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RÉSUMÉ 

La dégénérescence maculaire liée à l'âge (DMLA) est une maladie oculaire progressive qui se 

manifeste principalement au niveau de la rétine externe et de la choroïde. Le projet de recherche 

vise à déterminer si des mesures obtenues à partir d'images de tomographie par cohérence optique 

(OCT) et d'angiographie OCT (OCTA) peuvent être utilisées afin de fournir de nouvelles 

informations sur des biomarqueurs de la DMLA, ainsi qu’une méthode de détection précoce de la 

maladie. À cette fin, un appareil permettant l’OCT et l’OCTA a été utilisé pour imager des sujets 

DMLA précoces et intermédiaires, et des sujets témoins.  À la configuration sélectionnée de 

l’appareil OCT, chaque acquisition d'un œil fournit un volume de données qui est constitué de 300 

images transversales appelées B-scan. Au total, des acquisitions de 10 yeux de sujets atteints de 

DMLA précoce et intermédiaire (3000 images B-scan) et un cas de DMLA néovasculaire, 12 yeux 

de sujets âgés de plus de 50 ans (3600 images B-scan) et 11 yeux de sujets âgés de moins de 50 

ans (3300 images B-scan) ont été obtenues. Cinq méthodes d'extraction de caractéristiques ont été 

reproduites ou développées afin de déterminer si des différences significatives au niveau de l’œil 

pouvaient être observées entre les sujets atteints de DMLA précoce et intermédiaire et les sujets 

témoins d’âge similaire.  Grâce à des tests non paramétriques, il a été établi que deux méthodes 

connues d'extraction de biomarqueurs de la DMLA (analyse d’absence de signal de débit sanguin 

au niveau de la choriocapillaire et une méthode de segmentation des drusen) produisent des 

mesures qui montrent des différences significatives entre les groupes, et qui sont représentées de 

façon uniforme à travers le plan frontal de l’œil.  Il a ensuite été souhaité de tirer parti des mesures 

et de générer un modèle de classification de la DMLA interprétable basé sur l'apprentissage 

automatique au niveau des B-scans. Des spectres de fréquence résultant de la transformé de Fourier 

rapide de séries spatiales dérivées de mesures considérées comme représentatives des deux 

biomarqueurs ont été obtenues, et utilisées comme caractéristiques pour former un classifieur de 

type forêt aléatoire et un classifieur de type forêt profonde. L'analyse en composantes principales 

(PCA) a été utilisée pour réduire la dimensionnalité de l’espace des caractéristiques, et la 

performance des modèles et l'importance des prédicteurs ont été évaluées.  Une nouvelle méthode 

a été conçue qui permet une reconstruction 3D automatisée et une évaluation quantitative de la 

structure des signaux OCTA et ainsi des vaisseaux rétiniens. Des mesures représentatives des 

drusen et de la choriocapillaire ont été utilisées pour créer des modèles interprétables pour la 

classification de la DMLA précoce et intermédiaire.  Alors que la prévalence mondiale de la DMLA 
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augmente et que les appareils OCT deviennent plus disponibles, un plus grand nombre de 

personnes hautement qualifiées est nécessaire pour interpréter les informations médicales et fournir 

les soins cliniques appropriés.  L'analyse et le classement du niveau de sévérité de la DMLA par 

des experts par le biais d'images OCT sont coûteux et prennent du temps.  Les modèles proposés 

pourraient servir à automatiser la détection de la DMLA, même lorsqu'elle est asymptomatique, et 

signaler à un ophtalmologue la nécessité de surveiller et de traiter la condition avant la survenue 

de pertes graves de la vision. Les modèles sont transparents et sont en mesure de fournir une 

classification à partir d’une seule image transversale. Par conséquent, l'outil diagnostic automatisé 

pourrait également être utilisé dans des situations où seules des données médicales partielles sont 

disponibles ou lorsque l'accès aux ressources de soins de santé est limité. 
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ABSTRACT 

Age-related macular degeneration (AMD) is a progressive eye disease which manifests primarily 

at the outer retina and choroid.  The research project aimed to determine whether measures obtained 

from optical coherence tomography (OCT) and OCT angiography (OCTA) images could be used 

to provide novel AMD biomarker insight and an early disease detection method.  To that end, an 

OCT and OCTA enabled device was used to image AMD subjects and controls.  At the selected 

device scan size, each scan of one eye gathered using an OCT device provides a volume of data 

which is constructed of 300 cross-sectional images termed B-scans.  In total, scans of 10 eyes from 

subjects with early and intermediate AMD (3,000 B-scan images) and a case of neovascular AMD, 

12 eyes from subjects over the age of 50 years old (3,600 B-scan images), and 11 eyes from subjects 

under the age of 50 years old (3,300 B-scan images) were obtained.  Five feature extraction 

methods were either reproduced or developed in order to determine if significant differences could 

be observed between the early and intermediate AMD subjects and control subjects at the eye level.  

Through non-parametric testing it was established that two AMD biomarker extraction methods 

(choriocapillaris flow voids analysis and a drusen segmentation method) produced measures which 

showed significant differences between groups, and which were also uniformly represented across 

the frontal plane of the eye.  It was then desired to leverage the measures and generate a B-scan 

level, interpretable machine learning-based AMD classification model.  Frequency spectrums 

resulting from the fast Fourier transforms of spatial series derived from measures believed to be 

representative of the two biomarkers were obtained and used as features to train a random forest 

and a deep forest classifier.  Principal component analysis was used to reduce dimensionality of 

the feature space, and model performance and predictor importance were assessed.  A new method 

was devised which allows automated 3D reconstruction and quantitative evaluation of retinal flow 

signal patterns and incidentally of retinal microvasculature. Measures representative of drusen and 

choriocapillaris were leveraged to create interpretable models for the classification of early and 

intermediate AMD.  As the worldwide prevalence of AMD increases and OCT devices are 

becoming more available, a greater number of highly trained personnel is needed to interpret 

medical information and provide the appropriate clinical care.  Expert analysis and grading of 

AMD through OCT images are expensive and time consuming.  The models proposed could serve 

to automate AMD detection, even when it is asymptomatic, and signal to an ophthalmologist the 

need to monitor and treat the condition before the occurrence of severe visual loss.  The models 
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are transparent and provide classification from single cross-sectional images.  Therefore, the 

automated diagnosis tool could also be used in situations where only partial medical data are 

available, or where there is limited access to health care resources. 
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CHAPTER 1 INTRODUCTION 

Age-related macular degeneration (AMD) is a degenerative eye condition with early manifestations 

localized in central regions of the human retina.  Severe central visual acuity loss is associated most 

commonly with the neovascular, more advanced form of the condition featuring the abnormal 

growth of new vessels beneath and into the retinal space [1].   

As its name indicates, age is one of the main risk factors and individuals who develop the condition 

are typically aged 50 years or above, whether or not visual symptoms are present [1].  The condition 

is also disproportionally prevalent in women and non-Hispanic White Europeans.  AMD ranks first 

as a cause of severe, irreversible vision impairment in the developed world with its older 

populations [1], and macular degeneration ranks third globally after cataract and uncorrected 

refractive error [2].  Adding perspective to its pervasiveness in the industrialized world, the 

prevalence of AMD in the United States has been described as comparable to that of the 

combination of all invasive cancers, and more than twice more common than Alzheimer’s disease 

[3].  Unlike AMD, cataract and uncorrected refractive error are both fully treatable.  Global trends 

suggest that while the number of persons affected by uncorrected refractive error and cataract has 

been in decline over a 20 years period from 1990 to 2010, the prevalence of macular degeneration-

associated vision loss has increased [2].  A little more than a decade ago, it was estimated that 

annually in Canada the number of new cases of non-neovascular AMD (also called non-exudative 

AMD) reached 180,000 [4].  The incidence of the neovascular form of the disease in Canada was 

estimated at 17,100 new cases annually.  Besides the significant impact on the quality of life of 

those with AMD, the condition is believed to be responsible annually for approximately 2.6 billion 

in losses to the Canadian economy.  The incidence of advanced AMD increases log-linearly with 

age [5].  As the ageing populations of the developed world increase, the costs associated with AMD 

are expected to increase in proportion [3]. 

AMD treatment options can slow the progression of intermediate AMD and provide short-term 

prevention from the abnormal growth of new vessels.  In both instances, monitoring and early 

detection leads to a better visual outcome.  At this time, clinical assessment of AMD often involves 

Optical Coherence Tomography (OCT) which unlike any other imaging method, can provide 

detailed cross-sectional images of the back of the eye.  OCT measures the backscatter intensity of 

light and OCT beam behavior is a function of retinal tissue interactions.  A more recent imaging 
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method called OCT angiography (OCTA) allows visualisation of the flow signal from the eye 

retinal vasculature and the choroid. The development of diagnostic methods which leverage OCTA 

and the implementation of the technology in clinical settings is ongoing.  

The severity of adverse effects associated with AMD, the trends suggesting that the proportion of 

persons at risk is expected to continue to rise in Canada and worldwide, and the need to combine 

treatment options with effective detection methods justify the exploration and development of new 

diagnostic methods.  Novel disease feature extraction and disease classification computer 

algorithms could further assist clinicians as part of the diagnostic process, automate parts of the 

process and provide new insight into the condition.    

Given previously developed software, the availability of an OCTA-enabled device and the 

direction of ongoing research and clinical approaches, the research project was initiated with the 

overall goal of engineering specific features encompassing early, intermediate and advanced stages 

of the disease. It was also intended to leverage robust discriminators which were most uniformly 

represented across the frontal plane of the eye towards the development of a method which allows 

effective and interpretable classification of the early and intermediate stages.   

As stated in the overall goal, the project was completed in two main steps.  The first step consisted 

of extracting several spatial features from retinal and choroidal OCT and OCTA data and 

determining which of them showed a statistically significant difference between a group of control 

subjects, and a group composed of early and intermediate AMD subjects (eAMD and iAMD, 

respectively). The second step consisted of obtaining spectral features from retinal OCT and 

choroidal OCTA data which were uniformly represented at eye level and applying them at the 

cross-sectional image level.  In this respect, Fourier transformation resulted in descriptors which 

yielded promising classification performance and machine learning (ML) model interpretability. 

The present document begins with a review of the relevant literature surveying concepts and 

advances upon which the research project was constructed.  Having described important concepts 

and advances, the review of literature ends with a detailed outline of the project objectives.   Then, 

the methodology used is provided for each of the detailed objectives outlined.  The methodology 

is followed by the results which each of the research project’s key steps yielded.  At the end of the 

document the results are discussed and a conclusion highlights some of the project’s limitations 

and available avenues for future research. 
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CHAPTER 2 REVIEW OF LITERATURE 

Several core concepts and scientific advances helped establish a direction for the research project.  

As part of the review of literature, first a brief overview of normal and AMD-associated eye 

anatomy and physiology is given.  Then, a description of the devices and tools which supported 

the project or are closely related with the software development are given. Within the description 

of the devices and tools, basic principles behind OCT and OCTA imaging are provided as well as 

a survey of software approaches connected to the detailed objectives. 

For eye planes and directions, the convention set forth in [6] is used throughout the document and 

a modified diagram of the nomenclature is shown in Figure 2-1(a).  An OCT cross-sectional image 

with designated anatomical features is shown in Figure 2-1(b).  Additional naming conventions 

pertaining to OCT images are elaborated upon in the OCT and OCTA sections. 

 

 

Figure 2-1 Eye planes and directions and OCT cross-sectional anatomy of the eye. (a) Diagram 

and nomenclature of the planes and axes of the human eye (modified from [6]). (b) OCT cross-

sectional image with designated anatomical features. 
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2.1 Relevant eye anatomy and physiology 

2.1.1 Bruch’s membrane (BM), retinal pigment epithelium (RPE) and retinal-

vitreous interface (RVI) 

Bruch’s membrane (BM) is a fine layer high in collagen and elastin connective tissue which is 

located between the capillary region of choroidal blood vessels (CC), and the retinal pigment 

epithelium (RPE).  The BM is involved in the prevention of cellular migration as well as the passive 

diffusion of molecules, serum constituents and other elements across the retina and CC [7].  One 

such molecule is the vascular endothelial grow factor (VEGF) which is secreted by the RPE in 

order to maintain CC integrity.  Geographic atrophy is defined as an area where the RPE is absent 

or severely attenuated [8]. In AMD diseased eyes affected by geographic atrophy, CC regions 

directly under areas of enduring RPE are unimpaired [9].  As the name indicates, the retinal-

vitreous interface (RVI) represents the boundary between the retina and the vitreous body which is 

the gel that occupies the overlying space within the eyeball. 

2.1.2 Retinal capillary plexuses (RCP) and choroid 

Blood supply responsible for the delivery of nutrients and oxygen to retinal cells is provided in part 

by the central retinal artery and retinal vein, and also to a greater extent from larger vessels posterior 

to the retina, collectively referred to as the choroid [10].  The central artery and central retinal vein 

branch out into the retina and form layers of blood vessels called the superficial and deep retinal 

capillary plexuses [11].  The choroid vessels are the main or sole source of blood supply in central 

regions of the retina lacking blood vessels such as the fovea, and together they provide 

approximately 85% of retinal blood supply [12].  

2.1.3 Choriocapillaris (CC) 

The choriocapillaris (CC) is a specific layer of small vessels restricted to the inner fraction of the 

choroid.  The layer is reported to be located at a distance varying between zero and 34 µm posterior 

to the BM in the axial direction, and to possess a thickness varying between 4.4 and 30 µm deep 

into the choroid [13].  It supplies oxygen and metabolites to the RPE and the outer retina and 

represents the only source of metabolic exchange to the foveal avascular zone.   Vessel density 

within the CC layer decreases with age [7].  More broadly, physiological changes to it are 
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associated with a variety of retinal diseases including AMD. There is an interdependency between 

the CC and the RPE, and damages to either one will result in degeneration of the other.  Drusen are 

known to manifest at areas of low choroidal blood flow and are therefore considered a marker for 

CC loss.  

The Figure 2-2 shows a volume rendering of OCT and OCTA.  The image situates the choroid 

layer below the retina.  The OCTA flow signal (in blue) is slightly raised in the antero-posterior 

direction and structures corresponding to the RCP can be seen above the structural retinal surface.  

Dense regions of OCTA signal corresponding to the choroid, including CC appear below the RCP 

(also in blue). 

 

Figure 2-2 Volume rendering of structural OCT (grey) and OCTA (blue) of the retina and choroid. 

2.1.4 Age-related macular degeneration (AMD) 

Age-related macular degeneration (AMD) is a progressive eye disease which affects blood supply 

to the eye and is the most important cause of blindness in developed countries. AMD is mainly 

characterized by abnormalities in deeper layers of the retina including the RPE and the BM, and 

the choroid.  These abnormalities include areas of thickening of the BM called drusen, and 
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abnormal proliferation of blood vessels which tend to appear under the retina and progressively 

spread into and within the retinal space [14-16]. Defining features of the disease also include RPE 

hypo- (associated with cell loss) and hyperpigmented regions [17].  An abnormal proliferation of 

blood vessels can be referred to as choroidal neovascularization (CNV) when it initially appears at 

the choroid level, and retinal angiomatous proliferation when it appears at the retinal level.  

Similarly as with drusen, CNVs develop in regions of compromised CC and are believed to arise 

in order to compensate for reduced CC blood circulation [13]. Two manifestations of AMD are 

differentiated through their attributes. The first type is called non-exudative, or 'dry' AMD, and is 

characterized by a decrease in vascular density and a decrease in the luminous intensity of the 

vessels. The second type is called exudative or neovascular AMD and differs from the first type 

through the presence and growth of CNV from the choroid.  

Current diagnostic approaches for AMD can entail the injection of intravenous dyes such as 

fluorescein and indocyanine green to visualize normal and abnormal ocular vasculature. Unless 

stereoscopic viewing is used, the information obtained using contrast agents is of a 2D qualitative 

nature [18].  Contrast agents are also only effective for a limited time.  The continued exploration 

of non-invasive methods that provide a greater amount of diagnostic information is further justified 

by the risks and side effects associated with the injection of contrast agent.  A blood flow related 

pathogenesis model of AMD links the disease to increased rigidity of the sclera resulting from the 

accumulation of atherosclerotic plaque.  According to the model, higher rigidity would promote 

resistance to blood circulation and prevent normal choroidal venous drainage.  From reduced blood 

perfusion follows RPE functional changes occasioning the growth of drusen and damage to the 

neural retina [11].   

Evidence supports the effectiveness of antioxidant vitamins and minerals as a means of slowing 

the progression from iAMD to advanced AMD [1].  At the neovascular advanced stage of the 

condition, the most successful means of managing the growth of new vessels involves the 

intravitreal injection of anti-vascular endothelial growth factor (VEGF).  While the injection of 

anti-VEGF agents has been demonstrated to decrease legal blindness as much as 70 % over a span 

of two years [19], gains are mostly lost in two-thirds of persons with AMD which have been 

monitored for more than seven years [20].  The limitations of anti-VEGF agents reinforce the 

importance of early detection and management for persons at the iAMD level. 
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2.1.5 Drusen 

Drusen are a defining clinical feature of AMD and occur early in its progression.  Drusen are 

localised lipid, mineral and protein-containing extracellular deposits which are found between the 

BM and the basal lamina of the RPE (RPEb) [21, 22].  The accumulation of drusen is associated 

with a progressive decline in BM conductivity [23] and drusen in general can be responsible for 

macular-related dysfunctions such as a diminution in color contrast, central visual field or 

spatiotemporal sensitivity [21].  Drusen can be classified according to their location and 

morphology, and types include cuticular, soft and hard drusen, and subretinal drusenoid deposits 

[21, 23, 24].   Hard and cuticular drusen are yellow-white lesions spanning less than 63 μm in 

diameter and can be distinguished from each other by their lifecycle [21, 24].   In small numbers, 

neither type is considered a risk factor for developing AMD or for disease evolution to later stages 

of AMD.  In great numbers however, hard drusen are associated with visual loss in AMD.  Soft 

drusen are typically larger lesions with poorly defined edges. Like subretinal drusenoid deposits 

which are found at the inner extremity of the RPE, they are linked with progression to advanced 

stage AMD [23].   

2.1.6 Age-related macular degeneration (AMD) clinical classification 

AMD is commonly classified into dry (non-exudative) or wet (exudative, neovascular) type based 

on indicators of disease progression.  Histopathological evidence has revealed that in eyes with a 

dry AMD diagnosis, there is a reduction in choroidal vessel density and vessel lumina.  Wet AMD 

which may occur later in the disease timeline, is characterized by the appearance of CNVs 

originating from the choroid and which may proliferate under or through the BM as well as into 

the RPE and the broader retinal space.  Complications which can arise from CNVs include serous 

or sanguineous detachment of the RPE or retina, pigment modeling, RPE tears, and lipid exudation 

[17].   

A committee of AMD experts formed towards establishing a clear standard for AMD classification 

determined that the common classification of AMD into dry and wet type can result in 

inconsistencies.  Specifically, the committee advised that like wet AMD, the term dry AMD should 

be restricted to describing an advanced manifestation of AMD.  Dry type would be used to denote 

the presence of geographic atrophy.  Under a novel, alternate classification scheme, the committee 
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recommended that AMD be instead classified into early, intermediate and late AMD.  The eAMD 

stage refers to eyes where medium drusen (≥ 63–< 125 µm diameter, en-face view) can be 

identified and in the absence of pigmentary abnormalities associated with AMD.  The iAMD stage 

refers to eyes in which large drusen, or where pigmentary abnormalities associated with at least 

medium drusen are found.  Late AMD stage refers to eyes where GA or CNV lesions are present 

[15]. 

2.2 Optical coherence tomography (OCT), optical coherence 

tomography angiography (OCTA) 

2.2.1 Optical coherence tomography (OCT) 

OCT is a non-invasive imaging technique which allows in depth and in-vivo microscale 

visualisation of retinal and choroidal tissue.  The OCT imaging device operates using low 

coherence light [25, 26] and allows the measurement of variations in backscatter intensity along 

the antero-posterior axis of the eye and its vicinity.  The axial direction backscatter intensity profile 

is referred to as an A-scan and the grouping of a series of A-scans into a cross sectional image of 

the retina and choroid is referred to as a B-scan.  The OCT acquisition gathers a series of B-scans, 

corresponding to a volume of the back of the imaged eye. The Figure 2-3 below shows the different 

types of OCT scans. 

 

Figure 2-3 OCT types of scans.  From left to right: A-scan, B-scan, volume rendering and C-scan 

(modified from [27]) 
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2.2.2 Optical coherence tomography angiography (OCTA) 

Through OCT, images of optical scattering from eye tissue are obtained [26].  When interacting 

with moving red blood cells, the optical signal which yields tissue spatial information varies over 

time [28]. OCTA designates a set of techniques which were developed towards isolating the 

variation in the OCT signal resulting from interactions with blood vessels.  The B-scans generated 

through OCTA are motion-contrast images and enable visualization of a volume of the retinal and 

choroidal vasculature at near histology level resolution [10].   

In comparison with fluorescein angiography (a dye based approach), better visualization of all 

blood vessel containing layers has been reported [29].  Currently, limitations of OCTA include 

smaller field-of-view, the fact that vessel leakage is not shown and the tendency for scans to be 

affected by movement artifacts [10, 29].  Lesions with slower blood flow, such as in 

microaneurysms or fibrotic CNVs, are not detected [29, 30].  With regard to CC imaging, OCTA 

analysis is typically performed using a representative en-face image [7].  While basic agreement is 

achieved between CC measurements obtained using devices equipped with different OCTA 

enabling algorithms, the measurements are not transferable.  The visualisation of CC intervascular 

spaces is also limited [13].  The Figure 2-4 below provides a simplified schematic of a method of 

OCTA signal detection and construction, and Figure 2-5 below shows the different types of OCTA 

scans. 
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Figure 2-4 A schematic of OCT signal detection and OCTA signal construction (modified from 

[10]) 

 

 

Figure 2-5 OCTA types of scans.  From left to right: A-scan, B-scan, volume rendering and en 

face image. 
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2.3 OCT and OCTA images feature extraction methods 

2.3.1 Retinal capillaries plexuses (RCP) network graph 

Several approaches to the quantification of OCTA retinal flow signal patterns have been described 

[31-34].    Chu et al [31] evaluated the use of five indexes associated with the 2D segmentation of 

vessels and their skeletonization from maximum value projection en-face OCTA images.  Leahy 

et al [35] have described techniques which allow 3D mapping of the rat inner retinal vascular 

network using OCTA.  CNVs have been quantified in 2D from OCTA images [33, 36] and 

associations have been found between measures derived from them and treatment burden. 

2.3.2 Choriocapillaris (CC) flow voids analysis 

The maximum transverse resolution of images from OCTA enabled devices obtained through a 

single acquisition is situated at 15 µm (with a 20 µm upper range) [13, 37].  In comparison, CC 

diameter measurements are reported to reside in the 9.6-40.2 µm range [38].  The limited transverse 

resolution of OCTA images from a single scan prevents visualization of individual choroid 

capillaries from the CC layer, or of the very small spaces between them.  Larger dark areas of 

absent flow signal, which do not necessarily reflect CC anatomic structure, can be observed and 

have been termed flow voids.  The state of the CC has been quantitatively evaluated using statistical 

measures associated with flow voids [9, 37, 39].  The OCTA flow signal produced by the CC are 

spotted a few micrometers posterior to the actual anatomical location of CC in the axial direction 

[13].  A representative image of the voids can be isolated by sampling a CC slab 10 µm thick, 

starting at locations 31 to 34 µm deep into the choroid (depending on the device used).  

Thresholding is then performed on a maximum projection image of the CC slab and voids are 

quantified as areas greater than or equal to a selected size.  In this manner, flow voids distribution, 

size and number in health and disease have been investigated and it was determined that the 

distribution of the number of flow voids versus size of the voids follows a power law.  When 

logarithmically plotted, the data follow a linear association and trendline parameters can be 

obtained [37].  

Notably, the difference between the distributions of signal voids greater than 10,000 µm2, and 

greater than 40,000 µm2  (FV10000 and FV40000, respectively) as well as the differences between 

the distributions of the slope, m, and the intercept, b, of the trendline have been identified as useful 
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means of discriminating between healthy and diseased eyes [9, 37].  At this time, adaptive local 

thresholding, the computation of logarithmically binned signal void sizes and the generation of a 

log-log plot are performed manually and the approach could benefit from further automation [9].  

The presence of large drusen (>40 µm in height) may result in significant projection artifacts at the 

CC region of interest [37]. 

While the resolution of images following single OCTA acquisitions remains limited, evidence 

suggests that averaging registered en-face maximum projection images obtained from selected CC 

slabs provides superior results [38].  For a given subject, a morphologic pattern that is closer to the 

meshwork pattern seen on histology can be successfully attained [38].  Significant differences in 

flow voids measurements and trendline parameters were observed after the averaging was 

performed [38].     

2.3.3 Drusen segmentation methods 

Owing to their central role in the characterization of the early stages of AMD, several approaches 

to the segmentation of drusen from OCT scans have been proposed.  The approaches can be 

categorized into layers-based and ML-based.  From segmented drusen, it becomes possible to 

derive clinically meaningful quantitative measures which may include and are not limited to drusen 

thickness (or height), area, and volume [40, 41].  ML-based drusen segmentation methods are 

referenced with other methods used as part of subsequent section 2.4. 

2.3.3.1 RPEb-BM drusen segmentation 

As drusen lie within the space between the BM and RPE, layers-based drusen segmentation 

commonly depends on accurate segmentation of the BM and of one or both boundaries of the RPE 

layer.  Once the BM and RPE boundaries have been established, drusen can simply be defined as 

the space between them.  A potential drawback of layers-based segmentation is its vulnerability to 

BM and especially RPE segmentation errors.  Noise and homogeneity with contiguous tissue 

anterior to the RPE can make it difficult to segment even in normal eyes [40].  The likelihood of 

errors may increase with AMD disease progression, as the RPE is increasingly deformed by the 

presence of drusen [21].  When compared with fundus image analysis, BM and RPE-based 

segmentation tends to overlook drusen with low elevation and subretinal drusenoid deposits [42, 

43].   
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2.3.3.2 En face drusen segmentation 

A layers-based method which circumvents segmentation of the pathologic RPE has recently been 

introduced [23].  The method consists of selecting two slabs, the first directly next to and anterior 

to the BM and the second, slightly anterior to the RPE and still using the BM as a reference.  After 

the slabs have been selected, surfaces within each slab are put through a series of averaging and 

filtering processing steps towards isolation of the areas covered by drusen.  The image processing 

results in an accurate en-face regional map of drusen. There is also a greater likelihood of detecting 

early, smaller drusen which do not cause very significant RPE basal membrane separation from the 

BM, as well as subretinal drusenoid deposits which appear at the top of the inner RPE boundary.   

2.4 Classification in age-related macular degeneration (AMD) 

detection 

Machine learning (ML) regroups a variety of algorithms which can be used to achieve data 

processing goals.  The choice of the algorithm is driven by the desired outcome.  Owing to the 

variety and complexity of the various algorithms included under the ML umbrella term, brief 

descriptions of architectures pertaining to the specific applications surveyed in the present section 

will be provided along with references directing to more detailed descriptions.  A frequent goal of 

ML algorithm design is classification.  At the learning (or training) stage, ML classification 

algorithms are constructed using features from a set of observations, with each observation 

belonging to a class. Once the learning has taken place, features from a newly introduced 

observation (of an unknow class) can then be fed as input to the algorithm, which will then output 

a predicted class.  In the context of computer aided diagnostics, observations can be images of a 

human body organ such as eye images belonging to a number of individuals.  The features of ML 

classification can consist of (and are not limited to) the measurements of known biomarkers 

extracted from a medical image, and also the pixels of a medical image.  ML classification is 

supervised, and classes (or labels) belonging to observations, such as different eye diagnoses or the 

severity of an eye condition, have been determined and assigned to observations before the learning 

takes place. 

As their use has been associated with increased ML classification performance and clear 

advantages especially with regard to image processing, a growing number of computer aided 
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diagnostics applications implement deep learning methods.  Deep learning (DL) constitutes a 

subset of machine learning [44-46] and two types of DL algorithms, convolutional neural networks 

(CNNs) and fully convolutional networks (FCNs) are particularly well suited for computer vision 

tasks [47, 48].  A strength of CNNs and FCNs lies in the way in which an image can be transformed 

into useful representations.  The representations can in turn be used as features for classification, 

or as a starting point for additional operations leading to the classification of targeted image areas, 

respectively.   In contrast with DL, which is more recent, more established ML classification 

methods can be referred to as conventional ML. Under this scheme, conventional ML classification 

methods include support vector machines (SVM), which in their simplest form find a hyperplane 

in the input feature space which effectively separates observations belonging to each class [49]. 

They also include non-layered tree-based methods such as random forest (RF), which are an 

ensemble of decision trees leveraging strategies designed to prevent overfitting [50-52].  Another 

conventional ML method is the k-nearest neighbors algorithm (k-NN) which assigns observations 

to classes based on the calculation of their distances from each other within the feature space [53]. 

The detection of AMD using ML has been primarily dominated by two imaging modalities namely, 

fundus imaging and OCT.  ML approaches to AMD detection involving OCTA images are 

currently lacking.  Fundus imaging consists of a color photograph of the retina obtained using a 

camera.  As such, it precedes OCT and remains widely used often as an integral part of clinical 

interventions in ophthalmology [48, 54].  As with OCT and as part of clinical interventions, 

biomarkers of disease can be identified through the manual inspection of fundus images.  

Biomarker findings using one imaging method may not directly extend to the other. At least in the 

case of drusen which are quantifiable using either modalities, evidence suggests that measurements 

agree only partially [42, 55].  

It can be useful to further distinguish between two broad categories of approaches to the generation 

of ML models associated with the detection of AMD.  ML models can be generated more broadly 

as part of a local approach to the characterization of disease, i.e., with supervision towards the 

isolation of clinically meaningful biomarkers [56].  The isolated biomarkers can then be used to 

assess the condition of the eye.  A second broad category, the global approach to the generation of 

ML models associated with the detection of AMD, is concerned with a more direct classification 

of images without the intermediate step of extracting clinically meaningful biomarkers [56].  The 

classification of images using image representations derived from CNNs constitute an example of 
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the global approach.  A ML model building strategy informed by current trends in AMD 

management [1] would consist of seeking the classification of eAMD and iAMD instead of 

advanced AMD, at stages where monitoring or treatment to prevent progression remain an option.  

Consideration to this preferred strategy is given in the present evaluation of applications of ML 

methods to AMD detection from fundus and OCT images.  

In the case of fundus images, it is reported that local approaches to AMD detection are generally 

aimed at the identification of drusen [57].  The aim is consistent with the need to prevent AMD 

progression to the advanced stage as drusen are a hallmark of eAMD and iAMD.  A pioneering 

application of ML to fundus image drusen detection used a k-NN classifier and linear discriminant 

analysis to classify pixels from color fundus photographs as either drusen, exudates or cotton-wool 

spots [58].  Following a similar trajectory, FCN architectures have been used for the classification 

of targeted fundus image areas [56, 59].  The developed algorithms provide a segmentation map of 

red lesions (haemorrhages and microaneurysms) and bright lesions (hard and soft exudates, drusen 

and cotton-wool spots).  State of the art global approaches to AMD detection have involved the 

generation of image representations through CNNs [60-63] or ensembles of CNNs [64] which are 

combined with the standard fully connected layer for classification.  Closely related architectures 

have utilized CNNs and ensembles of CNNs and integrated them with conventional machine 

learning algorithms (instead of the standard fully connected layer) for classification including SVM 

[65] and RF [66], respectively.  A notable exception to other global approach architectures fuses 

CNN image representations with additional non-visual patient data as input to a RF classifier [67].  

State of the art global approaches using fundus images feature eAMD detection or AMD severity 

assessment, demonstrating consistency with the goal of monitoring progression. 

In the case of OCT images and in line with a local approach, DL algorithms using standard CNN 

and modified CNN architectures have achieved state-of-the-art OCT drusen segmentation [68, 69].  

A different local approach involved the extraction of texture features from a manually delineated 

choroid region on B-scan images.  The features were then fed to SVM, RF and basic neural network 

conventional ML models to classify B-scans as normal, dry or wet AMD [70].  Setting a precedent 

in computer aided diagnostics, a more comprehensive local implementation of DL involved a 3D 

ensemble of FCNs architecture which classified targeted regions of OCT volumes into segmented 

tissue maps [71].  Each output map from individual FCN consisted of fifteen classes including 

drusenoid pigment epithelium detachment and the RPE.  The framework then fed the segmentation 
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maps as input features to an ensemble of CNNs for multi-label classification.  The resulting 

clinically applicable classification labels included a multi-class referral suggestion and diagnosis 

labels including normal and drusen.  ML models have been designed as part of a global approach 

to the detection of AMD using OCT images [72-74].  Echoing the previously described informed 

AMD detection strategy, biomarkers which are associated with the progression of AMD to the 

neovascular stage [41] were identified as part of a study [72].  Notably, experts labelled B-scans as 

non-exudative AMD based on the presence of either hyperreflective foci, hyporeflective foci within 

drusen or subretinal drusenoid deposits.  The B-scans were likewise labelled by the experts as 

normal in the absence of the same biomarkers.  A standard CNN architecture was used for 

classification.   

A drawback of global approaches to using CNNs for AMD detection tasks is the difficulty 

associated with issuing an interpretation of findings [72] as defined in the context of ML [75].  The 

literature suggests that locally driven ML approaches can generate models and frameworks with 

good interpretability. With measures derived from known biomarkers as input, tree-based 

conventional ML models such as RF could be viewed as very interpretable and arguably more 

easily operated than neural network-based DL methods.  Perhaps owing to these advantages and 

others, methods have been developed to combine several forest models into a layered, deep forest 

(DF) model [46, 76].  The resulting tools have been used sometimes in combination with other 

deep learning models [77-79].  In addition to involving OCTA, the literature suggests that there 

remain opportunities to explore the construction of DF models towards AMD detection. 

2.5 Detailed research project objectives 

Several key steps were undertaken, and detailed objectives are outlined below. 

i. Frontal plane subfields separation 

First, the development of an algorithm which segregates regions of the back of the eye into distinct 

areas according to the ETDRS (Early Treatment Diabetic Retinopathy Study) grid was sought.   

The grid was introduced by the ETDRS group [80] and divides the macula into subfields.  Grid-

based analysis can allow the identification of subtle and spatially restricted changes which can be 

present in eye conditions [81]. The ETDRS grid is commonly used to divide retinal thickness 

measurements and has been exploited in the context of AMD research [82, 83].  All methods were 
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developed using the 3 × 3 mm OCT field of view. As a result, the grid features only the innermost 

and second circles of the original grid, encompassing five subfields. 

ii. Layers segmentation and retinal thickness map 

The research project also required leveraging previously developed software allowing 

segmentation of retinal layers of the eye namely the BM, the top and bottom (RPEb) of the RPE 

and the RVI.  The segmentations serve as a foundation from which the development of other 

methods becomes possible.  A comparison of retinal thickness and retinal volume between controls 

and non-exudative AMD subjects is provided.    

iii. Retinal capillaries plexus (RCP) network graph 

The neovascular form of AMD is responsible for the majority of severe central visual acuity loss 

[1].  Therefore, it was desired to devise a method which makes possible the automated 3D 

reconstruction and quantitative evaluation of normal and diseased retinal flow signal patterns (and 

indirectly, of retinal microvasculature) using OCTA.  Through a network graph representation of 

segmented retinal flow signal patterns, the number of structural links and nodes are obtained. The 

quantity of links and the quantity of nodes reflect the presence of vasculature segments and their 

intersections, respectively. A comparison of the number of links and nodes between controls and 

non-exudative AMD subjects is provided. It was also intended to demonstrate the developed 

method’s repeatability and the quantification of flow signal resulting from new vascularisation in 

the case of a late AMD (exudative) subject. 

iv. Choriocapillaris (CC) flow voids quantification 

Research findings suggest that AMD is associated with noticeable changes to the small vessels 

located just below the retina and collectively named CC [37].  It was desired to implement the 

automation of CC flow voids quantification from images obtained using OCTA.  Targeted features 

consisted of parameters from a trendline derived from the distribution of flow void sizes, as well 

as the fraction of flow voids exceeding 10,000 µm2.  Statistical tests were performed to identify the 

most robust discriminator. 

v. Drusen segmentation methods 

Drusen are a defining feature of AMD.  They are localised abnormal accumulations of material 

found between the BM and the basal lamina of the RPE (RPEb) [84].  Their type and quantity are 
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used clinically to evaluate AMD progression.  Two different methods of drusen segmentation were 

pursued.  The first uses the segmentation of the retinal layers of the eye.  A thickness map of the 

difference between the RPEb layer and the BM layer is obtained and drusen is defined as locations 

which exceed a specified elevation threshold.  The second required only BM segmentation [23] 

from OCT cross-sectional images.  It was sought to evaluate the area and volume of drusen in 

comparison with controls and to validate area coverage against manual segmentation using 

common segmentation performance metrics. 

vi. Spectral analysis 

The project aimed for the implementation of an available ML approach to normal and grouped 

eAMD and iAMD stage classification at the cross-sectional level.  Drusen defined as a thresholded 

RPEb-BM thickness map and a binarized image representative of CC flow voids were identified 

as measures which provided significant differences at eye level between the control and non-

exudative AMD groups.  In both instances the unprocessed data are generally well represented 

across the whole frontal plane of the eye.  As such, it was anticipated that deriving B-scan level 

features from the unprocessed data was feasible.  Fourier transformation of the OCT and OCTA 

measures derived from the RPEb-BM space and CC level flow signal was sought. 

vii. Classification 

It was intended to build a RF classifier and a cascade DF classifier.  RF is a ML method which can 

be used to build classification models.  It uses a combination of decision trees and statistical 

strategies designed to maximize the model’s ability to generalise from trends in a given dataset 

[50-52, 85].  An advantage of RF models is their interpretability [52, 85].  Cascade DF combines 

multiple RF models and a similar model in parallel and in a series of layers in order to increase 

performance [76].  The project sought to determine whether spectral measures derived from the 

RPEb-BM space and CC level flow signal could be used to provide new AMD biomarker insight.  

The objective was also to assess the viability of classification based on spatial frequency features 

as a disease detection method.  A schematic of the project workflow is detailed in Figure 2-6 below.  

A more complete diagram is provided in Appendix A.   
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Figure 2-6 Simplified schematic of the research project workflow. 
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CHAPTER 3 METHODOLOGY 

The methods which were used to produce and analyze the results are provided.  First, a description 

of the experimental design up to and including the imaging protocols and software is provided.  

Then, as laid out in the introduction and Figure 2-6, the methodology is divided into the key 

objectives. 

3.1 Experimental design 

3.1.1 Study sample 

The informed consent of the participants was obtained.  Eyes from normal controls, eAMD and 

iAMD (non-exudative) subjects, and a case of neovascular AMD (exudative) subject were imaged 

using a Swept-Source OCT device.  The project was carried out in conformity with the tenets of 

the Declaration of Helsinki.  In total, 33 eyes were scanned, and study participants were between 

21 and 86 years of age.  Subjects without an AMD diagnosis were defined as controls of similar 

age to AMD subjects if they were over the age of 50 years old (mean and variance were not matched 

between similar age controls and AMD subjects).  Scans include 12 eyes from similar age controls 

with an average age of 59.2 years old.  They also include 11 eyes from non similar age, younger 

controls with an average age of 29 years old and which were recruited initially for prototyping of 

the different methods.  In addition to the exudative AMD eye, the AMD scans include 10 eyes from 

subjects with eAMD and iAMD, who were diagnosed with non-exudative AMD in both eyes or 

have had at least one anti-VEGF injection in the contralateral eye.  The eAMD and iAMD subjects 

had an average age of 75.9 years old. Clinical and demographical characteristics of the eAMD and 

iAMD subjects and the control subjects are detailed in Table 3-1 below. 
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Table 3-1 Characteristics of subjects who participated in the project. 

 

3.1.2 Selection criteria 

The exclusionary criteria were selected primarily in line with previous work seeking CC flow voids 

quantification [37].  As such, they included gross eye movements which can result in motion 

artifact in OCT images [86, 87].  Also included were ocular diseases and histories which could 

have a severe impact on scan quality or have resulted in characteristics which would greatly 

overshadow biomarkers of AMD.  As indicated in [37], such eye conditions and histories were 

central serous chorioretinopathy, retinal or macular surgery, previous ocular laser photocoagulation 

or photodynamic therapy, previous retinal vascular occlusion and center-involving geographic 

atrophy.  Subjects were required to have sufficient visual acuity or ability to fixate in order to 

follow the imaging device operator’s instructions and ensure that scans were well-centered.  Eyes 

with large drusen were included (drusen > 125 µm diameter, en-face view) despite shadowing of 

the CC (as can be seen in Figure 2-5), as the discriminative strength of measures was sought over 

the accurate representation of subretinal microvasculature.  

3.1.3 Imaging protocols and software 

All scans were conducted at the Maisonneuve-Rosemont Hospital Research Centre.  The imaging 

of all participants was performed using the 3 × 3 mm field of view from a ZEISS PLEX Elite 9000 
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Swept-Source imaging device (PLEX Elite 9000; Carl Zeiss Meditec, Inc, Dublin, CA).  The 

imaging device features a Swept-Source laser with a specified central wavelength between 1040 

nm-1060 nm and with a scanning rate of 100,000 A-scans/s.  At the selected field of view, pre-

processed individual A-scans provide 3 mm depth with a 1.953 µm/px resolution (3000 µm / 1536 

px).  The same 3 × 3 mm field of view offers 300 A-scans per single B-scan.  The device has a 

specified transverse resolution (along the eye’s naso-temporal and vertical axes) of 20 µm which 

does not directly translate into the distance covered by the number of acquisition pixels.  The 

images were resized to be true to physical proportions while also maximizing antero-posterior axis 

resolution, with consideration given to computational resources.  For all feature extraction methods 

volumes were resized to 600 × 600 px, and 600 px depth (reducing depth resolution to 5 µm/px).  

Image processing was performed in the MATLAB computing environment (R2018a, The 

MathWorks Inc., Natick, MA, USA).  The ORS dragonfly software was used to provide 3D 

rendered images, and several figures were created and arranged using Adobe Illustrator. 

3.2 Frontal plane subfields separation 

The ETDRS grid divides the eye along the frontal plane and into five subfields.  The Figure 3-1 

below shows the full ETDRS grid with labelled and abbreviated subfields.  To determine the center 

of the grid, an algorithm finds the lowest retinal thickness location in the foveal region.  As the 3 

× 3 mm images generated from the OCT device are aimed at the fovea, the lowest retinal thickness 

point is searched within a circular indexed region with a diameter of 1 mm placed at the center of 

the image itself.  If more than one low point is identified within the region, the median of the x and 

y-coordinates of all identified candidates is obtained and defines the center.  The grid subfields 

then consist of two concentric circles centered at the lowest retinal thickness location and four 

radial lines spanning from the innermost to the outermost circle.  The radial lines extend in the 45°, 

135°, 225°, and 315° meridians and the innermost and outermost circles have diameters of 1 mm 

and 3 mm respectively.  In comparison, the umbo, foveola, fovea, parafovea and the macula 

concentric circles are defined as having diameters of 0.15 mm, 0.35 mm, 1.5 mm, 2.5 mm and 5.5 

mm, respectively [88].  To capture measurements in 3D space, the ETDRS grid masks are binary 

volumes which represent the projection of the original 2D masks along the antero-posterior axis of 

the eye. 
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Figure 3-1 Full ETDRS grid with labelled and abbreviated subfields.  Only subfields 

encompassed within the pericentral ring were used throughout the present research project. (a) 

Full grid with labelled subfields (modified from [81]). (b) Full grid with abbreviated subfields. 

3.3 Layers segmentation and retinal thickness map 

The isolation of the volume of interest from the OCT data was achieved using a series of two image 

segmentation algorithms as previously described and implemented on images generated using a 

different device [89].  The first consists of a cross-sectional pre-segmentation using A-scan 

gradients and an implementation of Dijkstra's shortest path algorithm [90], and provides the 
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location of the Bruch's membrane (BM), the high and the low boundaries of the retinal pigment 

epithelium (RPE), and the interface between the retina and the vitreous body (RVI). The first 

segmentation is less complex and less computationally expensive than the second. The second 

approach is a refinement of the pre-segmentation and involves a graph-cuts algorithm described by 

Li et al [91].  The graph-cuts algorithm is based on specific geometric constraints and provides 

improved segmentation results. 

3.4 Retinal capillaries plexus (RCP) network graph 

Superficial and deep retinal vascular plexuses were imaged.  Retinal layers segmentation, flow 

projection artifacts correction, vessels segmentation and network graph algorithms were 

implemented over a 3 × 3 mm field of view and across the depth of the retinal space.  2D retinal 

vessels quantification measures were extended to 3D. 

3.4.1 Region of interest extraction 

Techniques have been developed to isolate choroid vessels from structural OCT images [92].  In 

contrast with structural OCT, in OCTA images the choroid and particularly the CC of healthy eyes 

are regions of high signal density.  Volume rendering of retinal angiography data necessitates 

removal of the underlying high signal density choroidal region.  The isolation of the volume of 

interest from the OCTA data was made possible through a series of two image segmentation 

algorithms described in section 3.3 concerning the retinal thickness map.  

3.4.2 Flow projection artifacts correction 

Shadowgraphic flow projection artifacts appear on OCTA images as signal intensity which trails 

in the antero-posterior axis direction, from retinal vessels into deeper regions.  The artifacts can 

prevent or impair the ability to see deeper vascular networks as well as the generation of retinal 

volume rendering which reflects ground truth.  The projections were corrected using the 

combination of an approach described by Zhang et al [93] and morphological operations.  Zhang 

et al have found that the normalized projection artifact OCTA signals have progressively lower 

intensities than in-situ signals. The phenomenon can be exploited by first dividing the OCTA 

decorrelation signal value by the value of the structural OCT signal, S, which has a logarithmic 

relationship with the reflectance of the imaged tissues.  In practice, an arbitrary constant was added 
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to the value of the structural OCT signal to prevent division by zero.  Equations 3-1 and 3-2 below 

show how the projected flow (decorrelation) values, D, are normalized by dividing them by the log 

amplitude OCT signal, S. The variable, k, is an added proportionally low constant to avoid division 

by zero and corresponds to a fraction of the maximum intensity within the structural signal volume, 

VS. 

𝐹       (3-1) 

𝑘  10 max 𝑉     (3-2) 

It is then possible to eliminate the normalized signal values which follow a maximum normalized 

value for each 'A-scan', as shown in equation 3-3 below.  In the present implementation of the PR 

algorithm, a factor to account for noise, as described by Zhang et al [93] was not included.  In 

equation 3-3, i and n represent indexes along a given A-scan.    

𝐶
 𝐷 , 𝑖𝑓 𝐹 max 𝐹 , 1 ≤ 𝑖 ≤ 𝑛 1 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3-3) 

Projection removal processing steps and their outcomes are shown at the A-scan level in Figure 

3-2 below and at the B-scan and volumetric level in Figure 3-3 and Figure 3-4 below. 

 

Figure 3-2 Projection removal processing steps and their outcomes. 
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Figure 3-3 Retinal OCTA and implementation of the projection resolved (PR) algorithm (a) 3D 

rendered en-face view before implementation (b) 3D rendered side view before implementation 

(c) In situ flow signal before implementation (d) Flow signal after implementation. 

3.4.3 Vessels segmentation 

Following isolation of the region containing retinal vessels and the correction of shadowgraphic 

flow projection artifacts, the vessels themselves are segmented.  It was determined that while the 

implementation of projection suppression maintains the in-situ signals, the remaining data are 

sparse and do not lend themselves well to further image processing.  To recover the appearance of 

retinal vessels, the remaining pixels were morphologically dilated according to the known average 

physical dimensions of retinal vessels [94].  A morphologically dilated B-scan is shown in Figure 
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3-4(c) below.  As can be seen along the BM in Figure 3-4(c), projections are not completely 

removed using the correction method.  In the interest of isolating retinal vessels, the BM boundary 

was raised and all artifacts below it were cropped.     

 

Figure 3-4 Retinal OCTA and implementation of the projection resolved (PR) algorithm (a) 3D 

rendered en-face view after implementation and dilation (b) 3D rendered side view after 

implementation and dilation (c) Flow signal after dilation (d) Flow signal after outer retinal 

artifact removal. 

An open-source algorithm for the segmentation of retinal blood vessels from fundus images is 

provided by Coye [95] and is based on iterative thresholding [96].  Fundus images are similar to 

en-face OCT and OCTA images, and optimal en-face OCTA images can be generated through 
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maximum value projection [97].  The fundus image-based algorithm was adapted to allow the 

vessels segmentation of en-face OCTA images.  Towards extending the 2D approach and achieving 

volume segmentation of the retinal angiography data, the adapted segmentation algorithm was 

applied iteratively to each en-face plane (along the antero-posterior axis) of the extracted region of 

interest.  Additional morphological operations and binarization enabled 3D rendering of retinal 

vasculature.  As part of the algorithm, a function permitted the removal of objects below the 

selected threshold of 300 pixels (for each iteration along the antero-posterior axis).   

 

Figure 3-5 En-face view of the steps of the projection resolved algorithm and network graph 

representation (a) En-face flow signal after implementation of the projection resolved algorithm 

and dilation. (b) Segmentation and binarization of the projection resolved and dilated vessels. (c) 

Skeletonization of the vessels. 

3.4.4 3D quantification 

An angiography quantification approach involves the processing of a 3D binary voxel skeleton into 

a network graph described by nodes, endnodes, links and branches (links connected to endnodes) 

[98, 99].  The approach in [98] was applied to the skeletonized vessels for each OCTA scan, and 

the total number of nodes, links and branches were obtained from the network graphs. 

3.5 Choriocapillaris (CC) flow voids quantification 

To obtain measures from the CC, a 10 µm thick en-face CC slab was first isolated starting 8 µm 

deep into the choroid (posterior to the BM) and a maximum projection image of the slab was 

obtained.  Even though it has been recommended to begin sampling the CC slab at greater depths 
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using a different device, the shallower selected depth offered CC images which visually most 

closely matched CC en-face images automatically generated by the device used.  An algorithm 

capable of applying a Phansalkar adaptive local thresholding binarization filter [100] to the en-face 

maximum projection image from within the MATLAB environment was developed.  The 

MATLAB Phansalkar function was adapted from the MATLAB implementation of the Sauvola 

binarization method [101].  The Sauvola local threshold is obtained over windows of a specified 

size using equation 3-4 below, where m(x, y) is the mean and s(x,y) the standard deviation of the 

pixel intensities with x and y as image coordinate.  The variable R is the maximum standard 

deviation within a given window, and k is a constant. 

𝑇 𝑥, 𝑦 𝑚 𝑥, 𝑦 1 𝑘 , 1   (3-4) 

Equation 3-5 below is used to obtain the Phansalkar local threshold.  In the present implementation 

the threshold is computed over a window approximately 20 times smaller than the en-face image 

(consistent with the literature [37]).  Unlike the ImageJ software Phansalkar filter used by Spaide 

[37] which features a circular window, the present MATLAB implemented filter derived from the 

Sauvola filter uses a square window.  The added terms p and q were assigned the recommended 

values of 2 and 10 respectively, and the constant k the recommended value of 0.25 [100]. 

𝑇 𝑥, 𝑦 𝑚 𝑥, 𝑦 1 𝑝𝑒 , 𝑘 , 1  (3-5) 

Like Phansalkar adaptive local thresholding, logarithmic binning of signal void sizes and the log 

number versus log size plotting were programmed directly into MATLAB.  The fraction of signal 

voids greater than 10,000 µm2 was calculated.  The fraction of signal voids greater than 40,000 

µm2 was not used as it was found that most flow voids from non-exudative AMD eyes did not 

exceed that size. The slope, m, and the intercept, b, were obtained from the trendline of the log 

number versus log size plot. While the appearance of more continuous vessel segments may be 

realised and averaging may grant the possibility of studying alterations more precisely [38], a 

considerable number of scans are used to obtain superior results and there remains a risk of 

removing information.  Owing to the lower feasibility of obtaining a fairly large number of scans 

(9 scans) per subject in a clinical setting, and yet unresolved uncertainty with regard to intrasubject 

en-face maximum projection images frame to frame changes after registration, averaging was not 

carried.    
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3.6 Drusen segmentation RPEb-BM and en face methods 

As an implementation of the RPEb-BM drusen segmentation method, a thickness map was obtained 

as the difference between the BM and the RPEb.  Then the value of each element of the resulting 

2D array was compared with a threshold value corresponding to the addition of an absolute 

threshold of 12 µm and half the standard deviation of the 2D array values.  Scan locations within 

the space between the RPE bottom and the BM where thickness values exceeded the threshold 

were given a value of 1, and in this way a volumetric binary drusen mask was obtained.  The 

volumetric binary mask provided drusen volume measurements. A maximum projection of the 

volumetric binary mask into a 2D mask was used to provide drusen area measurements.  

The en face drusen segmentation method using only the BM boundary [23] requires the application 

of several image processing steps.  MATLAB implementations of the steps described in literature 

are available including top-hat filtering, median filtering and Jaccard similarity coefficient 

computation.   A diagram of the modified pipeline is provided below.   
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Figure 3-6 Diagram of the modified en face drusen segmentation method pipeline. 

Owing to the greater resolution available with the device used, a greater number of C-scans were 

averaged than in the original method (dodecuplets instead of quintets, as shown in Figure 3-6 

above).  Otsu thresholding resulted in false positives when applied to control images.  A set 

binarization threshold aimed at minimizing false positives in control images was chosen to replace 

Otsu binarization.  Morphological operations were also added immediately after binarization and 

before the logical OR and median filtering steps to provide a more conservative segmented drusen 

area coverage.  
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Performance metrics were used to validate the segmentation methods against expert ground truth, 

namely the Jaccard index, J, and the Sørensen–Dice coefficient, D.  Equations for the two metrics 

are provided below, where A and B are binary images evaluated for similarity. 

𝐽 𝐴, 𝐵   
| ∩ |

| ∪ |
    (3-6) 

𝐷 𝐴, 𝐵   2
| ∩ |

| | | |
    (3-7) 

3.7 Spectral analysis 

As the eye level (whole individual scan) quantification of the RPEb-BM space and CC flow voids 

showed significance with regard to discriminating control from AMD eyes and were represented 

most evenly across the frontal plane of subject eyes, a method to extract similar measures at the B-

scan level was sought.  Fourier transformation of spatial series was appealing due to the nature of 

the biomarkers of interest.  Single line spatial series sampled along frontal plane images 

representative of the RPEb-BM space and CC were transformed into their frequency domain 

equivalent.  For the RPEb-BM space, single line spatial series from the thickness map were used.  

For CC, single line spatial series from the maximum projection of the slab previously described 

(see section 3.5) were used. 

The fast Fourier transform (FFT) is an algorithm which rapidly computes the discrete Fourier 

transform (DFT) [102] and a short explanation of Fourier transformation is provided in Appendix 

B. A MATLAB implementation of FFT was used to obtain the transform of spatial series 

representative of single lines along the RPEb-BM thickness map and CC.   

In addition to smaller drusen, early and intermediate AMD eyes have been described as 

demonstrating medium drusen with widths of 63 µm and above [15]. As such, it was anticipated 

that for a given B-scan, drusen would manifest as a concentration of higher amplitudes than control 

in the lower frequency range of the spectrum.  Likewise, it was expected that abnormalities such 

as flow voids, which vary greatly in size, would be represented across a broad frequency range of 

the spectrum representative of the CC.   
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3.8 Classification 

Classification ML problems can be defined in terms of their typical workflow components.  

Initially, observations containing the information of interest have been gathered, and each 

observation has been labelled as belonging to one of the possible classes.  In the project, 

observations are individual B-scans for each class as shown in the first row of Table 3-1.  

Observations from early and intermediate AMD B-scans were collectively labelled as AMD, and 

observations from normal B-scans were labelled as control.  The class labels constitute ground 

truth.  

Features are engineered from the observations and selected based on their ability to discriminate 

between classes (for example, using statistical methods as in the present project).  For the project, 

RPEb-BM space and CC spectral data obtained using fast Fourier transform were combined into a 

joint feature space.  Once features have been selected, the ones belonging to a small fraction of the 

observations are set aside. The remaining majority of observations including both classes of a 

dataset are fed to a ML algorithm and a classification model is generated.  For validation, the 

generated model is then used to predict classes from features belonging to the smaller fraction of 

observations that was previously set aside.  These last predictions are then compared against the 

ground truth classes corresponding to the same observations using a number of metrics.  A typical 

classification ML workflow is shown in Figure 3-7 below. 

 

Figure 3-7 Typical classification ML workflow. 

3.8.1 Principal component analysis (PCA) dimensionality reduction 

A low number of features belonging to each observation can be preferable to a high number of 

features.  Reducing the number of features can help prevent error associated with using a number 
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of features which exceeds a critical value, a phenomenon known as the peaking phenomenon [103, 

104].  The critical point beyond which error increases is believed to occur when the number of 

features is greater than half the number of observations.  Thus, as part of a separate classification 

ML workflow to be evaluated, spectral data were allocated into frequency bands using PCA.  The 

analysis of explained variance as a function of frequency revealed that in the instance of both 

drusen and CC representative spectrums, the percentage of explained variance diminishes as 

frequency increases.  Plots of cumulative explained variance as a function of frequency are shown 

in Figure 3-8 below.  

 

Figure 3-8 PCA cumulative explained variance as a function of frequency (a) RPEb-BM 

thickness map frequency dataset. (b) CC projection frequency dataset. 

A strategy was developed to help maximize explained variance reflected in each band and to ensure 

that they collectively account for at least 95 percent of total explained variance [105]. A set of 

equations provided in Appendix C was used as part of an algorithm which allocates the average of 

a progressively greater number of frequencies into each band as frequency increases along the 

spectrum.   

3.8.2 Random forest (RF) 

The biomarker spectrums and constructed bands were used as input for training RF classification 

models.  RF designates a type of ML algorithm which combines several decision trees into an 

ensemble model [50-52].  The trees are constructed in such a way as to maximize the model’s 

ability to generalise from trends in a given dataset.  Example diagrams of decision tree 
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representations with five classes are shown in Figure 3-9 below.  The Pythagoras tree 

representation shown in Figure 3-9(b) is a type of fractal geometry [106] which can be useful for 

visualising hierarchies [107].   

 

Figure 3-9 Hierarchical tree representations with five classes. (a) Node-link decision tree 

representation. (b) Pythagoras tree representation. 

As shown in Figure 3-9, for a single tree trained model a prediction is made first by presenting the 

feature space corresponding to an observation at the entry node of the model.  At each node of the 

tree, the feature space is subjected to a rule, e.g. P(5 mm-1) ≥ 2 dB/mm-1.  Whether the features 

satisfy the rule determines the path down to the next level of the hierarchy and either one of two 

subsequent nodes until an end node (also called a leaf node) is reached and a class is assigned.     

Rules are determined at tree construction during training with the majority of observations 

(assuming a small fraction has been set aside for validation).  To construct a single tree, at the first 

node possible rules to split observations into two sub-groups are iterated until a rule is found which 

maximizes a measure of impurity gain.  In the MATLAB implementation, the default impurity 

measure is Gini’s diversity index, it.  Equation 3-8 below defines Gini’s diversity index.  The term 

pj represents the fraction of items labeled with value j in the set of C classes.  The index takes a 

small value if pj are near zero or one, indicating low impurity. 

    𝑖 1 𝑝 ,      𝑗 ∈ 1, 2, … , 𝐶   (3-8) 
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Impurity gain, ΔI, is calculated as, 

     𝛥𝐼 𝑖 𝑖 , 𝑖 ,     (3-9) 

The terms it,L and it,R are the values of Gini’s indexes for the left and right child nodes, respectively.  

The term N is the total number of observations in the parent node and NL and NR are the number 

of observations in each child node.  The process is repeated at each node of a given tree until 

remaining observations are pure as defined by the index, or a specified maximum tree depth is 

reached.  The Pythagoras tree, Figure 3-9(b), provides insight as to how trees are constructed. As 

squares around each node form a Pythagorean triple, the proportions of the two smaller sides of the 

right triangle reflect the optimal split.  Optimal splitting paths along Pythagorean trees also indicate 

the course which any given input is most likely to undertake through to an end node. One such high 

probability path is drawn onto the node-link tree in Figure 3-9(a) for comparison. 

In addition to aggregating trees into an ensemble model and yielding a consensus prediction, RF 

leverages tools which help prevent overfitting [85].  Bagging consists of sampling a subset of 

observations to construct each tree.  In addition to bagging, as part of constructing a RF model only 

a subset of features is selected to determine how best to split observations at each node.  A generic 

RF model structure is shown in Figure 3-10 below.   

 

Figure 3-10 A generic random forest model featuring 60 trees (modified from [108]). 
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A hyperparameter is a model parameter with a value that is set before model training begins.  By 

default, the MATLAB RF implementation grows deep trees and a maximum level after which 

splitting is prohibited was not specified.  A number of 60 trees was specified for each model and it 

was determined that additional trees would not increase classification performance appreciably 

[109].  Unlike many other ML approaches, RF models provide a measure of predictor importance, 

and plots of predictor importance as a function of frequency and frequency bands were generated.  

An implementation of an algorithm capable of generating Pythagorean forests in the MATLAB 

computing environment was also developed. The Pythagorean forest leverages the Pythagoras tree 

representation and offers a convenient means of displaying the structure of RF learned models 

[110].   

3.8.3 Deep forest (DF) 

In an effort to maximize classification performance, the cascade DF model [76, 111] was 

implemented in MATLAB and explored in addition to the simpler RF model.  Deep forest models 

were designed to leverage characteristics of deep neural networks namely, layer-by-layer 

processing, in-model feature transformation and complexity, and combining those characteristics 

with forest models.  A schematic of the DF cascade structure which was implemented is shown in 

Figure 3-11 below.  As can be seen in the figure, the structure integrates forests in parallel, and in 

a series of layers.  The cascade features both RF and a similar model called extremely randomized 

trees (ET) [112, 113].  Like RF, the ET model is an ensemble which joins together decision trees.  

However, unlike RF, all observations are used to grow each tree in the ensemble and the cut-point 

of candidate features at each node split is selected completely randomly before a rule is established 

which maximizes the measure of impurity gain.  For the project, deep ETs were grown, and 

specified parameters were 60 trees per model and 20 features randomly selected at each node.  As 

shown in Figure 3-11, the DF cascade is trained by feeding features as input to each forest in the 

first layer.  In subsequent layers, the class distribution output array from each forest sub-model, 

which would normally be used to determine the output class, is concatenated with the original 

features and fed as input.  Following the last level of parallel forests, an averaged class distribution 

array is obtained from individual sub-model outputs.  The maximum of individual elements in the 

averaged class distribution array is used as the final classification.  In the present implementation, 

three levels, N, were used. 



38 

 

 

Figure 3-11 DF cascade structure.  The model features both RF (represented in black) and ET 

(represented in grey). 

3.8.4 Models performance evaluation 

Performance metrics were used to evaluate the classification approaches namely sensitivity, 

specificity, precision, accuracy and F1-score.  The different performance metrics are functions of 

the number of true and false positives (abbreviated TP and FP, respectively) and true and false 

negatives (abbreviated TN and FN, respectively). 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦      (3-10) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      (3-11) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛       (3-12) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦      (3-13) 

𝐹1 𝑠𝑐𝑜𝑟𝑒  2    (3-14) 

The metrics were evaluated on datasets corresponding to two conditions.  The first datasets were 

folds of a k-fold cross validation scheme (ten-fold for RF and three-fold for DF).  In the k-fold 
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cross validation, 10 % of observations were determined randomly and set aside iteratively for 

testing.  The datasets associated with the second condition were obtained by iteratively leaving all 

B-scans belonging to all eyes from a given subject (an augmented 600-1200 B-scans) out of the 

training dataset, and then testing the models on those same B-scans. 
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CHAPTER 4 RESULTS 

In this section the results for key steps of the research project as outlined in section 2.5 are provided.  

In the first part, results are displayed and described at eye level for each of the five feature 

extraction methods.  Eye level results are followed by a comparison between the extracted features 

for early and intermediate AMD subjects against control subjects.   For each feature, strip charts 

are used to compare the two groups, with lines at the means and Mann-Whitney U test outcomes 

above the data points using a p-value star system (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001) 

[114, 115].  The strip charts are accompanied by a 3D bar plot which summarizes test results across 

ETDRS subfields.  The second part is concerned with spectral analysis applied to measures 

representative of drusen and CC flow void, and ML using the extracted features.  The generated 

models and their performance are described. 

4.1 Retinal thickness map 

Results from the RVI and BM segmentation for a control subject and an AMD subject are shown 

in Figure 4-1 below.  The figure shows B-scans with segmentation lines and a thickness map with 

pink indicating a relatively greater retinal space and blue a relatively narrower retinal space.  At 

eye level, distinctions can be observed between the control subject and the AMD subject’s results.  

Notably, the control subject’s thickness map suggests a thicker retina along the pericentral annulus 

and an overall flatter retina in the case of the AMD subject.  For the AMD subject, the scan is 

slightly lower quality which is reflected in the rough appearance of the thickness map’s surface 

and the presence of straight lines parallel to the slow scan direction.     

The strip charts showing retinal thickness and retinal volume data between the two groups is shown 

in Figure 4-2.  For the present dataset, thickness highest significance was found at the superior 

subfield, and volume highest significance was found at the temporal subfield (p ≤ 0.01, Mann-

Whitney U test).  Central measures were similar across groups.  Perhaps, structural changes 

associated with AMD such as the presence of drusen are a contributing factor to the similar central 

measures.  
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Figure 4-1 B-scan RVI segmentation and BM segmentation at macula and whole eye thickness 

map for a control subject (top) and an AMD subject (bottom).  (a, c) B-scan image. A pink 

segmentation line is traced along the RVI and a blue segmentation line is traced along the BM. 

(b, d) Thickness map.  For all locations along the plane and according to the range of the scale, 

pink indicates a greater retinal space and blue a narrower retinal space. 
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Figure 4-2 (a) Retinal thickness distributions versus ETDRS regions for AMD and control 

subjects (b) Retinal volume distributions versus ETDRS regions for AMD and control subjects 

(c) Comparison of p-values from Mann–Whitney U test for retinal thickness and volume, and 

between AMD and control distributions 
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4.2 Retinal capillaries plexus (RCP) network graph 

A set of 3D rendered images corresponding to the RCP in situ flow signal, shadowgraphic flow 

projection artifacts correction, larger vessels segmentation and skeletonization for one eye of a 

control subject are shown in Figure 4-3(a-d).  Results from the network graph generation for the 

same eye are shown in Figure 4-3(e).  At eye level, it can be seen from Figure 4-3(b) that relatively 

smaller retinal vessels are not well resolved even after shadowgraphic flow projection artifacts 

correction.  As seen in Figure 4-3(c) and also in en face Figure 3-5(b), vessels segmentation results 

suggest that the isolation of relatively larger vessels for subsequent skeletonization was successful.  

As Figure 4-3(d) and other individual skeletonization images suggested, morphological dilation of 

the projection resolved flow signal is not enough for overcoming data sparsity especially with 

regard to larger vessels.  This resulted in areas with artificially higher skeleton density or 

duplication of skeletons along larger vessels.  The network graph in Figure 4-3(e) successfully 

shows nodes and links corresponding to the skeleton. 

The strip charts showing node and links data between the two groups are shown in Figure 4-4.  For 

the dataset, the number of nodes and links and test significance levels were very similar across 

subfields.  Notably, the temporal subfield showed highest significance for both links and nodes (p 

≤ 0.001 and p ≤ 0.01, respectively, Mann-Whitney U test).  Interestingly, center measurements of 

links and nodes represent a similar yet alternative measure to foveal avascular zone.  A recent 

investigation found no significant difference in foveal avascular zone measurements between 

intermediate AMD subjects and control eyes [116], which does not appear consistent with the 

central subfield results.  

To test repeatability of the method repeated scans from both eyes were obtained from a subject 

with a prior ocular surgery for retinal detachment in the right eye and otherwise normal eyes, and 

one eye from a subject with neovascular AMD.  Strip charts showing node and links data for 

repeated scans of the control eyes and the neovascular AMD eye are shown in Appendix D.  Retinal 

thickness and volume data, as well as raw OCTA en-face images and network graphs for the 

control’s left eye and the neovascular AMD eye are also provided. 
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Figure 4-3 Vessels network graph construction steps with superimposed structural signal volume 

and isolation of the retinal space. (a) 3D rendered in situ decorrelation signal volume. (b) 

Decorrelation signal volume after implementation of the projection resolved algorithm and 

dilation. (c) Projection resolved vessels following segmentation and binarization. (d) 

Skeletonization of the segmented binary vessels. (e) Vessels network graph. 
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Figure 4-4 (a) Network graph links distributions versus ETDRS regions for AMD and normal 

subjects (b) Network graph nodes distributions versus ETDRS regions for AMD and normal 

subjects (c) Comparison of p-values from Mann–Whitney U test for network graph links and 

nodes, and between AMD and normal distributions. 
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4.3 Choriocapillaris (CC) flow voids analysis 

Results from the isolation of a CC slab, its maximum projection image and the corresponding 

Phansalkar adaptive local thresholding binary mask are shown for a control subject and an AMD 

subject in Figure 4-5(a) below.  Bar and log-log plots featuring the number of flow voids against 

area size for the same subjects are also shown in Figure 4-5(b) and Figure 4-5(c), respectively.  As 

shown in Figure 4-5(a), localised darkened areas are readily visible across the surface of the AMD 

CC slab maximum projection image in comparison with the control image.  Likewise, larger flow 

voids, as represented by white areas are clearly visible and widespread on the AMD eye’s 

Phansalkar binary mask when compared with the control eye.  The bar plots suggest a power 

distribution for both subjects as anticipated.  Trendline parameters reflect the relationship between 

the number of flow voids corresponding to each area size.  In the case of the AMD eye, a lower 

number of small voids and a greater number of larger voids translates to a trendline with a slope 

that is less steep, and a lower trendline intercept.  

The strip charts showing trendline intercept, slope and fraction of flow voids exceeding 10,000 

µm2 (FV10000) over the total eye surface for eyes belonging to the two groups are shown in Figure 

4-6(a) below.  The 3D bar plot in Figure 4-6(b) provides additional significance values for the 

remaining subfields.  As the strip charts shows, all features showed significant differences between 

the two groups (p ≤ 0.05, Mann-Whitney U test).  In addition to being uniformly represented across 

the frontal plane of the eye, the 3D bar plot indicates that for FV10000 there remains significant 

differences across most subfields, further suggesting that CC quantification methods are a good 

candidate for B-scan level feature extraction.  Results of flow voids quantification suggest that as 

had been demonstrated in literature, CC images can provide measurements which allow 

discrimination between diseased and healthy eyes.     
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Figure 4-5 (a) AMD (left side) and control (right side) subjects flow voids parameters extraction 

steps; en-face CC slab maximum projection and Phansalkar local thresholding. (b) Bar plot 

showing number of flow voids binned into area sizes; the number flow voids with respect to area 

size follows a power distribution (c) Log-log plot of flow voids binned as a function of area; 

trendlines and parameters to be evaluated as biomarkers are shown. 
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Figure 4-6 (a) Slope, m, intercept, b and signal voids greater than 10,000 µm2 (FV10000) 

distributions for AMD and normal subjects and over the total area of the en-face binary image. 

(b) Comparison of p-values from Mann–Whitney U test for intercept, slope and FV10000 and 

between AMD and normal distributions. 
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4.4 RPEb-BM drusen segmentation method 

The Figure 4-7(a) below shows a structural OCT B-scan with the BM (blue) and RPE (pale blue) 

segmentation lines for an AMD eye. In Figure 4-7(b), a closeup of the drusen segmentation mask 

of the space resulting from the subtraction of the RPE bottom layer from the BM layer is provided.  

Finally, a 3D rendering of the drusen map and the nasal projected ETDRS subfield are shown in 

Figure 4-7(c).  The closeup of the binary mask suggests that for the given AMD eye, the 

thresholding strategy allowed keeping only regions where the RPE bottom was abnormally 

elevated.  The drusen map in blue appears to correspond to visible areas of drusen along the lower 

boundary of the superimposed structural signal volume in Figure 4-7(c). For the AMD eye and as 

can be seen on the B-scan in Figure 4-7(a), drusen limits are not well defined and segmentation 

lines do not match the elevations exactly.   

The strip charts showing drusen area and volume over the total eye surface for eyes belonging to 

the two groups are shown in Figure 4-8(a) below.  The 3D bar plot in Figure 4-8(b) provides 

additional significance values for the remaining subfields.  As the strip charts indicate, all features 

showed significant differences between the two groups (p ≤ 0.001, Mann-Whitney U test).  Like 

with flow voids quantification, the 3D bar plot indicates that for both area and volume, significance 

remains low across almost all subfields, suggesting that the first drusen method is a good candidate 

for B-scan level feature extraction.   
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Figure 4-7 (a, top) B-scan structural OCT, BM (blue) and RPE (pale blue) segmentation lines for 

a female AMD subject. (a, bottom) RPEb subtracted from BM drusen segmentation mask with 

BM (blue) and RPE (pale blue) segmentations; closeup of BM subtracted from RPEb drusen 

segmentation mask. (b) Binary drusen segmentation mask en-face view. (c) 3D rendering of 

drusen map and ETDRS region. 
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Figure 4-8 (a) Drusen area and volume distributions for AMD and control subjects and over the 

total area of the en-face binary image. (b) Comparison of p-values from Mann–Whitney U test 

for drusen area and volume and between AMD and control distributions. 
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4.5 En face drusen segmentation method 

A diagram showing different types of drusen is shown in Figure 4-9(a) below. Underneath it in 

Figure 4-9(b), a B-scan belonging to an AMD eye is shown for comparison, with drusen 

segmentation inner slab boundaries represented as pink lines, and outer slab boundaries represented 

as red lines.  A closeup of the boundaries corresponding to the white frame in the B-scan image is 

also provided.  

The strip chart in Figure 4-10(a) shows drusen area over the total eye surface for eyes belonging to 

the two groups.  The 3D bar plot in Figure 4-10(b) provides additional significance values for the 

remaining subfields.  As indicated by the strip chart and 3D bar plot, results suggest that drusen 

area measurements in AMD eyes obtained trough the second drusen segmentation are generally 

not significantly different from those corresponding to control eyes.  Despite the trend, significance 

was found in the nasal subfield (p ≤ 0.05, Mann-Whitney U test).  Lack of significant differences 

between groups for the method are attributed to the observation that by its nature the method is 

susceptible to segmenting vessels as they appear in OCT structural images.  In the absence of 

further processing, vessels were occasionally wrongly included in the drusen area measurements.  

In addition to vessels, slightly raised RPE inner boundary in AMD and control eyes occasionally 

crossed inner slab limits and were also wrongly included in the drusen area measurements.  Because 

of lower performance likely caused in part by vessels and raised RPE inner boundaries, the en face 

drusen segmentation method was deemed inferior to the RPEb-BM method.        

A figure showing segmentation results as en face binary masks and a table providing segmentation 

performance for both drusen segmentation methods compared with two expert ground truth 

segmentations is provided in Appendix E for eight AMD eyes.  Full tabulated results for the RPEb-

BM drusen segmentation method are also provided.  To generate ground truth images, experts 

identified drusen on C-scans structural OCT images extracted from the inner and outer slabs of 

each of the eight AMD eyes.    
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Figure 4-9 (a) Schematics of drusen types and their morphologies in the outer retina (modified 

from [11]) (b, left) B-scan with drusen segmentation inner slab boundaries represented as pink 

lines, and outer slab boundaries represented as red lines. (b, right) Closeup of the boundaries 

corresponding to the white frame in the B-scan image. 
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Figure 4-10 (a) Drusen area distributions for AMD and control subjects and over the total area of 

the en-face binary image. (b) Comparison of p-values from Mann–Whitney U test for drusen area 

between AMD and control distributions. 
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4.6 Spectral analysis and dimensionality reduction 

Steps for splitting the RPEb-BM drusen thickness map and the CC slab flow signal maximum 

projection from an AMD eye into individual spatial series corresponding to each B-scan location 

along the fast scan direction are shown in Figure 4-11 below.  As can also be seen beneath the 

spatial series belonging to each biomarker representative image, the Fourier transform of each 

series is obtained before it is converted to log scale for convenient visualisation.   

The combination of the spectrums corresponding to both spatial series in the feature space is 

illustrated for one B-scan of the same AMD eye in Figure 4-12.  For consistency with the transverse 

resolution of the device of 20 µm, the upper limit of the frequency spectrums was set to 25 mm-1.  

Under the combined spectrums and as informed by PCA, the bands resulting from averages of a 

progressively greater number of frequencies as frequency increases along the spectrums are also 

shown.  Spectrums from the CC slab flow signal maximum projection have lower amplitudes than 

those from the RPEb-BM drusen thickness map.  In both instances the amplitude of the first 

element of the spectrum array is relatively higher than that of the other frequency terms, and is a 

reflection of the zero frequency term which does not vary with space [117].   

The Figure 4-13 shows 2-D embedding plots of the transforms of the series representative of drusen 

and CC for both the control and AMD groups obtained using t-distributed stochastic neighbor 

embedding.  As the name implies, t-distributed stochastic neighbor embedding is a ML technique 

which allows the visualisation of high dimensional data into a lower dimensional space.  The 

average of all spectrums from all drusen thickness maps and all CC flow voids projection images 

of AMD and controls are shown in Figure 4-14(a) and Figure 4-14(c), respectively. In both figures, 

average spectrums belonging to controls are displayed in a lighter color, and average spectrums 

belonging to AMD eyes are in a darker color.  Limits corresponding to the first and third quartiles 

are also shown as bounded lines.  Similarly, bands distribution for the full control and AMD 

datasets are shown separately for each group in Figure 4-14(b) and Figure 4-14(d) as violin plots 

[118] with a consistent color scheme.    

As anticipated, spectrums representative of the RPEb-BM in Figure 4-14(a) appear to diverge in 

the low frequency range.  This is also observable when comparing the first few bands distribution 

between the AMD group and the control group. In the case of the CC average spectrums in Figure 

4-14(c), differences between the spectrums are less noticeable and more evenly spread across the 
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frequency range which is likely a reflection of the presence of flow voids of various sizes. The 

slightly more apparent divergence in the lower frequency range of CC representative spectrums 

and bands is likely at least partly a result of drusen shadowing over the CC layer. 

 

 

Figure 4-11 (top left) Inner RPE C-scan. (top right) CC slab flow signal maximum projection 

(middle) Biomarker representative images (RPEb-BM in blue, CC in green) are split into 

individual spatial series corresponding to each B-scan location along the fast scan direction. 

(bottom) The Fourier transform of each spatial series is obtained before it is converted to log 

scale for convenient visualisation. 
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Figure 4-12 (top) Feature space for one spatial series which consists of the spectrums for both the 

series from the drusen thickness map and flow voids projection image (bottom) Principal 

component analysis was used to split each spectrum into 12 individual representative bands, with 

the goal of maximizing explained variance.  
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Figure 4-13 t-distributed stochastic neighbor embedding (t-SNE) of spectrums representative of 

biomarkers belonging to AMD and control groups (darker and lighter dots, respectively). (a) For 

series from the RPEb-BM thickness map in blue and (b) from the CC projection image in green. 

 

Figure 4-14 RPEb-BM thickness map and CC flow voids projection image spectrums from 

spatial series, and PCA optimized bands dataset representations shown in blue and green 

respectively. (a, c) Average spectrums for the full AMD (darker color) and control (lighter color) 

datasets with first and third quartiles shown as bounded lines. (b, d) Bands distribution for the full 

AMD and control datasets. 
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4.7 Classification 

The Table 4-1 and Table 4-2 below provide performance evaluations of AMD classification based 

on frequency spectrums and bands, respectively.  The tables include DF three-fold and RF ten-fold 

cross-validation average performance metrics and leave-one-subject-out per eye performance 

metrics. The AMD classification models were generated with data from similar age controls 

(labelled G2, over the age of 50) for DF and RF and also controls under the age of 50 (labelled G3) 

for RF.  Results from spectrum and bands-based classification of AMD versus similar age controls 

suggest that good B-scan level performance was achieved, with a maximum accuracy of 95.51 % 

for spectrum-based classification and 93.23 % for bands-based classification.  In both spectrum 

and bands-based classification with similar age controls, a lower performance is observed for leave-

one-out validation (maximum accuracy of 77.27 %).   

Full RF bands-based classification leave-one-subject-out validation results, as well as RPEb-BM 

drusen segmentation method and flow voids quantification results for AMD and similar age 

controls are provided in Appendix F.  Looking at the leave-one-subject-out validation results more 

closely, three eyes in the AMD group and two eyes from the control group were misclassified (by 

B-scan accuracy rounding to whole scan binary classification).  Drusen segmentation and flow 

voids quantification results suggest that the misclassified eyes represent subtypes within each 

group.  The three misclassified eyes in the AMD group have the lowest drusen area (little to no 

drusen) when compared to other AMD eyes.  The two misclassified eyes in the similar age control 

group show the highest fraction of flow voids exceeding 10,000 µm2 when compared to the other 

control eyes (which all show relatively low fractions).  As anticipated, results from spectrum-based 

and bands-based classification of AMD versus controls under the age of 50 years old indicate that 

the models could successfully distinguish B-scans and eyes belonging to each group.   

Plots of predictor importance as a function of frequency for one-fold of the ten-fold cross-validation 

for both spectrum-based and bands-based classifications using RF are shown in Figure 4-15.  As 

could have been expected based on the bounded line plots in Figure 4-14, the predictor importance 

plots for the drusen thickness map frequency spectrum and bands indicate that lower frequencies 

(especially in the < 10 mm-1 range) were the most important predictors for reaching a classification.  

Predictor importance for CC flow voids projection image frequency spectrum and bands show that 

importance is spread almost evenly across the spectrum. 
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Hierarchical representations of the random forest models for spectrums and bands are provided in 

Figure 4-16 and Figure 4-17, respectively.  As can be visualised in the figures, dimensionality is 

reflected in tree morphologies.  The average lower probability split at each node, �̅� , of the high 

dimensional trees in Figure 4-16 is less than the average for low dimensional trees.  The average 

depth, �̅�, of the high-dimensional trees is greater than the average depth of the PCA optimised low-

dimensional trees. 

Table 4-1 Performance evaluation for spectrum-based early and intermediate AMD classification.  

DF three-fold cross-validation and RF ten-fold cross-validation average performance metrics and 

leave-one-subject-out per eye performance. 
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Table 4-2 Performance evaluation for bands-based early and intermediate AMD classification.  DF 

three-fold cross-validation and RF ten-fold cross-validation average performance metrics and 

leave-one-subject-out per eye performance. 
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Figure 4-15 Predictor importance for one-fold of the ten-fold cross-validation for both spectrum-

based and bands-based classifications using RF. (a, left) RPEb-BM thickness map frequency 

spectrum predictor importance. (a, right) RPEb-BM thickness map PCA-optimized bands 

predictor importance. (b, left) CC flow voids projection image frequency spectrum predictor 

importance. (b, right) CC flow voids projection image PCA-optimized bands predictor 

importance. 
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Figure 4-16 RF hierarchical representations (Pythagorean forest) generated from spectrum-based 

classification. 
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Figure 4-17 RF hierarchical representations (Pythagorean forest) generated from bands-based 

classification. 
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CHAPTER 5 DISCUSSION 

The generated retinal thickness maps were useful as a means of ensuring the quality of the 

segmentation of each eye in the dataset.  Differences between groups were not as significant as 

with RPEb-BM drusen segmentation quantifications and centering could have had an impact on 

measurements. When comparing measurements between AMD and similar age control subjects, 

the thickness Mann-Whitney U test significance was highest in the superior subfield, with a mean 

thickness of 332.9 µm for AMD subjects versus 354.8 µm for control subjects (p ≤ 0.01).  The test 

significance for volume was highest in the temporal subfield, with a mean volume of 0.465 mm3 

for AMD subjects versus 0.523 mm3 for control subjects (p ≤ 0.01).  Data seem to indicate that 

AMD eyes are flatter, as evidenced by more similarly distributed central thickness measures, with 

means of 270 µm and 245.4 µm for AMD and controls respectively, and thinner AMD pericentral 

annulus thickness measures. 

In the case of RCP network graph measurements, Mann-Whitney U tests revealed highest 

significance between AMD and controls links at the temporal subfield with a mean of 109.5 links 

for AMD subjects and 169.8 links for control subjects (p ≤ 0.001).  Highest significance was also 

found in the temporal subfield when comparing AMD and controls nodes with a mean of 119.1 

nodes for AMD subjects and 185.6 nodes for control subjects (p ≤ 0.01).  While significant 

differences between groups were observed, challenges remain with regard to the method's validity.  

For example, it is possible that remaining sparsity artefacts contributed to a large fraction of the 

number of links and nodes observed in both groups.  Despite the fact that morphological operations 

showed some success in reducing the effect of sparsity, they also result in segmentation errors.  

Even if there remain shortcomings, the comparison of repeatability measurements of controls with 

neovascular AMD measurements suggest that the method can be used for CNV or retinal 

angiomatous proliferation quantification.  Seeing as CNVs originate from the choroid, elevating 

the BM to crop remaining PR algorithm artefacts is likely to represent an obstacle to reliable CNV 

detection.  

Results suggest that the RPEb-BM space drusen quantification method is useful for discriminating 

between healthy and non-exudative AMD eyes.  The distributions of the RPEb-BM space total area 

values for AMD and control subjects were found to be significantly different, with a mean value 

of 1.330 mm2 for AMD subjects and 0.305 mm2 for control subjects (p ≤ 0.001).   The distributions 
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of the RPEb-BM space total volume values for AMD and control subjects were also significantly 

different, with a mean value of 4.197ꞏ10-2 mm3 for AMD subjects and 6.461ꞏ10-3 mm3 for control 

subjects (p ≤ 0.001).  While not as significant, CC flow voids quantification still proved useful as 

the differences observed were also spread more evenly across the frontal plane of the eye.  This is 

reflected in the FV10000 measurements.   The distributions of the total FV10000 values for AMD 

and control subjects were significantly different, with a mean value of 0.195 for AMD subjects and 

0.074 for control subjects (p ≤ 0.05).   

Using spectral counterparts to the spatial RPEb-BM space and CC flow voids measurements, the 

B-scan based classification models offer an approach to eye condition assessment.  The model 

building approach assumes that B-scans from eyes with exudative AMD in the contralateral eyes 

can be discriminated from B-scans from undiagnosed eyes on the basis of measures that are 

believed to be representative of disease biomarkers.  The RF and DF models k-fold cross validation 

results are promising although they are likely partially driven by characteristics present only in 

individual eyes.  In particular, when classifying between AMD and similar age controls, highest 

accuracies were obtained for both RF and DF models using the full spectrums. The DF models 

demonstrated the best classification performance with ten-fold cross-validation accuracy of 95.51 

%.  At the current representation of eyes and B-scans with features that reflect the presence or 

absence of drusen or CC flow voids, results suggest that the models succeed in separating the two 

labelled classes.   

Results also suggest that leaving one subject’s eyes out of the training set had a significant impact 

on the model's ability to predict that certain eyes belong to individuals with non-exudative or 

neovascular AMD in the contralateral eye and should also be considered eyes with non-exudative 

AMD.  Leaving one subject’s eyes out of the training set also had a significant impact on the 

model's ability to predict that certain eyes are undiagnosed with non-exudative AMD.  Indeed, 

accuracy was lower for leave-one-out validation with a maximum accuracy of 77.27 %.  In both 

instances, looking at results more closely revealed that eyes in the AMD group which were 

misclassified had low drusen area compared to other AMD eyes, and eyes in the control group 

which were misclassified had a high fraction of flow voids exceeding 10,000 µm2 compared to 

other control eyes (see results section 4.7 and Appendix F).  The leave-one-subject-out validation 

therefore suggests that not all eyes which coexist with non-exudative or neovascular AMD in the 

contralateral eye show RPEb-BM space or CC level abnormalities.  A different approach would 
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have been to label B-scans based on whole individual scans RPEb-BM drusen segmentation and 

CC flow voids quantifications.  In that case, performance may have been more consistent with the 

presence of RPEb-BM space or CC level abnormalities rather than the more arbitrary scheme 

expecting abnormalities in eyes which coexist with non-exudative or neovascular AMD in the 

contralateral eye.  The resulting models would have been directly designed as RPEb-BM space and 

CC abnormalities detectors rather than intended as non-exudative AMD detectors. 

Keeping exactly the same approach, it is anticipated that as a greater number of eyes would be 

added to the training dataset, classification would be increasingly driven by feature profiles 

reflected in whole classes (AMD or control) rather than those present at individual eye level [119].  

As such and in a similar way as it was observed in the case of the present models, it is anticipated 

that a model trained on a larger dataset would classify AMD B-scans increasingly on the basis of 

abnormal RPEb-BM space and CC level features which are shared by all or most AMD B-scans 

(belonging to an eye diagnosed with non-exudative AMD or with neovascular AMD in the 

contralateral eye).   

In summary, B-scan and individual eye classification behaviour is expected to become 

progressively less dependent on individual eye training data as the size of the dataset increases.  As 

the results support and as may have been achieved more conclusively using a slightly different 

approach, the models still behaves as B-scan level RPEb-BM space and CC level abnormalities 

detectors. Individual eyes can be classified, and whole eye scan level performance can be measured 

and interpreted using the method. Perhaps more importantly, the approach to B-scan classification 

allows grading eyes for abnormality severity not only on the basis of measures believed to be 

representative of drusen but also CC flow voids.  While methods for the quantification of CC flow 

voids have been proposed [37], unlike the present approach they are not designed to provide B-

scan level quantification or classification. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

Several feature extraction methods were pursued.  At whole eye volume level, a pipeline was 

constructed which allows the ETDRS grid-based joint assessment of retinal and choroidal features 

in health and disease.  Results show that a novel method was developed which allows automated 

3D reconstruction of retinal flow signal patterns (and indirectly, of retinal microvasculature) from 

OCTA images, followed by their quantitative evaluation.  The method demonstrates the viable 

application of a network graph algorithm to projection resolved OCTA images of human retinas.  

Additionally, the automated analysis of RPEb-BM space and signal void sizes quantified from 

OCT and OCTA scans were implemented in the MATLAB environment and there is basic 

agreement of measurements with observations obtained using different OCT devices.  Spectral 

features derived from measures representative of the RPEb-BM thickness map and CC were used 

to achieve automated spectral analysis and classification of early and intermediate AMD. The 

resulting classification models are interpretable and provides relatively promising non-exudative 

AMD B-scan level classification performance. 

A limitation of the research project is that only the 3 × 3 mm field of view of the imaging device 

was exploited.  The device itself allows up to a 9 × 15 mm field of view.  The layers segmentation 

algorithms described in section 3.3 which served as a foundation for the other feature extraction 

methods were optimised for the 3 × 3 mm field of view.  Modifications to the design of the layers 

segmentation algorithms would be necessary for implementation of the spatial and spectral features 

extraction methods to greater fields of view.  The pipeline would benefit from implementation on 

a greater number of subjects.  It was intended to recruit the greatest possible number of participants 

within the timeframe and the available resources to conduct the project.  With more time and 

resources available, the sample sizes required to achieve ideal statistical power for the tests 

performed should be determined.   Greater sample sizes would increase statistical power, reducing 

the risk of committing Type II errors towards the identification of novel biomarkers of disease and 

disease progression.  A greater number of participants would also help ensure repeatability of the 

explored methods.  The sample size limitation could be resolved by recruiting more subjects into 

the study.   

Concerning the RCP network graph, methods have been described which could have improved the 

correction of flow projections [120].  Using the reflectance-based projection-resolved (rbPR) 
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OCTA algorithm, the in situ flow signal at deeper layers is better maintained and more of the 

projection artifacts are removed [120].  It would be beneficial to perform intensity-based 3D 

registration of the flow volumes towards assessing the pixel-level repeatability of segmented 

vessels and their skeletonizations, and to better quantify the progression of vascular anomalies in 

the retinal space.  While the RPEb-BM drusen segmentation method proved useful in highlighting 

significant differences between groups, a layers-based approach is susceptible to segmentation 

error.   The approach may also overlook small drusen and drusen that grow beyond the inner limits 

of the RPE.  The limitations of layers-based drusen segmentation could be solved using state-of-

the-art OCT drusen segmentation based on DL.  Downsides of DL-based methods of drusen 

segmentation include the need for labelled data towards successful model training.  However, the 

classification of targeted image areas makes DL less amenable to wrongly identifying abnormal 

elevation of the RPEb due to other causes (such as the accumulation of fluid) as drusen.  Layers 

segmentation was completed in batches of B-scans in order to preserve depth resolution and 

minimize segmentation errors.  As such, the first drusen segmentation method produces maps with 

visible transitions between batches.  Results could be improved by reducing the size of the 

segmentation input scans thereby minimizing the required computational resources.  B-scan level 

features extraction and classification could be improved using spectrogram images, wavelet 

transform, and other deep learning methods involving neural networks.   

The research project required a basic understanding of several areas of scientific study and the 

application of a number of data processing and analysis techniques.  With sustained development, 

OCT technologies are likely to become increasingly portable and affordable [121, 122], feature 

improved resolution [123] and offer live acquisition capabilities [124].  In addition to the potential 

for assisting clinicians as part of the AMD diagnostic process, the methods proposed could 

automate and provide remote access to interpretable eye health assessment and monitoring. 
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APPENDIX A – DETAILED PROJECT WORKFLOW 

APPENDICES 

 

Figure A-1 Detailed schematic of the research project workflow. 
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APPENDIX B – FOURIER TRANSFORMATION 

The Figure B-1 below shows the representation of a spatial series into its rhythmic components in 

the frequency domain. 

 

Figure B-1 Spatial domain series and the corresponding Fourier series in the frequency domain. 

As illustrated above, finite duration or periodic waves can be expressed in the form of sums of 

trigonometric (cosines and sines waves) or complex exponential functions: Fourier series [125].  

The spatial period X corresponding to a waveform’s crest-to-crest repetition distance, can be 

inverted to find the x-domain spatial frequency, f as shown below. 

𝑓       (1) 

A mathematical tool, the Fourier transformation makes it possible to move from the spatial domain 

to the frequency domain [126].  The equation of the continuous Fourier transform (FT) is provided 

below.   

𝐹 𝜔 𝑓 𝑥 𝑒 𝑑𝑥   (2) 

In the equation above, ω is the angular frequency, i = √ 1 and f(x) is the spatial series (a function 

of spatial location, x) to be deconstructed into the sum of cosines and sines.  The function F(ω) is 

the Fourier transform of f(x). For discrete and periodic spatial series, the continuous FT is not 

needed, and the discrete Fourier transform is used [102, 126].  Equations of the discrete Fourier 

transform (DFT) for a given spatial series, a(n), are provided below.  The spatial series, a(n) has 

values in the range n = 0…N – 1, and W is the principal Nth root of unity.  
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   𝐴 𝑗 𝑎 𝑛 𝑊 ,      𝑗  0, 1, … , 𝑁 1  (3) 

     𝑊 𝑒      (4) 

The fast Fourier transform (FFT) is an algorithm which rapidly computes the DFT [126]. 
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APPENDIX C – BANDS OPTIMISATION 

The set of equations below were used as part of an algorithm which allocates the average of a 

progressively greater number of frequencies into each band as frequency increases along the 

spectrum.  Figure C-1 provides a schematic description of the frequency bands optimisation 

process. 

P  
P v ,  if  v v

〈P v , : v , 〉, if v ,  ≤ v  < v  
〈P v : v 〉, if v  ≤ v  ≤ v  

    (1) 

 n ∈ 0: v    

Where, 

v , Δv , v ,  1     (2) 

    v   dim v       (3) 

    v   nint 0.893 v     (4) 

Δv   Δv 1     (5) 

v ,   v , 1     (6) 

v ,
 v ,   Δv , if  v ,   Δv  < v  

 v , if  v ,   Δv  ≥ v   (7) 

  B ∈ 1: B    

In the set of equations, the term PB is the amplitude assigned to each band. The power 

corresponding to the first band is equivalent to the amplitude of the first element, v0 of the spectrum 

array, v, of size vb.  Then, within the interval between vr1,1 and va, band amplitudes correspond to 

the mean power, designated by chevrons ⟨ ⟩, of values between vr1,B and vr2,B within the spectrum 

array, v.  The term va corresponds to the nearest integer rounded value of a specified fraction of the 

size vb of the array, v. With each band iteration, B, to the total number of bands, BT, the interval 

ΔvB is augmented by the nearest integer rounded value of a specified fraction of the size vb of the 

spectrum array, v.  The interval ΔvB is added to vr1,B to give vr2,B. Once vr2,B exceeds va, the last 

band is assigned the mean power, designated by chevrons ⟨ ⟩, of values from va to vb within the 

spectrum array, v. 
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Figure C-1 Schematic description of the frequency bands optimisation process. 
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APPENDIX D – NETWORK GRAPH REPEATABILITY 

 

Figurer D-1 (a) Network graph links distributions versus ETDRS regions for repeated scans of 

both eyes from a normal subject (light and dark grey dots) and a neovascular AMD subject (black 

dots). (b) Network graph nodes distributions versus ETDRS regions for repeated scans of both 

eyes from a normal subject (light and dark grey dots) and a neovascular AMD subject (black 

dots). 
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Figure D-2 Retinal thickness and volume measurements and RCP network graph for a control 

subject. (a) Numbered EDTRS subfields and grid over thickness map. (b)  Retinal thickness and 

volume measurements for each subfield and overall. (c) Angled thickness map. (d) OCTA en-

face image (e) Angled RCP network graph. (f)  En-face view of RCP network graph. 
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Figure D-3 Retinal thickness and volume measurements and RCP network graph for a 

neovascular AMD subject. (a) Numbered EDTRS subfields and grid over thickness map. (b)  

Retinal thickness and volume measurements for each subfield and overall. (c) Angled thickness 

map. (d) OCTA en-face image (e) Angled RCP network graph. (f)  En-face view of RCP network 

graph. 
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APPENDIX E – DRUSEN SEGMENTATION METHODS VALIDATION 

 

Figure E-1 Comparison of drusen segmentation masks generated through the automated drusen 

segmentation methods (dark grey frame; RPEb-BM and slabs method) and expert segmentations 

(light grey frame; expert 1 and expert 2) from aggregated selected C-scan ground truth 

segmentations. 
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Table E-1 Performance evaluation for RPEb-BM and en face drusen segmentation methods.  

 

Table E-2 RPEb-BM drusen segmentation method, expert 1 AMD performance results. 

id sensitivity specificity jaccard dice 
1 24.05 81.69 0.011 0.022 
2 40.16 82.71 0.292 0.451 
3 47.74 83.12 0.348 0.517 
4 5.69 91.56 0.040 0.077 
5 63.55 82.80 0.251 0.401 
6 31.46 96.00 0.203 0.337 
7 2.50 98.90 0.028 0.054 
8 53.31 89.22 0.468 0.638 

 

Table E-3 RPEb-BM drusen segmentation method, expert 2 AMD performance results. 

id sensitivity specificity jaccard dice 
1 29.65 81.67 0.004 0.008 
2 44.89 78.40 0.243 0.391 
3 48.61 75.20 0.258 0.410 
4 3.40 91.55 0.023 0.046 
5 59.25 90.20 0.421 0.592 
6 37.40 95.87 0.195 0.326 
7 1.95 98.89 0.044 0.085 
8 62.55 83.75 0.467 0.636 
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APPENDIX F – EXTENDED CLASSIFICATION VALIDATION 

Table F-1 RF bands classification leave-one-out validation results. 

id sensitivity specificity precision accuracy F1 

1 0.890  1.000 0.890 0.942 

2-3 1.000  1.000 1.000 1.000 

4 0.592  1.000 0.592 0.743 

5 0.995  1.000 0.995 0.997 

6 0.837  1.000 0.837 0.911 

7 0.380  1.000 0.380 0.551 

8 0.140  1.000 0.140 0.246 

9 0.212  1.000 0.212 0.349 

10 1.000  1.000 1.000 1.000 

11-12  0.728 0.000 0.728  

13-14  0.999 0.000 0.999  

15  0.943 0.000 0.943  

16-17  0.028 0.000 0.028  

18-19  0.999 0.000 0.999  

20-21  0.988 0.000 0.988  

22  0.778 0.000 0.778  

per eye 70.00 83.33 77.78 77.27 73.68 
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Table F-2 RPEb-BM drusen segmentation method AMD area results. 

id totalArea region1 region2 region3 region4 region5 
1 1.080 0.093 0.226 0.204 0.217 0.160 
2 2.185 0.323 0.574 0.275 0.484 0.166 
3 2.755 0.276 0.613 0.526 0.647 0.225 
4 0.814 0.077 0.129 0.167 0.123 0.107 
5 1.423 0.216 0.362 0.050 0.279 0.318 
6 1.414 0.114 0.244 0.290 0.284 0.183 
7 0.522 0.059 0.071 0.129 0.155 0.025 
8 0.304 0.011 0.017 0.141 0.027 0.005 
9 0.469 0.028 0.056 0.172 0.123 0.013 

10 2.329 0.276 0.413 0.273 0.571 0.492 

 

Table F-3 Choriocapillaris flow voids AMD FV10000 results. 

id FV10000 region1 region2 region3 region4 region5 
1 0.073 0.190 0.040 0.033 0.120 0.000 
2 0.241 0.453 0.079 0.080 0.235 0.175 
3 0.208 0.065 0.144 0.117 0.148 0.381 
4 0.249 0.050 0.159 0.341 0.235 0.355 
5 0.289 0.423 0.315 0.096 0.167 0.494 
6 0.039 0.000 0.000 0.073 0.055 0.038 
7 0.140 0.296 0.035 0.189 0.060 0.165 
8 0.161 0.256 0.141 0.162 0.106 0.102 
9 0.064 0.000 0.042 0.164 0.091 0.000 

10 0.490 0.696 0.169 0.393 0.427 0.715 
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Table F-4 RPEb-BM drusen segmentation method control area results. 

id totalArea region1 region2 region3 region4 region5 
1 0.291 0.012 0.032 0.085 0.024 0.020 
2 0.491 0.082 0.093 0.027 0.114 0.124 
3 0.171 0.014 0.019 0.046 0.030 0.021 
4 0.342 0.034 0.055 0.043 0.063 0.090 
5 0.166 0.010 0.014 0.081 0.014 0.006 
6 0.298 0.034 0.061 0.037 0.056 0.052 
7 0.431 0.051 0.085 0.095 0.070 0.051 
8 0.346 0.040 0.068 0.086 0.059 0.030 
9 0.391 0.047 0.083 0.052 0.072 0.094 

10 0.184 0.008 0.026 0.065 0.032 0.008 
11 0.140 0.005 0.017 0.011 0.024 0.065 
12 0.417 0.015 0.046 0.034 0.094 0.144 

 

Table F-5 Choriocapillaris flow voids control FV10000 results. 

id FV10000 region1 region2 region3 region4 region5 
1 0.078 0.200 0.097 0.086 0.041 0.085 
2 0.073 0.201 0.000 0.128 0.047 0.044 
3 0.010 0.087 0.000 0.000 0.000 0.000 
4 0.074 0.142 0.000 0.044 0.082 0.162 
5 0.046 0.279 0.039 0.000 0.042 0.000 
6 0.213 0.323 0.173 0.177 0.248 0.264 
7 0.316 0.598 0.147 0.186 0.287 0.416 
8 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 0.000 0.000 

10 0.016 0.000 0.000 0.000 0.000 0.000 
11 0.027 0.000 0.000 0.042 0.000 0.104 
12 0.032 0.099 0.000 0.083 0.000 0.000 

 

 

 

 




