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RÉSUMÉ

Dans ce mémoire, nous allons nous intéresser à la programmation par contraintes, un outil
efficace en ce qui concerne la résolution de problèmes combinatoires. Nous allons nous in-
téresser aux problèmes utilisant les contraintes table et plus particulièrement leur implémen-
tation compacte qui a été grandement améliorée par l’utilisation de la structure de données
«sparse bit set» réversible. Nous contribuerons en créant une heuristique de recherche basée
sur le dénombrement utilisant l’information sur les supports des contraintes table.
Nous allons implémenter puis évaluer un algorithme de dénombrement sur Oscar, une librairie
de résolution de problèmes par contraintes créée pour résoudre les problèmes combinatoires.
Nous définirons alors un algorithme pour obtenir les supports et un algorithme pour réaliser
une heuristique de recherche utilisant les informations précédentes. Tous ces algorithmes ont
un but commun, mettre en place une recherche basée sur le dénombrement.
Nous allons expliquer les modifications faites à Oscar et les heuristiques de recherche que
nous avons créées dans Oscar. Finalement, nous présenterons nos résultats sur différents
exemplaires de problèmes et nous analyserons les résultats comparés à l’état de l’art pour
en déduire les améliorations apportées. Nous utiliserons pour cela les algorithmes suivants:
dom et dom/deg. L’expérience montrera que notre recherche basée sur le dénombrement est
compétitive pour les exemplaires complexes mais qu’elle coûte plus de temps dans certains
cas, même si nous avons moins d’échecs.
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ABSTRACT

In this thesis, we work on constraint programming, an efficient approach to solve combinato-
rial problems. We consider problems using table constraints and in particular the compact
table implementation. Reversible sparse bit sets have been used for the compact table im-
plementation recently, and it improves its efficiency. We contribute by making the heuristic
search more efficient for such problems by using counting-based search. Counting-based
search uses the supports information from the reversible sparse bit set data structure (used
to maintain supports in the table constraints).
We implement and evaluate our contribution in Oscar, a constraint programming solver
to solve combinatorial problems. We explain the modifications we made in Oscar and the
heuristic searches we created in Oscar. We define an algorithm to get the supports from table
constraints, a variable ordering heuristic search, and a value ordering heuristic search. All
of these algorithms work toward the same goal, counting-based search. Finally, we present
our results on different instances of problems and analyze the results and improvements. We
compare our methods with dom and dom/deg. The experiment shows counting-based search
is competitive if the instances are hard and it costs more time in some instances even if we
have fewer failures.
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CHAPTER 1 INTRODUCTION

In industry, many planning and scheduling problems can be framed as combinatorial prob-
lems. Constraint Programming (CP) is one computational approach to solve them. CP
expresses problems declaratively through a formal mathematical model. Users can describe
their problems without having to specify how they should be solved. In Oscar [1], we can use
CP to solve combinatorial problems. There are many constraints that can help us to form
our CP models for specific problems. In this thesis, we work on table constraints because
the table constraint generalizes many other constraints and is widely used in many prob-
lems. Compact table [2] is an efficient implementation of the table constraint that uses the
reversible sparse bit set techniques. When users create their models with constraints, they
need to give the solver which heuristic search they want to use to search a solution for their
problems. The search strategies decide how to explore the search space and build the search
tree; users can use different search methods to solve their problems; different methods have
an impact on the search tree and the search space. In this thesis, we consider Counting Based
Search (CBS). The required algorithms have been designed for several constraints [3] [4] [5]
but not for the table constraint yet. In this thesis, we want to check if CBS improves the
efficiency of solving CP models featuring table constraints.

1.1 Basic Concepts

CP is a method to solve Constraint Satisfaction Problems (CSPs). A Constraint Satisfaction
Problem (CSP) is described by variables, variables’ domains, and constraints restricting the
variables. When we want to find a solution of a CSP, propagation and backtrack might
occur. The search method will decide how to explore the search space and affect how fast we
can find a solution. The related concepts of CSPs and CP will be introduced in this chapter.

Definition 1.1.1 (Constraint)

A constraint is a relation over a subset of the variables, called its scope. The arity of the
constraint is the size of the scope.

The arity of constraints includes unary constraints that concern only one variable, binary
constraints that link two variables and higher-order constraints that associates three or more
variables.
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The Constraint graph uses nodes and arcs to represent the variables and constraints. The
constraint graph shows the relationship between variables and constraints for CSPs. The
4-Queens problem is a simple example from n-Queens. It aims at placing four queens on a
4× 4 chessboard in which none of them can attack each other directly. The nodes represent
the queens whereas arcs represent the constraint that no two queens are in the same row,
same column, and same diagonal in the 4× 4 chessboard because queens can attack in their
rows, columns, and diagonals. Figure 1.1 shows the constraint graph of the 4-Queens problem.

Figure 1.1 Constraint graph for 4-queens

Definition 1.1.2 (CSP)

A CSP can be represented by a triple < X,D,C > where X represents a finite set of variables
{X1, X2, ...., Xn}, D is a set of domains associated to each variable {D1, D2, ...., Dn}, C is a
set of constraints {C1, C2, ...., Cm} that will restrict the variables’ domains.

The constraint Alldifferent(x1, ..., xn) [6] states that all the pairwise values are different over a
set of variables. The table constraint is also called extensional constraint, and it is widely used
in Constraint Satisfaction Problems (CSPs) and is adaptable with other constraints. The
table constraint can express the relation of CSPs straightforwardly, and it is applied in many
CSPs with other constraints, such as scheduling problems that used Alldifferent and table
constraints. Table constraint is simple to represent the relations and easy to adapt with other
constraints such as Alldifferent. For example, we have variables x1, x2, x3 and the corre-
sponding domains D1 = (2, 9), D2 = (2, 3), D3 = (1, 5), so the set of tuples of all the variables
that restricted to table constraint are {(2, 2, 1), (2, 2, 5), (2, 3, 1), (2, 3, 5), (9, 2, 1), (9, 2, 5),
(9, 3, 1), (9, 3, 5)}, and the set of tuples of all the variables restricted to table constraint and
Alldifferent constraint are {(2, 3, 1), (2, 3, 5), (9, 2, 1), (9, 2, 5), (9, 3, 1), (9, 3, 5)}.
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For the 4-Queens problem, variables are our Queens, each of them will be distinguished by
the index i in Xi, Xi represents in which row the queen of column i is placed. D is the
domain of each variable, Di is the domain of Xi, Di = {1, 2, 3, 4}. In the constraints, C1 is
AllDifferent(Xi) that means the rows are different. C2 and C3 are AllDifferent(Xi + i)
and AllDifferent(Xi − i) that describes the diagonals are distinct.

The 4-Queens problem will be used to explain the constraint propagation. The cross marks
on the chessboard represent the places where we cannot place a queen anymore. The red
crosses on the diagonal tell no queens can be on the same diagonal and the blue crosses on
the row mean that no two queens can be on the same row. The process of eliminating certain
squares is called propagation. Figure 1.2 shows the constraint propagation we mentioned
above.

Figure 1.2 Constraint propagation for 4-queens

Definition 1.1.3 (support) A value vi in the domain Di is supported in the scope of a
constraint c if there is a valid tuple in the corresponding relation where xi = vi.

Definition 1.1.4 (solution) For a CSP, if there is an assignment of a value vi to each
variable xi that satisfies all the constraints cj, the assignment xi = vi (i in {1, 2, ..., n}) is a
solution for that CSP.
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Figure 1.3 One of the solutions for 4-Queens

The 4-Queens problem has 256 possible configurations. Figure 1.3 shows one of the two
solutions to the 4-Queens problem.

If the constraint propagation cannot filter more values from the domain of variables, the
search will occur to explore the solution space. In this thesis, the search is based on the
supports for each variable-value pair. The next section will use an example to explain the
CSPs and the detailed process of the search.

1.2 Search for CSP

The core of CP is filtering and search, filtering removes values from non-feasible solutions,
search gives you rules to explore the solution space. We want to solve a CSP problem, but
failures can occur during the search process. When a failure occurs, the algorithm has to
backtrack. A backtracking search will explore the search space according to the Depth-first
Search (DFS) strategy. When the node explored is part of the solution, we continue the
search from this node. Otherwise, backtracking will occur. Constraint propagation, binary
branching strategies, and the variable-value heuristic ordering method are the techniques to
improve the performance of the backtracking algorithm. In this thesis, we wish to show that
CBS with the compact table will be a fast combination to find solutions. In Figure 1.4,
the blue cross shows the failure occurred, and the third column cannot place a queen that
satisfies the constraints, so the algorithm will backtrack.
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Figure 1.4 Backtrack for 4-Queens

Constraint propagation filters the locally inconsistent values, but it is not sufficient to find a
solution. The search algorithm will help the solver to make a decision. Sometimes we arrive
at a point where we removed all the values we could, but we did not solve because some
variables still have several values available. We then have a choice to make between those
values available, hence a search.

Which variable will be the first one to branch on, and which value should be assigned to the
variable? Most of the existing search heuristics use data at the individual variable level such
as the domain of variables. The search algorithm based on the individual information needs
to set the rules to break ties sometimes. For example, if we choose to search on the smallest
domain first, this search algorithm would not work well when a lot of variables have the same
domain size.

Here, we will use the 4-Queens problem as an example to illustrate the binary branching;
this example uses three different constraints (No queens on the same row and no queens on
the same diagonal). This example shows how the CSP is defined and how to find a solution
using the lexicographic order of the variable. That makes the explanation of basic concepts
of constraint programming clearer.

To solve this problem, we need to mention that the propagation of constraints will eliminate
inconsistent values from the domain, and search strategies will be used to find variable-value
assignments. Here is a search algorithm we created for the 4-Queens problems. The search
method will choose the unbound variable first according to the ascending order, and the
smallest value will be assigned to the variable. Following the search approach we created,
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we set the variable X1 = 1; then the constraint propagation will remove the values of other
variables’ domain, Figure 1.2 shows the result. Here we need to specify that X2 = 3 means
the queen will place in the second column and the third row. The variable X2 can only choose
the third or the fourth position. Figure 1.4 shows the result after the propagation. In the
third column, no queen can be placed any more, and failure occurs.

Figure 1.5 Partial search tree for 4-Queens

Binary branching has up to two branches per node, the left branch, and the right branch.
The search algorithm needs to tell the current node how to generate the child nodes. The
4-Queens example shows that the left branch corresponds to a variable being assigned to a
chosen value and the sub-tree of this branch will be explored until a failure occurs; the right
branch is the other situation. Like the partial search tree of 4-Queens, the left branch is
Xi = Vi and the right branch is Xi! = Vi.

1.3 Research Objectives

Table constraints are very common in CP models. CBS has already been implemented in
other solvers. In Gecode [7], Gagnon and Pesant [8] presented several works to accelerate
CBS. Their work experiments have shown that using CBS can achieve orders of magnitude
faster if the benchmark instances are hard. To use CBS on models with table constraints we
need to count supports efficiently. The reversible sparse bitset data structure (see Chapter 2)
will help us to get the solution density faster. If we get the support count from the compact
table in constant time, the solution density based on support count will not be hard. Second,
the compact table constraint is efficient in many cases and it is applied in many problems,
so if CBS for the compact table constraint is better than other searches, many real problems
will be solved faster.
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In this thesis, we focus on CBS that uses solution density. First, we need to understand
the existing classes and packages in the Oscar solver and the architecture of Oscar and
assure the classes and packages are related to our research. Second, we need to focus on
the table constraints and the corresponding data structure to make sure it is a good start of
the modifications in the constraint side. Third, we need to consider all the issues when we
implement the counting-based search for table constraints in the Oscar solver. Last but not
least, we want to optimize the counting-based search for table constraints in Oscar to solve
real problems.

1.4 Thesis Outline

Chapter 1 was the introduction. Chapter 2 is the literature review on the table constraint and
heuristic search in the CP field. Chapter 2 also explains the methods related to the compact
table and the reversible sparse bit set data structure. Chapter 3 explains how to calculate
the sum of supports and how to store the sum of supports for the CBS implementation. We
will introduce the Oscar software architecture in Chapter 3 and the changes we implemented.
Chapter 4 will show the experimental results as well as the analysis of the performance on
the different benchmark instances. The last part will be the conclusion of this thesis and
discuss further research.
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CHAPTER 2 RELATED WORK AND THE FUNDAMENTALS OF
CONSTRAINT PROGRAMMING

This chapter has two parts. Section 2.1 presents the fail-first principle and the literature
review of the main heuristic searches in constraint programming. A review of the main
branching heuristics in constraint programming is presented, in particular, the CBS based
on the solution density. Section 2.2 describes the principle of the Compact Table (CT)
constraint and the methods related to this constraint. The reversible sparse bit set is the
data structure of supports, and we introduce the principles of the reversible sparse bit set
and use an example to explain the details.

2.1 Survey Related to Heuristic Search

A good heuristic search in constraint programming explores few nodes to find a solution or to
prove that no solution can be found. A CSP can be solved using a backtrack search. Which
variable to branch on and which value to assign to it? Variable ordering and value order-
ing are the keys to make the decisions during the search. Recently, the variable ordering
gets more attention from researchers than value ordering. There are two families of vari-
able orderings: Static Variable Ordering Heuristics (SVOs) and Dynamic Variable Ordering
Heuristics (DVOs). SVOs fix the order in which variables will be branched on before search.
DVOs consider the information at the current search tree node and use it to guide the search.

2.1.1 Fail-First Principle

An efficient tree search method for CSPs created by Haralick and Elliott [9] is known as the
fail-first principle. The fail-first method explores the search space where the failure will occur
first, hoping that the search tree will be reduced and the search space will be minimized.
For example, if the method chooses the variable with the minimum domain size first which
means it has the fewest values to assign to this variable, the information will be gathered in
the initialization step and also in the search processing, then the method will choose the node
with the fewest values in its domain. The sub-tree of the variable that has fewest values in
its domain will have fewest branches. In this case, the fewest nodes will be explored when the
method searched the variable that has the minimum domain size and the depth of the search
tree will be minimized and the search space will be minimized too. Smallest-domain-first is
the usual implementation of this principle.
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2.1.2 Conflict-Driven Heuristic

The traditional dynamic variable search considers the current nodes’ status and the other
information like the degree of variables (i.e., in how many constraints they appear) and
the domain size of variables. Boussemart et al. [10] proposed a method using the previous
information of nodes to guide the search, and the new dynamic variable search is denoted
Weighted Degree Search (WDEG). Place a counter for each constraint to save the information
during the search, and the hardest constraint will occur in most conflicts, then this constraint
will be considered as the most important constraint and assigned the biggest weight. WDEG
follows the fail-first principle: it will choose the variables related with the most weighted
constraints and search the hard part of the problem at the beginning. The information
saved during the search is the weight for each constraint, when the domain of a variable is
empty, the counter of weight for the constraint involved in the problem will be increased
during the search processing part. Choosing the variable with the smallest ratio of current
domain size to the current weighted degree is a variant named Domain/Weighted Degree
Search (DOM/WDEG) [10]. DOM/WDEG is considered a state-of-the-art generic heuristic
and is implemented in most CP solvers.

2.1.3 Impact-Based Search

Impact Based Search (IBS) [11] is motivated by a criterion named pseudo-cost. By rounding
up or down the value of the variable, we derive an estimate of the change in the objective
function per unit, called the pseudo-cost of the variable. IBS is based on the concept of impact.
The impact is the element to describe the importance of the variable-value assignment in the
reduction of the search space. IBS chooses the greatest impact on variables and chooses
the smallest impact on values. This principle is also like most of the methods that choose
the hardest part to explore first to reduce the search space, such as choosing the minimum
domain size first. The impact of a variable is the sum of the impact of the values in its
domain. To understand the principle more, there are some formulas to describe the impact
and the relevant concept. Generally, the number of variable-value pairs can be described
using the Cartesian product:

P = |D1| × |D2| × · · · × |Di| × · · · × |Dn|

When the value is assigned to the variable, the Cartesian product before the assignment and
after the assignment will change. If this assignment can reduce the search space efficiently,
the Pafter will be smaller, the ratio of Pafter and Pbefore will be smaller too, the impact of
this variable-value assignment will be close to value 1.
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I(xi = a) = 1− Pafter

Pbefore

2.1.4 Activity-Based Search

Activity Based Search (ABS) [12] collects the constraint propagation information to measure
the activity of each variable. ABS needs a counter for each variable to save information about
activities. The activity of a variable is the frequency at which the domain of that variable is
reduced during the search. ABS will first choose the variable with the highest activity.

2.1.5 Counting-Based Search

Most of the search heuristics for CSPs depend on the information gathered from variables
during the search, like the domain size of the variable and the impact of variables. Sometimes
it is hard to decide which would be the first variable to branch on if we use the individual
variable information to guide the search. For example, if we search on the size of variables,
then it may happen at the initialization that every single variable has the same domain size.
Considering the structure of CSPs, some researchers proposed search heuristics using more
global information. Pesant et al. [3] detail CBS for CSPs, using the information from con-
straints. Here it is necessary to introduce solution count and solution density, because they
are the basic concepts for CBS. CBS resembles more a succeed-first principle, the variable
that has the maximum solution density will be selected first and the value achieving that
maximum solution density will be assigned to the variable.

Definition 2.1 (solution count) The number of solutions for a given constraint c taking
into account the domain of the variables in its scope (x1, . . . , xn), can be represented as so-
lution count #c(xi).

Definition 2.2 (solution density) Given variables (x1, . . . , xn) in the scope of c with finite
domain(D1, . . . , Dn) and the value v ∈ Di, we have the formula:

σ(xi, v, c) = #c(x1, . . . , xi−1, v, xi+1, . . . , xn)
#c(x1, . . . , xn)

representing the solution density. The solution density shows the probability of variable-value
assignment (xi = v) being part of a solution to c.
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CBS relies on the solution density to guide the search. Pesant et al. [3] searches the high-
est solution density for each variable and each value. Algorithm 1 is adapted from maxSD [3].

1 max = 0;
2 foreach constraint c(x1, . . . , xn) do
3 foreach unbound variable xi ∈ {x1, . . . , xn} do
4 foreach value v ∈ Di do
5 if σ(xi, v, c) > max then
6 (x∗, v∗) = (xi, v);
7 max = σ(xi, v, c);
8 end
9 end

10 end
11 end
12 return branching decision "x∗ = v∗";

Algorithm 1: The maximum solution density search [3]

In CBS, we choose the variable based on the solution density among all the variables and
constraints and the value that has the maximum support count among all the values. The
support count is collected from propagate (a method used to remove inconsistent values) of the
compact table, that is why we said the data collection is on the constraint level. CBS selects
the global data on the constraint level that can avoid locally optimal. CBS is applied to many
constraints, like element, Alldifferent [4], global cardinality constraints(gcc) [3], regular [5] and
knapsack [5]. For this thesis, CBS will be applied on the compact table constraint.

2.1.6 Value Heuristic

The variable ordering heuristic search chooses the next variable to branch on for CSPs, the
value ordering heuristic is trying to find which value will be assigned to the variable. To
find a solution for CSPs efficiently, there are a lot of heuristic searches proposed, such as
WDEG, IBS and ABS. Most of the heuristic search techniques for CSPs are mainly focused
on variable heuristic, although there are some approaches focused on value heuristic searches.
For example, IBS achieved both variable and value heuristics. Some researchers explored the
value-only heuristic and proved the performance of their methods is also efficient. Smith and
Sturdy [13] defined a value heuristic search that works well on some constraints and consumes
less time to find all the solutions for CSPs. A look-ahead value heuristic method [14] proposed
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has good performance on hard CSPs.

2.2 Table Constraints

A table constraint CCT is a set of tuples of arity r, and the set of tuples is called a table. We
used rel(CCT ) to denote a table. The scope scp(CCT ) of the table constraint is an ordered list
of variables (x1, . . . , xr). The arity r of the table constraint is the size of the scope. The table
constraint CCT is satisfied if and only if the value taken by each variable in its scope corre-
sponds to a tuple in the relation rel(CCT ). The table constraint supports a value a ∈ D(xi)
if and only if we can find a valid tuple T in the relation rel(CCT ) such that T (xi) = a.

Compact Table (CT) is an efficient implementation of the table constraint which is combining
the bit operations with enforced GAC on the table constraint. CT uses bit sets to maintain
the supports for each variable-value pair. The calculation between the valid tuples and the
tuples’ masks use bit-wise operations. The inconsistent values are removed from the domain
during the propagation.

2.2.1 Reversible Sparse Bit Set

Compact table [2] combines an efficient general arc consistency (GAC) method with table
constraint that uses a special data structure named reversible sparse bit set. The reversible
sparse bit set uses some techniques to accelerate the processing of data. The compact table
implementation is the default table constraint in the Oscar library. Lecoutre and Vion [15]
introduced the bit operations to speed up the algorithm looking for support faster. Lecoutre
et al. [16] presented an efficient Generalized Arc Consistency (GAC) algorithm to reach valid
tuples to find out supports. The compact table uses GAC to filter invalid tuples.

A bit set (also called bit vector, bit array, or bit map) is a data structure that maps an entire
domain in an array of binary values {0, 1}. If data appears (1) in the ith bit of the n bits
bit set, then the value i is part of the domain. Else, if the ith bit is set to 0 then the value
i is not part of the domain. For example, if we want to represent the set of odd numbers
smaller than 10 ({1, 3, 5, 7, 9}) a bit set of 10 bits could represent it and the result would be
0101010101.

Sparse set is a data structure studied by Briggs and Torczon in [17]. The sparse set contains
the size sizeD of the domain D and two arrays denseD and sparseD. The denseD maps into
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the sparseD by the values’ indices. For example, for the set {5, 7, 1}, the value 5 of denseD

will be at the 5th index of the sparseD. In Figure 2.1, denseD is split into two parts by
sizeD; the first part of sizeD is considered to be part of D; the second part (gray squares) is
considered to be deleted. The sparse set is an efficient data structure for the usual operations;
it costs constant time by moving sizeD and change the maps between denseD and sparseD

to add and delete members, and to test membership.

Figure 2.1 Representation of spaseD and denseD before and after inserting value 4

The compact table maintains the supports for each variable-value pairs. As Briggs and Tor-
czon in [17] presented, the Reversible Sparse Bitset is composed of several elements in the
set that are reversible, the sparse set and the dense set. A sparse array stores the position of
each element of the set in a dense array. Size indicates the number of elements in the current
set. Schaus et al. [18] introduced the instrumented sparse bit set to represent the domain
of variables which allows accessing the delta changes without cost. The compact table uses
reversible sparse set for the currTable which allows the solver to go back to the previous
state when the solver backtracks. The reversible sparse bit set data structure achieves the
restoration of the values from dense data to sparse data in constant time upon backtracking.

Figure 2.2 shows how to remove value 7 and when we want to restore the domain. First, we
need to identify the position of 7 in the domain of the sparse set and dense set. Second, we
need to identify the value in the last position of the dense set. Third, we need to exchange
the position of these two values and update the map. Lastly, we decrement the size from 3
to 2. The process of restoring the values costs constant time in Oscar. When a failure occurs
and the algorithm backtracks, we want to go back to the previous state and the deleted
value comes back to the variable’s domain. How to restore deleted values when backtracking
occurs? We only need to restore the size to the previous size, so the deleted value will be
returned to the domain.
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Figure 2.2 Operation performed to remove 7 from set and set {5, 7, 1} after the restoration
of sizeD (from top to left to right)

2.2.2 Representation of Reversible Sparse Bit Set

Table 2.1 shows an example of the indexed tuples of the table. Table 2.2 shows the corre-
sponding bit sets after the initialization of the table constraint CCT given in Figure 2.3.

scp(CCT ) = {X(1), X(2), X(3)}
D(X(1)) = {2, 4}

D(X(2))) = {1, 5, 6}
D(X(3)) = {3, 6, 7}

rel(CCT ) = {(2, 1, 6), (2, 1, 7), (2, 5, 6), (2, 5, 7),
(4, 1, 6), (4, 1, 7), (4, 3, 7), (4, 5, 6), (4, 6, 7)}

Figure 2.3 Initialization of ExampleTable

The currTable is a reversible sparse bitset data structure (it is either 1 or 0) and some bits
change from 1 to 0 if the assignment is invalid or backtrack if the bit set changed from 0 to
1. If the AND calculation result between currTable and supports for a variable-value pair
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is all 0, the value should be removed because it does not have support, and a backtrack will
occur.

In the initialization of the compact table CCT , a static bit-set supports[X, a] (X ∈ scp(CCT )∩
a ∈ dom(X)) for each variable-value pair (X, a) was computed.

Table 2.1 The indexed tuples

T X(1) X(2) X(3)
1 2 1 6
2 2 1 7
3 2 5 6
4 2 5 7
5 4 1 6
6 4 1 7

4 3 7
7 4 5 6
8 4 6 7

Table 2.2 The corresponding bit-set

currTable 1 1 1 1 1 1 1 1
supports [X(1),2] 1 1 1 1 0 0 0 0
supports [X(1),4] 0 0 0 0 1 1 1 1
supports [X(2),1] 1 1 0 0 1 1 0 0
supports [X(2),3] 0 0 0 0 0 0 0 0
supports [X(2),5] 0 0 1 1 0 0 1 0
supports [X(2),6] 0 0 0 0 0 0 0 1
supports [X(3),6] 1 0 1 0 1 0 1 0
supports [X(3),7] 0 1 0 1 0 1 0 1

Tuple {4, 3, 7} is invalid since initialization because 3 /∈ D(X(2)). Value 3 will be removed
fromD(X(3)) , because it is not in any relation rel(CCT ) of CT. The currTable is a reversible
sparse bit set data structure, and it is updated during the propagation. When the tuple is
invalid, the currTable bit will change from 1 to 0. When the search backtracks, the currTable
bit will change from 0 to 1. We need to mention that the supports will not change during
the search.

2.2.3 Variants of Table Constraints

Some efficient implementations of table constraints for different situations were presented
recently, such as compact table, short table, and smart table. Compact table was introduced
in the beginning of Section 2.2.

• Short table [19] presented by Verhaeghe et al. extends the compact table to the negative
table that means table contains conflicts and short table which contains symbol ∗. For
example, {(c, ∗, a), (a, b, c), (b, c, b)} is a negative short table for three variables.

• Smart table [20] is the table constraint that contains simple arithmetic constraints.
Verhaeghe et al. [21] also extend the compact table to basic smart table, the smart
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table contains some arithmetic symbols like ≤ and ≥, these symbols can make the table
constraint adapt many CSPs. For example, {(6= a, ∗, c), (c,≤ b, 6= a), (< c, b, 6= b)} is a
basic smart table for three variables.

• Ingmar et al. [22] presented dynamically compact bit sets and shared tables to reduce
the runtime and memory usage of the compact table.



17

CHAPTER 3 COUNTING-BASED SEARCH IN OSCAR

In this chapter, there are three main sections. In Section 3.1, we introduce the big picture
of Oscar, such as the variables, methods in the compact table and branching methods. In
Section 3.2, we describe the changes we made in Oscar to adapt counting-based search. In
Section 3.3, we introduce the counting-based search we created in Oscar based on the changes
in Section 3.2, and we use a UML diagram to show the connections after changes.

3.1 Basic Concepts in Oscar

Oscar [1] is a dense and complicated library implementing a constraint programming solver.
It is an open-source library written in Scala. We cannot explain thoroughly all the classes
and packages of Oscar. In this section, we will only introduce the classes and methods that
we will use in Section 3.2. The UML graph will show the basic structure of Oscar and the
relationships between all the classes and packages in Oscar.

3.1.1 The Bigger Picture

It is important to understand each small method of the important classes of a project but it
is also crucial to understand how the project works as a whole. To explain this, we decided
to create a UML graph(see Fig. 3.1) of the important parts. Some keywords in UML are
presented as the following sub-points.

In the Oscar-cp-examples, there is some information we want to introduce, such as the inter-
face with search and constraint.

• binaryIdx is a function in the trait Branchings that extends the trait BranchingUtils.
Binary search can be defined with the custom variable-value heuristic because the
function binaryIdx has an instantiation class BinaryBranching. We should use this
class and create our heuristic search specified with the parameters.

• table is a keyword to access the trait Constraints. In this trait, there is a function table
that extends the compact table.
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Figure 3.1 UML of part of Oscar

3.1.2 The CP package

In Oscar, the cp/package gives some useful features for modeling. There are some common
types such as CPSolver, CPIntVar or CPIntervalVar. In the package, Oscar also defines sev-
eral commonly-used implicit conversions and provides other functions such as regret method
(returns difference in terms of cost between the second smallest and the smallest value in
the domain). This package also defines the CPModel trait, which provides the user with an
implicit solver called CPSolver.

3.1.3 Variables in Oscar

CPIntVar is an abstract class integrating some basic methods, like the domain size and the
minimum value of the variable (see Fig. 3.2). Variables in the compact table are an array
of CPIntVar hence variables can use the methods in the CPIntVar class. CPIntVar extends
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CPVar. CPVar is an abstract class and it contains definitions of store, isBound, and name.

abstract class CPIntVar extends CPVar with IntVarLike {
\\return true if the variable is bound to value v, false if variable
\\is not bound or bound to another value than v

def isBoundTo(v: Int): Boolean

\\return the size of the domain
def size: Int

\\return the minimum value in the domain
def min: Int
......

}

Figure 3.2 CPIntVar class

3.1.4 Methods in Compact Table

In the CT, there are several methods that we will use for CBS. The setup shows the basic
organization and processing steps of the CT. The setup calls the ComputeSupportsAndIni-
tialFiltering method and the propagate method. Some of the methods are used during the
setup of the constraints, like the collectValidTuples and isTupleValid method.

• ComputeSupportsAndInitialFiltering retrieves the current valid tuples and collects the
supports from the tuples. In this method, the final support bit Sets are created and
any value that is not supported is removed.

• Propagate is the core method for all the constraints and it will be introduced later
in Algorithm 4. When the constraint checks domain consistency, the value causing
inconsistency will be removed. For each variable-value pair, propagate checks if there
is at least one valid tuple remaining.

• collectValidTuples is a method called by ComputeSupportsAndInitialFiltering. This
method retrieves the valid tuples from the table and stores their index in validTuples-
Buffer.

• isTupleValid checks if a tuple is valid.
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3.1.5 Branching Methods

Oscar offers users several state-of-the-art heuristic searches, like the Conflict-Ordering Search
[23] for scheduling problems. We will use binary branching to specify our variable and value
ordering heuristics. The variable ordering heuristic first selects the unbound variable, such
as the one with the smallest domain. The value ordering heuristic determines the selection
order of values, such as selecting the minimum value in the domain of the variable.

Binary branching is binary choices for variables; branching will occur when propagators
filter values and the constraint does not allow you to filter anything anymore. Once the
propagator in the compact table constraint removed the values that caused inconsistency,
then the branching method will give a decision as defined. In cp/packages, we will not only
compute and select the information from the compact table but also use the stored data from
the compact table to guide the binary branching.

The binary branching class has four methods: bound, allBounds, nextVar and alternatives.

• bound and allBounds will check the availability of variables and values for branching.

• nextVar is used to define what is the next variable we should search on. To do so,
nextVar iterates on every variable available. A variable is available if it has not been
bound before. Then it will use a feature, for example, the domain size, to order every
variable. Finally, we decide to search for the best variable from the ordered sequence.

• alternative checks if a solution is still possible for a problem. Then it searches the next
variable and value to be assigned. Finally, it declares how to assign the variables in the
child nodes.

In Figure 3.3, x are the decision variables to branch on; i => x(i).size is the variable heuristic,
it returns an ordered value such that the solver will choose the variable that has the smallest
domain for an index i in variables; i => x(i).randomValue is the value heuristic, it returns
the random value in the domain of x(i) assigned on the left branch and removed on the right
branch.

search(binaryIdx(x,i => x(i).size,i => x(i).randomValue))

Figure 3.3 CPIntVarOps class
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Binary branching is the method we will use to implement our counting-based search. In
binary branching class, we return a list containing the left and right branches. The left
branch assigns to a variable a value in its domain, whereas the right branch removes a value
of the domain we searched on (which is the value taken by the left branch). Then, when we
see that the solution on the left branch is not possible, we backtrack and go directly to the
right branch. Figure 3.4 describes the backtrack scheme in Oscar. Each number represents
a step. The loops represent propagation (steps 2 and 6).

Figure 3.4 Backtrack in Oscar

Once we backtrack, some values are brought back to a previous state that was registered in
the memory. This allows us to be more efficient. When the solver backtracks, we restore the
size of the domain to its previous value and the values will be back in the domain. The left
branch pushes the current state and the right branch pops the previous state when the solver
backtracks and the domain will be restored.

3.2 Changes in Oscar

We introduce supportCount in Oscar because we need to use supportCount to calculate so-
lution density. Second, we propose the modifications and algorithms to update the support-
Count.

3.2.1 The supportCount in Oscar

supportCount is the number of ones in the bit set tuple for each variable-value pair. The
first thing we need to consider is how to collect supportCount for CBS. Using bit-wise AND
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operation between currTable and supports of the variable-value pairs, then the sum of bits
in the result is supportCount. Definition 3.2.1 is the definition of the supportCount:

Definition 3.2.1(supportCount)

supportCount = ∑ (currTable) ∩ (supports[x, v])

When we calculate the supportCount for each value, we really need to consider the views. A
view is a way to represent a variable. It is used in TableCT to save space, for example if the
domain is D1 = {1, 3, 4, 5} and the view is just an offset (like in TableCT ), we will have an
offset of 1 and the domain will be represented in the class as : D1 = {0, 2, 3, 4} Hence, during
the calculation of our supportCount we really need to consider the offset of our view to place
the count at the right place and to later search on the right value using the supportCount.

Table 3.1 shows the supportCount we get for the ExampleTable(see Figure 2.3).

Table 3.1 The supportCount for each variable

v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 v = 8
X(1) 0 4 0 4 0 0 0 0
X(2) 4 0 0 0 3 1 0 0
X(3) 0 0 0 0 0 4 4 0

3.2.2 Plan of Modification

Now that we saw the bigger picture, we can ask ourselves which modifications we want to
bring. First of all, our objective is counting-based search using solution density. So we
will create our search methods to have the first sketch of them to use later. Now, we need
to calculate the solution density for each of our variables and transfer them to our search
algorithm. Then, we need to create our search algorithms.

binaryIdx(X, i => - X(i).varCountSearch, i => X(i).valCountSearch)

Figure 3.5 Binary branching with our newly created methods

The first thing we need to consider is where we should bring our changes. We decided to
use cp/package as the main file we will modify as it can be accessed both by the compact
table and the search. Hence, we will use this file as a bridge between the calculation of the
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supportCount, and the decision on a new variable-value pair to search on. Also, Oscar is
complex, and limiting most of our modifications to only one file can bring the complexity of
the changes to a minimum for someone that would like to use or continue our work. It is
also important to notice that we could also have used the CPIntV ar class but we chose to
use cp/package as CPIntV ar is an abstract class that is inherited by a lot of other classes.
Modifying it would possibly bring a lot of problems on other projects of other users of Oscar
but also on other subclasses of our project.

3.2.3 Type of Storage

In this part, we want to take a look at which kind of storage we want to use to store the
supportCount of our variables. First of all, we decided that it should be storage easy to
access and really efficient as it will be used multiple times in multiple methods. Hence, we
decided to use a map as the storage because values (supportCount) would be accessible in a
O(1) complexity. Then we need to decide which information we need to store: of course, we
need to store the supportCount, but we need to store it for each of our variables and also our
constraints. To conclude, we decided to use a Map of Map (mapcount) using variables and
constraints as indices for each map respectively.

3.2.4 Unique ID for Constraints and Variables

To fill a map, we need an argument that can be hashed as a key and that will represent a
single member. But, because of views, as explained before, in each class the way to represent
variables and constraints is not the same, then we cannot use the normal representation to
access the supportCount and we need to find a unique ID to represent both our variables and
our constraints.

Hash code is an excellent way to keep the consistency of variable storage and usage. Hash
code comes from a Java class in Oscar, and the hash code will return the same integer re-
gardless of which class a given variable is involved in during the execution.

3.2.5 Changes in Compact Table

The map including supportCounts and the unique ID for constraints and variables, we will
call it mapcount from now on, needs to be maintained in a static object. When we search, we
need the mapcount to be stable but we also need to update the mapcount when propagation
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occurs. If mapcount is not a static object, the content inside will be erased. In Scala, the
singleton object is used as the static object. Hence, we need to store the mapcount as a
singleton object. Table 3.2 shows the data structure of mapcount:

Table 3.2 The structure of mapcount

variable 1

constraint 1 supportCount
constraint 2 supportCount
...... ......
constraint m_1 supportCount

....... ...... ......

variable n

constraint 1 supportCount
constraint 2 supportCount
...... ......
constraint m_n supportCount

The information we collect during the processing of code will not be available after the end of
the process. To deal with this problem, we found the singleton variables in Scala. In Scala,
an object is a class that can define static arrays, and then the information can be saved.
This is one of the reasons why we do not process all our data directly inside TableCT (see
Figure 3.1), as it will not be saved. If we use the same name for object and class in the same
source file, the object and class are companions. We created a 2-dimensional hash table in
the object class to store the information from TableCT and instances. In this section, we will
introduce the different variables, arrays, and hash table, then we will introduce the whole
design of the algorithm.

• idvar is the hash code of variables; it is one of the information we need to get from the
compact table.

• idconst is from the instances, like ExampleTable. We get the constraint ID from the
class Constraint and transfer the constraint ID to the compact table. Idconst is one of
the parameters in the method we created.

• supportCount is a one-dimensional array that is defined in the compact table. Here,
we used a two-dimensional hash table to store the supportCount for a given variable
and constraint ID. The supportCount in the compact table will be updated during
execution, and the supportCount will be stored in the hash table when the supportCount
is updated.
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• mapcount is defined in the Object class CPIntV arOps it is a two-dimensional map.
The hash table mapcount is a HashTable[Int, [Int, Array[Int]] data structure. It
contains every information needed to do the branching.

• mapVarVal is a two-dimensional hash table, the first field is the idvar and the second
field is the index of the value in supportCount which has the maximum supportCount.

• mapCons is a HashTable[Int, Array[Int]] data structure, it contains constraint ID and
supportCount.

• mapVarSD is a two-dimensional hash table, the first field is the idvar and the sec-
ond field is the solution density of each variable. The hash table mapV arSD is a
HashTable[Int, F loat] data structure.

We also decided to change our storage following some results. In fact, in the beginning, our
map was indexed first by constraint and second by variable. This meant that for one variable
we had to loop on all the constraints to determine the solution density. In the end, if we have
100 constraints and our variable was involved in only 10 of them we would loop 100 times
anyway. We changed it considering that we would loop more efficiently for each variable (10
times in our example).

We use a small example composed from a limited number of variables and constraints to
show how our structures are used in the runtime of our algorithm. To simplify things, the
hashCode() we obtain from the variables and constraints are represented respectively by Vi
and Ci. In Figure 3.6, you can find the example.
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Figure 3.6 Example of structures’ usage

In cp/package, we created an object named CPIntVarOps, it has the same name as the class
in which we will create our method to update the supportCount. In object CPIntVarOps, we
defined a map named mapcount to store the variable ID, constraint ID and supportCount,
while we will define changeCount method to update them in the class CPIntVarOps. The
TableCT(compact table) will call the method changeCount to fill the mapcount to update
the supportCount. In the algorithm below, the mapCons is used to store the mapped idcons
to supportCount and the CPIntVarOps.mapcount will keep the information we selected. We
removed the SD(solution density) and value out of mapVarSD and mapVarVal respectively
because once we propagate on value, we know that our best value saved is no longer valid.
Also, it allows us to limit the space taken in memory because a value that will become bound
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through propagation will update its count and will not be kept in the memory anymore.

input: idvar, it is the variable ID for hash table index
idconst, it is the constraint ID for hash table index
supportCount, it is an array for supportCount

1 CPIntVarOps.mapVarSD.remove(idvar) ; /* remove the variable */
2 CPIntVarOps.mapVarVal.remove(idvar) ; /* remove the value */

/* retrieve the mapCons contained in this idvar if it exists, not to
overwrite it */

3 if CPIntVarOps.mapcount.get(idvar) != None then
4 mapCons = CPIntVarOps.mapcount(idvar)
5 end

/* adding new element in mapCons */
6 mapCons = mapCons + (idconst -> supportCount);
7 CPIntVarOps.mapcount = CPIntVarOps.mapcount + (idvar -> mapCons);

Algorithm 2: Update of supportCount(changeCount)

In Algorithm 2, we can see the time complexity is O(1). Once we defined the algorithm
changeCount, we need to get the information from TableCT and Constraint. In the initial-
Filtering and the propagate, we need to call the method changeCount.
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input: initCount, the count in the initialization
maxValue, declaration of the maximum value in the domain of a variable
supCount, the array of supportCount

1 foreach varIndex <- variableValueSupports.indices do
2 supCountSize = maxValue + 1 ; /* the size of supportCount */
3 foreach valueIndex <- variableValueSupports(varIndex).indices do
4 if varValueSupports(varIndex)(valueIndex).nonEmpty then
5 variableValueSupports(varIndex)(valueIndex) = new

validTuples.BitSet(varValueSupports(varIndex)(valueIndex));
6 initCount =

validTuples.intersectionCount(varValueSupports(varIndex)(valueIndex));
7 supCount(valueIndex + offsets(varIndex)) = initCount ; /* add

initCount in the supCount array, offsets represents the
offset of the view */

8 end
9 else

10 x(varIndex).removeValue(valueIndex)
11 end
12 end
13 if supCount.max > 0 then
14 x(varIndex).changeCount(supCount, X(varIndex).hashCode(), getConsID)
15 end
16 end

Algorithm 3: Call the changeCount in ComputeSupportsAndInitialFiltering

In Algorithm3, if we call changeCount before we removed values, the supportCount will have
the remaining values which were deleted during the propagation. Some variables do not
have any valid supports, so we add the condition to only update the variables which have
supports. We need to mention that the blue part is the changes we made and it is the same
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for Algorithm 4.

input: unBoundVars, the unbound variables
unBoundVarsSize, the number of unbound variables (ReversibleInt type)
unBoundVarsSize_, the value of unBoundVarsSize
Index, the value of unBoundVarsSize
domainArray, the domain of variable
domainArraySize, the domain size of variable
propCount, the count in the propagate
maxValue, the maximum value in the domain of variable
supCount, the array of supportCount

1 while Index > 0 do
2 Index -= 1;
3 varIndex = unBoundVars(Index);
4 if x(varIndex).isNotBound then
5 supCountSize = maxValue + 1 ; /* the size of supportCount */
6 while domainArraySize > 0 do
7 domainArraySize -= 1;
8 value = domainArray(domainArraySize);
9 if !validTuples.intersect(varValueSupports(varIndex)(value)) then

10 x(varIndex).removeValue(valueIndex);
11 end
12 propCount =

validTuples.intersectionCount(varValueSupports(varIndex)(value));
13 supCount(valueIndex + offsets(varIndex)) = propCount ; /* add

propCount in the supCount array */

14 end
15 if supCount.max > 0 then
16 x(varIndex).changeCount(supCount, X(varIndex).hashCode(), getConsID)
17 end
18 end
19 if x(varIndex).isBound then
20 unBoundVarsSize_-= 1;
21 unBoundVars (Index) = unBoundVars (unBoundVarsSize_);
22 unBoundVars (unBoundVarsSize_) = varIndex;
23 end
24 end

Algorithm 4: Call the changeCount in propagate
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In Algorithm 4, we update the SupportCount during the propagation, basically we loop on
each constraint not assigned yet and we calculate it is SupportCount. We use the following
notations for the rest of the chapter : n is the number of variables, m is the number of
constraints, w is the number of values in the domain of each variable and t is the number of
tuples. The time complexity of Algorithm 3 and Algorithm 4 is O(t× n) because this is the
number of times needed to call Algorithm 2 to fill the mapcount, and it will be called for
each constraint m.

3.3 Search in Oscar

CBS uses the information of the mapcount to guide the search. We will introduce the
principles of CBS and design the algorithms of CBS. A UML figure will show the organization
of Oscar after changes.

3.3.1 Principle of CBS

Support is essential information in CSP; the supportCount for variable and value pairs can
guide the search. There is a different combination of a selection of variable-value pairs.
The counting-based search uses the information at the constraint level and we collect the
supportCount from the compact table. The variable with the maximum solution density will
be chosen first, and the value with the maximum supportCount will be selected.

3.3.2 Variable Selection

The variable search uses the maximum solution density to guide the search. Why it chooses
the maximum solution density, not the maximum supportCount to conduct the variable
search? There are two different reasons for that, first of all, most of the time the maximum
supportCount would be the same for a lot of variables and will not be discriminative enough.
Second of all, we want in the end to narrow down our search tree as fast as possible to
make the search finish faster. Let’s take an example in which we have two variables and
one constraint for a problem. The first variable has 10 domain values with an average
supportCount of 1.5 and a maximum supportCount of 3 whereas the second variable has 5
elements with an average supportCount of 1.5 too and a maximum supportCount of 2. In this
situation, it is better to search on the second variable first even if the maximum supportCount
is lower for the simple reason that we will go in the depth of the tree faster and so find
faster if the problem has a solution or not. Hence, the probability to find a faster solution
should consider how many elements each variable has (3/(1.5*10) compared to 2/(1.5*5)).
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1 SD = 0f ; /* the solution density in float type */
2 SDTest = 0f;
3 mapCons = CPIntVarOps.mapcount.getOrElse(x.hashCode(), Map[Int,Array[Int]]) ;

/* map of variable to (map of constraint to supportCount) */
4 foreach variable <- mapCons do
5 supportCount = mapCons._2 ; /* get the correct supcount */
6 SDTest = supportCount.max.toFloat / supportCount.sum.toFloat;
7 if SDTest > SD then
8 SD = SDTest ;
9 CPIntVarOps.mapVarVal = CPIntVarOps.mapVarVal + (x.hashCode () ->

supportCount.indexOf(supportCount.max)) ; /* save the value which
has the maximum supportCount */

10 CPIntVarOps.maxVarSD = CPIntVarOps.mapVarSD + (x.hashcode() ->
SD);

11 end
12 end
13 if SD == 0f then
14 SD = CPIntVarOps.mapVarSD.getOrElse(x.hashcode(),0f)
15 end
16 return SD;

Algorithm 5: Variable search based on solution density

We calculated the solution density using the supportCount.max.toF loat/supportCount.sum.toF loat.
The solution density is corrected only if there are no remaining values in the supportCount
array. For example, if the maximum supportCount is removed during propagation, the
supportCount.max will be the wrong value. We did a filter to test if we have the remaining
values in the supportCount. (x.toArraycollectsupCount).sum and (x.toArraycollectsupCount).max
are used to collect the supportCount for the values in the domain of variable. We proved that
(x.toArraycollectsupCount).sum is equal to supportCount.sum and (x.toArraycollectsupCount).max
is equal to supportCount.max. In Algorithm 5, the time complexity is O(m) but called O(n)
times in binaryBranching class.

3.3.3 Value Search

We explained the method to search the variables, and then we need to introduce the ap-
proach to select the values for each variable. We used the mapVarVal(created in the vari-
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able selection) to store the value for which that maximum is achieved for each x, then val-
CountSearch (i.e., value selection) would return the stored value for x (the selected variable).
We also took care of cases where all the variables with supportCounts have been associated,
we then turn to a simple min or max algorithm for variables without any supportCounts.

1 mapCons = CPIntVarOps.mapcount ; /* map of variable to (map of
constraint to supportCount) */

2 valuereturn = CPIntVarOps.mapVarVal.getOrElse(x.hashCode(),-1) ; /* value
index to return at the end */

3 if valuereturn < 0 AND bound == "min" then
4 valuereturn = x.min ; /* if the var was outside the TableCT and we

decide to get the min */

5 end
6 else if valuereturn < 0 AND bound == "max" then
7 valuereturn = x.max ; /* if the var was outside the TableCT and we

decide to get the max */

8 end
9 CPIntVarOps.mapcount.clear();

10 CPIntVarOps.mapVarSD.remove(x.hashcode());
11 CPIntVarOps.mapVarVal.remove(x.hashcode());
12 return valuereturn ;

Algorithm 6: Value search
For Algorithm 6, the time complexity is O(1) and it is called only once in BinaryBranching.
We added some security in this algorithm in case no more variables had a supportCount (line
3 to 8). It is just used for variables that are added and not included in any constraint, we
still need to choose the values for those variables to finish the algorithm. This happened only
at the end of our tests instances, when we only add unbound variables left.

3.3.4 Improve the Efficiency of Variable Search

We clear the mapcount once a value is selected. We do it because we do not want to keep
outdated information on the different variables and the mapcount will become smaller. Also,
it prevents us from doing extra loops that are useless for the calculation. However, it happens
that the mapcount becomes empty because we did not propagate on all the variables and
the variables we did are now bounded. That is why we do not clear the mapVarVal, as it
will contain the previous best values selected for each variable. We also added mapVarSD
(see Figure 3.6) that contains the solution density for each variable in the previous search.
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Hence, when a variable did not propagate we will keep those two values alive in the maps
(not remove them) and will use them if we search on them. We added an "if" condition to
trigger when the solution density is equal to zero in Algorithm 6, the solution density of each
unbound variable but not propagated will be all considered and managed in this loop. The
variable search will be improved because of the maintenance of mapcount and the computa-
tion of solution density will be improved.

3.3.5 A UML of Oscar After Changes

Figure 3.7 shows the whole structure of the design and implementation of this project. Com-
pared with Figure 3.1, we can easily see that we added code in cp/package, including the
object mapcount and changeCount, varSearch and valueSearch methods. From the relations
among all the classes and packages in Figure 3.7, we can figure out that the TableCT and
binaryBranching can call the methods in the CPIntV ar and cp/package.

Figure 3.7 UML of CBS in the Oscar
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3.3.6 Adding Arithmetic and Geometric Methods

The heuristic search maxSD [3] shows the counting-based search is better than other generic
search methods in the experimental results. Sometimes, the maxSD will not make a good
decision when there are many constraints associated with variables. To improve the perfor-
mance of the algorithms, we need to try the arithmetic average and the geometric average of
solution density that are the variants of maxSD. We decided to implement those two solu-
tions to get an even more discriminative choice when it comes to which variable we should
branch on.

1 sumSC = 0 ; /* sum of supportCount */
2 SD = 0f ; /* the solution density in float type */
3 maxProb = 0f ; /* the maximum probability */
4 mapCons = CPIntVarOps.mapcount.getOrElse(x.hashCode(), Map[Int,Array[Int]]) ;
5 foreach value <- variables do
6 sumSD = 0f;
7 numcons = 0;
8 foreach constraint <- mapCons do
9 if value > supportCount.size - 1 then

10 SD = 0;
11 end
12 else
13 SD = supportCount(value).toFloat / supportCount.sum.toFloat;
14 end
15 sumSD += SD;
16 numcons += 1;
17 end
18 Probvi = sumSD / numcons.toFloat;
19 if Probvi > maxProb then
20 maxProb = Probvi;
21 CPIntVarOps.mapVarVal = CPIntVarOps.mapVarVal + (x.hashCode() ->

value);
22 CPIntVarOps.maxVarSD = CPIntVarOps.mapVarSD + (x.hashcode() ->

SD);
23 end
24 end
25 if SD == 0f then
26 SD = CPIntVarOps.mapVarSD.getOrElse(x.hashcode(),0f)
27 end
28 return maxProb;

Algorithm 7: Variable search based on the arithmetic average
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1 sumSC = 0 ; /* sum of supportCount */
2 SD = 0f ; /* the solution density in float type */
3 maxProb = 0f ; /* the maximum probability */
4 mapCons = CPIntVarOps.mapcount.getOrElse(x.hashCode(), Map[Int,Array[Int]]) ;
5 foreach value <- variables do
6 prodSD = 1f ; /* the product of solution density */
7 numcons = 0;
8 foreach constraint <- mapCons do
9 if value > supportCount.size - 1 then

10 SD = 0;
11 end
12 else
13 SD = supportCount(value).toFloat / supportCount.sum.toFloat;
14 end
15 prodSD += (- log10(SD).toFloat) ; /* the sum of the logs is the

product of solution density */
16 numcons += 1;
17 end
18 Probvi = prodSD / numcons.toFloat;
19 if Probvi > maxProb then
20 maxProb = Probvi;
21 CPIntVarOps.mapVarVal = CPIntVarOps.mapVarVal + (x.hashCode() ->

value) ;
22 CPIntVarOps.maxVarSD = CPIntVarOps.mapVarSD + (x.hashcode() ->

SD);
23 end
24 end
25 if SD == 0f then
26 SD = CPIntVarOps.mapVarSD.getOrElse(x.hashcode(),0f)
27 end
28 return maxProb;

Algorithm 8: Variable search based on the geometric average

Unfortunately for Algorithm 8, because we are multiplying multiple low float numbers, the
memory cannot follow and we end up in a wrong calculation in the product of solution density
that becomes equal to 0. To solve it, we could take the sum of the logs instead; this is a
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standard way to fix this. For Algorithm 7 and Algorithm 8, the time complexity is O(m×w)
but this algorithm is called O(n) times in BinaryBranching.
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CHAPTER 4 EXPERIMENTAL RESULTS

In this thesis, CBS variants based on maximum solution density, the geometric average of
solution density and the arithmetic average of solution density were introduced in Chapter 3.
Our implementation is built using the Oscar [2] library, and the performance of the counting
based search will be compared with other efficient search methods. Section 4.1 introduces
the computer and benchmark we used to run our experiments. Section 4.2 describes the
search algorithms we will run our algorithm against, the benchmark problems used and our
experimental results. Section 4.3 shows which parameters affect our results.

4.1 Context

We tested 14 different problem classes and all the instances involved positive table con-
straints. All the instances that we selected to test our algorithms are available at https:
//bitbucket.org/pschaus/xp-table/src/master/instances/ [2]. We used a MacBook
Pro 3.1 with a 3.1 GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 memory; the
operating system is macOS Mojave 10.14.5.

We set 1000 seconds as a time limit for all the instances. We report the time taken to find
a solution or to prove that none exists, and the number of failed search tree nodes (i.e.,
backtracks).

4.2 Results

4.2.1 Tested algorithms

We used the following state-of-the-art heuristic branching methods:

• maxSD: it uses binary branching to select the variable with the largest solution density
and the value for which that maximum is achieved for that variable;

• maxAvgSD: the variant of maxSD using the arithmetic average of solution density over
constraints;

• dom: it uses binary branching to select the variable with the smallest domain as variable

https://bitbucket.org/pschaus/xp-table/src/master/instances/
https://bitbucket.org/pschaus/xp-table/src/master/instances/
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ordering heuristic and chooses the random value in the domain of that variable as value
ordering heuristic ;

• dom/deg: it uses binary branching to select the variable with the smallest domain over
degree ratio as variable ordering heuristic and the random value in the domain as the
value ordering heuristic.

4.2.2 The tested problems

We tested the following problems:

• Quasigroup completion problem: aim instances are created by Asahiro, Iwama, and
Miyano [24]. It has SAT and UNSAT instances and SAT means the instance is sat-
isfiable and UNSAT that it is not. They used the quasigroup completion problem to
obtain their benchmark instances.

• Renault Megane configuration problem: the modified Renault problem comes from the
real-word problem: Renault Megane configuration problem.

• Kakuro puzzle problem is a Japanese logic problem. You are given a grid which you
need to fill in with numbers. You have clues on each line and column of the grid. The
sum in the lines and columns should be equal to their corresponding numbers.

• Traveling Salesman Problem is a classic optimization problem. The principle is as
follows: You are a salesman who needs to travel to different cities to sell your product,
the optimization aims to find the shortest path in terms of cost-covering every city in
the tour.

• Dubois and A5 : We do not know what the Dubois and A5 represented in terms of
real-life problems. We will give the corresponding parameters for these two problems.

• Nonogram is a logic game to show hidden images. It uses the clues on the side of the
grid to color cells or leaves them blank. For example, ”4, 8, 3” is a clue on the side of
the grid, indicating that there are 4 filled squares, then 8 filled squares and finally three
squares, each set of squares are separated by at least one space.

• Langford number problem is the 24th problem of CSPLib [25]. The aim of this problem
is to sequence k copies of the integers 1 to n such that each occurrence of the number
i is separated by i other numbers. For example, the sequence 41312432 would be a
solution for k=2, n=4.
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• Crosswords problem gives a grid to fill words from a dictionary with some clues.

• Binary decision diagram is a problem where we use a certain data structure to represent
a boolean function. We decided to use the bddsmall instances because bddlarge is too
big to be solved by our computer under our time-out threshold.

• Easy generation of hard (satisfiable) instances is random table constraints with a ran-
dom scope. They are generated by Ke [26].

As we already described the time complexity for each algorithm in the Chapter3, here we
want to conclude the calculation of the complexity of our whole algorithm when branching on
a value for respectively maxSD and maxAvgSD. We use the following notations for the rest
of the chapter : n is the number of variables, m is the number of constraints, w is the number
of values in the domain of each variable and t is the number of tuples. For maxSD, the time
complexity is O(n×m× t). The computational process of time complexity of maxSD is as
follows : O(n×m× t) (from Algorithm 2, 3, 4) + O(n×m) (from Algorithm 5) + O(1) (from
Algorithm 6). Meanwhile, for maxAvgSD, the time complexity is O(n ×m × w × t). The
computational process of time complexity of maxAvgSD is as follows: O(n ×m × t)(from
Algorithm 2, 3, 4) + O(n×m× w) (from Algorithm 7) + O(1) (from Algorithm 6).

Quasigroup Completion Problem

In Aim50, Aim100, and Aim200, the domain of each variable is binary, the number of table
constraints is between 10 and 30 and in each table constraint the number of tuples is small
and the arity is 3. Aim50 has 50 variables and the number of constraints is small. Aim100
has 100 variables and the number of constraints is medium and Aim200 has 200 variables
and the number of constraints is large.
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Figure 4.1 Percentage of Aim50 and Aim100 and Aim200 instances solved w.r.t. time and
number of failures

Figure 4.2 Percentage of Aim50 instances solved w.r.t. time and number of failures



41

Figure 4.3 Percentage of Aim100 instances solved w.r.t. time and number of failures

Figure 4.4 Percentage of Aim200 instances solved w.r.t. time and number of failures

In Figure 4.1, we can see that maxSD and maxAvgSD are faster than dom and dom/deg after
the one-second threshold. When the algorithms caused the same number of failures, maxSD
and maxAvgSD can solve more instances. maxSD and maxAvgSD solve around 80 percent
of instances but the dom and dom/deg solve only around 60 percent of instances in the time
limit. When we separate the aim50, aim100 and aim200 results to Figure 4.2, Figure 4.3
and Figure 4.4, we can clearly see that maxSD and maxAvgSD are more efficient to solve the
moderate difficult instances like aim100 or aim200. And even inside aim100 and aim200 our
algorithm is better at solving problems with a large amount of failures. This phenomenon
can be explained for the simple reason that our algorithm is meant to choose accurately the
value on which you should search but takes a lot of processing time to find this value. This
problem has around m = 5n constraints and t = 1

10n tuples, then we can deduce that the
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complexity of maxSD in terms of the number of variables will be O(n3), and the complexity
of maxAvgSD in terms of the number of variables will be O(n3) (w = 2 here), compared to
O(n) for dom and dom/deg. Hence, for smaller examples the simple algorithms are faster
because finding the solution might only require a few backtracks; on the other hand, with
heavy examples, backtracks can be large and this is where the accurate choices have an im-
pact on the number of failures and so on the efficiency to solve problems.

We can deduce that in the case of an instance with a medium number of variables, a low
arity, a binary domain, a small number of relations, small tuples and medium constraints, our
algorithm might be efficient. We will make other deductions with other examples to narrow
down the parameters that allow our algorithm to be efficient.

We also observe that when the number of variables and constraints becomes greater but the
number of tuples, and arity, and domain stays small (similar range of values), our algorithm
performs better. Although, having a large number of constraints and variables might slow
down our algorithm.

Renault Megane Configuration Problem

We tested 50 instances and each instance has around 100 variables and the domain of variables
ranges from 0 to more than 30. The arity is between 2 and 10.

Figure 4.5 Percentage of modRenault instances solved w.r.t. time and number of failures

Here we observed that the maxSD can solve 60 percent of instances while the dom can only
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solve around 30 percent of instances. We can see maxSD and maxAvgSD are better than
dom and dom/deg in the meanwhile maxSD can solve more instances.

Something that might be interesting to notice in this example is that this time maxAvgSD
and maxSD do not follow the same trends. In fact, maxAvgSD is slower than maxSD in this
example. The differences we cannotice from this example and aim100 are the domain and
number of tuples. In this problem, the domain is not binary and it has large tables. In fact,
this problem has around m = n constraints and in the worst case t = 20n tuples, then the
complexity of maxSD in terms of the number of variables will be O(n3), and the complexity
of maxAvgSD in terms of the number of variables will be O(n4) (w = 1

5n). Hence we will
have more processing to do in the maxAvgSD search.

When the instances have a medium number of variables, low arity, a large number of tuples
and a medium number of constraints, we can guess that our algorithm maxSD works well
and maxAvgSD is still efficient.

Kakuro puzzle problem

We tested 192 instances of this problem. The domain of each variable is small (around 9)
and number of variables (up to 150) is large.

Figure 4.6 Percentage of kakuro−medium instances solved w.r.t. time and number of failures

This result is really interesting because maxAvgSD, maxSD, and dom, and dom/deg have a
similar performance. The dom and dom/deg are faster than our algorithms. This problem
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has around m = n constraints and in the worst case t = 100n tuples, then the complexity of
maxSD in terms of the number of variables will be O(n3), and the complexity of maxAvgSD
in terms of the number of variables will be O(n4) (w = 1

10n), compared to O(n) for dom and
dom/deg. The maxAvgSD is slower than maxSD, it is because the number of values affected
the performance of maxAvgSD.

Traveling Salesman Problem

We used TSP20 as an experiment for this part. There are 229 constraints and 61 variables
and the arity is small (either 2 or 3) in each instance.

Figure 4.7 Percentage of TSP20 instances solved w.r.t. time and number of failures

Here we can observe that our algorithm lacks some optimization, the number of failures is
similar between maxAvgSD and dom but maxAvgSD is slower. This problem has around
m = 4n constraints and t = 200n tuples, then the complexity of maxSD in terms of the
number of variables will be O(n3), and the complexity of maxAvgSD in terms of the number
of variables will be O(n4) (w = 2n), compared to O(n) for dom and dom/deg. That might be
the reason why maxAvgSD is much slower compared to maxSD. And this is also quite normal
seeing how much computing we do compared to other simple searches. There is a sharp slope
at the end of Figure 4.7 for maxAvgSD. Some variables occur in many constraints, so the
maxAvgSD can have a better decision.
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Dubois and A5

We tested 13 instances for Dubois and 50 instances for A5. Dubois has a quite small table
and the arity is 3. A5 has a large table which has more than 10,000 tuples and the arity is 5
for all the instances.

Figure 4.8 Percentage of Dubois instances solved w.r.t. time and number of failures

We can see in Fig. 4.8 that dom and dom/deg have the same number of failures and they can
solve more than 50 percent of instances and maxSD and maxAvgSD cause fewer failures
but solve fewer instances. The reason is that Dubois is hard to solve and our algorithms
cannot solve it in the time limit. Because the number of failures is around 107, maxSD
caused much fewer failures compared to other algorithms.

Dubois maintains really small tables and it has many variables in each instance. The arity
of the table is 3, so we only calculate solution densities for 3 variables over more than 60
variables. The domain of this problem is either 0 or 1, so the methods dom and dom/deg will
struggle to decide between two variables. All these reasons might give our algorithm more
probability to avoid more failures.
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Figure 4.9 Percentage of a5 instances solved w.r.t. time and number of failures

For a5, we know maxAvgSD considers the number of constraints and the number of con-
straints will make the maxAvgSD and maxSD have different performances. We can see in
Fig. 4.9 that maxAvgSD is better than maxSD. When we tracked one of the instances
of this problem, we found that there are a lot of constraints related to variables. Maybe
it will be a proof for our hypothesis that when there are a lot of constraints bound with
each variable, maxAvgSD can make a better decision compared to maxSD. Because of the
time complexity of our algorithms, this allows us to see a difference in runtime between our
heuristics and the others.

This problem has around m = 5n constraints and t = 1000n, then the complexity of maxSD
in terms of the number of variables will be O(n3), and the complexity of maxAvgSD in terms
of the number of variables will be O(n4) (w = n), compared to O(n) for dom and dom/deg.

Nonogram

We tested 180 instances of this problem. The arity is large and there are a lot of variables
in some instances and the number of constraints is not so large.
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Figure 4.10 Percentage of nonogram instances solved w.r.t. time and number of failures

Figure 4.10 clearly shows that our algorithm is too time consuming for this problem. In a
way, our algorithm cannot be as simple as dom algorithm, but we can see that for the same
number of failures, our algorithm is still slower. This must come from the fact that we are
doing a lot of processing to have the best choice of variable and value. In this problem,
for example, having a simple heuristic to search might be useful because the choice will not
impact the number of failures we will make in the end.

The arity of Nonogram is large and this problem has a lot of variables, so processing the
solution density might have taken too long for this problem for our algorithms to be efficient.
But we can also see that the computation time curves meet at the end, indicating that our
branching heuristics become competitive for harder instances.

This problem has around m = 1
5n constraints and t = 15n, then the complexity of maxSD

in terms of the number of variables will be O(n3), and the complexity of maxAvgSD in terms
of the number of variables will be O(n3) (w = 2), compared to O(n) for dom and dom/deg.

Langford number problem

We tested the Langford and there are 20 instances. The domain is large (up to 40 values in
the domain) and the number of constraints is huge (up to one thousand) and the arity is 3.
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Figure 4.11 Percentage of langford2 instances solved w.r.t. time and number of failures

Here we know that our algorithm lacks some speed, the number of failures is similar among all
four algorithms but our algorithms are slower. This problem has around m = 20n constraints
and t = 30n tuples, then the complexity of maxSD in terms of the number of variables will be
O(n3), and the complexity of maxAvgSD in terms of the number of variables will be O(n4)
(w = n), compared to O(n) for dom and dom/deg. The domain of variables is large in
this problem, so the maxAvgSD is slower than maxSD even if maxAvgSD generates fewer
failures because its choices are better.

Crosswords problem

Here, we used Crosswords_lexV g and Crosswords_wordsV g to test all the algorithms.
The Crosswords_lexV g and Crosswords_wordsV g both have small dictionaries and small
tables and the Crosswords_lexV g used the dictionary defined by Stergiou [27]. Under
Linux, the Crosswords_wordsV g used the dictionary in /usr/dict/words.
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Figure 4.12 Percentage of Crosswords_lexV g instances solved w.r.t. time and number of
failures

Figure 4.13 Percentage of Crosswords_wordsV g instances solved w.r.t. time and number
of failures

We can easily see our methods created more failures and used more time. The Crosswords_lexV g
and Crosswords_wordsV g have similar performance. The crossword problem instance has
a large arity and a small number of constraints. We are not surprised that the performance
is not good. We can then say that our algorithms are not worth using for problems with
a large arity and a small number of constraints and that it might be better to use another
heuristic in those cases.
This problem has around m = 1

10n constraints and t = 10n tuples, then the complexity of
maxSD in terms of the number of variables will be O(n3), and the complexity of maxAvgSD
in terms of the number of variables will be O(n4) (w = 1

10n), compared to O(n) for dom and
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dom/deg.

Binary decision diagram

bddsmall are some instances of problems where the domain is binary. But the number of
constraints and the number of variables is high.

Figure 4.14 Percentage of bddsmall instances solved w.r.t. time and number of failures

The number of values does not affect the performance much, because the complexity of max-
AvgSD in terms of the number of variables will be O(n3) (w = 2, t = 3000n), compared
to O(n) for dom and dom/deg and O(n3) for maxSD. This problem has around m = 6n
constraints, maxAvgSD might be able to make a better decision compared to maxSD. This
problem has a large arity once again, so that might be the reason why our algorithm is not
efficient.

Easy generation of hard (satisfiable) instances

All instances have 10 variables with a domain size of 10 and 15 table constraints of arity 5.
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Figure 4.15 Percentage of k5_n10_d10_m15_p08 instances solved w.r.t. time and number
of failures

Our algorithm is not fast for this kind of problem and we also generate more failures. The
dom/deg can solve all the 10 instances within one second, but our most efficient algorithm
maxSD needs 10 seconds. The maxSD and maxAvgSD have a similar number of failures
but maxAvgSD is slower than maxSD. The complexity of maxAvgSD in terms of number of
variables will be O(n4) (w = n, t = 1000n), compared to O(n3) for maxSD.

4.3 Conclusion with regards to the results

First, the implementation of counting-based search in Oscar is complex. It costs more time
than the simple and efficient heuristic searches already implemented (such as dom) when the
number of failures is similar. The update of the mapcount costs a lot of time. We maintained
amapcount to store the ID of variables and constraints and the support count. If the instance
includes a big table, the update will be slower than the small table instance. In Subsection
4.2.3, some instances of the binary decision diagram include a large table with high arity.
The update of mapcount used a long time, in the meanwhile, 40 percent of instances were
solved immediately using dom and deg/dom. The results show us how much computation we
did to maintain the mapcount.

Second, because we iterated all the values in the domain of variables in Algorithm 6 when
the domain has a large number of values inside, maxAvgSD is slower than maxSD.
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Third, we need to know the parameters in the instances are the number of variables and
domain of variables and the number of tuples and the number of constraints and the arity
of the relation. Each parameter affects the results of the instances. From Section 5.2, we
can conclude our methods are efficient with many constraints when the arity is small. The
domain of variables should be small too. If there are a lot of constraints involving a given
variable, maxAvgSD might give a better decision compared to maxSD.

Fourth, we clear the mapcount and save the solution density of unbound variables to improve
the efficiency of the code. In this case, if the instance has a lot of constraints, the propagation
will update almost all of the mapcount of variables and the improvement of code will be
limited.
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CHAPTER 5 CONCLUSION

In this thesis, we focused on counting-based search for compact table. We implemented CBS
for compact table in Oscar and CBS performs well on several instances. In the next section,
we will conclude the contributions of this thesis and then introduce the limitations of our
implementation. Future research will be addressed at the end of this chapter.

5.1 Summary of Works

In Chapter 3, we introduced the compact table and the reversible sparse bit set and calcu-
lated the support count, which is the cornerstone of our implementation of CBS. We got the
information from the compact table and considered the remaining values in the mapcount.
In Chapter 4, the relationship between classes related to CBS is presented in a UML diagram.
This UML of part of Oscar is useful for researchers who want to extend CBS in Oscar. We
struggled a lot to add a unique ID for the variable and constraint. At the same time, another
thing that bothered us was how to store and update the support count. We tried a lot of
things to solve these two problems. At the same time, we understood that we had to make
a few changes and use existing methods due to the complexity of Oscar. We improved the
efficiency of the variable search by clearing the mapcount on time and saving the variable
and solution density of the previous branching. To improve the efficiency of CBS, we also
presented the variable search based on the arithmetic average and geometric average.

5.2 Limitations

In most of the cases, our algorithms were still slower than other heuristics even when some-
times we found a solution with fewer backtrack. This can be explained because our algorithm
is not optimized enough. It takes some computation when we updated and stored the sup-
port count as well as when we searched on it. The heuristic search based on the domain of
variables is easy to compute and it suits most of the constraints.

5.3 Future Research

As we mentioned in the limitations, we want to find a way to accelerate CBS and it will make
CBS faster than the other heuristic search when our algorithms find a solution with fewer
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backtrack. Second, we put our algorithms in the cp/package as a bridge between constraint
and branch. We would like to change CBS for the compact table to make it more elegant.
Third, the update of mapcount used a lot of time even once we improved the efficiency of
variable search. We would like to try to save the information about the compact table in the
compact table itself while the information will not be erased in the execution, then CBS will
be fast because we don’t need to update the mapcount and we could find a solution on the
fly.
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