PELYPUBLIE UL

LE GEMIE

FPolytechnigue Montreal EN PREMIERE CLASSE

rA

<
' ~"-‘1".'1"‘."’-"?
i

33
ll!{v

Titre:

Title: Retrieving information from the invisible web using mobile agents

Auteurs:
Authors:

Date: 2005
Type: Article de revue / Journal article

Référence: Sato, F.-K., Pierre, S. & Glitho, R. H. (2005). Retrieving information from the
e invisible web using mobile agents. Journal of Computer Science, 1(2), p. 283-
Citation: 289, doi:10.3844/jcssp.2005.283.289

Fabien-Kenzo Sato, Samuel Pierre et Roch H. Glitho

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:

PolyPublie URL: https://publications.polymtl.ca/5123/

Version officielle de I'éditeur / Published version

Version: Révisé par les pairs / Refereed

Conditions d’utilisation: CC BY
Terms of Use:

[% Document publié chez I’éditeur officiel
Document issued by the official publisher

Titre de la revue:

Journal Title: Journal of Computer Science (vol. 1, no 2)

Maison d’édition:
Publisher:

URL officiel:
Official URL:

Science Publications

https://doi.org/10.3844/jcssp.2005.283.289

© 2020 Fabien-Kenzo Sato, Samuel Pierre and Roch H. Glitho. This is an open access
Mention légale: article distributed under the terms of the Creative Commons Attribution License, which
Legal notice: ' permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Ce fichier a été téléchargé a partir de PolyPublie,
le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://doi.org/10.3844/jcssp.2005.283.289
https://publications.polymtl.ca/5123/
https://doi.org/10.3844/jcssp.2005.283.289
http://creativecommons.org/licenses/by/4.0/
http://publications.polymtl.ca/

J. Computer Sci., 1 (2): 283-289, 2005

There are many other search toels that are less well
known [3]. Seme of them are more specialized or
innovative. Among those, spy agents, human
search tools, peer-to-peer based tools and semantic
based search engines like Exalead [4].

1
Indexer . :
* : Cling
Query |4+
engine | 1
Il:idex :
1
Feedback !

Fig. 1: Search Engine Architecture

Each search tool has its own characteristics and fits into
a particular type of query. However, search engines
remain the moest powerful search tools. Present analysis
will focus on this type of tools.

At the end of the year 2002, the search engine Google
was indexing over 3 billion Web pages. Since the Web
is so huge, it is very difficult to crawl all of its pages
and a choice of priority must be established. Ancther
crawling problem lies in its refreshment delays. The
average delay for a search engine index remains a few
weeks. However, scme Web pages change many times
a day, while others are modified every six months.
Indexed data storage can be challenging due to the very
large amount of data. However, it can be well managed
in distributed databases. The index must be accessed by
the crawlers and by the query module.

Sherman and Price [5] classified the invisible Web into
four categories:

* The Opaque Web represents the pages that could
be technically indexed although they are not;

* The Private Web denotes the pages that are
deliberately excluded from the search engines
index by the Webmasters;

* The Proprietarv Web designates Websites that
require registration, whether it is free or not;

s

The Truly Invisible Web depicts the part of the
Web that cannot be indexed for purely technical
reasons. The databases interfaced with a dynamic
Website are not accessible to the search engines.
This category constitutes the most interesting part
of the invisible Web for research purposes in this
field.

Although some metasearch engines and gateway pages
claim to specialize in the invisible Web, they solely list
a limited number of sites of the invisible Web. Those
tools provide limited results as they are based on a
human selection of sites.

284

An agent [6] is a software entity that acts for another
(human or software) entity. It is autonomous, has its
own goals and interacts within its own envircnment.
The mobility of the mobile agent refers fo its ability it fo
migrate from place to place and to carry on executions
itself on those successive places.

Mcbile agents potentially present many advantages.
They reduce network fraffic, they can be easily
personalized, they allow clients to be disconnected
during the execution cn the server, the agent executicn
has the ability to survive a network nede crash and they
are portable to many different operating systems. The
field of information refrieval seems to be one of the
most promising for the use of this new technology [7].

MODEL AND IMPLEMENTATION

This study propeses an invisible Web search tool moedel
that would have the power and simplicity of the search
engines. Basically, as shown in Fig. 2, it was decided to
add, to the traditional search engine architecture, a new
module responsible to make dynamic searches in
conjunction with the classical search engine.

The first important objective is to make the search
engine index the hypertext links that points to dynamic
sites. While crawling, the search engines cannot access
the contents of dynamic sites as a query has yet to be
launched. However, the homepage of sites that usually
contain such a form can be identified. When a query is
launched with the search engine, a list of links toward
dynamic sites according to the keywords of the query
can be provided. This constitutes the first component of
our architecture.

The second component aims to exploit these links
dynamically. The purpose aims te analyze the pages
where they point. Then, a query will be generated
according to the keywords and the homepage form. The
page generated that way is analyzed in order to evaluate
its relevance in respect to the user’s query. Finally, all
of the results are compiled onto a single Web page.
From this general architecture, different variations and
scenarios are possible. The dynamic search medule can
be located with the search engine or on the user’s
terminal {as software}. In this study, cnly the versicn
with the medule integrated into the search engine will
be presented. Both scenaries can be implemented using
a client/server or a mobile agent approach.

With the client/server appreach, the dynamic search
module communicates with the different Websites
using the traditional client/server paradigm. First, the
maedule downleads the homepage or access page of the
dynamic site. Then, it must analyze the page and more
specifically the forms included in it to generate the
appropriate query. The effect of this query creates a
new Web page on the server that will be downleaded by
the moedule. This protocol is applied to all the Websites

J. Computer Sci., 1 {2): 283-289, 2005

ST i R Indexed
e Searchjmlne =3 Web page
Query ez [N e
Index Crawler pr—
\module > ‘

\Hypertext
Yigy
\\|II'IK

URL an~
complerfentary description
resylts

Yag: - Wab
page

JR—

Background task

—_— Dynamic task

Fig. 2: Search Tool Architecture

AR ryramin - Resullats de Ly recherche: Bis - Microsalt Inbernet Baploeer =15l =
Ficher Edtion Affichage Tavors Outls 7
| = rics D A A Dirschercher (& Faveets HER
| Adresse Y =| @row | |uens ®
Dynamix
- Résultats de la recherehe...

. estiles tromiés por BIY

oo babiers capeches Mlonds Blix devrul faoe étal de lscunee ol dobelacles de Bagdad 26

- Blix pour pius &

Hinrt Bk, chefds s e Witkingion, s note enemerpend

.5 phas wvssbi versant leak, ot cumims T alfests Hans Bli (e chel des insgoctenss, ndl), sebon kvquels Mok el

O e 3 Mohamed el

s] e, Ies chefs

e T sermilniest svnir teomd i femmin dentesse. Hasa By, che'de b Cormmission de eontride, de wirification ef din

U0 b e 7 L e et chure - mom. 7 Hons i, b chef des isspecturs, migtls qus b dictsteus 7o ful .

et o e vorruge 7 Tune Hans Dlix, & ineps Sons, 4t e &L,

e Ebaba i alon sl enes Lo an mpporl eHor Blis, b chef de b Correin, ol som bomolkgse de Thgesen de [
dre ses asehis de wissiles, mterrozapns en 1994, ans Blix Tascien diectenr de TAgence intemationale ? Tinexgie
Ll it B
U) mulis) ou espressasns) "Blix" dans "toul Parlade” o chasts par &

- Jeg ingpectewss en dépamnent 3 IONU, dost e chef, Hiss Blix, e des “quest el

Murtick: pehlic I 1] Jamvies 2003 Hura Bhix fait in conatat aévfee © i nobe un mansue 7 fBon sénie.

e =

Fig. 3: Results of the Search Compiled onto a Web
Page

provided by the search engine and the results are
compiled within a Web page.

With the mobile agent approach, the only difference is
the means of communicating between the dynamic
search module and the server. The module sends a
mobile agent to each dynamic site it has to analyze. The
agent generates and analyzes the page locally and
returns only the URL and a short description of the
page. As with the previous example, the results are
compiled onto a Web page.

The main goal of this model aims to develop an
efflicient search tool for the invisible Web. It integrates
itself in a preexisting and powerful tool. As the search

[
oo
LA

is dynamically conducted, there is no need for data
storage and the information remains up to date. Unlike
some of the results produced by the search engines, this
approach could not turn up dead links.

The model was partly implemented to experiment with
it and to compare the client/server and mobile agent
versions. Choices and simplifications had to be made
regarding the conceptual model and implemented only
the dynamic component of the model. That means
actions were nol performed atl the level of the search
engine. Thus, it was considered that this would provide
a list of Websiles to visil. To test result relevancy, we
checked whether the queried keywords were present
and indicated the page title, its hypertext link and a
short excerpt around the keywords on a compiled
results page (Fig. 3).

For the purpose of present experiment, the mobile agent
platform Grasshopper was used. This platform respects
both standards MASIE (Mobile Agent System Inter-
operability Facility) and FIPA (Foundation of
Intelligent Physical Agents). As Grasshopper is in Java,
the program was writlen in this language.

We designed a package named Dynamix that uses the
library HTMLParser. This library contains many tools
to parse IITML code. The Dynamix package is
composed of three classes. The first class analyzes the
form contained on a Web page, the second class
examines the page generated and the last class creates a
Web page and compiles all results for the client/server
version.

For the mobile agent version, we use the work done
previously by installing the Dynamix package on the
server side and by calling its methods within the mobile
agenl’s code after the server migration. Finally. the
agent returns on the user terminal and generate a Web
page compiling the results.

EXPERIMENTS AND RESULTS

We wanted lo design experiments that reflect the reality
of the Internet as closely as possible. However, the
main problem is that current Websites do not support
mobile agents. The client/server model can be
launched on any Website, although a mobile agent
platform must be installed in order to use the mobile
agent model. Hence, to avoid these problems, we
created our own dynamic Website to compare the
relative performance of both models. The sole way to
conduct our comparative tests is to control the clients’
sites.

Our experiments are twofold. First, the model will be
tested in a concrete Internet environment thanks to the
client/server paradigm and then, the relative
performance of both versions, mobile agent and
client/server, will be compared. Qualitative tests will be
discussed. Then, the experimental environment used for
the comparative tests will be described. Finally, the

J. Computer Sci., 1 (2): 283-289, 2005

different tests conducted in order to assess the
performance of our applications will be described.

Tests and Experiments: The moedel was tested by
launching a simultaneous search on different Websites
such as a daily newspapers sites (Fig. 3). Relevant
results were obtained within a reascnable delay ranging
from 5 to 20 sec. Given those cenditions, the results
generated by the application were deemed satisfactory.
In order to conduct comparative tests, a server that
supperted mobile agents was required; however, this is
not currently available on the Internet. Hence, two
coemputers were configured, one acted as the client and
the other as the server. The server is equipped with
superior hardware and a faster network connection. In
addition, it was necessary to create and install a
dynamic Website on the server.

The server AMD processor clocked at 1400 MHz and
has 256 Mo of RAM. It has a 1 Mbps ADSL Internet
connection and a Fast Ethernet 100 Mbps card. The
Web server is composed of an Apache 2 server and a
PHP3 server. In addition, the mebile agent platform
Grasshopper 2 is installed with the Java packages
HTMLParser and Dynamix.

The client is installed on a laptop with an 8§00 MHz
Intel Pentium IIT processor with 128 Mo RAM. It can
be connected to a network in two ways: with a 56 Kbps
modem or a 100 Mbps Fast Ethernet card. Grasshopper
2 is installed with the Java packages HTMLParser and
Dynamix.

The test Website is written in PHP3 and it allows us to
generate pages of different sizes according to the
keywords of the query. A very simple Website was
created. It included a form on the homepage and five
different pages that are generated upon request. The
page lengths are 0.6, 4.9, 46, 111 and 666 Kbytes
respectively, hence a wide range of lengths is
investigated. A smaller page offers a search on a limited
quantity of data, while a heavier page represents a
search on a substantial branch of a site.

Response Time with Low Throughput: Both
computers, the server with an ADSL connection and the
client with a 56 Kbps modem are connected to the
Internet. Thus, the threughput remains quite low. For
beth versions of our application, five series of queries
were conducted, one for each page of cur Website. The
response time was measured by inserting a line that
appraises the system time into the Java code of the
applicaticn. Each query was repeated 40 times. The
results are presented in Fig. 4 and 5.

In both cases, the standard deviation remains low. The
execution time remains constant for the client/server
version while it varies according to page length for the
mobile agent version.

Figure 6 shows that the execution time of the
client/server version is proporticnal to the page length.

3000001 Result with 40 iterations
250000 Average time __
[Standard deviation
— 2000001
]
a 150000
&
1000001
500001
N P
0.6 49 46 111 666
Page Length (Kb)
Fig. 4: Response Time for the Client/Server Versicn
{56 Kbps)
O Average time [] Standard deviation
[Computation time on the server
6000+ Result with 40 iterations
5000
. 4000+
g
o 30004
£
[_1
2000
10004
0 —I_ T —I_ T T T —.-I
0.6 4.9 46 11 666
Page Length (Kb)
Fig. 5: Time Response for the Mobile Agent Version
(56 Kbps}
50000
550001 - 4-- Clnterver .
40000 . -
' 3sopp I Mobile agent PP
200004 P
25000 -
§ 200001 .
15000 -
§ 10000 PE - .
50000
e —
0 20 10 60 80 100 120
Page Length (Kb)

Fig. 6: Comparing Response Times ({56 Kbps)

This is to be expected as the entire page has to be
downloaded. The mobile agent, which is quite small,
has a constant response time of about 5 sec. In this low
threughput situation, the mobile agent version clearly
appears to be the best solution.

Response Time with High Throughput: In the
following series of experiments, the two computers are
linked directly through their Fast Ethernet card; hence,
they are both equipped with an 100 Mbps connection.
We conducted the same tesits as in the previous
subsection. However, we performed 100 iterations

J. Computer Sci., 1 (2): 283-289, 2005

instead of 40 as the execution fimes are much shorter.
Fig. 7 and 8 illustrate those results.

For the client/server version, the standard deviation is
quite high compared to the average time when the page
is relatively heavy. This is due to the insignificant
transmission delay and the substantial fluctuations in
the server execution time.

The execution time of the mobile agent is essentially
caused by the creation delay. As shown in Fig. 9, this
delay is higher than the respense time of the
client/server version even if the analyzed page is rather
heavy. In this situation, the client/server version is
advantagecus although the other version has a very
reasonable response time.

800+ Result with 100 iterations
7001 O Average time —
600- [Standard deviation
o 500
g
a 400+
& 300-
2001
100+ |_| |_| |—| | |
0 T T T T 1
0.6 49 46 111 666
Page Length (Xb)
Fig. 7: Response Time of the Client/Server Version
{100 Mbps}
2500 Result with 100 iterations
[Average time
O Standard deviation
2000+ [|] [
'g 15001
kY
é 1000+
5001
0.6 49 46 111 666
Page Length (Xb)
Fig. 8: Response Time of the Mobile Agent Version
{100Mbps)
2500
2000 u
% 1500
b - Mobile agent
é 10001~ - Client/setver
S
s01 =TT
e ®
0 100 200 300 400 500 600 700
Page Length (Kb}

Fig. 9: Response Time Comparison {56 Kbps}

287

Traffic Evaluation: Response time is not the sole
criterion for the comparative evaluation of these
applications. Traffic is highly critical for applications
used intensively (Google processed 130 million queries
daily in 2002).

For this series of tests, connection speed is irrelevant.
Thus, high throughput with Fast Ethernet cards was
selected for its rapidity. The configuration remains is
the same as described abeve. The network is isolated,
hence there are no perturbations and reiterated
measures are unnecessary. Traffic was measured with
the HtherPeek software [hitp://www.wildpackets.com,
March 2003].

For the client/server version (Fig. 10), traffic is
logically propertional te the page length. There are only
the TCPF/IP control packets between the client and the
server.

Traffic remains constant for the mobile agent versicn
(Fig. 11}. It is slightly more important from the client to
the server as Grasshopper does not retransfer all of the
mebile agent data when it returns heme.

Notice that f(raffic comparisons of both versions
(Fig. 12} are very similar to Fig. 6. That is because the
response fime mainly reflects the traffic generated in
the case of a low threughput. The mobile agent versicn
appears toc be much more efficient from a traffic
perspective. This result moderates the conclusions
made in the second series of test. The client/server
version was much faster although it generated much
more traffic.

System Resource Consumption: The system rescurce
consumption was the last criterion evaluated. An
efficient application must not overload a server. The
system configurations remain identical to those used in
the experiments described previously. We measured the
consumption of both processor and RAM thanks to
Windows 2000 Task Manager that provides an
historical record of the processor and RAM utilization
rates. As the effects on the RAM were not significant,
these measures are not presented. It is important to
mention that the computers selected had a major effect
upon the results.

16004 [From server to client CIFrom client to server

14001

0 ——

0.6 49

1 .
45 111 666
Page Length (Kb)

Fig. 10: Traffic Generated by the Client/Server Versicn

J. Computer Sci., 1 (2): 283-289, 2005

189 O From server to client CIFrom client to server

16 1 []
£ 141
121
101
8-
6
44

Generated Traffic (K

0 T T T T 1
0.6 49 46 111 666

Page Length (Kb)
Fig. 11: Traffic Generated by the Mobile Agent Versicn

300 - & - Client/server

= 250_—I—Mobﬂe agent S

=3 e

% 2004 el

% 1504 e

£ 100 i

& s e

= L -
0!. L] L] L) T L] 1
0 20 40 60 80 100 120
Page Length (Kb)

Fig. 12: Traffic Comparison

b & — - —4-

:
;
|
z
r

Clien: Processor
Utilization Rate

I

t

|

|

|
maEn

edo 4 Pemed f_L_L_1_}

Server: Processor
Utilization Rate

it

14439+t f—-F44

46 111 666
Page Length (Kb)

Fig. 13: Processor Utilization: Client/Server

As shown in Fig. 13, the processors utilization rates
increase somewhat with the length of the analyzed
pages in the client/server version. The server processor
is not used very substantially. In the moebile agent
version (Fig. 14}, the client processor is vsed less and
its utilization does not depend upon the page length.
The server processor is used slightly more, especially
when the analyzed page is heavier.

Hﬁ ! ! I I
g i T
I ! !
E |] I | |
82 EEEEEIEE
65 HL I | i
! (N

: T T T

§§ : ; : ! |
- lmn T !
58 O T T T T
[Lo la la i

0.6 49 46 111 666
Page Length (Kb)

Fig. 14: Processor Utilization: Mobile Agent

The mebile agent appreach seems to be advantageous
when the client’s computation capacity is low. To
conclude on the server’s utilization, further tests with
simultaneous connections would be required.

CONCLUSION

This study addressed information retrieval on the
invisible Web. We elaborated a moedel that supports
dynamic search on the invisible Web and we
implemented it in two distinct versicns in order (o
evaluate the comparative performance of two
approaches: client/server and mebile agent. However,
we limited the implementation to a segment of
the general architecture and we did not experiment
with several clients simultaneously. This conclusion
addresses the main contributions of this work and
its limitations and it also offers a glimpse of future
works.

An architecture was elaborated based on a search
engine that can conduct search on dynamic Websites in
real time. This medel is built on twe fundamental
concepts. First, the search engine can index dynamic
sites URLs and link them with keywords as it crawls
the Web. Hence, the search engine can provide a list of
dynamic Websites adapted to each query. Second, the
Websites were analvzed after uvsers conducted their
queries, so the keywords of the queries were retrieved
and the appropriate pages were generated on dynamic
sites.

The flexible architecture does not require significant
technical or material investments as it uses a preexistent
search engine, nor dees it require any data storage. We
strived to expleit the fact that search engines are
already uvser-friendly.

Another coentribution of this work concerns the
development of an application based on a mebile agent

288

	2005_Sato_Retrieving_information_from_invisible_web

