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ABSTRACT 10 

River model calibration is essential for reliable model prediction. The manual calibration 11 

method is laborious and time consuming and requires expert knowledge. River 12 

engineering software is now equipped with more complex tools that require a high 13 

number of parameters as input, rendering the task of model calibration even more 14 

difficult. This paper presents the calibration tool O.P.P.S. (Optimisation Program for 15 

PEST and SRH-2D), then uses it in multiple calibration scenarios. O.P.P.S. combines PEST, 16 

a calibration software, and SRH-2D, a bi-dimensional hydraulic and sediment model for 17 

river systems, into an easy-to-use set of forms. O.P.P.S is designed to minimize the 18 

user’s interaction with the involved program to carry out rapid and functional 19 

calibration processes. PEST uses the Gauss-Marquardt-Lavenberg algorithm to adjust 20 

the model’s parameters by minimizing an objective function containing the differences 21 

between field observation and model-generated values. The tool is used to conduct 22 

multiple calibration series of the modelled Ha! Ha! river in Québec, with varying 23 

information content in the observation fields. A sensitivity study is also conducted to 24 

assess the behaviour of the calibration process in the presence of erroneous or 25 

imprecise measurements. 26 

Keywords: river modelling; automatic calibration; parameter estimation; SRH-2D; PEST 27 

 28 
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1 Introduction 29 

River models are used in various ways by engineers in many fields. These models are 30 

relied upon to assess problems that cannot be studied directly or that are too complex 31 

to be addressed via simplified approaches. River models are generally oriented towards 32 

predictions in many environmentally oriented fields of study, such as water quality, 33 

flood prediction and sediment transport. 34 

In most study cases, the process of building a functional model comprises four main 35 

steps (Vidal et al., 2007): model set-up, model calibration, model validation and 36 

exploitation. Model calibration, being an essential and crucial step, consists of the 37 

adjustment of the model’s parameters until a satisfactory agreement between 38 

simulated values and measured values is obtained. Hydraulic models include a certain 39 

variety of parameters that cannot be measured or assessed via field measurements or 40 

observations. Reliable model predictions will therefore be obtained through a thorough 41 

calibration process (Bahremand & De Smedt, 2010).  42 

The manual calibration task is commonly performed in a trial and error process where 43 

the user progressively adjusts the parameters until a satisfactory result is obtained. This 44 

method is limited since the task is time consuming and the subjectivity of the quality of 45 

the adjustment highly depends on the user’s experience (Boyle et al., 2000). Moreover, 46 

the number of variable parameters is often reduced as much as possible by the users to 47 

reduce the model’s complexity. With the ever-growing computational capabilities of the 48 
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models and the increasing demand for model precision, the manual calibration method 49 

sometimes becomes inappropriate. 50 

Dedicated studies have aimed to develop efficient and automatic calibration methods 51 

where the parameters are adjusted until an objective function is brought to a minimum. 52 

Calibration methods come in two forms: the global methods based on an evolution 53 

algorithm, such as the Shuffled-Complex Evolution method (Duan et al., 1992), and the 54 

gradient-based methods, such as the Gauss-Marquardt-Levenberg algorithm. Global 55 

methods are robust in finding the minimum of the objective function in the entire 56 

parameter space but require a great amount of model runs to achieve this result. 57 

Gradient-based methods on the other hand are computationally efficient, but the result 58 

can sometimes be dependent on the initial parameters as the calibration progresses 59 

from an initial set of parameters towards the steepest descent of the objective function. 60 

Model calibration, regardless of the chosen method , should be done with caution as 61 

multiple parameter sets of model structure could exist and yield equally acceptable 62 

results (Beven & Freer, 2001). The existence of these different possibilities is known as 63 

“equifinality” and has been well documented before (Pathak et al., 2015). The issue of 64 

equifinality is not the main focus of the authors in this study but rather the application 65 

of a “work-around” technique to avoid it. 66 

Though the hydraulics models have evolved into complex tools with diverse 67 

functionalities to visualise and present results, calibration-oriented tools have not 68 

progressed in the same manner. Additional features have been implemented in the 69 
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models to yield more capabilities in data presentation, but little has been done 70 

regarding the improvement of the calibration tools: “evolution of calibration support 71 

mechanisms has yet to undergo the same level of development as the models 72 

themselves” (McKibbon & Mahdi, 2010). Vidal et al. (2007) depicted the same problem: 73 

“even modelling packages promoting good modelling practices do not provide 74 

significant features to assist users during manual calibration”.  75 

For the same solver, or software, even if PEST (Parameter ESTimation) can be used to 76 

calibrate a particular river model (Lavoie and Mahdi, 2016), the tedious calibration 77 

process has to be repeated again for a new river model even if using the same solver. To 78 

facilitate the calibration process, an automatic calibration tool is created that combines 79 

PEST and SRH-2D (Sedimentation and River Hydraulics). To the knowledge of the 80 

authors this is the first time that a tool based on PEST is developed to calibrate any river 81 

model based on the SRH2-D, a 2D free hydrodynamics software developed by the USBR 82 

(U.S. Bureau of Reclamation). The user simply specifies the parameters he wishes to 83 

submit to the calibration process and the observation values to be compared with the 84 

simulated results. The developed tool then assures the entire configuration and 85 

execution of the calibration process. 86 

The tool created is then used to explore different calibration scenarios where the effect 87 

of progressively increasing the available information used by the calibration process is 88 

considered. Another set of calibrations is undertaken with the introduction of an error 89 
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in the measurement values to explore the effect of erroneous data. This paper deals 90 

only with the calibration of the Manning’s roughness coefficient. 91 

2 Methods 92 

This section introduces the hydrodynamic model used for the river reach flow 93 

simulation, SRH-2D, and the optimisation program PEST. The tool developed is also 94 

presented, along with the description of the conducted calibration series on the model. 95 

2.1 SRH-2D 96 

SRH-2D (Lai, 2008) is a depth-averaged flow and sediment transport model for river 97 

systems that was developed at the U.S. Bureau of Reclamation. The software is capable 98 

of simulating flow through multiple reaches, floodplains, vegetation lands and 99 

hydraulics structures. SRH-2D is well suited for rivers that require a better 100 

representation of 2D effects, such as multiple flow paths or in-stream structures. It 101 

computes the local water elevation, local flow velocity, eddy pattern and shear stress on 102 

riverbeds and banks. The software is built to easily divide rivers into different reaches 103 

depending on vegetation, topography or morphology. The hybrid meshing strategy is 104 

well suited to zonal modelling as it allows for both a quadrilateral and triangular shape 105 

with the desired density. 106 

An implicit scheme is used to solve the finite-volume numerical method based on the 2D 107 

depth average dynamic wave equation of St. Venant. Steady and unsteady state can 108 

both be simulated by the software, and all flow regimes may be simulated. For a better 109 

understanding of the model, additional details can be found in Lai (2009), where a 110 
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complete description of the governing equation and discretisation methods is displayed. 111 

Although SRH-2D is capable of computing sediment transport, this model is considered 112 

static and therefore does not include aggradations or degradation of the riverbed. 113 

Pre-processing and post-processing of the model is executed in SMS (Aquaveo, 2013), a 114 

modelling software presented as a graphical user interface and analysis tool that holds 115 

all of the SRH-2D functionalities. 116 

2.2 PEST 117 

To verify the reproduction of the physical phenomena by the model, the data calculated 118 

by the model needs to be compared with measured values to determine the model’s 119 

performance regarding the reproduction of the said phenomena. Based upon the 120 

assumption that the model responds to an excitation or an impulsion, it is possible to 121 

imagine that there is at least a combination of parameters that can make the model 122 

reproduce the same reactions that occur in the modelled environment (Doherty, 2010). 123 

PEST is a model-independent software designed to assume the task of calibration in a 124 

completely automatic manner by applying the Gauss-Marquart-Levenberg algorithm 125 

(Doherty, 2010). The calibration is undertaken by reducing to a minimum the objective 126 

function, which holds the discrepancies between the measured values and the results 127 

given by the model. PEST will gradually adjust the model parameters following the 128 

steepest descent towards the minimum of the objective function until it reaches the 129 

user-supplied termination criteria. The parameters obtained would hence give the best 130 

match between the supplied measured values and the simulated values. 131 
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The parameter estimation is based on a linearization of the relationship between the 132 

model parameters and the calculated output values. At every iteration, PEST executes as 133 

many model runs as there are calibration parameters to generate their partial 134 

derivatives using a user-guided finite difference. Following every model run, PEST 135 

examines the output information and, based on the instruction supplied in the control 136 

files, will refine the input parameters of the model towards the predicted steepest 137 

descent of the objective function based on the calculation of the Jacobian matrix of the 138 

model parameters. PEST will stop this process once the objective function is reduced to 139 

a minimum. 140 

To conduct this task, PEST takes control of the model by executing it as many times as 141 

needed while modifying the parameters until the objective function is lowered to a 142 

user-supplied satisfactory level. PEST requires a specific set of instructions in the form of 143 

three files. The first file indicates the way in which the output information generated by 144 

the model should be interrogated. The second is a mirror image of the input file, which 145 

is used to locate the calibration parameters. The third file is the centre of command of 146 

the whole operation and contains all the instructions regarding the calibration process 147 

(Doherty, 2010). The content of these files will vary from one model to another. 148 

In this unique approach, PEST is linkable to almost any type of model as long as the 149 

input and output information can be accessed in any way. The sequential execution of 150 

the model by PEST is accomplished via a batch file, which can be a succession of multiple 151 

operations such as the translation of the output file to a readable format or the 152 
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combination of multiple information coming from the model resolution. PEST has 153 

already been proven to be an effective calibration procedure for hydrological models 154 

and  quasi-2d hydrodynamic models (Diaz-Ramirez et al., 2012; Ellis et al., 2009; Fabio et 155 

al., 2010; Kim et al., 2007; McCloskey at al., 2011; McKibbon & Mahdi, 2010; Rodeetal., 156 

2007) 157 

2.3 O.P.P.S. 158 

The Optimisation Program by PEST for SRH-2D (O.P.P.S.) is the resulting tool for the 159 

automatic calibration of SRH-2D by PEST. O.P.P.S. eases the task of preparing the 160 

calibration process by correctly building the required files with the user’s desired PEST 161 

regularisation parameters. O.P.P.S. comes in the form of an easy-to-use graphical 162 

interface based on Excel® Visual Basic, where the user can quickly specify the current 163 

project’s parameters to be calibrated and the measured values that are to be matched 164 

in the model.  165 

O.P.P.S can easily prepare and execute an operational PEST calibration process with 166 

minimum user interaction. The model is sequentially launched by a command line in the 167 

form of an AutoHotKey® file capable of conducting single model runs without any user 168 

intervention. Indeed, the execution of the command lines supplied with O.P.P.S. allow 169 

for carrying out the calibration process in the background without the user 170 

interventions normally required by SHR-2D. A single non-calibration run would normally 171 

require multiple human-directed operations that would interfere with the automatic 172 
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aspect of the calibration process. Therefore, the automatic execution of SRH-2D is made 173 

completely free of user interventions. 174 

When O.P.P.S. is launched, the interaction with the user is made through a series of 175 

forms in which the information regarding the calibration process can be entered. A 176 

summary of the procedures followed during the preparation and execution of the 177 

calibration process is presented in figure 1. Any combination of measured depth, water 178 

velocity along the X- and Y-axis, and the velocity magnitude at any point in the model 179 

can be supplied as observation values to be compared to the simulated results for each 180 

observation point. The measured values supplied are individually used in the calibration 181 

process: there will be as many single observation points as there are measured values in 182 

the calibration process.  183 

The subsequent preparation steps are carried out by O.P.P.S. and the calibration process 184 

is guided by PEST. Once the parameters and the observation points have been 185 

identified, O.P.P.S can create the required files for PEST’s execution. A series of 186 

verifications are performed to avoid errors or performance issues that can arise when 187 

PEST is not efficiently programmed. If it does not exist already, O.P.P.S. will 188 

automatically create a backup file of the project. When PEST is executed, permanent 189 

changes will be applied to the selected parameters. Additional options for the fine 190 

tuning of the calibration process are also available. 191 

 192 
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Additional parameters can be adjusted for the fine tuning of the calibration process by 193 

managing the evolution of the calibration process.. The user can adjust the Marquardt-194 

Lambda parameter, which guides the progression vector towards the optimal reduction 195 

of the objective function. The progression vector is gradually reduced as PEST 196 

progresses closer to the minimum of the objective function. PEST is presented with 197 

multiple decision criteria that can be adjusted by the user, depending on the project at 198 

hand. These criteria handle the conditions required to progress towards a new iteration 199 

or to terminate the calibration process at the most appropriate moment. In both cases, 200 

these regularisation parameters can be based on the evolution of the calibration 201 

parameters or on the progression of the objective function. . These parameters should 202 

be adjusted according to each project, as one configuration might not satisfy every 203 

calibration operation. 204 

2.4 Study case 205 

O.P.P.S. can quickly and efficiently assemble the required information to perform an 206 

operational automatic calibration process. This tool is used to perform a series of 207 

calibrations of the river model.In this study, the Ha!-Ha! River is partially modelled using 208 

the topographical data collected after the 1996 failure of a dam of the Ha! Ha! Lake. The 209 

dam failed as water rose rapidly during the high-yield rains that lasted for three days in 210 

the Saguenay region in Québec, Canada. The sudden flush caused an excessive increase 211 

in the river flow (more than 1000 m3/s), drastically changing the river morphology by 212 

eroding the sediment deposit around the rocky bases of the riverbed. Capart et al. 213 

(2007) give the cross-sections data for every 100 m of the river. 214 



12 
 

The Ha! Ha! River basin covers a total of 572 km2 in the Saguenay-Lac-St-Jean region, 215 

and its river stretches forth a total of 35 km from the Ha!-Ha! dyke to the river mouth, 216 

where it flows into the Saguenay river. The model comprises five different reaches of 217 

approximately 3 km each represented by different roughness coefficients. A map of the 218 

modelled reaches is presented in figure 2. The Manning roughness coefficient is the only 219 

adjustable parameter in the study case as PEST only allows for the calibration of 220 

continuous parameters. Although the calibration is limited to only one parameter, the 221 

roughness coefficient has been identified as the most influential source of uncertainty in 222 

river models (Hall et al., 2005; Warmick et al., 2010). 223 

2.5 Calibration scenarios 224 

The original set of parameters was established by the authors and were not 225 

measurements or calculated values. The hydrodynamic results generated by running the 226 

model with the original set of parameters were then used in the calibration process. 227 

Using the data recorded during the initial run with the original parameters as the 228 

observation values, PEST is expected to progress towards the initial set of parameters. 229 

Fictional parameter values were used by the authors because not enough data for this 230 

study case is available to proceed to a real calibration case. For each calibration 231 

scenarios, the maximum number of iterations allowed is 30 and the parameters can 232 

range from 0.01 to 0.1.The original values of Manning coefficients, along with the 233 

observation values used in the series of calibrations, are presented in table 1. The series 234 

of calibrations is carried out using different settings, with the number of observation 235 

points, their positions and their content varying in each series.  236 
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The calibration was performed on a IntelCore i5 2,27 GhZ laptop and required on 237 

average7 iterations and 60 model runs for the simpler cases and 10 iterations and 100 238 

models runs for the more complex cases. Each model run take approximately 1 hour to 239 

complete. 240 

2.5.1 Water depths 241 

The first series of calibrations used an increasing number of observation points, only one 242 

per reach, containing only the observed water depths. In the first case, the calibration 243 

points were located close to the middle of the reach; in the second case, the points 244 

were located near the junctions of reaches or close to the boundary conditions. The first 245 

calibration used two observation points, while the subsequent calibration used one 246 

additional point, with a maximum of five (one per reach) in the first scenario and six in 247 

the second scenario. 248 

2.5.2 Water depths and velocities 249 

The next series of calibrations also used an increasing amount of observation points 250 

between each trial. In addition to water depths, observation points contained water 251 

velocity measurements: water velocity in the X- and Y- directions and the magnitude of 252 

this velocity. PEST now has access to an increased quantity of information to proceed 253 

with the calibration to explore the extent of adding information to the observation 254 

points. In all cases, the observation points are located near the centre of each reach. 255 

Each calibration process is carried out with identical instructions sets and regulation 256 

parameters and has the same starting values for the initial model run. 257 
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2.5.3 Sensitivity analysis 258 

The next parts of the calibration series were used for a sensitivity study to observe the 259 

effects of introducing an error in the measured data used in the calibration procedure. 260 

Different scenarios were carried out using two different sets of observation data to aid 261 

in the calibration process, with a variable magnitude of the introduced error.  262 

In the first case, the error was applied to the measured depth in a scenario where only 263 

the measured depth was available for the calibration procedure. In the second case, the 264 

same scenario as in the previous case was carried out by adding measured velocity data 265 

to the observation points to verify the advantages of additional information in the 266 

advent of an error in the data. Only the measured depth was subjected to the 267 

introduced error. The third case introduced an error in the model’s input flow using all 268 

the available measured data of the observation points (measured depths and velocities). 269 

This scenario reveals the effect of flow overestimation and underestimation on the 270 

calibration. The first series of this case only included the measured depths at the 271 

observation points; the second scenario included all the measured data, i.e., measured 272 

depth and velocities. Again, partial use of the data in the first case was done to evaluate 273 

the benefits of adding additional data to the calibration process to better handle the 274 

possible introduction of error in the data.  275 

3 Results and discussion 276 

The results obtained in the different calibration scenarios are presented in this section, 277 

and the difference between the observed and simulated water depths of the entire 278 
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model for the final calibration scenarios is shown. The results obtained from the 279 

calibration series and sensitivity calibration series are also discussed. 280 

3.1 Water depths 281 

The first series of calibrations only used a growing number of observation points 282 

containing the water depth as a means of correspondence between the model output 283 

values and the measured values. At first, only two observation points were supplied; for 284 

each subsequent calibration run, an observation point was added until each reach was 285 

supplied with a measured water depth. Figures 3 to 6 present the calibration results 286 

from the first series of calibrations. 287 

Results show that PEST cannot correctly calibrate reaches without having at least one 288 

observation value in the reach, which in this case is the measured water depth. In each 289 

calibration process, the Manning coefficients in the reaches that are not supplied with 290 

an observation point have little or no variation compared to their starting values. From 291 

the observations made in the results, PEST needs to be supplied with at least one 292 

measured depth in a reach to correctly estimate the parameter value. However, PEST 293 

has no difficulty matching measured water depths, when supplied, in only a few model 294 

runs.  295 

If, during the calibration process, PEST cannot find a correlation between the variation 296 

of a parameter and the reduction of the objective function, it will abandon further 297 

modification of the said parameter during the present iteration. This results in 298 

parameters that are left at their original values during the calibration process. Reaches 299 
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that are left with an unvaried Manning coefficient have an influence on the upstream 300 

portion; thus, PEST, in its quest to match the featured values, must compensate for the 301 

unvaried coefficients with an overestimation of the Manning coefficient to reach the 302 

supplied measured value upstream. This is shown in the calibration results, where PEST 303 

could not correctly calibrate the reach 4 parameter when no information was supplied 304 

downstream in reach 3. When an observation point is added to reach 3, PEST can 305 

correctly adjust the Manning coefficients of both this reach and of reach 4. 306 

Figure 7 shows the differences between the water depths recorded at the end of the 307 

calibration process using all the observation points and the water depths recorded with 308 

the original parameter values. The differences between the simulated values are very 309 

low considering that almost all the model’s water depths are reproduced within a 0.005 310 

m precision. The majority of the higher differences are located in reach 2, which is an 311 

area characterised by small instabilities in the results. 312 

Since the low starting values of the Manning coefficient had a negative influence on the 313 

calibration results, the entire calibration series is reinvestigated by reinitialising the 314 

starting values in a range that would be much closer to a suitable estimation done by 315 

any user. This way, the calibration process could begin with starting values that could 316 

resemble a user’s estimation.  317 

The results obtained show the same result pattern with a much better performance in 318 

the calibration result since the starting values are closer to the original values. Like in 319 

the previous series, the reaches that are not provided with calibration points remain 320 
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closer to their original values, but results show a positive movement towards the 321 

desired values as more points are added. In reach 3, the relative difference between the 322 

desired value and the calibration value is gradually diminished as additional points are 323 

added to the surrounding reaches. The same improvement is observed at reach 4, 324 

where overestimation caused by reach 3 is gradually reduced and much less 325 

exaggerated, similar to the previous calibration series.  326 

Another calibration series was processed by using observation points located on the 327 

frontier of two reaches in the model to explore the “calibration value” of a different 328 

positioning of the observation points. The results showed that points placed on the 329 

frontier of two reaches facilitate only the calibration of the downstream reach; thus, 330 

one point per frontier is needed to obtain a proper calibration of the model. However, 331 

the uncalibrated reaches in this series did not have the overestimation effect upstream 332 

observed in the previous series. 333 

3.2 Water depths and velocities 334 

This series of calibrations also used an increasing number of calibration points, centred 335 

in their respective reaches, with additional measurements: each observation point 336 

featured the measured depths, the velocity along the X- and Y-axis, and the velocity 337 

magnitude. Figures 8 to 11 present the calibration results from the series of calibrations 338 

using water depths and water velocities of the observation points. With only two 339 

observation points (figure 8), PEST can find the desired values of 4 out of 5 reaches. The 340 

calibration parameter of reach 5 remained at the starting value, meaning that PEST 341 
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could not establish a relation between the parameter variation and the reduction of the 342 

objective function.  343 

As additional points are included in the calibration, the relative difference between 344 

PEST’s suggested values and the desired values is gradually reduced. In fact, the quality 345 

of the adjustment increases faster with the addition of observation points and the 346 

model is calibrated to a satisfying status with less observation points. Additionally, 347 

reaches that do not have measured values to facilitate their parameter calibration can 348 

be estimated to a good level when upstream and downstream reaches contain 349 

calibration information. This is shown in the third calibration (figure 11), where the 350 

middle reach is correctly calibrated even without having any observation values 351 

attached to it. This series shows that less observation points are required to obtain 352 

satisfactory calibration results when the featured points contain more information. 353 

Figure 12 shows the differences between the water depths resulting from the 354 

calibration process using all the observation points (water depths and water velocities) 355 

and the water depths recorded with the original parameter values. The differences are 356 

very similar to those of the calibration using only the water depths, with the exception 357 

of reach 2, which contains the majority of the higher differences from the original 358 

values. Compared to the calibrated Manning coefficient obtained in the other reaches, 359 

the value from reach 2 is overestimated, thus resulting in higher but still acceptable 360 

differences between the observed and simulated water depths. In the other reaches, 361 
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the differences from the simulated water depth values are still within a 0.005 m 362 

precision. 363 

The analysis of the results given by the hydrodynamic model shows that multiple points 364 

in the reach 2 area have oscillating results over time, meaning that the final solution 365 

might slightly differ from one simulation to another. The observation point used in this 366 

reach was carefully selected, ensuring that the instabilities in the point’s solution were 367 

limited to minor variations. It is suggested that the additional observation values 368 

supplied in reach 2 were still affected by the instabilities met in the area, causing the 369 

parameter overestimation. Gonzalez (2016) also denoted some numerical instabilities in 370 

the modelled results. 371 

Next, a sensitivity study is conducted by introducing an error in the measured values to 372 

explore the effects of using erroneous measurements during the calibration process. In 373 

the first calibration series, the error is embedded in the measured water depth of each 374 

observation point, and the calibration process is solely based on these values to 375 

approximate the parameter values. In the second calibration series, the measured water 376 

velocities are added to the observation points, without any errors. In the third series, 377 

the input model flow is varied and no error is introduced in the measured water depths 378 

or velocities. 379 

3.3  Sensitivity analysis: water depth only 380 

In the case where the error is introduced in the measured water depths and the 381 

calibration process relies on these values, the repercussions of the calibration error, 382 
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presented in figure 13, are distributed in a linear fashion. From the previous calibration, 383 

we know that when five observation points containing measured water depths are 384 

supplied, the calibration results are almost perfect. The introduction of errors in the 385 

measured values raises the relative differences by a magnitude that depends on the 386 

surrounding topography of the reach. Portions of the river with floodplains or larger 387 

sections will suffer from more error, especially when the error overestimates the 388 

measured water depth, as it will require a higher friction coefficient to match the said 389 

value. Reach 1 and 2 suffer the most from the error introduction since they are the 390 

portions of the river with the steepest riverbed slopes and have more floodplains. Reach 391 

3 is less affected since the channel is located in a much narrower area surrounded by 392 

steep hills. 393 

3.4 Sensitivity analysis: water depth and speed 394 

This calibration series is executed in the same manner as that of the previous one, with 395 

the additions of measured water velocities to the observation points. No error is 396 

introduced in these additional values. As figure 14 demonstrates, the relative 397 

differences of the calibrated values are lower than those obtained in the previous series. 398 

In this case, the maximum difference obtained is 20%, compared to 57% in the previous 399 

situation. The differences between each parameter in the individual runs of this series 400 

are less scattered, resulting in a flatter graphical display. 401 

The most significant drop in relative difference between this series and the previous is 402 

recorded in reach 1, where the maximum recorded value drops down from a range of 403 
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15% to 47% to an average of 2%. The considerable reduction in relative error in this 404 

reach, which was previously highly sensitive to water depth variations, is the result of 405 

PEST adjusting the calibration parameter by prioritising the measured water velocities 406 

rather than the erroneous water depths. The results show that reaches that are more 407 

oriented toward fitting the measured water velocities rather than the water depths 408 

have the lowest relative error for the resulting calibrated parameter. This is shown in 409 

figure 15, where calibrated parameters with a better fit towards measured water depths 410 

(low relative difference between measured and calculated water depths) are more likely 411 

to be miscalibrated. 412 

3.5 Sensitivity analysis: discharge 413 

The next series of calibrations was carried out by introducing an error in the model’s 414 

input flow. Both the measured water depths and velocities were used in the calibration 415 

process. Figure 16 shows the results of this series. The left side of the graph shows a 416 

linear relation between error induced in the model’s input flow and error in the 417 

calibration parameter. The right portion of the graph presents a much more erratic 418 

relation with the flow augmentation.  419 

Again, individual calibration runs that resulted in an accurate match between measured 420 

and calculated water velocities at the expense of matching the measured water depths 421 

are more likely to have more accurate results with the calibration of the Manning 422 

coefficient. Figure 17 shows the distribution of the relative error between the 423 

calibration parameters and the relative error between the observed and simulated 424 
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water depth values and water velocity values – the relative errors of water velocities are 425 

summed. The Manning-water depth relation is much more concentrated on the left side 426 

of the graph, with a large variation in the relative errors of the Manning coefficient. This 427 

shows that when the calibration process adjusts the Manning coefficients, with a 428 

tendency to match the measured water depth rather than the water velocities, the 429 

calibration results are somehow more unpredictable.  430 

4 Conclusion 431 

This study presents the development of a tool combining PEST, an automatic calibration 432 

program, with the hydraulic model SRH-2D. The tool serves as an easy-to-use set of 433 

forms that can provide a rapid and functional linkage of a model with the automatic 434 

calibration tool. The amount of information required by the user and the user’s 435 

interaction with the tool are minimized to provide a rapid preparation of the calibration 436 

process for the project at hand.  437 

The tool was applied to the Ha! Ha! river model based on the post-flooding event of 438 

1996, which drastically changed its morphology. The model comprised five reaches, 439 

each represented by a Manning roughness coefficient. An original set of parameters was 440 

used to generate observation values that were then used for multiple calibration series 441 

conducted to assess the effect of different scenarios on the calibration results. The 442 

positions, number and content of the observation points varied in the scenarios to 443 

establish the minimal calibration conditions and common guidelines for the usage of the 444 

tool. 445 
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The first series of calibrations used a growing number of observation points containing 446 

the measured water depth until each section was supplied with one observation point. 447 

The calibration results were optimal when one observation point was present for every 448 

reach of the model. Reaches without observation points led to miscalibrated 449 

parameters that negatively influenced the calibration of the upstream parameter. This 450 

negative effect on the upstream reach could be corrected by using observation points 451 

that are as far away as possible from the miscalibrated reach. 452 

The results from another calibration series, where the measured water velocities were 453 

added to the observation points, showed that fewer observation points are required to 454 

yield satisfactory calibration results. The use of water velocities in the calibration 455 

process, combined with the water depths, indeed proved to be much more effective 456 

when estimating parameter values. Moreover, the additional information significantly 457 

reduced the calibration error when slight errors were introduced in the measure water 458 

depths. 459 

A sensitivity analysis also showed that parameters that were calibrated by providing a 460 

better fit between measured and modelled water velocities presented better results. 461 

Indeed, parameters accentuating the concordance of water depths displayed a wide 462 

range of errors compared to velocities based on parameters that had a more predictable 463 

outcome regarding the calibration error. 464 

It is suggested that the automatic aspect of the tool should be used to address the 465 

question of uncertainty and equifinality associated with the parameter estimation 466 
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obtained through the calibration process. Additional scenarios should be tested to 467 

explore the continuity of the model performance or the continuity of the parameter 468 

estimation when the following calibration conditions are changed: parameter starting 469 

values, parameter range, observation values disposition, etc. Additionally, the 470 

calibration process should be revisited using different performance criteria based on a 471 

global evaluation of the modelled results or a subdomain measurement of performance. 472 

Pappenbergeret al. (2007) showed that the way of evaluating the model performance in 473 

the calibration process (i.e., objective function) has an impact on the results at different 474 

scales (local or global). Precaution must also be taken when assessing the calibration 475 

process as equifinality can be encountered when multiple sets of parameters may 476 

satisfy the fitting of the observation data (Beven & Freer, 2001; Pappenberger et al., 477 

2005). 478 

Considering the positive results obtained using the current build of O.P.P.S, further work 479 

should be done to include the sediment transport module of SRH-2D in the automatic 480 

calibration process. As of now, PEST does not include the calibration of discontinuous 481 

parameters, which could possibly cause problems considering that sediment transport 482 

parameters include integer-like input values. In this case, the calibration could be 483 

executed in two consecutive motions: the first would calibrate the continuous 484 

parameters; the second, using the calibration results of the continuous parameters, 485 

could iterate through a user-selected range of discontinuous parameters, selecting the 486 

set of parameters giving the best fit.  487 
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Figures Captions 566 

Fig  O.P.P.S. flow chart 567 

Fig 2 Ha!-Ha! river map and model overview 568 

Fig 3 Calibration results using water depths - 2 observation points 569 

Fig 4 Calibration results using water depths - 3 observation points 570 

Fig 5 Calibration results using water depths - 4 observation points 571 

Fig 6 Calibration results using water depths - 5 observation points 572 

Fig 7 Overall water depths differences between original values and calibrated results 573 

using 5 observation points 574 

Fig 8 Calibration results using water depths and water velocities - 2 observation points 575 

Fig 9 Calibration results using water depths and water velocities - 3 observation points 576 

Fig 10 Calibration results using water depths and water velocities - 4 observation points 577 

Fig 11 Calibration results using water depths and water velocities - 5 observation points 578 

Fig 12 Overall water depths differences between original values and calibrated results 579 

using 5 observation points containing water depths and velocities 580 

Fig 13 Calibration sensitivity against measured water depths only 581 

Fig 14 Calibration sensitivity against measured water depths with additional information 582 

to the observation points 583 
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Fig 15 Calibration error distribution of calculated water depth error and the summed 584 

error of calculated water velocities 585 

Fig 16 Calibration sensitivity against model input flow using measured water depth and 586 

velocities 587 

Fig 17 Calibration error distribution of calculated water depth error and the summed 588 

error of calculated water velocities 589 
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Tables  591 

Table 1 Original values of the Manning coefficient and observation values 592 

Reach 
number 

Manning’s 
coefficient 

original values 

Observation point values 

Water 
depth 
(m) 

Velocity 
X (m/s) 

Velocity 
Y (m/s) 

Velocity 
magnitude 

(m/s) 

Reach 1 0.02 1.416 1.146 0.941 1.481 

Reach 2 0.028 2.786 -1.231 0.902 1.528 

Reach 3 0.036 3.551 -0.559 0.526 0.769 

Reach 4 0.026 3.463 -0.28 0.537 0.605 

Reach 5 0.032 3.222 -0.215 0.367 0.425 
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 599 
Fig 7 Overall water depths differences between original values and calibrated results 600 

using 5 observation points 601 
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 604 
Fig 12 Overall water depths differences between original values and calibrated results 605 

using 5 observation points containing water depths and velocities 606 
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 611 
Fig 15 Calibration error distribution of calculated water depth error and the summed 612 

error of calculated water velocities 613 

 614 

 615 
 616 
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 617 
Fig 17 Calibration error distribution of calculated water depth error and the summed 618 

error of calculated water velocities 619 
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