper and deeper in the tree and starts backtracking only once a node is
fathomed, i.e., it is either (mixed-)integer feasible, or LP infeasible or it has a lower bound
not better (smaller) than the incumbent. The pros and cons of each strategy are well known:
the former explores less nodes but generally maintains a larger tree in terms of memory, while
the latter can explode in terms of nodes and it can, in case some bad decisions are taken at
the beginning, explore useless portions of the tree itself. All other techniques, more or less
sophisticated, are basically hybrids around these two ideas, like interleaving best-first and
diving, i.e., a sequence of branchings without backtracking, in an appropriate way. Some of
those techniques are discussed in Section 3.5.1.

Besides the fact that the above decisions are highly crucial for the effectiveness of the branch-
and-bound (B&B, in short) framework and, in general, for the MILP technology, the urge
of trying to use sophisticated learning mechanisms to guide them is motivated by their poor
understanding from the mathematical standpoint. As far as we know, the only attempt in
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the direction of formally studying the variable branching problem is the recent work of [74].
The authors, recognizing the limitations of traditional branching rules, propose an abstract
and analytically tractable model for branching. Under few assumptions, they are able to
establish new branching rules that appear to be effective for MILP resolution. In general,
though, there is no deep understanding of the theory underneath branching, if any exists, so
the application of (modern) statistical methods seems quite appealing.

The next two sections define the core of the present survey by systematically introducing ML
approaches to variable selection, Section 3.4, and node selection, Section 3.5.

3.4 Variable branching heuristic

In general terms, all branching rules aim at guiding the search of the B&B tree in an efficient
way, by appropriately choosing at each node the fractional variable one ought to branch
on. At every step of the search, plenty of heterogeneous information can be gained, and a
meaningful branching strategy should integrate and exploit this by updating knowledge in
its decision-making rule.

The common denominator of the papers discussed in this section is their attempt to define
a branching strategy extracting novel kinds of information and combining them in original
ways. In the most recent works, the aggregation of the collected information is performed by
means of ML algorithms. Nonetheless, we present as well some early works not mentioning
the ML framework, which we could consider precursors in conveying the idea of gathering
more and diverse data (in a ML framework, one would call them features) to capture the
state of the B&B system and improve its decision-making process.

As observed in [75], the idea of extracting some characteristics to derive a branching rule
is indeed what traditional heuristic schemes for branching already perform: fractionalities
are employed in most-fractional branching; LP gains, measuring the impact that a candidate
variable could have on the objective function value, are computed in SB and estimated with
pseudocosts, taking into account historical data of the search.

In the recent works we will discuss, the novel trait is that of exploiting (possibly a large
quantity of) collected data, and employing the learning framework to come up with more
informed and complex decision functions, estimating a good branching strategy.

With the underlying belief that a more sophisticated and high-performing branching rule
could be detected, the following works explore different pertaining questions: Which infor-
mation should be used? How could it be efficiently extracted and appropriately learned?
Which criteria should guide the search?
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The next subsection is devoted to the discussion of some “forerunner” works (see Sec-
tion 3.4.1). We will see how they already implied shared views on the role of learning
for branching, on which recent ML-based attempts (treated in Section 3.4.2) are currently
building up.

3.4.1 Precursors of “learning-to-branch”

The possibility of improving the general B&B performance by collecting and exploiting more
information than customary is already questioned in [76]. The authors investigate whether
typical B&B information extracted two levels deeper than a given node would influence the
decision of the branching variable. The devised lookahead branching rule aims at maximizing
both bound improvement and node pruning, and the gathered additional information proves
to be useful not only for the purpose of defining a new branching rule, but also for auxiliary
tasks such as bound fixing and simple implications deduction.

Clearly, the computational effort of performing such a forward scouting is significant. Hence,
an abbreviated (and cheaper) version of the scheme is also defined. Even though the total
number of explored nodes is reduced in certain instances if compared with a classical one-step
lookahead SB implementation, the authors themselves point out that lookahead branching is
too costly to be likely employed as a default branching scheme for MILP. However, it might
be that for some classes of problems one might be willing to afford some supplementary
computational cost, if the effort could somehow pay off.

As many other traditional heuristics, lookahead branching relies on LP gains to measure
the impact of a candidate variable with respect to the collected additional information. A
different point of view is developed in [77], where the measure of impact is based instead on
fathoming decisions. This choice is motivated by two broadly acknowledged assumptions:

(i) the final goal in branching is minimizing the total number of explored nodes; in this
sense, a node-efficient method is sought;

(ii) branching decisions are more crucial at the top of the tree.

The paper investigates the idea of a three-phase method for binary MILP problems. Specif-
ically, a clause is defined as a partial assignment of the binary variables that cannot lead to
possible improvements of the objective function. The authors exploit the fact that in any
binary B&B tree a fathomed node gives a clause, and that this kind of information can be fur-
ther strengthened to yield more fathoming. First, a given instance is partially solved: within
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an upfront collection phase, clauses associated with fathomed nodes of the incomplete B&B
tree are gathered, until their number reaches a threshold (fixed at 200). In the subsequent
improvement phase the basic information is refined by solving an auxiliary MILP problem,
in order to be finally employed in the restart phase, when the instance is fully solved with
the gained information.

Some fathoming-based branching rules are defined, taking into account various possibilities
for assigning weights to the collected clauses and estimating the effect of fixing and branching
on a candidate variable, in a fashion that reminds combination rules for pseudocosts (see,
e.g., [15]). Moreover, the improved information is exploited for two additional tasks. The
combination of fathomed-based branching with cuts generation and a sort of propagation
yield improved performance with respect to CPLEX [28] (version 11.1) with and without
dynamic search.

However, there is no clear winner among the tested strategies, and it is not obvious to identify
the benefits of using such improved information for branching. Indeed, more information
associated with clauses could potentially result in longer computing times. Having in mind
a ML framework, one could think of the proposed collection phase as a kind of training
phase personalized (and repeated) for each instance, where the clause information themselves
(namely, the features) are instance-specific.

Partially following the work of [77] is the backdoor branching approach in [78]. In this
work, the collected data include some fractional solutions that are characterized as hurdles
for the LP gap reduction. The learning phase is in fact a sampling phase, consisting of a
multiple restart scheme. Iteratively, a given problem is partly solved until a certain number
Kmax(= 10) of fractional solutions are encountered. The collected fractionalities become the
input of a set covering model, aimed at computing a minimum cardinality backdoor, i.e., a
minimum set S of branching variables whose integrality is enough to ensure that a certified
optimal solution value is reached. Variables in S are assigned a priority to be chosen for
branching, and a new updated incomplete run is performed. After R(= 10) iterations, or
when a backdoor S with |S| > Γ(= 5) is found, a final long run is executed, employing a
MILP solver as a black-box to which only the latest priorities are specified.

The method is compared with two settings of CPLEX (version 12.2): the default solver
(with no cutoff provided), and a variant sharing the same setting as the tested algorithm,
in which the optimal solution is provided, and cuts, heuristics and variable aggregation
in preprocessing are deactivated. Backdoor branching compares well with the competitor
method sharing its similar setting, and turns out to be very helpful in searching the top
levels of the tree effectively.
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Note that the purpose of the designed backdoor branching procedure is not that of selecting
a single variable by means of a score. Instead, the goal consists of identifying a subset
of variables that are in some sense top-ranked with respect to a certain branching priority
measure; a similar idea will be encountered later on. The authors briefly mention the trade-off
between collecting (more) reliable information and the cost coming with it. Two nice-to-have
properties of prospective features can clearly be outlined.

· Features should be relevant, i.e., they ought to precisely and (as far as possible) com-
pletely describe those aspects of the B&B system playing a key role in the optimization
and its efficiency.

· Features should be low-cost to compute, i.e., they should not constitute a computational
burden.

The latter property could actually be drawn from a more general assumption, legitimate in
the definition of an effective branching:

(iii) while being node-efficient, a good branching scheme is time-efficient as well.

Note that in backdoor branching, as in [77], the learning phase is actually a sampling phase
that needs to be repeated for each instance, thus not qualifying as a learning-to-generalize
mechanism. For each problem, shallow explorations of the search tree are performed, in order
to figure out a likely good path in the final run. Finally, observe that in both [77] and [78] the
collected information is manipulated by (optimally) solving MILP or LP problems, somehow
learning by relying only on MILP technology.

A completely different paradigm is explored in [79], where a typical AI tool such as Infor-
mation Theory [80] is used to derive branching rules. The approach is motivated by the
interpretation of the B&B tree evolution as a search process, carrying certain and uncertain
information. The essential observation is that nodes at the beginning of the search hold a
high amount of uncertainty about the values of the variables, while at the end of the tree
there is no uncertainty of this kind left. The idea is hence to guide the search in order to
remove uncertainty, or, in other words, to propagate as much as possible the sure information
carried by variables. In practice, the fractional values of integer-constrained variables, i.e.,
the basic feature of the most-fractional branching rule, are treated as probabilities, indicating
the confidence in expecting the variable to be greater than or equal to its current value in
the optimal solution. To measure the amount of uncertainty/information of a variable, the
notion of entropy [80] is employed.
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Four diverse families of entropy branching (EB, in short) heuristics are designed. The first
family performs branching with one-step lookahead as in SB but choosing the variable yielding
children with smallest uncertainty. Note that EB alone does not employ the objective function
in taking a branching decision. The second family explores hybrid approaches: SB and EB
scores are combined in terms of pure ranking positions or by means of a weighted sum.
Additionally, EB is tested as tie-breaker for the classical SB rule. A third family includes
methods that do not perform lookahead, but use instead the LP values of a current solution;
two rules are defined in the special contexts of combinatorial procurement auctions and
facility location problems (see again [79]). The last proposed family deals with multi-variables
branches, considering branching on the sum (of values) of a subset of variables. The purpose
is that of selecting the set of variables to be branched on as that resulting in the smallest
entropy in a one-step lookahead.

Computational experiments performed on MIPLIB 3.0 [81] show no clear winner between SB
and EB for the defined rules, while EB outperforms SB on some hard real-world procure-
ment instances. Apart from the computational results, the authors’ high-level discussion on
branching approaches promotes further thinking about the various kinds of information that
should be employed in a good branching strategy. In their point of view, different strategies
refer to the different ways one could try to reach the goal of node-efficiency in B&B. Since a
path in the tree can end in three possible ways, see Section 3.1, the authors try to interpret
the existing branching methods with respect to the concurrent goals of driving the search
towards early fathoming, early feasibility and early integrality.

We conclude the overview of forerunner works with [36], where a more framed use of ML
techniques for variable branching heuristics is implemented. Slightly detaching itself from
the others, this work does not aim at finding a new branching rule, but instead at best
combining some existing ones along the tree. The motivating background is that of portfolio
algorithms, where given a set of different methods one wants to predict and use the best
available method with respect to the instance to be solved. Such techniques are based on the
observation that it is unlikely that it does exist a single method dominating all others for
every instance, and hence one looks for a dynamic procedure able to behave with flexibility,
in an instance-specific way.

The idea in [36] is to devise an algorithm dynamically switching between different branch-
ing heuristics along the branching tree, choosing among them with respect to the different
encountered subproblems. The goal of DASH (Dynamic Approach for Switching Heuristics)
is precisely that of guiding the search by selecting the best branching rule, following the
changing state of the B&B system. A similar dynamic scheme was introduced in [82] for the
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special case of set partitioning problems.

In [36], the authors define a features space comprising 40 traits that capture aspects of the
subproblem regarding its MILP formulation as well as its position in the B&B tree. As
sought, features computation does not constitute an expensive overhead. A portfolio of six
traditional branching heuristics is implemented: most(less) fractional rounding, most(less)
fractional and highest objective rounding, pseudocosts branching with weighted score, and
product score. Finally, a dataset of 341 instances coming from heterogeneous benchmark sets
is considered, and split into a training and a test set. The first learning step is a clustering of
problems motivated by the assumption according to which problems with similar features will
yield to the same chosen heuristic. The grouping of instances is carried out by the g-means
algorithm [83], a method similar to the classical k-means [84], which additionally determines
in an automatic way the optimal number of clusters, assuming an underlying Gaussian density
distribution. In particular, an extended training set is provided for clustering, in which some
computed subproblems of the original training instances are added to the training set itself,
with the intent of making the dataset more representative of the subproblems in the tree.
Once the clusters are identified, a “best” heuristic is assigned to each of them. Clearly, this
assignment is delicate and qualifies as a key component of the entire procedure: given the
continuous changes of the subproblems types along the branching tree (partly due to the
chosen branching heuristic itself!), the assignment needs to be performed simultaneously for
all clusters. The step is undertaken by the parameter tuner GGA [85], and only the original
(i.e., not extended) training set is employed.

Once the training setup is completed, at a given node of the tree, DASH computes the
features of the subproblem and its nearer cluster (the Euclidean distance with respect to
the clusters’ centers is measured), and subsequently employs the assigned “best” branching
heuristic for the selected cluster. In practice, switches do not happen at every node. This
enforced limitation is motivated by the wish of further reducing the computational cost of
features extraction, and by the fact that features change progressively along the tree, as it is
shown by a 2-dimensional Principal Component Analysis (PCA) [86]. As a consequence, the
switch is activated only up to the 10th depth-level of the tree and just at some prefixed points
in time (every 3rd node); in all other cases, the parent node’s branching rule is maintained
as the default choice.

Experimentally, DASH compares well against static and randomly switching heuristics coun-
terparts. The authors present a pair of variants (DASH+ and DASH+filt), allowing the
choice of not switching heuristic inside a defined cluster, and performing a feature selec-
tion operation as well. The higher the degree of flexibility and information selection of the



27

algorithm, the better the numerical results seem to be.

Some supplementary remarks. In [36] as in [79], another characteristic of an ideal branching
heuristic emerges. Namely,

(iv) given the highly dynamic and sequential nature of B&B, a branching scheme should
be adaptive, not only with respect to different instances, but with respect to the whole
tree evolution as well.

We observe that [36] constitutes an initial attempt of using the idea of exploiting a larger
and more complete set of problems information by typical ML tasks such as clustering and
dimensionality reduction. However, the method faces some limitations. First, the offline
and rigid clustering upfront seems to clash with the dynamic and ever changing nature of
B&B subproblems. Note that the identified need of considering the evolution of the tree, as
expressed in (iv), needs to be balanced with (iii) time-efficiency, resulting in the depth and
intervals prescriptions. Finally, the role played by different portions of the dataset within
the various learning steps is not clear. A precise procedure of model selection should be
performed, in order to avoid hidden overfitting and other pathological behaviors.

Before we move on to the next section, we summarize the recognized properties a learned
branching rule ought to incorporate:

(i) node-efficiency,

(ii) focus on top-levels of the tree,

(iii) time-efficiency,

(iv) adaptiveness within the tree evolution.

We are going to see how similar considerations are addressed in the following few works,
exploiting more closely the ML framework.

3.4.2 Novel ML-based branching heuristics

With the exception of DASH [36], all other works that were discussed up to now aim at defin-
ing a new branching strategy by means of using various types of information and originally
assemble branching decision rules. We will present in this section some attempts in taking
further the “precursors” underlying ideas, having as goal that of building learned branching
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schemes. The novelty of these approaches resides in their more methodological use of the
ML framework, as we presented it in Section 3.2.

Reliability branching and information-based branching [77] inspired the work of [38]. Given
the fact that SB-like decisions are considered good decisions for branching, in that they
minimize the number of explored nodes, but coming with a very high computational cost,
the idea of approximating and speeding up SB has been already explored by methods such
as RB and the non-chimerical branching (NCB, in short) [87]. In [38], the aim is that of
learning one efficient approximation of SB by means of supervised learning techniques. The
proposed method consists of two main phases. First, features are extracted to depict the state
of a candidate branching variable within a specific node of the tree. The full SB decisions
are recorded by solving to optimality a set of training instances, and a regressor is learned
to predict estimated SB scores. After that, the learned heuristic is employed as branching
heuristic for future B&B runs.

Before going further into details, it is worth to remark few things. Note that in the first part
of the approach SB is still (heavily) employed, before the switch to the learned heuristic takes
place. This reminds of procedures such as hybrid strong/pseudo-cost branching (SB+PC, in
short) where SB is employed only until a certain depth, and then switched for PC [70], and
reliability branching.3 Indeed, the use of supervised learning calls for labels, meaning that
one still needs good SB scores as examples from which to learn. Moreover, B&B trees are now
fully explored in the training phase: the exploration is deeper than those proposed in [78]
and [77], which focus instead on the top tree levels only. However, with respect to these two
works, the expensive training phase is now performed once and for all. The offline upfront
aims in fact at generalizing a prediction across all possible future instances, and hence does
not need to be repeated for each of them.

Within the features design process of [38], the trade-off between relevance and expense is
treated with care. Moreover, the authors identify other three desirable properties that a set
of features for branching should include:

· size-independence, if one aims at learning a function able to generalize across instances
of various size;

· invariance with respect to irrelevant changes within the instance, e.g., row or column
permutations;

3Note that SB+PC and RB differ on the switch from SB to PC: at a certain fixed depth of the tree for
the former method, whereas depending on each variable’s reliability (i.e., past usage) for the latter.
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· scale-independence, meaning that features should not change if parameters c, A and b
(as in (3.1)) are multiplied by some factor.

The defined features are divided into three main groups.

· Static problem features describe the role of candidate variable xi with respect to the
problem’s parameters c, A and b, and are computed only once.

· Dynamic problem features outline the state of variable xi with respect to the current
node LP solution.

· Dynamic optimization features represent the overall statistical effect of variable xi with
respect to the optimization process.

At a given node of the B&B tree, the features vector φi represents the state of the candidate
variable xi. The SB score yi, explicitly computed for the set of training instances, completes
the pair (features, label). The learning task is a regression one, and it is performed with
Extremely Randomized Trees [88], also known as ExtraTrees. ExtraTrees is an averaging
ensemble method, based on Decision Trees, which can be employed for classification as well
as regression. The purpose of averaging is that of reducing the variance of a prediction by
combining many predictors. In particular, ExtraTrees randomly perturbs the construction
of the regression trees, selecting a random subset of features and drawing a random pool of
thresholds to determine best splits.

A set of random, small-size problems is used for collecting SB-like examples, and the final
training dataset includes 105 observations, i.e., pairs of features of a candidate variable at
a given node and its SB score. A subset of instances coming from MIPLIB [81, 89] is em-
ployed for assessing the learned heuristic by comparing it with five concurrent ones: random
branching, most-infeasible branching, non-chimerical branching, full strong branching, and
reliability branching. Experiments are performed with and without time and nodes limits.

In general, results are inferior to the state-of-the-art RB, but still showing that the learned
branching efficiently imitates FSB. As the authors point out, the reduced time spent at
each node allows the learned scheme to explore more nodes, which is obviously a key of
success. Slightly better results can be obtained when tuning the learning to specific classes
of problems, suggesting one of many possible research directions. Further details about the
ML-based approximation of SB can be found in [75].

Two are the main differences between [38] and [90], the authors’ other attempt in developing
a learned branching strategy. The explored paradigm is that of online learning. In contrast
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with the offline upfront previously discussed, data is now generated and learned on-the-fly,
within the B&B process itself. This implies that no preliminary and separated training phase
is needed anymore. Still aiming at learning a fast approximation of SB, and keeping the same
features of [38], the other novelty consists in the introduction of a reliability mechanism, very
similar to the one in [70]. More specifically, depending on the number of times a real SB
score was already computed for a certain variable (the RB threshold η = 8 is used), one
could deem the candidate reliable, and hence trust an approximate version of its SB score.
Otherwise, if the variable is deemed unreliable (i.e., the information exploited about it is not
enough to portray it correctly) a real SB score is computed. At a given node of the B&B
tree, every time a variable is not deemed reliable, the features vector is computed together
with the SB score, and a new example (features, label) can be added to the training set.
The learning is performed with a simple linear regression, guided by a line search gradient
descent algorithm (see, e.g., [91]).

The defined online learning branching (olb) strategy exhibits at least one limitation, i.e., that
of not adapting over time, with respect to possible changes of the variables dynamics along
the B&B tree, as suggested by (iv). Indeed, at some point in the tree all variables would be
deemed reliable, and the learning would stop updating. To fix the issue, the authors propose
a perpetual version of olb (oplb). In short, the improved method allows the addition of new
examples also when a variable is deemed reliable. Although the SB scores are not computed
in the first place, features are stored for a reliable candidate at a given node; eventually,
when both child nodes are explored, the SB information becomes readily available and a new
pair (features, label) can be added to the dataset.

Both olb and oplb are compared on MIPLIB [81,89] against three other heuristics: full strong
branching, reliability branching and the learned branching of [38] (actually, the one of [92],
the preliminary version of the same paper). Results are interesting, in that both olb and oplb
are competitive with RB in terms of nodes and time performance profiles. Again, methods
and results are further discussed in [75].

The same goal of learning an effective approximation of SB is pursued in [37]. The authors
aim at defining a method imitating SB in its node-efficiency, while being low-cost in terms
of computational time and adaptive with respect to different instances to be solved. The
scheme consists of three phases. First of all, during a data collection phase, SB is employed
as variable branching rule up to a limited number of nodes θ(= 500) of the B&B tree. The
performed SB decisions are observed and registered as (features, label) pairs in the training
dataset. Second, a supervised ranking task is executed, and a ranking function learned.
Finally, the ML-based B&B takes over: the optimization continues employing the learned
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ranking function as branching heuristic, while SB is turned off.

The introduced ranking framework seems a natural approach for variable selection: predict-
ing a ranking rather than a scalar score (as it is done by means of regression in [38] and [90]) is
what a branching heuristic is ultimately pursuing. Note that the strategy resembles SB+PC
and RB, in that SB is used only up to a certain point, i.e., while candidate variables are
uninitialized or deemed unreliable. The outlined technique acts on-the-fly, without any ex-
pensive upfront, but does not adapt overtime, in contrast with the online perpetual approach
(oplb) proposed in [90]. In this sense, all procedures (learned [38], olb [90] and SB+ML [37])
seem to suffer the same limitation to adapt with respect to the tree evolution. The perpetual
version oplb [90] is the only method taking explicitly care of the adaptive issue. However,
a little bit unexpectedly, it does not lead to significant improvements when compared to its
halting counterpart.

Going back to [37], features are divided into two categories:

· Atomic features describe the role of a candidate branching variable within a particular
node of the tree. In particular, 72 atomic measures are designed (in a fashion similar
to [38]), and are further split into static and dynamic. The former set includes those
characteristics of the problem shared by the whole tree (they are computed at the root
node), the latter encompasses the traits associated with a particular LP node.

· Interaction features consist of products of two static features. The whole features vector
can be interpreted as a degree-2 polynomial kernel K(u,v) = (uTv + 1)2, acting in the
72-dimensional space of atomic features. More details on kernel mappings can be found
in [20].

Given the goal of learning a ranking function, instead of a regression one, while SB scores
are computed for the training set of examples, they are not directly employed as labels. The
proposed scheme is a binary labeling: labels are either 1 or 0, depending on their being or not
in a fraction of top scoring variables at a given node. More specifically, denoting by Cj the
set of candidate branching variables at node Nj, the best SB score is SBj

∗ = maxi∈Cj
{SBj

i };
a label for variable xi at node Nj is computed as

yji =

1, if SBj
i ≥ (1− α) · SBj

∗

0, otherwise,
(3.6)

where α ∈ [0, 1] decides the portion of variables that are considered good, i.e., sufficiently
close to the maximum score. This relaxed definition of “best” branching variables allows
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one to take into account many good candidates in the learning. Moreover, as the authors
point out, this scheme should prevent the execution of irrelevant learning, such as the correct
relative ranking of variables with low SB scores.

The ranking formulation follows a pairwise approach: pairs of candidates are considered, and
the objective is to rank them as SB does. Formally, a set of pairs Pj = {(xi, xk) : i, k ∈
Cj and yji > yjk} is considered for every node Nj, and the learned ranking seeks to violate as
few as possible pairwise ordering constraints of type

∀j ∈ {1, . . . , θ},∀(xi, xk) ∈ Pj : yji > yjk. (3.7)

The Support Vector Machine (SVM) classification approach of [93], SVMrank, optimizes an
upper bound on the number of violated constraints in (3.7), and it is used to approximate
the ranking problem. The learned ranking function is then directly plugged in the branching
system.

The ranking heuristic SB+ML is compared against other four strategies: CPLEX default of
version 12.6.1 (in the spirit of hybrid branching, [73]), SB, PC and SB+PC. The comparison
shows that SB+ML solves more instances than both PC and SB+PC, requiring fewer nodes.
These savings counterbalance the more time spent per node of SB+ML, which could be
imputable to features computation.

A step further is taken in [94], who briefly explores the possibility of employing online and
reinforcement learning in order to build a branching heuristic. The motivation of such an
approach comes from the nature of B&B itself, which makes it possible to model the branching
decision as a multi-armed bandit (MAB) problem [95]. In a MAB problem, at each round
an agent selects one of many available actions (arms) and registers the reward associated
with the performed choice. The intuitive goal is to identify and follow a sequence of actions
maximizing the long-term reward (or minimizing the regret). Note that the B&B system can
easily be interpreted in MAB terms: every node corresponds to a round, and every candidate
variable to an available arm. A (not fully discussed) performance measure can then be used
as reward function to guide the agent in its selections.

A preliminary setup mentioned in [94] outperforms on average PC. Although at its start, this
seems a promising path to be explored.

Exploiting the framework of reinforcement learning (cf. Section 3.2.3) for variable branching,
and more generally within the B&B technology appears suitable, given the inherent sequential
nature of B&B. In particular, the idea that at a given node one should take future steps into
account is already expressed in [76]. In that work, SB is interpreted as a greedy heuristic,
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optimizing the dual-bound improvement (a reward) as much as possible at the current node
only. Though the two-steps lookahead strategy devised is costly, we should maybe take into
consideration the sequentiality of the whole tree-process in future research.

We summarize the three main ML-based contributions discussed in this section in Table 3.1.
For each work we report the chosen learning setting, details on the employed test setting
(dataset, solver’s specifications, compared algorithms and measures) and a brief descriptive
summary of the results.4

Table 3.1 Synoptic comparison of the three discussed ML-based branching heuristics. For
each work we report: learning setting, test set composition and specifications, employed
solver and tested settings, list of compared algorithms (novel methods are in bold), measures
of comparison, and a descriptive summary of the results.

M. Alvarez et al (2017) M. Alvarez et al (2016) Khalil et al (2016)

Learning set-
ting

ExtraTrees for regression
(offline, supervised learn-
ing)

Linear regression (online
and adaptive supervised
learning)

SVMrank (learning-to-rank
with pairwise approach,
on-the-fly supervised learn-
ing)

Test instances
� 150 random � 44 MIPLIB 3.0 + 2003 � 84 MIPLIB 2010
� 44 MIPLIB 3.0 + 2003 10 seeds 10 seeds
small to medium size small to medium size

Solver CPLEX 12.2 CPLEX 12.6 CPLEX 12.6.1

Setting(s)
w/ and w/o: heuristics,
cuts, presolve, timelimit
10min, nodelimit 105

disabled presolve, time-
limit 2h

cutoff provided, timelimit
5h, disabled heuristics, cuts
at root only

Algorithms

� random branching � FSB � CPLEX default
� MIB � RB � SB
� NCB � learned � PC
� FSB � olb � SB+PC
� RB � oplb � SB+ML
� learned

Measures

� closed gap (within limits) � performance profiles � # unsolved
� # solved (within limits) (nodes and time) � # nodes
� # nodes � time
� time

Results
summary

learned well imitates FSB.
LP gap is improved w.r.t.
FSB in the setup w/ limits,
but RB dominates. Good
also w/ cuts and heuristics
in the setup w/o limits.

olb and oplb are com-
petitive with RB in both
performance profiles. The
adaptive oplb does not sig-
nificantly improve olb.

SB+ML solves more
instances than PC and
SB+PC. On average, it
requires fewer nodes than
PC and SB+PC, and
slightly more than CPLEX
default.

4Note that [90] comes later than [38], where 2017 is the year of journal publication of [92].
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3.5 Searching the branching tree

As discussed, the search process of B&B highly relies on how the exploration of the decision
tree is performed. The mechanism of implicit enumeration has two general goals:

(I) quickly find a good (possibly optimal) integer feasible solution;

(II) provide a certificate of optimality for the current incumbent, i.e., prove that no better
solution exists.

Indeed, a solution of good quality helps the implicit enumeration as it allows one to discard
useless branches, limiting the number of explored nodes and focusing only on worthy sub-
problems. Thus, it appears clear that the order in which the nodes of the branching tree are
selected for exploration has a significant impact on the efficiency of the B&B method.

Many heuristic rules for searching the B&B tree have been proposed in the years, with the
aim of attaining one goal or another, or trying to balance both objectives in some way. We
will briefly discuss some of them in what follows. What is certain is that no single heuristic
dominates the others, their performance very likely depending on the class of considered
MILP problems.

Far from being confined to MILP research, the exploration of a decision tree is actually a very
interdisciplinary theme, common in the AI community as well. As a consequence, one should
not be too surprised to find out that the recent works applying ML techniques to the B&B
tree search come from AI researchers. Similarly to how we discussed branching in Section 3.4,
we will start in Section 3.5.1 by retrieving early optimization works somehow anticipating the
development of adaptive and informed search heuristics. We will then present in Section 3.5.2
two recent attempts in this direction, employing different learning frameworks.

3.5.1 Preliminary considerations on search

We begin our agenda with the work of [15], which stands as a survey of B&B search heuristics
as well as a baseline ground for a general discussion on the topic. In particular, the authors
compare 13 different node selection methods, identifying three leading evaluation measures
to rank them, in line with goals (I) and (II) above. The ranking is performed with respect
to (in order of importance):

· value of the best solution obtained,

· provable optimality gap, and
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· computing time.

The various heuristics are categorized into four different classes. Among static methods,
depth-first and best-first searching paradigms are interpreted as extreme points of view on
the node selection task: the former is associated with goal (I), the latter is linked to (II).
This understanding naturally motivates two-phase methods, alternating depth-first and best-
first in order to balance the search objectives. Further, the idea of making more intelligent
selections in order to find new improved incumbent solutions is at the root of estimate-based
methods. Criteria such as best-projection and best-estimate exploit the notion of estimating
the value of the best feasible solution with respect to a certain subtree. Finally, backtrack-
ing methods also use estimates to guide the search, with the aim of avoiding superfluous
nodes. As expected, such estimation rules become more realistic as they get more complex,
involving many different characteristics (or features) such as pseudocosts, fractionalities and
probabilities of successful rounding.

As the authors point out, given that the effectiveness of the above methods depends on
the problem type, one would seek a search strategy that could adapt to different instances.
In particular, some grade of adaptiveness could be pursued in the combination of best-first
and depth-first strategies, which, borrowing a reinforcement learning vocabulary (see Sec-
tion 3.2.3), corresponds to balancing exploration and exploitation in the B&B environment.
Overall, it seems that the systematic analysis performed (for the first, and still most complete,
time) in [15] can now be revisited in the light of modern ML techniques.

A different observation on the nature of the B&B tree underpins the work of [18]. The authors
support the claim that high-sensitivity and erraticism are inherent properties of tree search,
due to the very same exponential nature of the enumeration tree, which ought to be exploited
in a beneficial way. Their bet-and-run approach first triggers randomization, producing few
short runs. Among those different runs, a bet is made on the most favorable one, which is
then alone brought to completion.

In more details, the algorithm makes use of a restart policy reminiscent of [77] and [78].
Within a sampling phase, C(= 5) random clones of the problem are created and solved up
to N(= 5) nodes only. The best clone with respect to some aggregated indicator is selected
and fully solved in the long run. Two are the key aspects of the method.

1. First, one needs to generate meaningful diversity while randomizing, without degrading
the average performance. Moreover, the randomization should happen after the prepro-
cessing and the solution of the root node, in order to limit the computational overhead.
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The implemented strategy consists of temporary replacing the objective function of
a clone with a random one, having fixed all nonbasic variables with nonzero reduced
cost at their value in the root node optimal LP solution. Reoptimizing will lead to a
different basis on the optimal face of the LP relaxation of the initial MILP, from which
to start the search. A cap on the number of performed simplex pivots is enforced in
order to maintain a short computing time.

2. Second, a selection rule for the “best” clone run must be defined, and hence one needs
to identify some measures evaluating the performed (short) searches. As the authors
recognize, erraticism itself precludes the definition of a perfect criterion. Hence, the aim
is that of establishing a positive correlation between the clone to be selected and the
a posteriori better run. Note that this notion naturally calls for a supervised learning
framework, the a posteriori best run consisting in an example’s label.

The authors identify eight indicators of performance, with priority order, extracting
information about: open nodes, lower bound improvements, infeasibilities and number
of simplex iterations. The proposed evaluation scheme discards the indicators that do
not provide discriminant information, and breaks ties to favor the first (default and
unperturbed) clone. Note that the defined criterion bases its decision-making on the
very beginning of the search, only.

The bet-and-run algorithm is compared with the default CPLEX setting (no dynamic search)
and two a posteriori oracle algorithms, on 344 instances from MIPLIB 2010 [16] and COR@L
[96]. The algorithm produces savings in terms of time and nodes for medium to hard in-
stances, but the computational overhead does not payoff for easy instances. A modified
version, denoted as hybrid, is tested, which prescribes to run CPLEX default for NR nodes
to understand whether the instance at hand is “easy”. If yes, the problem is solved by CPLEX
with no modifications. Otherwise, perform the sampling phase of bet-and-run: if the selected
clone is the unperturbed one, continue with default; else, continue with bet-and-run selection
for the long run. The hybrid variation is beneficial on average, although it does not seem to
fully solve the overhead issue.

Interestingly, throughout the paper, the authors themselves point out some possibilities for
improvement that could involve the use of ML tools.

· Learning algorithms could provide a more sophisticated decision rule for the best clone
selection criterion. A classification mechanism could improve the selection.

· While NR = 500 and 1000 are tested, the computation of the parameter could be
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adaptive and performed on-the-fly, i.e., estimating the hardness of the remaining tree
or, equivalently, the hardness of instance.

· The restart strategy could be refined by leveraging information of past runs.

We are now going to see how the main axes of these analyses on B&B search are reinterpreted
in a learning framework.

3.5.2 Learning approaches to B&B search

Keeping in mind the recognized needs and goals of a search strategy for B&B, we will present
in this section two very recent approaches for the topic. The tools employed in those attempts
may appear uncommon to a MILP practitioner, and we will try to outline their potentials as
well as their limitations.

In [41] the exploited framework is that of reinforcement learning (see Section 3.2.3). A multi-
armed bandit (MAB, see Section 3.2.3) structure is proposed for MILP search, in the form of
a modified version of the Upper Confidence bounds for Trees (UCT) [97] technique. Namely,
UCT is a method for Monte Carlo Tree Search balancing exploration and exploitation, and it
is based on the selection strategy of Upper Confidence Bounds (UCB1), which was introduced
in [98]. In a nutshell, UCT works on an underlying tree T and consists of two alternating
phases. Within the node selection phase, T is traversed from its root to a leaf node: at each
node N the rule is to move to the child N ′ with higher UCT score; ties are arbitrarily broken.
Once a leaf L is reached, a tree update phase is performed: an updated score is computed
for L and it is propagated upwards to the root, following the outbound path in reverse order
and adjusting the estimates for the encountered nodes.

The authors employ a simplified version of the UCT score of a node N (the ε−greedy version
in [98]), consisting of a balanced sum of two terms:

score(N) = estimate(N) + Γ · visits(P )/100
visits(N) , (3.8)

where estimate(N) is some measure of quality of node N , P is the parent node of N and
visits(·) counts the number of times a node has been already visited by the search algorithm.
The parameter Γ controls the balance between exploration (second term) and exploitation
(first term): nodes with high estimate are pursued, but other nodes get priority if they have
been visited only a fraction of the times compared to their siblings. In the original context of
UCT (adversary game tree search), the estimate(·) values are initialized by random playouts:
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the game is played many times until its very end by selecting casual moves, each play yielding
a certain result that is used as measure of quality for the traveled path. Moreover, the tree
update phase is carried out by a so-called backup operator, which usually assigns to a node
N in the path from leaf to root the average of the values seen in the subtree rooted at N .

Given the differences between the original context of UCT and that of MILP, the algorithm
must be appropriately modified. The goal of such adjusted UCT is that of guiding B&B
search by expanding open nodes as UCT would expand them.

For a start, B&B tree search is a single-agent process, and it is clear that the MILP framework
cannot afford random playout samplings for initialization purposes. Instead, the fact that
branching provides guaranteed LP bounds is exploited, so that the quality estimates consist
of normalized LP objective values. Having guaranteed bounds requires changes be made for
the backup operator as well: instead of an averaging one, a max-style updating rule seems
more suited. In short, each node’s estimate is updated with the maximum between the
estimates of its children nodes, so that at any N , estimate(N) equals the best objective value
seen in the subtree rooted at N . Note that when a node is closed by B&B (i.e., fathomed),
the search will not have any reason to visit it again. In this sense, exploitation is not always
meaningful in this setting, and subtrees with no open nodes left should be disregarded by
future UCT searches.

The UCT-based search strategy is compared with three others, namely, best-first, (graph-
theory) breadth-first and CPLEX default heuristic. A general MILP solver performs B&B by
internally maintaining the list of open nodes, but in order to apply the UCT-based method
one needs to maintain an underlying entire tree structure to guide the search, i.e., nodes
already explored are not removed. This additional architecture introduces significant over-
head. To limit it, and supporting the notion that decisions are more crucial at the top levels
of the tree, each tested strategy is performed on the first 128 nodes only, and then switched
to the CPLEX default one. A total of 170 instances from MIPLIB 2010 [16] are used, with
600 seconds time limit, and the balancing parameter is tuned to Γ = 0.7. The geometric
means of runtime, number of searched nodes and of simplex iterations are all improved by
the UCT-based technique.

Some remarks before moving on. Note that the essential part of the reward measure consists of
LP objective values, which is combined with the visits counter. Considering this, it seems that
UCT improvements are gained thanks to a balanced usage of best-first and breadth-search-
like schemes, without the exploitation of other state information. Moreover, the original
UCT algorithm as in [97] treats every internal node as a different MAB problem, a property
which the authors do not consider sustainable in the MILP context. However, detaching for a
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moment from architectural issues, one could easily imagine bandit problems at every node of
the B&B tree, eventually dealing with branching decisions, as proposed in [94]. An interesting
question is whether the two processes of variable and node selection could be unified under
the MAB scheme, or, more generally, within a (reinforcement?) learning framework.

Learn an adaptive and problem-specific search strategy is the goal of [42]. This work makes
use of imitation learning (or behavioral cloning, see [99]), a paradigm very common in robotics.
In general, imitative methods involve an expert performing some task, and having its actions
recorded together with a description of the current situation. A dataset of (situation, action)
pairs is given as input to a learning program, which then produces as output a set of rules
(i.e., policies) reproducing the expert’s behavior with respect to the performed task.

In the context of B&B, the expert part is played by a MILP solver and of a simple defined
oracle. While it would be ideal to have an oracle expanding an optimal sequence of nodes
and fulfilling (I) and (II) (and hence also (i), i.e., minimizing the number of explored nodes),
the designed oracle only cares of (I). Namely, the explicitly declared goal is that of finding
good (possibly optimal) solutions quickly, but without providing a certificate of optimality.
This modeling choice is motivated by the wish of allowing a more aggressive pruning of the
tree branches, and motivated by the idea that it may be possible in the future to reach a
“user-specified trade-off between solution quality and searching time”. Indeed, it is worth
observing that the proposed framework does not guarantee an optimality certificate because
it prunes subtrees potentially containing the optimal solution (besides the training phase in
which the optimal solution is known).

More in details, the assumption is that optimal solutions of training problems are given. The
oracle node selection rule π∗S will always pursue the branches containing the optimal solution.
Nodes expanded in this process are called optimal nodes; the non-optimal nodes are pruned
from the tree by the oracle pruning rule π∗P . The B&B is framed as a sequential process
within the state space S consisting of the visited nodes and their LP bounds. Two policies
that should guide the search are learned as rules. Namely,

· The (learned) node selection policy πS prescribes which node should be expanded
next. Namely, πS provides a priority order for the queue of open nodes, deciding
which one should be popped. The action space of πS is {select node Ni : Ni ∈
queue of open nodes}.

· The (learned) node pruning policy πP determines whether a popped node is worth to
be expanded. Note that in this context the terms “pruning” and “fathoming” are not
interchangeable: a node that is not fathomed by infeasibility, bound or integrality could
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still be pruned because of its non-optimality. The action space of πP is {prune, expand},
so that πP actually behaves like a binary classifier.

In fact, not only πP , but the whole imitation problem can be reduced to supervised learning,
as shown in [100]. The oracle actions a∗t can be interpreted as predictions with respect to a
features vector description of state st. Instead of forecasting a regression score, πS itself can
be framed as a classifier of pairs, for the problem where one aims at learning a ranking of
the open nodes in queue. The procedure is in the spirit of that employed in [37] for variable
selection purposes.

Features are divided into three categories.

· Node features include bounds and objective function estimation at a given node, to-
gether with indications about the current depth and the (parental) relationship with
respect to the last processed node.

· Branching features describe the variable whose branching led to a given node, in terms
of pseudocosts, variable’s value modifications and bound improvement.

· Tree features consider measures such as the number of solutions found, global bounds
and gap, with respect to the computed B&B tree as a whole.

Two different feature maps are defined for the policies: while πS bases its predictions mainly
on node and branching features, πP employs mostly branching and tree features. All features
are combined with the depth of the measured node by means of partitioning the tree in 10
uniform levels, and are appropriately normalized with respect to the root node’s values. The
designed characteristics do not constitute a computational burden, being easily obtainable
from a MILP solver.

In the experiments, instances are borrowed from four diverse libraries. The MILP solver
SCIP [31] is run to optimality and the delivered optimal solution is used within the oracle to
initialize the training phase. The training of the policies is performed iteratively on problem
classes. Every iteration provides updated information and collects new examples during the
B&B runs, taking care of correctly ranking a node when it enters the open nodes queue and
pruning it if non-optimal, after it is extracted from the queue. As already said, the learning
of πS and πP is in fact a classification task, and attention is paid to properly tune parameters.

At test phase, the resulting algorithm, called DAgger, is compared with SCIP and Gurobi
[101], taking into account the trade-off between runtime and solution quality in the compari-
son. The adaptive solver performs well on different classes of problems, and it seems to fulfill
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the three-level adaptiveness sought by the authors, with respect to: (1) problem type, (2)
specific instance and (3) different stages of the B&B optimization.

Further analysis shows the pruning policy having more impact, possibly due to the fact that
other heuristic components interfere with node selection. Not so surprising are the findings
of the features analysis. In general terms, πS imitates depth-first search at the top of the
tree, but also considers historical estimates in lower levels. The branching variable’s measures
seem to affect πP , which keeps the pruning cautious when only few solutions are known.

Note that the branching decision is explicitly taken into account in the design of the search
strategy by the second group of features, reflecting the idea that these two heuristic processes
should be intertwined within the learning as they indeed are in the optimization. Moreover,
the authors claim that the design of DAgger takes into account the complex sequential nature
of B&B by modeling the influence of actions over future states, a task that could not be
performed by standard supervised learning. However, the work is based on the assumption
that current solvers’ strategies are the “experts” to be imitated, and drops the seek of certified
optimality for speed.

We summarize the two main ML-based contributions discussed in this section in Table 3.2.
Again, for each work we report the chosen learning setting, details on the employed test
setting (dataset, solver’s specifications, compared algorithms and measures) and a brief de-
scriptive summary of the results.

3.6 Overview and conclusions

In this paper, we have surveyed learning techniques to deal with the two most crucial de-
cisions in the branch-and-bound algorithm for MILP, namely variable and node selections.
Because of the lack of deep mathematical understanding on those decisions, the classical and
vast literature in the field is inherently based on computational studies and heuristic, often
problem-specific, strategies. Although our survey is mostly concerned with the recent meth-
ods that explicitly consider (machine) learning techniques, we have taken the perspective of
interpreting some of the previous fundamental contributions in the light of those techniques,
so as to give a more complete overview and to possibly outline new points of view.

It is worth observing that we have not touched in our discussion a nowadays fundamental com-
ponent of branch-and-bound algorithms and codes for MILP, namely parallelization. Modern
MILP solvers are developed, tested and used within multi-thread computing environments
and more and more research is devoted to improve in the use of multi-threading. Although
the papers we surveyed almost never discuss the issue, it is not difficult to imagine the use
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Table 3.2 Synoptic comparison of the two discussed learning approaches to B&B search.
For each work we report: learning setting, test set composition and specifications, employed
solver and tested settings, list of compared algorithms (novel methods are in bold), measures
of comparison, and a descriptive summary of the results.

Sabharwal et al (2012) He et al (2014)

Learning setting UCT (reinforcement learning) Imitation learning

Test instances

� 179 various benchmarks � 36 MIK
� 120 Regions
� 40 Hybrid
� 300 CORLAT

Solver(s) CPLEX 12.3 � SCIP 3.1.0 (CPLEX 12.6 for LP)
� Gurobi 5.6.2

Setting(s)
node and branch callbacks on,
600s timelimit

average runtime and # of nodes of the pro-
posed B&B are used as timelimit for SCIP
and nodelimit for Gurobi, respectively

Algorithms

� UCT � πS + πP (selection + pruning)
� CPLEX default � πP (pruning policy only)
� best-first � SCIP (time)
� breadth-first � Gurobi (node)

Measures
� runtime � speedup w.r.t. SCIP default
� # nodes � optimality gap
� # simplex iterations � integrality gap

Results
summary

UCT-based technique improves the
geometric means of all considered
measures.

Good adaptive performance on all classes of
problems: πP seems to have more impact,
πS likely interferes with other solver’s com-
ponents.

of the learning algorithms for both variable and node selections in a parallel environment.
However, evil is in the details and the discussed paradigms have to be treated/extended with
care.

Of course, variable and node selections are not the only important decisions in enumerative
algorithms in general. One of the areas in which modern learning techniques could result
crucial is that of predicting the difficulty of an instance, for example by taking the size and
the shape of the enumeration tree into account. The problem of hardness prediction is not
new. Since the first estimation of efficiency for backtracking methods [47], the question has
been a common interest of the optimization and the ML communities, which developed their
own algorithms in the past decades. Indeed, the practical impact of such a prediction is wide
and important, especially given the time and resources limits that one has to confront when
dealing with hard problems. Discussing this topic in details is outside of the scope of the
present paper. However, again following the pattern of interpreting some old(er) contributions
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in the light of modern learning algorithms and then considering the most recent works, we
refer the interested reader to [48] for the former and to [35] and [49] for the latter.
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CHAPTER 4 ARTICLE 2 – A CLASSIFIER TO DECIDE ON THE
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Abstract We translate the algorithmic question of whether to linearize convex Mixed-
Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine
learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by
careful target and feature engineering. Computational experiments and evaluation metrics
are designed to further incorporate the optimization knowledge in the learning pipeline.
As a practical result, a classifier deciding on MIQP linearization is successfully deployed in
CPLEX 12.10.0: to the best of our knowledge, we establish the first example of an end-to-end
integration of ML into a commercial optimization solver, and ultimately contribute a general-
purpose methodology for combining learned predictions and Mixed-Integer Programming
technology.

4.1 Introduction

While mathematical optimization intrinsically lies at the core of machine learning (ML)
methods, recent years have seen a rise in the application of learned approaches to discrete
optimization settings [6]. In particular, a successful paradigm has been identified in using
ML within Mixed-Integer Programming (MIP) algorithmic frameworks as a way of comple-
menting the capabilities of a solver and providing indications about structural decisions for
which we lack in-depth understanding.

We position our work in this recent yet very fruitful research area, and consider Mixed-
Integer Quadratic Programming problems (MIQPs). Despite the fact that modern MIQP
solvers – and among those IBM ILOG CPLEX [28], our solver of choice – have been able to
solve MIQPs for several years (see, e.g., [102]), the theoretical and computational implica-
tions of the employed resolution techniques are not fully grasped yet. We are interested in

1Authors are listed alphabetically, as is standard practice in Operations Research journals and conferences.
2Available at [26]. A preprint of this chapter is instead available at [27].
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understanding whether to linearize the quadratic part of a convex MIQP, a decision that sub-
stantially conditions the downstream resolution algorithms operated by a solver. Currently,
CPLEX users can utilize a switch parameter to specify whether a linearization step should
take place during preprocessing, but it is not clear when this switch should be turned on or
off in order to benefit the resolution process: when one considers a wide variety of problems
the decision about whether to linearize is not clear cut.

Our goal in this paper is to use ML statistical tools to decide whether to linearize a convex
MIQP or not. We make the empirical conjecture that some of the reasons leading to an
algorithmic discrimination between the linearization approach (L, in short) and the non-
linearization one (NL) might be linked to the formulation characteristics and the early stages
of the optimization of a MIQP problem, and could hence be detected by a learning algorithm
if enough relevant information was provided as input. The idea that perhaps MIQPs should
be solved in a more flexible and adapted way was first suggested in [103], and naturally calls
for a predictive machinery. In this sense, the question linearize vs. not linearize qualifies as
a good quest for ML techniques, and it is naturally framed in a classification setting. We
began to explore such classification approach in [26]: the developed framework took care
of building a synthetic dataset, designing features and labels, and conducting preliminary
learning experiments. We also defined new metrics to assess the quality of the prediction
from the optimization standpoint, i.e., in terms of runtimes. Results were satisfactory, but
limited by the fact that only artificial MIQPs were used. Moreover, the offline learning phase
was not integrated in the solver.

4.1.1 Contributing a methodology

In the present work, we extend what was done in [26] along different directions, aiming at
a tighter combination of the learning and the optimization perspectives. We resume from
what we identified in [26] as future research plans and

· enlarge our dataset to include non-synthetic benchmark instances: we add to our pool
of problems MIQPs from NEOS [104–106] submissions and CPLEX internal testbed;

· extend the feature design and feature selection process to achieve more detailed repre-
sentations of MIQPs, of which we carry out a careful analysis;

· perform new learning experiments and explore different ways to incorporate optimiza-
tion knowledge in the learning pipeline.

Finally, we implement our predictive framework in the solver ecosystem: as a practical out-
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come, a learned classifier is deployed in CPLEX 12.10.0. These contributions allow us to
establish the first example of an end-to-end integration of ML tools into a leading com-
mercial solver – from the definition of an appropriate ML task responding to the algorithmic
question of whether to linearize a MIQP, until the final deployment of the obtained prediction
function within a complex solver environment. We believe that the methodology we designed
over time, starting from the early attempt [26], could be applied to a variety of other heuris-
tic tasks in the solver, and will serve as a reference in an area that is rapidly evolving and
gaining attention. In this sense, the present work ultimately contributes a methodological
process for the combination of ML and MIP technology: we share the questions that guided
us in the development, the decisions and turns we had to take and the motivations behind
them.

The paper content is shaped upon our methodological steps, which are outlined in Figure 4.1.
We start by examining the MIQP algorithmic framework of CPLEX (Section 4.2), in order
to identify and properly delimit our learning question (e.g., in terms of which MIQPs and
algorithms are involved). The next step is building a dataset (Section 4.3). Targets capture
the essence of a learning question, so their definition is of utmost importance, and we discuss
two valid labeling procedures for discriminating between the L and NL methods. We approach
feature design with questions like: what factors could be important for our decision? which
traits of MIQPs might play a role in the algorithms we are trying to compare?, and address
the need to gather (and generate) MIQP instances for data collection.

We follow ML best practices when defining learning experiments (Section 4.4), but we com-
plement them with context-specific measures to evaluate the classifier performance in the
solver. In fact, standard ML indicators cannot provide information on the impact of misclas-
sification in terms of the metric that we use to compute targets. Baseline results serve us
to verify the soundness of our approach and get an idea about the importance of the repre-
sented features, but the initial framework needs to be adjusted to be embedded in the solver.
We ask ourselves what is ultimately viable and what changes are necessary to incorporate
predictions in CPLEX: answers to such questions lead us to a substantial feature selection
phase. To further condition predictions towards our true performance goal, we introduce
domain-specific priors in the learning phase, and eventually recover information that was
previously sacrificed. The experimental phase proceeds far from linearly, and we iterate step
III (Figure 4.1) to attain satisfactory results. Finally, we discuss in Section 4.5 the practical
implementation of a predictor in the CPLEX optimization pipeline, the required fine-tuning
and the achieved outcome, before some concluding remarks in Section 4.6.
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I. Understanding the algorithmic framework
· Identify and delimit the learning question

II. Building a dataset
· Target definition via labeling procedure
· Feature design to represent the decision
· Gathering data: instances and analysis

III. Learning experiments
– Best practices and context-relevant evaluation metrics

· Baseline results
– Assessing feature importance

· Framework revision: necessary adjustments, feature selection
· Adding domain-specific priors to the learning phase

IV. Implementing predictions in the solver ecosystem
– Fine-tuned workflow

Figure 4.1 ML in MIP technology: methodological steps.

4.2 The MIQP algorithmic framework in CPLEX

We consider Mixed-Integer Quadratic Programming problems, i.e., optimization problems in
which a quadratic objective function is minimized over a set of linear constraints, and (a
share of) bounded variables are required to be integral. We write a MIQP as

min
{1

2x
TQx+ cTx : Ax = b, l ≤ x ≤ u, xj ∈ Z ∀ j ∈ I

}
, (4.1)

where the matrix Q = {qij}i,j=1,...,n ∈ Rn×n defines the objective function together with
c ∈ Rn, while A ∈ Rm×n and b ∈ Rm formulate linear constraints. Variables x ∈ Rn are
bounded and I ⊆ {1, . . . , n} denotes the set of indices of variables that are constrained to
be integer. Without loss of generality Q is assumed to be symmetric. It is well known that
(4.1) is NP-hard (e.g., Max-Cut can be cast as a MIQP with binary variables).

When integrality requirements are dropped from (4.1), one obtains the (continuous) Quadratic
Programming (QP) relaxation of the problem. If the matrix Q is positive semi-definite
(Q � 0), the quadratic form to minimize is convex and the corresponding QP can be solved
in polynomial time; in this case, the QP relaxation is thus called convex. In the present
work, we restrict ourselves to MIQPs whose Q matrix is positive semi-definite or can be
made positive semi-definite by simple transformations, i.e., we only consider MIQPs that are
usually regarded as “convex” by state-of-the-art MIQP solvers. Two simple transformations
that can be applied to repair the indefiniteness of Q are the following.
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Linearization of products involving binary variables Consider a binary variable xj
of (4.1), i.e., lj = 0, uj = 1 and j ∈ I. The product of xj with any other bounded variable
xi satisfies the following linear inequalities [107]:

max

 uixj + xi − ui
lixj

 ≤ xixj ≤ min

 lixj + xi − li
uixj

 . (4.2)

Whenever xj ∈ {0, 1} the inequalities of (4.2) turn into equations. Therefore, every such
product xixj can be expressed using a new variable yij and the respective linear inequalities
(4.2), with the corresponding entry qij then set to 0. Note also that x2

j = xj if xj ∈ {0, 1},
so that all squares involving a binary variable can be moved from Q to the linear part of the
objective as well.

Perturbation of the diagonal of Q for binary variables Again using the fact that for
a binary variable x2

j = xj, one has xTQx+∑
j∈B ρj

(
x2
j − xj

)
= xTQx, where B ⊆ I denotes

binary variables. The principal minor of Q corresponding to variables in B can thus be made
positive semi-definite. In particular, if all non-zero products in Q involve at least one binary
variable, Q can always be perturbed so that the resulting QP relaxation is convex. Note
that the choice of an appropriate ρ is a non-trivial step. A simple way to ensure that the
perturbed quadratic form xTQx+∑

j∈B ρjx
2
j has no negative eigenvalue is to directly use Q

eigenvalues, though more advanced techniques leverage semi-definite programming and the
linear constraints of (4.1) to produce tight QP relaxations [108,109].

Leading solvers for MIQPs can perform either of the two operations above (linearize or
perturb) at the beginning of the optimization, in a preprocessing phase. If the resulting
problem has a convex QP relaxation it will be solved as a convex MIQP; otherwise, solving the
QP relaxation itself is an NP-hard problem [110] and more involved techniques are required.
In this paper we only consider the former case. The state of the art for solving convex MIQPs
usually employs computationally efficient algorithms for solving QP relaxations; in CPLEX,
a simplex-based algorithm is preferred for its good restart properties. For the rest, the
technology is similar to the one used for Mixed-Integer Linear Programs: a branch-and-bound
tree search, augmented with cutting planes techniques, and heuristic procedures to obtain
good feasible solutions [2]. Note that both approaches can also be applied when initially
Q � 0 – and in practice they are. In particular, the linearization step could reformulate an
already convex MIQP into a Mixed-Integer Linear Program, thus deciding which resolution
method and technology are applied to solve the problem.
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4.2.1 The linearization option

Linearizing a convex MIQP has its benefits and inconveniences. The operation presents a
technological advantage in that state-of-the-art solvers (CPLEX in particular) are typically
better at solving Mixed-Integer Linear Programs than MIQPs: cutting plane techniques
are more complete, and the algorithmic framework is overall more mature. However, the
linearization step requires adding potentially many variables and constraints (depending on
the non-zeros of Q), and the resulting Linear Programming (LP) relaxation may be very
large and significantly slower. On the other hand, choosing to not linearize does not require
additional variables, but one might be left to deal with a weaker QP relaxation (i.e., one
with a worse bound), potentially due to a perturbation of Q diagonal to establish positive
semi-definiteness.

As reported in [102], the linearization approach does not dominate in theory the non-
linearization one. In CPLEX internal experiments, though, linearizing appeared to be su-
perior on average to tackle convex MIQPs, and became the default method. Since version
12.6.0, CPLEX provides to users the possibility to switch the linearization mechanism on or
off through the preprocessing parameter qtolin3, whose automatic value corresponds to al-
ways linearize. But the linearization option is not always beneficial, as was reported in [103].
The following example shows that a range of situations can occur.

Example 4.2.1. We generate MIQP instances (see Section 4.3) of varying size and structural
properties, and run CPLEX with both qtolin on and off with five different random seeds and
a time limit of 2h. The following table reports for five problems the shifted geometric means
of runtimes for the L and NL strategies, together with the problems’ number of variables and
constraints (n,m), the density of the Q matrix, and the percentage of “hard” eigenvalues of
Q (i.e., those making the starting Q indefinite).

Table 4.1 Structural parameters and average runtimes for five synthetic MIQP instances.

n m Density of Q Hard Eigen. L Time NL Time

A. 150 5 0.20 0.00 7.24 7200.00
B. 175 1 0.57 0.00 1159.69 251.34
C. 100 11 0.96 0.32 372.75 819.26
D. 150 5 0.70 0.01 140.84 136.48
E. 125 10 0.95 0.51 7200.00 1812.76

Clearly, the initial convexity of Q itself does not decide which method between L and NL
is the best suited to solve a MIQP, and Q density does not define the best option either.

3https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/
Parameters/topics/QToLin.html

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/QToLin.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/QToLin.html


50

Possibly, a combination of many factors together could parameterize the best solving mode.
Note that choosing the correct strategy for problems A and E appears critical, in the sense
that a wrong decision could result in the problem not being solved within the time limit. In
contrast, for problems B and C the performance gap of L and NL is less pronounced, while
for D the two methods are practically equivalent.

The main question addressed in this paper is to decide whether in the preprocessing phase
one should linearize products involving binary variables, when solving convex MIQPs.

4.3 Building a dataset

To obtain predictions on MIQPs, we need to build a set of data-points, each representing
a MIQP instance like (4.1) and the best decision for it between L and NL. More formally,
we need to build a dataset D = {(xk, yk)}k=1...N : for every k, a vector of features xk ∈ Rd

describes MIQP k, while a categorical label (target) yk encodes the linearization decision.
We explain in this section the target definition and the design of MIQP features, before
discussing the dataset composition.

4.3.1 Labeling procedure

Given our question L vs. NL, we need to provide for each MIQP the answer corresponding
to the better performing approach. We identify three possible scenarios, and therefore assign
one among three categorical labels: L (linearize, i.e., qtolin on), NL (not linearize, i.e.,
qtolin off), and T (tie), when L and NL methods are comparable in terms of performance.
Tracking tie cases provides a way of distinguishing between critical and non-critical problems,
and can be helpful when evaluating the learned predictions.

To deal with the solver’s performance variability [17], each instance is run in both qtolin
modes with five different random seeds. We enforce a timelimit of 2h for each run, and collect
data on final upper and lower bounds, resolution times and solver’s solution statuses. We
implement two checks to remove troublesome runs:

· Consistency check: on each seed, we compare best primal and dual bounds achieved by
methods L and NL; when an inconsistency is found, the run on that seed is discarded;

· Solvability check: the run on a seed is discarded if neither L nor NL were able to solve
the problem to optimality.
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These checks on seed runs are reported in Algorithm 1, for the minimization case. After
removing faulty runs and missing values from the data, we can decree the winner between L
and NL or assign a tie T, for each seed. Algorithm 2 details the following MultiLabel labeling
procedure. When both modes are able to solve the instance, running times are compared
and a “seed win” is assigned if one method performed at least 10% better than the other
one, opting for a tie alternatively. Instead, if only one method could solve the problem, it is
decreed the winner for that run. A final label for each MIQP is determined by cumulative
wins: L or NL are assigned only if their seed wins are consistent through the available
runs, while T is returned otherwise. Note that the MultiLabel algorithm is based on the
standard procedure employed in MIP development to compare two methods and determine
their relative wins/losses.

In addition, we define a binary labeling scheme BinLabel, reported in Algorithm 3. Unlike the
multi-class procedure, BinLabel does not take into account consistent seed wins. Instead, it
directly compares the shifted geometric means of running times for L and NL, across the seeds
passing the checks. Eventually, ties are broken using shifted geometric means of the number
of nodes. The comparison of computing times in BinLabel does not use a 10% threshold,
but the resulting scheme is nevertheless consistent with the MultiLabel one: L and NL labels
assigned in the multi-class procedure remain the same in the binary one. In other words, one
can interpret BinLabel as a way of turning T samples obtained with MultiLabel into L and NL
cases.

Algorithm 1: Checks on MIQP runs
Input: For a minimization MIQP (4.1), lower bounds lb∗, upper bounds ub∗ and statuses

status∗ collected on runs in modes ∗ ∈ {L,NL}, on a same seed s. Tolerance parameter
constol(= 1× 10−5).

Output: True if the run passes consistency and solvability checks, False otherwise.
1: LB := max{lbL, lbNL}, UB := min{ubL, ubNL}

Consistency check
2: if (LB −UB > constol ·max{|LB|, |UB|, 1}) then
3: return False . discard the run because inconsistency was found
4: end

Solvability check
5: solved = [optimal, infeasible] . statuses corresponding to solved runs
6: if (statusL /∈ solved) and (statusNL /∈ solved) then
7: return False . discard the run because not solved within timelimit
8: end
9: return True
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Algorithm 2: Labeling procedure – MultiLabel case
Input: For a MIQP, times ts,∗ and statuses statuss,∗ for all seeds s that passed checks and
∗ ∈ {L,NL}. Parameters p(= 0.1) to compare runtimes, ∆(= 3) to compare seed wins.

Output: A label in {L,NL,T}.
Seed wins

1: winsL := 0,winsNL := 0
2: solved = [optimal, infeasible] . statuses corresponding to solved runs
3: for seed s in passed seeds do
4: if (statuss,L ∈ solved) and (statuss,NL ∈ solved) then
5: if ts,L < (1− p)ts,NL then . L significantly better than NL on s
6: winsL ← winsL + 1
7: else if ts,NL < (1− p)ts,L then . NL significantly better than L on s
8: winsNL ← winsNL + 1
9: end
10: end
11: if (statuss,L ∈ solved) and (statuss,NL /∈ solved) then
12: winsL ← winsL + 1
13: else if (statuss,L /∈ solved) and (statuss,NL ∈ solved) then
14: winsNL ← winsNL + 1
15: end
16: end

Winner label assignment
17: if winsL ≥ winsNL + ∆ then return label L
18: else if winsNL ≥ winsL + ∆ then return label NL
19: else return label T
20: end

Algorithm 3: Labeling procedure – BinLabel case
Input: For a MIQP, times ts,∗ and nodes nodess,∗ for all seeds s that passed checks and
∗ ∈ {L,NL}. A function sgmean to compute shifted geometric means, with shift ε(= 1).

Output: A label in {L,NL} or None.
1: Time∗ := sgmean(ts,∗ : s passed checks) for ∗ ∈ {L,NL}
2: Nodes∗ := sgmean(nodess,∗ : s passed checks) for ∗ ∈ {L,NL}

Time and nodes comparison
3: if TimeL < TimeNL then return label L
4: else if TimeNL < TimeL then return label NL
5: else
6: if NodesL < NodesNL then return label L
7: else if NodesNL < NodesL then return label NL
8: else return None
9: end
10: end
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4.3.2 Feature design

A raw formulation like (4.1) cannot be fed directly as input to a learning algorithm, so we
need to represent a MIQP via a vector of numerical features x ∈ Rd, which should condense
what we suspect are the important pieces of information leading to an algorithmic discrim-
ination between L and NL. We describe a MIQP instance in its mathematical, optimization
and computational properties, by means of a set of 60 hand-crafted features. For feature
design, we reinterpret few ideas from the recent works [37] and [35]. We mostly capture
static information from the initial formulation, but given the impact of the linearization and
perturbation steps on the quality of the root dual bound [108] (and hence on the success of
the subsequent optimization process), we also extract data from the preprocessing phase and
the resolution of the root node relaxation, for both L and NL. Features are defined in such a
way to be comparable across a variety of instances, as they should express common charac-
teristics of MIQPs. With respect to our early work [26], the feature set has been revised and
extended, with the goal of better capturing the composition of matrix Q and the changes
induced by preprocessing.

Static features Properties of a MIQP that can be read from the formulation (4.1) are
basic information about the size of the problem (number of variables and constraints) and
the proportions of variables of each type (binary, general integer and continuous). The
composition of the symmetric matrix Q can be detailed by inspecting the presence of different
types of non-zero bilinear products, in and out of the main diagonal, and in particular
the appearance of non-linearizable terms. Additionally, we examine spectral properties of
Q such as rank and proportions of zero and “hard” eigenvalues. Connectivity degrees of
variables appearing in xTQx are also tracked, and we compute proxies for potential increases
in variables and constraints sizes after linearization. We record the composition and density of
the linear term c of the objective function. For constraints, we inspect variables’ involvement
(per type) and the density of matrix A.

Preprocessing features After the preprocessing phases of L and NL, we record the actual
increases in number of variables and constraints, relative to the original dimensions n and
m. The density of the constraints matrix after preprocessing is also examined and compared
with the one of A, and between the two methods.

Root node features To measure the performance difference between L and NL in solving
their respective relaxations, we collect and compare runtimes and dual bounds achieved after
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the root node resolutions.

In total, we collect 44 static, 11 preprocessing and 5 root node features; we report them in
Table B.1 in Appendix B. At this stage, features are still extracted offline: we compute static
traits with the CPLEX Python API after reading MIQP instances. Necessary information
from preprocessing and the root node resolutions of L and NL are gathered during the runs
of the labeling procedure (Section 4.3.1); dual bounds and runtimes at the root node are
aggregated using arithmetic and shifted geometric means, respectively, across the runs that
passed the checks of Algorithm 1.

4.3.3 Instances

We aim to compile a dataset of MIQPs that is heterogeneous and relevant for the L vs. NL
question, and representative of the variety of cases that can occur, as we saw in Example 4.2.1.
Driven by the need of more problems than what available libraries offer, we first create
synthetic MIQP instances. The generation procedure takes into account different structural
parameters (such as size, density and spectrum of Q) and multiple types of constraints to
obtain heterogeneous MIQPs. We refer to the resulting dataset of 2640 MIQPs as setD, and
to [26] for more details on data generation.

Examining the problems that were generated for [26], we observed the presence of instances
with high density due to a dense encoding and near-to-zero coefficients qij. We hence decided
to apply a numerical correction to the dataset, enforcing sparsity of Q matrices. On the one
hand, such correction disrupted the spectral properties of some unstable instances, which
could now be read by the solver as general nonconvex ones, and consequently rejected.4 On
the other hand, we deem the corrected instances to be more stable and meaningful than
their original versions. Instances of setD have been contributed to the MINOA open-source
benchmark library [111].

For this work, we enlarge our MIQP dataset to include non-synthetic benchmark instances
from NEOS submissions and problems of CPLEX internal testbed:

· neos contains 945 MIQPs that were submitted to the NEOS server with CPLEX as the
specified solver. Instances have been collected from submissions between April 2015
and January 2018 and cleaned for duplicates;

· miqp contains 522 problems that constitute the CPLEX internal MIQP dataset. Dif-
ferently from setD, miqp is dominated by the presence of very structured combinatorial

4This behavior can be explained by the fact that we generated Q matrices with non-full rank, and that
zero eigenvalues are not really null in floating point operations.
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MIQPs, like Max-Cut and Quadratic Assignment Problems. Note that instances from
the literature (e.g., QPLIB ones [24]) are also included in this set.

Table 4.2 Dataset composition in terms of labels, for both labeling schemes. Percentages
refer to the corresponding row counts (#).

MultiLabel BinLabel

# L (%) T (%) NL (%) # L (%) NL (%)

setD 1821 614 (35.2) 841 (46.2) 339 (18.6) 1322 942 (71.3) 380 (28.7)
neos 480 49 (10.2) 426 (88.8) 5 (1.0) 137 93 (67.9) 44 (32.1)
miqp 284 101 (35.5) 149 (52.5) 34 (12.0) 191 133 (69.6) 58 (30.4)

Total 2585 791 (30.6) 1416 (54.8) 378 (14.6) 1650 1168 (70.8) 482 (29.2)

Altogether, setD, neos and miqp amount to 4107 MIQP instances, which we run in both
qtolin modes, for five random seeds, on a cluster of identical 12 core Intel Xeon CPU
E5430 machines running at 2.66 GHz and equipped with 24 GB of memory, with CPLEX
version 12.8.0. After performing Consistency and Solvability checks, 2585 problems remain
(1821, 480, 284 from setD, neos and miqp, respectively). We then compute labels with both
schemes MultiLabel and BinLabel, and extract features as described in Section 4.3.2. The
composition of the dataset in terms of labels is reported in Table 4.2; note that a proper
BinLabel could not be assigned in 935 cases due to ties both in runtimes and number of
nodes5, so that only 1650 problems are available in the binary setting. While the MultiLabel
scheme produces almost 55% of tie cases, BinLabel yields a 70-30% repartition between L and
NL, respectively. As shown in Figure 4.2a and 4.2b, the proportion of problematic eigenvalues
of matrix Q, as well as its density, span the entire [0,1] range in the full dataset.

4.4 Learning experiments

We perform learning experiments on the entire dataset with multi-class labels {L,NL,T}
given by MultiLabel (2585 points), as well as on the binary subset of samples with targets
defined by the BinLabel procedure (1650 points).

As classification models, we test Logistic Regression (LogReg), Support Vector Machine (SVM)
with RBF kernel [112], a single Decision Tree (Tree) and Random Forests (RF) [113]. We
specify a grid of values for the main hyper-parameters of each model, in order to search the
best combinations. All models can perform both multi-class and binary classification, and

5This happens because we set all runtimes smaller than or equal to 0.1 seconds to be precisely 0.1.
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Figure 4.2 (a) Fraction of problematic (hard) eigenvalues of Q, and (b) density of Q in the
full dataset (2585 instances).

are compared with a dummy classifier (dum) following a stratified strategy (i.e., generating
predictions according to the class distribution of the training set).

For each of our learning experiments, we randomly split the available data into a training and
a test sets using a 75-25% ratio. We perform a training phase with 5-fold cross validation
to grid-search models’ hyper-parameters, and a test phase on the neutral test set. When
splitting the data and defining folds, general proportions of labels are maintained in each
subset; features are standardized with respect to each subset, by removing the mean and
scaling to unit variance. Each type of experiment is repeated for five different random seeds:
within the learning pipeline, randomization mostly affects the determination of the train/test
splits, but can also impact the definition of some predictive models (e.g., RF). Practically,
learning experiments are implemented in Python 3.5 with Scikit-learn 0.20.0 [63], and run
on a dual Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz, equipped with 512GB of RAM.

Metrics Especially in our context, it is important to quantify the performance of the
trained classifiers not solely with respect to standard classification measures: from an opti-
mization standpoint, we need to determine how effective and valuable our learned approach
proves to be when practically solving MIQPs, and compare it to the solver current strategy.
For this reason, we rely on a set of heterogeneous metrics to assess the performance of the
predictors.

For a vector of true labels y and a vector of predicted labels ŷ, we compute the accuracy of
the predictions over a (test) set of size K as

accuracy(y, ŷ) = 1
K

K∑
k=1

1{yk=ŷk}. (4.3)
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We also report f1-scores, i.e., harmonic means of precision and recall for the predictions
(see [20] for details). More generally, a weight wk can be associated to each sample k, to get
a weighted accuracy score

w-accuracy(y, ŷ, w) = 1∑
k wk

K∑
k=1

wk · 1{yk=ŷk}. (4.4)

To compensate for (and get a sense of) the effects of class-imbalance in the data, one can
evaluate a balanced accuracy score. By defining class weights wclass as the uniform weights
over samples of the same class, one can compute

b-accuracy(y, ŷ) = w-accuracy(y, ŷ, wclass). (4.5)

However, from the perspective of practically solving MIQPs, misclassifying critical problems
has more severe effects than predicting the wrong method for an instance in which L and NL
show instead comparable performances. As we saw in Example 4.2.1, misclassifications are
neither all equally important nor bad. In order for our measurements to reflect the quality of
the predictions from the solver’s standpoint, we introduce a notion of sample weights linked
to the runtimes of L and NL. A natural way of measuring how critical a MIQP problem is –
i.e., how different the methods perform, and hence how important it is to classify the sample
correctly – is that of considering the shifted geometric mean of the runtimes difference, as in

wtime := sgmean(|ts,L − ts,NL| : s ∈ seeds). (4.6)

Weights wtime can be easily obtained from the benchmark runs of the labeling procedure. We
then measure accuracy “with respect to times”,

t-accuracy(y, ŷ) = w-accuracy(y, ŷ, wtime). (4.7)

On a similar note, we compare prospective runtimes of predictors. For each classifier clf ,
we associate a vector of “predicted” times tclf to the vector of its predicted labels ŷclf : for
every (test) sample k, we select Timek∗ for the corresponding predicted label ∗ ∈ {L,NL}.
As in Algorithm 3, Timek∗ is defined as the shifted geometric mean of runtimes, across the
available seeds from the labeling benchmark. If a tie T was predicted for sample k by clf ,
we set tkclf to be the average of TimekL and TimekNL. Likewise, we compute tdef and ttarget for
the solver’s default strategy (always linearize) and the ideal classifier that perfectly predicts
the true targets, respectively. A simple sum of such predicted (prospective) runtimes enables
one to get a sense of how effective a learned discrimination between L and NL can be. We
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define
σclf :=

K∑
k=1

tkclf , (4.8)

and compare both σclf /σtarget (the smaller the better, ideally 1) and σclf /σdef. Note that
σtarget/σdef naturally provides a bound to how much a classifier can improve on the current
default solver setting, in a given subset of samples k ∈ {1, . . . , K}.

4.4.1 Baseline results

As a baseline experiment, we train classifiers on the initial set of 60 features (Initial), in
both multi-class and binary settings. Results reported in Table 4.3 are averages of the scores
across five tries. With respect to traditional classification measures, all classifiers are exhibit-
ing good performance, with RF and SVM usually being the best performing models. Scores
accounting for runtimes in their definition (i.e., t-accuracy, σclf /σtarget, and σclf /σdef) appear
consistent with the classification ones. In particular, RF yields at least a 14% improvement
on def in both settings: def uses 16% or more time than RF to solve test instances. Classi-
fication scores in the multi-class configuration are generally higher than those in the binary
one. An inspection of the confusion matrices allows to assess that classifiers in the multi-class
setting are in fact very good at correctly classifying T cases, with errors mostly happening
when distinguishing between L and NL. Given that the BinLabel scheme in fact transforms
some tie cases into L and NL samples, the classification of T which was so accurate in the
MultiLabel setting translates into less clear-cut separation in the binary one. Nonetheless,
despite misclassification happening more frequently in the BinLabel setting, t-accuracy and
ratios of prospective runtimes remain high for RF and SVM. Again, misclassifications do not
have all the same impact in terms of solver performance, and runtime-based metrics show
that classifiers are still able to predict correctly on many critical binary samples. For these
reasons, we decide to focus our subsequent experiments in the binary setting only.

Feature importance To get a sense of the importance of each feature in the prediction,
we analyze the importances scores of the trained RF models. Such scores, computed by
Scikit-learn, consist of nonnegative scalar values summing up to 1 (among all features), and
represent the mean decrease in impurity [114] for each feature. Simply put, the predictive
power of an attribute is quantified in terms of the depths in the decision tree at which the
attribute is used to create a node split, following the rationale that attributes used at the top
practically affect more samples. We average the features’ scores across the five RF models
trained in both data setting, and consider the 10 top-ranked features, which we report in
Table B.2 in Appendix B. For MultiLabel, top features are mostly from preprocessing and
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Table 4.3 Baseline results for the two data setting; 60 Initial features are used for learning.
Reported values are averages across five experiments of the same type, on different seeds.

dum LogReg RF SVM Tree def target

accuracy 0.41 0.85 0.90 0.87 0.87 - -
b-accuracy 0.33 0.78 0.85 0.81 0.81 - -
f1-score 0.41 0.85 0.90 0.87 0.87 - -

t-accuracy 0.29 0.93 0.96 0.95 0.91 - -
σclf /σtarget 3.06 1.28 1.15 1.17 1.39 1.33 1.00
σclf /σdef 2.27 0.96 0.86 0.88 1.03 1.00 0.75

(a) MultiLabel, Initial features

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.83 0.80 0.80 - -
b-accuracy 0.50 0.69 0.77 0.73 0.77 - -
f1-score 0.59 0.76 0.83 0.79 0.80 - -

t-accuracy 0.69 0.91 0.96 0.95 0.89 - -
σclf /σtarget 2.46 1.42 1.17 1.26 1.53 1.37 1.00
σclf /σdef 1.78 1.04 0.85 0.92 1.11 1.00 0.73

(b) BinLabel, Initial features

the root node resolution; this suggests that T cases can be well detected thanks to this
type of non-static information. In the binary configuration, instead, a common subset of
features starts to emerge: together with few non-static features, attributes describing the
composition of matrix Q appear. In particular, measures of density and of the presence
of binary variables gain relevance. In Figure 4.3 we plot four relevant features across the
multi-class dataset. The density of Q (Figure 4.3a) and the relative dual bound difference
between L and NL (Figure 4.3d) clearly help in discriminating between classes. Together
with the relative increase in number of variables after L preprocessing (Figure 4.3b), they
also reflect the trade-off between size and strength of the (re-)formulation, which is crucial
for a successful resolution of MIQPs [108] .

4.4.2 Feature selection

Up to now we performed data collection and learning experiments offline, tracing over the
outline of what had been done in [26]. However, the ultimate goal of the present work
is that of tightly integrating a predictive tool with the MIQP solver, a task that requires
rethinking our initial framework and adjustments of various kind. Mainly, instead of data
being collected once and for all, feature extraction will need to be performed online, when a
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Figure 4.3 Four relevant features in the full dataset: (a) density of Q, (b) relative increase
in number of variables after L preprocessing, (c) root node runtimes difference between L
and NL, (d) root node bounds difference between L and NL. Colors match MultiLabel targets,
while bubble size is proportional to weights wtime. In all plots, instances are ordered by the
number of non-zeros in Q.

MIQP instance is presented to the solver. More generally, one has to understand when the
prediction should take place, with respect to the resolution pipeline and the solver’s various
functionalities – a consideration that, in turn, affects which type of input can be available for
the predictor model. Moreover, not all the hand-crafted features prove to be useful for good
classification: in fact, the presence of irrelevant features in the input may induce over-fitting,
besides entailing extra computational cost. One generally needs to compromise between the
predictive power of some features and the possibility of efficiently computing them in the
solver: attributes related to root node information are certainly useful for classification but
expensive to get, as they would require to solve the root node twice. Some static features
involving a spectral decomposition of Q are also not viable in an online procedure.

Practically, these considerations altogether motivate the revision of the hand-crafted feature
set. We drop features that are not accessible for an online solver computation; in particular,
we remove from the initial 60 traits:

· most of the features regarding the spectrum of the Q matrix, only keeping information
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Table 4.4 Description of features in the Selected subset (21).

Name Description

Static features

RBin Ratio of binary variables over n
RContInt Ratio of continuous and integer variables over n
RNnzDiagContInt Ratio of non-zero (nnz) coefficients in Q diagonal for continuous and

integer variables
OutDiagDensity Density of non-diagonal entries of Q
QDensity Density of Q
RBinBin Ratio of nnz products between binary variables in Q
RContContInt Ratio of nnz products between continuous or integer variables in Q
RNonLinTerms Ratio of nnz non-linearizable terms, over n2

RelVarsLinInc Relative size increase of potential linearization, over n
RLinSizes Sizes m/n ratio after potential linearization
NormMaxDegBin Maximum connectivity degree in Q among binary variables, over n− 1
NormMaxDegContInt Maximum connectivity degree in Q among continuous and integer vari-

ables, over n− 1
RNnzContIntLin Ratio nnz continuous and integers variables in linear term
ConssDensity Density of constraints matrix A
RConssInt Ratio of constraints involving integer variables, over m
RQRankEig Rank of Q over n (i.e., ratio of nnz eigenvalues of Q)
HardEigenPerc Portion of problematic (hard) eigenvalues in Q

Preprocessing features

prep_RelVarsIncL Relative variables increase after L preprocessing
prep_RelConssIncL Relative constraints increase after L preprocessing
prep_RSizesL Sizes m/n ratio after L preprocessing
prep_ConssDensityL Density of constraints matrix after L preprocessing

on the proportion of hard eigenvalues and zero ones (i.e., measures relative to Q rank);

· features gathered from root nodes resolution for both L and NL, and those from the
preprocessing step of NL;

· features prone to numerically ill behaviors (e.g., those involving comparisons of A, b
and c coefficients), in order to avoid scaling issues in the learning phase and remove
dependencies from each instance’s parameters.

After these reductions, we end up with a set of 35 features. Note that the only non-static
features kept are those extracted from the L preprocessing step, which is more expensive
than the NL one, but appeared more useful for predictions in the baseline experiments. We
then proceed with a phase of further feature selection. Feature selection is an inherently
iterative phase in the learning pipeline, and we try various procedures – from filtering based
on a single SVM model or Decision Tree, to cross-validating the best subset using ensemble
methods. We also examine the performance of different feature subsets with respect to the
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regression task that will be included in the learning pipeline (see Section 4.4.4). At the end,
we decide to keep a subset of 21 features (17 static and 4 from L preprocessing) that are
consistently identified throughout the experiments as relevant and leading to satisfactory
classification performances. We describe this final subset of attributes in Table 4.4, and refer
to it as Selected.

We run classification experiments in the binary setting; results are reported in Table 4.5. All
scores appear decreased with respect to the baseline (cf. Table 4.3); in particular, performance
in terms of prospective runtimes is generally reduced. Relevant features consolidate in the
binary configuration, consistent with what already observed in the baseline experiments:
with features describing the initial Q composition (particularly in terms of binary variables
appearance), traits on the effects of linearization (e.g., with respect to problem size and A’s
density) are regularly in the top-10 (cf. Table B.2).

4.4.3 Using runtime weights

After a necessary reduction in input features, classification and runtime-related scores dropped
considerably. In this and the next sections, we introduce some changes in the learning process
to condition predictions towards our true performance goal and thus improve the optimiza-
tion performance of the classifiers. Improving the predictions from the optimization point of
view concretely means making the classifiers more attentive to critical data-points. A very
natural idea to incorporate the knowledge of whether a sample is critical is to use wtime as
defined in (4.6) as sample weights, i.e., to work with a weighted dataset. In SVM models, for
example, the use of weights on the points has the effect of re-scaling the penalty parameter, so
that during training the classifier will be emphasised to get high-weight points correctly. In a
single Decision Tree, instead, weights would modify the classes’ probabilities in the identified
split regions of the feature space.

Another possible way of introducing a prior about critical instances is by defining a cus-
tom loss function designed to penalize misclassification proportionally with the criticality of
samples. In this respect, we define

WTarLoss(y, ŷ) := 1
σtarget

K∑
k=1

wktime · 1{yk 6=ŷk}, (4.9)

a weighted loss with respect to target runtimes. For a misclassified sample k (yk 6= ŷk), the
weight wktime is a proxy for the difference between the prospective runtime of the classifier and
the target one, i.e., of tkclf −tktarget. We try WTarLoss as scoring function for cross-validation,
so that during training the best combinations of classifiers’ hyper-parameters will be chosen
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Table 4.5 Results for the binary setting using the 21 Selected features. Reported values are
averages across five experiments of the same type, on different seeds.

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.77 0.77 0.75 - -
b-accuracy 0.50 0.67 0.70 0.69 0.70 - -
f1-score 0.59 0.74 0.76 0.76 0.75 - -

t-accuracy 0.69 0.92 0.94 0.92 0.90 - -
σclf /σtarget 2.46 1.37 1.32 1.40 1.49 1.37 1.00
σclf /σdef 1.78 1.00 0.96 1.01 1.07 1.00 0.73

based on this score (the lower the better).

Results in both the sample weights setting and with the use of WTarLoss are reported in Ta-
ble 4.6. Overall, it appears clear that incorporating some prior knowledge on which instances
are critical via weights substantially helps to improve the classifiers prospective optimization
performance. Measures of t-accuracy and runtimes ratios strengthen in both setups, with
sample weights especially boosting SVM (cf. Table 4.7a). Classification measures are compa-
rable between settings, and with respect to previous results in which no weight information
were used (cf. Table 4.5). Note that the use of sample weights leads to lower b-accuracy
scores, i.e., there is a marked imbalance in terms of which class is correctly predicted. In this
setup, confusion matrices reveal that L is the predicted label for a higher number of samples,
and most misclassifications happen in the form of a NL wrongly predicted as L. This might
be linked to the fact that values of wtime show different distributions when restricted to L
and NL samples; Table 4.7 presents descriptive statistics for weights in BinLabel data. While
wtime ∈ [0, 7200) hits the same min and max values for both classes, mean and 75% percentile
values indicate that weights are higher for L samples. In other words, there is more to lose
(on average, in our data) when misclassifying L for NL than vice versa.

4.4.4 Regression of root bounds information

Among the factors affecting the final runtime of a MIQP, an important one clearly is the
quality of the dual bound reached at the root node, i.e., the strength of the initial problem
relaxation. As we already noticed, features comparing root node information of L and NL
methods were deemed very useful for correct predictions (cf. Table B.2 and Figure 4.3d). We
try to incorporate dual bounds information without solving the root node twice, by approxi-
mating a root feature via learned regression. In particular, we select root_RelSignRDBDiff,
i.e., the relative signed difference of root dual bounds in L and NL, and use it as target to train
a Support Vector Regression model (SVR) with a nonlinear RBF kernel. For the minimization
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Table 4.6 Results for the binary setting using the Selected feature subset (21), with sample
weights wtime and custom cross-validation scoring function WTarLoss. Reported values are
averages across five experiments of the same type, on different seeds.

dum LogReg RF SVM Tree def target

accuracy 0.60 0.77 0.75 0.76 0.75 - -
b-accuracy 0.50 0.64 0.66 0.63 0.62 - -
f1-score 0.59 0.74 0.74 0.73 0.72 - -

t-accuracy 0.69 0.95 0.95 0.96 0.94 - -
σclf /σtarget 2.46 1.25 1.24 1.21 1.30 1.37 1.00
σclf /σdef 1.78 0.92 0.90 0.88 0.94 1.00 0.73

(a) BinLabel, Selected features, wtime as sample weights

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.76 0.76 0.75 - -
b-accuracy 0.50 0.67 0.68 0.67 0.69 - -
f1-score 0.59 0.75 0.75 0.75 0.75 - -

t-accuracy 0.69 0.93 0.94 0.93 0.92 - -
σclf /σtarget 2.46 1.36 1.28 1.35 1.43 1.37 1.00
σclf /σdef 1.78 0.99 0.93 0.98 1.02 1.00 0.73

(b) BinLabel, Selected features, WTarLoss

Table 4.7 Statistics for wtime with respect to classes, in the BinLabel data. We report: count,
mean, standard deviation, min, max and percentiles values.

# mean std min 25% 50% 75% max

L 1168 1938.44 2853.36 0.0 0.0 36.08 4366.82 7199.90
NL 482 432.63 1433.96 0.0 0.2 1.72 20.11 7199.90

case (dual bounds are lower bounds),

root_RelSignRDBDiff = lbL − lbNL

1e−10 + max(|lbL|, |lbNL|)
, (4.10)

the metric being positive when L’s bound is better, negative otherwise. Recall that bounds
lbL and lbNL are arithmetic means of those benchmarked during the labeling procedure. In
fact, this feature partially aligns with the binary labeling: when linearizing is the best choice,
that will be reflected in the bound quality 91% of the times; when NL is the target, instead,
the NL bound is actually better than the L one only 23.6% of the times (cf. also Figure 4.3d).

Practically, we need to allocate part of our data to train the SVR. In our experimental pipeline
we now first perform a 30-70% split for training and testing the regression; we restrict classi-
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fication to the SVR test set only, i.e., we further divide the 70% portion into a 75-25% split for
training and testing classification models. The predictions of the trained SVR are added to
the 21 input features of the Selected subset, and used for classification. Note that the entire
classification phase only relies on predicted values of root_RelSignRDBDiff, never true ones.

The average mean square error of SVR across five experiments is 0.1012. Classification-wise,
results improve when the regressed root information is exploited. Table 4.8 reports scores for
both kind of weights integration. If classification metrics are comparable with the previous
cases, the use of SVR is particularly helpful to improve runtime-related scores. In the sample
weight case (Table 4.9a) models improve their performance, the only exception being SVM.
When WTarLoss is used instead (Table 4.9b), SVM is the best performing classifier in terms
of prospective runtimes ratios, scoring a 16% improvement on default runtimes. Feature
importance scores as assigned by RF models identify the same top-10 attributes in both
setups, with the predicted version of root_RelSignRDBDiff ranking at positions 4 and 5,
respectively.

4.5 Implementing predictions in CPLEX

For the actual implementation of our trained predictors into CPLEX, we select an SVM model
trained in the setting with SVR regression performed on Selected features and WTarLoss used
as custom scoring function (cf. Table 4.9b). Overall, both SVM and RF models performed
consistently well in our multiple experiments, but we ultimately opt for a SVM model over a
RF one because of its easy-to-implement decision functions, whose coefficients and support
vectors can be directly extracted with Scikit-learn.

We devise the following workflow in the solver: a MIQP problem is read and L preprocessing
performed; after features are internally computed, the predictive pipeline starts: the trained
SVR predicts a proxy of the root feature root_RelSignRDBDiff, which is added as input for
SVM classification. If L is the predicted label, then the optimization continues; otherwise, the
original model is resumed and the NL preprocessing and optimization applied to it. We refine
the process to take care of two special cases:

(i) the problem is already solved during linearization preprocessing; in such case, no pre-
diction is needed;

(ii) it may happen that during NL preprocessing on the original problem the solver fails to
establish convexity and rejects the instance; in this case, we disregard the classifier’s
prediction and forcibly fall back to the L-preprocessed problem, to continue with the L
resolution process.
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Table 4.8 Results for the binary setting using the Selected feature subset and predicted
feature root_RelSignRDBDiff (21+1) from SVR, with sample weights wtime and custom cross-
validation loss function WTarLoss. Reported values are averages across five experiments of
the same type, on different seeds.

dum LogReg RF SVM Tree def target

accuracy 0.60 0.75 0.74 0.74 0.73 - -
b-accuracy 0.51 0.61 0.61 0.62 0.59 - -
f1-score 0.60 0.71 0.71 0.71 0.69 - -

t-accuracy 0.67 0.97 0.95 0.94 0.94 - -
σclf /σtarget 2.59 1.17 1.26 1.33 1.27 1.42 1.00
σclf /σdef 1.78 0.82 0.88 0.90 0.89 1.00 0.70

(a) BinLabel, SVR + Selected features, wtime as sample weights

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.76 0.77 0.74 - -
b-accuracy 0.51 0.65 0.66 0.66 0.64 - -
f1-score 0.60 0.74 0.75 0.75 0.72 - -

t-accuracy 0.67 0.95 0.95 0.96 0.91 - -
σclf /σtarget 2.59 1.25 1.24 1.19 1.48 1.42 1.00
σclf /σdef 1.78 0.88 0.87 0.84 1.02 1.00 0.70

(b) BinLabel, SVR + Selected features, WTarLoss

For CPLEX internal fine-tuning, we refine the dataset by removing 252 instances solved by L
preprocessing (i.e., those for which we do not actually need to train a classifier) and adding
40 large ones (n ≥10,000) for which spectral features could not be previously computed, but
are now available via the internal solver implementation. The resulting dataset amounts to
1674 instances when BinLabel is performed. As before, there is a 70-30% proportion between
L and NL classes. We select the final SVM model from a last round of training, and embed
its decision function in the solver.

As a final experiment, we run both CPLEX versions 12.9.0 and 12.10.0, the latter incorporat-
ing the learned classifier, which is run by default, on the test set (on which the classifier was
not trained) over five seeds. Note that the solving environment now presents some differences
with respect to the setting in which we computed targets: for labeling, version 12.8.0 was
used together with a time limit of 2 hours; now the time limit is raised to 10,000 seconds,
and computations run on a more powerful cluster of identical machines with 16 core Intel
X5650 processor at 2.67GHz, 24 GB RAM and using 12 threads. The classifier ultimately
yields a 28% improvement of running time over the previous default strategy; the measure
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(a) (b)

Figure 4.4 Comparison of MIQPs runtimes between CPLEX 12.9.0 and CPLEX 12.10.0 on
the test set: (a) bar plot (CPLEX 12.10.0 in red), (b) scatter plot of running times in log
scale.

increases to 92% when considering runs6 taking more than 10 seconds to solve with either
version (Figure 4.4a). Figure 4.4b reports a scatter plot of MIQPs running times between
versions 12.9.0 and 12.10.0. While using the classifier results in slower runs for some mod-
els, the degradation is generally limited and compensated by improvements of several order
of magnitudes. In particular, only two runs present a degradation of more than one order
of magnitude (the worst case being 13 times slower), while 58 (resp. 30) of them show an
improvement of more than one (resp. two) order of magnitude.

Future developments As our metrics show, there surely is room for improving predic-
tions. At the very least, the classifier could be periodically updated to incorporate newly
available MIQP instances: most of the computational effort needed to maintain a growing
dataset would be spent on label computation. Nonetheless, the question arises of how to
compare prospective classifiers to the current one. In this respect, the definition of a fixed,
shared MIQPs test set (as those available for other ML applications, e.g., for object recogni-
tion) could make future comparisons easier, but it definitely is a non-trivial task. Being this
the first time a predictor is fully integrated in a MIP solver, we do not know all the answers
upfront; we are curious to see how this classifier (and more generally this research field) will
practically evolve.

4.6 Conclusions

We considered convex MIQPs and the question of whether to linearize the binary compo-
nents of their quadratic objective in order to solve them. We translated the problem into

6As it was for labeling, a “run” corresponds to a MIQP model solved with a specific seed.
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a classification task and addressed it with ML techniques. The developed framework aims
at embedding a predictive function in CPLEX: with this goal in mind, we contributed a
methodological process for combining ML and MIP technology, and thoroughly revised our
initial work [26]. We built a dataset of synthetic and real-world instances, proposing labeling
schemes and carefully engineering features to describe MIQPs and the decision of whether
to linearize them. Learning experiments as well as evaluation metrics were designed to in-
tegrate the optimization knowledge in the learning pipeline. In particular, we experimented
with runtime weights, a custom scoring function and with the regression of an attribute
about the root node bounds. Finally, we carefully considered how to include a predictor in
the solver ecosystem. As a result, a SVM classifier deciding on MIQP linearization is imple-
mented in CPLEX 12.10.0, establishing to the best of our knowledge the first example of a
learning-based tool deployed in a commercial optimization solver.
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CHAPTER 5 ARTICLE 3 – LEARNING MILP RESOLUTION
OUTCOMES BEFORE REACHING TIME-LIMIT

Authors: Martina Fischetti, Andrea Lodi and Giulia Zarpellon1

Published in Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, CPAIOR 2019.2

Abstract The resolution of some Mixed-Integer Linear Programming (MILP) problems
still presents challenges for state-of-the-art optimization solvers and may require hours of
computations, so that a time-limit to the resolution process is typically provided by a user.
Nevertheless, it could be useful to get a sense of the optimization trends after only a fraction
of the specified total time has passed, and ideally be able to tailor the use of the remaining
resolution time accordingly, in a more strategic and flexible way. Looking at the evolution
of a partial branch-and-bound tree for a MILP instance, developed up to a certain fraction
of the time-limit, we aim to predict whether the problem will be solved to proven optimality
before timing out. We exploit machine learning tools, and summarize the development and
progress of a MILP resolution process to cast a prediction within a classification framework.
Experiments on benchmark instances show that a valuable statistical pattern can indeed be
learned during MILP resolution, with key predictive features reflecting the know-how and
experience of field’s practitioners.

5.1 Introduction

Within the realm of discrete optimization, we consider Mixed-Integer Linear Programming
(MILP) problems, of the form

min{cTx : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (5.1)

where A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn and I ⊆ {1, . . . , n} is the set of indices of variables that
are required to be integral. We do not assume A, b having any special structure (as it is, e.g.,
for Traveling Salesman Problem instances). Models like (5.1) can be used to mathematically
describe a number of different real-world problems, and are daily deployed across a wide
spectrum of applications – network, scheduling, planning and finance, just to mention a few.

Despite being NP-hard problems, MILPs are nowadays solved in very reliable and effective
1Authors are listed alphabetically, as is standard practice in Operations Research journals and conferences.
2Available at [29].
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ways, ultimately based on the divide-and-conquer paradigm of Branch and Bound (B&B)
[3]. State-of-the-art optimization solvers, such as IBM-CPLEX [28], experienced a dramatic
performance improvement over the past decades, due to both hardware and software advances
(see, e.g., [1, 2]). Nonetheless, the resolution of some MILPs can prove to be challenging
for solvers, and may require hours of computations, so that the experimental practice of
imposing a time-limit (TL) to the MILP resolution process is not only very reasonable, but
well established too. However, it would be useful to get a sense of the optimization trends
after only a fraction of the specified TL has passed, and ideally be able to tailor the usage
of the remaining resolution time in a more strategic and flexible way.

We aim to predict whether a generic MILP instance will be solved before timing out, only
relying on information from a first portion of the resolution process. More specifically, given
problem P and a time-limit TL, we look at the partial resolution of P , up to a certain time
τ , 0 < τ < TL, and ask whether P will be solved to proven optimality within TL. We
summarize the partial resolution of P , and exploit machine learning (ML) tools to cast a
prediction about it being solved or not before TL. Thus, the prediction we aim at is one
that takes as input (a summary of) the evolution of a partial MILP run, up to time τ ,
and outputs a yes/no response, in the framework of binary classification. Note the inherent
difference between our approach and the problem of directly predicting the “difficulty” of a
MILP instance – e.g., in terms of tree-size [48, 115] or runtime prediction, the latter being
a common interest for both the optimization and the ML communities since the work of
Knuth [47] (a more recent approach can be found in [35]).

The sequential nature of B&B makes it natural to interpret our question as a sequence clas-
sification task. However, the transformation of a stream of data from the MILP resolution
process into a valid input for traditional classification algorithms cannot be performed with
off-the-shelf techniques [116]. To this end, we design specific features to describe the devel-
opment and behavior of a MILP run in a quantitative way, taking into account the complex
interplay between the solver’s components. The broad generality of the proposed features
makes them apt to be re-used every time one needs to evaluate the B&B development of a
general MILP, thus conferring even more impact to this contribution, especially given that
applications of ML to discrete optimization have lately been flourishing as recently surveyed
in [6]. For example, in the context of MILP, ML has been proposed to establish good solver’s
parametric configurations [34]; learn heuristics for B&B (see [25] for a survey); choose reso-
lution options ( [26,43,44]), and also predict solution-related outcomes ( [54,55]). Our work
represents a novel contribution in this thread of research: ML is employed to provide an
accurate prediction on the resolution outcome of MILPs, which can readily be implemented
within solvers to enable tailored optimization and enhance the comprehension of the reso-
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lution process, too often hard to unravel given the solver’s complexity. In fact, despite the
abundance of data and events in the MILP resolution framework, to the best of our knowl-
edge no statistical analysis presently happens within the solver; in particular, information
is not exploited in any structural way via ML algorithms to make decisions. Applying to
generic MILP problems and opening new opportunities on the solvers’ side, our results affect
a broad audience and assume greater methodological relevance for the discrete optimization
community.

We end the introduction by stressing that discovering early in the process that the run
will very likely not terminate with a proof of optimality is of fundamental value for MILP
development, and opens promising scenarios for both developers and end-users. Indeed, on
the one hand, MILP developers can adapt the resolution through algorithmic changes in the
attempt of avoiding the issue, or can switch mode so as to try to improve the incumbent
solution as much as possible giving up optimality. On the other hand, this can be achieved
by an end-user too, although that would likely require restarting the run with a different
parameter setting. Finally, note that the indicators we developed could, in turn, shed some
light on the type of required algorithmic changes.

5.2 Background: solving MILPs

As already mentioned, the resolution of MILPs is fundamentally based on the B&B paradigm.
In its basic version, B&B sequentially partitions the solution space of (5.1) into sub-MILPs,
which are mapped into nodes of a binary decision tree. At each node, the integrality re-
quirements xi ∈ Z for variables i ∈ I are dropped, and a linear, or continuous, relaxation
(polynomially tractable) of the sub-problem is solved, providing a valid lower bound to the op-
timal solution value of the original MILP. When in the relaxed solution all variables xi, i ∈ I
take integer values, the solution is feasible for (5.1) as well and provides an upper bound of its
optimal value. Otherwise, variables xi /∈ Z, i ∈ I are integer infeasible (iinf) and among them
one is selected for further branching: the tree is extended with two additional child nodes so
that the current relaxed solution is removed from the sub-problems’ feasible space; the new
nodes also inherit from their parent an estimate of the objective function value. Global lower
and upper bounds (called best bound and incumbent, respectively) are maintained throughout
the resolution process and smartly used to prune unpromising regions of the feasible space,
so that the resulting algorithm is only implicitly enumerating the exponentially many solu-
tions of (5.1). The normalized difference between global bounds (known as gap) allows to
measure at any point in time the quality of a solution and the progress of the optimization.
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For example, CPLEX implements the following (relative) gap measure:

gap = |best bound− incumbent|
1e−10 + |incumbent| . (5.2)

A MILP is solved when the gap is fully closed, i.e., when it reaches 0, with upper and lower
bounds coinciding (up to numerical tolerances). The branching and bounding operations are
combined with other solver’s building blocks – the cutting planes algorithm [9], presolving,
primal heuristics – to form a very rich and interconnected resolution framework [2], in which
single events and data become hard to disentangle.

The ability to identify the resolution phases of a MILP [14] and analyze the outputs of the
B&B algorithm can help recognizing causes of performance issues, and explaining instance-
specific trends [117]. In particular, many indicators interact in describing the progress of
the MILP resolution process, and need to be taken into account when casting a prediction
about the resolution outcome. To provide a simple example, we plot in Figure 5.1 basic
information from the resolution log of CPLEX, for an “Easy” instance of MIPLIB 2010 [16].
We report the development of the global bounds and the gap, the number of nodes left (i.e.,
the leaves yet to be explored) and the depth of the nodes as the algorithm traverses the tree.
The interconnection between these figures is, for this easy case, quite clear to observe: for
example, an update of the incumbent value naturally reduces the gap, triggers a drop in the
number of nodes left (due to pruning by bound), and possibly ends a (depth-first) dive in
the tree traversal exploration, a common practice when looking for initial feasible solutions
with primal heuristics.

5.3 Problem formalization

We can re-phrase our question more formally by considering a MILP P , a time-limit TL,
and a certain percentage ratio ρ ∈ [0, 1] yielding τ = ρ · TL ∈ [0, TL]. We solve problem
P with time-limit TL and take into account the evolution of its resolution process up to
time τ . We denote with tPsol the moment in which P is solved to proven optimality by the
solver. We want to describe and evaluate the progress (in other words, the “work done”) in
solving P , given that only a share of the total available time has passed; ultimately, we aim
at casting a prediction on such a description. With respect to the defined parameters, we
achieve 100% of work done at tPsol, and 100% of available time at TL. In practice, there is
a discrepancy between tPsol and TL, the latter specified by a user, the former unknown and
subject to variability.

Graphically, one could depict the advancement of the solver with a non-decreasing “progress
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Figure 5.1 Basic information from the CPLEX log from the resolution of MIPLIB 2010
instance air04. Interpreting the evolution and interaction of these indicators enables a
quantitative description of the optimization process.

measure”, describing the proportion of work done given the proportion of time passed (Fig-
ure 5.2). Our classification question translates precisely into predicting whether the 100% of
the work will be done before TL, i.e., whether tPsol ≤ TL, only observing the resolution up to
time τ . The function we aim to learn is thus the indicator function 1{tP

sol
≤TL}.

The task of feature design, on the other hand, aims at defining the progress measure used
to represent the % of work done, given the triplet (TL, ρ, P ). Instead of relying on a single
feature to describe the optimization process (as could be done, e.g., using the gap), we try
to capture the complexity of MILP resolution by considering heterogeneous measurements,
and design a feature map Φ, describing the progress measure for (TL, ρ, P ) with a vector in
Rd.
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Figure 5.2 (a) Graphical example of “progress measure” for a triplet (TL, ρ, P ); we assume
a smooth behavior for drawing purposes. The observed portion of the resolution (up to time
τ) is drawn in solid. (b) If we were to measure the progress by looking at the % of gap closed
only, we would draw a step-wise linear function.

5.3.1 Sequence classification

The sequential character of B&B makes it natural to think about the partial resolution of P
as a progressive stream of information and events. In the MILP context, it appears reasonable
to discretize the time dimension by considering information being retrieved at every node of
the B&B tree, starting from the root and up to the last one being processed before time τ
(say η). In other words, one could describe the output of a MILP run with a multivariate
time series STL,ρ,P ,

STL,ρ,P =
{

(N1, 〈v1
1, · · · , v1

s〉),

(N2, 〈v2
1, · · · , v2

s〉),
...

(Nη, 〈vη1 , · · · , vηs 〉)
}
,

(5.3)

a sequence of vectors vk ∈ Rs, each carrying information about the optimization state at
node Nk, up to η.

Classifying STL,ρ,P depending on P ’s optimization outcome can be seen as a (conventional)
sequence classification task. Sequence classification is typically employed in genomic appli-
cations, anomaly-detection and information retrieval (see, e.g., [118–120], respectively), and
generally deals with learning a sequence classifier for data of sequential type. Few alternatives
to tackle sequence classification can be found in the literature (see [116] for a brief survey).
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We opt for a feature-based approach: simply put, we transform the sequence STL,ρ,P into a
single vector of numerical features Φ(TL, ρ, P ) ∈ Rd, to which we will then apply traditional
classification algorithms. In our setting, a data-point for the learning algorithm consists of a
tuple

(
Φ(TL, ρ, P ), y

)
with Φ(TL, ρ, P ) describing the time series data STL,ρ,P , and binary

label y ∈ {0, 1} assigned according to 1{tP
sol
≤TL}.

As pointed out in [116], one of the major challenges when dealing with sequence classification
resides in the fact that sequence data does not come with explicit features. Moreover, feature
selection is usually costly, and needs to account for an interpretable prediction. Off-the-shelf
feature selection methods – like k-grams or time series shapelets – do not appear suitable to
capture the special temporal nature of B&B. We will present features specifically designed
for the MILP resolution process after discussing the data collection methodology.

5.4 Collecting B&B data

As we said, the B&B framework produces a lot of heterogeneous information, whose combina-
tion can provide interesting insights about the optimization status of a MILP run. Extracting
data from the resolution process is allowed by means of implementing custom callbacks in
the solver’s APIs, and comes with some computational overhead. From an application per-
spective, it seems reasonable that a user might be willing to spend some additional resources
in the first part of the resolution process, say up to time τ , in order to get a prediction on
the more lengthy horizon of TL. Nevertheless, especially in our setting, time is important:
any appreciable overhead during the run could bias the yes/no response with respect to the
fixed TL, so data collection has to be as cheap as possible.

In fact, the overhead we experienced comes from the computation of few indicators and the
need to interface the solver through its API. For example, extracting the number of iinf
variables at every branched node cannot be done with an API method directly, so that one
needs to examine feasibility statuses for all variables. However, the same indicator would
come almost for free if implemented internally, on the solver’s side: the value of iinf at every
node is available and systematically printed in the resolution log.

To comply with the need of collecting non-biased data – and certain that a data collection
procedure implemented internally on the solver side would incur in much less overhead than
that experienced by any user dealing with its interfaces – we devise a two-step proof-of-
concept implementation. We use CPLEX 12.7.1 as solver, together with its Python API.
Given (TL, ρ, P ), we perform

1. Label computation: run P with time-limit TL, and determine a label for the run by
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checking if tPsol ≤ TL. During the run record ηP , the number of nodes processed up to
time τ .

2. Data collection: run again P (the deterministic run of Step 1 can be reproduced by
setting the same random seed), and actively collect data during the optimization, up
to ηP nodes.

Having detached data collection from label computation, we do not need to worry anymore
about the overhead incurred in Step 2, nor about the integrity of the labeled data; the
produced sequence STL,ρ,P records the real “work done” up to the sought fraction ρ of TL.

5.4.1 Producing diversification

For fixed TL and ρ, a data-point corresponds to a single run of a problem P . The need of a
reasonable amount of data for applying ML thus requires many MILP instances – definitely
more than those currently part of MILP libraries (see Section 5.6). Instead of resorting
to random problems generation, we try to create additional data from existing benchmark
instances.

A first general diversification of data from the same problem P can be produced exploiting
the so-called performance variability of MILPs [17]. Perturbations can be obtained simply
by setting different random seeds in the solver, to obtain diverse runs of P . Other diver-
sification schemes, specific to our setting, consist in varying the main parameters TL and
ρ. In particular, one could (i) vary TL and keep ρ fixed, and/or (ii) vary ρ and keep TL

fixed. Intuitively, approach (i) seems more promising at generating heterogeneous points: a
change of TL allows for a sensible re-scaling of τ as well, potentially producing data labeled
differently, despite coming from the same problem P . We graphically describe this intuition
in Figure 5.3.

Having discussed how to produce and collect valuable MILP time series data, we now turn
to the task of handling it, in order to craft a vector of features.

5.5 Feature design

We undertake a feature-based approach for sequence classification, and transform MILP
sequential data STL,ρ,P into a single vector of features Φ(TL, ρ, P ) ∈ Rd, to be fed as input
to traditional classification algorithms. As already mentioned, feature selection is not a
straightforward process when dealing with serial data, especially if one wants to retain a
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Figure 5.3 Graphical example of approach (i) to obtain multiple data-points from fixed (ρ, P ),
varying TL. The run of P is represented at the top. Below, using additional TL′, TL′′ we
get

(
Φ(TL, ρ, P ), 1

)
,
(
Φ(TL′, ρ′, P ), 1

)
and

(
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)
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resolution process are drawn in solid.

certain degree of interpretability. We rely on MILP domain-knowledge to define features
that shall encompass the optimization progress encoded in STL,ρ,P .

In practice, we extract 25 raw numerical attributes from each callback call during Step 2 of
our data collection procedure, i.e., each vector vk of STL,ρ,P has dimension 25. Note, however,
that the length η of the series varies considerably across instances and seeds, ranging between
a few dozens and hundreds of thousands. At each branched node of the tree we collect
information about the general state of the optimization (e.g., gap, value of incumbent and
best bound, total number of processed nodes and count of simplex iterations performed),
together with node-specific data (e.g., current node LP objective value, number of iinf in the
LP solution, node depth). At few points in time, we extract information about the list of
nodes left (e.g., its length, the maximum and minimum objective estimates, and the number
of nodes attaining them). Data traditionally reported in the solver’s log are included in these
25 attributes.

Let us point out a few remarks on the nature of the extracted B&B data, and on the guidelines
that should be observed to transform them into MILP “progress measures”.

1. Some pieces of raw information already describe the global optimization state, and
can be considered in all respects as “progress measures” for the MILP resolution. An
example in this sense is provided by the gap measure: the last datum collected about
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Table 5.1 Description of the 37 features employed for learning experiments.

# Group name Features general description

7 Last observed global
measures

Gap; ratio between best bound and incumbent; fraction of nodes left at-
taining max (resp. min) objective estimate; ratio between max (resp. min)
estimate across nodes left and incumbent; primal-dual integral [121].

4 Nodes left and
pruned, iterations
count

Throughput of pruned nodes; ratio between nodes pruned and nodes left;
last measure of nodes left over max observed one; throughput of simplex
iterations.

4 Node LP integer
infeasibilities (iinf)

Max (resp. min, avg) number of observed iinf over |I|; fraction of nodes
with iinf below 5% quantile value.

5 Incumbent Throughput of incumbent updates (i.e., frequency); average improvement
(resp. distance) of updates normalized by incumbent value (resp. total #
of nodes); distance from last observed update over the average one; was an
incumbent found before an integer feasible node (boolean)?

4 Best bound Throughput of best bound updates (i.e., frequency); average improvement
(resp. distance) of updates normalized by best bound value (resp. total #
of nodes); distance from last observed update over the average one.

3 Node LP objective Fraction of nodes with objective above the 95% quantile value; differences
in absolute value between quantile threshold and global bounds.

4 Node LP fixed
variables

Fraction of max (resp. min) observed # of fixed variables; fraction of nodes
with # of fixed variables above 95% quantile value; distance from last ob-
served peak over total # of nodes.

6 Depth and tree
traversal

Ratio between max observed depth and # of processed nodes; ratio between
height of last full level (resp. waist) and maximal depth [48]; maximal and
average length of backtracks; frequency of backtracks in the traversal.

the gap refers to the entire resolution process up to that point, and can be used directly
as feature in Φ(TL, ρ, P ).

2. Some other information is instead local, referring to a particular node LP, and need
to be embedded and interpreted within a broader and global context. For example, a
single datum about the depth of a node is not informative of the tree evolution, but
combined depth data can provide indications about the tree profile (e.g., in terms of
maximal depth, width and full levels, see [48]), as well as describe dives and backtracks
in the traversal.

3. Some traits are global (in the sense that they refer to the totality of the optimization
process), but are not significant if taken individually. This is the case, for example,
of data about the global bounds values, which present themselves as a crude sequence
of decreasing (or increasing) scalar values. Measuring their development and changes,
instead, can be more informative of the optimization progress.

4. Finally, the wide range of MILP benchmark instances requires features to be comparable



79

across the dataset. For example, exact values linked to parameters (c, A, b, |I|) and
solutions should be avoided. Global counters, e.g., the number of processed nodes,
should be used to rescale other indicators, in order not to affect the learning process
(and subsequent data normalizations) with data of different magnitudes.

With these guidelines in mind, by means of combining different raw indicators with each other
and interpreting them from a development perspective, we design (and select) 37 features to
represent the MILP progress. We describe the features set in Table 5.1.

Besides the canonical use of statistical functions (like max, min, average) to synthesize some
serial information, and the use of throughputs measures (e.g., to infer the rates at which nodes
are processed and pruned), we apply our domain-knowledge to summarize the optimization
progress. For example, we tackle measures that can vary significantly even between consec-
utive nodes in the B&B tree, but for which we are interested in localizing extreme behaviors
only, by employing quantile values as statistically meaningful thresholds. We use them to
track peaks for values of node LP objective, number of iinf and number of fixed variables.
Instead, for data that is updating throughout the optimization process (e.g., for incumbent
and best bound values), we focus on interpreting their changes in time, deduce how often and
how distant are updates happening, and what is their average improvement.

5.6 Experimental results

Dataset composition and setup We employ instances of MIPLIB 2010 [16] and [122]
for our experiments. An assessment of the distribution of solving times seemed necessary in
order to produce a balanced and meaningful dataset. Evaluation runs with 10 different seeds
on the MIPLIB 2010 Benchmark set suggested the use of TL ∈ {3600, 2400, 1200} seconds.
A projection of the resulting labels distribution was performed, to select ρ = 0.2 (i.e., we
stop the observation after 20% of TL).

To build our dataset, we collect B&B data from the following MILP problems:

- Benchmark78: 78 instances from MIPLIB 2010 Benchmark set (problems belonging to
Infeasible and Primal subsets are removed, since they do not appear meaningful for
our question);

- Challenge160: 160 problems from MIPLIB 2010 Challenge set (with Infeasible and
Primal removed);

- Mittelmann48: 48 instances from H. Mittelmann MILPlib collection [122].
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Problems in Benchmark78 and Mittelmann48 are solved with three different random seeds,
while those in Challenge160 with a single one. As expected, Mittelmann48 runs are very
short, with few cases of time-limiting problems. Counterbalancing this effect, the majority
of instances in Challenge160 cannot be solved within 1h time-limit; Benchmark78 run times
are distributed more evenly. All MILP runs were performed on a cluster of 640 48-cores
machines, each equipped with a 2.1GHz Intel Platinum 8160F “Skylake” processor and 192
GB of RAM. Apart from time-limit specifications, we do not modify the solver’s default
setting; in particular, we leave in place CPLEX default presolve, cuts and primal heuristics.

The heterogeneity of the collected time series data makes necessary a thorough phase of
data cleaning and scaling. We discard troublesome runs to get 1315 data-points, which then
reduce to 970 after computing the hand-crafted features and performing basic data cleaning
(data with missing values are removed). Note that a single MILP problem can generate up
to 9 different data-points, given the variations in seeds and time-limits used. In the final
dataset of 970 points, Class 1 (Class 0) represents the 65.6% (34.4%) of the total; a snapshot
of the dataset composition is given in Table 5.2.

Train and test splits In order to account for the different composition of MILP libraries
and the role of performance variability, we define and try three different ways of splitting our
data into training and test set.
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Figure 5.4 Training and test set composition with respect to different labels and MILP
libraries, reported for the three considered train-test splits.
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Table 5.2 Dataset composition in terms of labels and original MILP libraries.

Class 0 Class 1 Total (%)

Benchmark78 106 405 511 (52.7)
Challenge160 219 6 225 (23.2)
Mittelmann48 9 225 234 (24.1)

Total (%) 334 (34.4) 636 (65.6) 970

1. Non-homogeneous split: data-points from Benchmark78 are used for training, while
those from Mittelmann48 for test; data from Challenge160 is divided between train
and test, taking care of keeping together points arising from the same MILP instance.

2. Homogeneous split: both training and test sets are built using a share of each dataset.
Again, points arising from the same instance are kept together.

3. Random split: data from all runs are mixed together and randomly split. In this case,
points that originated from the same MILP instance can appear in both training and
test sets.

Proportions between training and test set are roughly maintained around a 60%-40% repar-
tition, with slight variations across splits. Figure 5.4 illustrates the datasets composition in
more detail.

5.6.1 Learning experiments

We train and test five different learning models, namely, Logistic Regression (LR), Sup-
port Vector Machines (SVM) with RBF kernel [112], Random Forest (RF) [113], Extremely
Randomized Trees (ExT) [88], and Multi-Layer Perceptron (MLP) [22]. All algorithms are
compared against a dummy classifier (dum) following a stratified strategy, i.e., predicting by
respecting the class distribution. The learning phase is implemented entirely in Python with
Scikit-learn [63], and run on a PC with Intel Core i5, 2.3 GHz and 8 GB of memory. Each
feature is normalized to have a mean of 0 and a standard deviation of 1, and each experiment
comprises a training phase with 3-fold cross validation to grid-search hyper-parameters, and
a test phase on the neutral test set.

Results Table 5.3 reports the standard performance measures for binary classification:
for all classifiers we compare accuracy, precision, recall and f1-score, the last three metrics
averaged between classes and weighted by supports. Overall, RF and ExT are the best
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Table 5.3 Classification results for the three considered train-test split settings; we report
accuracy (acc), precision (pre), recall (rec) and f1-score (f1). Measures are rounded to the
second decimal; best scores and classifiers are bold-faced.

acc pre rec f1

dum 0.55 0.56 0.55 0.56
LR 0.94 0.94 0.94 0.94
SVM 0.94 0.94 0.94 0.94
RF 0.96 0.96 0.96 0.96
ExT 0.96 0.96 0.96 0.96
MLP 0.91 0.92 0.91 0.90

(a) Non-homogeneous split

acc pre rec f1

0.59 0.58 0.59 0.59
0.90 0.91 0.90 0.90
0.91 0.91 0.91 0.91
0.94 0.94 0.94 0.94
0.95 0.95 0.95 0.95
0.86 0.86 0.86 0.85

(b) Homogeneous split

acc pre rec f1

0.57 0.57 0.57 0.57
0.93 0.93 0.93 0.93
0.94 0.94 0.94 0.94
0.94 0.95 0.94 0.94
0.93 0.94 0.93 0.93
0.93 0.93 0.93 0.93

(c) Random split

Table 5.4 Confusion matrices (w/o normalization) for RF in different split settings. Note
that support sizes are varying.

Predicted

0 1 support

Tr
ue 0 100 9 109

1 3 222 225

(a) Non-homogeneous split

Predicted

0 1 support

Tr
ue 0 125 11 136

1 12 228 240

(b) Homogeneous split

Predicted

0 1 support

Tr
ue 0 130 5 135

1 18 244 262

(c) Random split

performing models, with SVM following close behind. We additionally report confusion
matrices for RF in Table 5.4. The high accuracy scores obtained in all three train-test settings
attest that there is indeed a statistical pattern to be learned during MILP resolution, and
that the designed features are capturing it.

Taking a closer look at class-specific precision and recall scores, we note distinct behaviors
with respect to different train-test splits. In particular, models in the Non-homogeneous case
present a sensitivity (i.e., recall for Class 1) being higher than specificity, accompanied by
high precision for Class 0. The trend is much less accentuated in the Homogeneous setting,
and blurs completely (if not reverses itself) in the Random one. An explanation of these
behaviors could be linked to the intrinsic difference in composition of the MILP libraries
employed for the experiments. In fact, instances in Benchmark78 do not exhibit clear-cut
behaviors as those in Challenge160 and Mittelmann48. Finally, the fact of Random being
the setting in which MLP is best performing might be a sign of the model being able to
recognize akin data-points arising from the same instance (now scattered in both training
and test set), and thus linked to the presence of problems with low variability scores.
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Table 5.5 Subset of features appearing in the top-10s for RF: scores are averaged among split
cases; features marked with ∗ appear in the top-10 of each setting.

Rank Score (avg) Feature description

1 0.1856 ∗ Throughput of pruned nodes (over total # of processed ones)
2 0.1839 ∗ Ratio between pruned nodes and last measured number of nodes left
3 0.0805 ∗ Last measured number of nodes left over maximal number of nodes left

observed
4 0.0758 ∗ Fraction of nodes left attaining max objective estimate
5 0.0632 ∗ Fraction of nodes left attaining min objective estimate
6 0.0622 ∗ Frequency of backtracks
7 0.0453 ∗ Throughput of best bound updates
8 0.0324 ∗ Last measured gap
9 0.0196 Ratio between last measured best bound and incumbent
10 0.0181 Maximal length of observed backtracks
11 0.0165 Difference in absolute value between objective 5% quantile threshold and

best bound
12 0.0164 Distance from last observed best bound update over the average one

Feature analysis Our best performing methods, RF and ExT, have the advantage of inter-
pretability. We employ feature scores returned by Scikit-learn, measuring the mean decrease
in impurity [114], to provide a first evaluation of those factors that proved valuable for the
predictions. We look at the sets of top-10 scoring features for RF, for each train-test split
case, and note a very stable scoring pattern: 8 features appear in the top-10 of each setting,
and a total of 12 different features covers the three top rankings. We report them in Ta-
ble 5.5, where scores have been averaged among cases. In particular, throughputs and trends
of nodes pruned, processed and left seem to be crucial for proper classification. Information
on the proportions of nodes attaining maximum and minimum objective estimates within
the list of nodes left is also valuable. Indeed, such estimates at the frontier of the B&B
tree are somehow quantifying the amount of work to be done to close the upper and lower
bounds in the remaining subtrees, and hence measuring the “difficulty” of what is yet to
be explored. Together with the gap, few top-ranked features focus on dives and backtracks
happened during the traversal, while few others on best bound updates. Note that, despite
having provided the same set of features to capture updates of incumbent and best bound,
only those relative to the latter are top-ranked by the algorithm. This is in line with the
composition of MILP benchmarking libraries and the experience of MILP practitioners, who
often witness slow B&B searches due to difficulty in improving the LP (dual) bound.
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5.7 Conclusions and outlook

We propose a learning approach to predict the outcome of a general MILP problem after
only a share of the available computing time has passed. We summarize the sequential MILP
resolution process with hand-crafted features, and successfully classify it with traditional
learning models. In particular, our novel features can be applied to any type of MILP
instance, and hence used in future application of ML for B&B studies, making this work
of interest for a wide audience. Our positive results show that there is indeed a pattern to
be learned across MILP instances, and represent (to the best of our knowledge) the first
structural statistical use of the data provided by the solver throughout the resolution. The
proposed framework could be readily implemented internally on the solver side, in order
to strategically specialize the optimization process on the fly, before timing out, providing
better options for the user. In other words, an early detection of a potential time out
can trigger algorithmic changes that, in turn, could prevent such a time out to happen. The
developed setting can be extended in a number of different directions. We plan to deepen data
analysis – possibly augmenting our dataset – and frame the role of performance variability
in the learning process. It would be interesting to consider other ways to tackle sequence
classification, e.g., by following a pattern-based approach.
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CHAPTER 6 PARAMETERIZING BRANCH-AND-BOUND SEARCH
TREES TO LEARN BRANCHING POLICIES

Authors: Giulia Zarpellon, Jason Jo, Andrea Lodi and Yoshua Bengio1

Submitted for conference publication.2

Abstract Branch and Bound (B&B) is the exact tree search method typically used to
solve Mixed-Integer Linear Programming problems (MILPs). Learning branching policies for
MILP has become an active research area, with most works proposing to imitate the strong
branching rule and specialize it to distinct classes of problems. We aim instead at learning
a policy that generalizes across heterogeneous MILPs: our main hypothesis is that param-
eterizing the state of the B&B search tree can significantly aid this type of generalization.
We propose a novel imitation learning framework, and introduce new input features and ar-
chitectures to represent branching. Experiments on MILP benchmark instances clearly show
the advantages of incorporating to a baseline model an explicit parameterization of the state
of the search tree to modulate the branching decisions. The resulting policy reaches higher
accuracy than the baseline, and on average explores smaller B&B trees, while effectively
allowing generalization to generic unseen instances.

6.1 Introduction

Many problems arising from transportation, healthcare, energy and logistics can be formu-
lated as Mixed-Integer Linear Programming (MILP) problems, i.e., optimization problems
in which some decision variables represent discrete or indivisible choices. A MILP is written
as

min
x
{cTx : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (6.1)

where A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn and I ⊆ {1, . . . , n} is the set of indices of variables that
are required to be integral, while the other ones can be real-valued. Note that one can consider
a MILP as defined by (c, A, b, I); we do not assume any special combinatorial structure on the
parameters c, A, b. While MILPs are in general NP-hard, MILP solvers underwent dramatic
improvements over the last decades [1,2] and now achieve high-performance on a wide range
of problems. The fundamental component of any modern MILP solver is Branch and Bound
(B&B) [3], an exact tree search method. Following a divide-and-conquer approach, B&B

1Authors are listed by relative contribution, as is standard practice in Computer Science journals and
conferences.

2Available at [30].
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partitions the search space by branching on variables’ values and smartly uses bounds from
problem relaxations to prune unpromising regions from the tree. The B&B algorithm actually
relies on expertly-crafted heuristic rules for its two most fundamental decisions: branching
variable selection (BVS) and node selection. In particular, BVS has been shown to be a
crucial factor for B&B’s success [1], and will be the main focus of the present article.

Understanding why B&B works has been called “one of the mysteries of computational
complexity theory” [123], and there currently is no mathematical theory of branching; to the
best of our knowledge, the only attempt in formalizing BVS is the recent work of [74]. One
central reason why B&B is difficult to formalize resides in its inherent exponential nature:
millions of BVS decisions could be needed to solve a MILP, and a single bad one could result in
a doubled tree size and no improvement in the search. Such a complex and data-rich setting,
paired with a lack of formal understanding, makes B&B an appealing ground for machine
learning (ML) techniques, which have lately been thriving in discrete optimization [6]. In
particular, there has been substantial effort towards “learning to branch”, i.e., in using ML
methods to learn BVS policies [25].

Up to now, most works in this area of research focused on learning branching policies by
supervision or imitation of strong branching (SB), a valid but expensive heuristic scheme
(see Sections 6.2 and 6.5 for more details). While [38] propose to explicitly learn SB scores
by regression, [37] formulate BVS as a ranking problem and learn instance-specific proxies of
SB. In a different vein, [39] suggest to leverage existing scoring rules by learning weights to
combine them, and perform experiments on special classes of synthetic problems. The latest
contribution we know of to “learning to branch” [40] frames BVS as a classification problem on
SB expert decisions, and employs a graph-convolutional neural network to represent MILPs.
The resulting branching policies improve on the solver by successfully specializing SB to
different classes of generated combinatorial optimization problems. Specifically, the attained
generalization ability is to similar MILP instances (within the same class), possibly larger in
formulation size.

The present work seeks a different (somehow complementary) type of generalization for a
branching policy, namely across heterogeneous MILPs, i.e., across problems not belonging
to the same combinatorial class, without any restriction on the formulation’s structure and
size. To achieve this goal, we parameterize BVS in terms of B&B search trees. On the one
hand, information about the state of the B&B tree – abundant yet mostly unexploited by
MILP solvers – was already shown to be useful to learn resolution patterns shared across
general MILPs [29]. On the other hand, the state of the search tree ought to have a central
role in BVS – which ultimately decides how the tree is expanded and hence how the search
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itself proceeds. In practice, B&B continually interacts with other algorithmic components
of the solver to effectively search the decision tree, and some algorithmic decisions may
be triggered depending on which phase the optimization is in [14]. In a highly integrated
framework, a branching variable should thus be selected among the candidates based on its
role in the search and its various components. Indeed, state-of-the-art heuristic branching
schemes employ properties of the tree to make BVS decisions, and the B&B method equipped
with such branching rules has proven to be successful across widely heterogeneous instances.

Motivated by these considerations, our main hypothesis is that MILPs share a higher order
structure in the space of B&B search trees, and parameterized BVS policies should learn in
this representational space. We setup a novel learning framework to investigate this idea.
First of all, there is no natural input representation of this underlying space. Our first con-
tribution is to craft input features of the variables that are candidates for branching: we aim
at representing their broad roles in the search and their dynamic evolution. The dimension-
ality of such descriptions naturally changes with the number of candidate variables at every
BVS step. The deep neural network (DNN) architecture that we propose learns a baseline
branching policy (NoTree) from the candidate variables’ representations and effectively deals
with varying input dimensions. Taking this idea further, we suggest that an explicit repre-
sentation of the state of the search tree should condition the branching criteria, in order for it
to flexibly adapt to the tree evolution. We contribute such tree-state parameterization, and
incorporate it to the baseline architecture to provide context over the candidate variables
at each given branching step. In the resulting policy (TreeGate) the tree state acts as a
control mechanism to drive a top-down modulation (specifically, feature gating) of the highly
mutable space of candidate variables representations. In this sense, we learn branching from
parameterizations of B&B search trees that are shared among general MILPs. To the best
of our knowledge, the present work is the first attempt in the “learning to branch” literature
to represent B&B search trees for branching, and to establish such a broad generalization
paradigm covering many classes of MILPs. We envision a future combination of our frame-
work on generic MILPs with more structure-based ones, such as that of [40], to leverage the
strengths of both approaches.

We perform imitation learning (IL) experiments on a curated dataset of heterogeneous in-
stances from standard MILP benchmarks: the selected problems belong to various special
classes, are different in structure and size, and give rise to diverse search trees. We employ
as expert rule the default branching scheme of the optimization solver SCIP [124], to which
our framework is integrated. Machine learning experimental results clearly show the advan-
tage of the policy employing the tree state (TreeGate) over the baseline one (NoTree), the
former achieving a 19% improvement in test accuracy. The evaluation of the trained policies
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in the solver also supports our idea that representing B&B search trees enables learning to
branch across generic MILP instances: the best TreeGate policy explores on average trees
with 14.9% less nodes than the best NoTree one; measured over test instances only, this gap
increases to 27%. In addition, when plugged in the solver both learned policies compare well
with state-of-the-art branching rules.

6.2 Background

Simply put, the B&B algorithm iteratively partitions the solution space of a MILP (6.1) into
sub-problems, which are mapped to nodes of a binary decision tree. At each node, integrality
requirements for variables in I are dropped, and a linear programming (LP) (continuous)
relaxation of the problem is solved to provide a valid lower bound to the optimal value of
(6.1). When the solution x∗ of a node LP relaxation violates the integrality of some variables
in I, that node is further partitioned into two children by branching on a fractional variable.
Formally, C = {i ∈ I : x∗i /∈ Z} defines the index set of candidate variables for branching at
that node. The BVS problem consists in selecting a variable j ∈ C in order to branch on it,
i.e., create child nodes according to the split

xj ≤ bx∗jc ∨ xj ≥ dx∗je. (6.2)

Child nodes inherit a lower bound estimate from their parent, while (6.2) ensures x∗ is
removed from their solution spaces. After extending the tree, the algorithm moves on to
select a new open node, i.e., a leaf yet to be explored (node selection): a new relaxation is
solved, and new branchings happen. When x∗ satisfies integrality requirements, then it is
actually feasible for (6.1), and its value provides a valid upper bound to the optimal one.
Maintaining global upper and lower bounds allows one to prune large portions of the search
space. During the search, final leaf nodes are created in three possible ways: by integrality,
when the relaxed solution is feasible for (6.1); by infeasibility of the sub-problem; by bounds,
when the comparison of the node’s lower bound to the global upper one proves that its
sub-tree is not worth exploring. An optimality certificate is reached when the global bounds
converge. See [2,7] for details on B&B and its combination with other components of a MILP
solver.

Branching rules Usually, candidates are evaluated with respect to some scoring function,
and j is chosen for branching as the (or a) score-maximizing variable. The most used crite-
rion in BVS measures variables depending on the improvement of the lower bound in their
(prospective) child nodes. The strong branching (SB) rule [71] explicitly computes bound
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gains for C. The procedure is expensive, but experimentally realizes trees with the least num-
ber of nodes. Instead, pseudo-cost (PC) [72] maintains a history of variables’ branchings,
averaging past improvements to get a proxy for the expected gain. Fast in evaluation, PC
can behave badly due to uninitialization, so combinations of SB with PC have been devel-
oped. In reliability branching, SB is performed until PC scores for a variable are deemed
reliable proxies of bound improvements. In hybrid branching [73], PC scores are combined
via a weighted sum with other criteria borrowed from the CSP and SAT communities (on
inference and conflict clauses). Extensive literature has been produced on BVS schemes [70],
and many other scoring criteria have been proposed; some of them are surveyed by [25] from
a machine learning perspective.

State-of-the-art branching rules can in fact be interpreted as mechanisms to score variables
based on their effectiveness in different search components. While hybrid branching explicitly
combines five scores reflecting variables’ behaviors in different search tasks, the evaluation
performed by SB and PC can also be seen as a measure of how effective a variable is – in
the single task of improving the bound from one parent node to its children. Besides, one
can assume that the importance of different search functionalities should change dynamically
during the tree exploration.3 In this sense, our approach aims at learning a branching rule
that takes into account variables’ roles in the search and the tree evolution itself to perform
a more flexible BVS, adapted to the search stages.

6.3 Parameterizing B&B search trees

The central idea of our framework is to learn BVS by means of parameterizing the underly-
ing space of B&B search trees. We believe this space can represent the complexity and the
dynamism of branching in a way that is shared across heterogeneous problems. However,
there are no natural parameterizations of BVS or B&B search trees. To this end, our contri-
bution is two-fold: 1) we propose hand-crafted input features to describe candidate variables
in terms of their roles in the B&B process, and explicitly encode a “tree state” to provide a
richer context to variable selection; 2) we design novel DNN architectures to integrate these
inputs and learn BVS policies.

6.3.1 Hand-crafted input features

At each branching step t, we represent the set of variables that are candidates for branching
by an input matrix Ct ∈ R25×|Ct|. To capture the multiple roles of a variable throughout the

3Indeed, a “dynamic factor” takes care of adjusting hybrid weights in the default branching scheme of
SCIP (see https://scip.zib.de/doc-6.0.0/html/branch__relpscost_8c_source.php#l00524).

https://scip.zib.de/doc-6.0.0/html/branch__relpscost_8c_source.php#l00524
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(a) (b) (c)

Figure 6.1 The evolution of the Treet representation throughout the B&B search is synthesized
by t-SNE plots (perplexity=5), for instances (a) eil33-2 and (b) seymour1. (c) Histogram of
|Ct| in train, validation and test data.

search, we describe each candidate xj, j ∈ Ct in terms of its bounds and solution value in the
current sub-problem. We also feature statistics of a variable’s participation in various search
components (e.g., inference, conflicts, implications) and in past branchings. In particular,
the scores that are used in the SCIP default hybrid-branching formula are part of Ct.

Additionally, we create a separate parameterization Treet ∈ R61 to describe the state of the
search tree. We record information of the current local node in terms of its depth and the
quality of its bound. We also consider the growth rate and composition of the tree (explored,
open, final leaf nodes), the evolution of global bounds, statistics on feasible solutions and
multiple other scores, aggregated over variables. Statistics on bound estimates and depths
of the open nodes complete the parameterization of Treet.

All features are designed to capture the dynamics of the B&B process linked to BVS decisions,
and are efficiently gathered through a customized version of PySCIPOpt [125]. Note that
{Ct,Treet} are defined in a way that is not explicitly dependent on the parameters of each
instance (c, A, b, I). Even though Ct naturally changes its dimensionality at each BVS step
t depending on the highly variable Ct, the fixed lengths of the vectors enable training among
branching sets of different sizes (see 6.3.2). The representations evolve with the search: t-SNE
plots [126] in Figures 6.1a and 6.1b synthesize the evolution of the tree state representation
Treet throughout the B&B search, for two different MILP instances. The pictures clearly
show the high heterogeneity of the branching data across different search stages. A detailed
description of the hand-crafted input features is reported in Appendix C.
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Figure 6.2 Candidate variables input Ct is processed by NoTree layers (in blue) to select a
variable for branching. For the TreeGate model, the Treet input is first embedded and then
utilized in gating layers (in orange) on the candidates’ representations.

6.3.2 Architectures to model branching

We use parameterizations Ct as inputs for a baseline DNN architecture (NoTree). Referring
to Figure 6.2, the 25-feature input of a candidate variable is first embedded into a represen-
tation with hidden size h; subsequently, multiple layers reduce the dimensionality from h to
an infimum INF by halving it at each step. The vector of length INF is then compressed by
global average pooling into a single scalar. The |Ct| dimension of Ct is conceived (and imple-
mented) as a “batch dimension”: this makes it possible to handle branching sets of varying
sizes, still allowing the parameters of the nets to be shared across problems. Ultimately, a
softmax layer yields a probability distribution over the candidate set Ct, according to which
a variable is selected for branching.

We incorporate the tree-state input to the baseline architecture in order to provide a search-
based context over the mutable branching sets. Practically, Treet is embedded in a series of
subsequent layers with hidden size h. The output of a final sigmoid activation is g ∈ [0, 1]H ,
where H = h + h/2 + · · · + INF denotes the total number of units of the NoTree layers.
Separate chunks of g are used to modulate by feature gating the representations of NoTree:
[g1, . . . , gh] controls features at the first embedding, [gh+1, . . . , gh+h/2] acts at the second layer,
. . . , and so on, until exhausting [gH−INF , . . . , gH ] with the last layer prior the average pooling.
In other words, g is used as a control mechanism on variables parameterization, gating their
features via a learned tree-based signal. The resulting network (TreeGate) models the high-
level idea that a branching scheme should adapt to the tree evolution, with variables’ selection
criteria dynamically changing throughout the tree search.
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6.4 Experiments

MILP dataset and solver setting Despite MILP libraries containing hundreds of in-
stances, not all of them appear viable for our setting, and a careful dataset curation is
needed. On the one hand, comparing the behavior of different branching policies becomes
easier (and results are clearer) when the explored trees are manageable in size and the prob-
lems can be consistently solved to optimality. On the other hand, standard MILP collections
comprise very challenging instances, and are compiled to be the ongoing benchmark for ad-
vances in MILP research. In our ML context, it does not seem necessary to introduce extra
challenges on the MILP side. We hence curate a heterogeneous collection of 27 problems
from different real-world MILP benchmark libraries [16, 23, 81, 122], focusing on instances
whose tree exploration is on average relatively contained (in the tens/hundreds of thousands
nodes, maximum) and whose optimal value is known. We partition our selection into 19 train
and 8 test problems. A complete list of instances is reported in Table 6.1, while we refer to
Appendix C for other details.

We use SCIP 6.0.1 [124]. Modifying the solver configuration is common practice in BVS
literature [15], especially in a proof-of-concept setting in which our work is positioned. To
reduce the effects of the other solver’s components on BVS, we work with a configuration
specifically designed to fairly compare the performance of different branching rules [127]. In
particular, we allow presolve and cut separation routines, and disable all primal heuristics.
For each problem we provide the known optimal solution value as cutoff, and disable few
other parameters associated with SB side-effects. We also enforce a limit of one hour on the
resolution time. The same setting is used for both data collection and policies’ evaluation.
Further details on the solver parameters and hardware settings are reported in Appendix C.

Data collection and split We collect IL training data from SCIP roll-outs, gathering
inputs xt = {Ct,Treet} and corresponding branching decisions (labels) yt ∈ Ct. Our expert
branching scheme is the default one of SCIP, relpscost, i.e., a reliability version of hybrid
branching. Given that each branching decision gives rise to a single data-point (xt, yt), and
that the search trees of the selected MILP instances are not extremely big, one needs to
augment the data. We proceed in two ways.

(i) First, we naturally exploit the so-called performance variability of MILPs [17]. To
obtain perturbed tree searches of the same instance, we set five different random seeds
in the solver, s ∈ {0, . . . , 4} to control variables’ permutations.

(ii) Second, we diversify B&B explorations by letting a random branching scheme run for
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Table 6.1 List of MILP instances used in train and test sets.

Train air04, air05, dcmulti, eil33-2, istanbul-no-cutoff, l152lav,
lseu, misc03, neos20, neos21, neos-476283, neos648910,
pp08aCUTS, rmatr100-p10, rmatr100-p5, sp150x300d,
stein27, swath1, vpm2

Test map18, mine-166-5, neos11, neos18, ns1830653, nu25-pr12,
rail507, seymour1

the first k nodes, before switching to SCIP default branching rule and starting data
collection. The motivation behind this type of augmentation is to gather input states
that are unlikely to be observed by an expert rule [42]: inputs collected from a default
SCIP run will differ from those confronted by a trained IL policy at test time, given
that a single divergent BVS may cascade and result in qualitatively very different B&B
trees. We use k ∈ {0, 1, 5, 10, 15}, where the case of k = 0 corresponds to a run in
which no random branching is performed (i.e., relpscost is used from the beginning
of the search). We apply this second type of augmentation to train instances only.

One can quantify MILP variability by computing the coefficient of variation of the per-
formance measurements [16]; we report such variability scores VS for all our instances in
Appendix C, using the total number of nodes as performance measure, across the five runs of
SCIP performed on different seeds, as in (i). The observed coefficients range in [0.03, 1.70]:
the majority of the instances presents a variability of at least 0.20, confirming (i) as an
effective way of diversifying our dataset. The effect of k initial random branchings is also
analyzed and reported in Appendix C. Generally, the size of the explored trees grows with
k, i.e., initial random branchings affect the nodes’ count for worse – though the opposite can
also happen in few cases. The coefficients of variation of the nodes shifted geometric means
across different k’s range in [0.07, 0.79] in the training set, so (ii) also appears effective for
data augmentation.

The final composition of train, validation and test splits is summarized in Table 6.2. In par-
ticular, train and validation data come from the same subset of 19 instances, with validation
being performed on branchings from a different random seed. Instead, the test set contains
data-points from 8 separate MILPs, using augmentation of type (i) only.

An important measure to analyze the dataset is given by the size of the candidate sets
(i.e., the varying dimensionality of the Ct inputs) contained in each split. Figure 6.1c shows
histograms for |Ct| in each subset. While in train and validation the candidate set sizes
are mostly concentrated in the [0, 50] range, the test set has a very different distribution of
|Ct|, and in particular one with a longer tail (over 300). In this sense, the test instances
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Table 6.2 For train, validation and test set splits we report the total number of data-points
as well as the seed-k pairs (s, k) from which they are obtained.

Total (s, k) pairs

Train 85,533 {0, 1, 2, 3} × {0, 1, 5, 10, 15}
Validation 14,413 {4} × {0, 1, 5, 10, 15}
Test 28,307 {0, 1, 2, 3, 4} × {0}

Table 6.3 Best trained NoTree and TreeGate models. For each policy, we report the corre-
sponding hyper-parameters, top-1 and top-5 test and validation accuracy scores, as well as
shifted geometric means of B&B nodes for the entire MILP dataset (All), Train and Test
instances. The top-5 accuracy (acc@5) measures whether the expert label was among the
top-5 choices as identified by a policy’s probability distribution over the candidate variables.
Policies selected as best ones are boldfaced.

Policy h / d / LR Test acc@1 (@5) Val acc@1 (@5) All Train Test

NoTree

32 / – / 0.0001 68.37 (91.43) 75.40 (95.23) 1341.72 859.17 3695.04
64 / – / 0.0001 67.05 (89.18) 76.45 (95.11) 1363.73 847.63 4010.65
128 / – / 0.0001 65.44 (90.21) 76.77 (95.66) 1454.20 875.19 4601.72
128 / – / 0.001 64.02 (88.51) 77.69 (95.88) 1241.79 834.40 3068.96
256 / – / 0.0001 64.59 (90.13) 77.29 (96.08) 1279.18 731.16 4491.64

TreeGate

64 / 5 / 0.01 83.70 (95.83) 84.33 (96.60) 1056.79 759.94 2239.47
256 / 2 / 0.001 83.69 (95.18) 84.10 (96.42) 1135.28 822.80 2369.35
32 / 3 / 0.01 83.31 (95.72) 84.02 (96.50) 1188.48 809.18 2849.28
128 / 5 / 0.001 81.61 (95.81) 84.96 (96.74) 1127.31 771.60 2666.73

present never-seen branching data gathered from heterogeneous MILPs, and we test the
generalization of our policies to entirely unknown and larger branching sets.

IL optimization We train both IL policies using ADAM [128] with default β1 = 0.9, β2 =
0.999, and weight decay 1e−5. Our hyper-parameter search spans: learning rate LR ∈
{0.01, 0.001, 0.0001}, hidden size h ∈ {32, 64, 128, 256}, and depth d ∈ {2, 3, 5}. The factor
by which units of NoTree are reduced is 2, and we fix INF = 8. We use PyTorch [129] to
train the models for 40 epochs, reducing LR by a factor of 10 at epochs 20 and 30.

6.4.1 Results

In our context, standard IL metrics are informative yet incomplete measures of performance
for evaluating a learned BVS model, and one also cares about assessing the policies’ behaviors
when plugged in the solver environment. This is why in order to determine the best NoTree
and TreeGate policies we take into account both types of evaluations. We first select few
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policies based on their test accuracy score; next, we specify them as custom branching rules
in SCIP and perform full roll-outs on the entire MILP dataset, over five random seeds (i.e.,
135 evaluations each). To summarize the policies’ performance in the solver, we compute the
shifted geometric mean (with a shift of 100) of the total number of explored nodes, over the
135 B&B executions (All), and restricted to Train and Test instances.

Both types of metrics are reported in Table 6.3, together with the policies’ hyper-parameters.
Incorporating an explicit parameterization of the state of the search tree to modulate BVS
clearly aids generalization: the advantage of TreeGate over NoTree is evident in all metrics,
and across multiple trained policies. In particular, the top-1 test accuracy averages at 65.90±
1.6 for the NoTree models, while TreeGate ones score at 83.08± 0.86; the gap in validation
accuracy is also significant. In terms of B&B roll-outs, NoTree models explore on average
1336.12±73.32 nodes, against the 1126.97±46.85 of TreeGate ones. What we observe is that
best test accuracy does not necessarily translate into best solver performance. The NoTree
policy with the best solver performance exhibits an approximately 4% gap from the optimal
top-1 test accuracy model, but an improvement over 7% in solver performance. We select
as best policies those yielding the best nodes average over the entire dataset. In the case of
TreeGate, the best model corresponds to that realizing the best top-1 test accuracy (83.70%),
and brings a 19% (resp. 7%) improvement over the NoTree policy, in top-1 (resp. top-5) test
accuracy. Learning curves and further details can be found in Appendix C.

In solver evaluations, NoTree and TreeGate are also compared to SCIP default branching
scheme relpscost, PC branching pscost and a random one. Additionally, we compute the
fair number of nodes [127]. This measure accounts for those nodes that are processed as side-
effects of SB-like explorations, specifically looking at domain reduction and cutoffs counts.
In other words, the fair number of nodes distinguishes tree-size reductions due to better
branching from those obtained by SB side-effects. Note that for rules that do not involve any
SB, the fair number of nodes and the usual nodes’ count coincide, so we only report it for
the relpscost policy. The selected solver parametric setting (the same as the one used for
data collection) allows a meaningful computation of the fair number of nodes, and a honest
comparison of branching schemes.

Both NoTree and TreeGate policies are able to solve all instances within the 1h time-limit, like
relpscost. In contrast, random hits the limit on 4 instances (17 times in total) while pscost
does so on one instance only (neos18), a single time. Table 6.4 reports the nodes’ means for
every MILP instance (over five runs), as well as measures aggregated over train and test sets,
and the entire dataset. In aggregation, TreeGate is always better than NoTree, the former
exploring on average trees with 14.9% less nodes. This gap becomes more pronounced when
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Table 6.4 Total number of nodes explored by learned and SCIP policies, in shifted geometric
means over 5 runs on seeds {0, . . . , 4}. We mark with * the cases in which time-limits were
hit. For relpscost, we also compute the fair number of nodes. The percentage difference
between NoTree and TreeGate is reported. Aggregated measures are over the entire dataset
(All), as well as over Train and Test sets.

Instance Set NoTree TreeGate % diff random pscost relpscost (fair)

All 1241.79 1056.79 -14.90 6580.79 1471.61 286.15 (719.20)
Train 834.40 759.94 -8.92 2516.04 884.37 182.27 (558.34)
Test 3068.96 2239.47 -27.03 61828.29 4674.34 712.77 (1276.76)

air04 train 645.99 536.07 -17.02 6677.96 777.65 8.19 (114.39)
air05 train 789.70 516.06 -34.65 12685.83 1158.89 60.25 (277.22)
dcmulti train 203.53 187.49 -7.88 599.12 122.39 9.38 (68.30)
eil33-2 train 7780.85 8767.27 12.68 12502.02 8337.63 583.34 (9668.71)
istanbul-no-cutoff train 447.26 543.71 21.56 1085.16 613.68 242.39 (328.25)
l152lav train 621.82 687.91 10.63 6800.06 964.53 10.14 (250.04)
lseu train 372.67 396.71 6.45 396.73 375.31 148.99 (389.88)
misc03 train 241.40 158.39 -34.39 118.37 151.07 12.11 (294.11)
neos20 train 2062.23 1962.95 -4.81 10049.15 2730.01 200.26 (612.75)
neos21 train 1401.84 1319.73 -5.86 7016.55 1501.54 668.44 (1455.29)
neos648910 train 140.05 175.82 25.54 1763.05 1519.01 39.83 (166.53)
neos-476283 train 13759.59 6356.81 -53.80 *94411.77 2072.84 204.88 (744.65)
pp08aCUTS train 267.86 293.74 9.66 337.76 271.92 69.66 (350.21)
rmatr100-p5 train 443.35 460.48 3.86 1802.38 451.71 411.93 (785.15)
rmatr100-p10 train 908.27 906.04 -0.25 4950.77 894.65 806.35 (1214.76)
sp150x300d train 868.60 785.27 -9.59 1413.64 991.52 182.22 (300.42)
stein27 train 1371.44 1146.79 -16.38 1378.91 1322.36 926.82 (1111.25)
swath1 train 1173.14 1165.39 -0.66 1429.21 1107.52 298.58 (2485.63)
vpm2 train 589.03 440.74 -25.18 594.62 546.45 199.46 (463.12)

map18 test 457.89 575.92 25.78 11655.33 1025.74 270.25 (441.18)
mine-166-5 test 3438.44 4996.48 45.31 *389437.62 4190.41 175.10 (600.22)
neos11 test 3326.32 3223.46 -3.09 29949.69 4728.49 2618.27 (5468.05)
neos18 test 15611.63 10373.80 -33.55 228715.62 *133437.40 2439.29 (5774.36)
ns1830653 test 6422.37 5812.03 -9.50 288489.30 12307.90 3489.07 (4311.84)
nu25-pr12 test 357.00 86.80 -75.69 1658.41 342.47 21.39 (105.61)
rail507 test 9623.05 3779.05 -60.73 *80575.84 4259.98 543.39 (859.37)
seymour1 test 3202.20 1646.82 -48.57 *167725.65 3521.47 866.32 (1096.67)

measured over test instances only (27%), indicating the advantage of TreeGate over NoTree
when exploring unseen data. Results are less clear-cut from an instance-wise perspective,
with neither policy emerging as an absolute winner. Nonetheless, TreeGate is at least 10%
(resp. 25%) better than NoTree on 10 (resp. 8) instances, while the opposite only happens
6 (resp. 3) times. In this sense, the reductions in tree sizes achieved by TreeGate are overall
more pronounced.

In addition, learned policies compare well to other branching rules: both NoTree and Tree-
Gate are substantially better than random across all instances, and always better than pscost
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in aggregated measures. Only on one instance both policies are much worse than pscost
(neos-476283). As expected, relpscost still realizes the smallest trees, but comparisons in
terms of fair number of nodes are nonetheless positive: on 11 instances, at least one among
NoTree and TreeGate explores less nodes than the relpscost fair number. In general, the
policies realize tree sizes that are comparable to the SCIP default ones, when SB side effects
are taken into account.

6.5 Related work

Among the first attempts in “learning to branch”, [38] perform regression to learn proxies of
SB scores. Instead, [37] propose to learn the ranking associated with such scores, and train
instance-specific models (that are not end-to-end policies) via SVMrank. Also [130] treat BVS
as a ranking problem, and specialize their models to the combinatorial class of time-dependent
traveling salesman problems. More recently, the work of [39] learns mixtures of existing
branching schemes for different classes of synthetic problems, focusing on sample complexity
guarantees. Similarly to us, the latest contribution to “learning to branch” [40] frames BVS
as classification of expert branching decisions and employs IL to learn a branching policy.
However, their expert of choice is SB, and MILPs are represented via a graph-convolutional
neural network (GCNN) that models the variable-constraint structure expressed by the pa-
rameter matrix A. The resulting policies are specializations of SB that appear to effectively
capture structural characteristics of some classes of combinatorial optimization problems,
and are able to generalize to larger formulations from the same distribution (i.e., within the
same combinatorial class). It is not obvious that the GCNN could effectively generalize across
heterogeneous problems, given the policy in [40] was only tested to solve bigger instances for
which small analogs were available during training.

Still concerning the B&B framework, [42] employ IL to learn a heuristic and class-specific
node selection policy, and categorize B&B input features. An RL approach for node selection
can be found in [41], where a Multi-Armed Bandit is used to model the tree search; some
complexity and scaling issues of B&B are also presented.

Feature gating has a long and successful history in machine learning, ranging from LSTMs
[131] to GRUs [132], and we refer to [133] for a survey. The idea of using a tree state to drive
a feature gating of the branching variables is an example of top-down modulation, which has
been shown to perform well in other deep learning applications [134–136]. With respect to
learning across non-static action spaces, the most similar to our work is [137], which is in
the continual learning setting. Unlike the traditional Markov Decision Process formulation
of reinforcement learning (RL), the input to our policies is not a generic state but rather
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includes a parameterized hand-crafted input representation of the available actions, thus
continual learning is not a relevant concern for our framework. Other related works from
the RL setting learn action space representations [138, 139], but they both assume that the
action space is static across RL episodes, while in contrast the action space of BVS changes
dynamically with |Ct|.

6.6 Conclusions and future directions

Branching variable selection is a crucial factor in B&B success, and we setup a novel imitation
learning framework to address it. In particular, we seek to learn branching policies that
generalize across heterogeneous MILPs, regardless of the instances’ structure and formulation
size. In doing so, we undertake a step towards a broader type of generalization. The novelty
of our approach is relevant for both the ML and the MILP worlds. On the one hand, we
develop parameterizations of the candidate variables and of the search trees, and design
a DNN architecture that handles candidate sets of varying size. On the other hand, the
data encoded in our Treet parameterization is not currently exploited by state-of-the-art
MILP solvers, but we show that this type of information could indeed help in adapting the
branching criteria to different search dynamics. Our results on MILP benchmark instances
clearly demonstrate the advantage of incorporating a search-tree context to modulate BVS
and aid generalization to heterogeneous problems, in terms of both better test accuracy and
smaller explored B&B trees.

There surely are additional improvements to be gained by continuing to explore IL methods
for branching. [40] have shown a correlation between the structure of MILPs (captured by
the GCNN) and at least one of the main ingredients of the expert we use, namely the bound
improvement due to BVS. In this work, we exploit instead representations of general B&B
trees, and both priors may be required to fully match the expert performance.

However, quantifying the goodness of branching policies and B&B search trees remains hard
due to the complexity and exponentiality of the B&B system. In the IL setting this trans-
lates into not being able to assess the impact of a misclassified BVS in the subsequent tree
exploration. In fact, the MILP domain expertise suggests that at any given branching step
there is no such thing as a single best branching decision, but rather groups of variables on
which one should branch [78]. In other words, there is no branching ground truth, and the
quality of branching certainly resides in effective BVS sequences. For these reasons, barring a
mathematical breakthrough for the theory of branching, we believe there can be much more
innovation in future explorations of RL approaches for BVS. Within the RL paradigm the
focus would shift to learning branching sequences and partial trees explorations, by means
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of heterogeneous reward signals that could allow to better approach the diverse performance
goals one practically aims at when solving MILPs. These are important factors in “learning
to branch” which cannot be expressed in IL terms. Indeed, the idea and the benefits of using
an explicit parameterization of the state of B&B search trees – which we demonstrated in
the IL setting – could be expanded even more in the RL one, for both state representations
and the design of branching rewards.
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CHAPTER 7 GENERAL DISCUSSION

The four works presented through Chapters 3 to 6 contribute in varied ways to the general
objective of this dissertation: they tackle different ideas on the theme of applying ML al-
gorithms to MIP algorithmic design, and each of them develops an experimental framework
that is specific to its research question. Although one may see these works as self-contained
and isolated contributions, they in fact naturally influence and echo each other, both method-
ologically and in terms of content.

The in-depth analysis of B&C and its functioning in the MIP solver, which has been the
foundation of our survey (Chapter 3, [25]), provided useful tools to explore the research
questions of both Chapters 5 and 6. In particular, the study of state-of-the-art branching
heuristics and first ML-based approaches matured into our own contribution to the learning
to branch theme. The literature covered in Chapter 3 also gave us a solid starting point to
develop input features for the tasks of predicting solver’s time-limits and learning to branch.
Indeed, both sets of attributes try to capture similar things: in Chapter 5 the stream of
sequential data from the first part of the optimization is condensed into a single vector of
hand-crafted features to represent the progress in the search; in Chapter 6, instead, at each
branching step the data is not only gathered, but also manipulated and fed to DNN models,
which then automatically synthetize it to decide on variable selection.

The nice-to-have properties of branching rules identified in Section 3.4 significantly influenced
our design of a branching policy in Chapter 6, notably towards the idea that a branching
scheme should be adaptive not only with respect to different instances, but throughout the
evolution of the tree search as well. Besides, the positive results and the analysis of feature
importance in Chapter 5 had a substantial role in motivating the main hypothesis of Chapter 6
– namely, that representing the state of the B&B search tree could aid generalization over
heterogeneous MILP instances. The concept of a shared pattern in MILP resolution that
could be leveraged to condition the search naturally translated into the TreeGate architecture
of Chapter 6, which employs a tree state to modulate the choice of branching variables and
yields improved generalization performance.

From the methodological standpoint, each work builds on the others’ “lessons learned” to
solidify the process of integration of ML into the MIP solver. While our early works [26] and
[29] focus on simple proof-of-concept settings and experiment with off-the-shelf supervised
learning models, the methodologies established in Chapters 4 and 6 are more tailored to
their research questions, and ultimately lead to a tighter combination of predictions and
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optimization. We briefly highlight some transversal themes that emerged and matured during
this incremental process, which we believe could serve as keys to read our works as a whole,
and to develop new ones.

The importance of introducing domain knowledge and optimization priors in the learning
pipeline played out across all our contributions, and feature design proved to be a critical
step in this sense. As opposed to other typical ML applications (e.g., image recognition),
there is no natural representation of MIP instances, and one needs to carefully represent data
for the task at hand. To provide comprehensive representations of our research questions via
feature engineering, we tried to think about which factors played a role in the decisions we
wanted to predict, and to implement hand-crafted feature vectors that incorporated not only
mathematical but also algorithmic clues. The trade-off between expressiveness and concise-
ness of feature representations was also repeatedly addressed. In Chapter 5, for example, the
overhead of computing some attributes potentially interferes with the learning framework.
When predicting whether to linearize MIQPs in Chapter 4, instead, we resorted to approxi-
mating an important feature from the root node relaxations, and similarly cut off other traits
that did not appear viable for online computation. Finally, for the problem of learning to
branch (Chapter 6) signals from the solver environment need to be retrieved efficiently, given
that they are extracted at every branching node.

Another explored trade-off was the one between accuracy and explainability of the learned
predictors, i.e., the ability to evaluate the quality of predictions from the perspective of
optimization performance. We soon realized how this aspect is of paramount importance
when applying ML to practical MIP settings: predictions catalyze tangible actions in the
solver, whose impact on the optimization needs to be quantified, trusted and (as far as
possible) understood. Practically, though, these concepts are challenging to work out, and we
hope that future research will try to approach them in a principled way (see also Section 8.2).
In our works, the difference between learning metrics and performance metrics particularly
stands out in Chapter 4, where additional scores are developed to provide information on
the impact of misclassification in terms of runtime, i.e., the performance metric that is used
to define targets. The use of weights in the training phase is also a way of introducing
some prior about the sought optimization performance of the predictors. In the imitation
learning setup of Chapter 6, this concern is reflected in the fact that it is hard to relate the
performance of a learned branching policy with that of the expert (in our case, SCIP default
behavior). Indeed, best test accuracy does not necessarily translate into smallest B&B trees,
and the relationship between solver performance and the nature of local minima in the ML
optimization landscape ought to be further explored.
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Given the role of data in capturing the essence of a ML research question, a considerable effort
in all our works was spent in identifying, generating or selecting MIP instances for learning
experiments. In applications where there is a one-to-one correspondence between a data-
point and a MIP problem, benchmark libraries could result insufficient: this was the case for
MIQPs in Chapter 4, where we opted for a dataset of both real-world and synthetic instances.
In Chapters 5 and 6, we could employ diversification schemes to obtain multiple samples from
a single MILP. Performance variability [17] appeared particularly helpful in this task, though
the effect of such randomizations on data and the learning process is not easily framed.
For some other learning tasks (e.g., learning to branch) a MILP problem may naturally
provide many data-points. Despite data being abundant, however, other considerations may
become necessary in order to curate a dataset that is usable and meaningful for the given
experimental setting, as was the case in Chapter 6. Note also that in contexts like branching
undersampling procedures might not be easily defined, given that samples from the B&B
search are not independent and identically distributed in the classical sense.

Finally, decisions on dataset composition ultimately depend on one’s generalization target.
Clearly, generalizing to a wide range of instances seems more challenging, as ML models
may fail when evaluated on never-seen instances that are too different from those used for
training. For ML to succeed, one should leverage the commonalities of problems within a
selected distribution, e.g., by effectively representing them in the input features. This was the
effort undertaken in both Chapters 4 and 6; experiments of Chapter 5, on the other hand, have
been essential in uncovering some algorithmic traits that might be shared in the optimization
of heterogeneous MILP instances. Additionally, one may need to consider different levels of
generalization. This is true for sequential applications like branching, where a policy also
needs to generalize to internal states of the B&B search, which, as we saw in Chapter 6, can
look quite dissimilar. While all our contributions target very broad generalization scopes and
work with instances from general-purpose MIP benchmark libraries, a definitive meaning of
generalization for MIP applications remains hard to pinpoint.
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

This thesis discussed and proposed applications of statistical learning methods to the MIP
framework, specifically in the context of MIP algorithmic design. After a brief summary of
the presented contributions, we conclude this dissertation by highlighting their limitations
and proposing some directions for related future research.

8.1 Summary of works

Motivated by the need of organizing early works on the theme of ML in B&B, we presented a
survey on learning and branching (Chapter 3). After including an overview of ML techniques
and transversal methodological concepts, the work revises the B&B paradigm and state-of-
the-art approaches for variable and node selection. The analysis of both topics sets out with
the discussion of previous MIP literature contributions, which we interpret as forerunners of
ML-based works. Identifying their assumptions and concerns provides an original canvas to
discuss the more recent learned methods that tackle B&B.

Our second contribution deals with the design of an algorithmic decision for MIQPs (Chap-
ter 4). In particular, we addressed with ML the question of whether to linearize the quadratic
part of convex MIQPs when solving them with CPLEX. The developed classification frame-
work aims at tightly integrating the optimization knowledge in the learning pipeline, e.g., by
means of using a context-specific scoring function and sample weights, as well as alternative
evaluation metrics that reflect the prediction quality in terms of solver performance. As
experiments practically led to the deployment of a classifier to decide on MIQP linearization
(CPLEX v12.10.0), the work also contributes a reference methodology for the combination
of ML and MIP technologies.

In Chapter 5 we discussed a learning approach to predict the optimization outcome of general
MILPs after only a fraction of the available computing time has passed. We looked at the
evolution of partial B&C trees and applied a feature-based sequence classification approach:
first the sequential optimization process is summarized via hand-crafted features, and tradi-
tional learning models are then used to cast binary predictions. Despite being limited to an
offline exploratory setting, the work opens new opportunities for MILP algorithmic design.
In particular, the achieved results support the idea that MILPs share algorithmic behaviors
in general-purpose B&C solving, and that such patterns can be described and identified with
a statistical use of the data from optimization.
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These intuitions motivated the main hypothesis of our fourth contribution (Chapter 6). With
the aim of learning a branching policy that generalizes across heterogeneous MILP instances,
we developed a novel IL framework in which both features and DNN architectures are de-
signed to represent the evolving state of the B&C search, and its potential influence on
variable selection. Experiments on MILP benchmark instances demonstrate that incorporat-
ing such broader, tree-related context leads to branching policies with better test accuracy
that also on average explore smaller trees. Indeed, the resulting policies appear to effectively
adapt not only to unseen problems – thus establishing the sought type of generalization range
– but to the evolution of the B&C tree as well.

8.2 Limitations and future research

The works presented in this thesis belong to the body of initial explorations on the theme of
combining ML and MIP, and more generally of augmenting discrete optimization algorithms
with data-driven, AI-based approaches. Our contributions add to the growing literature of
this recent and already fruitful research area; by proposing new insights, methodologies and
points of view, they also expose original venues for future research.

While the field just moved its first steps, some themes already appear decisive for advancing
towards a tighter integration of ML and MIP technologies. In particular, common practices
for development, data and benchmarking will likely be key aspects to ensure a steady progress
in the area. After all, both MIP and ML development histories demonstrate how much
benchmark libraries and tools can be instrumental to significant advances – consider the role
played by, e.g., MIPLIB [16], ImageNet [140] and OpenAI Gym [141] in establishing common,
recognized baselines. The current development of Ecole [142], a library that aims to expose
(and experiment with) control problems in MIP solvers, represent an encouraging step in
this direction. Together with the adoption of shared ML practices, the curation of fixed
MIP datasets for ML experiments would greatly help future reproducibility, comparison and
improvement of learned predictors, e.g., of the classifier developed in Chapter 4.

Despite our efforts to interpret features and condition the optimization performance of pre-
dictions (as discussed in Chapter 7), a general limitation of our contributions is the use of
ML models as mainly black-box tools. In this sense, the explainable combination of ML in
MIP seems a far-reaching goal: being able to interpret and trust predictors could allow them
to be implemented in solvers more swiftly, thus bridging the gap between making predic-
tions and prescribing decisions in MIP algorithms. For example, to develop the framework
of Chapter 5 to its full potential, predictions on MILP outcome should be cast on-the-fly,
and follow up with prescriptions of concrete algorithmic actions to be taken by the solver
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in order to flexibly guide the optimization. The use of interpretable rule-based classification
systems, for instance, could allow predictions to also carry in themselves practical indications
for the solver, not only tailoring the resolution process but enhancing its comprehension as
well. A deep reflection on MILP solving becomes essential to build such schemes, as one
would need to identify simple, frequent, and distinctive behaviors in B&C and their required
solver adjustments, and encode them in a learning environment.

We already discussed in Chapter 6 how RL appears to be the fit paradigm for learning to
branch. With this end in mind, future work could be focused on the design of reward mech-
anisms for variable selection. On the one hand, one practically aims at diverse performance
goals when solving MILPs (e.g., early feasibility, substantial pruning, fast proof of optimal-
ity), and our idea of parameterizing the state of B&B search trees seems a promising starting
point to develop reward signals that better approach them. On the other hand, reward design
is in itself a complex and active field of RL research, and all the issues identified in [21] very
well apply to the B&B context. Indeed, experimental settings like the ones B&B provides
are full of challenges for both the ML and the MIP communities, and exploring this synergy
could bring truly interdisciplinary research outcomes. New computational studies on B&C
explorations would be needed to support the task of reward design; statistically analyzing
how search trees (and their properties) evolve could provide new empirical insights, and also
help with the identification of trends in MILP optimization behavior, as mentioned above. At
the same time, the idea of parameterizing the non-static action space of branching candidates
which we devised for the DNN architectures of Chapter 6 could potentially be re-purposed
and studied for other ML applications.

Finally, the works of this thesis have been developed with heterogeneous MIPs and general-
purpose MIP solvers in mind. We hope that our investigation allowed to appreciate the
interesting questions and unique challenges posed by this setting, as we believe there is room
for improving MIP algorithmic design via statistical learning methods.
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Abstract Within state-of-the-art solvers such as IBM-CPLEX, the ability to solve both
convex and nonconvex Mixed-Integer Quadratic Programming (MIQP) problems to proven
optimality goes back few years, yet presents unclear aspects. We are interested in under-
standing whether for solving a MIQP it is favorable to linearize its quadratic part or not.
Our approach exploits machine learning techniques to learn a classifier that predicts, for a
given instance, the most suitable resolution method within CPLEX’s framework. We aim as
well at gaining first methodological insights about the instances’ features leading this dis-
crimination. We examine a new dataset and discuss different scenarios to integrate learning
and optimization. By defining novel measures, we interpret and evaluate learning results
from the optimization point of view.

A.1 Introduction

The tight integration of discrete optimization and machine learning (ML) is a recent but
already fruitful research theme: while ML algorithms could profit of choices of discrete type,
until now disregarded, various are the discrete optimization settings and situations that
could benefit from a ML-based heuristic approach. Although a number of fresh applications
is recently appearing in this latter direction, that one could call “learning for optimization”
(e.g., [44], [43]), two main topics in this thread of research involve ML-based approaches
for the branch-and-bound scheme in Mixed-Integer Linear Programming (MILP) problems
(see [25] for a survey on the theme) and the usage of predictions to deal with the solvers’
computational aspects and configuration (see, e.g., [34], [35]). We shift from those two main
ideas and position ourselves somehow in between, to tackle a new application of ML in discrete
optimization. We consider Mixed-Integer Quadratic Programming (MIQP) problems, which
prove to be interesting for modeling diverse practical applications (e.g., [143], [144]) as well
as a theoretical ground for a first extension of MILP algorithms into nonlinear ones.

Within state-of-the-art solvers such as IBM-CPLEX [28], the ability to solve both convex and
1Available at [26].
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nonconvex MIQPs to proven optimality goes back few years (see, e.g., [102]), but theoretical
and computational implications of the employed resolution methods do not seem fully under-
stood yet. We are interested in learning whether it is favorable to linearize the quadratic part
of a MIQP or not. As was firstly suggested in [103], we believe that MIQPs should be solved
in an intelligent and adapted way in order to improve their resolution process; currently, the
decision linearize vs. not linearize can be specified by CPLEX users via the linearization
switch parameter. We interpret the question linearize vs. not linearize as a classification
one: we learn a classifier predicting, for a given MIQP, the most suited resolution method
within CPLEX, possibly gaining first methodological insights about the problem’s features
leading to such prediction.

After a quick dive into the MIQPs algorithmic framework (Section A.2), we motivate and
state our research question (Section A.3). Methodological details and learning-related aspects
are presented in Section A.4, while Section A.5 is devoted to discuss results, new evaluation
measures and different scenarios to integrate the learning and the optimization processes.

A.2 Solving MIQPs with CPLEX

We consider general MIQP problems of the form

min
{1

2x
TQx+ cTx : Ax = b, l ≤ x ≤ u, xj ∈ {0, 1} ∀ j ∈ I

}
(A.1)

where Q = {qij}i,j=1,...,n ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm.
Variables x ∈ Rn are bounded, and I ⊆ N = {1, . . . , n} is the set of indices of variables that
are required to be binary. We say that a problem is pure (binary) when I = N , and mixed
otherwise; we do not consider the continuous case of I = ∅. We refer to a MIQP relaxation
as to the continuous version of (A.1), where integrality requirements are dropped.

Depending on its relaxation being convex or nonconvex, and on the types of variables involved,
a MIQP can be tackled in different ways by CPLEX.

Convex problems A relaxed MIQP is convex if and only if the matrix Q is positive
semi-definite (Q � 0). In this setting, both pure and mixed MIQPs can be solved by the
nonlinear programming-based branch and bound [145] (NLP B&B) (see also [146]), a natural
extension of the integer linear B&B scheme [3] in which a QP is solved at each node of the tree.
Another common resolution approach for convex problems is that of Outer Approximation
algorithms [147], which are however not implemented in CPLEX for MIQPs.
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Nonconvex problems When the relaxed MIQP is not convex (Q � 0), variable types play
an import role. A binary nonconvex MIQP can be transformed into a convex one by means
of augmenting the main diagonal of Q: using xj = x2

j for xj ∈ {0, 1}, xTQx can be replaced
by xT (Q + ρIn)x − ρeTx, where Q + ρIn � 0 for some suitable ρ > 0, In denotes the n × n
identity matrix, and e the vector with all ones. Alternatively, a binary nonconvex MIQP
can be linearized and transformed into a MILP. Without performing diagonal augmentation,
nonzero terms qiix2

i are rewritten as qiixi, while bilinear terms qijxixj are handled by the so-
called McCormick inequalities [107]: a variable yij ≥ 0 is added to represent xixj, together
with linear constraints

xi + xj − 1 ≤ yij if qij > 0, or yij ≤ xi, yij ≤ xj if qij < 0. (A.2)

In this way, the problem formulation grows in size, but the resulting model can be solved
with standard MILP techniques.

For mixed nonconvex MIQPs, there is no straightforward way to convexify or linearize an
instance, and CPLEX relies on the so-called Spatial B&B (see, e.g., [148]) to solve these
problems to global optimality.

Although a number of possibilities can be explored to perform linearization and convexifica-
tion, their discussion is not within the scope of the present paper. For more details, we refer
the reader to [102] and the references therein.

A.3 Linearize vs. not linearize

One could assume that the linearization approach discussed for pure nonconvex MIQPs could
be beneficial for the convex case as well: a binary problem would turn into a MILP, while
in the mixed case one could linearize all bilinear products between a binary and a bounded
continuous variable with generalized McCormick inequalities. However, nonzero products
between two continuous variables would remain in the formulation, so that a mixed convex
MIQP could still be quadratic after linearization, and hence solved with a NLP B&B.

We restrict our focus to pure convex, mixed convex and pure nonconvex problems; the mixed
nonconvex case should be treated separately, due to the very different setup of Spatial B&B.
Currently, in our three cases of interest, the solver provides the user the possibility to switch
the linearization on or off by means of the preprocessing parameter qtolin, and the default
strategy employed by CPLEX is to always perform linearization, although this approach does
not dominate in theory the non-linearization one [102].

We aim at learning an offline classifier predicting the most suited resolution approach in a
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flexible and instance-specific way. We summarize in what follows the main steps undertaken
in the development of our method, leaving the details for the next section.

1. Dataset generation: we implement a generator of MIQP instances, spanning across
various combinations of structural and optimization parameters.

2. Features design: we identify a set of features describing a MIQP in its mathematical
formulation and computational behavior.

3. Labels definition: we define rigorous procedures to discard troublesome instances,
and assess a label depending on running times.

4. Learning experiments: we train and test traditional classifiers and interpretable
algorithms such as ensemble methods based on Decision Trees.

A.4 Methodological details

We now go through the development steps sketched above more in details, discussing how
the dataset is generated, and features and labels defined.

A.4.1 Dataset generation

To build complete MIQP instances, data generation is made of two separate steps. First,
symmetric matrices Q are generated by the MATLAB function sprandsym [149], to which
desired size n, density d and eigenvalues λi, i = 1, . . . , n are specified; (in)definiteness of Q
is controlled by the spectrum. The second step is implemented with CPLEX Python API:
quadratic data can be complemented with a linear vector c, uniform with density d; binary
and continuous variables are added in various proportions; finally, a constraints set is defined.
We monitor the addition of the following types of constraints, in different combinations:

· a single cardinality constraint 0 ≤ ∑j∈I xj ≤ r, with r < |I| varying;

· a standard simplex constraint ∑j /∈I xj = 1, xj ≥ 0;

· a set of η multi-dimensional knapsack constraints ∑j∈I wijxj ≤ fi, for i = 1, . . . , η.
We follow the procedure described in [150] to generate coefficients wij and fi, without
correlating them to the objective function.
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A.4.2 Features design

A (raw) formulation like (A.1) cannot be fed directly as input to a learning algorithm. We
depict a MIQP by means of a set of 21 hand-crafted features, summarized in Table A.1.
Static features describe the instance in terms of variables, constraints and objective function,
and are extracted before any solving (pre)process. Few dynamic features collect information
on the early optimization stages, after the preprocessing and the resolution of the root node
relaxation.

A.4.3 Labels definition

To each MIQP we assign a label among L (linearize, i.e., qtolin on), NL (not linearize,
i.e., qtolin off) and T, the latter to account for tie cases between L and NL. To deal with
performance variability [17], each instance is run in both qtolin modes with 5 different
random seeds; we enforce a timelimit of 1h for each run. To monitor troublesome instances,
we implement:

· solvability check: instances that cannot be solved within timelimit by any method
(neither L nor NL) for any seed are discarded;

· seed consistency check: for each seed, unstable instances with respect to lower and
upper bounds of L and NL are discarded;

· global consistency check: a global check on the best upper and lower bounds for the
two methods is performed to discard further unstable instances.

If a MIQP passes all these checks, we assign a label. When one mode is never able to solve
an instance, the other wins. If both L and NL could solve the instance at least once, running
times on each seed are compared and a “seed win” is assigned to one mode if at least 10%
better. We assign L or NL only if their seed wins are consistent through the 5 runs, opting
for a tie T otherwise.

A.5 Data, experiments and results

The generation procedure is run with MATLAB 9.1.0, Python 2.7 and CPLEX 12.6.3 on
a Linux machine, Intel Xeon E5-2637 v4, 3.50 GHz, 16 threads and 128 GB. To label the
dataset, we used a grid of 26 machines Intel Xeon X5675, 3.07 GHz (12 threads each) and
96 GB; each problem is restricted to one thread.
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We generate 2640 different MIQPs, with size n ∈ {25, 50, . . . , 200} and density of Q d ∈
{0.2, 0.4, . . . , 1}. For mixed convex MIQPs, the percentage of continuous variables is chosen
from {0, 20, . . . , 80}. We discard 340 instances due to solvability or consistency failures,
ending up with a dataset D of 2300 problems.

We report in Table A.2 the composition of dataset D with respect to problem types and
assigned labels. The dataset is highly unbalanced: the majority of instances is tagged as NL,
with a very small share of T. Also, the NL answer is strongly predominant for mixed convex
instances, suggesting that there could be a clear winner method depending on the type of
problem itself.

A.5.1 Learning experiments and results

Learning experiments are implemented in Python with Scikit-learn [63], and run on a personal
computer with Intel Core i5, 2.3 GHz and 8 GB of memory. We randomly split D into Dtrain

and Dtest, a training and a test sets of, respectively, 1725 (75%) and 575 (25%) instances;
data is normalized in [−1, 1]. We perform training with 5-fold cross validation to grid-search
hyper-parameters, and test on the neutral Dtest. We try Support Vector Machine (SVM)
with RBF kernel [112], together with Random Forests (RF) [113], Extremely Randomized
Trees (EXT) [88] and Gradient Tree Boosting (GB) [151].

Our first experiment involves a multiclass scheme with labels {L,NL,T}, and exploits all
features. Table A.4a reports the standard measures for classification in this setting: for all
classifiers we compare accuracy, precision, recall, f1-score (weighted by classes’ supports, to
account for unbalance). In this setting, RF is best performing in all measures. Features
importance scores among RF, EXT and GB show that the subset of features that are more
influential for the prediction comprises both dynamic features (difference of lower bounds
and times at root node) and information on the convexity of the problem (e.g., value of the
smallest nonzero eigenvalue and spectral norm of Q).

Examining the classifiers’ confusion matrices, a major difficulty seems to be posed by the
T class, which is (almost) always misclassified. Ultimately, we aim at providing a reliable
classification of those “extreme” cases for which a change in the resolution approach produces
a change in the instance being solved or not. Thus, we carry out further experiments in a
binary setting: we remove all tie cases and rescale the data accordingly. All measures are
overall improved for the new binary classifiers, and again RF performs as the best algorithm.

We also try classifiers trained without dynamic features: albeit this may sound in conflict
with the features importance scores mentioned above, from the optimization solver’s point
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Table A.1 Overview and brief description of the complete features set.

# Group name Features general description

Static features

2 Generic problem type Size of the problem, variables proportions per type.
2 Constraints matrix

composition
Density w.r.t. different types of variables, magnitudes of nonzero
(nnz) coefficients.

5 Quadratic matrix composition Magnitudes of coefficients, nnz diagonal and bilinear (continuous
· continuous) and (binary · continuous).

7 Spectrum description Shares of positive/negative eigenvalues, magnitude and value of
the smallest, trace and spectral norm.

3 Other properties of Q Density, rank, a measure of “diagonal dominance”.

Dynamic features

2 Root node information Difference of lower bounds and resolution times at the root node,
between linearize and not linearize.

Table A.2 Composition of dataset D. For each type and label we report the total number of
instances and their percentage.

L NL T Total (%)

0-1 convex 195 600 35 830 (0.36)
0-1 nonconvex 392 312 39 743 (0.32)
mixed convex 11 701 15 727 (0.32)

Total (%) 598 (0.26) 1613 (0.70) 89 (0.04) 2300

of view is it useful to test a scenario in which a prediction is cast without the need of solving
twice the root MIQP. All measures slightly deteriorate without dynamic features, and SVM
becomes the best performing algorithm; nonetheless, “static” predictors and their original
counterparts are coherent in their (mis)classifications on Dtest.

Results in a setting simplified in terms of both labels and features are reported in Table
A.4b: performance is balanced in the improvement brought by the removal of ties, and the
degradation due to the absence of dynamic features, and again SVM performs better.

A.5.2 Complementary optimization measures

To determine the effectiveness of our learned approach with respect to the solver’s strategy,
we define “optimization measures” scoring and evaluating the classifiers in terms of resolution
runtimes.

We run each instance i of Dtest for three qtolin values - CPLEX default (DEF), L and
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Table A.3 Classification measures for different learning settings. The best performing classi-
fiers are boldfaced.

SVM RF EXT GB

Accuracy 85.22 88.87 84.00 87.65
Precision 81.91 85.51 81.26 84.79
Recall 85.22 88.87 84.00 87.65
F1-score 83.16 87.11 82.52 86.19

(a) Multiclass - All features

SVM RF EXT GB

Accuracy 86.80 86.08 85.53 86.62
Precision 86.48 85.69 85.20 86.32
Recall 86.80 86.08 85.53 86.62
F1-score 86.28 85.53 85.30 86.03

(b) Binary - Static features

NL. Each problem is run only once, with timelimit of 1h; we focus on the Multiclass and All
features setting. We remove never-solved instances, to remain with 529 problems in Dtest. For
each classifier clf, we associate to the vector of its predicted labels yclf a vector of predicted
times tclf by selecting tiL or tiNL depending on yiclf for i ∈ Dtest (we choose their average if a tie
was predicted). We also build tbest (tworst) selecting runtimes of the correct (wrong) labels
for the samples. Note that tDEF is directly available, without labels’ vector.

Sum of predicted runtimes We compare σclf := ∑
i∈Dtest t

i
clf for clf ∈ {SVM, RF, EXT, GB}

with σbest, σworst and σDEF. Results are in Table A.5a: RF is the closest to best and the far-
thest from worst; also, DEF could take up to 4x more time to run MIQPs in Dtest compared
to a trained classifier. Note that the real gain in time could be even bigger than this, given
the fact that we set a timelimit of 1h.

Normalized time score We then consider the shifted geometric mean of tclf over Dtest,
normalized between best and worst cases to get a score Nσclf ∈ [0, 1]:

sgmclf := |Dtest|

√ ∏
i∈Dtest

(ticlf + 0.01)− 0.01, Nσclf := sgmworst − sgmclf

sgmworst − sgmbest
. (A.3)

The measure is reported in Table A.5a: all predictors are very close to 1 (this score highly
reflects classification performance), while DEF is almost halfway between best and worst.

The presence of timelimiting cases in the test runs is also well reflected in σclf and Nσclf ,
which are better for classifiers hitting timelimits less frequently (3 times only for RF, 39
for DEF). Note that both L and NL do reach the limit without finding a solution (38 and
55 times, respectively), and that due to variability even best hits the timelimit once. We
compute σclf and Nσclf in the Binary - Static features setting as well. Results in Table A.5b
are in line with what previously discussed for this setup.
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Table A.4 Complementary optimization measures. Best classifiers are boldfaced.

SVM RF EXT GB DEF

σclf/σbest 1.49 1.31 1.43 1.35 5.77
σworst/σclf 7.48 8.49 7.81 8.23 1.93
σDEF/σclf 3.88 4.40 4.04 4.26 -

Nσclf 0.98 0.99 0.98 0.99 0.42

(a) Multiclass - All features

SVM RF EXT GB DEF

σclf/σbest 1.80 2.04 2.01 1.82 5.81
σworst/σclf 6.23 5.50 5.59 6.19 1.93
σDEF/σclf 3.22 2.85 2.89 3.20 -

Nσclf 0.98 0.98 0.98 0.98 0.43

(b) Binary - Static features

A.6 Conclusions and ongoing research

We propose a learning framework to investigate the question linearize vs. not linearize for
MIQP problems. Results on a generated dataset are satisfactory in terms of classification
performance and promising for their interpretability. Novel scoring measures positively eval-
uate the classifiers’ performance from the optimization point of view, showing significant
improvements with respect to CPLEX default strategy in terms of running times.

In ongoing and future research, we plan to focus on four main directions.

· Analyze other benchmark datasets: the analysis of public libraries containing MIQPs
(e.g., [24]) is crucial to understand how representative the synthetic D is of commonly
used instances, which can then be used to form a more meaningful and comprehensive
final dataset.

So far, we analyzed a share of CPLEX internal MIQP testbed Ctest of 175 instances:
the data is very different from D in features’ distribution (Ctest is dominated by the
presence of very structured combinatorial MIQPs, like Max-Cut and Quadratic Assign-
ment Problems). The majority class is that of ties, followed by L and with very few
NL cases. Preliminary experiments on Ctest used as a test set for classifiers trained on
Dtrain produce very poor classification results, as most often misclassification happens
in form of a T predicted as NL. In fact, complementary optimization measures are not
discouraging: given that Ctest contains mostly ties, albeit the high misclassification rate,
the loss in terms of solver’s performance is not dramatic.

· Deepen features importance analysis, to get and interpret methodological insights on
the reasons behind the decision linearize vs. not linearize. As we mentioned in Sec-
tion A.5, the problem type itself might draw an important line in establishing the
winning method, which seems strongly linked to the information collected at the root
node.
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· Identify the best learning scenario, in order to successfully integrate the learning frame-
work with the solver. We already considered the simplified Binary - Static features one;
it could be interesting to perform static features selection based on their correlation
with dynamic ones.

· Define a custom loss function: the complementary optimization measures that we pro-
pose showed effective in capturing the optimization performance as well as the classi-
fication one. We plan to use these and other intuitions to craft a custom loss/scoring
function to train/validate the learning algorithm, in a way tailored to the solver’s per-
formance on MIQPs.
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APPENDIX B ADDITIONAL MATERIAL – A CLASSIFIER TO DECIDE
ON THE LINEARIZATION OF MIQPS IN CPLEX

Table B.1 Description of features in the Initial set (60). Features marked with * are part of
the Selected set.

Name Description

Static features

RSizes Ratio of sizes m/n
* RBin Ratio of binary variables, over n
* RContInt Ratio of continuous and integer variables, over n

RNnzDiagBin Ratio of non-zero (nnz) coefficients in Q diagonal for binary variables
* RNnzDiagContInt Ratio of nnz coefficients inQ diagonal for continuous and integer variables

DiagDensity Density of diagonal entries of Q
* OutDiagDensity Density of non-diagonal entries of Q
* QDensity Density of Q
* RBinBin Ratio of nnz products between binary variables in Q
* RContContIntInt Ratio of nnz products between continuous or integer variables in Q

RMixedBin Ratio of mixed-type products involving binaries
RMixedContInt Ratio of mixed-type products involving continuous and/or integers

* RNonLinTerms Ratio of nnz non-linearizable terms, over n2

RNonLinTermsNnz Ratio of nnz non-linearizable terms, over nnz
* RelVarsLinInc Relative size increase of potential linearization, over n

RelConssLinInc Relative size increase of potential linearization, over m
* RLinSizes Sizes m/n ratio after potential linearization
* NormMaxDegBin Maximum connectivity degree in Q among binary variables, over n− 1
* NormMaxDegContInt Maximum connectivity degree in Q among continuous and integer vari-

ables, over n− 1
AvgDiagDom Averaged “diagonal dominance” on rows [26]
RDiagCoeff Ratio of biggest and smallest diagonal nnz coefficients of Q, in absolute

value
ROutDiagCoeff Ratio of biggest nnz diagonal coefficient and smallest out diagonal one,

in absolute value
RNnzBinLin Ratio nnz binary variables in linear term

* RNnzContIntLin Ratio nnz continuous and integers variables in linear term
HasLinearTerm Boolean, whether there is a linear term
LinDensity Density of the linear term
RLinCoeff Ratio of biggest on smallest linear coefficients, in absolute value

* ConssDensity Density of constraints matrix A
RConssBin Ratio of constraints involving binary variables, over m
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Table B.1 – continued from previous page
Name Description

RConssCont Ratio of constraints involving continuous variables, over m
* RConssInt Ratio of constraints involving integer variables, over m

RConssCoeff Ratio biggest on smallest nnz constraints coefficients, in absolute value
RRhsCoeff Ratio magnitudes smallest on biggest nnz rhs coefficients, in absolute

value
RQTrace Trace of Q, over n
QSpecNorm Spectral norm of Q

* RQRankEig Rank of Q over n (i.e., ratio of nnz eigenvalues of Q)
* HardEigenPerc Portion of problematic (hard) eigenvalues in Q

AvgSpecWidth Width of Q spectrum, over n
RPosEigen Ratio of positive eigenvalues, over n
RNegEigen Ratio of negative eigenvalues, over n
RZeroEigen Ratio of zero eigenvalues, over n
RAbsEigen Ratio of min and max eigenvalues, in absolute value
RNZeroEigenDiff Ratio of difference between original and corrected eigenvalues
HardEigenPercDiff Ratio of difference between original and corrected hard eigenvalues

Preprocessing features

* prep_RelVarsIncL Relative variables increase after L preprocessing
prep_RelVarsIncNL Relative variables increase after NL preprocessing

* prep_RelConssIncL Relative constraints increase after L preprocessing
prep_RelConssIncNL Relative constraints increase after NL preprocessing

* prep_RSizesL Sizes m/n ratio after L preprocessing
prep_RSizesNL Sizes m/n ratio after NL preprocessing

* prep_ConssDensityL Density of constraints matrix after L preprocessing
prep_ConssDensityNL Density of constraints matrix after NL preprocessing
prep_ConssDensityDiff Difference of density of constraints after preprocessing, between L and

NL
prep_RelConssDensityL Relative density of constraints after L preprocessing with respect to orig-

inal one
prep_RelConssDensityNL Relative density of constraints after NL preprocessing with respect to

original one

Root node features

root_RtTimeDiff Difference of total root times (comprising preprocessing), between L and
NL

root_RLPTimeDiff Difference of LP root times, between L and NL
root_SignRDBDiff Sign of dual bounds at root (1 if L better, -1 if NL better)
root_RelRDBDiff Relative difference of bounds at root
root_RelSignRDBDiff Signed relative difference of L and NL bounds at root
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Table B.2 Top-10 features identified by RF importance scores, in the multi-class and binary
setting with Initial and Selected features. The reported scores are averages across the
five RF models trained in each configuration.

Rank Score Feature

1. 0.1826 root_RtTimeDiff
2. 0.0897 prep_ConssDensityL
3. 0.0862 prep_RelVarsIncL
4. 0.0779 root_RelRDBDiff
5. 0.0512 root_RelSignRDBDiff
6. 0.0407 prep_RSizesL
7. 0.0391 prep_RelConssDensityL
8. 0.039 root_RLPTimeDiff
9. 0.0311 QDensity
10. 0.0293 OutDiagDensity

(a) MultiLabel - Initial

Rank Score Feature

1. 0.0762 QDensity
2. 0.07 RBinBin
3. 0.068 root_RtTimeDiff
4. 0.065 OutDiagDensity
5. 0.0545 root_RelSignRDBDiff
6. 0.0419 NormMaxDegBin
7. 0.0327 prep_ConssDensityL
8. 0.0314 prep_RelVarsIncL
9. 0.0257 prep_RelConssDensityL
10. 0.0252 root_RelRDBDiff

(b) BinLabel - Initial

Rank Score Feature

1. 0.203 prep_RelVarsIncL
2. 0.1807 prep_ConssDensityL
3. 0.1113 prep_RSizesL
4. 0.0571 QDensity
5. 0.055 RelVarsLinInc
6. 0.0519 prep_RelConssIncL
7. 0.0519 OutDiagDensity
8. 0.0513 RBinBin
9. 0.0441 NormMaxDegBin

10. 0.0306 RQRankEig

(c) MultiLabel - Selected

Rank Score Feature

1. 0.1335 QDensity
2. 0.1177 OutDiagDensity
3. 0.1026 RBinBin
4. 0.0774 prep_RelVarsIncL
5. 0.067 NormMaxDegBin
6. 0.0633 prep_ConssDensityL
7. 0.0582 RelVarsLinInc
8. 0.0559 prep_RSizesL
9. 0.054 RQRankEig
10. 0.0453 RNonLinTerms

(d) BinLabel - Selected
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APPENDIX C ADDITIONAL MATERIAL – PARAMETERIZING B&B
SEARCH TREES TO LEARN BRANCHING POLICIES

Dataset curation

To curate a dataset of heterogeneous MILP instances, we consider the standard benchmark
libraries MIPLIB 3, 2010 and 20171 [16, 23, 81], together with the collection of [122]. We
assess the problems by analyzing B&B roll-outs of SCIP with its default branching rule
(relpscost) and a random one, enforcing a time limit of 1h in the same solver setting used
for our experiments (see later). We focus on instances whose tree exploration is on average
relatively contained (in the tens/hundreds of thousands nodes, maximum) and whose optimal
value is known. This choice is primarily motivated by the need of ensuring a fair comparison
among branching policies in terms of tree size, which is more easily achieved when roll-outs
do not hit the time-limit. We also remove problems that are solved at the root node (i.e.,
those for which no branching was performed).

Final training and test sets comprise 19 and 8 instances, respectively, for a total of 27
problems. They are summarized in Table C.1, where we report their size, the number of
binary/integer/continuous variables, the number of constraints, their membership in the
train/test split and their library of origin. The constraints of each problem are of different
types and give rise to various structures.

Hand-crafted input features

Hand-crafted input features for candidate variables (Ct) and tree state (Treet) are reported
in Table C.4. To ease their reading, we present them subdivided in groups, and synthetically
describe them by the SCIP API functions with which they are computed. We make use of
different functions to normalize and compare the solver inputs.

To compute the branching scores si of a candidate variable i ∈ Ct, with respect to an average
score savg, we use the formula implemented in SCIP relpscost2:

varScore(si, savg) = 1−
(

1
1 + si/max{savg, 0.1}

)
. (C.1)

1http://miplib2017.zib.de
2https://scip.zib.de/doc-6.0.0/html/branch__relpscost_8c_source.php#l00524

http://miplib2017.zib.de
https://scip.zib.de/doc-6.0.0/html/branch__relpscost_8c_source.php#l00524
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Table C.1 The curated MILP dataset. For each instance we report: the number of variables
(Vars) and their types (binary, integers and continuous), the number of constraints (Conss),
the membership in the train/test split and the library of origin.

Name Vars Types (bin - int - cont) Conss Set Library
air04 8904 8904 - 0 - 0 823 train MIPLIB 3
air05 7195 7195 - 0 - 0 426 train MIPLIB 3
dcmulti 548 75 - 0 - 473 290 train MIPLIB 3
eil33-2 4516 4516 - 0 - 0 32 train MIPLIB 2010
istanbul-no-cutoff 5282 30 - 0 - 5252 20346 train MIPLIB 2017
l152lav 1989 1989 - 0 - 0 97 train MIPLIB 3
lseu 89 89 - 0 - 0 28 train MIPLIB 3
misc03 160 159 - 0 - 1 96 train MIPLIB 3
neos20 1165 937 - 30 - 198 2446 train MILPLib
neos21 614 613 - 0 - 1 1085 train MILPLib
neos-476283 11915 5588 - 0 - 6327 10015 train MIPLIB 2010
neos648910 814 748 - 0 - 66 1491 train MILPLib
pp08aCUTS 240 64 - 0 - 176 246 train MIPLIB 3
rmatr100-p10 7359 100 - 0 - 7259 7260 train MIPLIB 2010
rmatr100-p5 8784 100 - 0 - 8684 8685 train MIPLIB 2010
sp150x300d 600 300 - 0 - 300 450 train MIPLIB 2017
stein27 27 27 - 0 - 0 118 train MIPLIB 3
swath1 6805 2306 - 0 - 4499 884 train MIPLIB 2017
vpm2 378 168 - 0 - 210 234 train MIPLIB 3

map18 164547 146 - 0 - 164401 328818 test MIPLIB 2010
mine-166-5 830 830 - 0 - 0 8429 test MIPLIB 2010
neos11 1220 900 - 0 - 320 2706 test MILPLib
neos18 3312 3312 - 0 - 0 11402 test MIPLIB 2010
ns1830653 1629 1458 - 0 - 171 2932 test MIPLIB 2010
nu25-pr12 5868 5832 - 36 - 0 2313 test MIPLIB 2017
rail507 63019 63009 - 0 - 10 509 test MIPLIB 2010
seymour1 1372 451 - 0 - 921 4944 test MIPLIB 2017

As in [5], we normalize inputs that naturally span different ranges by the following:

gNormMax(x) = max
{

x

x+ 1 , 0.1
}
. (C.2)

To compare commensurable quantities (e.g., upper and lower bounds), we compute measures
of relative distance and relative position:

relDist(x, y) =

0 , if xy < 0
|x−y|

max{|x|,|y|,1e−10} , else
(C.3)

relPos(z, x, y) = |x− z|
|x− y|

. (C.4)
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We also make use of usual statistical functions such as min, max, mean, standard deviation
std and 25-75% quantile values (denoted in Table C.4 as q1 and q3, respectively).

Further information on each feature can be gathered by searching the SCIP online documen-
tation at https://scip.zib.de/doc-6.0.1/html/.

Solver setting and hardware

Regarding the MILP solver parametric setting, we use SCIP 6.0.1 and set a time-limit of 1h
on all B&B evaluations. We leave on presolve routines and cuts separation (as in default
mode), while disabling all primal heuristics and reoptimization (also off at default). To
control SB side-effects and properly compute the fair number of nodes [127], we additionally
turn off SB conflict analysis and the use of probing bounds identified during SB evaluations.
We also disable feasibility checking of LP solutions found during SB with propagation, and
always trigger the reevaluation of SB values. Finally, the known optimal solution value is
provided as cutoff to each model, and a random seed determines variables’ permutations.
Parameters are summarized in Table C.2.

Table C.2 SCIP parametric setting.

limits/time = 3600
presolving/maxrounds = -1
separating/maxrounds = -1
separating/maxroundsroot = -1
heuristics/*/freq = -1
reoptimization/enable = False
conflict/usesb = False
branching/fullstrong/probingbounds = False
branching/relpscost/probingbounds = False
branching/checksol = False
branching/fullstrong/reevalage = 0
model.setObjlimit(cutoff_value)
randomization/permutevars = True
randomization/permutationseed = scip_seed

For the IL experiments, we used the following hardware: Two Intel Core(TM) i7-6850K
CPU @ 3.60GHz, 16GB RAM and an NVIDIA TITAN Xp 12GB GPU. Evaluations of SCIP
branching rules ran on dual Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz, equipped with
512GB of RAM.

https://scip.zib.de/doc-6.0.1/html/
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Table C.3 Variability scores VS are reported for relpscost, and are computed using the
5 runs with k = 0 (i.e., SCIP default runs, over seeds {0, . . . , 4}). Total number of nodes
explored by data collection runs with k random branchings, in shifted geometric means over
5 runs is also reported. Finally, VSk is the coefficient of variation of the five means, across
different k’s.

Instance Set VS k = 0 k = 1 k = 5 k = 10 k = 15 VSk

air04 train 0.20 8.19 12.02 46.57 85.35 119.49 0.79
air05 train 0.26 60.25 61.07 115.94 196.27 274.44 0.59
dcmulti train 0.21 9.38 13.75 27.53 34.99 45.00 0.50
eil33-2 train 0.69 583.34 648.47 492.95 531.37 441.24 0.13
istanbul-no-cutoff train 0.11 242.39 234.01 271.35 279.38 311.39 0.10
l152lav train 0.36 10.14 16.54 29.31 55.51 61.14 0.59
lseu train 0.43 148.99 152.65 154.16 182.55 177.35 0.09
misc03 train 0.38 12.11 10.59 13.80 22.59 31.80 0.44
neos20 train 1.22 200.26 282.68 557.15 434.03 944.75 0.54
neos21 train 0.15 668.44 771.77 898.79 1110.82 1158.07 0.21
neos648910 train 0.60 39.83 48.16 65.84 41.05 59.72 0.20
neos-476283 train 0.48 204.88 219.58 384.86 480.37 715.78 0.47
pp08aCUTS train 0.31 69.66 80.39 92.60 69.94 76.43 0.11
rmatr100-p5 train 0.04 411.93 419.21 451.01 461.83 494.09 0.07
rmatr100-p10 train 0.03 806.35 799.24 860.60 933.80 965.07 0.08
sp150x300d train 1.70 182.22 462.45 484.55 483.89 439.69 0.28
stein27 train 0.42 926.82 1062.69 1098.41 1162.57 1154.01 0.08
swath1 train 0.53 298.58 280.49 230.12 256.84 267.55 0.09
vpm2 train 0.19 199.46 180.93 275.57 273.33 316.82 0.20

map18 test 0.09 270.25 309.77 401.79 447.34 489.85 0.21
mine-166-5 test 0.82 175.10 70.77 642.33 942.63 1619.75 0.81
neos11 test 0.30 2618.27 3114.62 3488.40 2898.41 2659.96 0.11
neos18 test 0.53 2439.29 2747.77 4061.40 4655.59 5714.05 0.31
ns1830653 test 0.09 3489.07 3913.58 4091.59 4839.39 4772.73 0.12
nu25-pr12 test 1.18 21.39 16.97 56.04 101.34 119.05 0.66
rail507 test 0.08 543.39 562.09 854.76 1207.15 1196.33 0.33
seymour1 test 0.07 866.32 1174.18 1825.04 2739.45 3313.87 0.47

Data augmentation

To augment our dataset, we (i) run MILP instances with different random seeds to exploit
performance variability [17], and (ii) perform k random branchings at the top of the tree,
before switching to the default SCIP branching rule and collect data. To quantify the effects
of such operations in diversifying the search trees, we compute coefficients of variations of
performance measurements [16]. In particular, assuming performance measurements nl, l =
1 . . . L are available, we compute the variability score VS as

VS = L∑L
l=1 nl

√√√√ L∑
l=1

(
nl −

∑L
l=1 nl
L

)2

. (C.5)
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Table C.3 reports such coefficients for all instances, using as performance measures the num-
ber of nodes explored in the five runs from (i). Similarly, we report the shifted geometric
means of the number of nodes over the five runs for each k ∈ {0, 1, 5, 10, 15}, and additionally
compute the variability of those means, across different k’s (VSk).

IL optimization dynamics

Best policies We present additional plots of the optimization dynamics for the best se-
lected NoTree and TreeGate policies. Figure C.1 shows the training loss curves, as well as
top-1 and top-5 validation accuracy curves. In general, we see that the TreeGate policy
enjoys a better conditioned optimization. Note however that for top-5 validation accuracy
the two policies are quite close.

(a) (b)

(c) (d)

Figure C.1 (a) Train and (b) validation loss curves for the best NoTree (orange) and TreeGate
(blue) policies. (c) Validation top-1 and (d) top-5 accuracy plots for the best NoTree and
TreeGate policies.

Instability of batch-norm As observed in Figure C.1, optimization dynamics for NoTree
seem to be of a much slower nature than those of TreeGate. One common option to speed
up training is to use batch normalization (BN) [152]. In our architectures for branching, one
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may view the cardinality of the candidate sets |Ct| as a batch dimension. When learning to
branch across heterogeneous MILPs, such batch dimension can (and will) vary by orders of
magnitude. Practically, our dataset has |Ct| varying from < 10 candidates to over 300. To
this end, BN has been shown to struggle in the small-batch setting [153], and in general we
were unsure of the reliability of BN with such variable batch-sizes.

Indeed, in our initial trials with BN we observed highly unreliable performance. Two troubling
outcomes emerge when using BN in our NoTree policies: 1) the validation accuracy varies
wildly, as shown in Figure C.2, or 2) the NoTree+BN policy exhibits a stable validation
accuracy curve, but would time-limit on train instances, i.e., would perform poorly in terms of
solver performance. In particular, case 2) happened for a NoTree+BN policy with hidden size
h = 64 and LR = 0.001, reaching the 1h time-limit on train instance neos-476283, over all five
runs (on different seeds); the geometric mean of explored nodes was 66170.66. We remark that
in our non-BN experiments, all of our trained policies (both TreeGate and NoTree) managed
to solve all the train instances without even coming close to time-limiting. Moreover, none
of our training and validation curves ever remotely resemble those in Figure C.2b.

For these reasons we opted for a more streamlined presentation of our results, without BN
in the current framework. We leave it for future work to analyze the relationship between
the nature of local minima in the IL optimization landscape and solver performance.

(a) (b)

Figure C.2 (a) Train loss and (b) validation top-1 Accuracy for NoTree+BN policy with
hidden size h = 64, LR = 0.001.

Table C.4 Hand-crafted input features. Features are doubled [x2] when computed for both
upward and downward branching directions. For features about open nodes, open_lbs (resp.
open_ds) denotes the list of lower bound estimates (resp. depths) of the open nodes.

Group description (#) Feature formula (SCIP API)

Candidate state [Ct]i, i ∈ Ct
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Table C.4 – continued from previous page
Group description (#) Feature formula (SCIP API)

General solution (2) SCIPvarGetLPSol
SCIPvarGetAvgSol

Branchings depth (2) 1 - (SCIPvarGetAvgBranchdepthCurrentRun / SCIPgetMaxDepth) [x2]
Branching scores (5) varScore(SCIPgetVarConflictScore, SCIPgetAvgConflictScore)

varScore(SCIPgetVarConflictlengthScore,
SCIPgetAvgConflictlengthScore)
varScore(SCIPgetVarAvgInferenceScore, SCIPgetAvgInferenceScore)
varScore(SCIPgetVarAvgCutoffScore, SCIPgetAvgCutoffScore)
varScore(SCIPgetVarPseudocostScore, SCIPgetAvgPseudocostScore)

PC stats (6)
SCIPgetVarPseudocostCountCurrentRun / SCIPgetPseudocostCount
[x2]
SCIPgetVarPseudocostCountCurrentRun /
SCIPvarGetNBranchingsCurrentRun [x2]
SCIPgetVarPseudocostCountCurrentRun / branch_count [x2]

Implications (2) SCIPvarGetNImpls [x2]
Cliques (2) SCIPvarGetNCliques / SCIPgetNCliques [x2]
Cutoffs (2) gNormMax(SCIPgetVarAvgCutoffsCurrentRun) [x2]
Conflict length (2) gNormMax(SCIPgetVarAvgConflictlengthCurrentRun) [x2]
Inferences (2) gNormMax(SCIPgetVarAvgInferencesCurrentRun) [x2]

Search tree state Treet

Current node (8) SCIPnodeGetDepth / SCIPgetMaxDepth
SCIPgetPlungeDepth / SCIPnodeGetDepth
relDist(SCIPgetLowerbound, SCIPgetLPObjval)
relDist(SCIPgetLowerboundRoot, SCIPgetLPObjval)
relDist(SCIPgetUpperbound, SCIPgetLPObjval)
relPos(SCIPgetLPObjval, SCIPgetUpperbound, SCIPgetLowerbound)
len(getLPBranchCands) / getNDiscreteVars
nboundchgs / SCIPgetNVars

Nodes and leaves (8) SCIPgetNObjlimLeaves / nleaves
SCIPgetNInfeasibleLeaves / nleaves
SCIPgetNFeasibleLeaves / nleaves
(SCIPgetNInfeasibleLeaves + 1) / (SCIPgetNObjlimLeaves + 1)
SCIPgetNNodesLeft / SCIPgetNNodes
nleaves / SCIPgetNNodes
ninternalnodes / SCIPgetNNodes
SCIPgetNNodes / ncreatednodes

Depth and backtracks (4) nactivatednodes / SCIPgetNNodes
ndeactivatednodes / SCIPgetNNodes
SCIPgetPlungeDepth / SCIPgetMaxDepth
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Table C.4 – continued from previous page
Group description (#) Feature formula (SCIP API)

SCIPgetNBacktracks / SCIPgetNNodes
LP iterations (4) log(SCIPgetNLPIterations / SCIPgetNNodes)

log(SCIPgetNLPs / SCIPgetNNodes)
SCIPgetNNodes / SCIPgetNLPs
SCIPgetNNodeLPs / SCIPgetNLPs

Gap (4) log(primaldualintegral)
SCIPgetGap / lastsolgap
SCIPgetGap / firstsolgap
lastsolgap / firstsolgap

Bounds and solutions (5) relDist(SCIPgetLowerboundRoot, SCIPgetLowerbound)
relDist(SCIPgetLowerboundRoot, SCIPgetAvgLowerbound)
relDist(SCIPgetUpperbound, SCIPgetLowerbound)
SCIPisPrimalboundSol
nnodesbeforefirst / SCIPgetNNodes

Average scores (12) gNormMax(SCIPgetAvgConflictScore)
gNormMax(SCIPgetAvgConflictlengthScore)
gNormMax(SCIPgetAvgInferenceScore)
gNormMax(SCIPgetAvgCutoffScore)
gNormMax(SCIPgetAvgPseudocostScore)
gNormMax(SCIPgetAvgCutoffs) [x2]
gNormMax(SCIPgetAvgInferences) [x2]
gNormMax(SCIPgetPseudocostVariance) [x2]
gNormMax(SCIPgetNConflictConssApplied)

Open nodes bounds (12) len(open_lbs at {min, max}) / nopen [x2]
relDist(SCIPgetLowerbound, max(open_lbs))
relDist(min(open_lbs), max(open_lbs))
relDist(min(open_lbs), SCIPgetUpperbound)
relDist(max(open_lbs), SCIPgetUpperbound)
relPos(mean(open_lbs), SCIPgetUpperbound, SCIPgetLowerbound)
relPos(min(open_lbs), SCIPgetUpperbound, SCIPgetLowerbound)
relPos(max(open_lbs), SCIPgetUpperbound, SCIPgetLowerbound)
relDist(q1(open_lbs), q3(open_lbs))
std(open_lbs) / mean(open_lbs)
(q3(open_lbs) - q1(open_lbs)) / (q3(open_lbs) + q1(open_lbs))

Open nodes depths (4) mean(open_ds) / SCIPgetMaxDepth
relDist(q1(open_ds), q3(open_ds))
std(open_ds) / mean(open_ds)
(q3(open_ds) - q1(open_ds)) / (q3(open_ds) + q1(open_ds))
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