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RÉSUMÉ

Les coques coniques sont utilisées dans la conception d’une variété de composants de

véhicules aérospatiaux, allant des réservoirs de carburant externes des avions de chasse

aux lanceurs de satellites. Par conséquent, l’analyse de leurs comportements dynamique

et aéroélastique est de grande importance pour la conception de ces structures. Depuis

que des études expérimentales ont rapporté que le flottement supersonique se produit à

des amplitudes ayant le même ordre de grandeur que l’épaisseur de la coque, les théories

géométriques non-linéaires des coques sont de plus en plus utilisées. Ces dernières per-

mettent une meilleure compréhension du phénomène et des résultats plus précis. Plusieurs

théories des coques basées sur différentes hypothèses simplificatrices de la cinématique

non linéaire ont été développées au cours des dernières décennies, y compris les théories

des coques de Donnell, de Sanders et de Novozhilov. Ces théories se distinguent prin-

cipalement par leurs différentes hypothèses dans le développement des relations de dé-

placements à la surface moyenne de la coque. La théorie de Donnell a introduit l’effet non

linéaire du second ordre du déplacement normal à la surface moyenne lors du développe-

ment de la déformation dans le plan. La théorie de Sanders utilise la forme exacte des

équations de « petites déformations » pour les déformations membranaires et un en-

semble d’équations linéarisées pour les changements des courbures et des torsions de

la surface de référence. Plus récemment, Nemeth a développé une théorie qui utilise les

relations exactes non linéaires de déformation-déplacement avec des hypothèses de ro-

tations modérées et de petites déformations. Cette théorie peut reproduire la théorie de

Donnell et celle de Sanders en tant que cas particuliers, tout en offrant la possibilité de

mener une étude comparative entre les prédictions de ces deux théories. Les relations

déformation-déplacement peuvent être utilisées pour obtenir les équations d’équilibre

et du mouvement des coques. La discrétisation de ces équations est faite en utilisant la

méthode des éléments finis (MEF). Un avantage attrayant de cette méthode est sa flexi-

bilité supérieure dans la gestion de différentes conditions aux limites. L’objectif de cette

thèse est d’étudier les vibrations non linéaires et le flottement supersonique des coques
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coniques tronquées. Une formulation par la MEF hybride est d’abord développée sur

la base de la solution exacte de la théorie améliorée de la première approximation de

Sanders pour les coquilles minces. Par la suite, les équations non linéaires du mouve-

ment des coques ont été obtenues en utilisant la méthode des coordonnées généralisées

et des théories de coques non linéaires. Les coordonnées généralisées ont été choisies en

fonction du déplacement nodaux de la coque. L’interaction fluide-structure induite par

l’écoulement supersonique a été modélisée en utilisant la théorie de piston. Les effets

de raidissement dus aux charges axiales et à la pression interne ont également été mod-

élisés en les exprimant en termes des déplacements nodaux. Pour obtenir la réponse non

linéaire de la vibration de la coque sans fluide, un algorithme a été développé basé sur la

méthode de réponse harmonique modifiée et sur l’approche de Galerkin dans le domaine

temporel. Cet algorithme peut fournir la fréquence de vibration non linéaire en fonction

de la variation de l’amplitude de vibration. Une version améliorée du ce même algorithme

a également été utilisée pour obtenir la réponse de flottement supersonique. Le modèle

développé et l’outil numérique ont la capacité d’effectuer les analyses suivantes:

i) Prédiction des vibrations naturelles linéaires des coques coniques tronquées sous

pression et/ou sous charges axiales. Différents schémas de conditions aux limites ont pu

être étudiés et les prédictions obtenues sont en bon accord avec les résultats expérimen-

taux rapportés dans la littérature. ii) Prédiction du début de divergence et du flottement

linéaire des coques coniques tronquées sous pression et/ou sous charges axiales pour dif-

férentes conditions aux limites. Les prédictions de cette méthode ont été validées positive-

ment par des expériences sélectionnées dans la littérature. Les réservoirs sous pression

se sont révélés déstabilisés à des pressions dynamiques plus élevées. iii) Prédiction des

vibrations non linéaires des coques coniques tronquées à vide prédite par les théories de

Donnell, Sanders et Nemeth. La réponse axisymétrique des coques coniques tronquées

étudiées a démontré un comportement de durcissement selon des courbes de l’épine dor-

sale. Dans les cas étudiés, bien que de légères différences entre la force des prédictions de

la cinématique non linéaire de Donnell et deux autres théories aient pu être identifiées,

il a été constaté que les différences entre les prédictions des théories de Sanders et de

Nemeth sont négligeables. Par conséquent, en raison de son coût de calcul moins cher, la
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théorie de Sanders peut être utilisée pour les classes de coques étudiées dans les travaux en

cours. iv) Prédiction du comportement de flottement supersonique non linéaire de cônes

tronqués sous pression et/ou sous charges axiales pour les trois théories non linéaires

susmentionnées. Pour les cas étudiés, la cinématique non linéaire a diminué la stabilité

de la coque lorsqu’elle est exposée au champ d’écoulement supersonique. Les vibrations

non linéaires et le flottement ont été validés par les cas rapportés de coques cylindriques,

qui ont été simulées via un cône tronqué avec un angle de cône très petit. L’application

de la MEF permet la modélisation de différentes conditions aux limites et géométries des

coques coniques tronquées. Ce programme, en comparaison avec les logiciels commerci-

aux, est moins coûteux en termes de calcul et il capable de modéliser comportement non

linéaire qui reste une tâche difficile pour beaucoup de logiciel.
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ABSTRACT

Conical shells have important applications in the design of a variety of aerospace vehicles,

ranging from external fuel tanks of fighter jets to satellite launch vehicles. Hence, vibra-

tional and aeroelastic analyses are important criteria in the design of these structures.

Since experimental studies have reported that supersonic flutter occurs at amplitudes

with the same order of magnitude as the thickness of the shell, geometrically nonlinear

shell theories can provide a better and more accurate understanding of these problems.

Different shell theories with different levels of approximation and simplifying assump-

tions for nonlinear kinematics have been developed in past decades, including Donnell’s,

Sanders’ and Novozhilov’s shell theories. The differences between these theories mostly

can be attributed to their different assumptions in the development of the strain-displacement

relationship on the middle surface of the shell. Donnell’s theory introduced the second-

order nonlinear effect of normal-to-surface displacement in developing the in-plane strain.

Sanders’ theory employed the exact form of the “small-strain” equations for the mem-

brane strains and a set of linearized equations for the changes in the reference-surface

curvature and torsions. More recently, Nemeth developed a theory that employed the

exact nonlinear strain-displacement relations with presumptions of moderate rotations

and small strains. This theory can reproduce Donnell’s and Sanders’ theories as an ex-

plicit subset while providing an opportunity to conduct a comparative study between the

predictions of those theories. The strain-displacement relationships can be employed to

obtain the equilibrium and equations of motion for shells.One important family of dis-

cretization of these equations is the finite elements method (FEM). One attractive advan-

tage of the FEM is its superior flexibility in handling different boundary conditions. The

objective of this thesis is to investigate the nonlinear vibration and supersonic flutter of

truncated conical shells.

In this thesis, a hybrid FEM formulation is first developed based on the exact solution of

Sanders’ improved first-approximation theory for thin shells. Then, utilizing the general-

ized coordinates method and nonlinear shell theories, the nonlinear equations of motion



ix

for shells were obtained. The generalized coordinates were chosen in terms of the nodal

displacement of the shell. Fluid structure interaction as a result of exposure to the super-

sonic flow was modeled using the piston theory. The effects of axial loads and internal

pressure were also modeled in terms of nodal displacements. To obtain the nonlinear

response of the shell’s vibration in vacuo, an algorithm was developed based on the mod-

ified harmonic response method that employed Galerkin’s approach in the time domain.

This algorithm can provide the nonlinear vibration frequency as a result of the variation

in vibration amplitude. An improved version of the same algorithm was also used to ob-

tain the supersonic flutter response. The developed model and numerical tool have the

capability to perform the following analyses:

i) Prediction of linear natural vibration of pressurized truncated conical shells under ax-

ial loads. Different schemes for boundary conditions could be studied and the predictions

found to be in good accordance with the experimental results reported in literature.

ii) Prediction of linear flutter onset and divergence of pressurized truncated conical shells

under axial loads under different boundary conditions. The predictions of this method

were validated against selected experiments in the literature with good agreement. The

pressurized shells were found to be destabilized at higher dynamic pressures.

iii) Prediction of nonlinear vibration of truncated conical shells in vacuo predicted by

Donnell’s, Sanders’ and Nemeth’s theories. The axisymmetric response of the studied

truncated conical shells demonstrated a hardening behavior in the backbone curves. In

the studied cases, while slight differences between the strength of predictions of Don-

nell’s nonlinear kinematics and two other theories could be identified, it was found that

the differences between the predictions of Sanders’ and Nemeth’s theories were negligi-

ble. Hence, due to its less expensive computational cost, Sanders’ theory can be used for

the classes of shells investigated in the current work.

iv) Prediction of nonlinear supersonic flutter behavior of pressurized truncated conical

shells under axial loads for three selected nonlinear theories. For the studied cases, the

nonlinear kinematics decreased the shell’s stability when it was exposed to the supersonic

flow field. Both nonlinear vibration and flutter were validated against reported cases of
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cylindrical shells, which were simulated via a truncated cone with a very small cone an-

gle. The developed FEM application can be used to model different boundary conditions

and geometries of truncated conical shells.

Both nonlinear vibration and flutter were validated against reported cases of cylindrical

shells which were simulated via a truncated cone with a very small cone angle. The devel-

oped FEM application can be used to model different boundary conditions and geometries

of truncated conical shells. This program in comparison to general application commer-

cial applications is computationally less expensive and can model nonlinear behaviors

that are difficult to model with them.
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CHAPTER 1 INTRODUCTION

1.1 Overview

The primary objective of any structural design analysis is to predict and avoid catas-

trophic failure of the structure and subsequently achieve a reliable structure at the lowest

possible weight. Shells, particularly, shells of revolution, are inseparable structural com-

ponents of aerospace vehicles, and they can be found in various places from the external

fuel tanks of fighter jets to the propellant tanks of monstrous satellite launch vehicles [1]

[2].

In the past decades, problems such as the linear behavior and response of conical shell

structures in relation to small amplitude vibration, linear buckling and linear flutter have

been relatively well-studied[3]. But other phenomena, including large amplitude vibra-

tion, post-buckling behavior and flutter have been studied less often since they require

more elaborate mathematical models that take into account the geometrical nonlinearity.

This is due to the fact that the amplitude of deflections in those cases, especially in flutter,

is closer or exceeds the shell thickness that in itself breaches the simplifying assumptions

that were used in developing the linear models[4].

As will be shown in the literature review, in most of the analytical and semi-analytical

models that have been developed for nonlinear analysis of truncated conical shells, sev-

eral aspects of the nonlinear problem, including developing a method that can explicitly

handle different boundary conditions, have been left unaddressed. This can be associated

with the fact that the majority of previous works utilized the Galerkin method in conjunc-

tion with Airy stress function to obtain the dynamic model of the system. The finite ele-

ment method (FEM) could alleviate some of those issues, but conventional, commercially

available FEM applications require heavy computational efforts and are unable to accu-

rately model some aspects of these problems, including the fluid-structure interactions.

The hybrid finite element method proposed in the current study attempts to provide a

fast and precise approach to analyze the nonlinear vibration and flutter of conical shells.
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1.2 Nonlinear Kinematics

A shell is a solid body or medium bounded by two curved surfaces, where the distance be-

tween the surfaces is small in comparison with other body dimensions. The locus of points

that are placed at equal distances from these two surfaces is known as the middle surface

or base surface of the shell. It is common to treat the elastic body as a two-dimensional

medium with a base surface and relate the strain and stress fields of a point at a certain

distance from the base surface to the values of the corresponding points on the base sur-

face. The kinematics defines the relationships between the displacements and strains on

the middle surface and, in the case of nonlinear expressions, it is called geometrical non-

linearities. The following theories were investigated and compared at different stages of

the current study:

• Kirchhoff-Love theory: This theory assumes that the normal lines of materials to the

middle surface remain normal and straight after deformation and that strains follow

linear relationships with the displacements. The specific derivation of Sanders from

Love’s assumption that is known as “best first approximation”[5]" was employed in

the current study.

• Donnell’s nonlinear theory: In this theory, the in-plane displacements are infinites-

imal and the transverse deformations are assumed to be in the same order as the

shell’s thickness. Moreover, in-plane inertia was assumed to be negligible, and non-

linear terms were kept only in the transverse direction [6].

• Sanders-Koiter nonlinear theory: This theory was developed based on the assump-

tion of small strains and moderately small rotations, therefore, the nonlinearities

for both the in-plane displacements and transverse displacements were introduced,

but the changes in curvature and torsion on the middle surface were assumed to

be linear. The Sanders-Koiter theory gives accurate results for vibration amplitudes

significantly larger than the shell thickness[7].

• Nemeth’s nonlinear theory: This theory provides Donnell’s and Sanders’ theories as

subsets. Nemeth’s derivation does not contain any shell-thinness approximations

involving the ratio of the maximum thickness to the minimum radius of curvature.
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Therefore, the strain-displacement relations are exact within the presumptions of

“small” strains and “moderate” rotations[8].

1.3 Dynamic Model

The dynamic model of shell structures subjected to supersonic flows needs to take into

account the mass, linear and nonlinear elasticity, supersonic flow pressure field and the

initial stiffening due to axial loads and internal pressurization. The common practice that

is widely used in literature is to employ the virtual works method to obtain the govern-

ing equilibrium equations of the shell. This yields a set of partial differential equations

that presents the variation of displacement of any point on the shell based on geometric

and elastic properties. These equations need to be discretized for the solution. The com-

mon practices for discretization include the Ritz method, the semi-analytical Airy stress

function-Galerkin method and the finite element method. Then Hamilton’s principle can

be used to obtain the Lagrangian equations of motion in terms of generalized coordinates.

These generalized coordinates represent Galerkin’s or FEM’s degrees of freedom. The

pressure field of supersonic flow is modeled using the linear piston theory, taking into

account the correction terms for curvature. Then, using the common conventions of FEM,

this pressure field is expressed in terms of FEM nodal displacements. The same approach

is taken to express the initial stiffening effect as a result of internal pressurization and

axial loads. The obtained equations of motion describe the dynamic behavior of the shell

in the form of a system of nonlinear, ordinary differential equations in the time domain.

These equations take the form of multivariate polynomials up to the third degree of the

generalized coordinates.

While the semi-analytical Airy stress function-Galerkin method seems to be the most

widely used method of discretization, it offers limited choices for the boundary condi-

tions. On the other hand, the FEM can provide more flexible options for the constraints.

This leads to the capability to handle a wider range of problems.
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1.4 Free Vibration

One important aspect of the shell’s dynamic behavior is linear and nonlinear free vibra-

tion. The effect of geometrical nonlinearities becomes significant for large amplitude vi-

brations, usually those at the same order or larger than the shell thickness. Given the

general dynamic model that was described in the previous section, the associated math-

ematical model for free vibrations can be obtained by nullifying terms that are related

to flowing fluids, such as supersonic pressure field. If, from the multivariate polynomial

equations of the dynamic model, all the monomials with powers greater than one are fur-

ther omitted, the linear model of the system can be obtained. Having this model and

assuming a periodic response, the linear free vibration frequencies can be calculated by

solving the associated eigenvalue problem[9].

The nonlinear vibration is more focused on the nature of change of behavior due to the

presence of geometrical nonlinearities—in other words, whether the structure demon-

strates softening or hardening behavior. Different methods are employed to resolve and

analyze nonlinear behavior, including numerical continuation such as pseudo arc length,

variations of harmonic response and point collocation. Results are usually provided in the

form of backbone curves that show the deviation of nonlinear vibration frequency from

the linear one at different amplitudes of vibration[3].

1.5 Flutter

Flutter or self-incitement vibration due to fluid-structure interactions is one of the most

important failure modes of high-speed aerospace structures, and the earliest observations

of flutter in supersonic speeds goes back to the V-2 rocket[4]. Though flutter in cylindri-

cal shells and flat panels that are exposed to supersonic axial flows has been the subject

of numerous studies in past decades, as will be shown in the literature review, there is

a limited number of studies on flutter in conical shells. Moreover, even in the existing

studies on flutter in panels and cylindrical shells, very few studies have used nonlinear

theories in their kinematics models[4].

Different aerodynamic models can be found in scientific literature for different flow regimes
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in terms of Mach number and flow-wall angle of interaction. While Newton’s impact the-

ory and improved impact theory are methods of choice for hypersonic flows at moderate

and high angles of attack, the piston theory has been used successfully for supersonic

aeroelastic studies. The piston theory, which was introduced in the late 1950s by Ash-

ley [10] , uses the analogy of a moving piston inside a tube to predict the aerodynamic

forces on a surface in supersonic flows. The underlying assumption is that a deflection

on a surface that is subjected to supersonic flows makes the free stream form a small an-

gle at the corner of the deflection. Depending on the size of this angle, the presence of

that deflection creates either an oblique shock (high pressure) or an expansion wave (low

pressure). But it should be noted that, the changes of the speed in the direction of the

free stream are negligible compared with its gradient in the normal direction to the free

stream (and the surface). Therefore, the gradients of flow parameters in the free stream

direction follow the same pattern in the normal direction. From these two facts, it can be

stated that in unsteady supersonic flows, a flow column normal to the free stream moves

along the direction of the free stream while it keeps its unsteady motion normal to the

surface. Considering this analogy, the surface pressure ratio to the free stream static pres-

sure can be estimated using the concept of one-dimensional wave propagation in a tube.

To improve the accuracy of the original piston theory that was developed for flat panels,

[11] an improved theory was developed that takes into account the effect of curvature in

cylindrical shells that can also be applied to the case of conical shells.
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CHAPTER 2 LITERATURE REVIEW

The aeroelastic stability of shells and plates in flow regimes with Mach numbers greater

than one has been the subject of several studies in past decades. While several studies

can be found in the literature on the flutter characteristics of cylindrical shells, the num-

ber of articles on the supersonic flutter of conical shells is limited. Moreover, even in the

existing studies on the flutter of cylindrical shells, very few have employed geometrically

nonlinear or transversal shear deformation theories in their models. Employing nonlin-

ear shell theories is important since experimental studies have shown that the oscillation

amplitude of flutter has the same order of magnitude as the shell thickness [1].

Dixon and Hudson [2] studied the flutter, vibration and buckling of truncated orthotropic

thin conical shells with general boundary conditions at the edges. They employed the

Donnell type of nonlinear kinematics in conjunction with the modified first-order pis-

ton theory to model the structure behavior. An approximate solution using the Galerkin

method was employed to solve the governing equations [2] [3]. In a later study, they

compared different modes of structural instabilities of conical shells and argued that, for

shells subjected to static external pressure loads, divergence governed the design condi-

tions for small semi-cone angle values, flutter for moderate semi-cone angle values, and

buckling is the dominant phenomena in large semi-cone angles [4].

Miserentino and Dixon [5] expanded the works of Dixon and Hudson [2] and [4]) by per-

forming experimental studies on the vibration and flutter of thin-walled truncated or-

thotropic conical shells. The experimental results provided the variations of resonant fre-

quency with internal pressure and circumferential wave number at constant Mach num-

bers. The results were found to verify the theoretical works of Dixon and Hudson [2] for

thin shells with good accuracy [5].

The work of Ueda et al. [6] explored the theoretical and experimental aspects of super-

sonic flutter in conical shells. Donnell’s shell theory was used in conjunction with FEM

for modeling the problem. They stated that FEM was a powerful tool for panel flutter

analysis. Moreover, it was demonstrated during the experiment that, contrary to the the-
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oretical work, the flutter preceded the buckling of the shell.

Bismarck-Nasr and Costa Savio [7] developed a finite element method for supersonic flut-

ter of truncated conical shells. In that work, Novozhilov’s shell theory for thin shells was

employed to model elastic behavior. In the shell model, the in-plane inertia was pre-

served within kinetic energy formulations while the rotary inertia was neglected. The

aerodynamic loads were modeled using the first-order high Mach number piston theory.

A finite element formulation was derived and a solution using separation of variables was

presented. Results for minimum critical pressure and the associated circumferential wave

number were calculated and compared to the existing results in the literature. Based on

the results, it was argued that the curvature effect in modeling the aerodynamic loads

had little effect on the stability conditions [7]. Moreover, it was argued that neglecting

in-plane inertia in Donnell’s theory explained the small differences between their results

and those of Ueda et al. [6].

Fallon and Thornton [8] developed a numerical model for predicting the aerodynamic in-

stability with thermal pre-stress in general shells of revolution. They employed a classic

finite element using the Fourier series in circumferential direction and polynomials in the

meridian direction as displacement function. The aerodynamic loads were modeled using

the first-order piston theory along with a variation of Novozhilov’s nonlinear shell theory

as governing equations of the elastic shell [8].

Mason and Blotter [9] applied the finite element method to study the aeroelasticity of

truncated thin conical shells subjected to internal supersonic flows. The study employed

linear shell theory and used eigenvalues for stability analysis. An analytical finite element

formulation was developed and the variation in critical pressure versus chamber pressure

was presented. It has been stated that for the analyzed case studies, the engine chamber

pressure was always beneath the flutter critical pressure [9].

Pidaparti [10] developed a quadrilateral thin-shell finite element method for analyzing

the supersonic flutter of doubly curved composite shells. The presented quadrilateral

element had eight nodes and 48 degrees of freedom. The displacement functions were

chosen in the form of bi-cubic Hermitian polynomials and the classical lamination theory

(Love-Kirchhoff linear thin-shell theory) was employed for modeling the elastic behav-
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ior. First-order high Mach number piston theory was employed for modeling the aerody-

namic loads. Aeroelastic equations were derived using Hamilton’s principle for the non-

conservative elastic system. Eigenvalue analysis was performed to determine the critical

parameters using normal mode approach. Results for cylindrical and conical shells and

flat plates were compared to various existing analyses in the literature and showed good

agreement. The effects of various parameters, including orthotropy, fiber angle, flow an-

gle, circumferential wave number and semi-cone angle for conical shells on critical pres-

sure, were presented and discussed. Based on the results, it was argued that the fiber

angle and orthotropy impose significant effects on flutter boundaries for cylindrical and

conical shells and flat plates [10].

Kiiko and Nadzhafov [11] studied the flutter behavior of conical shells with small semi-

cone angles subjected to internal supersonic flow. Instead of the classic piston theory, a

new asymptotic approach was used to model the interactive effects of aerodynamic forces.

Shell elastic behavior was modeled through the Love-Kirchhoff linear theory. The author

argued that the newly developed aerodynamic model is more accurate at lower supersonic

Mach numbers [11].

Sabri and Lakis [12] studied the flutter behavior of partially filled truncated conical shells

in supersonic flows using a hybrid finite element method. Sanders’ linear thin-shell the-

ory was used for modeling the elastic behavior of the shell. The aerodynamic loads were

assumed to follow the first-order potential piston theory with correction terms for cur-

vature. The effects of stiffening due to pressurization was also considered in this study.

The potential flow theory was used to derive the governing equation of the internal hy-

drodynamic pressure field. The shell was assumed to be made of isotropic materials. An

exact solution was developed for shell equilibrium equations and that solution was used

for developing a hybrid finite element method. Effects of boundary conditions, internal

pressure, semi-cone angle, length-to-radius ratio and filling ratio were investigated to

determine the shell’s stability. It was concluded in this work that conical shells are sus-

ceptible to coupled mode flutter in the first and second axial modes. Moreover, it was

stated that a lower semi-cone angle decreases the critical dynamic pressure [13][12].

Mahmoudkhani et al. [14]studied the aero-thermoelastic stability of FGM-truncated con-
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ical shells in supersonic flows. The Donnell type of nonlinearities was introduced in the

shell strain-displacement relationships. Hamilton’s principle was used to derive the shell

equation of motion. The shell’s temperature-dependent elastic properties were assumed

to follow the rule of mixture based on the power-law function of compositional profile of

the functionally graded material. The aerodynamic pressure field was assumed to follow

the linear piston theory. A solution based on power series in conjunction with the Galerkin

method was developed to solve the linearized equilibrium equations, taking into account

the aerodynamic and thermal loadings. The initial stresses and displacements due to the

thermal and aerodynamic loading of the aforementioned solution was incorporated into

the aeroelastic equations. The eigenvalue analysis was used to obtain the critical param-

eters. Effects of the material’s compositional profile, temperature gradient, semi-cone

angle were investigated to check the shell’s stability. Among the conclusions, it was stated

that the compositional profile of FGM material has a significant effect on the stability of

the shell. In addition, a higher temperature gradient between the outer and inner surface

of the shell was found to affect the shell’s stability greatly [14].

Davar and Shokrollahi [15] provided an analysis on the supersonic flutter of FGM con-

ical shells with clamped and simply supported boundary conditions. First-order shear

deformation theory was employed in conjunction with the classical Love-Kirchhoff lin-

ear in-plane kinematics. Aerodynamic modeling in this study was based on the linear

first-order piston theory. The composition profile of the material was chosen to have a

power law distribution for volumetric fractions and the elastic properties were calculated

from that distribution. The displacements and rotations were assumed to have a form of

trigonometric series and the Galerkin method was used to solve the governing equations.

Critical flutter parameters were determined using eigenvalue analysis. The verification of

the solution was performed by comparing it to the existing results in scientific literature.

The effects of material compositional profile, semi-cone angle, thickness and radius-to-

length ratio on the critical aerodynamic pressure were studied. Based on the obtained

results, it was concluded that changing the boundary conditions from simply supported

to clamped increases all the frequencies, but there is no general trend in the critical aero-

dynamic pressure. Moreover, it was argued that the effect of thickness on the critical
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aerodynamic pressure is several times greater than the similar effect on the frequencies

[15].

Zhang et al. [16] employed the Love-Kirchhoff linear thin-shell theory to study the flutter

behavior of conical shells subjected to internal supersonic flow. The quasi-steady linear

piston theory with correction terms for curvature was used for modeling the aerodynamic

loads. The truncated conical shell was assumed to be clamped at the smaller end and free

at the larger diameter. The differential quadrature method was employed to solve the gov-

erning equations, and an eigenvalue analysis was utilized to identify the effects of various

parameters, including wave number, cone angle, radius-to-thickness ratio and length-to-

radius ratio, on the critical internal pressure. Based on the results, it was argued that, in

the studied case, increasing the semi-cone angle increases the flutter resistance to α = 30◦.

Beyond that value, an opposite behavior was observed. On the other hand, increasing the

length-to-radius ratio generally increases the flutter resistance [16].

Vasilev [17] presented a new formulation for flutter analysis of truncated conical shells

exposed to supersonic flows. The shell was assumed to be made of isotropic materials and

a linear type of kinematics (Love-Kirchhoff theory) was employed to define the shell’s

elastic behavior. Instead of using the piston theory, a quasi-static pressure formulation

was developed, taking into account the added mass, the rotary inertia and the forces in

the mid-plane. The equations were defined using a spherical coordinate system, and an

asymptotic approach was used to solve the dimensionless governing equations. An eigen-

value analysis over the roots of the dynamic system was utilized to identify the flutter

conditions. Results provided the critical Mach number for a range of height-to-radius ra-

tios, cone angles and shell thicknesses. Based on the results, the authors argued that the

linear piston theory significantly overestimates the critical dynamic pressure at low Mach

numbers [17].

Yang et al. [18] investigated the supersonic flutter in FGM truncated conical shells. They

employed first-order shear deformation theory with Love-Kirchhoff assumptions for the

elastic model of the shell. A power-law equation was used for defining the FGM ma-

terial’s compositional profile and elastic properties. The aerodynamic loads were mod-

eled by first-order quasi-static linear piston theory. The shell was assumed to be simply
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supported at both ends and the Fourier series was used to obtain the solution. A direct

Runge-Kutta integration was used to investigate the periodic and chaotic motion of the

shell, considering the presence of a steady-state, constant temperature distribution. It

was shown that it is possible to control the periodic and chaotic instabilities through vari-

ation of the material’s compositional profile [18].

Mehri et al. [19] studied the flutter characteristics of a functionally graded carbon nan-

otube reinforced composite (FGCNTRC) truncated conical shell under simultaneous ac-

tions of a hydrostatic pressure and yawed supersonic airflow. They employed Novozhilov’s

nonlinear shell theory for the elastic model and corrected the piston theory for the effect

of curvature as the aerodynamics mode. The effects of boundary conditions, semi-vertex

angle, distribution and volume fraction of CNT, Mach number and airflow yaw angle on

the stability of the shell were investigated. The differential quadrature method was used

to obtain a numerical solution. Among the conclusions, it was stated that increasing the

Mach number significantly decreases the critical free stream static pressure due to in-

creased aerodynamic load. In a follow-up study, Mehri et al. [20] employed the harmonic

differential quadrature method (HDQM) to solve the nonlinear equations of motion of

truncated conical curved panels. It was demonstrated that the FGM composition plays

a pivotal role in the flutter critical pressure and buckling critical load, while the critical

circumferential mode number is not affected by it.

Hao et al. [21] studied the supersonic flutter of FGM shallow conical panels under steady

thermal stress. They employed the linear piston theory and Donnell’s type of kinematic

nonlinearities in combination with first-order shear deformation theory in their model.

Using the Galerkin method and the Hamilton principle, the nonlinear flutter problem

was solved using a combination of numerical continuation and the Newton-Raphson al-

gorithm. They concluded that aerodynamic dampening can stabilize the system by con-

suming some energy. In another study,Hao et al. [22] employed the same Donnell-type

nonlinear kinematics in time-domain simulation to identify the three stages of FGM con-

ical shells subjected to supersonic flows: vibration, limit cycle oscillation, and chaotic

motion.
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CHAPTER 3 PROJECT DESCRIPTION

3.1 Motivations and Objective

As it is shown in the literature review, few studies have addressed the problem of non-

linear vibration and supersonic flutter of truncated conical shells. This is an important

problem in the design of high speed aerospace vehicles. Moreover, the differences between

the vibration predictions of different nonlinear shell theories have not received sufficient

attention. This is important, since theories with simplifying assumptions are usually less

expensive in terms of development and computations, but the question of their relative

accuracy compared to more precise theories has not been sufficiently explored. In addi-

tion, the common approach in the development of equations of motion usually takes the

expanded non-matrix form that dramatically increases the efforts required for developing

and programming the model. Hence, the objectives of this thesis are as follows:

• To develop a concise and methodical mathematical framework to express third-

order nonlinear elastic systems such as thin shells in matrix form.

• To develop the Lagrangian nonlinear equation for the vibration of shells based on

Donnell’s, Sanders’ and Nemeth’s theories using the hybrid finite element method.

• To investigate the linear and nonlinear vibrations of truncated conical shells and the

effects of geometrical and boundary conditions using the developed tool.

• To provide a comparative study on the predictions of nonlinear vibration using dif-

ferent nonlinear theories for selected cases.

• To develop a hybrid FEM solution for linear and nonlinear flutter of truncated con-

ical shells, taking into account the effects of pressurization and axial loads.

• To provide characteristics of linear and nonlinear flutter of truncated conical shells

in supersonic flows.
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3.2 Structure of thesis

This dissertation composed of six chapters:

• Chapter 1 presents the introduction and explores the general aspect and the impor-

tance of the problem.

• Chapter 2 provides the literature review and summarizes the work that has been

done on the subject.

• Chapter 3 defines the objectives and the structure of this thesis.

• Chapter 4 contains the first article that provides a generic mathematical framework

for formulating third-order nonlinear kinematics of elastic systems in a concise ma-

trix form.

• Chapter 5 contains the second article on the nonlinear vibration of truncated conical

shells using three different theories, Donnell’s, Sanders’ and Nemeth’s.

• Chapter 6 contains the third article on the nonlinear flutter of truncated conical

shells.

• Chapter 7 provides a brief discussion on the findings and results.

• Chapter 8 provides the summary of the current work and possible areas for future

research.

This work includes the presented introduction, literature review, project description, and

three articles, followed by the conclusion and references.

3.3 Contributions

During the course of this Ph.D. study, a technical report that contains the elaborate de-

tails of the developed nonlinear mathematical model for truncated conical shells was first

published:

M. Bakhtiari, A. A. LAKIS, and Y. Kerboua, “Nonlinear vibration of truncated coni-

cal shells: Donnell, Sanders and Nemeth theories,” EPM-RT-2018-01, 2018.

This was necessary because the limited length of typical journal articles could not capture

all the required details. The above technical report is open source and available online.

https://publications.polymtl.ca/3011/
https://publications.polymtl.ca/3011/
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Some of the essential parts of the current work, such as stress resultants, linear equilib-

rium equations, through-the-thickness elasticity coefficients and solution basic functions

are presented only in that report. Since that report was published independently and

there are overlapping contents with this thesis, it was not reproduced here.

The main component of the contribution of this work, includes the following articles that

were published or submitted during the course of this Ph.D study:

M. Bakhtiari, A. A. Lakis, and Y. Kerboua, “Derivatives of fourth order Kronecker

power systems with applications in nonlinear elasticity,” Applied Mathematics and

Computation, vol. 362, p. 124501, Dec. 2019.

M. Bakhtiari, A. A. Lakis, and Y. Kerboua, “Nonlinear vibration of truncated conical

shells: Donnell, Sanders and Nemeth theories,” International Journal of Nonlinear

Sciences and Numerical Simulation, 21.1 (2020): 83-97.

M. Bakhtiari, A. A. Lakis, and Y. Kerboua, “Nonlinear supersonic flutter of trun-

cated conical shells,” Journal of Mechanical Science and Technology 34 (2020): 1375-

1388.

https://doi.org/10.1016/j.amc.2019.06.015
https://doi.org/10.1016/j.amc.2019.06.015
https://doi.org/10.1016/j.amc.2019.06.015
https://doi.org/10.1515/ijnsns-2018-0377
https://doi.org/10.1515/ijnsns-2018-0377
https://doi.org/10.1515/ijnsns-2018-0377
https://doi.org/10.1007/s12206-020-0301-6
https://doi.org/10.1007/s12206-020-0301-6
https://doi.org/10.1007/s12206-020-0301-6
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CHAPTER 4 ARTICLE 1- DERIVATIVES OF FOURTH ORDER KRONECKER

POWER SYSTEMSWITH APPLICATIONS IN NONLINEAR ELASTICITY

Mehrdad Bakhtiari, Aouni A. Lakis, Youcef Kerboua

Applied Mathematics and Computation, vol. 362, p. 124501, Dec. 2019.

Abstract

A natural way to describe systems with polynomial nonlinearities is using the Kronecker

product. Particularly, third-order Kronecker power systems can express a wide range of

systems from electronic engineering to nonlinear elasticity. But such development (e.g.

equations of motions of elastic structures from nonlinear strain energy) requires standard

formulation for the derivative of the Kronecker power of vectors with respect to the same

vector. Such standard way cannot be found in literature. This paper presents a method

to obtain the derivatives of Kronecker powers of vectors with respect to itself up to a

power of four and also third-order Kronecker Power systems containing those terms in a

concise matrix form. The matrix expression of these systems provides new approach for

efficient numerical implementation, organized analysis and linearization. To demonstrate

the strength of this method, an example of application for a finite element nonlinear Euler

beam is also presented.

4.1 Introduction

Matrix calculus is a strong tool to develop concise mathematical models of complex sys-

tems. The general aspects and notations of various applicable problems such as "differen-

tiation conventions", "differentiation of matrix multiplication and Kronecker, Khatri-Rao

and Hadamard products", "unitary matrices and vectorization operators" are provided in

many works such as [1, 2, 3, 4, 5, 6, 7]. These mathematical derivations have been vastly

used in various fields of applied science and engineering ranging from econometrics to

mechanical engineering and system theory(e.g. [8, 9, 10]).

One problem of particular interest is the derivatives of a Kronecker power of vectors (and

https://doi.org/10.1016/j.amc.2019.06.015
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combinations of these with matrix multiplication). It has a wide range of applications

including developing equations of motion in nonlinear mechanics, elasticity, kinematics,

the Galerkin method and the finite element method. One natural way to express systems

with polynomial nonlinearities (such as those described above) is to employ the Kronecker

product:

[
MMM

]{
δ̈̈δ̈δ
}

+
[
K1K1K1

]{
δδδ
}

+
[
K2K2K2

]({
δδδ
}
⊗
{
δδδ
})

+
[
K2K2K2

]({
δδδ
}
⊗
{
δδδ
}
⊗
{
δδδ
})

+ · · · = 0 (4.1)

where ⊗ is the Kronecker product symbol and
[
MMM

]
and

[
KiKiKi

]
are accordingly mass and

stiffness matrices of the system.
{
δδδ
}

=
{
δ1 δ2 · · ·

}ᵀ
denote the degrees of freedom of

the system. This ensures organized handling of the interactions between degrees of free-

dom. For example in a two degrees of freedom system
{
δδδ
}
⊗
{
δδδ
}

=
{
δ2

1 δ1δ2 δ2δ1 δ2
2

}ᵀ
contains all the interactions in a mathematically well-organized form that are needed for

numerical implementation. But as will be shown, such development requires obtaining

derivatives of Kronecker powers with respect to a vector and derivatives of combined ma-

trix multiplication and Kronecker powers that to the best knowledge of the authors has

not been addressed in scientific literature. Such terms appear in the energy equations that

are commonly used to derive equations of motion. The powerful method described in this

article, provides an easy way to obtain the aforementioned derivatives by just multipli-

cation of some certain integer-valued matrices by transformed versions (by column rear-

rangement) of the original mass and stiffness matrices that appear in the internal strain

energy equation or their equivalents in similar problems. In this study, after stating the

problem with the help of some examples from nonlinear elasticity:

1. The derivatives of second, third and fourth order Kronecker powers of a vector with

respect to itself are developed in form of a classic matrix multiplication.

2. Using these derivations, the combined derivatives of third-order Kronecker power

systems will be provided in the form of matrix multiplication.

3. An example of the application of this method is shown for a finite element model of

a Euler-Bernoulli beam.
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4.2 Problem Statement in the Case of Nonlinear Kinematics

Notion of the internal strain energy (U ) takes the following form:

U =
1
2

∫
Ω

σᵀεdΩ (4.2)

where σ, ε are accordingly the stress and strain fields in the continuum domain (Ω)

that could be a beam, shell or similar structural member. It is common to express the

strain field as a function of m carefully chosen arbitrary independent parameters such as

qi (i = 1 · · ·m). One example of these parameters is the degrees of freedom in the finite

element method. In the presence of second order nonlinearities in the strain stress dis-

placement relationships (e.g. Sanders’ shell theory), the strain displacement relationship

can be presented in a form of Kronecker products:

ε(ξ) =
[
S1(ξ)

]{
q
}

+
[
S2(ξ)

]({
q
}
⊗
{
q
})

(4.3)

where f (ξ) denote being a function of one, two or three dimensional spatial coordinates

ξ.
{
q
}

is the vector of arbitrary parameters and S1(ξ) and S2(ξ) are two matrices obtained

from the kinematic relationships. Using the constitutive equation, the stress field can be

obtained from the following equation:

σ(ξ) =
[
C
]
ε(ξ) (4.4)

where
[
C
]

is the constitutive matrix. The Kronecker power operator is defined as follows

(for example q⊗3 = q⊗ q⊗ q):

q⊗1 = q

q⊗p = q⊗ q⊗(p−1)
(4.5)
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Substituting (4.3) and (4.4) in (4.2) yields the following equation for the strain energy:

U =
{
q
}ᵀ (1

2

∫
Ω

[
S1

]ᵀ [
C
][
S1

]
dΩ

){
q
}

+
{
q
}ᵀ (1

2

∫
Ω

[
S1

]ᵀ [
C
][
S2

]
dΩ

){
q⊗2

}
+
{
q⊗2

}ᵀ (1
2

∫
Ω

[
S2

]ᵀ [
C
][
S1

]
dΩ

){
q
}

+
{
q⊗2

}ᵀ (1
2

∫
Ω

[
S2

]ᵀ [
C
][
S2

]
dΩ

){
q⊗2

} (4.6)

By performing the integrations of Equation (4.6), the well-known linear and nonlinear

stiffness matrices can be obtained. Therefore Equation (4.6) can be rewritten in the fol-

lowing short form:

U =
{
q
}ᵀ [

K11

]{
q
}

+
{
q
}ᵀ [

K12

]{
q⊗2

}
+
{
q⊗2

}ᵀ [
K21

]{
q
}

+
{
q⊗2

}ᵀ [
K22

]{
q⊗2

}
(4.7)

. One particular and widely used example of such problems is the nonlinear internal

strain energy of a thin shell or a Euler beam ([11, 12, 13, 14] and etc.) modeled with

second-order nonlinear kinematics. As will be shown, developing the equations of motion

of the elastic structure in their Lagrangian form, requires obtaining the derivatives of

the internal strain energy with respect to the chosen arbitrary parameters (e.g. degrees

of freedom in FEM). Using general notation of scalar Φ (e.g. internal strain energy in

elasticity problems), xi as independent variables (e.g. degrees of freedom in FEM), in the

classic approach, due to lack of a concise mathematical matrix form for derivatives of the

second, third and fourth terms, the formulation is usually expressed using an expanded

system with a (very large) set of summations:

Φ =
m∑
i=1

m∑
j=1

y1,i,jxixj +
m∑
i=1

m∑
j=1

m∑
k=1

y2,i,j,kxixjxk +
m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

y3,i,j,k,lxixjxkxl (4.8)

Then, taking the derivatives of the individual terms:

�Φ
∂xq

=
m∑
i=1

z1,ixi +
m∑
i=1

m∑
j=1

z2,i,jxixj +
m∑
i=1

m∑
j=1

m∑
k=1

z3,i,j,kxixjxk (q = 1 · · ·m) (4.9)

where ys,,, and zs,, are obtained from the system properties (e.g. elements of different stiff-

ness matrices in elasticity problems). Examples of this form of expression for equations

of motion include Equations: (23-25) in [15], (24) in [16], (36) in [17], (40) in [18], (42) in
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[19], (53) in [11], (41) in [20], (28) in [21], (26) in [22] and (26) in [23].

This paper presents a method to express such systems in their natural matrix form

using Kronecker products:

Φ = Φ11 +Φ12 +Φ21 +Φ22 (4.10)

Where;

Φ11 = xᵀY11x (4.11a)

Φ12 = xᵀY12 (x⊗ x) (4.11b)

Φ21 = (x⊗ x)ᵀY21x (4.11c)

ϕ22 = (x⊗ x)ᵀY22 (x⊗ x) (4.11d)

and Φ is a scalar (e.g. the strain energy), x is the vector of degrees of freedom of the

system and Yij is a constant property matrix (e.g. mass or stiffness matrices in finite

element formulation). There are certain advantages in formulating these systems in the

form of a Kronecker product, such as development of equations of motions in Lagrangian

form by employing generalized coordinates method (similar to [24]) in matrix form. The

objective of this article is to develop a concise mathematical formulation that provides the

derivative of this type of system in an easily implementable matrix formulation:

∂Φ
∂x

= K̃11x+ K̃12x
⊗2 + K̃21x

⊗2 + K̃22x
⊗3 (4.12)

Where the Kronecker power operator is defined as x⊗(p+1) = x⊗p⊗x (x⊗1 = x and p =

1,2, · · · ).
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4.2.1 Vector Kronecker Power Derivatives

In this subsection the derivatives of Kronecker powers of a vector with respect to itself

are presented. These are necessary components to obtain derivatives of combined matrix-

vector Kronecker powers of Equation (4.11). It should be noted that, the notations, impor-

tant identities from matrix calculus that are used in the following sections can be found

in Appendix A.

4.2.1.1 Second Order

Using Equation (I.A.91i), for the derivative of x⊗2 with respect to x we have:

∂x⊗2

∂x
=
∂x⊗ x
∂x

=
∂x
∂x
⊗ x+

(
IK ⊗

(K×K)
U

)(∂x
∂x
⊗ x

)(
I1 ⊗

(1×1)
U

)
= vec (IK )⊗ x+

(
IK ⊗

(K×K)
U

)
(vec (IK )⊗ x)

=
(
IK3 + IK ⊗

(K×K)
U

)
(vec (IK )⊗ x)

=
(
IK3 + IK ⊗

(K×K)
U

)
(vec (IK ⊗ x))

(4.13)

Introducing the following aliases:

W 3 = IK3 + IK ⊗
(K×K)
U (4.14a)

V I3K3×K =
(K2×K)
vecI (vec(IK )) (4.14b)

and using Equation (I.A.85), Equation (4.13) can be rewritten as:

∂x⊗2

∂x
=W 3V I3x (4.15)
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4.2.1.2 Third Order

Employing Equations (I.A.91i) and (4.13), for the derivative of x⊗3 with respect to x we

have:

∂x⊗3

∂x
=
∂
(
x⊗ x⊗2

)
∂x

=
∂x
∂x
⊗ x⊗2 +

(
IK ⊗

(K×K2)
U

)(
∂x⊗2

∂x
⊗ x

)(
I1 ⊗

(1×1)
U

)
= vec (IK )⊗ x⊗2 +

(
IK ⊗

(K×K2)
U

)
((W 3vec (IK ⊗ x))⊗ x)

=
(K2×K2)
vecI (vec (IK ))x⊗2 +

(
IK ⊗

(K×K2)
U

)
((W 3vec (IK ⊗ x))⊗ x)

(4.16)

Recalling (I.A.91g) and the structure of IK that contains only K non-zero entries yields:

W 3 (vec (IK ⊗ x)) = vec (W 3 (vec (IK ⊗ x))) =
K3∑
c=1

(IK ⊗ x)ᵀ:,c ⊗W 3:,c

=
K∑
m=1

K∑
j=1

xjW 3:,j+(m−1)(K+1)K

(4.17)

Introducingm′ , j+(m−1)(K+1)K as an alias and substituting Equation (4.17) into (4.33)

and considering the fact that xj is a scalar, we have the following results:

W 3 (vec (IK ⊗ x))⊗ x =
K∑
m=1

K∑
j=1

(
W 3:,m′

)
⊗
(
xjx

)
(4.18)

On the other hand:

(
xjx

)
=

(K×K)
EI jx

⊗2 (4.19)

The Kronecker product of Equation (4.19) can be converted to matrix multiplication using

Equation (I.A.85):

K∑
m=1

K∑
j=1

(
W 3:,m′

)
⊗
(
xjx

)
=

 K∑
m=1

K∑
j=1

(K3×K)
vecI

(
W 3:,m′

)
(K×K)
EI j

x⊗2 (4.20)
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To simplify Equation (4.18) further, first recalling (4.14a) we decompose W 3:,m′ back to

its components again. Both components are permutation matrix types so at each column

they have only a single "non-zero" entry, typical of unit vectors.

For the first component, it should be noted that (IK3 ):,m′ =
(m′ )
e
K3 . Therefore the summation

within
(×)
vecI () operator disappears. Hence:

V I4(K4×K2) ,
K∑
m=1

K∑
j=1

(K3×K)
vecI

(
(IK3 ):,m′

)
(K×K)
EI j =

K∑
m=1

K∑
j=1

((
( K3)
em′ ⊗ IK

)(
(K)
eᵀj ⊗ IK

))

=
K∑
m=1

K∑
j=1

((
( K3)
em′ (K)
eᵀj

)
⊗ (IKIK )

)
=

K∑
m=1

K∑
j=1

(
(K3×K)
E m′j ⊗ IK

) (4.21)

Therefore V I4 has the following structure:

V I4(K4×K2) ,
K∑
m=1

K∑
j=1

(
(K3×K)
E m′j ⊗ IK

)
=

1 · · · K



1 IK 0K · · · 0K

2 0K IK · · · 0K
...

...
...

. . .
...

K 0K 0K · · · IK

K + 1 0K 0K · · · 0K
...

...
...

. . .
...

K(K + 1) + 1 IK 0K · · · 0K

K(K + 1) + 2 0K IK · · · 0K
...

...
...

. . .
...

K(K + 1) +K 0K 0K · · · IK
...

...
...

. . .
...

K3 0K 0K · · · IK

(4.22)

In other words, V I4 is a block matrix with block dimension K ×K and dimension K3 ×K

such that the locations of its non-zero identity blocks are given by:

(j + (m− 1)(K + 1)K,j) j,m ∈ {1,2, · · · ,K} (4.23)
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Inspecting the second component of W 3 reveals it has the following structure:

IK ⊗
(K×K)
U =



(K×K)
U 0K2 · · · 0K2

0K2
(K×K)
U · · · 0K2

...
. . . 0K2

0K2 0K2 · · ·
(K×K)
U


(4.24)

That is a block matrix with block dimension K2 ×K2 and the outer dimension K ×K . The

diagonal of this block matrix is comprised of
(K×K)
U elementary permutation matrices. Again,

using some mathematical manipulations, considering the location of "1" elements on the

right-hand side of Equation (4.24), for the second component we have:

UI4(K4×K2) ,
K∑
m=1

K∑
j=1

(K3×K)
vecI

((
IK ⊗

(K×K)
U

)
:,m′

)
(K×K)
EI j =

1 2 3 · · · K



1 IK 0K · · · 0K

2 0K 0K · · · 0K
...

...
...

. . .
...

K + 1 0K IK · · · 0K
...

...
...

. . .
...

2K + 1 0K 0K IK · · · 0K
...

...
...

. . .
...

K(K − 1) + 1 0K 0K · · · IK

K2 −K 0K 0K · · · 0K
...

...
...

. . .
...

K2 + 2 IK 0K · · · 0K
...

...
...

. . .
...

K3 0K 0K · · · IK

(4.25)

UI4 is therefore a block matrix with block dimension K ×K and outer dimension K3 ×K .

The locations of its non-zero identity blocks are given by:

(
(m− 1)K2 +Kj +m−K,j

)
j,m ∈ {1,2, · · · ,K} (4.26)

Recalling Equation (I.A.85) and the fact that the locations of "1" entries in vec (In) are

located at m” = 1 + (m−1)(n+ 1) (j = 1 · · ·n), for the case of IK : m” = 1 + (m−1)(K + 1) the
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results is:

(K2×K2)
vecI (vec (IK )) =

K∑
m=1

(
(K2)
em” ⊗ IK2

)
=

K∑
m=1

(
(K2)
em” ⊗ IK ⊗ IK

)
=

K∑
m=1

(K2)
em” ⊗

 K∑
j=1

(K)
ej ⊗ (K)

eᵀj

⊗ IK


=
K∑
m=1

K∑
j=1

(
(K2)
em” ⊗(K)

ej

)
⊗

(K)
eᵀj ⊗ IK

(4.27)

On the other hand, using (I.A.83):

(K2)
em” ⊗(K)

ej =
(K2)
e1+(m−1)(K+1) ⊗(K)

ej =
(K3)
e(1+(m−1)(K+1)−1)K+j =

(K3)
em′ (4.28)

Therefore:

(K2×K2)
vecI (vec (IK )) =

K∑
m=1

K∑
j=1

(
(K3)
em′ ⊗ (K)

eᵀj
)
⊗ IK =

K∑
m=1

K∑
j=1

(
(K3×K)
E m′j ⊗ IK

)
= V I4 (4.29)

Defining the following alias:

W 4 =
(
IK ⊗

(K×K2)
U

)
(4.30)

Subsequently using Equations (4.22),(4.25) and (4.29) yields:

∂x⊗3

∂x
, V12x

⊗2 = (V I4+W 4 (UI4+V I4))x⊗2 (4.31)

4.2.1.3 Fourth Order

Introducing the following alias:

W 5 = IK5 + IK ⊗
(K2×K2)
U (4.32)



29

and using Equation (I.A.91i), for x⊗4 we have:

∂x⊗4

∂x
=W 5

[
(W 3 (vec (IK )⊗ x))⊗ x⊗2

]
=W 5

[
(W 3 (vec (IK ⊗ x)))⊗ x⊗2

]
(4.33)

Taking a similar approach to that presented in Section 4.2.2.2, yields:

[
(W 3 (vec (IK )⊗ x))⊗ x⊗2

]
=

[
(W 3 (vec (IK ⊗ x)))⊗ x⊗2

]
=

K∑
m=1

K∑
j=1

(
W 3:,m′

)
⊗
(
xjx
⊗2

)
=

 K∑
m=1

K∑
j=1

(K3×K2)
vecI

(
W 3:,m′

)
(K2×K)
EI j

x⊗3

(4.34)

Again, decomposing W 3 back to its components and after some mathematical manip-

ulations and considering the location of "1" entries in each column of IK3 for the first

component we have:

V I5(K5×K3) ,
K∑
m=1

K∑
j=1

(K3×K2)
vecI

(
(IK3 ):,m′

)
(K2×K)
EI j =

1 · · · K



1 IK2 0K2 · · · 0K2

2 0K2 IK2 · · · 0K2

...
...

...
. . .

...

K 0K2 0K2 · · · IK2

K + 1 0K2 0K2 · · · 0K2

...
...

...
. . .

...

K(K + 1) + 1 IK2 0K2 · · · 0K2

K(K + 1) + 2 0K2 IK2 · · · 0K2

...
...

...
. . .

...

K(K + 1) +K 0K2 0K2 · · · IK2

...
...

...
. . .

...

K3 0K2 0K2 · · · IK2

(4.35)

In other words, V I5 has the same structure as V I4 with the exception that the former is

constructed from block dimension K2 ×K2 instead of K ×K .
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Similarly, for the second component we have:

UI5(K5×K3) ,
K∑
m=1

K∑
j=1

(K3×K2)
vecI

((
IK ⊗

(K×K)
U

)
:,m′

)
(K2×K)
EI j =

1 2 3 · · · K



1 IK2 0K2 · · · 0K2

2 0K2 0K2 · · · 0K2

...
...

...
. . .

...

K + 1 0K2 IK2 · · · 0K2

...
...

...
. . .

...

2K + 1 0K2 0K2 IK2 · · · 0K2

...
...

...
. . .

...

K(K − 1) + 1 0K2 0K2 · · · IK2

K2 −K 0K2 0K2 · · · 0K2

...
...

...
. . .

...

K2 + 2 IK2 0K2 · · · 0K2

...
...

...
. . .

...

K3 0K2 0K2 · · · IK2

(4.36)

Again ,the only difference between UI5 and UI4 is that the former is based on block

K2 ×K2 instead of K ×K . Therefore:

∂x⊗4

∂x
=W 5 (UI5+V I5)x⊗3 (4.37)

4.2.2 System Derivatives

4.2.2.1 Linear-Linear Component

The linear-linear component of energies in the equations of motion has the following

shape:

Φ11 = xᵀY11x (4.38)
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where the dimensions are: x1×K and x
ᵀ
1×K and Y11(K×K). Using identities of (I.A.91), the

derivative of Φ11 can be expanded:

∂Φ11

∂x
=
∂xᵀ

∂x
(I1 ⊗Y11x) + (IK ⊗ xᵀ)

(
∂(Y11x)
∂x

)
= IKY11x+ (IK ⊗ xᵀ)vec (Y11)

= Y11x+
(
Y
ᵀ
11 ⊗ I1

)
vec (xᵀ) = Y11x+Y ᵀ11x

(4.39)

It should be noted that if Y11 is a symmetric matrix, then Y11 = Y ᵀ11; hence (4.39) becomes:

∂Φ11

∂x
= 2Y11x (4.40)

4.2.2.2 Linear-Nonlinear Component

The nonlinear-linear component has the following form:

Φ12 = xᵀY12 (x⊗ x) (4.41)

where the dimensions are: xᵀ1×K , (x⊗ x)K2×1 and Y12(K×K2). For convenience and briefness

Y12 is denoted Y through this section. At the first step we vectorize Φ12 to the following

series:

Φ12 =
K2∑
i=1

Φ12,i ,
K2∑
i=1

,f1i︷  ︸︸  ︷(
xᵀY:,i

) ,f2i︷        ︸︸        ︷(
(K2)
eᵀi (x⊗ x)

)
(4.42)

It should be noted that both f1i and f2i are scalar type, therefore both inner products are

commutative or:

(
xᵀY:,i

)(
(K2)
eᵀi (x⊗ x)

)
=

((
Y:,i

)ᵀ
x
)(

(x⊗ x)ᵀ
(K2)
ei

)
=

(
Y:,i

)ᵀ (
x (x⊗ x)ᵀ

(K2)
ei

)
(4.43)
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The second term on the right hand side of Equation (4.43) is a vector with a size of K2×1,

therefore employing Equation (I.A.91f) yields:(
x (x⊗ x)ᵀ

(K2)
ei

)
= vec

(
x (x⊗ x)ᵀ

(K2)
ei

)
=

(
(K2)
eᵀi ⊗ IK

)
vec (x (x⊗ x)ᵀ)

=
(
(K2)
eᵀi ⊗ IK

)
(x⊗ (x⊗ x)) =

(
(K2)
eᵀi ⊗ IK

)
x⊗3

(4.44)

Subsequently:

Φ12,i =
(
Y:,i

)ᵀ (
(K2)
eᵀi ⊗ IK

)
x⊗3 =

[
Y
ᵀ
i,:

(
(K2)
eᵀi ⊗ IK

)]
x⊗3 (4.45)

Recalling Equation (I.A.84), the bracketed term on the left-hand side of Equation (4.45)

can be simplified as:

ỹ
ᵀ
12 =

K2∑
i=1

[
Y
ᵀ
i,:

(
(K2)
eᵀi ⊗ IK

)]
=

K2∑
i=1

Y
ᵀ
i,:

(K×K2)
EI i = (vec (Y ))ᵀ (4.46)

Therefore:

Φ12 = xᵀY (x⊗ x) = ỹᵀ12x
⊗3 (4.47)

Using Equations (4.31) and (I.A.91h):

∂Φ12

∂x
=
∂
(
ỹ
ᵀ
12x
⊗3

)
∂x

=
∂ỹ
ᵀ
12

∂x

(
I1 ⊗ x⊗3

)
+
(
IK ⊗ ỹ

ᵀ
12

)(∂x⊗3

∂x

)
= 0 +

(
IK ⊗ ỹ

ᵀ
12

)
(V12)x⊗2 (4.48)

Defining the following alias:

Z̃12 , IK ⊗ ỹ
ᵀ
12 =



ỹ
ᵀ
12 0(1×K3) 0(1×(K4−2K3))

0(1×K3) ỹ
ᵀ
12 0(1×(K4−2K3))

...
. . .

...

0(1×(K4−2K3)) 0(1×K4) ỹ
ᵀ
12


(4.49a)
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The differentiation of Equation (4.48) can be written as:

∂Φ12

∂x
= K̃12x

⊗2 ,
(
Z̃12V12

)
x⊗2 (4.50)

4.2.2.3 Nonlinear-Linear Component

The nonlinear-linear component has the following form:

Φ21 = (x⊗ x)ᵀY21x (4.51)

where the dimensions are: (x⊗ x)ᵀ1×K2 , xK×1 and Y21K2×K . Because this is a scalar and inner

products of participating vectors are commutative:

Φ21 = (x⊗ x)ᵀY21x = (Y21x)ᵀ (x⊗ x) = xᵀY ᵀ21 (x⊗ x) (4.52)

Equation (4.52) has the same form as Equation (4.41). Therefore, using Equation (4.50),

the derivative of Φ21 with respect to vector x can be written as:

∂Φ21

∂x
, K̃21x

⊗2 =
(
Z̃21V12

)
x⊗2 (4.53)

where Z̃21 can be obtained by substituting Y ᵀ21 in the place of Y in Equations (4.46) and

(4.49a).

4.2.2.4 Nonlinear-Nonlinear Component

The fourth term of Φ has the following form:

Φ22 = (x⊗ x)ᵀY22 (x⊗ x) (4.54)
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where the dimensions are: (x⊗ x)ᵀ1×K2 , (x⊗ x)K2×1 and YK2×K2 . For briefness, through this

section Y22 is simply shown by Y . At the first step we vectorize Φ22 to the following series:

Φ22 =
K2∑
i=1

Φ22,i ,
K2∑
i=1

,f1i︷          ︸︸          ︷(
(x⊗ x)ᵀY:,i

) ,f2i︷        ︸︸        ︷(
(K2)
eᵀi (x⊗ x)

)
(4.55)

It should be noted that both f1i and f2i are scalar types, therefore both inner products are

commutative or:

(
(x⊗ x)ᵀY:,i

)(
(K2)
eᵀi (x⊗ x)

)
=

((
Y:,i

)ᵀ
(x⊗ x)

)(
(x⊗ x)ᵀ

(K2)
ei

)
=

(
Y:,i

)ᵀ (
(x⊗ x) (x⊗ x)ᵀ

(K2)
ei

)
(4.56)

The second term on the right-hand side of Equation (4.56) is a vector with a size of K2×1;

therefore employing Equation (I.A.91f) yields:(
(x⊗ x) (x⊗ x)ᵀ

(K2)
ei

)
= vec

(
(x⊗ x) (x⊗ x)ᵀ

(K2)
ei

)
=

(
(K2)
eᵀi ⊗ IK2

)
vec ((x⊗ x) (x⊗ x)ᵀ)

=
(
(K2)
eᵀi ⊗ IK2

)
((x⊗ x)⊗ (x⊗ x)) =

(
(K2)
eᵀi ⊗ IK2

)
x⊗4

(4.57)

Subsequently:

Φ22,i =
(
Y:,i

)ᵀ (
(K2)
eᵀi ⊗ IK2

)
x⊗4 =

[
Y
ᵀ
i,:

(
(K2)
eᵀi ⊗ IK2

)]
x⊗4 (4.58)

Recalling Equation (I.A.84), the bracketed term on the left hand side of Equation (4.58)

can be simplified as:

ỹ
ᵀ
22 =

K2∑
i=1

[
Y
ᵀ
i,:

(
(K2)
eᵀi ⊗ IK2

)]
=

K2∑
i=1

Y
ᵀ
i,:

(K2×K2)
EI i = (vec (Y ))ᵀ (4.59)

Subsequently using Equations (4.35), (4.36) and (4.59) yields:

∂Φ22

∂x
=

K2∑
i=1

∂Φ22,i

∂x
= 0 +

K2∑
i=1

((
IK ⊗

[
Y
ᵀ
:,i

(
(K2)
eᵀi ⊗ IK2

)])) ∂x⊗4

∂x
=

(
IK ⊗ ỹ

ᵀ
22

)
W 5 (V I5+UI5)x⊗3

(4.60)
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Defining the following aliases:

Z̃22 , IK ⊗ ỹ
ᵀ
22 =



ỹ
ᵀ
22 0(1×K4) 0(1×(K5−2K4))

0(1×K4) ỹ
ᵀ
22 0(1×(K5−2K4))

...
. . .

...

0(1×(K5−2K4)) 0(1×K4) ỹ
ᵀ
22


(4.61a)

V22 =W 5 (V I5+UI5) (4.61b)

The differentiation of Equation (4.60) can be written as:

∂Φ22

∂x
= K̃22x

⊗3 ,
(
Z̃22V22

)
x⊗3 (4.62)

4.3 Example of Application: Nonlinear Vibration of a Euler Beam

As an example, in this section the developed formulation is applied to derive the equa-

tions of motion of a constant area Euler beam using the generalized coordinates method.

The model is then used for simulating the vibration of the beam under certain initial con-

ditions. It should be noted that the objective of this section is to provide a simple example

of the developed formulation on a semi-hypothetical problem rather than addressing non-

linear vibration of Euler beams. The beam element used for this analysis has four degrees

of freedom (vertical displacement and rotations at each end) and is shown in Figure 4.1.

The Hermite shape function for the vertical displacement of this beam is chosen to be[25]:

V (ξ) =
[
NNN
]{

xxx
}

=
[
N1(ξ) N2(ξ) N3(ξ) N4(ξ)

]


x1

x2

x3

x4


(4.63)
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where:

N1(ξ) =
1
4

(2− 3ξ + ξ3)

N2(ξ) =
1
4
a(1− ξ − ξ2 + ξ3)

N3(ξ) =
1
4

(2 + 3ξ − ξ3)

N4(ξ) =
1
4
a(−1− ξ + ξ2 + ξ3)

(4.64)

and ξ = x/a. The Lagrangian equation of motion based on Hamilton’s principle can be

expressed as follows:

d
dt

[
�T
�ẋi

]
− �T
�xi

+
�U
�xi

= qi , (i = 1,2, · · · ,ndofs) (4.65)

where

• ndofs is the total degrees of freedom of the system after assembling mass and stiffness

matrices of elements and applying the constraints

• T is the total kinetic energy of the system

• U is the total elastic strain energy of the system

• qi is the nodal external force

Equation (4.65) can be rewritten in matrix form as follows:

d
dt

 �T

�
˙{
xxx
}
− �T

�
{
xxx
} +

�U

�
{
xxx
} =

{
qqq
}

(4.66)

4.3.0.1 Kinetic Energy

Neglecting the rotational component, the kinetic energy of an infinitesimal beam section

can be obtained from the following equation:

dT =
1
2

(V̇ (ξ)ᵀV̇ (ξ))dm =
1
2

˙{
xxx
}ᵀ ([

NNN
]ᵀ [

NNN
]
dm

) ˙{
xxx
}

(4.67)
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Figure 4.1 Beam Element

where dm = ρA0dz denotes the mass of the section and ρ, A0 denote the density and cross

section area of the beam. The total kinetic energy of the beam element can be obtained

by integration over the length of the beam. Using the assumption of constant area of the

beam, the mass matrix of the system can be defined as follows:

[
MMM

]
= ρA0

∫ a

−a

[
NNN
]ᵀ [

NNN
]
dz (4.68)

The total kinetic energy of the beam can be written as:

T =
1
2

˙{
xxx
}ᵀ [

MMM
] ˙{

xxx
}

(4.69)

In Equation (4.65) �T

�

{
xxx
} = 0, because the velocity and displacements are independent.

Since the mass matrix is symmetric, using Equation (4.40), for the first derivative in Equa-

tion (4.65) yields:

�T

�
˙{
xxx
} =

1
2

�

�
˙{
xxx
} (

˙{
xxx
}ᵀ [

MMM
] ˙{

xxx
})

=
1
2

(
2
[
MMM

] ˙{
xxx
})

=
[
MMM

] ˙{
xxx
}

(4.70)
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The kinetic energy term of equation (4.65) can therefore be obtained as follows:

d
dt

 �T

�
˙{
xxx
}
 =

d
dt

[[
MMM

] ˙{
xxx
}]

=
[
MMM

] ¨{
xxx
}

(4.71)

Equation (4.71) is the well known classic representation of kinetic energy in linear

finite element equations of motion.

4.3.0.2 Strain Energy

The strain displacement (kinematics) of this problem is defined as follows:

εzz = −y
(

d2V

dz2

)
+

1
2

(dV
dz

)2 (4.72)

The following aliases are defined:
[
DNDNDN

]
=

d
dz

[
NNN
]
,

[
DN⊗2DN⊗2DN⊗2

]
=

([
DNDNDN

]
⊗
[
DNDNDN

])
and

[
DDNDDNDDN

]
=

d2

dz2

[
NNN
]
.

Considering the fact that the second term in Equation (4.72) is scalar type, yields:

(dV
dz

)2 =
([

DNDNDN
]{

xxx
})([

DNDNDN
]{

xxx
})

=
([

DNDNDN
]
⊗
[
DNDNDN

])({
xxx
}
⊗
{
xxx
})

=
[
DN⊗2DN⊗2DN⊗2

]{
xxx
}⊗2

(4.73)

Therefore Equation (4.72) can be rewritten as:

εzz = −y
[
DDNDDNDDN

]{
xxx
}

+
1
2

[
DN⊗2DN⊗2DN⊗2

]{
xxx
}⊗2

(4.74)

Defining E0 as the module of elasticity, the stress field associated with this strain field is

σzz = E0εzz. The strain energy of an infinitesimal beam section with a volume equal to d

A

can be obtained from:

dU =
1
2
σzz
ᵀεzzd

A

=
1
2

[{
xxx
}ᵀ (

y2E0

[
DDNDDNDDN

]ᵀ [
DDNDDNDDN

]){
xxx
}

+
{
xxx
}ᵀ (−E0

2
y
[
DDNDDNDDN

]ᵀ [
DN⊗2DN⊗2DN⊗2

]){
x⊗2x⊗2x⊗2

}
+
{
x⊗2x⊗2x⊗2

}ᵀ (−E0

2
y
[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DDNDDNDDN

]){
xxx
}

+
{
x⊗2x⊗2x⊗2

}ᵀ (E0

4

[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DN⊗2DN⊗2DN⊗2

]){
x⊗2x⊗2x⊗2

}]
d

A

(4.75)
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In the first step, assuming Sy and Iy as the first and second moment of area of the beam,

the following stiffness matrices can be defined:[
K11K11K11

]
=
∫

AE0

(
y2

[
DDNDDNDDN

]ᵀ [
DDNDDNDDN

])
d

A

= E0Iy

∫ a

−a

[
DDNDDNDDN

]ᵀ [
DDNDDNDDN

]
dz[

K12K12K12

]
=
∫

AE0

(1
2
y
[
DDNDDNDDN

]ᵀ [
DN⊗2DN⊗2DN⊗2

])
d

A

=
1
2
E0Sy

∫ a

−a

[
DDNDDNDDN

]ᵀ [
DN⊗2DN⊗2DN⊗2

]
dz[

K21K21K21

]
=
∫

AE0

(1
2
y
[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DDNDDNDDN

])
d

A

=
1
2
E0Sy

∫ a

−a

[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DDNDDNDDN

]
dz[

K22K22K22

]
=
∫

AE0

(1
4

[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DN⊗2DN⊗2DN⊗2

])
d

A

=
1
4
E0A0

∫ a

−a

[
DN⊗2DN⊗2DN⊗2

]ᵀ [
DN⊗2DN⊗2DN⊗2

]
dz

(4.76)

It should be recalled that, since polynomials define a ring, careful implementation re-

moves the need to derive any of the differentiations, addition/multiplication operations

or integrations by hand and the whole process can be automated. Using these definitions,

the strain energy of the beam element can be expressed in the following form:

U =
∫

AdUd

A

=
1
2

[{
xxx
}ᵀ [

K11K11K11

]{
xxx
}
−
{
xxx
}ᵀ [

K12K12K12

]{
x⊗2x⊗2x⊗2

}
−
{
x⊗2x⊗2x⊗2

}ᵀ [
K21K21K21

]{
xxx
}

+
{
x⊗2x⊗2x⊗2

}ᵀ [
K22K22K22

]{
x⊗2x⊗2x⊗2

}]
(4.77)

4.3.0.3 Equations of Motion and Simulation

Equations (4.77) has the exact same form as (4.10)-(4.11). Therefore, using equations and

(4.40), (4.50), (4.53) and (4.62), the strain energy term of Equation (4.66) can be written

as:

�U

�
{
xxx
} =

[
K11K11K11

]{
xxx
}
− 1

2

([
K̃12K̃12K̃12

]
+
[
K̃21K̃21K̃21

]){
xxx
}⊗2

+
1
2

[
K̃22K̃22K̃22

]{
xxx
}⊗3

(4.78)

Finally, by substituting Equations (4.71) and (4.78) into (4.66), the equation of motion of

the beam element without the effect of external forces can be expressed as follows:

[
MMM

] ¨{
xxx
}

+
[
K11K11K11

]{
xxx
}
− 1

2

([
K̃12K̃12K̃12

]
+
[
K̃21K̃21K̃21

]){
xxx
}⊗2

+
1
2

[
K̃22K̃22K̃22

]{
xxx
}⊗3

= 0 (4.79)

The global mass and stiffness matrices of all elements can be assembled using classic finite

element techniques.

As an example, the developed equations of motion were used to simulate behavior of a

cantilever beam (V = θ = 0 at one end) with the following properties: L = 0.5m, E =
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69GPa, A0 = 0.006[m2], Sy = 0.0, Iy = 1.8 × 10−6 and ρ = 8700. The initial condition at

t = 0 at the free end is assumed to be the result of an impulse: V = θ = 0 and V̇ = 15m/s.

The convergence behavior of the simulation is shown in Figure 4.2 for both linear and

nonlinear responses in the middle and at the free end of the beam. As can be seen after

increasing the number of elements to more than 20 the solution starts to converge.

4.4 Conclusion

The derivatives of second, third and fourth order Kronecker power of a vector with respect

to itself were developed in the form of concise matrix multiplications. These derivatives

were used to develop the derivative of fourth order Kronecker power systems with re-

spect to a vector. Application of current formulations to nonlinear dynamics problems

was demonstrated by employing them on a nonlinear Euler finite element beam. Some

additional notes:

• Describing the nonlinear part of a system in matrix form provides a more efficient

way for both simulation and analysis of a nonlinear system. As shown, this method

significantly reduces the amount of mathematical effort to derive the equations of

motion of fourth order Kronecker product systems such as nonlinear beams and

shells.

• The multiplier matrices of W 3, UI4, V I4, UI5 and V I5 depend only on the size of

x or K(e.g. degrees of freedom of the system). Therefore, they can be re-used for any

other system that has the same principle dimension and different properties.

• These matrices are also highly sparse integer-valued matrices, which makes them an

effective tool for numerical implementations.

• Since Kronecker powers of vectors contain repetitive terms (e.g. for a vector of two

elements x⊗2 =
{
x2

1 x1x2 x2x1 x2x2

}ᵀ
), they can be transformed into more con-

dense forms (e.g.
{
x2

1 2x1x2 x2x2

}ᵀ
) to enable further reduction of the memory

storage space.



41

Figure 4.2 Variation of linear (L) and nonlinear (NL) response with time of a cantilever
beam using different numbers of finite elements(NE) to an input impulse at time zero:
(a) at the middle of the beam; (b) at the free end
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n× n unit matrix is denoted In. The q-dimensional vector which is "1" in the kth and zero

elsewhere is called the unit vector and is denoted:

(q)
ek (I.A.80)

The dimension underscore will be dropped if the dimension can be understood from the

context. The elementary matrix is defined as:

(p×q)
E ik ,

(p)
ei (q)
eᵀk (I.A.81)

which has the dimension (p × q) and has a single "1" element located at ik element and

zero elsewhere.

The Kronecker product of A(p×q) and B(s×t) denoted by A ⊗ B is a (ps × qt) defined as

follows:

A⊗B ,

a11B a12B · · · a1qB

a21B · · · a2qB

...
. . .

...
ap1B ap2B · · · apqB




(I.A.82)

It should be noted that:

(p)
ei ⊗(q)

ek =
(pq)
e(i−1)q+k (I.A.83)

Another useful definition is the following block-unit matrix that we call the identity ele-

mentary matrix, that contains an identity matrix at its jth block and zero elsewhere and

can be constructed as follows:

(p×q)
EI j =

(q)
eᵀj ⊗ Ip =

[ 1︷︸︸︷
0p×p

2︷︸︸︷
0p×p · · ·

j︷︸︸︷
Ip

j+1︷︸︸︷
0p×p · · ·

q︷︸︸︷
0p×p

] (I.A.84)

It should be noted that the Kronecker product of two vectors such as am×1 and bn×1 can
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be converted to classic matrix multiplication using the following operator:

a⊗b ,
(m×n)
vecI (a)b =

 m∑
j=1

aj

(
(m)
ej ⊗ In

)b =



a1In

a2In
...

amIn


mn×n

b (I.A.85)

The vectorization operator generates a vector from a matrix such asA by stacking columns

of the matrix on top of each other from left to right.

vec (A)pq×1 ,

A:,1

A:,2

...
A:,q




(I.A.86)

Another important matrix is the elementary permutation matrix defined as:

(p×q)
U ,

p∑
i

q∑
k

(p×q)
E ik ⊗(q×p)

E ki (I.A.87)

A permutation matrix such as
(p×q)
U has only a single "1" entry in each row and column. Given

a row number such as r or a column number such as c for an elementary permutation

matrix such as
(p×q)
U the corresponding non-zero column or row can be obtained from:

c”1” = (1− pq)
⌈ r
q

⌉
+ p(q+ r − 1) (I.A.88a)

r”1” = (1− pq)
⌈ c
p

⌉
+ q(p+ c − 1) (I.A.88b)

where de denotes the ceiling function. Following Vetter’s convention for the matrix deriva-

tive, the derivative of a matrix such as A(p×q) with respect to a scalar such as b is given as
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[4]:

∂A
∂b

=



∂a11
∂b

∂a12
∂b · · · ∂a1q

∂b
∂a21
∂b · · · ∂a2q

∂b
...

. . .
∂ap1

∂b · · · ∂apq
∂b


(I.A.89)

Similarly the Vetter’s definition for the derivative of a matrix such as A(p×q) with respect

to another matrix such as B(s×t) is a partitioned matrix such as Cps×qt whose Cik partitions

is:

Cik =
∂A
∂bik

(I.A.90)

Using above definitions, some useful identities can be found in the following equations:

(1×p)
U =

(p×1)
U = Ip (I.A.91a)

(A⊗B) (D ⊗G) = (AD ⊗BG) (if dimensions allow the operation) (I.A.91b)

(B ⊗A) =
(s×p)
U (A⊗B)

(q×t)
U (I.A.91c)

c (A⊗B) = (cA)⊗B = A⊗ (cB) (c ∈C) (I.A.91d)

vec (Aᵀ) =
(p×q)
U · vec (A) (I.A.91e)

vec (AD) = (Is ⊗A)vec (D) =
(
Dᵀ ⊗ Ip

)
vec (A) = (Dᵀ ⊗A)vec

(
Iq

)
(I.A.91f)
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vec (AD) =
q∑
k=1

(Dᵀ):,k ⊗A:,k (I.A.91g)

∂ (AF )
B

=
∂ (A)
B

(It ⊗ F ) + (Is ⊗A)
∂ (F )
B

(I.A.91h)

∂ (A⊗C)
B

=
∂ (A)
B
⊗C +

(
Is ⊗

(p×r)
U

)(∂C
B
⊗A

)(
It ⊗

(l×q)
U

)
(I.A.91i)

∂y
y

= vec
(
Iq

)
(I.A.91j)

∂yᵀ

y
= Iq (I.A.91k)

Dimensions of matrices and vectors in (I.A.91) are: Ap×q, Bs×t, Cr×l , Dq×s, Fq×u , Gt×u ,

Hp×q and yq×1.
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CHAPTER 5 ARTICLE 2- NONLINEAR VIBRATION OF TRUNCATED CONICAL

SHELLS:DONNELL, SANDERS AND NEMETH THEORIES

Mehrdad Bakhtiari, Aouni A. Lakis, Youcef Kerboua

International Journal of Nonlinear Sciences and Numerical Simulation, 2019(published

online ahead of print).

5.1 Abstract

Nonlinear free vibration of truncated conical shells has been investigated for three differ-

ent shell theories; Donnell, Sanders and Nemeth to investigate the effect of their simplify-

ing assumptions. The displacement field of a finite element model that was obtained from

the exact solution of equilibrium equations of Sander’s improved first-approximation the-

ory is used to define the nonlinear strain energy of conical shells. Employing generalized

coordinates method the equations of motion are derived and subsequently the amplitude

equation of nonlinear vibration of conical shells was developed. The amplitude equation

is solved for multiple cases of isotropic materials. Linear and nonlinear free vibration

results are validated against the existing studies in scientific literature and demonstrate

good accordance. The validated model is used to investigate effects of different parameters

including circumferential mode number, cone-half angle, length to radius ratio, thickness

to radius ratio and boundary conditions for the nonlinear vibration of conical shells.

5.2 Introduction

Conical shells are one of the important structural elements of aerospace vehicles and can

be found in different applications ranging from ray-domes up to satellite launch vehicles

with large fuel tanks. In comparison to cylindrical shells and flat plates, nonlinear vibra-

tion of conical shells has received less attention in scientific literature. One of the earliest

studies is the work of Lindholm and Hu [1] which is focused on non-symmetric transverse

vibrations of isotropic truncated conical shells using Donnell’s type of nonlinear kinemat-

ics with a focus on bending and membrane rigidity. Sun and Lu [2] studied the dynamic

https://doi.org/10.1515/ijnsns-2018-0377
https://doi.org/10.1515/ijnsns-2018-0377
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response of conical and cylindrical shells under ramp and sinusoidal temperature loads

using Donnell’s nonlinear shallow shell theory. Bendavid and Mayers [3] developed a

nonlinear theory for bending, buckling and vibrations of conical shells based on Sander’s

nonlinear theory and proposed a variation of the generalized coordinates method to pre-

dict the shell’s response. Kanaka Raju and Venkateswara Rao [4] studied large -amplitude

asymmetric vibrations of shells of revolutions by employing Sander’s nonlinear kinemat-

ics to obtain finite element stiffness matrix. Their proposed iterative method includes iter-

ating over and refining the stiffness matrix to achieve convergence. Ueda [5] employed an

equivalent of Donnell’s shallow shell theory to formulate a two degrees of freedom finite

element for analyzing the free vibrations of conical shells. He employed the same method-

ology on cylindrical shells and demonstrated that his results are in good accordance with

those of Olson [6]. Liu and Li [7] used Donnell’s type of nonlinearities in conjunction

with Galerkin’s method to study the vibration of shallow conical sandwich shells. They

presented the effects of variation of several parameters including boundary conditions

and the stiffness of the sandwich core on the nonlinear response of the shell. Xu et al.

[8] studied the nonlinear vibration of thick conical shells, using Donnell’s shallow shell

theory and proposed a solution in form of double Fourier series with time dependent co-

efficients. Their results show good accordance with exiting data. Fu and Chen [9] took

similar solution approach to Xu et al. [8], they presented the effects of various parameters

including the relative thickness to radius ratio on the nonlinear frequency. Awrejcewicz

et al. [10] and Krysko et al. [11] studied the transition from regular to chaotic vibrations of

isotropic spherical and conical shells taking into account Donnell’s type of nonlinearities.

They studied the effects of various parameters including cone-half angle, the amplitude

and frequency of the excitation force and the boundary conditions on the transition to

chaotic behavior. Chen and Dai [12][13] employed Donnell’s nonlinear theory to study

nonlinear vibration and stability of rotary truncated conical shells including the coupling

of high and low modal responses and stated that right rotation could have a hardening

effect on the shell’s stability. Sofiyev [14] studied the nonlinear vibration of truncated

conical shells made of functionally graded materials (FGM). They used the Galerkin and

harmonic balance methods, and presented their results on the influence of compositional
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profiles and shell geometry on the nonlinear dimensionless frequency. In follow up stud-

ies Najafov and Sofiyev [15][16] expanded these results to include FGM conical shells

surrounded by an elastic medium on a Pasternak-type elastic foundation and truncated

cones coated by FGM materials. Sofiyev [17] investigated the large-amplitude vibration of

non-homogeneous orthotropic composite truncated conical shells. The Young’s modulus

and density were assumed to vary exponentially through the thickness of the shell and the

effects of various parameters including non-homogeneity, orthotropy and shell geometry

on the dynamic response of the shell were presented.

While the the Galerkin method has been the chosen solution method of the majority of

prior studies; there are considerable difficulties in using it to handle different boundary

conditions. Moreover the case of anisotropic materials has not been formulated in finite

element form. The objective of this study is to develop a hybrid finite element model and

solution for the nonlinear vibration of anisotropic conical shells. The solution consists of

two parts:

• The conical shells finite element displacement functions are derived from exact so-

lution of Sander’s improved first order linear shell theory using a method generally

similar to [18, 19] and [20].

• Substituting the developed finite element formulation into the nonlinear strain-

displacement relationship (kinematics) of Donnell, Sanders and Nemeth nonlinear

theories, kinetic and internal strain energies are expressed in terms of nodal dis-

placements. Then, employing the generalized coordinates method, the equations of

motion of the nonlinear shell are derived using the Lagrange method. Numerical

solution of these equations of motion is used for the dynamic analysis of conical

shells.

5.3 Nonlinear Kinematics

Nemeth [21] formulated a shear deformation type of shell theory that can provide Don-

nell’s and Sanders’ shell theories as explicit subsets. The kinematics of this theory is de-

veloped based on the assumption of small strains and moderate rotations that themselves
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(a) (b)

Figure 5.1 Conventions: (5.1a) Geometry and coordinate system; (5.1b) Nodal degrees of
freedom

are subsets of the general derivations of none-orthogonal principal coordinates of what he

presented in [22]. The geometrical and coordinates system of the truncated cone element

of the current study are shown in figure 5.1a. The longitudinal and radial principal-

curvature coordinates are denoted by x and θ. The cone half-angle αc and the slant length

of the cone can be obtained from L = x2 − x1. Assuming the reference surface is located at

the middle of the shell thickness and neglecting transverse shear deformation, the three

fundamental unknowns in this formulation are two middle-surface tangential displace-

ments U = u1(x,θ) and V = u2(x,θ) and the normal displacement W = u3(x,θ). The tan-

gential and normal displacement fields of a material point p(x,θ,ξ3) in a shell expressed
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in the orthogonal principal-curvature coordinate systems are given as:

U1(x,θ,ξ3) = u1(x,θ) + ξ3 [ϕ1 −ϕϕ2]

U2(x,θ,ξ3) = u2(x,θ) + ξ3 [ϕ2 −ϕϕ1]

U3(x,θ,ξ3) = u3(x,θ)− 1
2
ξ3

(
ϕ2

1 +ϕ2
2

) (5.1)

where ξ3 denotes the normal distance from the middle surface. The linear rotation pa-

rameters ϕ1 , ϕ2 and ϕ are defined as follows:

ϕ1(x,θ) = −�u3(x,θ)
�x

ϕ2(x,θ) =
c3u2(x,θ)
xtan(αc)

− 1
xsin(αc)

�u3(x,θ)
�θ

ϕ(x,θ) =
1
2
c3

(
�u2(x,θ)
�x

− 1
xsin(αc)

�u1(x,θ)
�θ

+
u2(x,θ)

x

) (5.2)

In addition the in-plane linear deformation parameters are defined as:

e◦11(x,θ) =
�u1(x,θ)
�x

e◦22(x,θ) =
1

xsin(αc)
�u2(x,θ)
�θ

+
u1(x,θ)

x
+

u3(x,θ)
xtan(αc)

2e◦12(x,θ) =
1

xsin(αc)
�u1(x,θ)
�θ

+
�u2(x,θ)
�x

− u2(x,θ)
x

(5.3)

Using the linear rotation and deformation parameters, the strain-displacement relation-

ship on the reference surface of this theory based on the assumption of small strains and

moderate rotations are:

{
ε◦ε◦ε◦

}
=


ε◦11

ε◦22

γ◦12

 =


e◦11

e◦22

2e◦12

+ cNL


1
2

(
ϕ2

1 + c2ϕ
2
)

+ 1
2c1

[
(e◦11)2 + e◦12

(
e◦12 + 2ϕ

)]
1
2

(
ϕ2

2 + c2ϕ
2
)

+ 1
2c1

[
(e◦22)2 + e◦12

(
e◦12 − 2ϕ

)]
ϕ1ϕ2 + c1

[
e◦11

(
e◦12 −ϕ

)
+ e◦22

(
e◦12 +ϕ

)]
 (5.4a)

{
χ◦χ◦χ◦

}
=


χ◦11

χ◦22

2χ◦12

 =


�ϕ1
�x

1
xsin(αc)

�ϕ2
�θ + ϕ1

x
1

xsin(αc)
�ϕ1
�θ + �ϕ2

�x −
ϕ2
x + ϕ

xtan(αc)

 (5.4b)

In the above formulation:
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• Specifying cNL = 0 and c3 = 1 simplifies the kinematics to the improved first-approximation

linear shell theory of Sanders [23]

• Specifying cNL = 1, c1 = c2 = c3 = 1 defines Nemeth’s nonlinear theory [21]

• Specifying cNL = 1, c1 = 0 and c2 = c3 = 1 retrieves Sanders’ kinematics [24] [25].

• Specifying cNL = 1, c1 = c2 = 0 and c3 = 1 retrieves Sanders’ kinematics with the

nonlinear rotations about the reference-surface normal neglected [24] [25]. This is

indicated as "SANDERS-APX" in the results of current study.

• Specifying cNL = 1, c1 = c2 = c3 = 0 defines Donnell’s strain-displacement relation-

ship [26].

The strains on a point at ξ3 normal distance from the middle surface can be expressed in

the following matrix form:

{
εεεξ3

}
=

{
ε11 ε22 γ12

}ᵀ
=

(
1 +

ξ3

R1

)−1 (
1 +

ξ3

R2

)−1 [
SSS
]{
E◦E◦E◦

}
(5.5)

The corresponding strains on the middle surface are defined as:

{
E◦E◦E◦

}
=

{{
ε◦ε◦ε◦

} {
χ◦χ◦χ◦

}}ᵀ
(5.6)

The definitions of the
[
SSS
]

matrices can be found in appendix A of [27].

5.4 Stress-Strain Relationship

When the coordinate system of the elasticity tensor is not aligned with the global coordi-

nate system, the transformed stress and strain fields are given by:

{
σ̄̄σ̄σ

}
=

[
C̄
]{
ε̄̄ε̄ε

}
(5.7)

where σ̄̄σ̄σ and ε̄̄ε̄ε are the rotated stress and strain vectors. In the case of a homogenous

fully anisotropic material the transformed compliance tensor
[
C̄
]

of Equation (5.7) can be

calculated as follows: [
C̄
]

=
[
Tσσσ

][
C
][
Tεεε

]−1
(5.8)
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The definition of
[
Tσσσ

]
and

[
Tεεε

]
are provided in [27]. In the absence of shear deformation,

under the plane stress assumption, σ̄33 = σ̄23 = σ̄13 = 0. Under these conditions, the stress-

strain relationship can be defined as:

{
σ̄11 σ̄22 σ̄12

}ᵀ
=

[
Q̄̄Q̄Q

]
3×3

{
ε̄11 ε̄22 2ε̄12

}ᵀ
(5.9)

The relationships to obtain the plane stress reduced compliance tensor (
[
Q̄̄Q̄Q

]
) are pro-

vided in [27].

5.5 Constitutive Equations

The two dimensional constitutive equations of the shell can be defined as follows:

 {nnn}{mmm}
 =

[
CC0CC0CC0

]{
E◦E◦E◦

}
,

∫ + h
2

−h
2

(
1 +

ξ3

R1

)−1 (
1 +

ξ3

R2

)−1 [
SSS
]ᵀ [

Q̄̄Q̄Q
][

SSS
]
dξ3

{E◦E◦E◦} (5.10)

Details of stress resultants of Equation (5.10) and the associated constitutive matrix
[
CC0CC0CC0

]
can be found in appendix B of [27].

5.6 Linear Solution and Finite Element Formulation

Using the principle of virtual work, three linear equilibrium equations of conical shells

based on Sanders’ best first approximation [23] and in terms of stress resultants can be

obtained [21]. These three equations are presented in 5.10. Substituting work-conjugate

stress resultants of (5.10) into the equilibrium Equation (II.A.41) of appendix I.A. results

in a system of linear differential equations. These were found to be non-homogeneous in

terms of powers of x. Therefore additional assumptions are needed to facilitate obtaining

an analytical solution. To this end, it is assumed that the thickness of shell varies linearly

along the x coordinates:

t = βx (5.11)

where β denotes the thickness variation proportionality. To simulate constant thickness

shells, the value of β is chosen so that the constant thickness occurs in the middle of any
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element of the shell.

This variable thickness substitution makes it possible to employ the separation of vari-

ables technique using the following form for the solution:

u1 = u1,x̄(x̄) (cos(ncθ)) (5.12a)

u2 = u2,x̄(x̄) (sin(ncθ)) (5.12b)

u3 = u3,x̄(x̄) (cos(ncθ)) (5.12c)

where nc is the circumferential mode number and x̄ = x/xm is the dimensionless longitu-

dinal coordinates with xm = 0.5(x1 + x2). The longitudinal component of the solution is

chosen as:

ud,x̄ = Cd(x̄)
(λ−1)

2 (5.13)

where Cd (d = 1,2,3) is the arbitrary magnitude of the displacement. Substituting Equa-

tion (5.12) in equilibrium equations of (II.A.41) of 5.10 followed by some lengthy mathe-

matical manipulations yields three equations in the following form:

Li,1 sin(ncθ) +Li,2 cos(ncθ) = 0 (i = 1,2,3) (5.14)

where Li,j (s) are only functions of ud,x̄ and the associated derivatives along x direction, cir-

cumferential mode number and shell parameters such as elasticity and geometry. Hence,

for any given element with specific dimension and properties, the only variable that ap-

pears in Li,j is λ. Therefore, it is possible to rewrite the equilibrium equations in the

following matrix form:

[
AQAQAQ

]{
AAA
}

=


AQ1,1 AQ1,2 AQ1,3

AQ2,1 AQ2,2 AQ2,3

AQ3,1 AQ3,2 AQ3,3




C1

C2

C3

 = 0 (5.15)

where elements of
[
AQAQAQ

]
are polynomials in terms of λ and details of their derivation are

given in [27]. To satisfy any arbitrary displacement, the determinant of
[
AQAQAQ

]
should be

equal to zero and this yields a characteristic polynomial that can be solved to obtain val-
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ues of λ.

The number of distinct roots of the characteristic polynomial defines the degrees of free-

dom of the element. For the case of isotropic materials there are eight distinct roots so the

element has eight degrees of freedom. For other types of materials in terms of anisotropy

and the shear model up to sixteen degrees of freedom can be observed. Assuming pres-

ence of K distinct roots, the final solution of the system is obtained by summation of all

these solutions:

ud(x,θ) =

 K∑
k=1

Cd,k

(
x̄

(λk−1)
2

) (sin(ncθ)sed) (cos(ncθ)ced) (5.16)

where sed,ced = 0,1 for d = 1,3 and sed,ced = 1,0 for ,d = 2. At this point, the problem is

reduced to defining the unknown arbitrary amplitude of vibrations in terms of degrees of

freedom.

The finite element of the current study is bounded by two nodal lines and the degrees

of freedom of those nodesδi δj are shown in figure 5.1a. For the case of isotropic materials

four degrees of freedom at each node are chosen as presented for δi node in figure 5.1b.

Mathematically these degrees of freedom can be written as:

{
δmδmδm

}
=



δm,1

δm,2

δm,3

δm,4


=



Ux

Vx

Wx

�Wx
�x


,



u1,x̄(xm/L)

u2,x̄(xm/L)

u3,x̄(xm/L)

�u3,x̄(xm/L)/�x


(5.17)

where, at m = i and m = j, xm takes values of xi = x1 and xj = x2 accordingly (figure 5.1a).

Using equation (5.15) and recognizing the linear dependency as a result of zero determi-

nant of
[
AQAQAQ

]
matrix, and some mathematical operations that details of them can be found

in [27], the unknown amplitudes of vibration (C1, C2, C3) in the displacements of Equa-

tion (5.12) can be expressed in terms of each element’s degrees of freedom:
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{
δδδ

}e
,



{
δiδiδi

}
{
δjδjδj

}


=



δ1

δ2
...

δK


=



a1,1 a1,2 · · · a1,K

a2,1 a2,2 · · · a2,K
...

...
. . .

...

aK,1 aK,2 · · · aK,K





C1,1

C1,2
...

C1,K


=

[
AAA
]{

C1C1C1

}
(5.18)

where
[
AAA
]

contains only constant real numbers. Subsequently:

{
C1C1C1

}
=

[
AAA
]−1 {

δδδ

}e
(5.19)

Rearranging into a matrix form and substituting (5.19) in Equation (5.12) yields the

following displacement matrix:

{
uuu
}

=


u1(x,θ)

u2(x,θ)

u3(x,θ)

 =

[
NNN

]
3×K︷            ︸︸            ︷[

RRR(x,θ)
][

AAA
]−1 {

δδδ

}e
=



R1,1 R1,2 · · · R1,K

R2,1 R2,2 · · · R2,K
...

...
. . .

...

R5,1 R5,2 · · · R5,K





c1,1 c1,2 · · · c1,K

c2,1 c2,2 · · · c2,K
...

...
. . .

...

cK,1 c5,2 · · · cK,K





δ1

δ2
...

δeK


(5.20)

where the elements of
[
RRR
]

are defined as follows:

Rd,k(x,θ) =
(

x
xm

) (λk−1)
2

(sin(ncθ)sed) (cos(ncθ)ced) (5.21)

Subsequently, the elements of the displacement matrix
[
NNN
]

take the following form:

Nd,k(x,θ) =
K∑
i=1

(
ci,k

)
Rd,i (5.22)

Assigning the function space defined by Equation (5.21) S it can be quickly proven[27]

that due to associativity, commutativity, existence of zero and one for addition and mul-

tiplication operations, this set defines a mathematical ring. Moreover the derivatives of

Rd,k(x,θ) with respect to x and θ coordinates belong to the same ring. These properties

can be exploited programmatically to derive displacements, strains and stress-strain rela-

tionships of equations (5.1)-(5.9) in terms of this type of function.
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5.7 Equations of Motion

Shell motion has two components, spatial and temporal. Equation 5.22 defines the spa-

tial component of shell motion. Introducing
{
δδδ

}
=

{
δδδ(t)

}
as the temporal (time-dependent)

component of shell’s motion, it is possible to develop the equations of motion of the shell,

using the generalized-coordinates method. Assuming the system consists of N finite el-

ements, each with K degrees of freedom, the Lagrangian equation of motion based on

Hamilton’s principle can be expressed as follows:

d
dt

[
�T
�δ̇i

]
− �T
�δi

+
�V
�δi

= qi , (i = 1,2, · · · ,D , K×N) (5.23)

where

• D is the total degrees of freedom of the system after assembling mass and stiffness

matrices of elements and applying the constraints

• T is the total kinetic energy of the system

• V is the total elastic strain energy of the system

• qi is the nodal external force

Equation (5.23) can be rewritten in matrix form as follows:

d
dt

 �T

�
˙{
δδδ

}
− �T

�
{
δδδ

} +
�V

�
{
δδδ

} =
{
qqq
}

(5.24)

5.7.1 Kinetic Energy

The kinetic energy of an element has three components; pure translational (TT), cross

translational-rotational (TTR) and pure rotational TR. In the absence of shear deformation

(TTR) and TR are neglected. Therefore the structural mass matrix for a single element can

be defined as follows:

[
MTMTMT

]e

K×K
=

"
Ω
ρ0

([
STSTST

]ᵀ [
STSTST

])
A1A2dxdθ (5.25)
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Details of variables of equation 5.25 can be found in [27]). It should be noted that
[
MTMTMT

]e
is

a symmetric positive definite matrix. The structural mass matrices of all elements can be

assembled to obtain the whole system mass matrix using standard finite element assembly

procedures. The corresponding assembled matrix is named
[
MTMTMT

]
. Finally by performing

some mathematical operations (details are given in [27]), the kinetic energy term of the

equations of motion can be obtained from the following equation:

d
dt

 �T

�
˙{
δδδ

}
 =

[
MSMSMS

]{
δ̈̈δ̈δ

}
,

1
2

(
2
[
MTMTMT

]){
δ̈̈δ̈δ

}
(5.26)

[
MSMSMS

]
denotes the assembled structural mass matrix of the whole system.

5.7.2 Internal Strain Energy

The internal strain energy over the shell element surface area (Ω) is defined as:

Ve =
1
2

"
Ω

(∫ h/2

−h/2

{
σσσξ3

}ᵀ {
εεεξ3

}(
1 +

ξ3

R1

)(
1 +

ξ3

R2

)
dξ3

)
dΩ (5.27)

Taking into account Equation (5.5) and (5.9) for variable thickness conical elements, the

through-the-thickness integral of Equation (5.27) can be obtained from the following

equation: ∫ h/2

−h/2

{
σσσξ3

}ᵀ {
εεεξ3

}(
1 +

ξ3

R1

)(
1 +

ξ3

R2

)
dξ3 =

{
E◦E◦E◦

}ᵀ [
¯CC0¯CC0¯CC0

]{
E◦E◦E◦

}
(5.28)

The constitutive matrix
[

¯CC0¯CC0¯CC0
]

of variable thickness truncated conical elements is given in

[27]. The strain vector
{
E◦E◦E◦

}
can be decomposed into its linear and nonlinear components:

{
E◦E◦E◦

}
=

[
SE◦LSE◦LSE◦L

]
6×K

{
δδδ

}e

K×1
+
[
SE◦NL
SE◦NL
SE◦NL

]
6×K2

{
δ⊗2δ⊗2δ⊗2

}e

K2×1
(5.29)

where
{
δ⊗pδ⊗pδ⊗p

}
is the Kronecker product power p of vector

{
δδδ

}
(e.g.

{
δ⊗2δ⊗2δ⊗2

}
=

{
δδδ

}
⊗
{
δδδ

}
). The rows

of
[
SE◦LSE◦LSE◦L

]
and

[
SE◦NL
SE◦NL
SE◦NL

]
are provided in appendix I of [27]. The following stiffness matrices for
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each element:

[
K11K11K11

]e
,

"
Ω

[
SE◦LSE◦LSE◦L

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦LSE◦LSE◦L

]
A1A2dxdθ (5.30a)

[
K21K21K21

]e
=

([
Ke

12Ke
12Ke
12

])ᵀ
,

"
Ω

[
SE◦NL
SE◦NL
SE◦NL

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦LSE◦LSE◦L

]
A1A2dxdθ (5.30b)

[
K22K22K22

]e
,

"
Ω

[
SE◦NL
SE◦NL
SE◦NL

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦NL
SE◦NL
SE◦NL

]
A1A2dxdθ (5.30c)

can be defined. Hence the strain energy of the element can be written as follows:

Ve =
1
2

(({
δδδ

}e)ᵀ [
K11K11K11

]e {
δδδ

}e
+
({
δδδ

}e)ᵀ [
K12K12K12

]e {
δ⊗2δ⊗2δ⊗2

}e
+
({
δ⊗2δ⊗2δ⊗2

}e)ᵀ [
K21K21K21

]e {
δδδ

}e
+
({
δ⊗2δ⊗2δ⊗2

}e)ᵀ [
K22K22K22

]e {
δ⊗2δ⊗2δ⊗2

}e
)

(5.31)

The total strain energy can be obtained from the summation of the strain energies of all

elements of the system. Hence, similar to the mass matrices, the structural stiffness ma-

trices of all elements can be assembled to obtain the whole system stiffness matrices. The

corresponding assembled stiffness matrices are named
[
K11K11K11

]
,
[
K12K12K12

]
,
[
K21K21K21

]
and

[
K22K22K22

]
. Finally

for the whole system, the derivative of the strain energy with respect to the degrees of

freedom can be formulated as:

�V

�
{
δδδ

} =
[
K11K11K11

]{
δδδ

}
+
[
K̃12K̃12K̃12

]{
δ⊗2δ⊗2δ⊗2

}
+

1
2

[
K̃22K̃22K̃22

]{
δ⊗3δ⊗3δ⊗3

}
(5.32)

where
[
K̃12K̃12K̃12

]
and

[
K̃22K̃22K̃22

]
are formulated based on

[
K12K12K12

]
,
[
K21K21K21

]
and

[
K22K22K22

]
using matrix calculus

operations and the details of that are provided in appendix J of [27].

5.7.3 Equations of Motion in Terms of Nodal Displacements

Substituting Equation (5.26) and (5.32) in (5.24) results in the following equation of mo-

tion: [
MSMSMS

]
D×D

{
δ̈̈δ̈δ

}
+
[
K11K11K11

]
D×D

{
δδδ

}
+
[
K̃12K̃12K̃12

]
D×D2

{
δ⊗2δ⊗2δ⊗2

}
+

1
2

[
K̃22K̃22K̃22

]
D×D3

{
δ⊗3δ⊗3δ⊗3

}
−
{
qqq
}

= 0 (5.33)
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5.8 Free Vibration

5.8.1 Harmonic Motion and Linear Vibration

Different approaches can be used to obtain nonlinear response of the system from Equa-

tion (5.33). One approach is to use the forced vibration response of the system to obtain

the backbone curve as the middle curve between the forced vibration response to periodic

excitement such as what described in [28]. While this approach simulates the experi-

mental procedure, it requires significant computational time for simulation. Moreover

capturing and triggering some phenomena such as response jump in simulations is not a

straightforward process. Another common approach that is used in the current study is

to develop a nonlinear eigenvalue problem from the equations of motion[29]. Assuming

a harmonic solution in the form of
{
δ(t)δ(t)δ(t)

}
=

{
δmaxδmaxδmax

}
sin(ωt) with zero external force (

{
qqq
}

= 0), the

large amplitude nonlinear free vibration of a truncated conical shell can be expressed in

the following form:

([
K11K11K11

]
+
[
K̃12K̃12K̃12

]
(D×D)
vecI

({
δmaxδmaxδmax

})
sin(ωt) +

1
2

[
K̃22K̃22K̃22

]
(D2×D)
vecI

({
δ⊗2

maxδ⊗2
maxδ⊗2
max

})
sin2(ωt)

){
δmaxδmaxδmax

}
sin(ωt)−ω2

[
MSMSMS

]{
δmaxδmaxδmax

}
sin(ωt) =

{
RRR
}

(5.34)

where
{
RRR
}

is the residual vector. The definition of operator
(n×m)
vecI () that converts the Kro-

necker product of two vectors to conventional matrix multiplication can be found in ap-

pendix J of [27]. For the linear free vibration case, the nonlinear matrices
[
K̃12K̃12K̃12

]
and

[
K̃22K̃22K̃22

]
are dropped and Equation (5.34) is reduced to:

[
K11K11K11

]{
δδδ

}
−ω2

L

[
MSMSMS

]{
δδδ

}
= 0 (5.35)

Equation (5.35) can be solved as a classic linear eigenvalue problem to obtain ω2
L. For

better interpretation and analysis, it is convenient to report the dimensionless frequency

that is defined as follows:

Ω =ωR2

√
ρ(1− ν)2

E
(5.36)
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5.8.2 Nonlinear Free Vibration

Assuming the period of nonlinear vibration to be τ, the maximum displacement
{
δmaxδmaxδmax

}
occurs at t = τ/4 where ωt = π/4. Under these conditions (5.34) is reduced to:

([
K11K11K11

]
+
[
K̃12K̃12K̃12

]
(D×D)
vecI

({
δmaxδmaxδmax

})
+

1
2

[
K̃22K̃22K̃22

]
(D2×D)
vecI

({
δ⊗2

maxδ⊗2
maxδ⊗2
max

})){
δmaxδmaxδmax

}
−ω2

[
MSMSMS

]{
δmaxδmaxδmax

}
=

{
000
}

(5.37)

It is worthy to mention that some of the earlier studies(e.g. [30] and [31]) have solved

Equation (5.37) as an eigenvalue problem and predicted different behavior. Because eigen-

value solution of (5.37) does not satisfy the nonlinear equilibrium equation of (5.33) at all

the times in the periodic motion, the nonlinear frequencies calculated by such an ap-

proach are not accurate [29][32]. Employing a weighted residual [29] for integration be-

tween t = 0→ t = τ/4 that represent the amplitude variation between
{
000
}
→

{
δmaxδmaxδmax

}
yields

[32]:

∫ τ/4

0

{
RRR
}

sin(ωt)dt = 0 (5.38)

Taking into account that
{
δmaxδmaxδmax

}
is independent of the time variable and

∫ τ/4

0
sin2(ωt)dt = τ/8,∫ τ/4

0
sin3(ωt)dt = τ/3π and

∫ τ/4

0
sin4(ωt)dt = 3τ/32, the nonlinear vibration of Equation (5.34) can

be transformed into the following eigenvalue problem:

[[
K11K11K11

]
+

8
3π

[
K̃12K̃12K̃12

]
(D×D)
vecI

({
δmaxδmaxδmax

})
+

3
8

[
K̃22K̃22K̃22

]
(D2×D)
vecI

({
δ⊗2

maxδ⊗2
maxδ⊗2
max

})]{
δmaxδmaxδmax

}
−ω2

[
MSMSMS

]{
δmaxδmaxδmax

}
=

{
000
}

(5.39)

Equation (5.39) can be solved as an eigenvalue problem using the "vector iteration method"

given in [29] and [27].

5.8.3 Convention of Boundary Conditions

Using Tong [33]’s convention, for the case of isotropic materials where a truncated cone

has four degrees of freedom at each edge, notations of the nodal boundary conditions are

shown in table 5.1. The first and second elements of the boundary conditions in the fol-

lowing sections denote the small and large edge of the truncated cone respectively. For

example F-CC4 indicates free at the small edge and clamped at the large edge end as what
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Table 5.1 Naming convention for boundary conditions [33]

Name U V W �W/�x
F free free free free
SS0 0 free free free
SS1 free free 0 free
SS2 0 free 0 free
SS3 free 0 0 free
SS4 0 0 0 free
CC1 free free 0 0
CC2 0 free 0 0
CC3 free 0 0 0
CC4 0 0 0 0

described in table 5.1 for "CC4".

5.9 Results and Discussion

5.9.1 Validation: Convergence and Linear Frequencies

An in-house computer program was developed to perform the calculations. To investigate

the validity of the model, the first step was a comparison of the convergence and accuracy

of the linear frequency of vibration with those of four available experimental cases in the

literature. The results are shown in figure 5.2 and table 5.2:

• Case 1: Free-free vibration of conical shells made of cold-rolled steel as reported by

Hu et al. [34]. The experimental setup was reported to be: αc = 14.2◦, r1 = 0.06919m,

r2 = 0.1543m, h = 2.54×10−4m, E = 203GP a, ν = 0.3, ρ = 7988kg/m3 [34, 36, 37] and

F-F (the data in Fig. 2. in reference [34] was digitized).

• Case 2: Vibration of loosely clamped cold-rolled steel truncated conical shells with

the same material properties as Case 1 reported by Lindholm and Hu [1][37]. The

other experimental setup parameters were: αc = 30.2◦, r1 = 0.0889m, r2 = 0.2019m,

h = 2.54 × 10−4m, and the boundary condition is set to be CC3-CC3 (the data from

Fig. 4 in reference [1] was digitized).

• Case 3: Same as Case 2 in terms of material and boundary conditions with the geo-
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Figure 5.2 Validation: Case 1, FEM linear dimensionless natural frequency (Equation
(5.36)) compared to the experimental results of Hu et al. [34] for the first (5.2a) and sec-
ond mode (5.2b) of vibration of a free-free truncated conical shell at different number of
finite elements (N = 10,12,14,16,18,20)

metrical parameters: αc = 45.1◦, r1 = 0.10115m, r2 = 0.2276m, h = 2.54× 10−4m (the

data in Fig. 5 in reference [1] was digitized).

• Case 4: Vibration of clamped-free aluminum truncated conical shells as reported

by Adelman [35] where the experimental setup was: αc = 60.0◦, r1 = 0.0762m, r2 =

0.6097m, h = 6.35 × 10−4m, E = 68.948GP a, ν = 0.315 and ρ = 2714kg/m3 and the

boundary conditions were set to CC4-F (the data obtained from table IV in reference

[35]).

It should be noted that to maintain accuracy in the current study, the linear part of the

kinematics equations has always been modeled using the linear part of Sander’s kinemat-

ics (c3 = 1 in Equation (5.2)). Figure 5.2 shows the variation of calculated dimensionless

frequencies versus the circumferential mode number for different numbers of elements

in Case 1 for the first and second modes of vibration. The results show excellent agree-

ment. Considering the results of this case, the number of elements was chosen to be

twenty elements for the rest of the linear cases. The correctness of boundary conditions

implementation was investigated in cases 2, 3 and 4. The values of the dimensionless
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Table 5.2 Comparison of linear natural vibration dimensionless frequency Ω for the first
mode (m=1) with the existing experimental studies

nc Case 2 (30.2◦) Case 3 ( 45.1◦)
Case 4(60◦)
Ω (rad/s)

Present Ref. [1] Present Ref. [1] Present Ref. [35]
2 0.591447 - .62666 - .02928 (255.0) .03017 (262.8)
3 0.358468 - .47194 - .01636 (142.5) .01689 (147.1)
4 0.228965 - .32698 - .01053 (91.8) .01331 (115.9)
5 0.158844 0.157 .18723 - .01271 (110.7) .01524 (132.7)
6 0.118549 0.121 .17681 .165 .01940 (169.0) .01939 (168.9)
7 0.096123 0.097 .14045 .137 .02423 (211.1) .02422 (211.0)
8 0.086202 0.089 .11828 .120 .02958 (257.7) .02957 (257.5)
9 0.085335 0.088 .10680 .112 .03548 (309.0) .03546 (308.9)
10 0.090378 0.091 .10356 .108 - -
11 0.098605 0.099 .10632 .110 - -
12 0.108286 0.109 .11300 .117 - -
13 0.118805 0.117 .12197 .125

linear natural frequencies are presented in table 5.2 and show good accordance with the

experimental results.

5.9.2 Validation: Nonlinear Vibration of Cylindrical Shells

There are a limited number of studies on the nonlinear vibration of conical shells and

some lack sufficient data to enable reproduction of the results. Therefore for validation

of the nonlinear results of the current study, the case of a cylindrical shell was simulated

using a cone with a very small angle. Two cases were studied:

• Case 5: Nonlinear vibration of a cylindrical shell reported by Nowinski [38], Raju

and Rao [39] and Selmane and Lakis [40] where the shell parameters were given as:

nc = 4, αc = 0.01◦, r1 = 0.0254m (r2 = 0.025407m), L = 0.0399m, h = 2.54E−4×10−4m,

E = 204.08GP a, ν = 0.3 and ρ = 7833.5kg/m3. The boundary conditions for this

case are SS4-SS4. The natural linear vibration frequency obtained in the current

study is 8591.32Hz vs 8553.74Hz reported by Raju and Rao [39], this shows good

accordance.

• Case 6: Nonlinear vibration of a cylindrical shell reported by Raju and Rao [39] is

the same as Case 5 other than the boundary conditions, which were reported to be
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Figure 5.3 Validation: Backbone curve for cylindrical shells: (5.3a) Case 5 reported by
Nowinski [38], Raju and Rao [39] and Selmane and Lakis [40]; (5.3b) Case 6 reported by
Raju and Rao [39]

SS0-SS0. The natural linear vibration frequency obtained in the current study is

6453.46 Hz vs 6428.07 Hz reported by Raju and Rao [39]; these differ only by 0.5%.

Figure 5.3a shows a comparison of the backbone curve for Case 5. It can be seen the re-

sults of current study lie between those reported by Selmane and Lakis [40] and Raju and

Rao [39] and show good accordance. Figure 5.3b shows a comparison of the results of the

present study and those reported by Raju and Rao [39] for Case 6 and it also shows good

agreement. It should be noted that while Nowinski [38] used Donnell’s type of nonlin-

earities in his study, Raju and Rao [39] and Selmane and Lakis [40] employed Sander’s

theory taking into account the nonlinear rotations around the normal to the surface plane

(c1 = 0 and c2 = c3 = 1). Moreover, Nowinski [38] assumed the mode shapes to have two

components, a harmonic and a time variable component. This is intended to satisfy the

periodicity of the circumferential displacements that behaves roughly similar to a com-

panion mode and might result in lower nonlinear frequencies. On the other hand, Raju

and Rao [39] formulated the finite element solution in terms of a 12-degree polynomial,

which is relatively more loose in comparison to the 8 degrees of freedom of this particular
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case in the current study. Although the work of Selmane and Lakis [40] is more simi-

lar to the current study; the non-diagonal elements of the nonlinear stiffness matrix are

neglected. Based on numerical results (not presented here), omitting the non-diagonal

elements of the nonlinear stiffness matrix results in higher nonlinear frequencies. An ex-

act match to those reported by Selmane and Lakis [40] could not be obtained with the

formulation and tools developed during the current study.

5.9.3 Nonlinear Vibration of Truncated Conical Shells

5.9.3.1 Circumferential Mode Number

Once the developed model was sufficiently validated, the effects of various parameters

on the nonlinear frequencies of conical shells were studied. It is worthy to mention that

all the results of nonlinear vibration for conical shells were obtained at twenty finite ele-

ments. Figure 5.4 shows the variation of nonlinear frequency for different circumferential

mode numbers; nc = 5−8 for the loosely clamped truncated cone of Case 3 (αc = 45.1◦ and

CC3-CC3) both in terms of backbone curve and the nonlinear frequency Hz. The first

observation from figure 5.4b is the smaller differences between the predictions of differ-

ent theories for conical shells in comparison to cylindrical shells. Investigating the mode

shapes (not presented here) revealed that this can be partially attributed to the fact that

the maximum amplitude of nonlinear vibration of the truncated cone occurs at nodes

close to the large edge. For cylindrical shells it occurs close to the middle of the cylinder.

Therefore, the effect of the constraint on the amplitude of the vibration is more dominant

and it limits the rotational terms in more complex theories. Moreover, as can be seen,

increasing the circumferential mode number increases the nonlinearity effects on the rel-

ative nonlinear frequency. This can be explained by the appearance of nc as a multiplier

in the differentiations with respect to the second principle coordinates (�/�θ) in the linear

rotation parameters ϕ2 and ϕ of Equation (5.2). Same phenomenon can be observed more

clearly in figure 5.4b. While the minimum linear frequency for this case happens at nc = 9,

for large amplitude nonlinear vibration; δmax/h = 3, the amplifying effect of the circum-

ferential mode number results in the occurrence of lowest observable nonlinear frequency

at nc = 7. Furthermore, the same effect results in multiple cross-overs between the non-
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Figure 5.4 Variation of nonlinear frequency for different circumferential mode
numbers(nc = 6 − 10) for truncated cone Case 3:(5.4a) backbone curve; (5.4b) nonlin-
ear frequency Hz

linear responses of different circumferential mode numbers. Similar behavior is reported

by Sofiyev [17] (figure 6). Therefore to obtain the minimum nonlinear frequency for the

amplitude of interest; it is important to perform the nonlinear analysis over a wider range

of circumferential mode numbers instead of relying on the lowest linear frequency.

5.9.3.2 Geometry

To investigate the effect of geometrical properties the following cases were studied:

• Case 7: A loosely clamped truncated cone where geometrical properties are r1 =

0.10115m, L/r1 = 2, h = 2.54 × 10−4m. The material properties and the boundary

conditions are the same as Case 3 other than the density that is chosen to be ρ =

7833.5kg/m3. The circumferential mode number is selected as nc = 7.

• Case 8: Same as Case 3 with αc = 45◦ and nc = 7.

• Case 9: Loosely clamped aluminum truncated cone with the same material proper-

ties and dimensions (other than the thickness) as Case 4. The circumferential mode

number and the boundary conditions were chosen to be nc = 7 and SS4-SS4 respec-
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Figure 5.5 Effects of geometrical parameters: (5.5a) cone half angle; (5.5b) L/r1 = ratio

tively.

Figure 5.5a shows the effect of cone half angle on the relative nonlinear frequency of the

truncated cone shell of Case 7 for three different theories. The cone half angle values are

αc = 15◦, 30◦, 45◦, 60◦ and 75◦ and the associated first mode natural linear frequencies

were calculated as 498.5, 491.1, 438.7, 338.8 and 206.3Hz accordingly. As can be seen

the linear frequency decreases as the cone moves from a cylinder towards a flat plate.

Same decreasing-flattening trend for the range of αc = 15◦ −60◦ was presented by Sofiyev

[41] (figure 4.a) for the effect of cone half angle at slightly different boundary conditions.

The first contributing factor to this behavior is the increase of the lateral area (and subse-

quently the mass of the cone) for this configuration by about 60% when the angle increases

from 15◦ to 75◦.

Notably, the differences between predictions of Donnell’s and Sanders’ and Nemeth’s the-

ories follow the same trend. In case of conical shells in the current formulation 1/R1 =

1/ρ11 = 0. On the other hand, 1/ sin(αc) and 1/ tan(αc) appear in the denominator of the

omitted terms of Donnell’s theory (second principle and geodesic radii of curvature). This

is another factor that contributes to this behavior. In other words, the tangential displace-

ment (u2 = V ) induces stronger nonlinear behavior for cases closer to cylindrical shells
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than those of flat plates. As can be seen the effect of nonlinearity shows its minimum

value at 45◦.

Figure 5.5b shows the effect of variation of the slant length to small radius ratio for the

cone of Case 8. The selected values are L/r1 = 0.5, 1.0, 1.5, 2.0 and 2.5. The corresponding

first mode linear natural frequencies were calculated to be 2636.1, 1428.5, 657.9, 434.5

and 315.1Hz. It can be seen that the relative nonlinear frequency increases with increas-

ing the length of the cone. Longer cones demonstrate stronger nonlinear response at

higher amplitudes.

Figure 5.6 shows the variation of the relative nonlinear frequency with the variation of

h/r1 = at r1/h =400, 200, 100, 50 and 25. The associated linear frequencies were calcu-

lated to be 141.5, 147.2, 186.6, 232 and 362.5Hz respectively. Skipping the Case of very

thin shells (r1/h=400), the variation of relative nonlinear frequency with the thickness is

seen to follow a linear trend. Recalling figure 5.4a, the variation of relative nonlinear fre-

quency with the absolute amplitude of the vibration follows a semi-second order curve.

Figure 5.6 can be explained by the fact that the linear frequencies increase linearly with

the thickness and therefore the variation of relative nonlinear frequency with thickness

becomes linear as a result of the division of a second order function by a first order one.
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Similar behavior was reported by Sofiyev in figure 4 of [14].

5.9.3.3 Boundary Conditions

Though various boundary conditions were applied for the previous cases, the effect of

boundary conditions is specifically investigated in this subsection. The cone geometry

and material properties were selected to be the same as Case 3 and nc = 7. The selected

boundary conditions are: CC2-CC2, CC4-CC4, SS1-SS1,SS3-SS3 and F-CC4. Figure 5.8a

presents the backbone curves for boundary conditions CC2, CC4 and F-CC4. The non-

linear responses of simply supported shells are presented in figure 5.8b and demonstrate

stronger relative nonlinear response in comparison to clamped shells. As can be seen,

constraining more degrees of freedom results in a reduction of the relative nonlinear fre-

quency in both clamped and simply-supported shells. This is more visible by the behavior

of F-CC4 shown in figure 5.8a. It should be noted that, as shown in figure 5.7, the more

constrained cases demonstrate higher linear frequencies and therefore their reduced non-

linear responses still have higher absolute frequencies. For the case of free-clamped trun-

cated cone, the free end increased the nonlinear response to the extent that it surpassed

the more constrained cases.

5.10 Conclusion and Remarks

In the current study the nonlinear vibration of truncated conical shells was formulated

for anisotropic materials according to four different shell theories; Donnell, Sanders with

nonlinear rotation along the normal to surface neglected, Sanders and Nemeth. The for-

mulation employed finite element exact solution of the linear case in conjunction with the

generalized coordinates obtained by Lagrange equations to develop equations of motion

of conical shells. The nonlinear amplitude equation of the vibration in the matrix form

was solved using a hybrid iterative method to study the effect of various parameters on

the nonlinear response of conical shells. Results for the linear frequencies were validated

against the existing experimental data in the literature for truncated cones and show good

accordance. The nonlinear results were validated against the existing results of cylindri-

cal shells and found to be in good agreement. Effects of various parameters were studied
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Figure 5.8 Effect of boundary conditions on shell of Case 3: (5.8a) clamped; (5.8b) simply
supported

and are summarized as follows:

• In all cases Donnell’s theory predicted a higher nonlinear relative frequency than

the other three theories. Further, in all cases presented in the current study the

difference between the predictions of Nemeth’s and Sanders’ theories was found to

be very small, though those of Sander’s theory were found to have larger value. Since

there is a significant emphasis on shear deformation in the development of Nemeth’s

theory[21], the above results can be attributed to the relatively thin shells selected

for the current study and the corresponding absence of shear deformation. Based on

the obtained results and the insignificant differences between Nemeth and Sanders

theories, it is more practical to avoid larger amount of computations required by

Nemeth theory and use Sanders as a good approximation for this type of problems.

• It was found that higher circumferential numbers result in an amplified nonlinear

response.

• The relative nonlinear frequency demonstrated its minimum when the semi-vertex

angle of the cone is equal to 45◦ degree while the difference between Donnell’s and

other theories is larger at lower semi-vertex angles. It was found that the nonlinear
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response increases as the length to small radius ratio increases and this effect is

stronger at higher amplitudes of vibration.

• Other than the case of very thin shells, the variation of relative nonlinear frequency

with thickness was found to be linear with higher slopes at higher amplitudes of

vibration.

• It was found that the shell demonstrates a weaker "relative nonlinear response"

(nonlinear to linear frequency ratio) at more rigid constraints, though the absolute

value of the nonlinear frequency is higher for more constrained cases.

• Within the range of thicknesses, length to diameter ratios and materials that are

investigated in the current work, the differences between predictions of studied the-

ories found to be less than 2 percent.
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I.A. Conical Shell Linear Equilibrium Equations in Terms of Stress Resultants

The principle parameters of conical shells can be obtained from the following equation:

A1(x,θ) = 1,A2(x,θ) = xsin(αc),
1

R1(x,θ)
= 0,

1
R2(x,θ)

=
1

xtan(αc)
,

1
ρ11
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=
1
x

(II.A.40)

By introducing the geometrical parameters of conical shells into the general equilibrium

equations of Sanders’ improved linear theory [23]; one obtains the equilibrium equations

of a conical shell as follows.:
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I.B. Nomenclature

A1,A2 Surface metrics along x and θ directions

R1,R2 Principle radii of curvature along x and θ directions[
¯CC0¯CC0¯CC0

]
Symmetric constitutie matrix for conical element{

E◦E◦E◦
}

Reference surface total strain vector defined by Equation (5.6)

e◦11,e◦22,e◦12 Linear deformation parameters defined by Equation (5.3)[
AQAQAQ

]
Characteristic polynomial matrix[

K11K11K11

]
,
[
K̃12K̃12K̃12

]
,
[
K̃22K̃22K̃22

]
Assembled first, second and third order structural stiffness matrices[

MTMTMT

]
,
[
MSMSMS

]
Assembled translational and structural mass matrices defined by

Equation (5.25) and (5.26)[
NNN
]

Displacement field matrix of a finite element defined by Equation

(5.20)

Ui(i = 1,2,3) Displacements along the longitudinal, latheral and normal to surface

directions, off the reference surface

ui(i = 1,2,3) Displacements along the longitudinal (U ), latheral (V ) and normal

(W ), on the reference surface

cNL, c1, c2, c3 Flag parameters to define different shell theories

L Truncated cone element length

nc Circumferential mode number

αc Cone half angle

χ◦11,χ◦22,χ◦12,
{
χ◦χ◦χ◦

}
Linear deformation parameters defined by Equation (5.4b)

δm nodal degrees of freedom associated with mthnode

ε◦11,ε◦22,
{
ε◦ε◦ε◦

}
Reference surface strains defined by Equation (5.4a)

ϕ1,ϕ2, ϕ Linear rotation parameters defined by Equation (5.2)

ρ11,ρ22 Geodesic radii of curvature radii of curvature along x and θ directions{
δδδ

}e
Vector of element degrees of freedom{

δδδ

}
Vector of whole system degrees of freedom
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CHAPTER 6 ARTICLE 3- NONLINEAR SUPERSONIC FLUTTER OF TRUNCATED

CONICAL SHELLS

Mehrdad Bakhtiari, Aouni A. Lakis, Youcef Kerboua

Journal of Mechanical Science and Technology 34 (2020): 1375-1388.

Abstract

A numerical model was developed to investigate the flutter instability of truncated con-

ical shells subjected to supersonic flows. The exact solution of Sanders’ best first-order

approximation was used to develop the finite elements model of the shell. Nonlinear

kinematics of Donnell’s, Sanders’ and Nemeth’s theories, in conjunction with the general-

ized coordinates method, were used to formulate the nonlinear strain energy of the shell.

A pressure field was formulated using the piston theory with the correction term for the

curvature. Lagrangian equations of motion based on Hamilton’s principle were obtained.

A variation of the harmonic balance method was used for developing the amplitude equa-

tions of the shell, and a numerical method was used for solving these equations. Results

of the linear and nonlinear flutter of truncated conical shells were validated against the

existing data in the literature. It was observed that geometrical nonlinearities have a soft-

ening effect on the stability of the shell in supersonic flows.

6.1 Introduction

The aeroelastic stability of shells and plates interacting with supersonic flow has been

the subject of several studies in past decades. While several studies can be found in the

literature on the flutter characteristics of cylindrical shells, the number of articles on the

supersonic flutter of conical shells is limited. Moreover, even in the existing studies on the

flutter of cylindrical shells, very few have employed geometrically nonlinear theories in

their analyses. Employing nonlinear shell theories is important since experimental stud-

ies have shown that the oscillation amplitude of flutter has the same order of magnitude

as the shell thickness [1].

https://doi.org/10.1007/s12206-020-0301-6
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Dixon and Hudson([2],[3] and [4]) studied the flutter, vibration and buckling of truncated

orthotropic thin conical shells with generalized elastic edge restraints. They employed the

Donnell type of nonlinear kinematics in conjunction with the modified first-order piston

theory to model the structure behavior. They argued that for shells subjected to static

external pressure loads, divergence governed design conditions for small values of semi-

cone angle, flutter for moderate semi-cone angle values and buckling is the dominant phe-

nomena in large semi-cone angles. Miserentino and Dixon [5] expanded those works by

performing experimental studies on the vibration and flutter of thin-walled truncated or-

thotropic conical shells. The experimental results provided the variations of resonant fre-

quency with internal pressure and circumferential wave number at constant Mach num-

ber. The results verified the theoretical works of Dixon and Hudson Dixon and Hudson

[2] for thin shells with good accuracy. The work of Ueda et al. [6] explored the theoreti-

cal and experimental aspects of supersonic flutter in conical shells. In their experiments,

they used a truncated cone with a semi vertex angle of 14º to obtain flutter and buck-

ling boundaries of the shell within supersonic flow at Mach number equal to two. They

employed the finite elements method for the theoretical analysis and demonstrated good

agreement between experimental and theoretical results. They also concluded that FEM

is a powerful tool for predicting panel flutter behavior. Bismarck-Nasr and Costa Savio

[7] developed a finite element method for supersonic flutter of truncated conical shells

using Novozhilov’s shell theory. In their work on the shell model, the in-plane inertia was

pre-served within kinetic energy formulations while the rotary inertia was neglected. The

aerodynamic loads were modeled using the first-order high Mach number piston theory.

Based on their results, it was concluded that the curvature effect in modeling the aerody-

namic loads has little effect on the stability conditions.

Pidaparti [8] employed a quadrilateral thin shell finite element for analyzing the su-

personic flutter of doubly curved composite shells using linear Love-Kirchhoff thin shell

theory. Based on the obtained results, it was stated that the fiber angle and orthotropy

impose significant effects on flutter boundaries for cylindrical and conical shells and flat

plates.
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Sabri and Lakis [9] studied the flutter behavior of partially filled truncated conical shells

in supersonic flows using a hybrid finite element method, Sanders’ linear thin shell theory

and first-order piston theory with correction for the effect of curvature. Initial stiffening

due to pressurization was also considered in this study. Among the conclusions, it was

stated that conical shells are susceptible to coupled-mode flutter. Mahmoudkhani et al.

[10] studied the aero-thermoelastic stability of FGM truncated conical shells in supersonic

flows using Donnell’s theory and the linear piston theory. They employed the eigenvalue

analysis to obtain the critical parameters. They showed that larger semi-cone angles re-

duce shell stability. Davar and Shokrollahi [11] provided an analysis of the supersonic

flutter of FGM conical shells with clamped and simply supported boundary conditions

using first-order shear deformation and linear shell theory. Their results showed that

changing the boundary condition from simply supported to clamped increases all the fre-

quencies but there is no general trend in the critical aerodynamic pressure.

Vasilev [12] presented a new formulation for flutter analysis of isotropic truncated con-

ical shells exposed to supersonic flows using linear shell theory. The author concluded

that the linear piston theory significantly overestimates the critical dynamic pressure at

low Mach numbers [12]. Yang et al. [13] investigated the supersonic flutter in FGM trun-

cated conical shells employing first-order shear deformation and linear shell theory. It

was shown that it is possible to control the periodic and chaotic instabilities by varying

the material’s compositional profile.

As can be seen, in the earlier works other than the study of Bismarck-Nasr and Costa Savio

[7], the few studies limited their kinematic models to Donnell’s-type nonlinearities. More-

over, employing Galerkin approach placed additional restraints on the type of boundary

conditions that can be used. The focus of the current study is to formulate a hybrid finite

element model that can represent the nonlinear behavior of truncated conical shells sub-

jected to supersonic flows using the three different shell theories of Donnell, Sanders and

Nemeth. This is performed in the following steps:

• The finite element displacement functions are derived from the exact solution to

Sanders’ best first-order approximation.

• Using that shape function as the bases of the generalized coordinate method, the
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nonlinear internal strain and kinetic energies are formulated in terms of nodal de-

grees of free-dom.

• In addition, the effects of initial stiffening due to pressurization and axial loads are

also expressed in terms of nodal displacements. Then, the Lagrangian equations of

motion of the shell are developed based on the Hamilton principle.

• The equations of motion are converted to an amplitude equation by employing a

variation of the harmonic balance method.

6.2 Nonlinear Kinematics

Nemeth [14] formulated a shell theory that can provide Donnell’s and Sanders’ shell the-

ories as parametric subsets [14] and [15]. Figure 6.1a shows the coordinate system and

geometrical parameters of the truncated cone element of the this study. The longitudinal

and radial principal-curvature coordinates are denoted by x and θ. The cone half-angle

is denoted by αc and the slant length of the cone can be obtained from L = x2 − x1. The

reference surface is assumed at the middle of the shell thickness and neglecting trans-

verse shear deformation, there are three fundamental unknowns in this formulation: two

middle-surface tangential displacements U = u1(x,θ) and V = u2(x,θ) and the normal

displacement W = u3(x,θ). The displacements of material point of the shell p(x,θ,ξ3) in

the orthogonal principal-curvature coordinate systems are expressed as[16]:

U1(x,θ,ξ3) = u1(x,θ) + ξ3 [ϕ1 −ϕϕ2]

U2(x,θ,ξ3) = u2(x,θ) + ξ3 [ϕ2 −ϕϕ1]

U3(x,θ,ξ3) = u3(x,θ)− 1
2
ξ3

(
ϕ2

1 +ϕ2
2

) (6.1)

Where ξ3 is the normal distance from the middle surface. The linear rotation parameters

ϕ1 , ϕ2 and ϕ are defined as follows:

ϕ1(x,θ) = −�u3(x,θ)
�x

ϕ2(x,θ) =
c3u2(x,θ)
xtan(αc)

− 1
xsin(αc)

�u3(x,θ)
�θ

ϕ(x,θ) =
1
2
c3

(
�u2(x,θ)
�x

− 1
xsin(αc)

�u1(x,θ)
�θ

+
u2(x,θ)

x

) (6.2)
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(a) (b)

Figure 6.1 Conventions: (6.1a) Geometry and coordinate system; (6.1b) Nodal degrees of
freedom

The in-plane linear deformation parameters are given as:

e◦11(x,θ) =
�u1(x,θ)
�x

e◦22(x,θ) =
1

xsin(αc)
�u2(x,θ)
�θ

+
u1(x,θ)

x
+

u3(x,θ)
xtan(αc)

2e◦12(x,θ) =
1

xsin(αc)
�u1(x,θ)
�θ

+
�u2(x,θ)
�x

− u2(x,θ)
x

(6.3)

Finally, the relationships of the strain (ε) and the linear rotation parameters (χ) relation-

ships with the displacements, on the middle surface are expressed as follows:

{
ε◦ε◦ε◦

}
=


ε◦11

ε◦22

γ◦12

 =


e◦11

e◦22

2e◦12

+ cNL


1
2

(
ϕ2

1 + c2ϕ
2
)

+ 1
2c1

[
(e◦11)2 + e◦12

(
e◦12 + 2ϕ

)]
1
2

(
ϕ2

2 + c2ϕ
2
)

+ 1
2c1

[
(e◦22)2 + e◦12

(
e◦12 − 2ϕ

)]
ϕ1ϕ2 + c1

[
e◦11

(
e◦12 −ϕ

)
+ e◦22

(
e◦12 +ϕ

)]
 (6.4a)
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{
χ◦χ◦χ◦

}
=


χ◦11

χ◦22

2χ◦12

 =


�ϕ1
�x

1
xsin(αc)

�ϕ2
�θ + ϕ1

x
1

xsin(αc)
�ϕ1
�θ + �ϕ2

�x −
ϕ2
x + ϕ

xtan(αc)

 (6.4b)

In the above formulation:

• Specifying cNL = 0 and c3 = 1 simplifies the kinematics to the improved first-approximation

linear shell theory of Sanders [17]

• Specifying cNL = 1, c1 = c2 = c3 = 1 defines Nemeth’s nonlinear theory [14]

• Specifying cNL = 1, c1 = 0 and c2 = c3 = 1 retrieves Sanders’ kinematics [18] [19].

• Specifying cNL = 1, c1 = c2 = 0 and c3 = 1 retrieves Sanders’ kinematics with the

nonlinear rotations about the reference-surface normal neglected [18] [19].

• Specifying cNL = 1, c1 = c2 = c3 = 0 defines Donnell’s strain-displacement relation-

ship [20].

6.3 Constitutive Equations

Using the principle of virtual work, the equilibrium equations of the shell as a function

of work-conjugate stress resultants are derived based on Sanders’ improved first-order

linear theory [17] and given in appendix 6.8. Work-conjugate stress resultants of Equation

(III.A.50) are approximated symmetric stress-resultants and can be expressed in terms of

fundamental unknowns (u1,u2,u3). Hence, the two dimensional constitutive equations of

the shell can be expressed as:

 {nnn}{mmm}
 =

[
CC0CC0CC0

]{
E◦E◦E◦

}
,

∫ + h
2

−h
2

(
1 +

ξ3

R1

)−1 (
1 +

ξ3

R2

)−1 [
SSS
]ᵀ [

Q̄̄Q̄Q
][

SSS
]
dξ3

{E◦E◦E◦} (6.5)

Where
[
Q̄̄Q̄Q

]
is the conventional plane-stress compliance tensor of the shell’s material and:

{
E◦E◦E◦

}
=

{{
ε◦ε◦ε◦

}ᵀ {
χ◦χ◦χ◦

}ᵀ}ᵀ
(6.6)

Details of stress resultants of Equation (6.5) and the associated constitutive matrix
[
CC0CC0CC0

]
can be found in appendix B of reference [16].
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It should be noted that to produce homogeneous equilibrium equations for conical

shells, the shell is approximated with a linearly variable thickness equivalent truncated

cone. For such a case
[
CC0CC0CC0

]
shows dependency to x and the material and geometrical

parameters of the shell. The constitutive matrix with substituted conical principle and

geo-desic radii of curvature for linearly variable thickness truncated cones is called
[

¯CC0¯CC0¯CC0
]

and are given in appendix H of reference [16].

6.4 Linear Solution and Finite Element Formulation

To employ the separation of variables, homogeneous equations are required and therefore

it was assumed that the thickness of the shell varies linearly along the x coordinates in

a way that the actual constant thickness of the shell occurs in the middle of the element

at xm = 0.5(x1 + x2). The displacements on the middle surface are chosen to take the

following form:

u1 = u1,x̄(x̄) (cos(ncθ)) (6.7a)

u2 = u2,x̄(x̄) (sin(ncθ)) (6.7b)

u3 = u3,x̄(x̄) (cos(ncθ)) (6.7c)

nc denotes the circumferential mode number and x̄ = x/xm is the non-dimensional longi-

tudinal coordinates that defined as xm = 0.5(x1 +x2). The longitudinal part of the solution

is:

ud,x̄ = Cd(x̄)
(λ−1)

2 (6.8)

And Cd (d = 1,2,3) is the arbitrary magnitude of the displacement. Substituting

Equation (6.5) into (III.A.50) of 5.10 yields a system of linear differential equations that,

by some lengthy mathematical manipulations, produces three equations in the following

form:

Li,1 sin(ncθ) +Li,2 cos(ncθ) = 0 (i = 1,2,3) (6.9)

Li,j operators are solely dependent on displacements and their derivatives along x direc-

tion on the middle surface, circumferential mode number and shell parameters such as
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elasticity and geometry. Therefore, the only variable that shows up in Li,j is λ. Hence, the

equilibrium Equations (6.8) can be rewritten in the following matrix form:

[
AQAQAQ

]{
AAA
}

=


AQ1,1 AQ1,2 AQ1,3

AQ2,1 AQ2,2 AQ2,3

AQ3,1 AQ3,2 AQ3,3




C1

C2

C3

 = 0 (6.10)

Elements of
[
AQAQAQ

]
are polynomials in terms of λ and details of them are given in reference

[16]. he equilibrium equations should be able to handle any arbitrary magnitude of dis-

placement, therefore the determinant of
[
AQAQAQ

]
should be equal to zero. This produces a

characteristic polynomial that can be solved to obtain values of λ.

Solving the characteristic polynomial yields K distinct roots and the final solution of the

system is obtained by summation of all these solutions:

ud(x,θ) =

 K∑
k=1

Cd,k

(
x̄

(λk−1)
2

) (sin(ncθ)sed) (cos(ncθ)ced) (6.11)

Where sed,ced = 0,1 for d = 1,3 and sed,ced = 1,0 for ,d = 2.

The finite element of the current study has two nodal lines and the degrees of freedom

of those nodes δi δj are shown in figure 6.1a. For the case of isotropic materials four

degrees of freedom at each node are chosen and are shown for δi node in figure 6.1b. The

mathematical expression of these degrees of freedom for δi node is:

{
δmδmδm

}
=



δm,1

δm,2

δm,3

δm,4


=



Ux

Vx

Wx

�Wx
�x


,



u1,x̄(xm/L)

u2,x̄(xm/L)

u3,x̄(xm/L)

�u3,x̄(xm/L)/�x


(6.12)

Where, at m = i and m = j, xm takes values of xi = x1 and xj = x2 accordingly (figure 6.1a).

Employing equation (6.10) and recalling the linear dependency (determinant of
[
AQAQAQ

]
ma-

trix assumed to be zero) and lengthy mathematical manipulations, three unknown ampli-

tudes of vibration (C1, C2, C3) in the displacements of Equation (6.7) can be defined in

terms of each element’s degrees of freedom:
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{
δδδ

}e
,



{
δiδiδi

}
{
δjδjδj

}


=



δ1

δ2
...

δK


=



a1,1 a1,2 · · · a1,K

a2,1 a2,2 · · · a2,K
...

...
. . .

...

aK,1 aK,2 · · · aK,K





C1,1

C1,2
...

C1,K


=

[
AAA
]{

C1C1C1

}
(6.13)

Where
[
AAA
]

is a constant real matrix. Hence:

{
C1C1C1

}
=

[
AAA
]−1 {

δδδ

}e
(6.14)

Substituting matrix form of (6.14) in Equation (6.7) results the finite element displace-

ment matrix:

{
uuu
}

=


u1(x,θ)

u2(x,θ)

u3(x,θ)

 =

[
NNN

]
3×K︷            ︸︸            ︷[

RRR(x,θ)
][

AAA
]−1 {

δδδ

}e
=



R1,1 R1,2 · · · R1,K

R2,1 R2,2 · · · R2,K
...

...
. . .

...

R5,1 R5,2 · · · R5,K





c1,1 c1,2 · · · c1,K

c2,1 c2,2 · · · c2,K
...

...
. . .

...

cK,1 c5,2 · · · cK,K





δ1

δ2
...

δeK


(6.15)

Where the elements of
[
RRR
]

follow this equation:

Rd,k(x,θ) =
(

x
xm

) (λk−1)
2

(sin(ncθ)sed) (cos(ncθ)ced) (6.16)

More details on the development of this FEM solution can be found in reference [21].

6.5 Equations of Motion

So far, the spatial component of the shell motion is defined by Equation (6.15). Defining{{
δδδ

}}
=

{
δδδ(t)

}
as the temporal (time-dependent) component of shell’s motion, the equations

of motion of the shell, can be obtained by the generalized-coordinates method. Assuming

the system consists of N finite elements, each with K degrees of freedom, the Lagrangian
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equation of motion based on Hamilton’s principle can be expressed as follows:

d
dt

[
�T
�δ̇i

]
− �T
�δi

+
�V
�δi

+
�Vi

�δi
= qi , (i = 1,2, · · · ,D , K×N) (6.17)

Where

• D is the total degrees of freedom of the system after assem-bling mass and stiffness

matrices of elements and applying the constraints.

• T denotes the total kinetic energy of the system.

• V and Vi accordingly are the internal elastic strain energy and the initial stiffening

strain energy due to external axial load and hydrostatic pressure of the system.

• qi is the nodal external force.

Equation (6.17) can be rewritten in matrix form as follows:

d
dt

 �T

�
˙{
δδδ

}
− �T

�
{
δδδ

} +
�V

�
{
δδδ

} +
�Vi

�
{
δδδ

} =
{
qqq
}

(6.18)

6.5.1 Kinetic Energy

Neglecting rotational and cross translational-rotational com-ponents of the kinetic energy

due to absence of shear deformation in the theory of the current study and keeping the

pure translational (TT) part of the kinetic energy, the structural mass matrix for a single

element can be defined as follows:

[
MTMTMT

]e

K×K
=

"
Ω
ρ0

([
STSTST

]ᵀ [
STSTST

])
A1A2dxdθ (6.19)

Details of variables of Equation (6.19) can be found in reference [16]. The structural

mass matrices of all elements can be assembled to obtain the whole system mass matrix

using standard finite element assembly procedures. The corresponding assembled matrix

is named
[
MTMTMT

]
. Finally by performing some mathematical operations, the kinetic energy
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component of the equations of motion can be obtained from the following equation:

d
dt

 �T

�
˙{
δδδ

}
 =

[
MSMSMS

]{
δ̈̈δ̈δ

}
,

1
2

(
2
[
MTMTMT

]){
δ̈̈δ̈δ

}
(6.20)

[
MSMSMS

]
denotes the assembled structural mass matrix of the whole system.

6.5.2 Internal Strain Energy

The internal strain energy over the shell element surface area (Ω) is defined as:

Ve =
1
2

"
Ω

(∫ h/2

−h/2

{
σσσξ3

}ᵀ {
εεεξ3

}(
1 +

ξ3

R1

)(
1 +

ξ3

R2

)
dξ3

)
dΩ (6.21)

The through-the-thickness integral of Equation (6.21) can be obtained as follows:

∫ h/2

−h/2

{
σσσξ3

}ᵀ {
εεεξ3

}(
1 +

ξ3

R1

)(
1 +

ξ3

R2

)
dξ3 =

{
E◦E◦E◦

}ᵀ [
¯CC0¯CC0¯CC0

]{
E◦E◦E◦

}
(6.22)

The strain vector
{
E◦E◦E◦

}
has two linear and nonlinear components:

{
E◦E◦E◦

}
=

[
SE◦LSE◦LSE◦L

]
6×K

{
δδδ

}e

K×1
+
[
SE◦NL
SE◦NL
SE◦NL

]
6×K2

{
δ⊗2δ⊗2δ⊗2

}e

K2×1
(6.23)

where
{
δ⊗pδ⊗pδ⊗p

}
is the Kronecker product power p of vector

{
δδδ

}
(e.g.

{
δ⊗2δ⊗2δ⊗2

}
=

{
δδδ

}
⊗
{
δδδ

}
). The rows

of
[
SE◦LSE◦LSE◦L

]
and

[
SE◦NL
SE◦NL
SE◦NL

]
are provided in Appendix I of reference [16]. The following stiffness

matrices for each element can be defined:

[
K11K11K11

]e
,

"
Ω

[
SE◦LSE◦LSE◦L

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦LSE◦LSE◦L

]
A1A2dxdθ (6.24a)

[
K21K21K21

]e
=

([
Ke

12Ke
12Ke
12

])ᵀ
,

"
Ω

[
SE◦NL
SE◦NL
SE◦NL

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦LSE◦LSE◦L

]
A1A2dxdθ (6.24b)

[
K22K22K22

]e
,

"
Ω

[
SE◦NL
SE◦NL
SE◦NL

]ᵀ [
¯CC0¯CC0¯CC0

][
SE◦NL
SE◦NL
SE◦NL

]
A1A2dxdθ (6.24c)
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can be defined. Hence the strain energy of the element can be written in the following

form:

Ve =
1
2

(({
δδδ

}e)ᵀ [
K11K11K11

]e {
δδδ

}e
+
({
δδδ

}e)ᵀ [
K12K12K12

]e {
δ⊗2δ⊗2δ⊗2

}e
+
({
δ⊗2δ⊗2δ⊗2

}e)ᵀ [
K21K21K21

]e {
δδδ

}e
+
({
δ⊗2δ⊗2δ⊗2

}e)ᵀ [
K22K22K22

]e {
δ⊗2δ⊗2δ⊗2

}e
)

(6.25)

The total strain energy is equal to the sum of the strain energies of all elements. Therefore,

using standard finite element assembly procedures, the structural stiffness matrices of all

elements can be assembled into the the whole system stiffness matrices. The correspond-

ing assembled stiffness matrices are named
[
K11K11K11

]
,
[
K12K12K12

]
,
[
K21K21K21

]
and

[
K22K22K22

]
. But substituting

Equation (6.25) into (6.18) requires proper mathematical formulation for the derivative

of Kronecker powers of vectors using matrix calculus. The necessary mathematical formu-

lations is developed by the authors and can be found in Bakhtiari et al. [22] or Appendix

J of reference [16]. Subsequently, the derivative of the strain energy with respect to the

degrees of freedom can be expressed as:

�V

�
{
δδδ

} =
[
K11K11K11

]{
δδδ

}
+
[
K̃12K̃12K̃12

]{
δ⊗2δ⊗2δ⊗2

}
+

1
2

[
K̃22K̃22K̃22

]{
δ⊗3δ⊗3δ⊗3

}
(6.26)

Where matrices
[
K̃12K̃12K̃12

]
and

[
K̃22K̃22K̃22

]
are formulated based on

[
K12K12K12

]
,
[
K21K21K21

]
and

[
K22K22K22

]
using matrix

calculus operations that the details of them are provided in [22].

6.5.3 Aerodynamic Pressure Field

The improved linear piston theory that takes into account the effect of curvature, suggests

the following relationship for the aerodynamic pressure field over the shell [23] and [24]:

PAero,L = −CA,1
[
CA,2u̇3 +

∂u3

∂x
−CA,3

u3

x tan(αc)

]
(6.27)

Where:

CA,1 =
γaPlM

2
l(

M2
l − 1

)(1/2)
, CA,2 =

1
Mlal

M2
l − 2

M2
l − 1

 , CA,3 =
1

2
(
M2
l − 1

)(1/2)
(6.28)

And γa, P , M and a accordingly denotes to the adiabatic index, static pressure, Mach

number and speed of sound. The subscript l denote to the local stream condition after the
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conical shock at the tip of the cone that can be obtained from the free stream condition

(denoted by∞ symbol) using Taylor-Maccoll analysis or pre-calculated look-up tables. To

express the aerodynamics pressure field in terms of nodal displacements, first recalling

Equation (6.15) the displacement along the third curvilinear coordinates is:

u3 =
[
NW

]{
δeδeδe

}
=

[
0 0 1

][
N
]{
δeδeδe

}
(6.29)

Substituting Equation (6.29) in Equation (6.27), yields:

{
pAEROpAEROpAERO

}
= −CA,1CA,2

[
NWNWNW

]{
δ̇ėδėδe

}
−
(
CA,1

∂
∂x

[
NWNWNW

]
−
CA,1CA,3
x tan(αc)

[
NWNWNW

]){
δeδeδe

}
(6.30)

The general nodal force vector as a result of this pressure field is defined as:

{
qAEROqAEROqAERO

}e
=

"
Ω

[
NNN
]ᵀ {

pAEROpAEROpAERO

}
A1A2dxdθ (6.31)

Hence, substituting Equation (6.29) into Equation (6.31) yields aerodynamics stiffness

and damping matrices as follows:

[
KAEROKAEROKAERO

]e
= −CA,1CA,2

"
Ω

[
NNN
]ᵀ [

NWNWNW

]
A1A2dxdθ +CA,1CA,3

"
Ω

[
NNN
]ᵀ 1
x tan(αc)

[
NWNWNW

]
A1A2dxdθ (6.32a)[

CAEROCAEROCAERO

]e
= −CA,1

"
Ω

[
NNN
]ᵀ ∂
∂x

[
NWNWNW

]
A1A2dxdθ (6.32b)

The whole structure aerodynamics and stiffness matrices
[
KAEROKAEROKAERO

]
and

[
CAEROCAEROCAERO

]
can be con-

structed using classic finite element assembly procedures.

6.5.4 Initial Stiffening Due to Axial Load and Hydrostatic Pressure

The stress resultants due to the combination of the axial load FA and hydrostatic pressure

pm can be formulated as follows[25]:

nθA = −x tan(αc)pm (6.33a)

nxA = −x tan(αc)
2

pm −
FA

π sin(2αc)
(6.33b)
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An element’s strain potential energy as a result of these stress resultants is equal to[9]:

V e
i =

"
Ω

[
nθAϕ

2
1 +nxAϕ

2
2 (nθA +nxA)ϕ2

1

]
A1A2dxdθ (6.34a)

Defining
[
NU

]
=

[
1 0 0

][
N
]

and
[
NV

]
=

[
0 1 0

][
N
]

and taking the same approach as Equa-

tions (6.29) and(6.30), the linear rotation parameters of Equation (6.2) can be expressed

in terms of nodal displacements:

[
Nϕ1
Nϕ1Nϕ1

]
= − �

�x

[
NWNWNW

]
[
Nϕ2
Nϕ2Nϕ2

]
=

1
xtan(αc)

[
NVNVNV

]
− 1

xsin(αc)
�

�θ

[
NWNWNW

]
[
NϕNϕNϕ

]
=

1
2

(
�

�x

[
NVNVNV

]
− 1

xsin(αc)
�

�θ

[
NUNUNU

]
+

1
x

[
NVNVNV

]) (6.35a)

Therefore, the initial stiffness matrices due to hydrostatic pressure and axial load are ob-

tained as follows:

[
Ki,pmKi,pmKi,pm

]e
= pm

"
Ω

(
−x tan(αc)

[
Nϕ1
Nϕ1Nϕ1

]ᵀ [
Nϕ1
Nϕ1Nϕ1

]
+
x tan(αc)

2

[
Nϕ2
Nϕ2Nϕ2

]ᵀ [
Nϕ2
Nϕ2Nϕ2

]
− x tan(αc)

[
NϕNϕNϕ

]ᵀ [
NϕNϕNϕ

])
A1A2dxdθ (6.36a)[

Ki,FAKi,FAKi,FA

]e
= FA

"
Ω

(
1

π sin(2αc)

[
Nϕ2
Nϕ2Nϕ2

]ᵀ [
Nϕ2
Nϕ2Nϕ2

]
+

1
π sin(2αc)

[
NϕNϕNϕ

]ᵀ [
NϕNϕNϕ

])
A1A2dxdθ (6.36b)

Using general finite elements assembly procedures, the whole structure initial stiffening

matrices
[
Ki,pmKi,pmKi,pm

]
and

[
Ki,FAKi,FAKi,FA

]
can be constructed. Therefore, employing the same approach

described for the internal strain energy, the initial stiffness component of the equations of

motions is:
�Vi

�
{
δδδ

} =
[
Ki,pmKi,pmKi,pm

]{
δδδ

}
+
[
Ki,FAKi,FAKi,FA

]{
δδδ

}
(6.37)

6.5.5 Equations of Motion in Terms of Nodal Displacements

Substituting Equations (6.20), (6.26), (6.33) and (6.37) in Equation (6.18) results in the

following equation of motion:

[
MSMSMS

]{
δ̈̈δ̈δ

}
+
[
CAEROCAEROCAERO

]{
δ̇̇δ̇δ

}
+
[
KtotKtotKtot

]{
δδδ

}
+
[
K̃12K̃12K̃12

]{
δ⊗2δ⊗2δ⊗2

}
+

1
2

[
K̃22K̃22K̃22

]{
δ⊗3δ⊗3δ⊗3

}
=

{
qqq
}

(6.38)
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Where: [
K11,totK11,totK11,tot

]
=

[
K11K11K11

]
+
[
KAEROKAEROKAERO

]
+
[
Ki,pmKi,pmKi,pm

]
+
[
Ki,FAKi,FAKi,FA

]
(6.39)

6.6 Dynamic Stability in Supersonic Flow

6.6.1 Harmonic Motion

In case of free motion when there is no excitation force, the left hand side of Equation

(6.38) should be equal to zero or a negligible residual such as R(t):

R(t) =
[
MSMSMS

]{
δ̈̈δ̈δ

}
+
[
CAEROCAEROCAERO

]{
δ̇̇δ̇δ

}
+
[
K11,totK11,totK11,tot

]{
δδδ

}
+
[
K̃12K̃12K̃12

]{
δ⊗2δ⊗2δ⊗2

}
+

1
2

[
K̃22K̃22K̃22

]{
δ⊗3δ⊗3δ⊗3

}
(6.40)

A variation of harmonic balance method proposed by Lewandowski [26] is used to obtain

the nonlinear response of the system. The temporal component of the response is assumed

to have the following periodical structure:

{
δδδ

}
=

{
δcδcδc

}
cos(ωt) +

{
δsδsδs

}
sin(ωt) (6.41)

In order to the obtain the amplitude equation, the in-time Galerkin method is applied to

the residual [27]:

2/T
∫ T /4

0
R(t)cos(ωt)dt = 0 (6.42a)

2/T
∫ T /4

0
R(t)sin(ωt)dt = 0 (6.42b)

Defining the
{
δcsδcsδcs

}
=

{{
δcδcδc

} {
δsδsδs

}}ᵀ
, substituting Equation (6.41) into Equation (6.40), re-

arranging in the matrix form and some lengthy mathematical operations yield the ampli-
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tude equation as follows:

−ω2

 1
4MSMSMS

1
2πMSMSMS

1
2πMSMSMS

1
4MSMSMS

{δcsδcsδcs

}
+ω

−1
2πCAEROCAEROCAERO

1
4CAEROCAEROCAERO

−1
4 CAEROCAEROCAERO

1
2πCAEROCAEROCAERO

{δcsδcsδcs

}
+

−1
4 K11,totK11,totK11,tot

1
2πK11,totK11,totK11,tot

−1
2πK11,totK11,totK11,tot

1
4K11,totK11,totK11,tot

{δcsδcsδcs

}

+

 2
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

1
3πK̃12K̃12K̃12

2
3πK̃12K̃12K̃12

{δcsδcsδcs

}⊗2

+

 3
16K̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
16K̃22K̃22K̃22

1
4πK̃22K̃22K̃22

1
4πK̃22K̃22K̃22

3
16K̃22K̃22K̃22

{δcsδcsδcs

}⊗3
= 0

(6.43)

Where T is the period of the response.

6.6.2 Linear Solution

Equation (6.43) can be rewritten in the following compressed form where only the short

names for matrices substituted their expanded form:

−ω2
[
MMSMMSMMS

]{
δcsδcsδcs

}
+ω

[
CCAEROCCAEROCCAERO

]{
δcsδcsδcs

}
+
[
KK11,totKK11,totKK11,tot

]{
δcsδcsδcs

}
+
[
K̃K12K̃K12K̃K12

]{
δcsδcsδcs

}⊗2
+
[
K̃K22K̃K22K̃K22

]{
δcsδcsδcs

}⊗3
= 0

(6.44)

In case of linear dynamic response, all the nonlinear terms that include Kronecker prod-

uct are assumed to be zero. By factorizing
{
δcsδcsδcs

}
and dropping the trivial solution of{

δcsδcsδcs

}
= 0 equation, (6.44) takes the following form:

−ω2
[
MMSMMSMMS

]
+ω

[
CCAEROCCAEROCCAERO

]
+
[
KK11,totKK11,totKK11,tot

]
= 0 (6.45)

This is a classic generalized eigenvalue problem whose exact solution can be obtained us-

ing generalized Schur decomposition. In the current study, the LAPACK numerical library

[28] used to solve the linear generalized eigenvalue problem and to obtain the frequen-

cies. Linear flutter in conical and cylindrical shells is a Hopf bifurcation and occurs as a

result of merging two adjacent modes; see references [9] and [29]. The flutter onset can be

detected by appearance of negative imaginary parts in the frequencies that are obtained

from the solution of the generalized eigenvalue problem. While the real parts denote
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the frequency, the imaginary part represents damping. Hence, negative damping leads

to instability. In the current study, an algorithm using the secant method is developed

to accurately identify the linear critical pressure where the flutter onset occurs. In short,

using two initial guesses for dynamic pressure where one resides in the stable region and

the other is placed in the unstable region, a new pressure in between is iteratively cal-

culated using a secant root-finding algorithm that yields a frequency with a very small

negative imaginary part. This is a good replacement for the common trial and error that

was employed in some of the earlier studies (Sabri et al. [30] and Kerboua and Lakis [31]).

6.6.3 Nonlinear Solution

For solving the nonlinear amplitude equations a variation of the algorithm described by

Lewandowski [26] was employed. The algorithm contains two major steps. The first step

utilizes trust region optimization [32] to obtain solution of generalized coordinates vector

(
{
δcsδcsδcs

}
) for a given constant harmonic frequency (ω). The next step utilizes the calculated

vector to calculate the nonlinear components and then correct the harmonic frequency by

treating it as a linear problem.The results of the linear solution or the previous amplitude

step are used as the initial guess.

Let us define the following cost function:

F(ω,
{
δcsδcsδcs

}
) =−ω2

[
MMSMMSMMS

]{
δcsδcsδcs

}
+ω

[
CCAEROCCAEROCCAERO

]{
δcsδcsδcs

}
+
([

KK11,totKK11,totKK11,tot

]
+
[
K̃K12K̃K12K̃K12

]
(×)
vecI

({
δcsδcsδcs

})
+
[
K̃K22K̃K22K̃K22

]
(×)
vecI

({
δcsδcsδcs

}⊗2
)){

δcsδcsδcs

} (6.46)

Obviously, the solution for a desired amplitude such as A should yield F(ω,
{
δcsδcsδcs

}
) = 0. But

the solution also should be constrained in a way that the maximum value of the elements

within
{
δcsδcsδcs

}
that are associated with displacement in normal to surface directions (W ) be

equal to A. Let us call such vector
{
δcsδcsδcs

}
A

.

The outline of the algorithm can be described as follows:

1. In the first step of the algorithm, using a guess for ω such as ω∗ (the initial guess can

be obtained from the linear frequencies) and keeping that constant, Equation (6.46)
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is solved to obtain a
{
δcsδcsδcs

}∗
vector that minimizes F(ω,

{
δcsδcsδcs

}
).

2.
{
δcsδcsδcs

}∗
vector is rescaled to

{
δcsδcsδcs

}∗
A

so it satisfies the amplitude constraint.

3. This scaled vector is substituted as a constant vector within the rearranged version

of Equation (6.44) that has the following form:(
−ω2

[
MMSMMSMMS

]
+ω

[
CCAEROCCAEROCCAERO

]
+
([

KK11,totKK11,totKK11,tot

]
+
[
K̃K12K̃K12K̃K12

]
(×)
vecI

({
δcsδcsδcs

}∗
A

)
+
[
K̃K22K̃K22K̃K22

]
(×)
vecI

({
δcsδcsδcs

}∗
A

⊗2
))){

δcsδcsδcs

}
= 0

(6.47)

Mathematical definition of operator
(×)
vecI (a) is given in [22] but in short this op-

erator converts the Kronecker product of two vectors into a matrix multiplication.

It should be noted that since
{
δcsδcsδcs

}∗
is assumed constant, Equation (6.47) now has

the same structure as the linear generalized eigenvalue problem of Equation (6.45).

Solving that linear problem provides an update for ω∗.

4. The convergence is checked by calculating F(ω∗,
{
δcsδcsδcs

}∗
A

)vector to see if the average of

its absolute is below a small threshold. Otherwise, the new ω∗ in addition to
{
δcsδcsδcs

}∗
A

are fed back as the initial guesses into the first step and the iteration continues until

the convergence is achieved.

It should be noted that to ensure and improve the convergence, the implementation of

the algorithm employs additional features such as concepts similar to under relaxation

factor, the gradual incrementing of the amplitude and reusing the solution of the previous

amplitude as the initial guess for the next larger amplitude step. The high level flowchart

of the algorithm is shown in Figure 6.2 .

6.6.4 Convention of Boundary Conditions

Tong’s [33] convention is used to identify the boundary conditions for a truncated cone
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Figure 6.2 Overview of the nonlinear harmonic frequency solver algorithm
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that has four degrees of freedom at each end:

• "F": all degrees of freedom are free (U , V , W , ∂W/∂x)

• "CC4": all degrees of freedom are clamped (U = V =W = ∂W/∂x = 0, )

• "SS0": simply supported where U = 0 and the rest are free

• "SS4": simply supported where U = V =W = 0 and ∂W/∂x is free

• "SS5": where V = 0 and the rest are free

For example, F-SS0 indicates free boundary condition at the small end and simply sup-

ported according to what is described above at the larger end.

6.7 Results and Discussion

6.7.1 Small Amplitude Vibration and Flutter

It is important to validate the linear dynamic behavior of the shell to ensure the correct-

ness of the model and also to provide a baseline for nonlinear analysis. Hence, for the first

case of the current study’s calculations, the small amplitude flutter of thin conical shells

for the linearized version of Equation (6.39) (all the nonlinear terms are dropped) was in-

vestigated by different authors [2, 7, 9, 10, 31, 34] on a truncated conical shell with the fol-

lowing properties: t = 1.295mm(0.051in), R1 = 191.72mm(7.548in), L = 1558.7mm(61.365in),

αc = 5◦, E = 44.82GP a(6.5 × 106lbf in−2), ν = 0.29, ρ = 8902kgm−3(8.33 × 10−4lbf sin−4),

M∞ = 3, a∞ = 213m/s(8400ins−1), γa = 1.4, Pl/P∞ = 1.03 and Ml = 2.89. Ml and Pl de-

note to the local Mach number and pressure after the conical shock on conditions have

been calculated using [35]. Moreover, the calculated flutter onset static pressure should

be re-adjusted by this pressure ratio to obtain the free stream static pressure. The bound-

ary conditions for this case is set to SS4-SS4. The flutter critical parameter is defined as

follows:

Λcr =
12(1− ν2)γP∞R

3
1

Et3 (M2 − 1)(1/2)
(6.48a)
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The results including the critical circumferential mode number (ncr) are shown in Table

6.1 and show good agreement with existing studies reported in literature. Based on the

provided numbers, it seems that a few of earlier works (e.g. [9] and [31]) overlooked the

important effect of the formation of conical shock at the tip of the cone and subsequently

the reduced local Mach number and increased local static pressure. This led to the slight

differences between those values and what is reported here that practically employed the

same FEM method. It seems that Shulman [34] used insufficient number of terms in em-

ploying the Galerkin implementations. Moreover, the current study employed the correc-

tion terms for considering the effect of curvature in its linear piston theory while Dixon

and Hudson [2] and Bismarck-Nasr and Costa Savio [7] ignored that effect.

The validity of real and imaginary components of the frequency of the current study were

compared favorably with the work of Kerboua and Lakis [31]. The dimensions and phys-

ical properties of the shell are the same as the case presented for Table 6.1, Ml = 3 and

SS4-SS4 The local Mach number and the boundary conditions were chosen to be Ml = 3

and SS4-SS4 were chosen as the local Mach number and the boundary conditions, respec-

tively. The results are shown in figure 6.3 and demonstrate good accordance. The small

differences can be attributed to the Newton-Raphson iterative method that was employed

for calculating the flutter onset in that study, while in the current study, the exact solution

using generalized Schur decomposition is employed.

In the third case, for the breathing vibration of conical shells, experimental results pro-

vided by Miserentino and Dixon [5] were selected for validation. The truncated coni-

cal shell has the following properties t = 0.047cm, R1 = 3.05cm, R2 = 38.1cm, αc = 15◦,

E = 200GP a, ν = 0.28, ρ = 7640kgm−3 and the boundary conditions are reported to be

SS5-SS5. The shell was pressurized with air. Results for four different internal pressures

are shown in Figure 6.4 and demonstrate good agreement. It should be noted that due to

the configuration of the installed shell in this experiment, the internal pressure produced

an axial load that was taken into account by multiplying the pressure on the sum of the

shell’s area at both ends. The slight difference could be attributed to the shell boundary

conditions in the experiments that as described by Miserentino and Dixon [5] had some

deviations from the assumed free degrees of freedom.
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Table 6.1 Validation: Small amplitude flutter critical parameter

Reference Method Λcr ncr
Shulman [34] 6

Galerkin, 4 terms 669
Dixon and Hudson [2]

Galerkin, 4 terms 492 5
Galerkin, 8 terms 588 5
Galerkin, 12 terms 590 5

Bismarck-Nasr and Costa Savio [7] 6
FEM 702 6

Sabri and Lakis [9]
Hybrid FEM 598 6

Pidaparti and Yang [36]
576 5

Mahmoudkhani et al. [10]
570 5

Present (Linear)
554 5

Present (Linear)
420 6

The flutter critical pressures and first mode frequencies at different values of internal

pressure, for the shell described in the second case are shown in Figure 6.5. As can be

seen, the flutter critical pressure increases with the internal pressure due to its stiffening

effect and this is supported by what was reported by Sabri and Lakis [9] and Kerboua and

Lakis [31].

6.7.2 Large Amplitude Flutter

Due to lack of enough data to reproduce the few cases of nonlinear flutter of conical

shells, one case of cylindrical shell that was studied by Fung and Olson [37] is simu-

lated with a truncated cone with a very small semi-cone angle (αc = 0.01◦) and was em-

ployed for validation of large amplitude flutter. The properties are: t = 1.016mm(0.004in),

R1 = 203.2mm(8.00in), L = 391.16(15.40in), αc = 0.01◦, E = 110.3GP a(16 × 106lbf in−2),

ν = 0.35, ρ = 8902kgm−3(8.33×10−4lbf s2in−4), M∞ = 3, a∞ = 213m/s(8400ins−1), γ = 1.4,
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(a) (b)

Figure 6.3 Comparison of (6.3a) the real and (6.3b) the imaginary parts of the first and
second mode of vibration with those reported by Kerboua and Lakis [31]

nc = 23 and pm = 3447P a(0.5psi). The results of large amplitude flutter static pressure

to the linear flutter for different nondimensional amplitudes of vibrations are shown in

Figure 6.6 and demonstrate good accordance.

Nonlinear flutter of a pressurized truncated cone with physical boundary conditions and

geometrical properties similar to the second case was studied using Sanders’ nonlinear

thin shell theory for modeling the kinematics of the shell. The internal pressure was set

to pm = 9.0kP a and the associated axial load was also considered for calculations. This is

the case of a pressurized truncated conical shell that was described in the second case and

was the subject of experimental study by Miserentino and Dixon [5]. The flutter critical

pressure in that experiment was reported to be pL = 332.2kP a at nc = 9. In the current

study, the linear critical pressure was calculated as Pcr = 389.305kP a.

Investigating the first ten modes of nonlinear response that are not presented here, re-

vealed that nonlinear flutter onset and instability within the amplitude range of the cur-

rent study (1.2-1.5 times of the shell thickness) occurs in the first four modes of oscilla-

tion. Hence, the presented results here are focused on those four modes. The convention

in literature is to provide the stability curves in terms of static pressure. On the other

hand the common practice in the few existing experiments was to keep the static pres-

sure constant and induce the flutter by reducing the internal pressure, mostly because

the gradual change in the static pressure of the supersonic wind tunnel is not practical.
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Figure 6.4 Comparison of vibration frequencies of simply supported truncated conical
shell at different internal pressures against those presented by Miserentino and Dixon
[5]
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Figure 6.5 Pressurized shell flutter onset (6.5a) critical static pressure (6.5b) first mode
frequency for different circumferential mode numbers

Hence, we focused the results around the flutter onset for varying amplitude of vibration.

Figure 6.7 shows the variation of dimensionless flutter frequency versus the amplitude of

flutter vibration for all three different theories for the first and the second longitudinal

modes of this case. As can be seen, all theories predicted a softening behavior for the

effect of geometrical nonlinearities. Moreover, in both modes, Donnell’s theory predicted

stronger softening effect but the prediction of Sanders and Nemeth theories at lower am-

plitudes are relatively close. Since the contribution of additional terms in Nemeth theory

compared to Sanders’ is more effective in thicker shells and in the presence of shear de-

formation, producing close results for this particular thin shell is expected. Notably, all

three theories predicted unstable branches of vibration for both modes that are different

from toggling between stability and instability for the linear solution. This is a result of

Neimark-Sacker bifurcations of the periodic orbit.

Figure 6.8 shows the variation of non-dimensional flutter amplitude versus non-dimensional

flutter frequency for the third and the fourth longitudinal modes of Sanders’ theory. This

has been calculated at a very small post-flutter critical pressure Pcr = 390.0kP a to achieve

numerical convergence.

The alternating stable-unstable behavior between modes that results in a shift in the sta-
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bility to the higher modes is consistent with the general behavior described for the non-

linear flutter in cylindrical shells [29]. The next Neimark-Sacker bifurcation results in

establishing the stability in lower modes while destabilizes the higher modes. Moreover,

as can be seen in all of the results, the deviations from the linear frequency are not sig-

nificant and that is in line with what is reported in the experimental work of Miserentino

and Dixon [5]. It should be noted due to the presence of sin(ωt) in Equation (6.41), one

additional mode emerges between each two linear modes. In other words, in terms of

frequency, the first two modes on nonlinear vibration have close values to the first linear

mode and similarly, the third and fourth nonlinear frequencies have values that emerged

from the second linear mode of vibration.

6.8 Conclusion

A nonlinear hybrid finite element model was developed for truncated conical shells, based

on the exact solution of Sander’s linear shell theory. Using the generalized coordinates

method and the displacement function of the FEM model, the internal strain energy of

the shell for three different types of geometrical nonlinearities (Donnell, Sanders and

Nemeth) was defined in terms of nodal displacements. Linear piston theory with correc-

tion term for the effect of curvature employed for modeling the pressure field and trans-

formed in terms of nodal displacements. The effect of initial stiffening due to internal

pressure and axial loads was also formulated in terms of nodal displacements. Equations

of motion of the shell were developed using Lagrangian approach. Then employing a vari-

ation of harmonic balance method, the amplitude equations of the shell were obtained.

The linear flutter problem was solved using the exact solution of generalized Schur de-

composition of the system and an iterative method was developed for the nonlinear so-

lution. Results of vibration of pressurized truncated conical shells were compared with

those existing in the literature, and these showed good agreement.

Linear and large amplitude flutter characteristics were also compared with the existing

experimental data for conical and cylindrical shells accordingly, and these demonstrated

good accordance. The large amplitude flutter responses of truncated conical shells were

obtained and these showed softening behavior. In addition, it was observed that, as
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Figure 6.6 Comparison of the large amplitude dimensionless flutter frequency of a cylin-
drical shell with Reference[37]
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Figure 6.7 Nondimensional flutter amplitude versus nondimensional flutter frequency;
ωm,NL/ω1,L; (__)stable branches, - - unstable branches; for the first and second longitudi-
nal modes, comparison of Donnell, Sanders and Nemeth theories (nc = 9, ω1,L = 1811Hz,
Pcr = 389.305kP a )
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Figure 6.8 Nondimensional flutter amplitude versus nondimensional flutter frequency;
ωm,NL/ω1,L; (__)stable branches, - - unstable branches; for the third and fourth longi-
tudinal modes predicted by Sanders theory(nc = 9, ω1,L = 1811Hz, Pcr = 389.305kP a
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the amplitude of the vibration increased, the instability shifted to higher modes due to

Neimark-Sacker bifurcation.
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By introducing the geometrical parameters of conical shells into the general equilibrium

equations of Sanders’ improved linear theory [17]; one obtains the equilibrium equations

of a conical shell as follows.:
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III.B. Nomenclature[
AQAQAQ

]
Characteristic polynomial matrix

cNL, c1, c2, c3 Flag parameters to define different shell theories[
¯CC0¯CC0¯CC0

]
Symmetric constitutive matrix for conical element

e◦11,e◦22,e◦12 Linear deformation parameters defined by Equation (6.3)[
K11K11K11

]
,
[
K̃12K̃12K̃12

]
,
[
K̃22K̃22K̃22

]
Assembled first, second and third order structural stiffness matrices

L Truncated cone element length

M, Ml Flow Mach number and Local flow Mach number(after the oblique

shock)[
MTMTMT

]
,
[
MSMSMS

]
Assembled translational and structural mass matrices defined by

Equation (6.19) and (6.20)

nc Circumferential mode number[
NNN
]

Displacement field matrix of a finite element defined by Equation

(6.15)

p∞ Flow static pressure

Ui(i = 1,2,3) Displacements along the longitudinal, lateral and normal to surface

directions, off the reference surface

ui(i = 1,2,3) Displacements along the longitudinal (U ), lateral (V ) and normal (W ),

on the reference surface

αc Cone half angle

χ◦11,χ◦22,χ◦12,
{
χ◦χ◦χ◦

}
Linear deformation parameters defined by Equation (6.4b)

δm nodal degrees of freedom associated with mthnode

ε◦11,ε◦22,
{
ε◦ε◦ε◦

}
Reference surface strains defined by Equation (6.4a)

ϕ1,ϕ2, ϕ Linear rotation parameters defined by Equation (6.2)

ρ11,ρ22 Geodesic radii of curvature radii of curvature along x and θ directions{
δδδ

}e
Vector of element degrees of freedom{

δδδ

}
Vector of whole system degrees of freedom
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CHAPTER 7 GENERAL DISCUSSION

The common approach in developing equations of motion for third-order geometrically

nonlinear systems usually employ the expanded form of the strain energy. The final equa-

tions take the form of large nested summations with many terms. This approach is not

effective and susceptible to errors. Moreover, this expanded form of equations of motion

is difficult to code into computer programs. Hence, the mathematically concise way to de-

velop and express equations of motion for shells is to employ matrix multiplication and

the Kronecker product. In the current thesis, a new mathematical framework to express

equations of motion for third-order nonlinear elastic systems such as shells was devel-

oped. This required a novel methodical approach to obtain the general derivatives of

Kronecker powers of vectors. The applications of this framework have potentials in other

fields such as signal processing and dynamic modeling.

The current thesis investigated the geometrically nonlinear vibrations and supersonic flut-

ter of truncated conical shells under the initial stiffening effects of internal pressurization

and axial loads. The three different theories employed were those of Donnell, Sanders

and Nemeth. This provided the ability to study the differences between the predictions of

those theories. The hybrid finite element tool developed in this study provided accurate

predictions for the small amplitude vibration of truncated conical shells in low to mod-

erate circumferential mode numbers when a reasonably fine mesh was used. This was

confirmed by validation of linear vibration frequencies against three different experimen-

tal data sets available in literature that had different properties and boundary conditions.

In addition, it was observed that the natural frequency of vibration increased as a result

of internal pressurization. The axisymmetric nonlinear vibrational response of conical

shells was found to be from hardening types. Among the three chosen theories, Donnell’s

theory predicted stronger nonlinear response while the difference between the results of

Nemeth’s and Sanders’ theories were found to be insignificant. This important finding

revealed that the thinness assumptions in Sanders’ theory could provide accurate results

with significantly less modeling and numerical efforts for the classes of shells that were
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studied in this work. For the studied cases, it was found that the weakest nonlinear re-

sponse occurred when the cone half-angle was equal to 45◦, while the nonlinear effects got

stronger when the cone half-angle moved away from that value. Effects of other param-

eters such as boundary conditions and thickness-to-small-radius ratio were also investi-

gated. One notable observation in the studied cases was that, under certain conditions,

looser constraints led to stronger nonlinear response to the extent that its value surpassed

more constrained cases for larger amplitudes of vibration.

The linear supersonic flutter of truncated conical shells was found to be of the Hopf bi-

furcation type. The linear flutter onset occurred as a result of the coalescence of the two

eigen-frequencies corresponding to the first and second mode of vibration. The flutter

dynamic pressure onset of pressurized truncated conical shells was found to be higher

than the empty ones, and the tensile axial load resulted in a similar behavior.

The nonlinear flutter onset demonstrated a rather more complicated behavior. While at

low amplitudes of vibrations, the instability occurred at the first and second mode of vi-

bration; as the amplitude of vibration increased, the instability shifted to higher modes.

In other words, when the amplitude of the vibration increased, the lower mode became

stable while the adjacent higher mode started demonstrating unstable behavior that could

be identified in the imaginary part of the supersonic vibration frequency. This alternating

stable–unstable behavior between modes that resulted in the shifting of the instability

to the higher modes was consistent with the general behavior described for the nonlinear

flutter in cylindrical shells. It should be noted that the actual Mach number on the surface

of the cone should be adjusted using oblique shock relationships. This might explain the

differences between numerical and experimental results reported in some of the earlier

studies.
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CHAPTER 8 CONCLUSION

8.1 Summary of Works

In the current study, the following tasks have been achieved:

• The linear and nonlinear vibration and supersonic flutter of truncated conical shell

are investigated in this thesis. To perform this, first the general mathematical solu-

tion to the problem derivatives of the Kronecker powers of a vector was provided

and its application in third-order geometrically nonlinear elasticity was presented.

This paved the way for a mathematically concise solution for nonlinear equations of

motion for thin shells. The developed solution presented a new ability in the appli-

cations of matrix calculus that goes beyond the mechanics of materials and elasticity

science. This can be used in other fields such as nonlinear dynamics, electrical and

communications engineering, stochastic simulations and, possibly, a host of others.

• A linear hybrid finite element solution based on best first approximation of Sanders’

theory was developed for truncated conical shells that could support a wide range

of boundary conditions.

• The nonlinear kinematics of three different shell theories from Donnell, Sanders and

Nemeth were used to formulate nonlinear equations of motion for truncated conical

shells.

• The initial stiffening effect induced by internal pressure and axial loads were mod-

eled.

• Linear piston theory was used to introduce the supersonic pressure field as a nodal

force in the model.

• Two variants of the harmonic response method based on Galerkin’s method in time

domain were used to obtain the nonlinear vibration and supersonic flutter response

of truncated conical shells.

The developed model and the numerical tool allows for predictions under various bound-

ary conditions in the presence of internal pressures and axial loads by taking into account
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the following:

• Linear vibration of truncated conical shells.

• Linear supersonic flutter of truncated conical shells.

• Large amplitude nonlinear vibration of truncated conical shells.

• Large amplitude nonlinear supersonic flutter and divergence of truncated conical

shells.

One notable contribution of the current study is the ability to provide comparative results

for truncated conical shells using different nonlinear shell theories. The developed tool

can be efficiently used in conceptual and preliminary designs of aerospace vehicles. Due

to the magnitude of complexities between those theories both in terms of development

effort and computational costs, this tool can provide the necessary information required

in choosing the nonlinear shell theory for detailed design.

8.2 Future Research

Future works should focus on improving different aspects of the current study on two

fronts. The first one is improvements on the physical and mathematical model that can

include:

• Nonlinear aerodynamics: The current study employed the linear part of the Taylor

expansion for the supersonic pressure field predicted by piston theory. Precisely

quantifying the effect of omitted higher order terms could improve the accuracy of

the results or demonstrate the bounds of parameters where linear aerodynamics can

provide satisfactory results.

• Employing shear deformation theory to investigate these phenomena for moderately

thick shells and the effect of thinness assumptions on the predictions of the existing

model.

• Using the existing tool to investigate the behavior of advanced materials including

FGM and orthotropic layered composites.
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The second area of improvement is related to the numerical solution of the developed

nonlinear model. A comparative study between the results of the modified harmonic re-

sponse method in the current study with other existing approaches including numerical

continuation and excited vibration could improve the understanding about the limita-

tions of each method. It should be noted that, despite its wide applications, the nonlinear

eigenvalue problem that appears in the family of harmonic response methods has not yet

found a robust general solution.
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CHAPTER 9 SELECTED APPENDICES FROM THE TECHNICAL REPORT

EPM-RT-2018-01

.1 Appendix IV.A Through-the-thickness Strain Deformation Matrix

Defining the following aliases:

z1 =
(
1 +

ξ3

R1

)
(IV.A.1a)

z2 =
(
1 +

ξ3

R2

)
(IV.A.1b)

Z =
1
2

(
ξ3

R2
− ξ3

R1

)
(IV.A.1c)

Through-the-thickness strain deformation matrix is defined as follows:

[
SSS
]

=


[
S0S0S0

]
3×3

[
S1S1S1

]
3×3

[
S2S2S2

]
3×2

[
S3S3S3

]
3×2

[
S4S4S4

]
3×2[

000
]

2×3

[
000
]

2×3

[
000
]

2×2

[
000
]

2×2

[
S5S5S5

]
2×2

 (IV.A.2)

The block matrices of equation (IV.A.2) can be obtained from the following equations [1]

:

[
S0S0S0

]
=


z2 0 0

0 z1 0

0 0 1
2 [z1 + z2 +Z]

 (IV.A.3a)
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[
S1S1S1

]
=


z2 0 0

0 z1 0

0 0 1
2 [z1 + z2]

 (IV.A.3b)

[
S2S2S2

]
= z2


F1 (ξ3) 0

0 0

0 F2 (ξ3)

 (IV.A.3c)

[
S3S3S3

]
= z1


0 0

0 F2 (ξ3)

F1 (ξ3) 0

 (IV.A.3d)

[
S4S4S4

]
=


0 − z2

ρ11
F2 (ξ3)

z1
ρ22

F1 (ξ3) 0
z2
ρ11

F1 (ξ3) − z1
ρ22

F2 (ξ3)

 (IV.A.3e)

[
S5S5S5

]
=

z2

[
z1F′1 (ξ3)− F1(ξ3)

R1

]
0

0 z1

[
z2F′2 (ξ3)− F2(ξ3)

R2

] (IV.A.3f)

.2 Appendix IV.B Work Conjugate Stress-Resultants

The work-conjugate stress resultants are given as [1]:

{nnn} =


n11

n22

n12

 ,
∫ h/2

−h/2

[
S0S0S0

]ᵀ
σ̄11

σ̄22

σ̄12

dξ3 (IV.B.1a)
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{mmm} =


m11

m22

m12

 ,
∫ h/2

−h/2

[
S1S1S1

]ᵀ
σ̄11

σ̄22

σ̄12

dξ3 (IV.B.1b)

{f1f1f1} =

f11

f12

 ,
∫ h/2

−h/2

[
S2S2S2

]ᵀ
σ̄11

σ̄22

σ̄12

dξ3 (IV.B.1c)

{f2f2f2} =

f21

f22

 ,
∫ h/2

−h/2

[
S3S3S3

]ᵀ
σ̄11

σ̄22

σ̄12

dξ3 (IV.B.1d)

{qqq} =

q13

q23

 ,
∫ h/2

−h/2

[
S4S4S4

]ᵀ
σ̄11

σ̄22

σ̄12

dξ3 +

∫ h/2

−h/2

[
S5S5S5

]ᵀσ̄13

σ̄23

dξ3 (IV.B.1e)

.3 Appendix IV.C Elements of Symmetric Constitutive Matrix

CC1,1 = + A0
11 + τ0

(
− 1

R1
A1

11 +
1

R2
A1

11

)
+ τ

(
+

1

(R2
1)

A2
11 −

1
R1R2

A2
11

)
(IV.C.1)

CC1,2 = + A0
12 (IV.C.2)

CC1,3 = + A0
16 + τ0

(
−0.5

1
R1

A1
16 + 0.5

1
R2

A1
16

)
+ τ

(
+0.75

1

(R2
1)

A2
16 −

1
R1R2

A2
16

+ 0.25
1

(R2
2)

A2
16

) (IV.C.3)

CC1,4 = + A1
11 + τ0

(
− 1

R1
A2

11 +
1

R2
A2

11

)
+ τ

(
+

1

(R2
1)

A3
11 −

1
R1R2

A3
11

)
(IV.C.4)
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CC1,5 = + A1
12 (IV.C.5)

CC1,6 = + A1
16 + τ0

(
−0.5

1
R1

A2
16 + 0.5

1
R2

A2
16

)
+ τ

(
+0.5

1

(R2
1)

A3
16 − 0.5

1
R1R2

A3
16

)
(IV.C.6)

CC1,7 = + R10
11 + τ0

(
− 1

R1
R11

11 +
1

R2
R11

11

)
+ τ

(
+

1

(R2
1)

R12
11 −

1
R1R2

R12
11

)
(IV.C.7)

CC1,8 = + R20
16 + τ0

(
− 1

R1
R21

16 +
1

R2
R21

16

)
+ τ

(
+

1

(R2
1)

R22
16 −

1
R1R2

R22
16

)
(IV.C.8)

CC1,9 = + R10
16 (IV.C.9)

CC1,10 = + R20
12 (IV.C.10)

CC1,11 = + W10
15 + τ0

(
− 1

R1
R10

15 +
1
ρ11

R10
16 +

1
ρ22

R10
12 +

1

(R2
1)

R11
15

− 1
R1R2

R11
15 −

1
R1ρ11

R11
16 +

1
R2ρ11

R11
16 +

1
R2

W11
15

)
+ τ

(
− 1

(R3
1)

R12
15

+
1

(R2
1)R2

R12
15 +

1

(R2
1)ρ11

R12
16 −

1
R1R2ρ11

R12
16

) (IV.C.11)

CC1,12 = + W20
14 + τ0

(
− 1

R2
R20

14 −
1
ρ11

R20
11 −

1
ρ22

R20
16 +

1
R1ρ11

R21
11

− 1
R2ρ11

R21
11 +

1
R2

W21
14

)
+ τ

(
− 1

(R2
1)ρ11

R22
11 +

1
R1R2ρ11

R22
11

) (IV.C.12)

CC2,2 = + A0
22 + τ0

(
+

1
R1

A1
22 −

1
R2

A1
22

)
+ τ

(
− 1

R1R2
A2

22 +
1

(R2
2)

A2
22

)
(IV.C.13)

CC2,3 = + A0
26 + τ0

(
+0.5

1
R1

A1
26 − 0.5

1
R2

A1
26

)
+ τ

(
+0.25

1

(R2
1)

A2
26 −

1
R1R2

A2
26

+ 0.75
1

(R2
2)

A2
26

) (IV.C.14)

CC2,4 = + A1
12 (IV.C.15)

CC2,5 = + A1
22 + τ0

(
+

1
R1

A2
22 −

1
R2

A2
22

)
+ τ

(
− 1

R1R2
A3

22 +
1

(R2
2)

A3
22

)
(IV.C.16)

CC2,6 = + A1
26 + τ0

(
+0.5

1
R1

A2
26 − 0.5

1
R2

A2
26

)
+ τ

(
−0.5

1
R1R2

A3
26 + 0.5

1

(R2
2)

A3
26

)
(IV.C.17)

CC2,7 = + R10
12 (IV.C.18)
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CC2,8 = + R20
26 (IV.C.19)

CC2,9 = + R10
26 + τ0

(
+

1
R1

R11
26 −

1
R2

R11
26

)
+ τ

(
− 1

R1R2
R12

26 +
1

(R2
2)

R12
26

)
(IV.C.20)

CC2,10 = + R20
22 + τ0

(
+

1
R1

R21
22 −

1
R2

R21
22

)
+ τ

(
− 1

R1R2
R22

22 +
1

(R2
2)

R22
22

)
(IV.C.21)

CC2,11 = + W10
25 + τ0

(
− 1

R1
R10

25 +
1
ρ11

R10
26 +

1
ρ22

R10
22 +

1
R1ρ22

R11
22

− 1
R2ρ22

R11
22 +

1
R1

W11
25

)
+ τ

(
− 1

R1R2ρ22
R12

22 +
1

(R2
2)ρ22

R12
22

) (IV.C.22)

CC2,12 = + W20
24 + τ0

(
− 1

R2
R20

24 −
1
ρ11

R20
12 −

1
ρ22

R20
26 −

1
R1R2

R21
24

− 1
R1ρ22

R21
26 +

1

(R2
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R21
24 +

1
R2ρ22

R21
26 +

1
R1

W21
24

)
+ τ

(
+

1

R1(R2
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R22
24

+
1

R1R2ρ22
R22

26 −
1

(R3
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R22
24 −

1

(R2
2)ρ22

R22
26

) (IV.C.23)

CC3,3 = + A0
66 + 0.75

1

(R2
1)

A2
66 − 1.5

1
R1R2

A2
66 + 0.75

1

(R2
2)

A2
66 (IV.C.24)

CC3,4 = + A1
16 + τ0

(
−0.5

1
R1

A2
16 + 0.5

1
R2

A2
16

)
+ τ

(
+0.75

1

(R2
1)

A3
16 −

1
R1R2

A3
16

+ 0.25
1

(R2
2)

A3
16

) (IV.C.25)

CC3,5 = + A1
26 + τ0

(
+0.5

1
R1

A2
26 − 0.5

1
R2

A2
26

)
+ τ

(
+0.25

1

(R2
1)

A3
26 −

1
R1R2

A3
26

+ 0.75
1

(R2
2)

A3
26

) (IV.C.26)

CC3,6 = + A1
66 + 0.5

1

(R2
1)

A3
66 −

1
R1R2

A3
66 + 0.5

1

(R2
2)

A3
66 (IV.C.27)

CC3,7 = + R10
16 + τ0

(
−0.5

1
R1

R11
16 + 0.5

1
R2

R11
16

)
+ τ

(
+0.75

1

(R2
1)

R12
16 −

1
R1R2

R12
16

+ 0.25
1

(R2
2)

R12
16

) (IV.C.28)

CC3,8 = + R20
66 + τ0

(
−0.5

1
R1

R21
66 + 0.5

1
R2

R21
66

)
+ τ

(
+0.75

1

(R2
1)

R22
66 −

1
R1R2

R22
66

+ 0.25
1

(R2
2)

R22
66

) (IV.C.29)
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CC3,9 = + R10
66 + τ0

(
+0.5

1
R1

R11
66 − 0.5

1
R2

R11
66

)
+ τ

(
+0.25

1

(R2
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1
R1R2

R12
66

+ 0.75
1

(R2
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R12
66

) (IV.C.30)

CC3,10 = + R20
26 + τ0

(
+0.5

1
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R21
26 − 0.5

1
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R21
26

)
+ τ

(
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1

(R2
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R22
26 −

1
R1R2

R22
26

+ 0.75
1

(R2
2)

R22
26

) (IV.C.31)

CC3,11 = + W10
56 + τ0

(
− 1

R1
R10

56 +
1
ρ11

R10
66 +

1
ρ22

R10
26 + 0.5

1

(R2
1)

R11
56

− 0.5
1

R1R2
R11

56 − 0.5
1

R1ρ11
R11

66 + 0.5
1

R1ρ22
R11

26 + 0.5
1

R2ρ11
R11

66 − 0.5
1

R2ρ22
R11

26

+ 0.5
1

R1
W11

56 + 0.5
1

R2
W11

56

)
+ τ

(
−0.75

1

(R3
1)

R12
56 +

1

(R2
1)R2

R12
56 + 0.75

1

(R2
1)ρ11

R12
66

+ 0.25
1

(R2
1)ρ22

R12
26 − 0.25

1

R1(R2
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R12
56 −

1
R1R2ρ11

R12
66 −

1
R1R2ρ22

R12
26

+ 0.25
1

(R2
2)ρ11

R12
66 + 0.75

1

(R2
2)ρ22

R12
26 + 0.25

1

(R2
1)

W12
56 − 0.5

1
R1R2

W12
56 + 0.25

1

(R2
2)

W12
56

)
(IV.C.32)

CC3,12 = + W20
46 + τ0

(
− 1

R2
R20

46 −
1
ρ11

R20
16 −

1
ρ22

R20
66 − 0.5

1
R1R2

R21
46

+ 0.5
1

R1ρ11
R21

16 − 0.5
1

R1ρ22
R21

66 + 0.5
1

(R2
2)

R21
46 − 0.5

1
R2ρ11

R21
16 + 0.5

1
R2ρ22

R21
66

+ 0.5
1

R1
W21

46 + 0.5
1

R2
W21

46

)
+ τ

(
−0.25

1

(R2
1)R2

R22
46 − 0.75

1

(R2
1)ρ11

R22
16 − 0.25

1

(R2
1)ρ22

R22
66

+
1

R1(R2
2)

R22
46 +

1
R1R2ρ11

R22
16 +

1
R1R2ρ22

R22
66 − 0.75

1

(R3
2)

R22
46

− 0.25
1

(R2
2)ρ11

R22
16 − 0.75

1

(R2
2)ρ22

R22
66 + 0.25

1

(R2
1)

W22
46 − 0.5

1
R1R2

W22
46 + 0.25

1

(R2
2)

W22
46

)
(IV.C.33)

CC4,4 = + A2
11 + τ0

(
− 1

R1
A3

11 +
1

R2
A3

11

)
+ τ

(
+

1

(R2
1)

A4
11 −

1
R1R2

A4
11

)
(IV.C.34)

CC4,5 = + A2
12 (IV.C.35)

CC4,6 = + A2
16 + τ0

(
−0.5

1
R1

A3
16 + 0.5

1
R2

A3
16

)
+ τ

(
+0.5

1

(R2
1)

A4
16 − 0.5

1
R1R2

A4
16

)
(IV.C.36)
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CC4,7 = + R11
11 + τ0

(
− 1

R1
R12

11 +
1

R2
R12
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)
+ τ

(
+

1

(R2
1)

R13
11 −

1
R1R2

R13
11

)
(IV.C.37)

CC4,8 = + R21
16 + τ0

(
− 1

R1
R22

16 +
1

R2
R22

16

)
+ τ

(
+

1

(R2
1)

R23
16 −

1
R1R2

R23
16

)
(IV.C.38)

CC4,9 = + R11
16 (IV.C.39)

CC4,10 = + R21
12 (IV.C.40)

CC4,11 = + W11
15 + τ0

(
− 1

R1
R11

15 +
1
ρ11

R11
16 +

1
ρ22

R11
12 +

1

(R2
1)

R12
15

− 1
R1R2

R12
15 −

1
R1ρ11

R12
16 +

1
R2ρ11

R12
16 +

1
R2

W12
15

)
+ τ

(
− 1

(R3
1)

R13
15

+
1

(R2
1)R2

R13
15 +

1

(R2
1)ρ11

R13
16 −

1
R1R2ρ11

R13
16

) (IV.C.41)

CC4,12 = + W21
14 + τ0

(
− 1

R2
R21

14 −
1
ρ11

R21
11 −

1
ρ22

R21
16 +

1
R1ρ11

R22
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− 1
R2ρ11

R22
11 +

1
R2

W22
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)
+ τ

(
− 1

(R2
1)ρ11

R23
11 +

1
R1R2ρ11

R23
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) (IV.C.42)

CC5,5 = + A2
22 + τ0

(
+

1
R1

A3
22 −

1
R2

A3
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)
+ τ

(
− 1

R1R2
A4

22 +
1

(R2
2)

A4
22

)
(IV.C.43)

CC5,6 = + A2
26 + τ0

(
+0.5

1
R1

A3
26 − 0.5

1
R2

A3
26

)
+ τ

(
−0.5

1
R1R2

A4
26 + 0.5

1

(R2
2)

A4
26

)
(IV.C.44)

CC5,7 = + R11
12 (IV.C.45)

CC5,8 = + R21
26 (IV.C.46)

CC5,9 = + R11
26 + τ0

(
+

1
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R12
26 −

1
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26

)
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1
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R13
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)
(IV.C.47)
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)
+ τ

(
− 1
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R23
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)
(IV.C.48)
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1
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1
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1
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25

)
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1
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R13
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) (IV.C.49)
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CC5,12 = + W21
24 + τ0
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− 1
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24 −
1
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1
ρ22
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1
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R22
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− 1
R1ρ22

R22
26 +

1

(R2
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R22
24 +

1
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26 +

1
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24

)
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(
+

1
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R1R2ρ22
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1
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R23
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) (IV.C.50)

CC6,6 = + A2
66 + 0.25

1

(R2
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A4
66 − 0.5

1
R1R2

A4
66 + 0.25

1

(R2
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A4
66 (IV.C.51)
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16 + τ0

(
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1
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R12
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)
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)
(IV.C.52)
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(
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1
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)
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)
(IV.C.53)

CC6,9 = + R11
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(
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1
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1
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)
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1
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1
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)
(IV.C.54)
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(
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1
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1
R2
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)
+ τ

(
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1
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R23
26 + 0.5

1
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R23
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)
(IV.C.55)
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1
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R11
66 +

1
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1
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1)

R12
56

− 0.5
1
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1
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1
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1
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1
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1
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1
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1
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1

(R2
2)ρ22

R13
26

)
(IV.C.56)
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1

R1ρ11
R22

16 − 0.5
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16 (IV.C.60)
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(
+

1

(R2
1)

Q222
66 −

1
R1R2

Q222
66

)
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R2ρ11

Q221
16 +

1
R2

Y221
46

)
+ τ

(
− 1

(R2
1)ρ11

Q222
16 +

1
R1R2ρ11

Q222
16

) (IV.C.68)

CC9,9 = + Q110
66 + τ0

(
+

1
R1

Q111
66 −

1
R2

Q111
66

)
+ τ

(
− 1

R1R2
Q112

66 +
1

(R2
2)

Q112
66

)
(IV.C.69)

CC9,10 = + Q120
26 + τ0

(
+

1
R1

Q121
26 −

1
R2

Q121
26

)
+ τ

(
− 1

R1R2
Q122

26 +
1

(R2
2)

Q122
26

)
(IV.C.70)
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CC9,11 = + Y110
56 + τ0

(
− 1

R1
Q110

56 +
1
ρ11

Q110
66 +

1
ρ22

Q110
26 +

1
R1ρ22

Q111
26

− 1
R2ρ22

Q111
26 +

1
R1

Y111
56

)
+ τ

(
− 1

R1R2ρ22
Q112

26 +
1

(R2
2)ρ22

Q112
26

) (IV.C.71)

CC9,12 = + Y210
46 + τ0

(
− 1

R2
Q120

46 −
1
ρ11

Q120
16 −

1
ρ22

Q120
66 −

1
R1R2

Q121
46

− 1
R1ρ22

Q121
66 +

1

(R2
2)

Q121
46 +

1
R2ρ22

Q121
66 +

1
R1

Y211
46

)
+ τ

(
+

1

R1(R2
2)

Q122
46

+
1

R1R2ρ22
Q122

66 −
1

(R3
2)

Q122
46 −

1

(R2
2)ρ22

Q122
66

) (IV.C.72)

CC10,10 = + Q220
22 + τ0

(
+

1
R1

Q221
22 −

1
R2

Q221
22

)
+ τ

(
− 1

R1R2
Q222

22 +
1

(R2
2)

Q222
22

)
(IV.C.73)

CC10,11 = + Y120
25 + τ0

(
− 1

R1
Q120

25 +
1
ρ11

Q120
26 +

1
ρ22

Q120
22 +

1
R1ρ22

Q121
22

− 1
R2ρ22

Q121
22 +

1
R1

Y121
25

)
+ τ

(
− 1

R1R2ρ22
Q122

22 +
1

(R2
2)ρ22

Q122
22

) (IV.C.74)

CC10,12 = + Y220
24 + τ0

(
− 1

R2
Q220

24 −
1
ρ11

Q220
12 −

1
ρ22

Q220
26 −

1
R1R2

Q221
24

− 1
R1ρ22

Q221
26 +

1

(R2
2)

Q221
24 +

1
R2ρ22

Q221
26 +

1
R1

Y221
24

)
+ τ

(
+

1

R1(R2
2)

Q222
24

+
1

R1R2ρ22
Q222

26 −
1

(R3
2)

Q222
24 −

1

(R2
2)ρ22

Q222
26

) (IV.C.75)

CC11,11 = + Z110
55 + τ0

(
+

1

(R2
1)

Q110
55 − 2

1
R1ρ11

Q110
56 − 2

1
R1ρ22

Q110
25 +

1

(ρ2
11)

Q110
66

+ 2
1

ρ11ρ22
Q110

26 +
1

(ρ2
22)

Q110
22 − 2

1
R1

Y110
55 + 2

1
ρ11

Y110
56 + 2

1
ρ22

Y110
25 −

1

(R3
1)

Q111
55

+
1

(R2
1)R2

Q111
55 + 2

1

(R2
1)ρ11

Q111
56 − 2

1
R1R2ρ11

Q111
56 −

1

R1(ρ2
11)

Q111
66

+
1

R1(ρ2
22)

Q111
22 +

1

R2(ρ2
11)

Q111
66 −

1

R2(ρ2
22)

Q111
22 − 2

1
R1R2

Y111
55 + 2

1
R1ρ22

Y111
25

+ 2
1

R2ρ11
Y111

56 +
1

R1
Z111

55 +
1

R2
Z111

55

)
+ τ

(
+

1

(R4
1)

Q112
55 −

1

(R3
1)R2

Q112
55

− 2
1

(R3
1)ρ11

Q112
56 + 2

1

(R2
1)R2ρ11

Q112
56 +

1

(R2
1)(ρ2

11)
Q112

66 −
1

R1R2(ρ2
11)

Q112
66

− 1

R1R2(ρ2
22)

Q112
22 +

1

(R2
2)(ρ2

22)
Q112

22 +
1

R1R2
Z112

55

)
(IV.C.76)
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CC11,12 = + Z120
45 + τ0

(
+

1
R1R2

Q120
45 +

1
R1ρ11

Q120
15 +

1
R1ρ22

Q120
56

− 1
R2ρ11

Q120
46 −

1
R2ρ22

Q120
24 −

1

(ρ2
11)

Q120
16 −

1
ρ11ρ22

Q120
12 −

1
ρ11ρ22

Q120
66

− 1

(ρ2
22)

Q120
26 −

1
R1

Y210
45 +

1
ρ11

Y210
46 +

1
ρ22

Y210
24 −

1
R2

Y120
45 −

1
ρ11

Y120
15

− 1
ρ22

Y120
56 −

1

(R2
1)ρ11

Q121
15 +

1
R1R2ρ11

Q121
15 −

1
R1R2ρ22

Q121
24

+
1

R1(ρ2
11)

Q121
16 −

1

R1(ρ2
22)

Q121
26 +

1

(R2
2)ρ22

Q121
24 −

1

R2(ρ2
11)

Q121
16 +

1

R2(ρ2
22)

Q121
26

− 1
R1R2

Y211
45 +

1
R1ρ22

Y211
24 +

1
R2ρ11

Y211
46 −

1
R1R2

Y121
45 −

1
R1ρ22

Y121
56

− 1
R2ρ11

Y121
15 +

1
R1

Z121
45 +

1
R2

Z121
45

)
+ τ

(
+

1

(R3
1)ρ11

Q122
15 −

1

(R2
1)R2ρ11

Q122
15

− 1

(R2
1)(ρ2

11)
Q122

16 +
1

R1(R2
2)ρ22

Q122
24 +

1

R1R2(ρ2
11)

Q122
16 +

1

R1R2(ρ2
22)

Q122
26

− 1

(R3
2)ρ22

Q122
24 −

1

(R2
2)(ρ2

22)
Q122

26 +
1

R1R2
Z122

45

)
(IV.C.77)

CC12,12 = + Z220
44 + τ0

(
+

1

(R2
2)

Q220
44 + 2

1
R2ρ11

Q220
14 + 2

1
R2ρ22

Q220
46 +

1

(ρ2
11)

Q220
11

+ 2
1

ρ11ρ22
Q220

16 +
1

(ρ2
22)

Q220
66 − 2

1
R2

Y220
44 − 2

1
ρ11

Y220
14 − 2

1
ρ22

Y220
46 +

1

R1(R2
2)

Q221
44

+ 2
1

R1R2ρ22
Q221

46 −
1

R1(ρ2
11)

Q221
11 +

1

R1(ρ2
22)

Q221
66 −

1

(R3
2)

Q221
44 − 2

1

(R2
2)ρ22

Q221
46

+
1

R2(ρ2
11)

Q221
11 −

1

R2(ρ2
22)

Q221
66 − 2

1
R1R2

Y221
44 − 2

1
R1ρ22

Y221
46 − 2

1
R2ρ11

Y221
14

+
1

R1
Z221

44 +
1

R2
Z221

44

)
+ τ

(
+

1

(R2
1)(ρ2

11)
Q222

11 −
1

R1(R3
2)

Q222
44

− 2
1

R1(R2
2)ρ22

Q222
46 −

1

R1R2(ρ2
11)

Q222
11 −

1

R1R2(ρ2
22)

Q222
66 +

1

(R4
2)

Q222
44

+ 2
1

(R3
2)ρ22

Q222
46 +

1

(R2
2)(ρ2

22)
Q222

66 +
1

R1R2
Z222

44

)
(IV.C.78)
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.4 Appendix IV.D Through-the-thickness Elasticity Coefficient Integrals

.4.1 Compliance Tensor

The through-the-thickness integrals of the compliance tensor are defined as follows (F
′
= dF/dξ3):

Ak
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k dξ3 (IV.D.1a)

Rjk
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k Fjdξ3 (IV.D.1b)

Qijk
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k FiFjdξ3 (IV.D.1c)

Wjk
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k F
′
jdξ3 (IV.D.1d)

Yijk
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k F
′
iFjdξ3 (IV.D.1e)

Zijk
pq =

∫ + h
2

−h
2

Q̄pq (ξ3)k F
′
iF
′
jdξ3 (IV.D.1f)

If shell consists of NLYRS layers, each with a constant thickness such as tl, that each

one presents constant properties through the thickness of the shell element (Q̄pq,l = cte),

integrals of equation (IV.D.1) can be replaced with summations. The Ak
pq for zero and

first order shear deformation model is the same. For zero order shear deformation (when

Fi = Fj = 0), Rjk
pq = Qijk

pq = Wjk
pq = Yijk

pq = Zijk
pq = 0. For first order shear deformation model

(when Fi = Fj = ξ3), the through-the-thickness integrals can be obtained from the follow-

ing summations:

Ak
pq =

NLYRS∑
l=1

(
IA,k()− IA,k()

)
Q̄pq,l; IA,k(ξ3) =

ξk+1
3

k + 1
(IV.D.2a)

Rjk
pq =

NLYRS∑
l=1

(
IR,k()− IR,k()

)
Q̄pq,l; IR,k(ξ3) =

ξk+2
3

k + 2
(IV.D.2b)
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Qijk
pq =

NLYRS∑
l=1

(
IQ,k()− IQ,k()

)
Q̄pq,l; IQ,k(ξ3) =

ξk+3
3

k + 3
(IV.D.2c)

Wk
pq =

NLYRS∑
l=1

(
IW,k()− IW,k()

)
Q̄pq,l; IQ,k(ξ3) =

ξk+1
3

k + 1
(IV.D.2d)

Yk
pq =

NLYRS∑
l=1

(
IY,k()− IY,k()

)
Q̄pq,l; IY,k(ξ3) =

ξk+2
3

k + 2
(IV.D.2e)

Zk
pq =

NLYRS∑
l=1

(
IZ,k()− IZ,k()

)
Q̄pq,l; IZ,k(ξ3) =

ξk+1
3

k + 1
(IV.D.2f)

where:

= +
l∑

m=1

(tm) (IV.D.3a)

= −1
2

NLYRS∑
m=1

(tm) (IV.D.3b)

When a constant thickness lamina is replaced with its equivalent linearly-variable

thickness layer that presents the same thickness at a location such as x =, the coordinates-

free through-the-thickness coefficients can be obtained from the following equation:

Āk
pq =−(k+1) Ak

pq; R̄k
pq =−(k+2) Rk

pq; Q̄k
pq =−(k+3) Qk

pq;

W̄k
pq =−(k+1) Wk

pq; Ȳk
pq =−(k+2) Yk

pq; Z̄k
pq =−(k+1) Zk

pq;
(IV.D.4)

.4.2 Density

Assuming the volumetric density of the shell through the thickness is defined as ρ(ξ3)

function, the areal densities are defined as follows:

ρk =
∫ + h

2

−h
2

[ρ(ξ3)] (ξ3)k
(
1 +

ξ3

R1

)(
1 +

ξ3

R2

)
dξ3 (k = 0,1,2) (IV.D.5)
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Similar to the previous section, if the shell consists of NLYRS layers, each with a constant

thickness such as tl, that each one presents a constant density through the thickness of

the shell element (ρl = cte), above integrals converts to the following summations:

ρk = ρk
0 + τ0ρ

k
τ0

+ τ0τρ
k
τ

(IV.D.6)

where:

ρk
0 =

NLYRS∑
l=1

(
IA,k()− IA,k()

)
ρl (IV.D.7a)

ρk
τ0

=
(

1
R1

+
1

R2

)NLYRS∑
l=1

(
IA,k+1()− IA,k+1()

)
ρl (IV.D.7b)

ρk
τ =

(
1

R1R2

)NLYRS∑
l=1

(
IA,k+2()− IA,k+2()

)
ρl (IV.D.7c)

The definition of is as same as what has been given in equation (IV.D.3), the definition of

IA,k(ξ3) is same as (IV.D.2a) and τ0,τ ∈ {0,1} are flag parameters to neglect or to consider

the effects of principle radii of curvature at zero, one and third order.

When a constant thickness lamina is replaced with its equivalent linearly-variable thick-

ness layer that presents the same thickness at a location such as x =, the areal densities

demonstrate dependency to x coordinates and can be obtained from the following equa-

tion:

ρk =
(
−(k+1)

) [
ρk
c,0

] (
xk+1

)
+ τ0

(
−(k+2)

) [
ρk
c,τ0

] (
xk+2

)
+ τ0τ

(
−(k+3)

) [
ρk
c,τ

] (
xk+3

)
(IV.D.8)

where ρk
c is the calculated areal density for the original constant thickness shell using

equation (IV.D.6).



135

.5 Properties of The Solution Basis Function

The following operators and differentiations has the closed-form result over the functions

space defined by S:

∀r ∈R : r =H(0,0.5r,0,0) ∈ S (IV.E.1a)

∀r ∈R, ∀H ∈ S : r ∗H =H(β,r ∗ c, se, ce) ∈ S (IV.E.1b)

∀H1, H2 ∈ S : H(β1, c1, se1, ce1) +H(β2, c2, se2, ce2) ∈ S (IV.E.1c)

∀H1,H2 ∈ S : H(β1, c1, se1, ce1) ∗H(β2, c2, se2, ce2) =

H(β1β2, c1c2, se1 + se2, ce1 + ce2) +H(β1β2
∗, c1c2

∗, se1 + se2, ce1 + ce2) ∈ S
(IV.E.1d)

∀H ∈ S(β , 0) :
�

�x
H(β,c, se, ce) =H(β − 1, c ∗ β/L,se, ce) ∈ S (IV.E.1e)

∀H ∈ S(se , 0, ce , 0) :
�

�θ
H(β,c, se, ce) =

H(β,nc ∗ c, se − 1, ce+ 1) +H(β,−nc ∗ c, se+ 1, ce − 1) ∈ S
(IV.E.1f)

Moreover, the "One" and "Zero" constants for multiplication and addition over this func-

tion space are H(0,1.0,0,0) and H(0,0,0,0) accordingly. It is also worth mentioning that

multiplication of a complex number to a basis function of this type is not a member of

this space ( ∃ z ∈ C⇒ z ∗H < S). Using the definition of "One" it is possible to define

any real constant (such as elements of
[

¯CC0¯CC0¯CC0
]

matrix) as a member of S function space. The

metrics, principle and geodesic radii of the curvature of conical shells can also be defined
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in form of the basis function:

HA1
, A1(x,θ) =H(0,0.5,0,0), HA2

, A2(x,θ) =H(1,0.5Lsin(αc),0,0),

H1/A1
, 1

A1(x,θ) =H(0,0.5,0,0), H1/A2
, 1

A2(x,θ) =H(−1,0.5/(Lsin(αc)),0,0),

H1/R1
, 1

R1(x,θ) =H(0,0,0,0), H1/R2
, 1

R2(x,θ) =H(−1,0.5/(L tan(αc)),0,0),

H1/ρ11
, 1
ρ11

=H(0,0,0,0), H1/ρ22
, 1
ρ22

=H(−1,0.5/L,0,0)

(IV.E.2)

Moreover by assuming:

βR =<(β) βI ==(β) cR =<(c) cI ==(c) y = ln
(

x
L

)
(IV.E.3)

Evaluation at a point results:

H(β,c, se, ce)
∣∣∣∣
x,θ

= 2.0
(x
L

)βR
[cR cos(βIy)− cI sin(βIy)] (sin(ncθ))se(cos(ncθ))ce (∈R)

(IV.E.4)

Finite integral over x is given by:∫
H(β,c,0,0) =H(β + 1, cL/(β + 1),0,0)

∣∣∣∣ −H(β + 1, cL/(β + 1),0,0)
∣∣∣∣ (∈R) (IV.E.5)

The surface element of a truncated conical surface is defined as:

dΩ = A1A2dxdθ = 1× sin(αc)xdxdθ =H(1,0.5Lsin(αc))dxdθ (IV.E.6)

The integration over a truncated conical shell elements defined over a domain such as

Ω = (..,0..2π), can be obtained from:"
Ω

H(β,c, se, ce)dΩ =
(
H(β + 2,0.5 ∗ cL2 sin(αc)/(β + 2),0,0)

∣∣∣∣)
×
(∫ 2π

0
sin(ncθ)se cos(ncθ)ce

)
dθ

(IV.E.7)

Due to small set of possible values for se and ce, the second term of the right hand side

of equation (IV.E.7) can be calculated using a small look up table. For the most occurring

cases of (se = 0, ce = 2) and (se = 2, ce = 0) that term is given by:
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.6 Appendix IV.E Constitutive Matrix for Variable Thickness Conical Shells

The upper-right elements of
[

¯CC0¯CC0¯CC0
]

symmetric matrix multiplied by the associated x expo-

nent on the left hand side, can be obtained as follows:

x−1 ¯CC1,1 = + Ā0
11 + τ0

[
+Ā1

11
1
tn

]
(IV.F.1)

x−1 ¯CC1,2 = + Ā0
12 (IV.F.2)

x−1 ¯CC1,3 = + Ā0
16 + τ0

[
+0.5Ā1

16
1
tn

]
+ τ

[
+0.25Ā2

16
1

(tn2)

]
(IV.F.3)

x−2 ¯CC1,4 = + Ā1
11 + τ0

[
+Ā2

11
1
tn

]
(IV.F.4)

x−2 ¯CC1,5 = + Ā1
12 (IV.F.5)

x−2 ¯CC1,6 = + Ā1
16 + τ0

[
+0.5Ā2

16
1
tn

]
(IV.F.6)

x−2 ¯CC1,7 = + R̄10
11 + τ0

[
+R̄11

11
1
tn

]
(IV.F.7)
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x−2 ¯CC1,8 = + R̄20
16 + τ0

[
+R̄21

16
1
tn

]
(IV.F.8)

x−2 ¯CC1,9 = + R̄10
16 (IV.F.9)

x−2 ¯CC1,10 = + R̄20
12 (IV.F.10)

x−1 ¯CC1,11 = + W̄10
15 + τ0

[
+R̄10

12 + W̄11
15

1
tn

]
(IV.F.11)

x−1 ¯CC1,12 = + W̄20
14 + τ0

[
−R̄20

14
1
tn
− R̄20

16 + W̄21
14

1
tn

]
(IV.F.12)

x−1 ¯CC2,2 = + Ā0
22 + τ0

[
−Ā1

22
1
tn

]
+ τ

[
+Ā2

22
1

(tn2)

]
(IV.F.13)

x−1 ¯CC2,3 = + Ā0
26 + τ0

[
−0.5Ā1

26
1
tn

]
+ τ

[
+0.75Ā2

26
1

(tn2)

]
(IV.F.14)

x−2 ¯CC2,4 = + Ā1
12 (IV.F.15)
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x−2 ¯CC2,5 = + Ā1
22 + τ0

[
−Ā2

22
1
tn

]
+ τ

[
+Ā3

22
1

(tn2)

]
(IV.F.16)

x−2 ¯CC2,6 = + Ā1
26 + τ0

[
−0.5Ā2

26
1
tn

]
+ τ

[
+0.5Ā3

26
1

(tn2)

]
(IV.F.17)

x−2 ¯CC2,7 = + R̄10
12 (IV.F.18)

x−2 ¯CC2,8 = + R̄20
26 (IV.F.19)

x−2 ¯CC2,9 = + R̄10
26 + τ0

[
−R̄11

26
1
tn

]
+ τ

[
+R̄12

26
1

(tn2)

]
(IV.F.20)

x−2 ¯CC2,10 = + R̄20
22 + τ0

[
−R̄21

22
1
tn

]
+ τ

[
+R̄22

22
1

(tn2)

]
(IV.F.21)

x−1 ¯CC2,11 = + W̄10
25 + τ0

[
+R̄10

22 − R̄11
22

1
tn

]
+ τ

[
+R̄12

22
1

(tn2)

]
(IV.F.22)

x−1 ¯CC2,12 = + W̄20
24 + τ0

[
−R̄20

24
1
tn
− R̄20

26 + R̄21
24

1
(tn2)

+ R̄21
26

1
tn

]
+ τ

[
− R̄22

24
1

(tn3)
− R̄22

26
1

(tn2)

] (IV.F.23)
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x−1 ¯CC3,3 = + Ā0
66 + 0.75Ā2

66
1

(tn2)
(IV.F.24)

x−2 ¯CC3,4 = + Ā1
16 + τ0

[
+0.5Ā2

16
1
tn

]
+ τ

[
+0.25Ā3

16
1

(tn2)

]
(IV.F.25)

x−2 ¯CC3,5 = + Ā1
26 + τ0

[
−0.5Ā2

26
1
tn

]
+ τ

[
+0.75Ā3

26
1

(tn2)

]
(IV.F.26)

x−2 ¯CC3,6 = + Ā1
66 + 0.5Ā3

66
1
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66
1

(tn2)
(IV.F.51)

x−3 ¯CC6,7 = + R̄11
16 + τ0

[
+0.5R̄12

16
1
tn

]
(IV.F.52)

x−3 ¯CC6,8 = + R̄21
66 + τ0

[
+0.5R̄22

66
1
tn

]
(IV.F.53)

x−3 ¯CC6,9 = + R̄11
66 + τ0

[
−0.5R̄12

66
1
tn

]
+ τ

[
+0.5R̄13

66
1

(tn2)

]
(IV.F.54)

x−3 ¯CC6,10 = + R̄21
26 + τ0

[
−0.5R̄22

26
1
tn

]
+ τ

[
+0.5R̄23

26
1

(tn2)

]
(IV.F.55)



144

x−2 ¯CC6,11 = + W̄11
56 + τ0

[
+R̄11

26 − 0.5R̄12
26

1
tn

+ 0.5W̄12
56

1
tn

]
+ τ

[
+0.5R̄13

26
1

(tn2)

]
(IV.F.56)

x−2 ¯CC6,12 = + W̄21
46 + τ0

[
−R̄21

46
1
tn
− R̄21

66 + 0.5R̄22
46

1
(tn2)

+ 0.5R̄22
66

1
tn

+ 0.5W̄22
46

1
tn

]
+ τ

[
−0.5R̄23

46
1

(tn3)
− 0.5R̄23

66
1

(tn2)

] (IV.F.57)

x−3 ¯CC7,7 = + Q̄110
11 + τ0

[
+Q̄111

11
1
tn

]
(IV.F.58)

x−3 ¯CC7,8 = + Q̄120
16 + τ0

[
+Q̄121

16
1
tn

]
(IV.F.59)

x−3 ¯CC7,9 = + Q̄110
16 (IV.F.60)

x−3 ¯CC7,10 = + Q̄120
12 (IV.F.61)

x−2 ¯CC7,11 = + Ȳ110
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56 + τ0

[
+Q̄120

26 + Ȳ121
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25 + τ0

[
+Q̄120

22 − Q̄121
22

1
tn

]
+ τ

[
+Q̄122

22
1

(tn2)

]
(IV.F.74)

x−2 ¯CC10,12 = + Ȳ220
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.7 Appendix IV.H Total Strain Vector Components in S Function Space

The rows of linear component of
{
E◦E◦E◦

}
can be formulated as follows:

[
SE◦LSE◦LSE◦L

]
1,1:K

=
{
Se◦11
Se◦11
Se◦11

}
(IV.G.1a)

[
SE◦LSE◦LSE◦L

]
2,1:K

=
{
Se◦22
Se◦22
Se◦22

}
(IV.G.1b)

[
SE◦LSE◦LSE◦L

]
3,1:K

= 2
{
Se◦12
Se◦12
Se◦12

}
(IV.G.1c)

[
SE◦LSE◦LSE◦L

]
4,1:K

=
{
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Sχ◦11

}
(IV.G.1d)

[
SE◦LSE◦LSE◦L

]
5,1:K

=
{
Sχ◦22
Sχ◦22
Sχ◦22

}
(IV.G.1e)

[
SE◦LSE◦LSE◦L

]
6,1:K

= 2
{
Sχ◦12
Sχ◦12
Sχ◦12

}
(IV.G.1f)

[
SE◦LSE◦LSE◦L

]
7:8,1:K

=
{
Sx
γSx
γSx
γ

}
(IV.G.1g)
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[
SE◦LSE◦LSE◦L

]
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=
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SE◦LSE◦LSE◦L

]
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=
{
SγSγSγ

}
(IV.G.1i)

The rows of nonlinear component of
{
E◦E◦E◦

}
can be formulated as follows:

[
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]
1,1:K2

=
1
2
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(IV.G.2a)
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[
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=
{
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[
SE◦LSE◦LSE◦L

]
4:12,1:K2

=
[
H(0,0,0,0)H(0,0,0,0)H(0,0,0,0)

]
9×K2

(IV.G.2d)
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