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RÉSUMÉ

Cette thèse porte sur l’étude de diverses méthodes avancées et orientées données pour ré-
soudre la problématique de gestion de revenu plus souvent désigné par “Revenue Manage-
ment” (RM). Nous nous intéressons à deux sous-problèmes du RM que sont la prévision de
demande et le contrôle d’inventaire, poursuivons avec une revue de la littérature suivi d’une
synthèse des contributions de la thèse. Nous commençons par une introduction générale sur
la métodologie usuelle pour traiter la prédiction de la demande et les politiques optimales
de contrôle d’inventaire. Nous présentons dans les trois chapitres suivants, nos travaux sur
ces problématiques, chacun correspondant à un article soumis dans une revue internationale.
Finalement nous concluons par des remarques sur le travail actuel et une discussion sur les
possibles futurs travaux. Nous présentons maintenant brièvement les trois articles.

Dans le premier article, nous nous intéressons à la prévision de la demande pour une impor-
tante compagnie ferroviaire. Pour cela, nous explorons diverses approches de prétraitement,
apprentissage machine et sélection de caractéristiques des données. Comme cette prévision
est utilisée pour différents objectifs, nous travaillons sur deux niveaux d’agrégation différents.
La solution devant être industrialisable, nous mettons l’emphase sur la rapidité, la simplic-
ité et la robustesse. Nous combinons alors des méthodes de l’état de l’art avec des tech-
niques innovantes de construction des caractéristiques des données pour arriver à des résultats
prometteurs. Bien que nous traitons la prévision de demande pour le domaine ferroviaire,
nos résultats s’appliquent également aux autres domaines de transport et à l’hôtellerie.

Dans le second article, nous considérons le problème du contrôle d’inventaire du RM sous
comportement d’achat pour le domaine aérien avec une méthode d’apprentissage par ren-
forcement du type “Deep Q-Network” (DQN). Par rapport aux approches traditionnelles en
RM, DQN ne dépend pas d’une prévision de la demande pour retourner de bonnes décisions
de contrôle. Il fonctionne en utilisant des données historiques et/ou une interaction directe
avec les clients. Nous nous concentrons essentiellement sur l’aspect comportemental de notre
modèle. Nous entraînons et évaluons notre solution avec des données synthétiques puis la
comparons avec des méthodes tradionelles de RM sur des instances aériennes fournies par la
littérature.

Dans le troisième article, nous abordons des instances de taille plus importante pour des
problèmes de RM que l’on retrouve en pratique. Nous proposons un algorithme “Action
Generation” (AGen) à intégrer au DQN pour étendre son utilisation à des problèmes de
plus grande taille de RM sans trop augmenter le coût de calcul. La motivation derrière
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cette approche vient d’une analyse des offres optimales à travers l’horizon de réservation qui
montre qu’elles sont souvent les mêmes, nous les appelons alors “offres efficaces”. À partir
de cette information nous pouvons considérablement réduire le temps de calcul dans les cas
pratiques. AGen est un algorithme heuristique de type glouton qui mimique la génération
de colonnes dans le but de générer ces “offres efficaces”. La combinaison de DQN et AGen
donne des résultats prometteurs sur les problèmes de plus grandes tailles.



viii

ABSTRACT

This dissertation presents a systematic study of various data-driven advanced methodologies
employed to solve a Revenue Management (RM) problem. We address two main modules
within an RM system; namely, demand forecasting and inventory control. We start with a
general introduction into the thesis and then proceed to overall methodology used to both
predict customer demand and analyze the capacity control policies. The methodologies are
explained in detail in the three following chapters each of which corresponds to an article
already submitted to an international journal. Finally, we conclude with final remarks and
discussions of implications for further work. Following is a brief explanation of each article.

In the first article, we study a demand forecasting problem to be addressed for a major
railway company. To do so, we explore various preprocessing, machine learning and feature
engineering techniques. Moreover, the demand is estimated in two different aggregation
levels of data in order to serve different purposes. To comply with the industry-specific
requirements, the emphasis of our solution method is on speed, simplicity, and robustness.
In this study, the use of state-of-the-art machine learning methods along with innovative
feature construction techniques led to high quality results. Although railway industry is
the representative of our problem, the studied demand forecasting approaches can easily be
extended to other transportation industries or hospitality businesses.

In the second article, we address a choice-based seat inventory control problem in airline
industry using a deep reinforcement learning method named Deep Q-Network (DQN). In
contrast to traditional RM techniques, DQN does not rely on predicted demand to make
informed capacity control decisions. It operates using historical data and/or real-time in-
teraction with customers. In this study, we mainly focus on the choice-based characteristic
of our model. We train and evaluate our solution method with synthetic data and compare
the final performance to those of well-known RM methods using common flight examples
provided in the literature.

In the third article, we tackle large-scale practical RM problems. We propose an “Action
Generation” (AGen) algorithm to be integrated into DQN and extend its application to larger
RM problems without incurring enormous computational costs. The analysis of the optimal
offersets offered to customers throughout the booking horizon shows that only particular
offersets (i.e., actions), which we call them “effective sets”, are repeatedly used. Thus, if we
manage to develop a method to generate such actions, we will be able to substantially reduce
the processing time in practical cases. AGen is a greedy heuristic algorithm that mimics
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the column generation algorithm [1] with the aim of generating “effective sets”. The AGen
embedded DQN yields promising results in large-size network problems.
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CHAPTER 1 INTRODUCTION

Revenue Management (RM) is the application of disciplined analytical tactics to predict cus-
tomer behavior and optimize both product availability and price with the aim of maximizing
the revenue [2]. Practically, an RM problem is composed of the following subproblems: de-
mand forecasting, overbooking policy determination, capacity allocation (i.e., seat inventory
control) and pricing which collectively make up the revenue optimization policy [3]. This
thesis focuses on solving demand forecasting and seat inventory control problems.

Demand forecasting lies at the heart of any traditional revenue management system. Since
determining the most efficient capacity allocation and pricing strategies rely on the predicted
demand, any RM system is anticipated to precisely predict upcoming demands. An accu-
rate demand prediction will lead to higher revenue whereas imprecise predictions will cause
suboptimal revenue and loss of opportunities. Forecasting future demand is considered a
complex problem due to the uncertainties caused by firm’s decisions and external factors [4].

In the first phase of this study, we present a machine learning framework for demand fore-
casting. Throughout the years, many methods have been used to provide precise demand
predictions. Machine Learning (ML) approaches are one of the most recent attempts to ad-
dress demand forecasting tasks. ML algorithms are mathematical tools with the primary goal
of learning how to efficiently generalize based on past experiences. ML makes data-driven
predictions or decisions by analyzing structural patterns of data and making inferences.

We forecast the future number of bookings for a major European railroad company using
advanced ML methods. In order to do so, we benefited from both supervised and unsuper-
vised learning methods. The effects of different contributing parameters on the performance
of our solution method are explored and various heuristic feature engineering techniques are
developed, accordingly. Our main contributions are as follows:

• applying various state-of-the-art machine learning methods to an industrial railway de-
mand forecasting problem in order to discover hidden patterns in historical data, make
inferences based on them and use them to achieve precise and reliable predications.

• developing new heuristic feature engineering techniques to improve the performance of
ML algorithms, including shallow and deep features. Shallow features are designed to
capture shallow characteristics of data while deep ones target more complex underlying
characteristics.
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• analyzing the effects of precise clustering and its integration into data on the demand
forecasting performance which led to significant accuracy improvement

As the next step, we explore seat inventory allocation problem. In an RM system, the
decision maker is required to address the question: Which subset of products the firm should
offer to the customers at any given time in order to maximize the total revenue of the firm?
To integrate the customers’ choice behavior into this process, a category of models named,
choice-based models, was developed.

In these models, the subset of products offered by the firm at each time step is regarded as
choices offered to the customers. Accordingly, each customer’s choice behavior categorizes
her in a specific predefined segment. During this sequential decision making process, the firm
has to trade off between selling low profit products when resources are ample and securing
enough high fare products for the price-insensitive customers.

More particularly, we consider a specific type of RM problem in which perishable products
are sold to diverse categories of customers with different booking behaviors throughout a
finite time period called booking horizon. In so doing, the goal is to maximize the total
revenue, assuming that capacities are fixed [3].

To address choice-based seat inventory control problem, we present a Deep Reinforcement
Learning (DRL) approach to dynamically control inventories with the aim of maximizing
the revenue. Reinforcement learning is the science of studying sequential decision making
processes in which a goal-oriented agent interacts with an uncertain environment. At each
time step, the agent receives a feedback from the environment in the form of a reward based
on which it makes a more informed decision in the future. The primary goal in RL is to
maximize the accumulated long term rewards [5]. In our problem settings, the firm is the
decision making agent and customers play the role of the environment.

One of the well-known DRL algorithms is Deep Q-Network (DQN) [6]. Besides being practical
and easy to implement, this method is suitable for addressing a choice-based seat inventory
control problem due to the following reasons:

• DQN can naturally capture customer choice behavior because of dynamic interaction
between the agent and the environment at each time step. This means that the agent
is capable of making informative decisions based on historical data and/or real-time
interaction with its environment without relying on forecast data.

• it is designed to handle large state space problems using its integrated function approx-
imation unit which generalizes the previous experiences to unseen states.
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We aim to contribute to the application of RL techniques in solving practical RM problems.
To do so, we choose airline industry as the representative of our problem and use synthetic
data to simulate customer choice behavior. The results are compared to those of common
techniques provided in RM literature. The main contributions of this research are:

• addressing a choice-based seat inventory control problem using an advanced DRL
method, named DQN

• training a real-time goal-oriented agent to offer the most profitable set of products
at each time step of the booking horizon with the objective of maximizing the firm’s
revenue

We extend the application of DQN in seat inventory control problem to large-size and more
practical cases. Although DQN demonstrates a promising performance when applied to small
examples, it becomes intractable in real-size RM problems because of high computational
costs emerging as a result of large discrete action space.

At each time step of the booking horizon, the firm offers a set of products (i.e., offersets)
to customers, which we consider as an action. A slight increase in the number of products
leads to an exponential growth in the number of potential actions. It is extremely expensive
to consider all possible actions at each iteration of DQN algorithm.

In practice, however, we observe that from among all possible actions which the firm could
offer only a few ones, which we call “effective sets”, were eventually offered. As the objective
is to develop an algorithm to generate such sets, we introduce a greedy heuristic algorithm,
which we name “Action Generation” (AGen). Once integrated into DQN, AGen iteratively
generates “effective sets” resulting in significant reduction in the computational cost of DQN
without compromising the high quality of the solution.

In summary, as our main contribution in solving large-size RM problems, we develop an
“Action Generation” algorithm to generate a set of most profitable offersets to be made
available to customers throughout the booking horizon. This algorithm solves large-size
choice-based seat inventory allocation problems when integrated into DQN with promising
results.

Next chapter provides the organization of this thesis.
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CHAPTER 2 CRITICAL LITERATURE REVIEW

Revenue Management (RM) is a combination of methods which can be used as a decision
aid tool to help firms to sell the right inventory unit to the right type of customer, at the
right time, and for the right price [7]. In other words, according to Talluri and Van Ryzin [3],
RM consists of methods required to manage the firm’s interactions with the market with the
objective to maximize revenue.

Development of modern RM started right after the Air Deregulation Act in 1978 in the
United States. This act allowed airlines to set and modify their prices and operate routes
without being required to get approval from the U.S. Civil Aviation Board. As a result,
ticket pricing, scheduling, and inventory control strategies were liberalized and thus, airlines
started to develop surviving tactics in the new competitive environment [3].

Kimes et al. [7] suggest that RM techniques are applicable to a problem if six general con-
ditions are satisfied: 1) fixed capacity, 2) customer heterogeneity, 3) perishable inventory, 4)
product sold in advance, 5) uncertain and fluctuating demand, and 6) low marginal costs.
As explained by Helve [8], following is a brief description of each case.

• Fixed capacity: RM techniques can be used to address a problem if the capacity is
fixed, at least for a short-term. That is, considering the application of RM in airline
as an example, if the type of airplane is fixed for a specific flight, then the capacity is
fixed. Even if the seats are sold out in this flight, considering the specific pre-assigned
airplane, it is not reasonable to change the airplane because of high costs associated
with it.

• Customer heterogeneity: One of the techniques implemented in RM is dividing cus-
tomers into different categories based on their preferences. These preferences closely
relate to customer’s price and time sensitivities. More specifically, customer segmenta-
tion is mainly functioning based on customer’s Willingness To Pay (WTP) and their
purchase behavior over time. For instance, the assumption is that price-sensitive pas-
sengers book their flights far before the departure date.

• Perishable inventory: In many service industries, such as airlines and entertainment
show businesses, the inventory is perishable as opposed to physical products-based
manufacturers. That is, if a seat in an airplane or a theater is not sold before the
departure date or show time, the inventory perishes. Thus, the perished inventory
can not be used to fulfill future demand. Apparently, if there is a possibility to store
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the inventory, RM techniques are not required anymore. Due to the importance of
inventory management, seat inventory allocation is a crucial part of any RM approach
to optimize inventory usage and hence maximize the obtained revenue.

• Products sold in advance: For an RM method to be applicable, a reservation system is
required using which a firm can sell inventories in finite time horizon before the actual
use (e.g., departure date in airline). The firm applies different purchase restrictions
throughout this period considering customer segmentations and their preferences. Tra-
ditionally, RM tactics are designed to sell part of capacity to price-sensitive customers
while securing seats for time-sensitive customers which usually have higher WTP.

• Uncertain and fluctuating demand: Demand forecasting plays an important role in
traditional RM. A precise prediction helps to increase revenue by improving inventory
allocation, however, this is a challenging task because of various uncertainties involved
in the process. The more the fluctuations and uncertainties, the more difficult the
demand management becomes. Thus, RM techniques aim to address some level of
uncertainty in demand forecasting.

• Low marginal costs: To make an RM system more efficient, the marginal cost of provid-
ing extra unit of available capacity should be reasonably low. As an example, referring
to the first condition where fixed capacity in airline was discussed, when the firm selects
the type of airplane for a particular flight, it practically fixes both the capacity and
costs associated with it since the total cost does not depend on how many passengers
are on a flight [3].

We focus on an RM problem in which perishable resources with fixed capacity are sold
through different products to heterogeneous customers during a reservation period called
booking horizon. Airline and railway industries are two vivid examples in which RM could
be of great importance and we consider them as representative of our problem.

In literature, RM systems consist of two main components: a demand forecasting unit which
feeds required estimated demand data to an optimization unit and the optimization module
responsible for providing the best price and allocation scenario. Having a fixed capacity,
inventory control is considered to be a critical part of an optimization unit for maximiz-
ing revenue. The remainder of this chapter is divided into two main categories: demand
forecasting and inventory control.
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2.1 Demand Forecasting

Demand forecasting can be addressed in three different levels: Macro-level, Micro-level, and
choice modeling. Macro-level is a top-level aggregated forecast which contains high-level
general information, such as industry level demand prediction. Micro-level, on the other hand,
is a disaggregated and more detail-oriented estimation of demand, for example, forecasts
of customer demand for a specific class in a particular flight/train. Alternatively, choice
modeling is interested in forecasting each customer’s socioeconomic behavior. For example,
forecasting individual’s choice between transportation modes [8].

In order to perform any kind of quantitative forecast, some general conditions should be satis-
fied: having access to historical data, being able to present this data in numerical format, and
finally, the requirement that this data should be representative of future customer behavior
to some extent (i.e., the assumption of continuity) [9]. Meeting the required criteria, there
are various contributing parameters which make accurate quantitative forecast a challenging
task such as [4]:

• fluctuations and variations in demand caused by dependencies on time of day, day of
week and week number in a year or existing of special events or time/price sensitivity
of customers.

• level of sensitivity of customers to price changes: The firm’s decision to modify ticket
prices over booking horizon directly affects the level of demand and the amount of
fluctuation in demand depends on the sensitivity of each customer’s sensitivity to price.

• restrictions imposed by the firm: The firm can redirect customers from low fare tickets
to higher fares by closing the bookings for the former and opening them for the latter.
Whether the customer will buy a high fare ticket or will leave without any purchase
depends on the customer’s choice preferences.

Throughout the years, demand forecasting and its uncertainties have been addressed in nu-
merous studies. Here, we mainly focus on micro-level forecast to review the required literature
for the first section of this thesis.

As described by Weatherford et al. [10], demand forecasting models can be categorized in
three main groups:

• historical booking models such as moving average, exponential smoothing and ARIMA,
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• advanced booking models such as additive and multiplicative pick up and other time-
series models, and

• combined models such as regression.

Historical booking models only consider the final number of passengers for a specific departure
time as the required historical data to construct their model, while advanced booking models
only include the build-up of reservations over time for a particular departure time. The
combined models, on the other hand, take both final booking information and build-up
reservation data into account [10].

In a railway RM system, where the aim is to forecast the future number of bookings for each
departure time, the main focus has been on the following models: moving averages, expo-
nential smoothing, pickup, and regression models [4]. A complete description of each model
could be found in a comprehensive book about forecasting models published by Makridakis
et al. [9].

Recently, an advanced category of regression models called Machine Learning (ML) models
has been explored. ML methods are mathematical tools which aim to learn to generalize from
experience. They extract underlying patterns of available data to maximize the prediction
accuracy of future instances [11].

ML methods has been applied to different categories of demand forecasting such as hotel
reservation, car rental and transportation. For example, Sanz-Garcia et al. [12] developed
a hybrid method to predict hotel room reservations with the main focus on the impacts of
last-minute reservations. Another interesting study with the primary emphasize on using ML
to forecast booking cancellations, was published by da Conceicao Antonio [13] as his PhD
thesis.

In a comprehensive review paper, Shadi Sharif et al. [14] analyzed and categorized various
statistical and ML techniques used for demand forecasting in revenue management. Overall,
ML methods show promising results when applied to demand forecasting problems. This is
an ongoing research topic which we address in this thesis.

2.2 Inventory Control

Inventory control problem in the airline industry addresses the question: Which subset of
products the firm should offer to the customers at any given time in order to maximize the
total revenue of the firm [3]? This is a remarkably sophisticated problem since numerous
contributing factors are involved in the process such as stochastic demand for air travel,
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fluctuations in fare prices, multiple-leg passenger itineraries, and diversion of passengers to
other fare classes or flights. Although no such model is developed yet which can include
all these parameters, various simplified and heuristic approaches have been proposed with
noticeable success in practice [15].

The first theoretical model to solve a capacity control problem proposed by Littlewood in
1972 [16]. The proposed model holds various restrictive assumptions such as sequential
booking classes, i.e. booking classes do not interconnect with each other, low-before-high
price booking arrival, statistical independence of demand between booking classes, no batch
bookings, i.e. only one booking at a time, etc. The model was applied to a simple example
with single leg and two fare classes. According to Littlewood’s method, if the expected
revenue of selling the same seat at the higher fare exceeds the certain revenue of selling
another low fare seat, then the low fare class should be closed [8].

Belobaba [17] extended Littlewood’s inventory control model from a single-leg with two fare
classes to multiple fare classes in a nested reservation system. Nested reservation system is
a booking method in which the firm makes all the seats of a lower fare class available for
the higher fare class but not the reverse. The proposed method, named Expected Marginal
Seat Revenue(EMSR-a), is a heuristic probabilistic RM model which is developed based on
historical demand data and average fares to specify the booking limits of each fare class.
EMSR-b [18] is a revised version of this model in which Belobaba addressed the problem of
pooling or statistical averaging which was lacking in EMSR-a. The EMSR-b model solves
this issue by aggregating over demand instead of protection levels [3].

Despite their advantages in practice, these methods were designed for a single-leg problem
and became intractable in case of flight networks. Later, various approximate methods were
proposed to this shortcoming such as virtual nesting, bid price models and mathematical
programming. Virtual nesting [19] was developed based on decomposing the network problem
into a set of single-resource problems. Bid price control [20], alternatively, performs based
on the marginal value of each unit of inventory. Until around 2004, majority of proposed
methods were designed according to independent demand paradigm. That is, they consider
booking demand as an independent request unaffected by both the inventory control applied
by the firm and any market conditions such as prices offered by competitors.

Considering customer choice behavior versus independent demand models were an evolu-
tionary discovery in revenue management, which significantly improved the firms’ revenue.
However, it has always been challenging to predict the precise customer’s purchase habits.
The choice-based RM mainly deals with the question: Which subset of products the firm
should make available to the customers at any given time in order to maximize the total
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revenue of the firm while taking each customer’s choice behavior into account [3]? Recently,
Strauss et al. [21] published a comprehensive review paper on various customer choice be-
havior models.

In the literature, there are two categories to address customer choice modeling; parametric
and non-parametric. Parametric models are based on random utility theory. In this case,
we assume that customers assign a certain utility to each product, and make their decisions
based on the choice that maximizes their utility. On the other hand, we can consider non-
parametric, rank-based models. Where, we assume every consumer ranks all products and the
non-purchase choice in a specific order, and chooses the highest-ranking available option [21].

Non-parametric design of the problem has been explored in various studies [22], [23], [24].
One of the recent studies by Hosseinalifam et al. [25] proposes a flexible mathematical pro-
gramming framework to address dynamic resource allocation in the airline revenue manage-
ment problem. The authors extended the proposed non-parametric model with embedding
practical and technical constraints [26]. The proposed column generation-based heuristic ap-
proaches performed well in terms of both quality and processing time assessed against those
of alternative approaches.

Within the category of parametric methods, Talluri et al. [27] were the first to propose
the application of Multinomial Logit (MNL) choice model in RM. MNL is a standard ap-
proach for determining the probability of purchase in product line problems [28]. They used
Expectation-Maximization (EM) approach to estimate the homogeneous arrival rate of the
customers and the utility parameters from the historical data. Different customers may have
different preferences, thus, an extension of MNL called finite-mixture logit considers multiple
customer segments, each assumed to follow a segment-specific MNL model [21].

The problem of choice-based inventory allocation could be formulated as a Markov Decision
Processes (MDP) [5] and solved using the following Dynamic Programming (DP) formulation
[29]:

Vt(x) = max
S
{

∑
j∈S

λPj(S)(rj + Vt+1(x− Aj)) + (λP0(S) + 1− λ)Vt+1(x)} (2.1)

= max
S
{

∑
j∈S

λPj(S)(rj − (Vt+1(x)− Vt+1(x− Aj)))}+ Vt+1(x)

where, Vt(0) = 0 for t = 1, 2, ..., T , and VT+1(x) = 0 ∀x ≥ 0.
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It is not possible to solve most of the large-size MDPs with classical DP due to the curse
of dimensionality. A common approach in optimization domain is to approximate DP with
Linear Programming (LP).

Gallego et al. [30] proposed Choice-based Deterministic Linear Programming (CDLP) frame-
work to solve large-size choice-based RM problems with reasonable computational complex-
ity. Despite the model’s various advantages, they did not consider any kind of customer
segmentation in their solution approach. Later, Liu et al. [31] and Bront et al. [32] extended
the application of CDLP to the case with disjoint and overlapping segments of customers,
respectively.

Another category of approximate methods which can be used to find an optimal capacity
control policy in inventory control problem is Reinforcement Learning(RL). According to
Sutton et al. [5], “Reinforcement learning is learning what to do—how to map situations
to actions—so as to maximize a numerical reward signal. The learner is not told which
actions to take, but instead must discover which actions yield the most reward by trying
them. In the most interesting and challenging cases, actions may affect not only the imme-
diate reward but also the next situation and, through that, all subsequent rewards. These
two characteristics—trial-and-error search and delayed reward—are the two most important
distinguishing features of reinforcement learning.” In RM problem settings, customers are
the environment and the airline firm is the learner (also called agent) who makes sequential
inventory control decisions.

Recent advancements in the field of artificial intelligence lead to development of new models,
called Deep Reinforcement Learning (DRL), some of which show human level performance.
Deep Q-Network (DQN) [6] is a practical well-known example of DRL methods.

Traditional RM techniques mainly depend on the accuracy of estimated demand, which may
be difficult to accurately estimate or may not even be available (e.g., new markets), to
maximize the revenue. DQN, however, can address this issue by relying only on the available
historical data and/or real-time interaction with the customers instead of using demand
prediction results. Moreover, DQN uses function approximation to approximate the values
of unseen states and thus, it is naturally designed to address large state space problems.

In a most recent study, Shihab et al. [33] used DRL to solve a single-leg seat inventory
assignment problem. Although they achieved promising results, their solution method suffers
from lack of considering customer choice behavior as well as more complex structures like
hub and spoke network.
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CHAPTER 3 SYNTHESIS OF THE WORK AS A WHOLE

Encompassing both demand forecasting and seat inventory control problems, this thesis is
organized as follows.

In Chapter 1, the thesis begins with a general introduction about revenue management and
two of the main modules in any RM system; namely, demand forecasting and inventory
control. We provide a brief explanation of each module and the framework of solution
methods that we use to address them. Finally, the main contributions for each case are
presented.

Chapter 2 contains a critical literature review of both modules as well as the approaches used
to tackle them throughout the years, in a chronological order. We start with a brief history
of revenue management and its applications. Then, the remainder of this chapter is divided
to two subsections; one for each module in which the historical advancements in solving each
problem are explained.

Chapter 3 describes the organization of this thesis. The next 3 chapters present the detailed
explanation of our methodologies used for predicting customer demand and finding capacity
control policy each of which corresponds to an article already submitted to an international
journal. Below is a brief explanation of each article.

Chapter 4 presents the first article in which we study an industrial demand forecasting task
for a major European railway company. Various preprocessing, state-of-the-art machine
learning, and heuristic feature engineering techniques are developed and/or explored in order
to estimate the number of future bookings in two different aggregation levels.

In Chapter 5, the second article is presented where we solve a choice-based seat inventory
allocation problem in airline industry using a deep reinforcement learning method named
Deep Q-Network (DQN). We train a goal-oriented agent using synthetic data to interact
with customers with the objective of finding the optimal policy while taking the customer’s
choice behavior into account.

Chapter 6 presents the third article in which we extend solving a choice-based seat inventory
allocation problem to large-size cases. In order to do so, we propose an “Action Generation”
(AGen) algorithm to be integrated into DQN to reduce the computational complexity of
large-scale RM problems through generating the “effective offersets” while conserving high
performance quality.

Finally, in Chapter 7 and 8, we present general discussion and final conclusion, respectively.
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CHAPTER 4 ARTICLE 1 : APPLICATION OF MACHINE LEARNING
TECHNIQUES IN RAILWAY DEMAND FORECASTING

Chapter Information : An article based on this chapter is submitted to International
Journal of Revenue Management for publication. Authors: N. Etebari Alamdari, MF.

Anjos, and G. Savard.
In this paper, we address a demand forecasting problem in railway industry using advanced

machine learning approaches and innovative heuristic feature engineering techniques.

ABSTRACT

Demand forecasting lies at the heart of any revenue management system. It
aims to estimate the quantity of a product or service that will be purchased in the
future. In this paper, we perform railway demand forecasting for a major Euro-
pean railroad company by taking various contributing parameters into account.
Using state-of-the-art machine learning methods and various heuristic feature
construction techniques, remarkable results with high forecast accuracy and rea-
sonable computational complexity are achieved. To have multipurpose results,
the current problem is explored in two different aggregation levels. Although this
paper is focused on demand forecasting in railway industry, the studied method-
ologies can easily be extended to other transportation or hospitality businesses.

Key words: Revenue Management, Demand Forecasting, Feature Engineer-
ing, Machine Learning
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4.1 Introduction

Revenue Management (RM) is the application of various analytical tactics and mathemati-
cal approaches with the aim of predicting customer behavior at the micro-market level while
optimizing price and availability of products [34]. RM tasks are shaped by various compo-
nents including customer segmentation, demand forecasting, pricing techniques and inventory
control management.

Demand forecasting plays a vital role in any traditional revenue management system. All
the models aiming to answer the question “How to determine the most efficient capacity
allocation and pricing decisions?” rely on the predicted demand as the main building block
of an RM system. As emphasized by McGill et al. [35], all RM decisions are made based on
different forecasts, particularly, customer demand which provides input data for the capacity
and pricing optimization module. Forecasting future demand is a complicated task due to
uncertainties caused by the firm’s decisions and external factors [4].

Companies can improve the quality of their pricing and capacity control systems by increasing
the accuracy of their predicted demand. Over the years, a fundamental collection of forecast-
ing methods has been developed and new improvements have continued to evolve. Some of
these forecasting methods are based on solid mathematical and statistical foundations while
some others are largely heuristic in nature. In terms of forecasting methods, since a large
number of forecasts have to be made during a limited time period; thus, fast, accurate and
simple methods are preferred in RM [3].

One of the early works on statistical demand forecasting in airline industry using time series
data was done by Sen [36]. Since then, there have been numerous “time series analysis”-
based studies with the aim of improving the forecast accuracy and achieving more stable and
generalizable models [37], [38] and [39], [40]. A well-known and extensively explored time-
series analysis method is AutoRegressive Integrated Moving Average (ARIMA) [41], which is
a generalization of AutoRegressive Moving Average (ARMA) to non-stationary data.

Over the years, various booking models have been explored, models such as pickup, advanced
pickup and booking profile which are based on registered bookings over time, and can be of
the additive or multiplicative type [42]. More detailed information on these models could
be found in the literature [43], [44], [45]. Simple and weighted averages are also among
the popular demand forecasting methods which were outperformed by pickup models [46].
Cleophas et al. [47] summarized recent developments in demand forecasting for airline revenue
management.

One of the recent categories of models addressing demand prediction in RM is Machine
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Learning (ML). ML methods [11] are mathematical tools with the core objective of learning to
generalize from experience. They mainly rely on the underlying patterns and characteristics
of historical data in order to minimize prediction errors of unseen data. In general, ML
algorithms are classified into two main categories: supervised learning and unsupervised
learning. The goal of supervised learning is to infer a functional mapping according to a
set of input-output training examples. Unsupervised learning, on the other hand, discovers
patterns and structures hidden in data without having access to labeled output.

Classical statistics-based methods, such as time series, may struggle to cope with high-
dimensional data sets and sometimes fail to respond accurately to sudden changes. Machine
learning methods, however, are more flexible when dealing with sudden changes in the format
of data, missing information, and high-dimensional data sets [42].

Demand forecasting, as a regression prediction problem, has been also studied extensively
with the help of various ML techniques. For instance, Ziekow et al. [48] used ML methods
to evaluate the use of disaggregated smart home sensor data for household-level demand
forecasting. ML methods are also used for urban water demand forecasting in situations
with limited data availability. These methods were tested using three years of daily water
demand and meteorological data for the city of Calgary in Alberta, Canada [49]. A thorough
review paper on the application of machine learning models to commercial building electricity
load forecasting was published by Yildiz et al. [50].

Booking demand forecast is also one of the crucial decision-making challenges in service
industries which is extensively studied through ML techniques. In an interesting study, Sanz-
Garcia et al. [12] developed a hybrid method to estimate hotel room reservations that explores
the effects of last-minute reservations. A very recent study on hotel reservation management
has been published by da Conceicao Antonio [13] as his PhD thesis, which emphasizes on
using ML to predict booking cancellations. With a focus on service companies, Shadi Sharif
et al. [14] analyzed and categorized various statistical and ML techniques used for demand
forecasting in revenue management.

In this paper, we forecast the future number of bookings for a major railroad company by
taking various contributing factors into account. In order to do so, we use different ML
approaches along with heuristic feature engineering techniques.

Forecasting is a complex task, however, it can be broken down into simpler steps. We perform
our forecasting task in two aggregation levels. These levels are created based on the zonal
data and used to demonstrate the overall performance of the prediction models. At each
level, the forecast is considered good if it is accurate, plausible, simple, quick and flexible.
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Overall, this research intends to contribute to the application of ML techniques in RM.
More specifically, it addresses the problem of demand forecasting in revenue management by
proposing:

• new heuristic feature engineering techniques including shallow and deep features,

• exploring the importance of accurate clustering and its integration into data, and

• implementing state-of-the-art machine learning methods in order to discover complex
hidden patterns of data and improve the accuracy of predications.

The remainder of this paper is organized as follows: Section 4.2 provides problem description
in course of which general definitions and problem settings are explained in detail. In Section
4.3, we discuss the details of various types of preprocessing, machine learning and feature
engineering techniques which will be used in this paper. In Section 4.4, the numerical results
of applying such methods in both aggregation levels of data are demonstrated and analyzed.
Finally, the concluding comments are outlined in Section 4.5.

4.2 Problem Definition

We start with introducing some technical terms and general definitions which will be used
throughout this paper. Afterwards, we will go through the details of demand forecasting
problem in the context of railway industry.

• Market: an origin-destination pair between which the passengers wish to travel

• Itinerary: a specific sequence of legs on which passengers travel from their origin to
their ultimate destination

• DBD: number of days before departure

• Booking horizon: time horizon in which bookings are open

• Booking period: booking horizon between each two subsequent DBDs

• Time-range: a predefined time horizon during the departure day which is an aggregation
of departure times

• Demand: expected demand of a product in a market which depends on itinerary, time
range and period
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• Fare Class: different prices for the same itinerary, usually distinguished from one an-
other by the set of restrictions that firms impose

• Product: an itinerary and fare class combination

To have a reliable multipurpose forecast, we treat the data in two different aggregation levels.
One of the main reasons for forecasting the potential demand in different levels is to meet
the railroad company’s specific needs. For instance, for overall planning of all trains, it is
sufficient to have a less detailed estimated values. However, it is necessary to perform a more
comprehensive forecast for inventory control and pricing purposes.

In this problem setting, DBDs are defined as of 120 days before departure date. The period
between DBD119 and DBD-1 (i.e., departure date) is divided into 20 booking periods. Note
that booking periods are not necessarily of the same length. In the beginning of the horizon,
booking periods consist of several days; however, they become shorter as we get closer to the
departure date and get as short as one day within the last few days before the departure day.

Level I

This level provides an overall view of the data. In this top-level, the historical booking
information are aggregated by booking periods. We would like to forecast the total number
of bookings for all trains departing on a specific departure date and within a certain time
range. For example, the illustrated area in Figure 4.1 presents the total number of bookings
that we aim to forecast for a given departure date in the time range of 7:00 am - 9:00 am.

Figure 4.1 Demand forecasting in Level I
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Level II

In level II, we add the dimension of booking period to level I data. Consequently, in this
level, the prediction models aim to compute the total number of bookings within each booking
period for all trains leaving in a specific time range of a certain departure date. Figure 4.2
shows the total number of bookings for a given departure date in the time range of 7:00 am -
9:00 am that was particularly booked in the booking period between two consequent DBDs
of 90 and 50.

Figure 4.2 Demand forecasting in Level II

4.3 Solution Methods

In this section, we explain the details of preprocessing steps, model selection process and
feature engineering techniques used for railway demand forecasting. Our dataset consists of
two years of historical booking data (i.e., 2013 and 2014) collected from travels between two
major European cities, which is provided to us by a major European railroad company. The
objective is to predict the potential demand of the future bookings based on the historical
data in two different aggregation levels.

4.3.1 Preprocessing

Data preprocessing is a process to transform raw data into a format that is usable as an
informative input to predictive models. Industrial datasets usually require various steps of
preprocessing such as data cleaning (e.g., missing values imputation and noisy data smooth-
ing), data transformation (e.g., normalization and aggregation), data reduction, and data
discretization.
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We start data preprocessing with verifying data type and data representation consistency.
Our initial raw dataset consists of a few attributes including departure date and time, booking
periods and potential period demand with no missing values.

We extract useful information from the departure date feature and construct new attributes;
namely, month, week number, week day and date value. The first three provide us with
intuitive and valuable knowledge regarding departure dates. Moreover, the date value is a
numerical representation of the departure date that shows the number of seconds since 1970.
This method of representation helps us to preserve intervals and keep the order of events.

As the next step, we perform data discretization, a method to reduce the number of values of
a continuous feature by dividing it into predefined number of intervals. In this step, we split
each departure day into six time ranges based on the popularity of departure times (e.g.,
19:00-23:59 is one of the time ranges).

Many machine learning models require numerical values as their input, and this translates
into the necessity of transforming categorical features into numerical ones. Depending on the
nature of the categorical data, we have various options to do so such as one hot encoding
and integer number assignment.

One hot encoding is one of the most well-known encoding schemes used to transform a single
categorical variable into its corresponding binary variables. Each binary variable takes “1”
when its associated category is present, and “0” otherwise [51].

For example, categorical features such as month and weekday could be integrated into the
data using one hot encoding technique. However, it may result in dimension augmentation.
This should not be problematic since we have a large enough number of samples to avoid
overfitting. The categorical booking periods attribute; however, is different as there is an
order in it which allows for assignment of integer numbers.

As an initial clean format of data available to us, we can perform an outliers detection
algorithm now. Outliers are extreme perturbations in the data caused by occasional unpre-
dictable events. Outlier detection is considered an extremely important step since outliers
can impose remarkable noise on the mean and variance of the entire dataset and distort the
real pattern of the data. In this study, we use modified Z-score to detect and then remove
extreme outliers.

Z-score or standard score [52] discovers by centering and rescaling of data, and then, detecting
the points that are far from the mean. When using mean and standard deviation themselves
are directly affected by outliers, this method is not robust enough. In modified z-score,
although the intuition is the same, we use the median and Median Absolute Deviation (MAD)
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to measure central tendency and dispersion, respectively. Thus, modified z-score turns out
to be a more robust method in terms of detecting outliers [53].

Upon completion of this step, the data is ready for further analysis.

4.3.2 Model Selection

We start this section with a brief review of ML models that will be extensively used in
this paper. Afterwards, we explain the model selection process for level I and level II data.
Finally, we describe the feature engineering process for level II data.

Model Description

Many tasks in machine learning can be expressed as a classification or a regression prob-
lem. Regression estimates the conditional expectation of a dependent variable given the
independent ones whereas classification predicts categorical class labels.

The simplest regression model is linear regression which is capable of capturing linear rela-
tionships between predictors and target, but we mainly deal with more complex and nonlinear
tasks such as demand forecasting in the real world.

In general, tree-based models and Neural Networks (NNs) are two main categories of models
used for demand forecasting in the literature. Both of them are supervised learning methods
used for regression and classification purposes. The intuition behind NNs is to extract linear
combinations of inputs as derived features, and then, to model the target as a non-linear
function of those features [54].

A Decision Tree (DT), as a building block of any tree-based method, is a decision making tool
that uses a tree-like model to estimate the value of a target variable by learning simple decision
rules deduced from data attributes. DTs are the foundation of very powerful predictive models
such as tree-based bagging and boosting ensemble models [11].

Bagging (bootstrap aggregating) is an ensemble averaging meta-algorithm that improves the
prediction accuracy by reducing variance [55]. In decision tree-based bagging, each boot-
strapped sample is used as a training set to grow a decision tree, and the result is the average
over the predictions of all trees. Random forests, also known as random decision forests, is a
practical ensemble method designed based on the bagging idea [56].

Boosting methods are built sequentially over weak regressors in order to reduce the bias
[57]. The final meta-algorithm is a linear weighted combination of the base estimators with
a reduced generalization error. One of the most well-known boosting models is Gradient
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Boosting Trees (GBT) which is a generalization of boosting to arbitrary differentiable loss
functions using decision trees as base estimators [58].

Model Selection

In this section, we describe the model selection process in the level I and the level II data.

Level I

We start model selection with the level I data. Note that the data used in this level are
already preprocessed, the outliers have been removed and the basic features such as time
range added to ensure improved performance of any ML method we may choose. Having a
top level aggregated data, we expect that application of a proper ML method will result in
an acceptable performance.

Once we applied various ensemble tree-based and neural networks methods on level I data, we
achieved sufficiently good results with both NNs and GBT. Since the acquired performance
was considered to be efficient according to the industry’s guidelines, we focused on level II
as a more detailed and complex level.

Level II

We start model selection of level II with evaluating various regression methods in order to
compare their performances and achieve a benchmark for more advanced techniques. On this
level, among the initially tested methods, GBT outperforms others.

For this aggregation level, considering the fact that the data are more complex, the com-
mon ML regressors do not improve the results more than a certain limit. Thus, various
combinations of different models such as regular and weighted mixture of regressors are ex-
plored. Among these models, stacking, also known as stacked generalization, provides the
most accurate predictions while keeping the processing time in a reasonable range.

Stacking is a meta-learner that consists of multiple model mixtures. The idea is to learn a
function that combines the predictions of the individual regressors and feed them as input
into the final meta learner. This method was originally introduced in 1992 by David H.
Wolpert [59] for a classification task. Algorithm 1 represents the general approach to a
regression task.

In summary, each base regressor’s prediction is used as a new feature in the meta dataset
(e.g., data fed into the meta regressor), then, a meta regressor is applied to the meta data.
Figure 4.3 illustrates an schematic view of stacking algorithm, where, R1, R2, . . . , R5 refer
to base regressors.
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Algorithm 1 Stacking algorithm

1: Train n different regressors R1, R2, . . . , Rn (the base regression models).
2: Obtain predictions of each regressor.
3: Form a new dataset using predicted values: the meta data.
4: Train a separate regressor on the meta data: the meta regressor.

Figure 4.3 An schematic view of stacking algorithm

Although stacking outperforms all other examined regression methods, the high complexity
of level II data necessitates further accuracy of forecasting results to ensure that the obtained
predictions are a useful source of reliable information for industrial purposes.

4.3.3 Feature Engineering

Feature engineering is the process of using domain knowledge to design attributes that im-
prove the performance of machine learning algorithms. We start with shallow features, which
consider shallow characteristics hidden in the data and can be easily extracted from the
dataset. Deep features, on the other hand, are the ones that require an algorithmic approach
to be constructed, and unlike the shallow ones, they aim to capture deeper characteristics of
the data.

Note that we perform feature engineering only on level II data since we have already achieved
desirable results on level I thanks to selecting proper ML methods.

Shallow Features

At this step, shallow features are explored. Since ML algorithms are designed to capture hid-
den characteristics of the data, having more informed attributes will increase the possibility
of discovering such characteristics.
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By using shallow features, we intend to capture the trends of bookings for each departure
date starting as of 120 days before the departure date. We define an observation date as the
date on which we are observing a snapshot of the bookings made so far for all the departure
dates. An observation date can be any day during the year.

Four new features are also constructed in addition to the observation date attribute. We
divide the 120-day booking window prior to each departure date into four 30-day periods
and dedicate one attribute to every single one of them. Each attribute indicates the total
number of bookings made during its associated month. The observations occur every seven
days that means our data are updated on a weekly basis.

For example, if a departure date is July 1st, we will have four new features for the bookings
made during March, April, May, and June, separately. If our observation date is some time
prior to March 1st, the features will have zero values because the booking has not started
for this specific departure date yet.

By moving forwards within the booking window, the booking information will be updated
every seven days. For instance, having an observation on April 7th means we have full
information regarding total bookings made in March for the departures on July 1st. However,
at this point, only one week of data is available for the month of April, and the rest of
attributes (i.e., one and two months prior to the departure date) are zero.

These features extracted valuable information from our dataset and improved the accuracy
of demand estimation.

Another category of shallow features is external features. We gathered some external data
that may affect bookings such as weather abnormalities in the departure and the arrival
cities (e.g., snow storm, extreme heat warning, flooding, etc.) along with max, min, and
mean temperatures on the departure day. Although weather forecast might not be accurate
long ahead of the departure date, it is still an easily accessible data and can be updated
anytime needed.

Deep Features

We realized that having proper clusterings of data, as an added feature, would reduce the
forecast error significantly. To examine this assumption, K-means clustering is applied to
the dataset while having access to the target variable, and the cluster labels are added as a
new feature to the whole dataset. This results in achieving the lowest bound of error and
validates our initial assumption.

K-means [60] is a simple unsupervised learning method that clusters unlabeled given points
into K-predefined number of clusters using an expectation-maximization algorithm. Starting
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with randomly defined K centroids, the data points are assigned to the closest centroids so
that each group creates a cluster. At the next step, the model recalculates K new centroids
and assigns the closest points to them, resulting in a new set of K clusters. This loop runs
until centroids do not move anymore.

In order to find the optimal number of clusters, the K-means algorithm is pipelined to a
supervised regression method (Any appropriate regression method is applicable at this step,
including random forests.) for evaluating the errors of each value of K. The “elbow method”
is used to find the optimal K.

To take advantage of this finding in regular settings, where the target variable is not provided,
the following steps are taken. First, using K-means method, the train set is clustered into
k predefined clusters and the obtained labels are considered as a new target variable for the
train set. Afterwards, test data are classified into the same cluster labels. Finally, the cluster
numbers are added to the original test and train sets and we proceed with the regression
problem. Note that in step 4, the accuracy of classification task is as important as that of
the final regression problem and it can be performed using various ML techniques such as
stacking.

Algorithm 2 displays the steps of generating a clustering-based feature.

Algorithm 2 Clustering-based Feature Construction

1: Cluster train data into K predefined clusters using K-Means algorithm.
2: Modify train set by removing the demand feature from the dataset.
3: Consider cluster labels as the new target variable in the train set.
4: As a classification task, classify test data into the same K cluster labels.
5: Use the predicted labels as a new feature in both original train and test sets.
6: Apply a regression model (e.g., stacking) to the dataset with the new added feature.

In the next section, we provide numerical results associated with the selected models and
added features.

4.4 Numerical Results

We start this section with a general analysis of data. Afterwards, we explain the choice of
error evaluation metrics. As the next step, we report the results of various demand forecasting
techniques used to predict the number of bookings in different aggregation levels of data: level
I and level II.

The computational operations have been carried out on a 2.9 GHz 5-core computer with
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16 GB of RAM and the codes are written in Python 3.5. Moreover, we use 2013 dataset
for training and validation, and 20% of the data from the first quarter of 2014 dataset is
considered to be the test set.

In this study, we focus on tree-based methods and neural networks as two common categories
of regression methods to tackle the demand forecasting problem. The ensemble tree-based
methods we explore are either bagging methods such as Random Forests (RF) [56] and
Extremely Randomized Tress (ERT) [61] or boosting methods such as Gradient Boosting
Trees (GBT) [58] and AdaBoost [62].

Evaluation Metrics

Calculating demand forecast accuracy is a process of determining the accuracy of predicted
demand compared to actual customer demand. In this paper, we use both Weighted Average
Percentage Error (WAPE) and Root Mean Square Error (RMSE) metrics to measure the
accuracy of our demand forecasting methods.

WAPE is the quotient of the sum of the absolute deviations divided by the total actual
demand. The equation is as follows:

WAPE =
∑n
i=1 |Fi − Ai|∑n

i=1Ai
× 100 (4.1)

where, A and F represent actual and predicted values of demand, respectively. In general,
WAPE is easy to understand and interpret because it measures the error in the percentage
format. Moreover, since the denominator is a sum over all actual values, WAPE is capable
of handling small or zero actual demands. This is an important feature in our case since in
some circumstances we have actual demand of zero.

RMSE, on the other hand, is the standard deviation of the residuals.

RMSE =
√√√√ 1
n

n∑
i=1

(Fi − Ai)2 (4.2)

Here again, A and F denote actual and predicted values of demand, respectively. As the above
equation indicates, since the residuals are squared before they are averaged, the RMSE gives
a moderately high weight to large errors. Consequently, when large errors are particularly
undesirable (e.g., in demand forecasting tasks), RMSE could be the evaluation metric of the
choice.
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Data Analysis

As data visualization is a critical tool for data analysis, we provide some useful insights into
the structure and patterns of our dataset.

Figure 4.4 shows the actual cumulative demand for each time range as we start from the
initial booking period of DBD119-DBD90 and end on the departure date DBD0-DBD-1.
Obviously, bookings increase significantly as we get closer to the departure date.

This figure also illustrates the differences in the customers’ booking behaviors in various
time ranges. The time range of 16:00 - 19:00 is the most popular one and 09:00 - 12:30 is
the second most demanded option. That is, throughout the year, most on-demand travels
happen either in the evening or right before noon.

Figure 4.4 Total actual cumulative bookings by booking period and time-range

The trend in the number of bookings based on booking periods and time ranges is illustrated
in Figure 4.5. Note that only the data of one month is displayed for the sake of clarity and
simplified representation. This graph shows a meaningful difference between the number of
bookings occurred in early morning compared to the rest of the day.

During the illustrated month, in almost all time ranges, the bookings follow a similar pattern:
starting low in booking demand, reaching the first peak within the initial couple of booking
periods, breaking the trend and hitting the minimum about a week before the departure
date, and finally raising and reaching the highest number of bookings on the exact departure
date.
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The picks of this pattern can be explained by the price-sensitive and time-sensitive customers’
behavior: price-sensitive customers tend to purchase their ticket much earlier in the booking
horizon and time-sensitive customers (i.e., business travelers) book closer to the departure
date.

Figure 4.5 Total actual bookings trend by booking period and time-range (May).

Results of Level I Data

After preprocessing step and data analysis, we explore various ML methods on level I data
including various ensemble tree-based methods and NNs. Among them, GBT and NNs
outperform others. Although GBT achieved only slightly more accurate results than NNs
did, we pick GBT as the best performing model.

Industry-wise, there should be a trade-off between the time and efforts dedicated to tuning
a model on the one hand, and robustness and accuracy of the results on the other hand.
Having almost the same level of computational complexity and accuracy, the NN requires
very precise tuning to provide the same results as GBT does. Overall, GBT is more robust
and generalizable for the purpose of this problem.

The experiments show that in our case study, ERT is competitive with NNs but not as
accurate as GBT. Table 4.1 provides the results of applying all learning methods to level I
data. As illustrated, with a WAPE test result of 10.21%, GBT outperforms other models.
Note that the processing time for all applied methods of level I is around one minute. Thus,
processing time is not a contributing factor in model selection at this step.

Considering various factors, including acceptable accuracy, computational complexity and
robustness, GBT satisfies the company’s requirements and we explore the more complex
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Table 4.1 Results of learning methods on level I data

Algorithm WAPE WAPE RMSE RMSE
Test % Train % Test Train

NNs 10.78 % 7.14 % 96.78 72.10
AdaBoost 12.18 % 8.30 % 119.26 91.08

ERT 11.65 % 8.13 % 105.76 86.21
RF 13.46 % 9.89 % 141.70 100.31
GBT 10.21 % 7.12 % 91.03 69.85

data of level II in the next section.

Results of Level II Data

On this level, we evaluate the performance of the same ensemble tree-based and NNs methods
as in level I data. Here again, we observe that GBT outperforms other regressors. However,
the achieved results are much less accurate with a higher percentage of the errors due to finer
level of aggregation and increased level of data complexity. We use the results of this step as
a benchmark to compare with those of the future steps.

Table 4.2 provides results of applying all learning methods to level II data after initial pre-
processing and outlier removing. As demonstrated, at this level, the boosting methods (i.e.,
AdaBoost and GBT) are very competitive in terms of accuracy.

Table 4.2 Results of learning methods on level II data

Algorithm WAPE WAPE RMSE RMSE Processing Time
Test % Train % Test Train (min.)

NNs 37.54 % 35.86 % 19.31 18.10 2.40
AdaBoost 36.49 % 36.31 % 18.87 18.61 3.54

ERT 38.88 % 37.04 % 20.52 19.11 2.15
RF 40.11 % 38.76 % 22.37 20.19 2.04

GBT - BENCHMARK 35.90 % 35.08 % 18.83 18.51 3.34

Having the benchmark and best performing regressor at this step, we can explore the effects of
outlier removal that we used as the last step of preprocessing section. That is, we apply GBT
on fully preprocessed data except for the outliers removal, and then, we compare the results
to the ones achieved after detecting and removing the outliers. Table 4.3 shows performance
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improvement of GBT as a result of outliers removal.

Table 4.3 GBT result improvement due to outliers removal

Algorithm WAPE WAPE RMSE RMSE
Test % Train % Test Train

GBT - Before outliers removal 51.03 % 50.49 % 27.65 27.28
GBT - After outliers removal 35.9 % 35.08 % 18.83 18.51

At the next step of the model selection process, we examine the effects of combining various
regressors. The motivation behind this idea is that methods like averaging helps with decreas-
ing the prediction error by reducing variance. To do so, we start with computing predicted
demand using selected regressors. At the next step, we average over the predicted values. As
an example, Table 4.4 shows the error reduction using averaging over three regressors: RF,
GBT, and ERT.

Table 4.4 GBT result improvement due to averaging over predictions of regressors

Algorithm WAPE WAPE RMSE RMSE Processing Time
Test % Train % Test Train (min.)

GBT - BENCHMARK 35.9 % 35.08 % 18.83 18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61 15.32 7.58

Weighted averaging is another technique used to reduce errors; however, the slight accuracy
improvement depends on precise weight assignment. The preference is to find a more robust
method of a noticeably higher performance.

According to Table 4.5, stacking results in a remarkably better performance by decreasing
the WAPE test result to 23.76%. Although it requires longer processing time, it is still much
lower than the industrial computational complexity limits.

The main challenge in improving the results of stacking algorithm lies in the choice of base
estimators and the meta regressor. This issue is still referred to as “black art” in the literature.
Although there have been some attempts to automate this process or to define a criterion
for selection process, no satisfying method has been developed so far [63].

In this study, we use GBT, ERT, Linear regression, RF and KNN as base regressors and RF
as the meta regressor. Note that KNN stands for K-Nearest Neighbors [64] and is a simple
yet powerful supervised learning method for both classification and regression tasks. In a
regression problem, given an example to predict, KNN performs based on finding K most
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Table 4.5 Performance improvement as a result of applying stacking to level II data

Algorithm WAPE WAPE RMSE RMSE Processing Time
Test % Train % Test Train (min.)

GBT - BENCHMARK 35.9 % 35.08 % 18.83 18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61 15.32 7.58

Stacking 23.76 % 23.99 % 13.01 12.98 11.31

similar examples from the training data, called nearest neighbors, and estimates its value as
an aggregation of the target values associated with its nearest neighbors.

In stacking, each one of the implemented regressors contributes to capturing underlying
characteristics of data using different methodologies. Thus, having various categories of
regressors increases the overall performance of stacking method. For example, we include
ensemble tree-based (both boosting and bagging), linear regression and K-nearest neighbors
methods in the base regressors.

We explored other various innovative methods in order to combine different regressors such
as weighted stacking and double stacking. In weighted stacking, the predictions of each
base regressor (i.e., features of the meta data) are given normalized weights. To assign
weights automatically, we use the feature importance characteristic of RF. When applied to
data, RF is capable of assigning importance values to each feature within the dataset. In
double stacking, we consider meta data as an initial dataset for another stacking method. In
both cases, we decided to ignore the negligible improvements to keep the method simple for
industrial purposes and avoid increasing the processing time.

Table 4.6 demonstrates the results of applying shallow features to our dataset. Although the
accuracy increase using shallow features is not as high as when stacking is used, this is a
single step of the feature engineering process and we expect that the overall combination of
shallow and deep features lead to satisfying final results.

As explained in Section 4.3.3, accurate clustering has a significant role in improving the
performance of demand forecasting. To validate the clustering effect experimentally, we
clustered our dataset into K = 10 groups using K-means clustering method while having
access to the actual target variable.

Note that this experiment is performed separately and exceptionally in order to validate
the assumption about the importance of clustering-based feature, and it was not integrated
into any parts of our actual methods. As a result of this experiment, the forecast test error
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Table 4.6 Performance improvement as a result of applying shallow features to level II data

Algorithm WAPE WAPE RMSE RMSE Processing Time
Test % Train % Test Train (min.)

GBT - BENCHMARK 35.9 % 35.08 % 18.83 18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61 15.32 7.58

Stacking 23.76 % 23.99 % 13.01 12.98 11.31
Shallow Features 21.24 % 20.18 % 12.25 11.64 24.30

Table 4.7 Accuracy improvement as a result of adding optimal clustering feature

Algorithm WAPE WAPE RMSE RMSE
Test % Train % Test Train

Stacking 35.9 % 35.08 % 18.83 18.51
Stacking with optimal clustering 9.65 % 9.66 % 4.76 4.74

dramatically drops to below 10% WAPE, which validates our initial assumption. The com-
parison of stacking results before and after adding optimal clustering feature is demonstrated
in Table 4.7.

We constructed the deep feature based on this finding. The forecast accuracy improvement
using deep feature is demonstrated in Table 4.8. Using clustering-based feature, we success-
fully reduced the WAPE test and train results to 18.78% and 16.92%, respectively.

Table 4.8 Performance improvement as a result of applying deep feature to level II data

Algorithm WAPE WAPE RMSE RMSE Processing Time
Test % Train % Test Train (min.)

GBT - BENCHMARK 35.9 % 35.08 % 18.83 18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61 15.32 7.58

Stacking 23.76 % 23.99 % 13.01 12.98 11.31
Shallow Features 21.24 % 20.18 % 12.25 11.64 24.30
Deep Feature 18.78 % 16.92 % 11.31 10.62 36.15

In summary, using various preprocessing, machine learning and feature engineering tech-
niques, we reduced WAPE test result from the benchmark of 35.9% to 18.78% which is a
remarkable result for this aggregation level. Meanwhile, we succeeded to keep the processing
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time within the acceptable range according to the transportation company’s time constraints
and limitations.

4.5 Conclusion

Demand forecasting is a crucial part of any traditional revenue management system. In this
research, we addressed the problem of demand forecasting in the context of railway industry.

To gain multipurpose forecast information, we tackled this problem using two different ag-
gregation levels of data: level I and level II, with the former being the top level that provided
an overall view of the data and the latter a more complex level because of having an addi-
tional dimension of booking period. Dealing with lower degree of complexity in level I, we
achieved our desired results by performing proper preprocessing steps and applying ensemble
tree-based methods.

In level II, however, outstanding results were obtained by combining a wide variety of pre-
processing, machine learning and feature engineering techniques. We not only used various
state-of-the-art machine learning methods, but also developed two different types of heuristic
features; namely, shallow features and deep features. The former aims to discover shallow
characteristics of data, while the latter is dedicated to extract more complex information.

We realized that having proper and accurate data clusters as features could significantly
reduce the forecast error. The deep attribute is mainly constructed based on this discovery.
We successfully reduced the forecasting test WAPE result of level II data from the benchmark
of 35.9% to 18.78%, while keeping the processing time and overall model performance in a
reasonable range.
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CHAPTER 5 ARTICLE 2 : DEEP REINFORCEMENT LEARNING
APPROACH TO CUSTOMER CHOICE-BASED SEAT INVENTORY

CONTROL PROBLEM

Chapter Information : An article based on this chapter is submitted to Computational
Management Science for publication. Authors: N. Etebari Alamdari, and G. Savard.

In this paper, we train a goal-oriented agent to offer the most profitable set of products at
each time step of the booking horizon with the objective of maximizing firm’s revenue in a

choice-based seat inventory control problem.

ABSTRACT

Revenue Management (RM) is the application of disciplined analytical tactics
that maximizes revenue growth through forecasting each individual customer’s
choice behavior dynamically [2]. Choice-based RM mainly deals with the question
that “Which subset of products the firm should make available to the customers
at any given time in order to maximize the total revenue of the firm while consid-
ering the customers’ choice behavior into account?”. In this paper, we explore seat
inventory control problem in airline industry. We have a sequential decision mak-
ing problem which we formulate as a Markov Decision Process (MDP) and find
a promising solution for using Deep Reinforcement Learning (DRL) rather than
relying on exact theoretical methods or traditional Operations Research (OR)
models. We achieved well-performing results and considerably high expected rev-
enue using a DRL method, named Deep Q-Network (DQN). The main difference
between this study and similar ones carried out previously in which DRL was
selected as the solution method, are the steps taken towards integrating more
real-world issues into the proposed approach; finding best set of products to offer
to customers at any given time instead of a binary accept-reject action for a given
demand and considering larger size flight network examples.

Key words: Deep Reinforcement Learning, Revenue Management, Seat In-
ventory Control, Customer Choice Behavior
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5.1 Introduction

Originally, RM has its roots in airline industry. The development of RM started in 1970s
right after deregulation of airline markets in the United States. As a consequence of this act,
a new phase began in airlines industry in which the competition among companies forced
them to develop surviving tactics [27]. RM is defined as a combination of various analytical
and mathematical approaches to address these problems with the ultimate aim of maximizing
the firm’s revenue.

One of the active research areas in RM is the problem of seat inventory allocation to stochas-
tic demand. Although this problem, particularly in airline industry, has been extensively
studied over the past few decades, there are multiple factors that have made this topic more
challenging in the recent years. For example, two important role playing parameters are the
growth of low-fare airlines and customers’ increasing use of Internet search engines to find
minimum available fare options. These factors result in more competition which requires
better inventory control and pricing policies [65].

The initial theoretical model for capacity control problem was proposed by Littlewood in
1972 [16]. According to this method, if the expected revenue of selling the same seat at the
higher fare exceeds the certain revenue of selling another low fare seat, then the low fare
class should be closed [8]. Throughout the years, various approaches have been proposed
to upgrade Littlewood’s method by relaxing some of its constraints and improving the final
results.

Expected Marginal Seat Revenue (EMSR) is a heuristic probabilistic revenue maximization
model introduced by Belobaba in 1987 [17], which uses historical demand data and average
fares to determine the booking limits of each fare class. The revised version of this model,
named EMSR-b, performs based on aggregation of demand and weighted average revenues
[18].

Until around 2004, the majority of proposed methods was based on the idea of independent
demands, in which, demand of any product was assumed to be independent of the availability
of other products. More clearly, a customer would either purchase the offered product or buy
nothing. However, due to the increased competition caused by low-fair carriers and online
travel agencies, this assumption results in unrealistic predictions [21]. The choice-based RM,
on the other hand, mainly deals with the question that “Which subset of products the firm
should offer to the consumers at any given time in order to maximize the total revenue of the
firm while considering the customers’ choice behavior into account?”. This is the question
we address in this research.
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This problem is formulated as a Markov Decision Process (MDP) and solved by Dynamic
Programming (DP) as an exact method. However, as DP suffers from the curse of dimension-
ality when applied to real-size problems, approximation techniques are required to overcome
the drawback. Within this framework, Talluri et al. [27] published one of the early studies
on choice-based RM. Where, they provided a complete characterization of an optimal policy
under a general discrete choice model of customer behavior.

Gallego et al. [30] developed a customer choice-based linear programming model for network
revenue management, which was culminated in an interesting study by Van Ryzin et al. [31]
in which they prove that when capacity and demand are scaled up proportionately, revenue
obtained under choice-based deterministic linear programming converges to the optimal rev-
enue under the exact formulation. An extension on this study was provided by Bront et
al. [32], where, they assume customers belong to overlapping segments.

Hosseinalifam et al. [25] developed a nonparametric model for choice-based revenue optimiza-
tion along with corresponding algorithmic framework to solve practical large-scale problems.
More recently, a new approximation model named product-closing is proposed by Barbier
et al. [66] that is specifically designed for nonparametric demand with promising results.
There are several comprehensive review papers on various customer choice behavior models
including [67], [68] and [21]. Moreover, in a recent publication, Azadeh et al. [69] studied the
impacts of customer behavior models on revenue management systems.

In this paper, we explore the application of Reinforcement Learning (RL) in choice-based RM.
RL, as described by Sutton et al. [5], is learning how to map situations to actions in order
to maximize the total reward signal. The key feature is that a goal-directed agent interacts
with an uncertain environment. In our problem settings, customers are our environment and
the airline firm is the goal-oriented agent who makes inventory allocation decisions. Various
applications of RL algorithms in RM which are studied before 2007 are published in [70].

Q-learning, as a well-known RL algorithm, has been explored in pricing and some other
RM problems: Raju et al. [71] applied it on an electronic monopolistic retail market to
find the optimal prices and Chinthalapati et al. [72] also studied Q-learning in an electronic
retail market; however, they considered different set of assumptions. Other related examples
include [73], [74] and [75].

Recently, a new category of algorithms, named Deep Reinforcement Learning (DRL) has
been developed by integrating deep learning into RL. One of the practical examples of DRL
is called Deep Q-Network (DQN), which is a combination of deep learning and Q-learning [6].
In the inventory control problem settings, DQN relies on the available historical data as well
as real-time interaction with customers to find the optimal policy. Moreover, DQN uses
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function approximation to generalize the state-action values to unseen states for problems
with a large state space.

In a recent study, Shihab et al. [33] successfully addressed seat inventory allocation problem
using DRL by taking into account both booking cancellations and overbooking. Their action
space, however, consists of binary yes-no response to a given demand without considering
customers choice behaviors and the results are achieved using only a single origin-destination
example.

In this paper, we focus on choice behaviors and practical network flight examples. We use
simulation to consider the stochastic nature of demand in both training and evaluation of our
approach. In so doing, we follow the customer choice behavior explained by Bront et al. [32].
We examined our method on two practical small network and parallel flight examples rather
than on a single origin-destination case provided in the literature for similar approaches. We
obtained promising performance using DQN in comparison with the results of classical exact
method, which is considered as the optimal benchmark.

The main contributions of this paper are:

• solving a choice-based seat inventory control problem using DQN.

• training an agent as a real-time decision maker to offer a set of products at each time
step of the booking horizon in order to optimize the total revenue. That is, we take
into account the customers choice behavior rather than considering a binary accept-
reject scenario for a given request. The agent learns through direct interaction with its
environment.

The remainder of this paper is organized as follows: Section 5.2 provides problem description,
where, general definitions and problem settings are explained in detail. In Section 5.3, we
describe how DQN works in our problem settings. Section 5.4 provides numerical results
of applying DQN to two different examples: parallel flights and small network. Finally,
concluding comments and possibilities for further research are outlined in Section 5.5.

5.2 Problem Description

We start this section with introducing general definitions (5.2.1) and explaining the customer
choice-based seat inventory control problem’s model set up and notation (5.2.2). The section
will be continued by providing some theoretical background on the building blocks of our ap-
proach including Markov Decision Processes (5.2.3), Reinforcement Learning and Q-learning
(5.2.4) and finally, Neural Networks (5.2.5).
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As a general framework in choice-based seat inventory control problem, we assume maximum
one customer shows up with a certain probability at each time step during the booking
horizon. Depending on the selected choice behavior, the customer either purchases a product
from the set of offered products by the firm or leaves without any purchase. The objective is
to find the most profitable set of products to offer to the customers at each time step such
that the overall revenue is maximized.

5.2.1 General Definitions

Note that although we consider airline industry the representation of our problem, the ex-
plored methodologies can easily be extended to other transportation or hospitality businesses.
We will refer to the following definitions throughout this paper:

• Market: an origin-destination pair between which the passengers wish to travel,

• Itinerary: a specific sequence of legs on which passengers travel from their origin to
their ultimate destination,

• Fare class: different prices for the same itinerary, usually distinguished from one another
by the set of restrictions imposed by the firms,

• Product: an itinerary and fare class combination,

• Consideration set: a subset of products that customer considers as probable choices,

• Offerset: a subset of products that firm makes available to the customers at any given
time, and

• Resource: each flight leg with its corresponding capacity.

5.2.2 Customer Choice-based Seat Inventory Control

To address the seat inventory control problem, we follow the notation and model set up pro-
vided by Bront et al. [32]. Time t ∈ T = {1, 2, . . . , |T |} runs forward in discrete increments.
Here, we assume the problem to be of a discrete finite time horizon. The set of products
and resources are specified by j ∈ J = {1, 2, . . . , |J |} and i ∈ I = {1, 2, . . . , |I|}, respectively.
The revenue vector and capacity vector are r = (r1, r2, . . . , r|J |) and c = (c1, c2, . . . , c|I|),
respectively.

An incidence matrix A of dimension |I| × |J | with binary elements of αij, which are defined
below, specifies the use of resources by products.
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αij =

 1, if resource i is used by product j,
0, otherwise.

The state of the network is given by a vector x = (x1, x2, . . . , x|I|). By selling one unit of
product j, the state of the network updates to x − Aj and the obtained revenue would be
rj. We define customers’ segments l ∈ L = {1, 2, . . . , |L|} based on customers’ time, price
and itinerary preferences. Each customer belongs to a segment l, and each segment has a
consideration set Γl, which contains the preferred set of products by segment-l customers.
Within each time step t, where the maximum number of customers showing up and that of
products to purchase is one, the firm decides which subset S ∈ J of products to offer to
customers. Having |J | products, there are 2|J | − 1 possibilities of non-empty subsets.

If λ denotes the arrival rate at time t and pl shows the probability that an arriving customer
belongs to segment l, then, the customer arrival process is described by λl = λpl. Moreover,
Pj(S) specifies the probability that an arriving customer chooses product j ∈ S, so, the
no-purchase probability would be P0(S) = 1−∑

j∈S Pj(S).

We use Multinomial Logit (MNL) model to demonstrate the choice behavior of arriving
customers. MNL model is a category of discrete choice models which denotes the probability
of choosing an option in the presence of other alternatives. In this paper, we follow the
customer choice behavior as explained by Bront et al. [32].

The probability that an arriving customer chooses product j ∈ S is calculated as Pj(S) =∑L
l=1 plPlj(S). Where, Plj(S) specifies the probability that an arriving customer from segment

l purchases product j ∈ S. Based on MNL assumptions, this probability is computed as
follows:

Plj(S) = vlj
vl0 + ∑

h∈Γl∩S vlh
(5.1)

where, vlj is the value given to product j by a segment-l customer. The decision that firm
should make at any time t during the booking horizon is to choose the best offerset S to offer
to the customers so it can gain the optimal revenue.

To address seat inventory control problem we formulate it as an MDP.
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5.2.3 Markov Decision Processes

The Markov property states that “the future is independent of the past given the present.”
If the next observation and reward depend only on the current observation and action, then
we are dealing with a Markov Decision-making Process (MDP) [76].

P (xt+1, rt+1|x1, a1, r1, . . . , xt, at, rt) = P (xt+1, rt+1|xt, at) (5.2)

An MDP is a tuple (X,A, P,R, γ), where, X is the state space, A is a finite set of actions, P
is the state transition probability function that denotes the distribution over the next state
x′, R is the reward function that specifies the expected reward for a given state transition,
and finally, γ ∈ [0, 1] is a discount factor [77].

We define a deterministic policy π as a map from a state to an action π : x → a. An MDP
is “solved” when we find the optimal policy. There are numerous methods to solve an MDP,
including classical Dynamic Programming (DP) which results in an exact solution. However,
most of the real-size MDPs are not solvable with DP due to the curse of dimensionality.
Value-based approximate methods are one of the solutions to tackle this issue.

Value-based solution methods rely on two main concepts to solve an MDP, value function
V π(x) and action-value function, also known as Q-function Qπ(x, a). The value function is
the expected return from state x under policy π.

V π
t (x) = Eπ[

|T |−t∑
k=0

γkrt+k+1|xt = x] (5.3)

Q-function is the expected return assuming the agent is in state x and performs action a and
then follows policy π until the end of the episode (i.e., booking horizon).

Qπ
t (x, a) = Eπ[

|T |−t∑
k=0

γkrt+k+1|xt = x, at = a] (5.4)

Thus, the optimal action-value function Q∗(x, a) can be achieved as follows:

Q∗(x, a) = max
π

Qπ(x, a) (5.5)
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Moreover, Q∗(x, a) satisfies the following Bellman Equation:

Q∗(x, a) = E[r + γmax
a′

Q∗(x′, a′)|x, a] (5.6)

Note that the goal is to find an optimal policy π∗(x, a). Based on the above Bellman equation,
if the optimal value at state x′ of the next time step is known for all values of actions
a′ , then the optimal policy would be selecting an action a′ that maximizes the value of
r + γmaxa′ Q∗(x′, a′) [77].

5.2.4 Reinforcement Learning and Q-Learning

Reinforcement learning is the study of sequential decision-making processes in natural and
artificial systems. According to Sutton et al. [5], the decision-making object is referred to
as an agent and everything outside the agent is called its environment. At time step t, the
agent in state xt ∈ X performs an action at ∈ A based on its behavior policy π. Afterwards,
the environment provides a feedback signal as a reward rt+1 ∈ R. This sequence of actions,
observations and rewards creates the agent’s experience. The objective of reinforcement
learning is to increase the future reward of the agent given its past experience [77].

Q-Learning [78] is a well-known incremental RL algorithm through which agents can learn
how to act optimally in a controlled Markovian domain. At each step, the quality of each
possible action of each single state improves successively until convergence to an optimal
state-action value. Watkins et al. [78] proved the convergency of Q-Learning to the optimal
Q-value with probability 1 under the assumption that all actions would be repeatedly sampled
in all states and the action-values are discrete.

In the simplest form, Q-Learning starts with creating a Q-matrix (table lookup) for all
states and their corresponding actions and initializes all the Q-values with arbitrary fixed
values. The Q-matrix shows the agent’s accumulated knowledge of its environment. At each
iteration, the matrix is updated based on the weighted average of the old Q-values and the
new information received through interacting with the environment. The process ends when
agent reaches a terminal state. This basic approach, however, is totally impractical, since
the action-value function is estimated separately for each pair, without any generalization.

This issue can be addressed by integrating function approximation in Q-learning. State-
action value function approximation speeds up the learning process by generalizing previous
experiences to similar unseen state-actions. Table lookup is a particular case of linear function



40

approximation; however, we want to identify nonlinearities.

We need an approximator which receives a state x and returns approximate Q-values for all
possible actions from state x. In other words, we want to find a parameter vector θ such
that the error between the approximate Q-value Q(x, a, θ) (i.e., the predicted value), and the
target Q-value is minimized. One of the widely used differentiable function approximation
candidates is neural network method.

5.2.5 Neural Networks

A Neural Network (NN) [79] is a computational system which predicts an output variable as
a function of the inputs. It consists of an input layer, hidden layer(s), and an output layer.
All the layers are made of neurons which are considered connection points in a NN. Although
it could vary, a neuron usually calculates the weighted average of its input, and integrates
nonlinearity by passing this sum through a nonlinear function, such as sigmoid, ReLU and
Tanh, and finally returns a single output. This nonlinear function is called an activation
function and it allows NN to address complex systems.

A fully connected feed-forward NN is a neural network in which connections between the units
do not form a directed cycle and there is a complete connection between the adjacent layers.
A common approach to train a fully connected feed-forward NN is backpropagation which
computes the gradient of the loss function with respect to the weights of the network [80].

A NN with multiple hidden layers is called a Deep Neural Network (DNN). DNN is a powerful
learning method that can model complex nonlinear relationships.

If we integrate DNN into Q-learning algorithm as a function approximator, instead of a table
lookup, we will achieve an advanced RL algorithm called Deep Q-Network (DQN) which is
perfectly capable of addressing problems with large state spaces. In the next section, we
provide the steps of DQN algorithm and its application as our problem solution.

5.3 Solution Methods

This section comprehensively explains the steps towards applying DQN, as the core of our
solution method, to a choice-based seat inventory control problem.

5.3.1 DQN Algorithm

Algorithm 3 demonstrates the details of DQN process [6], which is an iterative algorithm with
the objective of finding the optimal policy. At each time step, the agent interacts with the
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stochastic environment and receives a sequence of observations, actions and rewards. These
information are stored in a temporary memory and a random batch of them are fed to the
decision making unit as the training data. By the end of the process, the agent is trained to
make the most profitable decision at each time step.

Algorithm 3 Deep Q-Network

1: procedure
2: Initialize replay memory D to capacity N
3: Initialize action-value function Q with random weights θ
4: Initialize target action-value function Q̂ with weights θ′ = θ
5: for episode = 1, . . . ,M do
6: for t = 1, . . . , T do . T is the terminal state.
7: With probability ε select a random action at
8: Otherwise, select at = argmaxaQ(xt, a; θ)
9: Execute action at and observe reward rt and next state xt+1

10: Store trajectory (xt, at, rt, xt+1) in D
11: Sample random mini-batch of trajectories (xj, aj, rj, xj+1) from D
12: Set

yj =

 rj for terminal xj+1,
rj + γmax

a′
Q̂(xj+1, a

′; θ′) otherwise.

13: perform gradient descent on (yj −Q(xj, aj; θ))2 w.r.t to θ
14: Every ω steps reset θ′ = θ

15: Return computed final policy

At each time step, the agent decides either to exploit the best possible action based on
the available Q-values or to explore a new action randomly. This exploitation-exploration
trade-off poses a fundamental dilemma in RL.

A strategy based only on exploitation would probably miss out on achieving more rewarding
policies. Exploring, however, can gather more information and discover new better-rewarding
state-actions although it may not be possible to explore all state-action pairs in large state
and/or action spaces. Overall, the best long-term strategy may involve short-term sacrifices.

To keep such a balance between exploration and exploitation, DQN relies on ε-greedy al-
gorithm. That is, at time step t, it either chooses to exploit the approximated best action
at = argmaxaQ(xt, a; θ) with probability 1− ε or selects a random action with probability ε.

Moreover, a technique named experience replay is used to gather data for training DNNs.
At each iteration, a trajectory of MDP (i.e., (xt, at, rt, xt+1)) is stored in a replay memory
D. Only a mini-batch of the stored experiences are randomly sampled to feed into DNNs
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as observations. Experience replay, thus, prevents DNN from being trained by temporally
correlated data and results in stability of DQN [6].

Besides, in order to optimize the performance of DQN, two different DNNs are used: a policy
network and a target network. The target network is responsible for providing an unbiased
estimation of the target value rj + γmaxa′ Q̂(xj+1, a

′; θ′) which will be used to train the
policy network. Here, γ ∈ [0, 1] is the discount factor which determines the importance of
the expected future rewards compared to that of the immediate ones. The target and policy
networks are synchronized after each certain number of steps ω which causes a coupling
between the two networks [81].

In summary, DQN starts to interact with its environment according to ε-greedy algorithm.
That is, the agent either makes the best decision based on the information received from
the policy network or acts randomly. The trajectories are stored in the replay memory and
random samples of them (i.e., mini-batch) are fed into DNNs as training data.

Figure 5.1 Deep Q-Network Algorithm Flowchart
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Throughout the process, the policy network adjusts its weights to optimize the predicted
Q-values according to target Q-values provided by the target network. After each ω (hyper-
parameter) steps we update the weights of the target network based on the policy network.

This process repeats for as many episodes as required to provide us with the best performing
policy and its corresponding total reward. Figure 5.1 illustrates the details of DQN algorithm.

5.3.2 Application Process

In this section, we describe how the agent learns to make decisions at each time step of the
booking period using simulation data.

A state x is defined as a vector specifying the quantity of remaining capacity in current
resources with one dimension for each resource. An action a is a vector specifying a set of
offered products. The action space A includes 2|J | possible combinations of products to offer,
including no offer, while the reward is the immediate revenue gained by selling a product.

At each iteration of DQN algorithm, the agent observes a state xt and makes an action at.
Subsequently, the environment transitions to a new state xt+1 and sends a feedback (reward)
rt to the agent. In other words, at each time step, the firm offers a set of products and
the arrived customer either buys one of these products or leaves without any purchase. The
customer’s decision is used as a feedback for the firm to make more informed decisions in the
future.

In customer choice-based inventory control problem, the environment is a stochastic one;
that is, the agent’s action does not uniquely determine the outcome. For the same action
(offerset), the environment (customer) may choose a different product each time, resulting in
a different next state and reward. To capture the stochasticity of the environment, we create
a simulator based on the customer choice behavior modeling paradigm.

Each episode of DQN starts from the initial booking period and ends when it meets the
stopping criteria (i.e. either products are all sold or we reach the departure date). In the
training process, to strike a balance between exploration and exploitation, we rely on ε-greedy
search algorithm. Moreover, we integrate replay memory, target network and policy network
in training DQN to stabilize our model as explained in Section 5.3.1.

5.4 Numerical Results

In this section, we assess the performance of DQN on both classic “Parallel Flights” and
“Small Network” examples. We compare DQN performance with that of various control
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policies including exact and simulated methods. The Upper Bounds (UB) are obtained
using Choice-based Deterministic Linear Programming (CDLP) exact method. The expected
revenues, used for comparison purposes, are the result of simulating the control policies which
are obtained by CDLP and bid price approaches.

CDLP is one of the most well-known methods in network RM that addresses the question that
“Which alternatives should the firm make available to the customers in order to profitably
influence their choices?” [30]. The details of CDLP algorithm are provided in [31].

Moreover, bid price control policy is another prominent approach in the airline industry to
operate inventory control management. This method mainly performs based on computing
the marginal value of every single unit of capacity and using it to determine if we should
accept or reject an arriving customer [82].

The computational results have been carried out on a 2.21 GHz 7-core computer with 16 GB
of RAM. The codes are written in Python 3.6.4 and the environment FICO Xpress-Mosel
7.2.1 has been used to solve CDLP model.

5.4.1 Parallel Flights Example

For this example, we rely on the generalization of original parallel flights example [83] pro-
vided by Bront et al [32]. As illustrated in Figure 6.4, we have a network of three parallel
flights; namely, leg1, leg2, and leg3, which correspond to morning, afternoon and evening
flights, respectively. Two fare classes are available ; High (H) and Low(L). Consequently,
there are six products in total and 26 = 64 possible actions (offersets).

Figure 5.2 Parallel Flights Example.

With the initial capacities being c = (30, 40, 50), the booking starts 300 time steps before
departure date (T = 300). In the meantime, the customer arrival rate is considered to be
0.5 which leads to an average of 150 customers per episode, assuming a maximum of one
show up per time step. The customers are described by their time and price preferences; this
leads to four different segments, each with its own specific consideration set. Tables 6.2 and
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6.3 show product description and customers segmentation, respectively. This information is
used to simulate the environment (customer’s choice behavior) by Monte Carlo simulation.

Table 5.1 Product description for the parallel flights example

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

Table 5.2 Customer segmentation for the parallel flights example

Segment Consideration set Pref. vector λl Description
1 {2,4,6} (5,10,1) 0.1 Price insensitive, afternoon preference
2 {1,3,5} (5,1,10) 0.15 Price sensitive, evening preference
3 {1,2,3,4,5,6} (10,8,6,4,3,1) 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} (8,10,4,6,1,3) 0.05 Price insensitive, early preference

The stream of demand arrivals starts at time period t = 0, and we determine which set S
to offer based on the chosen inventory management method. With the given offerset S, the
customer buys one unit of product j ∈ S with probability λPj(S), where λ is the arrival rate.
That is, the customers arrive during the booking horizon according to a Poisson process with
the rate of λ. There is a maximum of one arrival per each period and in the case of an arrival,
she belongs to segment l with the probability of pl.

Finally, the customer’s choice is made among products in her consideration set according to
their utility vector compatible with multinomial logit discrete choice model. If the customer
chooses to leave without a purchase, we move to the next time period with the same capacity
level. Otherwise, one unit of capacity from product j’s associated leg i would be subtracted
and the process will be repeated all over again with the new offerset until reaching a stop
criterion.

Regarding DQN, the implementation is done using Keras [84], which is an open source Python
library. Our DNNs have two hidden layers with 21 ReLU-activated neurons each. The input
layer receives the remaining capacity of each leg as its states, and this results in three input
neurons. The output layer contains 64 neurons, one for each Q-value of a possible action. In
order to consider the effects of capacity size on our seat inventory control approach, we use
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parameter α to scale all leg capacities. For example, α = 1.2 means the initial capacity of
1.2× (30, 50, 40) = (36, 60, 48), and α = 1 results in the original base case.

The upper bound of revenue is obtained using linear programming approximation. As re-
ported by Van Ryzin et al. [31], this approach converges to the optimal revenue achieved by
DP formulation when changes in capacity and demand are proportional. Moreover, we ex-
amine our model under two different no-purchase weight vector assumption, v0 = (1, 5, 5, 1)
and v0 = (1, 10, 5, 1), to show the effects of differences in customers’ purchase behavior on
the results. Each weight vector has four elements, one for each segment of customers.

Table 5.3 Comparison of the obtained revenue for the parallel flights example with 95% CI

α v0 UB CDLP CDLP Bid Price DQN

0.6 (1, 5, 5, 1) 56,884 54,156 ± 234 55,144 ± 128 55,254 ± 241
(1, 10, 5, 1) 56,848 54,003 ± 225 55,191 ± 152 55,302 ± 513

0.8 (1, 5, 5, 1) 71,936 67,815 ± 237 67,515 ± 518 69,355 ± 521
(1, 10, 5, 1) 71,794 67,853± 226 66,918 ± 532 67,522 ± 721

1 (1, 5, 5, 1) 79,155 75,700 ± 253 70,034 ± 718 77,323 ± 658
(1, 10, 5, 1) 76,866 73,753± 257 67,515 ± 708 73,907 ± 851

1.2 (1, 5, 5, 1) 80,371 79,012 ± 320 71,797 ± 1062 79,450 ± 711
(1, 10, 5, 1) 78,045 76,978 ± 335 69,630 ± 1135 77,014 ± 902

Revenue results for the parallel flights example are illustrated in Table 5.3. We compared
our results with the UB, as well as the expected revenue obtained by both CDLP and CDLP
bid prices models [32] and [82].

The results demonstrate that DQN outperforms both CDLP and CDLP bid prices policy
in almost all cases; i.e., with different α parameters and v0 coordinate values. Differences
are more significant in the highly constrained capacity cases (i.e., α = 0.6 and 0.8). In
such scenarios, decision making is more challenging as it has a smaller margin of mistake in
resources allocation. This is when DQN is more rewarding than other methods and stands
closer to the UB. For the original capacity and ample capacity case (i.e., α = 1.2), all choice-
based methods perform reasonably good; however, DQN still shows higher mean expected
revenue.

This mainly happens due to the advantage that DQN has as a real-time decision making
method as it makes each decision at each time step based on the real-time feedback received
from the environment. Each arrived customer’s choice directly affects the next offerset. On
the other hand, modification and re-optimization at each time step is impossible when using
CDLP-based methods because of computational costs involved. Thus, CDLP-based methods
mainly rely on their initial estimations with the possibility of occasional re-optimization.
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The results also reveal the effects of changes in customers’ willingness to pay on the final
revenue. Higher tendency of customers towards no-purchase option (i.e., the cases with
higher weights in the preference vector) leads to the expected revenue decrease.

We train DQN using 2000 episodes. The trained model, then, is used to interact with the
customers for another 2000 episodes to obtain the simulated results. Moreover, the processing
time of training phase is under 30 minutes while simulation step is less time consuming as it
takes less than 10 minutes. The size of the replay memory and mini-batch are 2000 and 100,
respectively.

Figure 5.3 shows the learning phase of our DQN method for α = 0.6. Note that we observe
the same learning trend for other values of α. The figure demonstrates the rolling mean value
of the expected revenue achieved from the last 50 episodes.

Figure 5.3 Expected revenue increase based on the number of episodes in the training phase
of DQN for α = 0.6

5.4.2 Small Network Example

In this example [32], illustrated in Figure 5.4, we consider a small airline network consisting
of three cities and three legs (flights) with capacities of 100, 50, and 50 for leg 1 to 3,
respectively. Moreover, we assume that T = 375 time periods.

Each itinerary has low and high fares. The combination of class, fare and origin-destination
defines 8 different products hence 28 = 256 different possible offersets (actions), including
no product offer. Table 5.4 presents the description of the products. The customers are
described by their route and price preferences; this categorizes them in 5 segments, each with
its corresponding arrival rate. The details of customer segmentation are provided in Table
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Figure 5.4 Small network example

5.5. The implementation of DQN is done using Keras, and our DNNs consist of two hidden
layers with 28 ReLU-activated neurons each. The size of the replay memory and mini-batch
are 2000 and 100, respectively.

Table 5.4 Product description for the small network example

Product Origin-Destination Class Fare
1 A → C H 1,200
2 A → B → C H 800
3 A → B H 500
4 B → C H 500
5 A → C L 800
6 A → B → C L 500
7 A → B L 300
8 B → C L 300

Table 5.5 Customer segmentation for the small network example

Segment λl Consideration set Pref. vector Description
1 0.15 {1,5} (5,8) Price sensitive, Nonstop (A → C)
2 0.15 {1,2} (10,6) Price insensitive, (A → C)
3 0.2 {5,6} (8,5) Price sensitive, (A → C)
4 0.25 {3,7} (4,8) Price sensitive, (A → B)
5 0.25 {4,8} (6,8) Price sensitive, (B → C)

Table 5.6 shows the results of applying DQN to small network example to solve the seat
inventory control problem. The network example is considered to be more challenging com-
pared to parallel flights case due to availability of shared resources. More clearly, a product
can use different resources in network example, and this characteristic makes the process of
finding the most profitable offerset more difficult.
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In the previous example, we explored the impacts of changes in capacity size on the ob-
tained revenue. Here, we introduce the parameter β which alternates the number of arriving
demands. Using which, we assess the performance of our model from another point of view.

Since we have exactly one customer show up per time period, based on the λ = 1 assumption,
parameter β scales the number of time steps (i.e., β = 0.8 means 375 × 0.8 = 300 arriving
customers or 300 time steps), too. We also consider various preference vectors in order to
explore the impacts of customers’ different tendencies to purchase on the final revenue. The
model was trained using 2000 episodes with processing time of less than 40 minutes and the
simulation results were achieved by running trained DQN for another 2000 episodes within
less than 10 minutes.

There is a similar behavior between the obtained results for the network example and that
of parallel flights case. DQN outperforms CDLP in all scenarios and the differences are more
noticeable in the ample demand case (i.e., β = 1.2). As for the differences in customers’
willingness to pay, the higher the tendency of customers towards no-purchase option, the less
the expected revenue.

Table 5.6 Comparison of the obtained revenue for the small network example with 95% CI

β v0 UB CDLP DQN

0.8
(2, ,5, 2, 2, 2) 114,090 109,520 ± 430 111,216 ± 781
(5, 5, 5, 4, 3) 106,750 100,760 ± 472 102,432 ± 880
(6, 8, 6, 6, 7) 101,556 96,264 ± 325 97,871 ± 981

1
(2, ,5, 2, 2, 2) 120,563 114,530 ± 486 115,880 ± 554
(5, 5, 5, 4, 3) 114,595 109,469 ± 411 112,097 ± 550
(6, 8, 6, 6, 7) 109,640 104,510 ± 302 106,108 ± 931

1.2
(2, ,5, 2, 2, 2) 130,000 116,497 ± 531 118,983 ± 570
(5, 5, 5, 4, 3) 122,202 115,103 ± 375 117,452 ± 569
(6, 8, 6, 6, 7) 118,104 114,077 ± 504 117,050 ± 675

5.5 Conclusion

In this paper, we considered a deep reinforcement learning approach, named deep Q-network,
to solve a choice-based seat inventory control problem. We intended to answer the question
that “Which offersets should the firm make available at each time step in order to maximize
the total revenue achieved during the whole booking period horizon while taking the customer
choice behavior into account?”

The problem was formulated as an MDP and solved using DQN. For comparison purposes,
UBs were achieved using choice-based deterministic linear programming exact method. More-
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over, the simulated results obtained by CDLP and bid price approaches were compared to
that of DQN.

The training processes were done through interacting with the environment (customers) and
the decisions were made in real-time. For the environment simulation, we relied on the general
case where customers belonged to overlapping segments and made their choices based on the
multinomial logit model [32].

We mainly focused on learning the customers’ behavior through a goal-oriented agent with
the objective of maximizing the total revenue. We obtained promising results in both parallel
flights and small network examples. Moreover, the consequences of alteration in capacity size,
demand stream and customers’ willingness to pay on the total revenue were studied.

We realized that DQN works fine when it deals with toy examples; however, in realistic
size networks, the problem of substantial computational cost arises. Indeed, as the number
of products increases, the number of actions grows exponentially and the problem becomes
intractable.

For example, a network of 100 products would have 2100 = 1.26e30 possible actions. It is
unreasonably expensive to solve a NN with 1.26e30 outputs in each iteration. To address this
issue, we will introduce an optimization-based heuristic algorithm in our future work. The
objective of this method is to solve larger-scale seat inventory control problems with both
high performance quality and reasonable processing time.

2100 = 1.26e30
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CHAPTER 6 ARTICLE 3 : DEEP REINFORCEMENT LEARNING
BOOSTING VIA ACTION GENERATION TO SOLVE LARGE-SIZE

CUSTOMER CHOICE-BASED SEAT INVENTORY CONTROL PROBLEM

Chapter Information : An article based on this chapter is submitted to Journal of
Revenue and Pricing Management for publication. Authors: N. Etebari Alamdari, and G.

Savard.
In this paper, we address a large-scale network revenue management problem with taking
customer choice behavior into account. A heuristic algorithmic framework is proposed to

solve the problem efficiently in terms of solution quality and processing time.

ABSTRACT

Nowadays, firms intend to use customer choice-based models instead of an
independent demand paradigm to generate more revenue. In this paper, we ad-
dress choice-based seat inventory control problem with stochastic demand using
a deep reinforcement learning technique named Deep Q-Network (DQN). DQN
can naturally address large state space problems with its integrated function ap-
proximation. However, it becomes intractable in the case of large discrete action
space. To address this issue, we propose an Action Generation (AGen) algorithm.
AGen is a greedy heuristic algorithm designed to be integrated into DQN to over-
come the complexity of the original problem. It aims to greedily generate a set
of “effective” actions to replace the original action space. This leads to the main
achievement of this study which is to dramatically decrease the complexity of
the solution method without negatively affecting its performance in a large-scale
choice-based seat inventory allocation problem.

Key words: Deep Reinforcement Learning, Large-scale Revenue Manage-
ment, Seat Inventory Control, Customer Choice Behavior
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6.1 Introduction

Revenue management (RM) is the application of systematic analytical strategies, which max-
imizes revenue growth by dynamically forecasting each individual customer’s choice behav-
ior [2]. RM was initially developed in 1970’s right after deregulation of airline markets in the
United States. This evolutionary transformation started a new era in airline industry where
the close competition among companies forced them to develop survival policies [27].

To make a well-informed and accurate demand management decision, RM models require
precise information regarding each customer’s choice behavior. Knowing customers’ purchase
habits gives the firm the power to profitably control the availability of products by redirecting
the demand stream towards products with high profit margins.

Nowadays, it is common knowledge that customers make decisions not just based on offered
products; rather, they also consider the overall market conditions such as prices offered by
competitors. In today’s market, the independent demand paradigm, where the customer is
unaffected by anything but the availability of her desired product, is no more practical.

Solving choice-based seat inventory control problem involves two main challenges: modeling
a customer’s choice behavior at a particular moment in time and finding most profitable
sets of products to offer at each time step based on the proposed demand model [32]. Both
issues have been extensively studied as of 1990’s, when the first work on choice behavior
in networks was presented by Belobaba et al. [85]. There are several comprehensive review
papers on various customer choice behavior models including [67], [68] and [21].

Solving a substantially large RM problem is expensive due to computational expenses of
traditional RM or optimization methods. Initially, Gallego et al. [30] addressed this issue by
introducing a general framework, named Choice-based Deterministic Linear Programming
(CDLP), for efficient computation of the solution. They studied the network RM using
flexible products under two circumstances: each product’s demand being generated inde-
pendently and the demand being affected by customer choice model. However, the market
demand used in their model suffered from lack of any kind of customer segmentation.

As an extension to the previous study, Van and Liu [31] explored practical applications of
the CDLP model. They developed a decomposition heuristic method for using the dual
prices of the CDLP in converting the static CDLP solution into a dynamic control policy.
Moreover, they demonstrated that as demand and capacity are expanded asymptotically,
only a particular set of products are used in the optimal policy. In their market segmentation
model, the customers are divided into segments with disjoint consideration sets of products.

Another interesting study is provided by Bront et al. [32], in which, they extend CDLP to
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the case of customers with overlapping segments (i.e., consideration sets assigned to different
segments have a non-empty intersection). This is the case we consider in this paper for
simulating customer behavior. Meanwhile, there are various comprehensive studies that
provide a deep insight into the principles for simulations in revenue management such as [86]
and [87].

Later on, a nonparametric model for choice-based revenue optimization was developed by
Hosseinalifam et al. [25] in which they provided an algorithmic framework to solve practical
large-scale problems. More recently, Barbier et al. [66] proposed a new approximation model
with promising results, named product-closing, which is specifically designed for nonpara-
metric demand.

In this study, we tackle choice-based seat inventory control problem using Reinforcement
Learning (RL) techniques. RL is about learning how to map situations to actions in order to
maximize the total reward. That is, a goal-directed agent performs an action in an uncertain
environment and receives a feedback which motivates the agent’s next move [5]. In the
current problem settings, customers are our stochastic environment and the airline firm is
the agent who makes seat inventory control decisions.

One of the main goals of RL is to solve complex tasks with high-dimensional nature. In
recent years, the advancements in both deep learning and reinforcement learning resulted in
development of new models under the category of deep reinforcement learning some of which
show human level performance. A well-known example is Deep Q-Network (DQN) [6].

DQN is of great interest to us because of its capability to both handle large state space
problems and to be trained with only historical data; that is, it does not require demand pre-
diction. As shown in our recent study [88], DQN demonstrates reasonably good performance
when applied to choice-based seat inventory assignment problem. The promising results were
achieved in two different scenarios: parallel flights and small network examples. In large-size
flight networks, however, DQN becomes intractable because of high computational costs.

Note that in our problem settings, the states are the remaining capacity of each leg at each
time step. Moreover, the possible sets to offer at each time step create the action space. As
the number of products increases, the action space becomes exponentially large.

Deep Q-Network is a value-based method, which means that we learn a value function which
relates a value to each state-action pair. These methods show promising performance when
there are limited discrete actions. Deep reinforcement learning is also studied in both con-
tinuous and large discrete cases of action spaces. However, the proposed methods mainly
fall in the category of policy-based methods (i.e., methods which directly learn approximate
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optimal policy) or hybrid methods which merge value-based and policy-based characteristics
into a single method called ‘actor-critic’.

For example, Lillicrap et al. [89] proposed an actor-critic, model-free algorithm based on
the deterministic policy gradient, which can perform in continuous action spaces. They
successfully solved more than 20 simulated physics tasks such as the classical cart-pole swing-
up. Recently, a comprehensive study titled “Deep Reinforcement Learning in Large Discrete
Action Spaces” has been published by Google Deepmind, which tackles the problem using
policy gradient methods in an actor-critic framework [90].

Since DQN is a straightforward, easy-to-implement and practical algorithm, we use it to
address a large-scale RM problem. We develop a modified version of DQN, specifically
designed for RM and capable of perfectly handling both large state and action spaces.

This paper intends to contribute to the application of RL techniques in solving practical RM
problems. More specifically, it addresses the problem of large-size choice-based seat inventory
allocation by introducing an “Action Generation” (AGen) algorithm. AGen is an iterative
heuristic algorithm used to reduce computational complexity emerging as a result of having
a large discrete action space. It generates a set of most profitable actions which are chosen
through an opportunity cost estimation algorithm. In general, AGen follows the concept of
column generation which is an efficient algorithm designed to solve large linear programming
formulations [1].

By integrating this algorithm into DQN, we can solve large instances with an exponential
number of potential actions using only a restricted number of actions. This results in a
tremendous reduction in the computational cost of DQN while maintaining a high perfor-
mance quality. In this approach, we assume that customers choose their preferred products
based on multinomial logit choice behavior modeling paradigm [32]. Finally, we evaluate
our solution method on two practical “parallel flights” and “hub and spoke” examples and
compare the results to those of various common benchmarks provided in RM literature.

The remainder of this paper is organized as follows: Section 6.2 provides problem descrip-
tion, where, general definitions, required theoretical background, and problem settings are
explained in detail. We start Section 6.3 with a brief explanation on how DQN works in our
problem settings. The main focus of this section, however, will be on the action generation
algorithm. Section 6.4 demonstrates numerical results of applying RDQN to two different
examples: parallel flights and hub and spoke. Finally, concluding comments are outlined in
Section 6.5.
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6.2 Problem Description

In this section, the problem is defined and its theoretical background is explained. First, we
describe the model set-up and notation for customer choice-based seat inventory allocation
problem. In the rest of the section, theoretical background of Markov Decision Processes,
reinforcement learning, and function approximation are elaborated.

6.2.1 Customer Choice-based Seat Inventory Control

Note that throughout this paper, we follow the notation and model set-up provided by Bront
et al. [32], which are summarized in Table 6.1 and were extensively explained in our previous
study [88].

In our problem settings, a market is an origin-destination pair between which the passengers
wish to travel. Within each market, we may have different itineraries which are defined by a
specific sequence of legs connecting the origin to the destination. Moreover, fare classes are
different prices given for the same itinerary, usually distinguished from one another by the
set of restrictions imposed by the firms. A product is the combination of an itinerary and a
fare class.

We assume that each arriving customer belongs to a segment and each segment is categorized
by its consideration set (i.e., a subset of products that a customer considers possible options
to purchase). Finally, an offerset is a subset of products that a firm makes available to the
customers at any given time.

Customers choose a particular product based on a Multinomial Logit (MNL) model [91];
their purchase is affected by both their consideration set and the firm’s offered set. An MNL
model is a class of discrete choice models, which indicates the probability of selecting an
option in the presence of other alternatives.

We assume that at each time step t, there is a maximum of one customer show-up and a
maximum of one product purchase. Moreover, an arriving customer from segment-l, with
consideration set Γl, assigns a value (weight) vlj to each product j ∈ Γl. Consequently, based
on MNL assumptions, the probability that a segment-l customer chooses an available product
j ∈ S is defined as

Plj(S) = vlj
vl0 + ∑

h∈Γl∩S
vlh

(6.1)



56

Table 6.1 Notation and definitions of seat inventory control problem

t: time periods indexing forward; t ∈ {1, 2, . . . , T}
J : set of products
rj: revenue obtained by selling one unit of product j ∈ J
I: set of resources
ci: initial amount of resource i ∈ I
L: set of customer segments
pl: probability that an arrived customer belongs to segment l
λl: arrival rate of a customer from segment l ∈ L; λl = λpl

λ: arrival rate of a customer at each time period λ =
L∑
l=1

λl

ηij: Boolean constant indicating whether resource i is used by product
j (i.e., ηij = 1), or not (i.e., ηij = 0)

H: product-resource incidence matrix, or simply, the incidence matrix;
H = [ηij] ∈ {0, 1}m×n

x: state of network x = {x1, x2, . . . , x|I|}; selling one unit of product
j results in network state update from x to x−Hj

S: set of offered products by the firm, possibly including the ‘null’
product; S ∈ 2|J |

Γl: set of products preferred by the segment-l customers
Pj(S): probability of product j ∈ S being purchased by an arriving cus-

tomer if set S is offered
P0(S): no-purchase probability given offerset S; ∑

j∈S
Pj(S) + P0(S) = 1
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Clearly, the probability of choosing product j ∈ S by an arriving customer (i.e., Pj(S))
equals

Pj(S) =
L∑
l=1

plPlj(S) (6.2)

Moreover, R(S) specifies the expected revenue generated from an arriving customer when set
S is offered,

R(S) =
∑
j∈S

rjPj(S) (6.3)

The firm would like to maximize its total revenue by selecting the most profitable set S to
offer at each time period t during the booking horizon.

To address seat inventory control problem, we formulate it as an MDP.

6.2.2 Markov Decision Processes

As Puterman [76] describes, a task is a Markov Decision-making Process (MDP) if the next
observation and reward depend only on the current observation and action. An MDP consists
of a state space X and a finite set of actions A. For each pair of state-action, P is the state
transition probability function which denotes the distribution over the next state x′,

P xx′

a = P (xt+1 = x′|xt = x, at = a) (6.4)

and R is the reward function that specifies an expected reward given the transition from
state x to state x′ while performing action a,

Rxx′

a = E[rt+1|xt = x, xt+1 = x′, at = a] (6.5)

Thus, an MDP is defined as a tuple (X,A, P,R, γ), where γ ∈ [0, 1] is a discount factor. In a
decision-making problem, we would like to know, given each state, which action would lead to
the maximum reward in the long run. This map from a state to an action is called a policy
π : x → a. If we consider the maximum reward as the sum over all expected immediate
rewards, the result may not be bounded. Thus, the discount factor γ is considered, which
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depreciates rewards at every time step.

We define value function as the expected return from state x under policy π,

V π
t (x) = Eπ[

|T |−t∑
k=0

γkrt+k+1|xt = x] (6.6)

and action-value function, also called Q-function, as the expected return being in state x and
performing action a and then following policy π till reaching the terminal state.

Qπ
t (x, a) = Eπ[

|T |−t∑
k=0

γkrt+k+1|xt = x, at = a] (6.7)

The goal is to find an optimal policy π∗, a policy that corresponds to the optimal value
function (or optimal action-value function). There are numerous methods to solve an MDP
(i.e., to find an optimal policy), including the classical well-known exact method Dynamic
Programming (DP). Optimal value function of the seat inventory control problem can be
achieved through the following DP formulation,

Vt(x) = max
S
{

∑
j∈S

λPj(S)(rj + Vt+1(x−Hj)) + (λP0(S) + 1− λ)Vt+1(x)} (6.8)

= max
S
{

∑
j∈S

λPj(S)(rj − (Vt+1(x)− Vt+1(x−Hj)))}+ Vt+1(x)

subject to Vt(0) = 0 for t = 1, 2, ..., T , and VT+1(x) = 0 ∀x ≥ 0 [31]. Assuming that we have
calculated the value function, then, for a given t and x, the optimal offerset would be

S∗(t, x) := argmax
S
{

∑
j∈S

λPj(S)[(rj − (Vt+1(x)− Vt+1(x−Hj))]} (6.9)

Vt+1(x)− Vt+1(x−Hj) specifies the opportunity cost of selling one unit of product j at time
step t, having capacity state x [92]. Later on in this study, we develop our heuristic approach
based on the concept of opportunity cost.

Unfortunately, due to curse of dimensionality, large-size MDPs (i.e., large state space and/or
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action space) cannot be solved using DP. In such cases, it is possible to approximate DP
with different approximation methods such as Linear Programming. Here, we will address
the seat inventory control problem using deep reinforcement learning.

6.2.3 Reinforcement Learning and Q-Learning

Reinforcement Learning (RL) refers to the study of sequential decision-making processes
where learning occurs from the experience generated by an agent interacting with its en-
vironment. RL was initially inspired by the training method based on rewarding desired
behaviors and/or punishing undesired ones in psychology. RL methods were formalized later
using MDP [5].

In RL, learning happens through a sequential process illustrated in Figure 6.1 [5]. At time
step t, the agent in state xt ∈ X takes an action at ∈ A according to the policy π it follows.
As a feedback, the environment provides a reward rt+1 ∈ R and the agent finds itself in a
next state xt+1 ∈ X. This sequence of actions, observations and rewards is called agent’s
experience. The fundamental goal in RL is to use the past experience to increase the future
reward. To put it differently, the agent seeks to maximize the cumulative reward in the long
run [77].

Figure 6.1 Agent-environment interaction in reinforcement learning

One of the well-known RL algorithms is Q-learning in which the learned action-value function
incrementally approximates the optimal Q-function. According to Watkins et al. [78], Q-
learning converges to optimal Q-value with probability 1 under the assumption that the
action-values are discrete and all state-action pairs will be repeatedly sampled.

In its classical form, Q-learning creates a lookup table (also called Q-matrix) to store all the
state-action values. The values are initialized to random fix numbers, except for the terminal
state which is zero. The Q-values are updated at each iteration of an episode (An episode
refers to all the states that occur between the initial and the terminal states.). Thus, the
Q-matrix accumulates the agent’s knowledge of its environment which gets updated at each
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iteration.

In large state and/or action spaces, updates would be extremely expensive due to largeness
of Q-matrix. To tackle this issue, function approximation is integrated into Q-learning.

6.2.4 Function Approximation in Q-Learning

Function approximation replaces lookup table in Q-learning by generalizing previous expe-
riences to similar unseen state-action pairs hence speeding up the process. In large and
complex problems, such as seat inventory control problem, we need to choose a function
approximation which can generalize effectively and capture nonlinearities.

In the context of our problem, function approximation is the mapping from states to values
via a parameterized function which uses supervised learning methods to set its parameters
(i.e., weights) [93]. That is, the function approximation receives state x as an input and
returns approximate Q-values for all possible actions given state x. To do so, it adjusts
its weight vector θ to minimize the difference between approximate Q-value Q(x, a; θ) (i.e.,
the predicted value) and the target Q-function. This is a regression problem which can be
addressed using neural networks.

A Neural Network (NN) is a network of interconnected units, called neurons, which predicts
an output variable as a function of its inputs. A NN is composed of an input layer and
an output one, as well as some hidden layer(s) in between, all having different numbers of
neurons depending on the architecture that the problem may require.

Neurons are semi-linear units, which means each neuron computes a weighted average of its
inputs and then applies a nonlinear function to the achieved result. This function is called
‘activation function’ and it allows NNs to address complex systems. It is usually an S-shaped
function (e.g., a sigmoid function); however, sometimes a rectifier nonlinearity is also used. A
unit using the rectifier is also called a Rectified Linear Unit (ReLU). The activation functions
are parametrized by the connection weights of the network [5].

A neural network with a complete connection between the adjacent layers and no loops
within the network is called a fully connected feed-forward NN. Usually a backpropagation
method is chosen as the learning algorithm for NNs. As described by Wythoff et al. [80],
backpropagation consists of two phases: the forward propagation of the activation and the
backward propagation of the error. Like any other supervised learning algorithm, the desired
outputs of a NN are compared to the predicted values and the network’s weights are adjusted
to minimize the difference. More details of backpropagation algorithm can be found in [80].

A NN is called a Deep Neural Network (DNN) if it has more than one hidden layer. DNN is
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a powerful learning method for modeling complex data with nonlinear relationships. Figure
6.2 shows a DNN used for function approximation, where it receives a state x = (x1, x2, x3)
as its input and returns Q-values for all the possible state-action pairs from state x, assuming
there are three actions in total.

Figure 6.2 Function approximation using a deep neural network

If we use a DNN, rather than a traditional lookup table, for function approximation in Q-
learning, we develop a method called Deep Q-Network (DQN) which can handle large state
space problems [6].

6.3 Solution Method

We start this section with a brief review of how DQN operates followed by proposing the
action generation algorithm. AGen aims to reduce the complexity of DQN in the presence
of a large discrete action space.

6.3.1 DQN

Algorithm 4 [6] demonstrates the details of DQN process which is an iterative algorithm used
for identifying the optimal policy [88] .

At each iteration, while interacting with the environment, the agent achieves and stores a
sequence of observations, actions and rewards. A randomly selected batch of such experiences
are then fed into the decision maker as the training data. By the end of the process, the
agent is trained to make the most profitable decision at each time step.

In order to improve the stability of DQN in practice, the so-called “experience reply” tech-
nique is implemented. At the time step t, a sequence of actions, observations and rewards
(xt, at, rt, xt+1) (i.e, agent’s experience) is stored in a replay memory out of which only a
mini-batch containing random samples is fed into DNNs as training data hence preventing
temporal correlation among training data and thereby assuring enhanced stability of DQN [6].
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Algorithm 4 Deep Q-Network

1: procedure
2: Initialize replay memory D to capacity N
3: Initialize action-value function Q with random weights θ
4: Initialize target action-value function Q̂ with weights θ′ = θ
5: for episode = 1, . . . ,M do
6: for t = 1, . . . , T do . T is the terminal state.
7: With probability ε select a random action at
8: Otherwise, select at = argmaxaQ(xt, a; θ)
9: Execute action at and observe reward rt and next state xt+1

10: Store trajectory (xt, at, rt, xt+1) in D
11: Sample random mini-batch of trajectories (xj, aj, rj, xj+1) from D
12: Set

yj =

 rj for terminal xj+1,
rj + γmax

a′
Q̂(xj+1, a

′; θ′) otherwise.

13: perform gradient descent on (yj −Q(xj, aj; θ))2 w.r.t to θ
14: Every ω steps reset θ′ = θ

15: Return achieved final policy

A policy network and a target network are used to ameliorate the performance of DQN; the
former requires target values to train and adjust its weights while the latter provides the
former with an unbiased estimation of target values. The two networks are coupled following
the synchronizations after each certain number of steps [81].

One of the fundamental challenges in RL is the exploration-exploitation trade-off. The ob-
jective of exploration is to continually look for new policies, while exploitation aims to tackle
the problem using the already well-established solutions. Exploration becomes more vital
when the environment is changing because such changeability can cause rewarding solutions
depreciate or new solutions to arise over time. Obviously, certain short-term sacrifices are
inevitable when formulating the most profitable long-term strategy [94].

In summary, DQN process starts with observation of state xt. The agent, then, acts ε-greedy
to strike a balance between exploration and exploitation by taking a random action with
probability ε or deciding to exploit the best action at = argmaxaQ(xt, a; θ) , with probability
1 − ε. As we progress, the agent gains more information about the environment; thus, it is
a reasonable strategy to increase the probability of exploitation by iteratively reducing the
value of ε.

In response to the agent’s action, the environment returns an immediate reward rt as the
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agent finds itself in the next state xt+1. At each iteration, the acquired experience is stored
in the replay memory. Training of DNNs start with feeding them a mini-batch of random
samples from the replay memory.

Here, the decision maker is the policy DNN. The weight update of policy network is done
using the target value rj+γmaxa′ Q̂(xj+1, a

′; θ′), where the maximum expected Q-value from
the next state is provided by the target network.

Each episode of DQN runs until meeting the stop criteria. The entire process repeats itself for
as many episodes as required until eventually the best performing policy and corresponding
total reward are achieved [88].

Here are the definitions of the major terms frequently used in our problem settings [88]:

• Stochastic environment: the customers

• Agent: the firm

• State x: a vector which specifies the quantity of remaining capacity in the current
resources, with one dimension for each resource,

• Action a: a vector specifying a set of offered products. The action space A includes
2|J | possible combinations of products to offer, including an empty action set which
represent no products to offer,

• Reward r: the immediate revenue gained by selling a product j ∈ S, and

• Stop criterion: conditions in which either products are all sold or the departure date
has arrived (i.e., reaching the end of time periods T ).

A simulator of overlapping segments is also created in accordance with the parameters of
multinomial choice-based modeling to simulate the stochastic environment of the prob-
lem [32]. For the sake of simplicity, we assume that cancellations are not allowed and so
overbooking will be redundant.

6.3.2 Action Generation

In a large-size seat inventory assignment problem, there are both a large state space (which
is handled with a function approximation technique in DQN) and an exponentially large
discrete action space. As an example, when there are 21 products, which is a regular minimum
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number of products in airline companies, there will be more than one million possible actions
to choose from in each time step.

Analyzing the results of solving a large-size seat inventory control problem using the CDLP
method shows that the optimal policy includes only few particular sets of products, which
the firm makes available to the customers during the booking horizon.

Therefore, if we can generate these so called “effective” offersets in a way, there will be no
need to explore all possible combinations of actions at each iteration. We propose Action
Generation (AGen), a greedy heuristic approximation algorithm, to deal with the complexity
issue of DQN in this problem settings.

Adopting this approach, we divide the original choice-based seat inventory control problem
into a restricted master problem (i.e., DQN with a restricted number of actions, called
RDQN) and a subproblem. The reduced master problem (RDQN) holds all the characteristics
of the original one, except the action space. The subproblem is designed to generate profitable
actions which consist of two phases:

• opportunity cost evaluation

• action generation

Following this algorithm, we progress iteratively until no further “effective” offerset remains
to be generated.

The master problem could be considered an evaluation unit that uses DQN to explore the per-
formance of the actions generated by the subproblem. First, we explain the master problem;
then, we provide the algorithm for action generation in the subproblem.

In the master problem, we initially define a small restricted set of randomly chosen actions
out of the original action space 2|J | and call it “restricted set”, Ω. We also define Restricted
DQN (RDQN) as a DQN with an action space limited to Ω. By solving RDQN, we obtain
Q-values associated with given actions at each state of the network. Q-values show how good
it is to be at each state and perform a specific action from the limited pool of restricted
actions set.

Now, we would like to know adding which set of products to the restricted set is potentially
more profitable. To do so, we start with computing approximate opportunity cost of each
individual resource ξi, ∀i ∈ I, as the first phase of subproblem. In the second phase, using the
approximated opportunity costs, we verify whether or not there are any new actions which
could increase the expected value function. Figure 6.3 shows a simple flowchart of action
generation method.
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Figure 6.3 Action Generation (AGen) flowchart

Subproblem

Phase 1: Opportunity Cost Assessment

In this phase, we first assess the value of each unit of capacity, and then use the information
obtained to evaluate the actual expected net profit of each product. For instance, if selling
product j produces a revenue of 100$, but each seat is worth more than 300$, then this
product is not a good choice to be in the offerset.

Opportunity cost assessment starts with predicting Q(x, a), given the initial state x (i.e., all
resources are available) and actions a which belong to the restricted set of randomly chosen
actions Ω. Having Q-values, we can compute the approximate value function according to
the following equation:

Ṽ (x) ≈ max
a

Q(x, a) ∀a ∈ Ω (6.10)

Note that although this is just an approximation, it is good enough for the purpose of
computing opportunity costs since we are more concerned with the differences between the
value functions rather than with their exact amounts.

In this step, we reduce the capacity of each leg i ∈ I by exactly one unit independently; that
is, x − ei, where ei is the standard basis vector with all elements equal to zero, except the
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i-th position with value 1.

For each leg i with new reduced capacity, we calculate the current approximate Q-value
Q(x − ei, a) and obtain Ṽ (x − ei) using Equation 6.10. By subtracting this value from the
reference value function, we obtain the approximate opportunity cost ξi of resource i through
the following equation:

ξi ≈ Ṽ (x)− Ṽ (x− ei) ∀i ∈ I (6.11)

Algorithm 5 describes the details of the capacity value assessment phase.

Algorithm 5 Opportunity Cost Assessment

1: procedure The restricted set of randomly chosen actions Ω is given.
2: compute Q(x, a) using RDQN. . x is the initial state where all resources are

available.
3: compute reference Ṽ (x). . according to its definition given in Equation 6.10.
4: for each i ∈ I do:
5: decrease capacity of leg-i by 1 unit, x− ei.
6: predict Q(x− ei, a) using RDQN.
7: compute Ṽ (x− ei).
8: compute ξi ≈ Ṽ (x)− Ṽ (x− ei) . approximate opportunity cost of resource i
9: Return ξ . approximate opportunity cost vector

Phase 2: Action Generation

The pseudo code of the Action (offerset) generation is provided in Algorithm 6, an algorithm
inspired by an interesting study that Bront et al. [32] have published.

The general idea behind this algorithm is to iteratively generate a new action on top of the
current restricted set Ω. In order to generate each action, we first start with an empty set;
then, the algorithm chooses the first product of the new set as the one with the highest ex-
pected return while taking the probability of its purchase into account. The process continues
iteratively by greedily searching for the new products to be added to the current set.

This step ends when there is no new product found to be added to the current offerset such
that the value of the offerset exceeds its current value. It is also of great importance to note
that based on MNL properties, the availability of different alternative products in the set
will affect the customer choice preferences of the ones already existing in the offerset.

As mentioned in 6.2.1, Plj(S) specifies the probability of purchasing product j by a segment-
l customer when set S is offered. Therefore, the new choice probability of the products in
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Algorithm 6 Action Generation

1: procedure Approximate opportunity cost vector ξ and initial set of re-
stricted actions Ω are given.

2: define Ψ as set of potential new offersets . . Initially, Ψ is empty.
3: define S as the generated offerset. . Initially, S is empty.
4: define y as an assignment vector with binary variables, one for each product j.

yj =
{

1 if producst j is offered in the generated set S,
0 otherwise.

5: define S ′ as a set of products j with unassigned yj values.
6: define wj = rj −

∑
i
ηijξi, ∀j ∈ J . w gives the value of each product.

7: If wj 6 0, ∀j ∈ J → yj = 0, update S ′ . these products are not in the offerset.
8: j∗1 ← argmax

j∈S′
{
L∑
l=1

wjvlj

vlj+vl0
} . j∗1 is the first product of S.

9: update yj∗1 = 1 and S = {j∗1} and S ′ = S ′ − {j∗1}
10: until S is not changed repeat
11: compute

j∗ = argmax
j∈S′

{
L∑
l=1

λl
∑

k∈Γl∩(S∪{j})
wkPlk(S ∪ {j})}

12: If Φ(S ∪ {j∗}) > Φ(S), then:

S := S ∪ {j∗}, S ′ = S ′ − {j∗}

Ψ := Ψ ∪ {S}

13: end until
14: Ψ = Ψ− Ω . Ψ consists of offersets not considered before.
15: If Ψ = ∅: Break; Else: S ← {last element in Ψ}. . S is a new offerset with the

highest value.
16: Ω = Ω ∪ {S}
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offerset S, after adding a new product j, will be computed using the equation below:

Plk(S ∪ {j}) = vlk∑
k∈Γl∩(S∪{j})

vlk + vl0
(6.12)

Moreover, if we define expected net profit of set S, Φ(S), as below:

Φ(S) =
L∑
l=1

λl
∑

k∈Γl∩(S)
wkPlk(S) (6.13)

then, the expected net profit of set S after adding a new product j will be updated according
to the following equation:

Φ(S ∪ {j}) =
L∑
l=1

λl
∑

k∈Γl∩(S∪{j})
wkPlk(S ∪ {j}) (6.14)

As shown in Figure 6.3, the whole process ends when there is no new action with positive
value left to be added to the restricted set of already existing actions.

6.4 Numerical Results

In this section, we evaluate the performance of RDQN (i.e., DQN with an integrated ac-
tion generation algorithm) in both classic “Parallel Flights” and “Hub and Spoke Network”
examples, which are both based on the examples given by Bront et al. [32]. The upper
bounds are the maximum revenues obtained by solving the exact choice-based deterministic
linear programming model. Moreover, the results are compared to those of simulated CDLP
assignments and bid price control policy.

CDLP is one of the most recent methodologies used to perform inventory control management
in RM while taking customer’s choice behavior into consideration. CDLP provides a set of
products to offer at each time period such that the firm can maximize its revenue [32].
Moreover, bid price control policy is a widely used heuristic approach mainly adopted by
the airline industry. Using the bid price control policy, a marginal value is computed for
each resource, and the product is offered if its fare exceeds the sum of the bid prices of its
constituent resources [95].

The computational results have been carried out on a 2.21 GHz 7-core computer with 16 GB
of RAM. The codes are written in Python 3.6.4 and the environment FICO Xpress-Mosel
7.2.1 has been used to solve CDLP model.
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6.4.1 Parallel Flights Example

As illustrated in Figure 6.4, the example in question consists of a network of three parallel
legs between the same origin and destination. Each leg corresponds to a different time of
a day (morning, afternoon, evening) with initial capacities of 30, 50, and 40, respectively.
With two fare classes, High (H) and Low (L), for each leg, there are six products altogether.
This results in 26 = 64 actions (possible offersets). Table 6.2 demonstrates the product
description [32].

Figure 6.4 Parallel flights example

Table 6.2 Product description for the parallel flights example

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

Customers are divided into four overlapping segments based on their time preferences and
price sensitivities. We assume a maximum of one customer shows up at each time step.
Given 300 time steps in the entire booking horizon and a customer arrival rate of 0.5, we
will have an average of 150 customers per episode in the parallel flights example. Customer
segmentations are shown in Table 6.3. We use Monte Carlo simulation to simulate customer’s
choice behavior based on the parameters of MNL Model.
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Table 6.3 Customer segmentation for the parallel flights example

Segment Consideration set Pref. vector λl Description
1 {2,4,6} (5,10,1) 0.1 Price insensitive, afternoon preference
2 {1,3,5} (5,1,10) 0.15 Price sensitive, evening preference
3 {1,2,3,4,5,6} (10,8,6,4,3,1) 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} (8,10,4,6,1,3) 0.05 Price insensitive, early preference

Time starts at t = 0 and moves forward in discrete increments until T , the terminal state.
At each time period, a customer shows up with probability λ which may belong to any of
the segments. Afterwards, she either purchases a product j ∈ S with probability λPj(s) or
leaves without any purchase. By selling one unit of product j, the current state x would be
updated by subtracting one unit of capacity from product j’s associated resource (leg) i.

All details of DQN implementation can be found in [88]. RDQN is implemented using Keras
[84], which is an open source Python library. For RDQN, we use the same architecture as that
of DQN, except for the integration of AGen. Moreover, in this example, we evaluated the
impact of capacity modification on the total expected revenue through a scale parameter, α, to
adjust all leg capacities. For example, α = 0.8 means the initial capacity of 0.8×(30, 50, 40) =
(24, 40, 32), and α = 1 results in the original base case.

α = 0.6

The process starts with creating a restricted action set Ω. For simplicity, we started with a set
of six actions with only one product j at each offerset. Having run RDQN for 3000 episodes,
we now have the approximate Q-values required to calculate opportunity costs for each of
the three resources. The action generation, then, starts with defining an empty offerset S
which will eventually be added to the six existing actions in Ω.

By applying the iterative action generation algorithm as explained in algorithm 6, we obtain
the first generated offerset. Now we return to the master problem to solve RDQN using the
new “effective” action set with 7 offersets. Then follows the subproblem consisting of the
opportunity cost assessment and the iterative action generation. This loop between master
problem and subproblem continues until no more “effective” offerset which can be added to
the current restricted set to improve the expected revenue exists.

To make it easier to understand, we continue with a simple example of the procedure. Let
us consider the case with α = 0.6. The exact method results in a total revenue of 56,884
$ which is the objective function value of the CDLP model (i.e., UB). We observe that in
the optimal policy achieved by CDLP, only four actions were taken throughout the whole
booking horizon: {6}, {4, 6}, {2, 4, 6}, and {2, 4, 5, 6}. On the other hand, after solving
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RDQN, we obtained the final restricted set of nine actions including {2, 4, 6}, {4, 5, 6}, and
{1, 2, 3, 4, 5, 6} along with the original Ω consisting of six offersets; one product in each
offerset with no repetitions.

To estimate how good our method performs, we solve the exact method using only the nine
offersets generated by action generation. The achieved revenue of 56,528 $ is remarkably close
to the UB value, showing that we have had a noticeably good performance using RDQN with
only nine actions rather than DQN with 64 actions. The reduction in the size of the action
set directly affects the computational cost; however, due to smallness of the example, the
difference is not outstanding in this case.

Table 6.4 provides a detailed comparison between the results of RDQN and those of alterna-
tive approaches considering differences in both capacity and customers’ willingness to pay.
Once RDQN is trained, the trained model is used to interact with the customers for another
2000 episodes to achieve the reported simulated results. The size of the replay memory and
that of the mini-batch are 3000 and 100, respectively. Furthermore, as for the processing
time, our observations indicate that the maximum values corresponding to the training time
and the simulation processing time were 30 and 10 minutes, respectively.

Table 6.4 Comparison of the obtained revenue for the parallel flights example with 95% CI

α v0 UB CDLP CDLP Bid Price DQN RDQN

0.6 (1, 5, 5, 1) 56,884 54,156 ± 234 55,144 ± 128 55,254 ± 241 55,012 ± 144
(1, 10, 5, 1) 56,848 54,003 ± 225 55,191 ± 152 55,302 ± 513 55,131 ± 149

0.8 (1, 5, 5, 1) 71,936 67,815 ± 237 67,515 ± 518 69,355 ± 521 69,144 ± 197
(1 ,10, 5, 1) 71,794 67,853± 226 66,918 ± 532 67,522 ± 721 67,259 ± 203

1 (1, 5, 5, 1) 79,155 75,700 ± 253 70,034 ± 718 77,323 ± 658 76,505 ± 276
(1, 10, 5, 1) 76,866 73,753± 257 67,515 ± 708 73,907 ± 851 73,770 ± 273

1.2 (1, 5, 5, 1) 80,371 79,012 ± 320 71,797 ± 1062 79,450 ± 711 79,109 ± 298
(1, 10, 5, 1) 78,045 76,978 ± 335 69,630 ± 1135 77,014 ± 902 76,885 ± 314

In the above table, v0 is the no-purchase weight vector, with four elements, one for each
consideration set per each segment of customers. For example, having two cases of v0 =
(1, 10, 5, 1) and v0 = (1, 5, 5, 1), implies that the customers of the first case are less willing to
pay compared to the second one. In addition, the results of CDLP-based methods and DQN
are taken from [82] and [88], receptively.

The numerical results of the RDQN indicate that using RDQN instead of DQN results, not
only in keeping the mean expected revenue at almost the same quality range but also in
successfully improving the level of confidence intervals with more robust solutions.

This mainly occurs because of having much lower numbers of actions compared to the original
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number of actions in DQN; thus, the agent will have fewer opportunities to explore. As it is
valid for DQN, here again, we observe a constant good performance of RDQN in almost all
scenarios with different capacity size and customer willingness to pay.

Studying the simulated results of CDLP model, we observe that it shows a better performance
for ample capacity case (i.e., α = 1.2) compared to the highly constrained capacity cases
(i.e., α = 0.6 and 0.8). In general, decision making in small size problems is more challenging
due to the fact that there is a much less margin of mistake in resource allocation process of
such cases. This is when the outperforming of DQN and RDQN compared to CDLP is more
evident.

On the other hand, CDLP bid price achieves noticeably high mean expected revenue in
restricted capacity cases, however, its performance drops dramatically when capacity is in-
creased. Overall, although RDQN shows slightly lower performance quality compared to
DQN, it still outperforms CDLP-based methods in majority of scenarios. The main advan-
tage of RDQN comes to play when we have a larger scale problem such as hub and spoke
example.

6.4.2 Hub and Spoke Example

The second example consists of a 7-leg hub and spoke network with 22 products. Figure 6.5
and Table 6.5 illustrate the design of the network and contain description of the products,
respectively.

Figure 6.5 Hub and spoke example

Unlike in the simple parallel flights example, here, products may use more than one resource.
This characteristic of flight network increases the complexity of the example in question.
Moreover, the initial capacity of legs are (100, 150, 150, 150, 150, 80, 80), respectively, and
there are 1000 time periods in booking horizon, T = 1000. Thus, we are dealing with a larger
scale problem compared to the first example.
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Table 6.5 Hub and spoke example

Product Leg Class Fare Product Leg Class Fare
1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 17 6 L 250
7 7 H 500 18 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350

Having an arrival rate of λ = 0.91 results in an average arrival rate of 910 customers per
stream of demand. Customers belong to 10 overlapping segments based on their time and
price sensitivity as well as on their origin-destination choice. Customer segmentation defini-
tions are presented in Table 6.6.

Table 6.6 Customer segmentation definitions for the hub and spoke network example

Segment O-D Consideration set Pref. vector λl Description
1 A → B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08 Price insensitive, early pref.
2 A → B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2 Price sensitive
3 A → H {2,3,13,14} (10,10,5,5) 0.05 Price insensitive
4 A → H {2,3,13,14} (2,2,10,10) 0.2 Price sensitive
5 H → B {4,5,15,16} (10,10,5,5) 0.1 Price insensitive
6 H → B {4,5,15,16} (2,2,10,8) 0.15 Price sensitive, slight early pref.
7 H → C {6,7,17,18} (10,8,5,5) 0.02 Price insensitive, slight early pref.
8 H → C {6,7,17,18} (2,2,10,8) 0.05 Price sensitive
9 A → C {10,11,21,22} (10,8,5,5) 0.02 Price insensitive, slight early pref.
10 A → C {10,11,21,22} (2,2,10,10) 0.04 Price sensitive
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We start dealing with this example by creating a restricted set of actions Ω with 22 actions,
in which, every action consists of a single product j ∈ J . In the first step, we solve the initial
master problem using RDQN considering only the restricted action set and performing the
method for 3000 episodes.

Afterwards, we calculate the opportunity costs for each of the seven resources based on the
algorithm 5. The next step involves applying the iterative action generation algorithm as
defined in the algorithm 6. Eventually, the generated offerset will be added to the initial
restricted set yielding total 23 offersets in total.

The hub and spoke example, then, will be solved using the new restricted action set with
23 updated offersets. After processing another 3000 episodes and estimating the updated
opportunity costs, the next action will be generated and added to the existing set.

This repetitive process of solving the master problem, opportunity cost assessment and action
generation will be continued until addition of new actions does not increase the expected
potential revenue anymore. Here again, the trained model is used in simulation process for
2000 episodes to obtain the results which are going to be reported.

In the meantime, regarding the processing time of RDQN, our observations denote that
training takes between 50 to 170 minutes depending on the number of the generated actions
whereas simulation takes less than 20 minutes. The size of the replay memory and mini-batch
are 3000 and 200, respectively.

Table 6.7 presents the results of solving the seat inventory control problem in the hub and
spoke example using the exact method (UB), simulated CDLP-based methods, which are
taken from [82], and RDQN.

Columns in this table are defined in like manner as in the previous example 6.4.1: UB, CDLP,
CDLP bid price and RDQN represent the upper bound value, the result of simulating the
control policies obtained through CDLP, bid price and RDQN approaches, respectively.

Here again, α is a scale parameter used to examine the effects of having various resource
capacities on the performance of our method. v0 is the no-purchase weight vector which
has one coordinate for each segment, making it a vector of 10 elements. However, for the
sake of simplicity, it was decided to reduce its length to two. Based on the definitions
provided in Figure 6.6, the segments can be classified in five pairs based on their origin-
destination. We assume the no-purchase preference weight to repeat for each pair (e.g.,
v0 = (5, 10, 5, 10, 5, 10, 5, 10, 5, 10) is represented as v0 = (5, 10)) [32].

Finally, the last column of the table, named “Added Actions”, contains the number of actions
(offersets) generated using AGen. The total number of actions for each case (i.e., each α
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and v0 combination) consists of the initial 22 actions plus the number of the added actions
generated through AGen iterations. For instance, for the case of α = 0.6 and v0 = (5, 10),
there are 22 + 24 = 46 actions in total.

Table 6.7 Comparison of the obtained results for the hub and spoke example with 95% CI.

α v0 UB CDLP CDLP Bid Price RDQN Added Actions

0.6
(1, 5) 215,793 207,709 ± 370 190,384 ± 1,208 210,379 ± 234 19
(5, 10) 200,515 193,543 ± 372 175,601 ± 906 194,305 ± 266 24
(10, 20) 170,137 163,628 ± 329 159,685 ± 844 166,787 ± 255 18

0.8
(1, 5) 266,934 260,535 ± 428 224,069 ± 1,281 264,129 ± 283 17
(5, 10) 223,173 218,231 ± 341 203,810 ± 983 220,144 ± 265 17
(10, 20) 188,547 184,030 ± 337 175,720 ± 1,096 185,976 ± 298 12

1
(1, 5) 281,967 276,968 ± 434 242,195 ± 986 278,552 ± 290 9
(5, 10) 235,284 229,704 ± 374 216,860 ± 1,410 231,711 ± 321 11
(10, 20) 192,038 190,136 ± 404 186,438 ± 1,229 190,670 ± 325 10

According to Table 6.7, RDQN outperforms CDLP as well as the methods based on the
bid-price policy in all cases. The differences between CDLP and RDQN are more significant
in the highly constrained capacity cases (i.e., α = 0.6 and 0.8), yet both methods perform
reasonably good on the original capacity case. However, RDQN still shows a mean expected
revenue slightly closer to UB. Overall, when the capacity exceeds the demand for different
legs, offering almost all products at each time period would be a reasonable strategy as both
methods will show similar performances.

On the other hand, a limited capacity makes the choice-based problem more complicated
because the margin of error will be more limited, and thus, the obtained revenue will greatly
depend on the products offered at each time step. In this example, CDLP bid price shows less
promising results overall. Moreover, as expected, when there is a high chance of no-purchase
(i.e., v0 = (10, 20)), the revenue decreases in all cases.

6.5 Conclusion

In this paper, we intended to solve a large-size choice-based seat inventory control problem
using deep reinforcement learning techniques. Throughout this study, it was assumed that
customers belonged to overlapping segments and their choice behavior was simulated using
parameters of the Multinomial Logit model. We also realized that by using DQN, as a
common well-known DRL method, the problem of extreme computational cost would emerge
[88]. In fact, the main issue surfaces as an exponential growth in the number of actions when
the number of products increases. To handle this issue, we proposed an action generation
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algorithm called AGen.

An AGen is a greedy heuristic algorithm which generates a set of “effective” actions to be
used instead of 2|J | possible offersets. Using an iterative process, we integrated AGen into
DQN and obtained a method named Restricted DQN (RDQN) which consisted of two main
steps: a master problem and a subproblem. The master problem could be regarded as an
evaluation unit that uses DQN to explore the performance of the actions generated by the
subproblem.

RDQN performed remarkably well in practice considering both computational complexity
and quality of the results. The algorithm was examined on two examples: the parallel flights
and the hub and spoke network. In all scenarios, RDQN produced better results than CDLP
and bid price control policy did, specially in the scarce capacity cases.
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CHAPTER 7 GENERAL DISCUSSION

In this thesis, we have studied application of novel data-driven approaches to customer choice-
based network Revenue Management Systems (RMS). Our main focus was on two main cores
of any RMS; namely, forecasting module and seat inventory control module. Specifically, we
have studied how state-of-the-art machine learning methodologies can help better manage
an RMS, and hence, improve its performance. Our numerical results indicate desirable per-
formance of our algorithms in terms of solution quality and processing time.

In chapter 2, we have developed a combination of various preprocessing, machine learning and
feature engineering techniques in order to predict the number of potential arrival customers on
different aggregation levels. In doing so, in addition to adopting advanced machine learning
approaches, we developed new heuristic methods to extract underlying shallow and deep
hidden characteristics of historic observations. Specifically, we demonstrated that to what
extent a precise clustering can improve the quality of the forecasting results.

In chapter 3, we addressed a challenging revenue management problem in the absence of
forecasting information. To tackle this problem, we explored a deep reinforcement learning
methodology which can successfully learn customers’ choice behavior and propose inventory
management decisions at every period by taking the current availability of the resources
into consideration. We gained promising results by applying this algorithm to common RM
examples provided in the literature.

In chapter 4, we proposed a solution approach to tackle large practical RM problems. The
main difficulty in larger problems arises when the number of products (|J |) rises and results
in an exponential increase in possible combinations of the products 2|J | (called offersets
or actions). To address the problem of large discrete action space while inspired by column
generation algorithm, we developed a heuristic algorithm called “Action Generation” (AGen).
AGen contributes to solving the RM problem by generating most profitable “effective” actions
while taking the opportunity costs of resources into consideration. The promising numerical
results indicate desirable performance of our proposed methodology.

As a general discussion, during the past few years, we have observed that both firms and
customers use more advanced analytical techniques in their decision-making processes. In the
presence of increasing competitors and lower-cost carriers, it is essential for the future of the
RM systems to develop methodologies which can help them react dynamically in real time.
Moreover, the presence of large amounts of data necessitates development of algorithms that
can handle the processing of such data in a reasonable time frame.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In summary, we made the following advancements in this thesis.

First, we started with exploring state-of-the-art machine learning algorithms and developing
advanced heuristic feature engineerings techniques in order to estimate the expected number
of future bookings for a railway demand forecasting problem in different aggregation levels.
In addition, we demonstrated the critical role of precise clustering in substantial performance
improvement of forecasting results.

In the next step, we tackled a seat inventory control problem with the assumption of having
partial demand information. This situation can happen in new markets or in the presence
of new competitors in the existing market. To address this problem, we developed a learner
(i.e., an agent) which can learn the market and customer choice behaviors by both observing
the past historical bookings and learning from the most recent interactions between the agent
and the environment. An agent trained with these data can precisely estimate customer’s
choice behavior and thus, make informed decisions throughout the booking horizon in order
to increase the total revenue.

Solving a choice-based seat inventory control system for the real world practical problems, we
face the challenge of having exponentially large number of possible actions when number of
products increases. We addressed this drawback by developing a heuristic action generation
algorithm to iteratively generate effective actions while taking the computed opportunity
costs of products’ constituent resources into consideration.

There are several avenues for further development of this research, including:

• extending the proposed forecasting methodology to estimate unconstrained demand

• computing the product replacement probabilities through analyzing historical observa-
tions

• developing a Transfer learning (TL) method as an extension to the proposed DQN-
based approach for the seat inventory control system
TL helps transfer and apply the knowledge gained from solving one problem to a
different but similar one. Since many RM problems share comparable concepts and
structures with main differences in the number of products or legs, this can be regarded
as a very valuable extension.
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• improving the performance of AGen algorithm by considering the possibility of gen-
erating more than one action at every iteration of the algorithm and removing the
redundant actions
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