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RÉSUMÉ 

Ces dernières années, les villes ont dû renforcer leurs obligations en matière de réduction de leur 

impact sur l’environnement. Heureusement, les villes relèvent ce défi et sont déterminées à trouver 

des solutions. La consommation d’énergie des bâtiments est l’un des principaux obstacles au 

développement durable. Les villes sont construites pour fournir des espaces confortables et 

habitables à leurs habitants, ainsi que pour assurer un environnement résistant aux événements 

météorologiques et climatiques. Cependant, fournir ce confort nécessite de grandes quantités 

d’énergie, ce qui participe aux changements climatiques. 

Les besoins en énergie des bâtiments étant en grande partie le résultat de décisions en matière de 

conception, les constructeurs des villes de demain ont un contrôle sur les différentes solutions 

proposées dans le domaine de l’environnement bâti. Des solutions technologiques existent, mais la 

bonne solution doit être mise en œuvre dans le bon contexte. Cette thèse porte sur une solution 

technique clé : l’utilisation de réseaux urbains d’énergie pour répartir — ou partager — la chaleur 

entre les bâtiments et équilibrer les charges de chauffage et de refroidissement restantes avec des 

sources de chaleur ou des puits hautement efficaces et à faible émission de carbone. 

Cette thèse est également motivée par les relations interdisciplinaires complexes entre les 

concepteurs participant à l’urbanisme, à l’architecture et à l’ingénierie de l’environnement bâti. 

Elle plaide en faveur d’un processus de conception intégrée piloté par les données et propose des 

méthodologies et des outils pour informer et activer ce processus de conception. 

Un indicateur de performance, l’indice de diversité thermique, est proposée pour localiser et 

évaluer la compatibilité thermique entre des bâtiments présentant différents niveaux de filtrage 

spatio-temporel. La thèse apporte ensuite des contributions aux différentes étapes nécessaires à la 

conception et à l’évaluation de réseaux de partage de chaleur, faisant souvent partie de la 

5e génération de systèmes de chauffage et de refroidissement urbains : évaluer la demande 

thermique des bâtiments à l’échelle de la ville en optimisant la topologie des réseaux urbains 

d’énergie et l’intégration de sources d’énergie efficaces et à faibles émissions de carbone. 

Les archétypes, ou représentations typiques des bâtiments sont les fondements de nombreux outils 

de modélisation énergétique des bâtiments urbains (UBEM). Une méthodologie est proposée pour 

générer automatiquement des modèles d’archétype adaptés aux méthodes de modélisation 

contextuelles telles que celle implémentée dans UMI, l’un des principaux outils UBEM. 
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La thèse aborde ensuite la complexité de la combinaison de sources de données partiellement 

complètes et parfois contradictoires pour obtenir une carte dynamique de la demande de chaleur 

pour une ville telle que Montréal. La méthodologie proposée comprend l’utilisation d’empreintes 

de bâtiment virtuelles basées sur des données ALS (Airborne Laser Scanning) (également appelées 

données LiDAR) pour estimer les empreintes au sol et les hauteurs de bâtiment. Elle est appliquée 

pour obtenir une carte dynamique de la demande de chaleur de bâtiments résidentiels, commerciaux 

et institutionnels pour l’ensemble de la ville de Montréal. 

Pour compléter le processus de conception des réseaux de partage de chaleur, cette thèse propose 

une méthodologie qui étend la capacité des algorithmes d’optimisation de la littérature utilisés pour 

les réseaux de chauffage et de refroidissement urbains : elle permet des flux de puissance 

bidirectionnels inhérents au partage de chaleur et optimise la compétitivité à long terme de 

l’approvisionnement en chaleur en équilibrant les coûts totaux d’exploitation et les coûts totaux 

d’investissement des différentes unités d’alimentation en chaleur. 

L’algorithme proposé, avec les autres contributions de la thèse, ouvre la porte à un cadre 

d’optimisation visant à peser l’impact des choix de conception inhérents à la sélection de la densité 

de construction, de la forme du bâtiment et de ses performances. Cette thèse affirme que 

l’intégration de cette optimisation des réseaux de partage de chaleur dans la phase de planification 

peut avoir une incidence nouvelle et imprévue sur la performance environnementale des futurs 

quartiers. Conformément à cet objectif à long terme, les contributions méthodologiques ont été 

mises en œuvre dans des outils contribuant à l’expansion rapide du corpus de logiciels en code 

ouvert. Avec les contributions à la littérature et aux pratiques de planification des réseaux urbains 

d’énergie, ces outils offrent une solution à la planification et à la conception intégrée de réseaux de 

partage de chaleur en milieu urbain. 
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ABSTRACT 

In recent years, cities have had to step up their obligations to reducing their impact on the 

environment. Fortunately, cities are rising to this challenge and are determined to find solutions. 

One piece of the larger sustainability problem is the energy use of buildings. Cities are built to 

provide comfortable and livable spaces to their inhabitants as well as ensure a resilient environment 

towards meteorological and climatic events. However, providing this comfort requires large 

amounts of energy, which exacerbates climate change. 

Since the energy requirements of buildings are in large part the result of design decisions, the 

builders of cities have an innate control over the various solutions in the built environment problem 

space. Technological solutions exist, but the right solution must be implemented in the right 

context. This thesis focuses on one key technical solution: the use of district energy systems to 

distribute—or share—heat between buildings and balance the remaining heating and cooling loads 

with highly efficient, low-carbon heat sources or sinks.  

This thesis is also motivated by the complex interdisciplinary relationships between designers 

participating in the urban planning, the architecture and the engineering of the built environment. 

It makes the case for a data-driven Integrated Design process and proposes methodologies and tools 

to inform and enable this design process.  

An urban planning metric, the thermal diversity index, is proposed to locate and assess the thermal 

compatibility between buildings with various levels of spatial and temporal filtering. The thesis 

then makes contributions to the different steps required in designing and assessing heat-sharing 

networks, often part of the 5th generation district heating and cooling (5GDHC): assessing the 

thermal demand of buildings at the city scale, optimizing the topology of district systems, and 

integrating efficient and low-carbon energy sources within an overall optimization process.  

Archetypes, or typical representations of buildings, are the foundation stones of many Urban 

Building Energy Modelling (UBEM) tools. A methodology is proposed to automatically generate 

archetype templates adapted to context-aware modelling methods such as the one implemented in 

UMI, one of the prominent UBEM tools.  

The thesis then addresses the complexity of combining partially complete and sometimes 

contradictory data sources to obtain a dynamic heat demand map for a city such as Montréal, 
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Canada. The proposed methodology includes the use of virtual building footprints based on 

Airborne Laser Scanning (ALS) data (also known as LiDAR data) to estimate building footprint 

areas and building heights. It is applied to obtain a dynamic heat demand map of residential, 

commercial and institutional buildings for the whole city of Montréal. 

To complete the design process of heat-sharing networks, this dissertation proposes a methodology 

that expands the capability of state-of-the-art optimization algorithms used for district heating and 

cooling networks: it allows bidirectional power flows that are inherent to heat-sharing networks 

and optimizes the long-term competitiveness of heat supply by balancing the total operating costs 

and the total investment costs of different heat supply units. 

The proposed algorithm, with the other contributions of the thesis, opens the door to an 

optimization framework aiming to weigh in the impact of design choices inherent to the selection 

of built density, building form and building systems performance. This thesis proclaims that 

bringing this optimization of heat-sharing networks inside the planning phase can impact the 

environmental performance of future districts in new and unforeseen ways. In line with this long-

term goal, the methodological contributions were implemented in tools contributing to the rapidly 

expanding body of open source software. Together with the contributions to the literature and the 

district energy planning practice, these tools offer one solution to the planning and integrated 

design of urban heat-sharing networks.  
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1 

 INTRODUCTION 

This chapter introduces the context and the motivation for the study in this dissertation. It then 

presents the organization of the thesis with respect to the main contributions in each chapter. The 

integration of district energy in urban energy supply systems has been extensively studied by 

scientists and engineers, but district energy has rarely been explicitly integrated directly into the 

urban design process. Moreover, district energy is changing at a quick pace and we have already 

entered into the so-called fifth generation: ambient temperature, heat-pump assisted, heat-sharing 

networks which promise better environmental performance. The strategy implemented by this 

dissertation is to break down the planning and integrated design of heat-sharing networks into a 

framework of data acquisition, optimization and analysis that is compatible with the holistic design 

process seen in the field of architecture and urban design. This thesis introduces new tools to collect 

and display urban building energy data, advise on optimal network topology and suggest low-

carbon energy supply scenarios. 

1.1 Context 

Urbanization of the global population is well underway. According to the United Nations, more 

than 68% of the world population will be urban by 2050 (United Nations Department of Economic 

and Social Affairs Population Division, 2019). This influx in urban population will put a strain on 

the existing infrastructure and will force authorities to make adjustments. Without proper policies 

that favour high density, new urban developments will aggravate the phenomenon of urban sprawl, 

gradually eating away at valuable agricultural areas and virgin lands. With climate change, more 

regions will experience an increase in energy use from air conditioning systems as extreme 

temperature events will become more and more frequent. These trends run counter to sustainability 

principles which advocate for a reduction in resource consumption and an increase in global 

welfare. The challenge that presents itself is to do “more and better with less” of this energy. 

District energy systems (DES) are a key element in the transition to sustainable energy according 

to the United Nations Environment Program (UNEP, 2015). They offer a practical way to increase 

the efficiency of the energy production and energy distribution necessary to heat and cool 

buildings. Furthermore, they offer the possibility of exploiting synergies between different social 

activities, such through the recovery of heat rejection. Historically, district energy was developed 
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around thermal sources in the form of combined heating and power (CHP), waste-to-energy (WtE) 

or even industrial processes. However, with the latest development in DES technology, renewable 

energy can have a more important role to reduce global impacts on the environment (Werner, 

2017). In reality, DES require a certain built density as well as a combination of various 

programmatic building usages to reach their full potential. This is especially the case for heat-

sharing networks that rely on the heat rejection of some buildings to cover part of the heat demand 

of others (see chapter 3.2). Evidently, high density cannot simply be the sole reason to build a DES; 

there is a community aspect that must be addressed in order to design districts that are also livable. 

Liveability is difficult to define, although many design paradigms point to the quality of physical 

amenities such as parks, green spaces or even the number of good bakeries within a short walk 

distance; the health of the local economy and the diversity of culture offerings are also good 

indicators of a liveable community (Ling, Hamilton, & Thomas, 2006). Liveability links with 

sustainability and infrastructure issues—e.g., the competitiveness of district energy—in its 

alternative urban development model that goes against sprawling suburbs with low densities (both 

population and services) that demand infrastructures that put pressure on ecological, economic and 

social systems (see for example the US Department of Transportation’s Liveability Initiative 

[Fischer, 2000]). While high density can drive down costs linked to district energy, it must not 

hinder liveability. Therefore, a more thoughtful urban planning process is necessary to achieve the 

highest liveable density to enable both a high energy efficiency promised by DES and a livable 

community. There is a need for planning tools that will place scientific data and models at the 

forefront of design practices. 

The methodology presented in this thesis focuses on the interface between urban planning, 

architecture and the development of DES by providing a balanced workflow that enables planning 

teams to collaborate effectively. Whether it is by providing relevant urban energy diagnosis tools 

such as the Thermal Diversity Index (TDI) or by integrating with tools already used by 

practitioners, this methodology aims to bridge the gap between architecture and engineering 

through a more effective collaboration. 

Effective collaboration is the key to ensuring the best designs are built. This is why the foundation 

of this thesis relies on principles of Integrated Design (ID): mutual understanding of the objectives 

and a combination of linear and iterative processes. The need for an integrated design approach is 

not a new reflection and its term is already quite known. However, ID has operated mostly within 
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the confines of the micro-scale architecture-engineering-construction space. Could urban planning 

be integrated upstream from those spaces with a focus on data-driven decisions at macro-scales? 

To continue with this foundational analogy, the pillars of this thesis represent four complementary 

methods that support the planning and integrated design of heat-sharing networks: (1) The 

diagnosis of heat-sharing opportunities, (2) the efficient analysis of building energy through the 

creation of building archetype templates (3) the quantification and visualization of the city’s energy 

demand, and (4) the optimization of heat-sharing network topologies for early design proposals. 

ID links these methods through their explicit motivation to interface easily with an iterative design 

process: fast input data preparation, quick result generation, effective summarization and 

reproducibility. As we will see, applying these principles to building stock energy prediction, 

district network planning and energy supply planning, faces challenges of data availability and 

acquisition as well as model oversimplification. Yet, there is evidence that these issues can be 

contained by applying various methods of model complexity reduction and combination of 

multiple data sources. 

As discussed in the upcoming chapters, an integrated design approach to the design of energy 

supply systems offers a way forward to curb greenhouse gas emissions while favouring a high 

density, a critical challenge we must face. This challenge is escalated by the unique environmental 

conditions of each city around the world, which require a unique set of solutions. Globally, we 

know that the average temperature has risen by 0.85 °C between 1880 and 2012 (IPCC, 2014). In 

Canada, the situation is far worse. The country experiences warming on average twice as fast as 

the rest of the world. Northern Canada is warming almost three times faster than the world average, 

according to a 2019 government report (Gillet et al., 2019, p. 125). On the other hand, in Quebec, 

the home province of the author, mean temperatures have increased at a lower rate than the rest of 

Canada. Combined with the high penetration of hydroelectricity (61%) in the Quebec building 

sector and the most competitive energy prices in North America, there is a resistance in the industry 

to reducing the share of natural gas (19%) by replacing aging systems by other forms of heat 

production units (Whitmore & Pineau, 2018). Politically, the transportation industry is an easier 

target that could provide quicker and more apparent results with a “transportation electrification”. 
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1.2 Motivation 

This engineering thesis aims at producing science-based tools while paying attention to the needs 

of the ID process. While it can be situated between architecture, urban design, and mechanical 

engineering, it presents new techniques and measures for informing good design practices through 

the lens of urban building energy modelling and energy supply planning. This dissertation proposes 

to bridge the gap between the practical and the theoretical—that is, elements that offer 1) a useful 

toolkit for research to help practising planners and architects and 2) a theoretical lens to 

reconceptualize oversimplifications of district energy systems. 

The structural attributes of urban energy flows influence the built environment and the dynamics 

that manifest in space throughout the city. Where is the energy needed? Where does it come from? 

Questions that are usually answered with specialized tools that help designers understand the 

impact of their decisions. This translates as the primary motivation of this thesis, which aspires to 

improve design concepts of future district energy systems by providing a scientific toolkit that can 

empower stakeholders with the cost benefits of the energy supply strategy to use at the time when 

it is necessary to decide on which strategy to use. In simple terms, this dissertation tries to answer 

the question: “Can the deployment of a heat-sharing network positively influence the final design 

of architects and urban planners?” Alternatively, this thesis proclaims that bringing the topology 

optimization of heat-sharing networks inside the planning phase can impact the environmental 

performance of future districts in new and unforeseen ways. 

Evidently, there exists a plethora of tools that provide some answers to this question by focusing 

on various phases of district energy planning (exploratory study, feasibility, design, etc.), but, as 

we shall discuss, a gap exists with district heat-sharing networks. 

Another area of concern is the issue with reproducibility in research and in practice. The current 

landscape of tools and methods offers no ideal technique that balances usability, customizability, 

reproducibility, and scaleability in acquiring, constructing, and analyzing heat demand for the 

purpose of district energy systems. 

The larger goal is to reintroduce engineering earlier into the design process; structural engineers 

have been able to play ball for quite some time as more modern buildings can enjoy creative and 

complex shapes thanks to a closer and more productive relationship between architects and 
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structural engineers (Olsen & Namara, 2014). Today, state of the art building energy simulation 

software focus on the design impact of energy consumption in buildings. But the industry, 

comprised of both mechanical systems engineers and architects, has yet to integrate efficiently 

these tools into their workflows – i.e., most simulation tools are used to get green credits instead 

of informing design. At the city level, in the realm of urban planning, the role of energy simulation 

tools is hardly defined; there is a case where engineering-based tools can inform better urban 

planning practices by deploying building energy simulation and district energy simulation theories. 

This thesis proposes such a method through the following contributions. 

1.3 Organization and Contributions by Chapter 

This thesis starts with an introductory and structuring chapter and ends with concluding discussions 

and remarks covering the 6 central chapters. These 6 chapters unpack the bedrock of Integrated 

Design, which this work adheres to, position district energy inside the urban design process, present 

a method for acquiring, analyzing and visualizing heat demand and create a workflow for 

influencing design decisions in heat supply optimization scenarios.  
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Figure 1.1 Overall dissertation structure. 
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1.3.1 Chapter 1: Introduction 

This chapter has so far presented the motivation and context of the study presented in this thesis. 

The remainder of this chapter summarizes the organization and contribution of each of the 

following chapters of this thesis. 

1.3.2 Chapter 2: Bridging the Gap Between Engineering and Architecture 

Unlike the other substantive chapters of this thesis, this chapter makes neither an empirical nor a 

methodological contribution. However, it offers a theoretical contribution to the engineering 

literature by describing the fundamental concepts of integrated design theory. It provides 

illustrative examples of these concepts, as well as a general description of the tools for researchers 

and professionals who are not familiar with the science of multidisciplinary building design and 

neighbourhood energy design. In doing so, it addresses the transition from focusing on the 

dynamics of single buildings to consider large-scale urban planning along with energy supply 

planning and suggests a bridge between the two. 

1.3.3 Chapter 3: District Energy Networks in the Realm of Urban Design 

Building on the concepts of Integrated Design detailed in chapter 2, chapter 3 lays down the 

theoretical framework of district energy and, more particularly, heat-sharing networks which is the 

primary focus of the thesis in the subsequent chapters. District energy systems have evolved 

throughout the years and scholars have attempted to characterize them with distinct generations. In 

an attempt to reduce thermal losses and to interface more easily with renewable energy sources, 

the operating temperature of district energy networks has been steadily decreasing. With these 

lower temperatures, new generations are appearing, which carry with them a morass of ambiguous 

terminology. An updated characterization of the nomenclature is welcomed. 

Furthermore, this chapter moves on with concepts of rapid prototyping of district energy networks 

using mathematical models that have appeared in the district energy literature over the past 10 

years. They focus on more traditional district energy systems, and less on heat-sharing networks, 

leaving an opportunity to fill this gap in the literature. Linked to the realm of urban planning, 

concepts of complexity are then addressed. More specifically, the concept of thermal diversity, 

documented in the literature, is presented and the chapter delves into its significance in the field of 
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district energy. The chapter then presents two contributions: the use of a temporal filter to represent 

the effect of thermal storage on thermal diversity and a spatial filter to represent the spatial extent 

of a heat-sharing network. Both filters work together to map thermal diversity in any given 

geographical context. Together, contributions of this chapter form the basis of the subsequent 

chapters. In particular, measures of building energy usage and energy supply optimization are 

operationalized in the next 4 chapters. 

1.3.4 Chapter 4: Archetypes in Urban Building Energy Modelling 

Chapter 4 answers the data needs evoked in chapter 3 concerning the estimation of the energy 

demand at the district or city scale. A review of methods of building energy prediction culminates 

with notions of urban building energy modeling. These principles have been applied to the study 

of building design, energy retrofit strategies and policy making. However, the lack of consistent 

and reliable data and methodologies have rendered the task arduous. This is particularly true when 

trying to estimate future energy demands, since uncertainty in planned building usages, occupant 

behaviour and even climatic trends dominate the inherent differences and errors between 

simulations and reality. 

Building archetypes are the centrepiece of the physical representation of a large building stock 

through a finite number of generalized candidates. Their use has become the norm in Urban 

Building Energy Models (UBEM), and they have contributed to the development of large-scale 

studies providing a detailed representation of the energy consumption attributed to buildings in 

cities. However, archetypes are location-specific and, where there is a lack of existing databases, 

they tend to necessitate tedious and labour-intensive work to create. This chapter delves into the 

UBEM data requirements and suggests an answer to accelerate the creation of UBEMs: the 

automatic generation of archetype templates. 

The methodology of the algorithm is explained, and assumptions are laid out. Finally, the 

methodology, which is embedded in a Python-based tool called archetypal, is used to carry a proof 

of concept for the creation of more than 15 000 building archetype templates applicable to a wide 

range of building uses and construction years for both Canadian and American cities is presented. 

This concept shows promising fallouts for the creation of UBEMs throughout Canada and the 

United States. Together, the foundation of building stock energy prediction with the archetype 

template development prepare the methodological heat demand landscape detailed in chapter 5. 
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1.3.5 Chapter 5: Acquiring, Analyzing and Visualizing Heat demand 

Coupled with the UBEM methods described in the previous chapter, this chapter investigates the 

connections between these various fields of study and proposes a workflow adapted to the data 

availability of the City of Montréal. The particularity of these heat maps is that they include the 

dynamics (hourly load profile) of the energy demand and not only the annual energy consumption, 

as would typical heat maps. The method combines LiDAR imagery with the property assessment 

roll, two publicly available datasets, to segment buildings into groups sharing similar properties. 

The process is discussed, and difficulties are highlighted. 

1.3.6 Chapter 6: Heat-Sharing Network Topology Optimization 

Following the examination of district energy network theory and building energy demand 

prediction at the city scale through chapters 3 to 5, chapter 6 tackles the energy supply side of the 

urban energy flow equation. The energy supply is presented from the angle of the energy 

distribution with the use of heat-sharing networks. The proposed method focuses on the techno-

economic optimization of the network topology—e.g., pipe location and capacity. 

Network topology optimization is the process of planning the creation—or the extension—of a 

district energy network in the most economical way. Since the cost equation is heavily dependent 

on the length of the network, energy planners must choose wisely which areas of the city to connect 

with the network and eventually to generate enough revenues. At the planning stage, the network 

topology optimization not only allows planners to evaluate the cost of the future network, but it 

can also favour some design choices—e.g., a certain building type mix versus another or an 

envelope performance goal—since they have a corresponding impact on cost, but most importantly 

on environmental performance. In other words, bringing the topology optimization inside the 

planning phase can impact the environmental performance of the future district in new and 

unforeseen ways. 

In doing so, this chapter presents the last core contribution of this thesis embed into a tool called 

district: A Mixed Integer Linear Programming (MILP) topology optimization tool for heat-sharing 

networks. The MILP draws information from all the steps detailed in the last chapters; energy 

demand profiles, building footprint location, road network topology and energy source location are 

all necessary data inputs. With them, the MILP is the engine behind the network topology 
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optimization and informs designers and planners on the techno-economic performance of their 

design. Together with archetypal and district, this contribution forms the comprehensive 

methodology for the planning and integrated design of heat-sharing networks. 

1.3.7 Chapter 7: Open Source Software 

This chapter presents the methodological contributions of this thesis in the form of open source 

software. The first is archetypal, a python tool developed by the author in which is implemented, 

amongst other features, the automatic archetype template generation presented in 4.2. While 

comparable tools usually have to be developed from scratch or rely on expensive commercial 

software such as MATLAB, developing a tool in Python makes them available to a wider audience. 

Such tools are open-source, cross-platform and open to further development through community-

based programming. More than 50% of the tools listed on the Open energy modeling initiative 

(openmod) are Python tools (openmod, 2018). archetypal contributes 6 significant capabilities for 

researchers. First, the persistent loading, modification and execution of collections of EnergyPlus 

models in a programmatic environment; second, the simplified analysis of geometric and non-

geometric parameters; third, the query and visualization of EnergyPlus time series result data; 

fourth, the creation and modification of archetype templates from EnergyPlus models, essentially 

short-circuiting the manual creation of UMI Template Files1; fifth, the conversion of EnergyPlus 

schedule types to complete Year-Week-Day types. Sixth, a command line interface that can enable 

the batch processing of complex building archetype manipulations. 

This chapter also presents an accompanying contribution named district. district is also a Python 

package developed by the author and has the task of interfacing with archetypal to acquire, analyze 

and visualize heat demand. The core elements of district used in chapter 5 are: first, the 

downloading of building footprints and other georeferenced data; second, the estimation of 

individual building floor area. Additionally, district interfaces with the topological optimization 

                                                 

1 UMI is a software tool allowing the simulation of various urban energy flows. A building energy module uses so-

called template files as data input for an EnergyPlus simulation. 
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program that is presented in detail in chapter 6. It implements various graph topology analysis 

methods that are tied to GIS data structures. 

1.3.8 Chapter 8: Conclusions and Recommendations 

This dissertation concludes with a tour d’horizon of the study, a summary of its key contributions 

to the literature and to the district planning practice and discusses potential trajectories for future 

research. 

 



12 

 BRIDGING THE GAP BETWEEN ENGINEERING AND 

ARCHITECTURE 

This chapter lays the foundation that is at the core of this thesis. Readers will appreciate the 

demystification of the reflections made across this body of work. It first provides a background of 

the Integrated Design process and demonstrates its place as the catalyzer of better buildings and 

urban design. This premise triggered the formation of the Re4 Montréal research group at the 

beginning of 2017—Re4 stands for Réseaux urbains d’énergie de 4e generation, or Fourth 

Generation District Energy Networks—tasked with exploring the role of DES in the energy 

transition. The group’s goal was to better understand the relationship between sustainable 

architecture, urban planning and renewable energy supply systems. The director and co-director of 

this thesis, together with Lisa Bornstein, professor of urban planning at McGill University, joined 

forces to explore these topics with a team of dedicated master’s and PhD students. As it will be 

explained in detail in this chapter, the fourth generation of district energy networks must conform 

to a new era of urban development organized around the integration of renewables in smart grid 

systems and face the challenges presented by more efficient buildings. The chapter then illustrates 

the role of quantitative sustainability indicators in urban planning and the logic for bridging with 

Urban Building Energy Modelling (UBEM). This logic is highlighted by a proposed new indicator 

of building energy compatibility that short-circuits the need to use detailed modelling techniques 

to identify the best sites for the implementation of heat-sharing networks. It is one of many methods 

that establishes the diagnosis of a site, all while transitioning from the urban planning to district 

energy system planning. This chapter then explores another context linked to sustainability in the 

built environment: collaborative tools in architecture. The findings relate to the other 

methodological contributions of this thesis in their aim and form: early design supporting tools. 

Finally, it follows up on limitations and challenges linked to collaborative tools and lays out the 

objectives for the subsequent chapters. 

2.1 Urban Design Process 

We live in cities because they improve our quality of life—this goal is the minimum requirement 

for any built environment. Nonetheless, not all cities are created equal and not all cities control the 

“energy flows”—transit of goods and people, energy production and distribution as well as waste 
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disposal—that operate daily in the macrocosm of the city. When it comes to the built environment, 

the buildings we live and work in and the negative space they create—the public places—are 

usually the result of an intention to provide comfort to the occupants. It comes as no surprise that 

the source of that comfort asks for a lot of energy. 

In Canada, 61% of the final energy2 is consumed in urban areas, and more than half of this energy 

is consumed in the form of heat or cold (QUEST Canada, 2012, p. 1)3. Even in a city like Montréal, 

which benefits from hydroelectric power, buildings accounted in 2015 for almost one third (28%) 

of greenhouse gas emissions (Ville de Montréal, 2019). The Intergovernmental Panel on Climate 

Change (IPCC) identifies the building sector as the one with the best potential for economically 

viable GHG emission reductions (Intergovernmental Panel on Climate Change, 2014). The energy 

use of buildings is affected mostly by the climatic conditions, for which we have little control, but 

the efficiency with which this energy is delivered and the end uses it serves are dictated by design, 

for which we have total control. 

Developing concepts for an urban design from a strictly utilitarian point of view is undesirable. 

The same goes for elaborating a master plan solely on architectural aesthetics. Many failed attempts 

at creating the perfect utopian city were the expression of our desire to envision what the future of 

human civilization would look like. Le Corbusier’s “La Cité Radieuse” is most likely one of the 

better-known examples. Regardless of the design philosophy, professionals involved in the urban 

design process have agreed today to pay more attention to the environmental impact of cities, 

sometimes arguably at the expense of aesthetics (Davis, 2011; Hosey, 2007; Smith, 2013), which 

necessarily positions energy performance and energy supply as a central issue. 

2.2 An Integrated Design Approach 

The high level of complexity associated with creating a global vision of a new urban environment 

requires an integrated approach to address all the professions, perspectives and consider all the 

                                                 

2 Final energy is the total energy consumed by end users, such as buildings, industrial processes and agriculture. It is 

the energy that reaches the consumer’s meter and excludes energy used by the energy sector itself. 

3 These are estimates by QUEST based on data from the  Comprehensive Energy End-Use Database (Natural 

Resources Canada, 2019). 
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independent and dependent variables. If we want to build dense neighbourhoods that are also great 

living spaces, we cannot afford to work independently. Traditionally, the urban design process is 

divided between silos of occupations: planners in a silo, architects in a second silo and engineers 

in another. As part of the traditional silos design process, the planner dictates the general rules of 

the game, then the architect designs the buildings, and finally the engineer equips the spaces with 

technical systems. These are linear processes in which the urban planner dictates the requirements 

for density (housing, commercial, industrial). Then, the architect and the client agree on a design 

concept consisting of volume/geometry, orientation, window/facade relationship, etc. Then, 

engineers suggest and implement the necessary technical systems to allow the design to work 

properly, for example, to achieve an acceptable indoor climate or to ensure adequate structural 

stability of the building. The contractor then calculates the costs and begins construction. “The 

design of the building in the [design process] is like a cane that is passed from one interested party 

to another” (Landgren, Skovmand Jakobsen, Wohlenberg, & Jensen, 2019). 

To reduce GHG emissions, research shows that the best approach is to focus on the first design 

decisions. In reality, the initial programming and the budget, which already have a systematic bias, 

create an even more constrained situation. For this reason, planners usually look at different scales 

simultaneously: the city/region scale, the district scale, the neighbourhood scale and the 

block/development scale. This allows the ID team to more holistically capture and understand the 

context and the complex relations of the built environment as they mine for quantitative and 

qualitative synergies (Pearl & Oliver, 2015). Consequently, it is recommended to use new and 

innovative design processes that combine traditional cost, time and quality assurance with 

environmental protection, user health, carbon reduction and environmental protection (Gough, 

2015). One of these methods is the integrated design method (ID). With ID, high performance is 

achieved through an iterative and holistic process that implicates all members of the design team 

from the early stages of the design. With ID, the goal is to produce the best outcome for a project 

while minimizing costs associated with design changes. 

ID offers many advantages that integrate well with district energy planning. First, one searches for 

complementary synergies where energy and mixed-use complementarity can possibly reinforce 

each other. For example, a DES could share waste heat using a local heat source such that its 

process energy is compatible in time (hourly or daily demand, with/without storage capacity) and 

energy demand (magnitude). Second, the ID process can ask questions such as “what density is 
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sufficient to justify a DES infrastructure, without surpassing the carrying capacity of the site”. For 

example, “corrected compactness” (Barcelona Urban Ecology Agency, 2012, p. 449, 2018, p. 10) 

is a planning metric that adjusts density to the “quality” of the space. It can measure the “carrying 

capacity” of a neighbourhood by directly considering the amount of high-quality public spaces; the 

higher the quality of public spaces, the more density is acceptable, since high quality public space 

entails greening of the public realm and socializing spaces in a given area. Greening helps 

biodiversity and air quality, the site conditions, the culture, the outdoor thermal comfort, the heat 

island problems, the access to daylight, etc. The amount of green spaces inside the site can 

determine the maximum acceptable densification without inhibiting the aforementioned benefits 

(Czechowski, Hauck, & Hausladen, 2014). Third, ID can answer questions that relate to the 

selection of HVAC systems that can help “future-proof” the requirements for “accepting/receiving” 

energy but also “rejecting/sharing” this energy. What form is the energy in? Is the energy 

considered to be a low-grade energy4 such as the excess heat from a data centre or is it considered 

to be a high-grade energy such as the high temperature excess heat from an industrial process? 

How can the energy be stored without relying on expensive and inefficient batteries? Are the 

promising Phase Change Materials (PCMs) better than traditional sensible heat storage using water 

or other mediums? Should the investments instead favour high thermal mass of buildings? Fourth, 

ID can also look at synergies that may exist amongst various infrastructures. For example, can a 

municipal water reservoir be doubled as a daily or seasonal energy storage? Can 

compost/biomethanization provide low-grade energy while capturing methane (Antizar-Ladislao, 

Irvine, & Lamont, 2010)? 

All of these questions can positively influence the designer’s actions on an urban development 

project. As explained in the introduction of this thesis, the larger aim of this work is to provide 

designers with tools that can positively influence their actions. While a plethora of tools may be 

conducive to this larger goal, this thesis focuses first on the key elements of the energy diagnosis 

                                                 

4 The “quality” of an energy source (e.g., electric, thermal, etc.) refers to its ability to be converted into another form. 

For thermal energy sources, low-temperature thermal energy, which is considered to be a “low-grade” energy, does 

not offer the possibility of being converted to as much end-uses than high-temperature thermal energy, which is 

considered to be a “high-grade” energy. Electric energy is also considered a “high-grade” energy source since it can 

be converted to almost any other forms of energy such as thermal energy (by use of an electrical heater for example). 
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of a site and later on the responses triggered by design choices on the energy performance of new 

urban development projects. As it will be discussed later, the diagnosis of a site allows designers 

to adapt the design interventions to the specificity of the site. Understanding what can be done to 

improve the design is as important as how it can be done. These questions of methods and 

techniques are best answered at the beginning of a project where the cost of change (e.g., modifying 

one of its features) is the lowest and designers can have the most influence. 

According to Daniel Davis (Davis, 2013, p. 34), Boyd Paulson (1976) was the first to sketch the 

graph of the designer’s influence on an architecture project. He claimed that the further a design 

was developed, the harder it was to change. Since change can be linked to cost in terms of time and 

money, the sketch was later reinterpreted by Patrick MacLeamy, former CEO of the architecture 

firm HOK, as the “ability to impact [a project’s] cost and functional capabilities at the start of the 

project.” This is the origin of the MacLeamy Curve (MacLeamy, 2004), as illustrated in figure 2.1, 

which is often used in many project management presentations to reaffirm the need for holistic 

design practices. 

 

Figure 2.1 MacLeamy Curve, visualizing that project impact capacity is greater in early design 

phases and that the cost of modifications is highest during the later design phases. This 

highlights the importance of integrating technical knowledge early in the design process. The 

grey curve indicates the cost of design changes. The blue curve indicates the possibility of 

influencing the project. 

This notion of cost of change and the intrinsic relationship between urban design, architecture and 

energy systems design has led this research to take a path towards “front-loading” as much as 

possible the analysis of district energy systems. While ID can provide the structure for a more 

holistic design approach, the main challenge is to align the intrinsic potential of mixed use, complex 

and dynamic urban fabrics with dynamic and balanced energy profiles—ultimately guaranteeing a 



17 

high quality public space that is sufficiently diverse, compact and carbon neutral without becoming 

overly compact and unhealthy. 

This challenge, as daunting as it may, can be met with the help of methods and tools that provide 

objective/quantitative and qualitative evidence to support design decisions. All actors of an urban 

design have different approaches and methodologies that must be taken into account as to provide 

the same grounds for optimal collaboration (Vraa Nielsen, 2012, p. 40). Evidently, this poses quite 

a challenge; some authors argue that ID can actually be less effective because of challenges linked 

to tool complexity and accuracy, missing information, notions of embodied energy, poor 

environmental design decisions and decision-making based on green certification credits (Leoto & 

Lizarralde, 2019, pp. 43–45). This is why a focus on tools that bring empirical and data-driven 

evidence to district energy planning in an interdisciplinary context forms the premise of this thesis. 

2.3 An Interdisciplinary Team as a Test Bed 

The work presented in this dissertation was strengthened by the research group Re4 Montréal. This 

group brings together three universities in Montréal, Québec and three closely related disciplines: 

(1) The Mechanical Engineering Department of Polytechnique Montréal, (2) The University of 

Montréal School of Architecture, and (3) the McGill University School of Urban Planning. This 

interdisciplinary group was created with the goal of developing methodologies and tools to enable 

the implementation of district energy networks in Montréal by jointly addressing technological, 

socio-professional, political and legislative barriers. The research team aims to improve urban 

energy performance to reduce dependence on fossil fuels and alleviate power grid constraints, 

while maintaining affordable housing and energy service, and contributing to energy efficiency 

and neighbourhood resilience (energy, social, and economic resilience). 

The long-term goal is to tap into the potential that district heating networks in Montréal have to 

contribute to urban redevelopment and create mixed, compact, diverse, efficient and resilient 

neighbourhoods—i.e., sustainable. The group also aims to train highly qualified students in the 

integrated and ecosystemic design process. Through this group, a workshop was organized with 

community stakeholders of different neighbourhoods in Montréal. We discuss here the findings 

from this workshop that relate to the objectives of this thesis. 
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2.3.1 Triggering the “Talk” 

On September 14, 2018, at l’Université de Montréal, the first edition of the For Sustainable 

Neighbourhood Symposium was organized by the multidisciplinary Re4 Montréal research group 

and funded by the Trottier Energy Institute. The aim of the symposium was to identify the barriers 

and opportunities for sustainable neighbourhoods and to outline the guidelines for a multifaceted 

framework for the fourth generation of district energy networks (refer to section 3.1 for a 

description of district energy generations). This framework included the legislative framework, the 

subsidy strategies and financing opportunities, the missed synergistic timing opportunities and the 

identification of common divergent scale issues. The event brought together stakeholders from 

different decision-making levels across the province, the city of Montréal and Rosemont-La-Petite-

Patrie, the geographic context of the study. In all, about 50 participants contributed to the 

workshops and brainstorming activities. Many engineers, urban planners, architects, members of 

the community or professionals from industry were able to share their ideas and creativity 

throughout the day. The mayor of the Rosemont-La-Petite-Patrie borough, Mr. François William 

Croteau, took part in the activities and issued a call to action against climate change during his 

presentation. Participants were also able to discuss opportunities for professional collaboration, 

aimed at shaping a future with better energy management. 

Through the brainstorming sessions, the participants highlighted a major requirement for 

sustainability: citizen participation. By raising awareness and empowering citizens, they can 

become active stakeholders in their neighbourhoods. It is important to involve them in future 

projects. The central role of the citizen is highlighted by the complex interconnections between the 

different citizen groups and other exoteric supporting groups (see also figure 2.2). Moreover, 

without the citizen taking a proactive position in the development of the neighbourhood, a risk 

arises from the two beguiling visions of sustainable development and livable communities. Both 

visions have their own value conflicts, with sustainable development balancing ecology, equity and 

economy and livable communities balancing land use design aspects (Godschalk, 2004). Without 

the citizen at the centre of these values, creating sustainable and livable communities will be 

challenging. 
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Figure 2.2 Connectogram of the stakeholders and citizen groups in the Rosemont-La-

Petite-Patrie borough. 

Citizens have a direct link with energy consumption through their role as users of energy. Research 

shows that when users are not made aware of the energy they consume, which is often the case 

when energy metering is centralized in district energy systems, they use more energy because they 

do not feel compelled to pay attention to their behaviour (Brounen, Kok, & Quigley, 2013; Delmas, 

Fischlein, & Asensio, 2013; Gustafsson & Gyllenswärd, 2005). On a more philosophical note, this 

raises the question whether or not building energy efficiency should be accounted for in terms of 

kilowatt hours per occupant instead of kilowatt hours per square metres as it is usually the norm.  
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Moreover, participants highlighted the necessity of ensuring that community participation is not 

only deep but early enough to have an impact on decision-making by enriching the co-learning and 

co-production activities. Co-learning and co-production activities are management methods where 

the citizens are not only consulted, but are part of the conception and design of public services 

(Bason, 2010). 

Another finding is that there is a growing need for Montréal to enable and encourage public spaces 

and multifunctional buildings. Cities would benefit from weaving more workplaces (office and 

industrial) inside or closer to residential areas through mixed-use development. This would also 

benefit heat-sharing networks by pooling heat resources closer to one another. On the other hand, 

mixed-use developments can create their fair share of conflicts (Godschalk, 2004; Gough, 2015). 

To design effective/sustainable mixed-use communities, we must pool opportunities from different 

areas and move away from the traditional siloed design process in order to see the interconnectivity 

and synergies between projects; We must decompartmentalize the decision-making and regulatory 

powers and promote flexibility in the interactions between the various stakeholders. Here, 

multidisciplinary and diversity of expertise and perspectives are essential.  

In addition, another key message from the event is that we should determine the actions that should 

be done in the short term and those that can be implemented in the long term. For example, 

democratization and open data access are immediate priorities, as they are prerequisites for 

developing multifunctional and synergistic projects in the future (see also section 5.2.1 for more 

on the importance of data access). In fact, the open data movement has only started to reach the 

different levels of government (Montréal changed its open data policy in 2015, for example). More 

and more datasets are taken out of closed rooms and uploaded for the public and researchers to use. 

The category of data sources that can still present some privacy issues such as the energy 

consumption of buildings or the disclosure of excess heat have yet to become public in Montréal. 

In this era of information and computation, the best diagnosis of the city will be achieved through 

transparency and accessibility of data. This is already the case for the cities of Toronto and 

Vancouver which are far ahead with strict enforcement of data transparency for energy and water 

use (Ontario Regulation, 2019; Union of BC Municipalities, 2014, para. B94). In the meantime, 

there exists some techniques that can help us “estimate” some features of the urban environment, 

and more specifically in terms of energy in buildings. On this particular subject, such a technique 

models the building stock of a city is presented in chapter 4 and applied in chapter 5. 
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On the longer term, participants suggested that the development of new neighbourhoods anticipate 

infrastructure work so that investments are phased while still being future-proofed. Organizing 

district energy expansion in sync with other urban infrastructure works such that investment costs 

can be shared presents itself as the main challenge. There are also public health opportunities like 

the reduction of excess heat which aggravate heat islands in urban canyons and the removal of 

hazardous water towers which have been linked to Legionella epidemics. These various advantages 

of district energy networks are addressed in chapter 3. 

2.4 Data-Driven Design in the Era of Information and Computation 

Discussing data-driven design—often called “knowledge-driven design”—through quantitative 

measures poses two questions. First, what kind of information are we looking for? And second, 

how can this information be produced? This section will discuss both questions through the lens of 

sustainability diagnosis and through tools and methods that enable such a diagnosis. 

2.4.1 The Diagnosis of the City 

In the world of urban planning and architecture, before a masterplan is issued and accepted, 

designers will try to conduct a site analysis to identify potentials and eventual barriers (Oliver, 

2018), thereby more favourably answering the urban problems in question. To carry out a diagnosis 

of sustainability, the urban analysis method takes place in three stages: the reading of the site, the 

establishment of indicators of sustainability and finally the formulation of the diagnosis. Thus, a 

complete “portrait” of the neighbourhood is achieved through the analysis of multi-scale 

performance indicators. Finally, on the basis of sustainability principles, a complete diagnosis 

identifies the sites with a high potential and defines what is necessary for the construction of a 

sustainable district. 

Through their work at Re4 Montréal, architecture students studied and applied the indicators of the 

Urban Ecology Agency of Barcelona (AEUB). The AEUB developed an urban sustainability 

diagnosis tool which looked at a series of indicators that go well beyond the usual suspects: 

compactness, complexity, efficiency and stability. By use of quantitative indicators, the diagnosis 

proposed by the AEUB is unbiased and allows designers to objectively compare different sites. 

The agency published methodologies for fifty or so indicators organized under the aforementioned 

categories (refer to figure 2.3 which summarizes the different indicators under the four principles). 
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The agency developed this methodology with the aim of “quantifying sustainability levels of a 

neighbourhood and to issue a score” (Oliver, 2018, p. 295). Based on maps, tables and diagrams, 

this tool communicates the various sustainability variables in a visual way.  

 

Figure 2.3 Urban Sustainability Indicators of the Urban Ecology Agency of Barcelona (AEUB). Adapted from: AEUB.  

The Metabolism and Density & Morphology indicators relate to this research since they provide an 

understanding of the main drivers of energy consumption. While these indicators can help DES 

planners identify high-density areas that can justify district energy networks, no indicator of the 

AEUB looks specifically at heating or cooling uses. Moreover, none of the indicators is conducive 

to clearly and visually understanding the on-site synergies between buildings; a desire to identify 

an indicator of energy compatibility between buildings arose as a consequence. The solution the 

author proposes is a spatial indicator that belongs to the efficiency principle. This new spatial and 

quantitative indicator is called the Thermal Diversity Index and it is the first step in joining urban 

planning with district energy planning. It is discussed in length in section 3.5. 

Since it is not the role of this thesis to describe the AEUB diagnosis tool in detail, readers are 

referred to the document Pour des quartiers durables: Les réseaux urbains d’énergie au cœur 

d’une stratégie holistique pour Montréal (2019) which was prepared in French by the Re4 Montréal 

research group. It presents the AEUB methodology along with different architectural case studies 

of neighbourhoods in Montréal. Another excellent reference in English is the thesis work of Amy 

Oliver (2018) which not only presents a critical view of the AEUB diagnosis tool but also analyzes 

other frameworks. 
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2.5 Collaboration in Architecture and Engineering 

The second question posed by data-driven design, which was introduced in section 2.4, concerns 

how we can sample the data space of the urban fabric to generate the data points necessary for 

design. The following section will discuss the current landscape of collaboration through the lens 

of collaborative tools in architecture and district energy planning. 

2.5.1 Tools in Architecture 

The energy simulation of buildings, which has long been the responsibility of engineers at the end 

of the design process, is being utilized more and more as a design-decision tool instead of a green-

credit validation tool. There exists today a market for digital tools which unlock an untapped energy 

efficiency opportunity by allowing architects to understand the impacts of design on building 

energy efficiency. This market is currently occupied by a handful of companies seeking to valorize 

their techniques. Table 2-1 provides a summary of the most influential commercial products at the 

time of writing. In addition to this new service offer, there is an emergence of architectural firms 

that are restructuring to integrating in-house engineering services in an effort to bridge the gap 

between engineering and architecture (Mairs, 2017; Novitski, 2009). With robust urban building 

energy models just around the corner, architecture firms are also seeking to bring this conversation 

into the realm of master planning.  

Many of the existing tools are built around known shape-modelling platforms and calculation 

engines. They are then integrated into company processes and into their operations through BIM 

(building information modelling). By using existing tools known to users, it is easier for them to 

adopt the solution quickly (Olsen & Namara, 2014). Thus, Sefaira and OpenStudio both have 

interfaces to SketchUp. Ladybug + Honeybee uses Rhino, a 3D shape modelling platform. 

Insight 360 and Green Building Studio are extensions of Autodesk Revit, a leader in BIM. 

The rapid growth of these tools is explained by the democratization of building energy simulation 

engines such as EnergyPlus which have seen their development accelerate in recent years. It is now 

possible to make plausible assumptions and obtain a relatively accurate idea of the performance of 

buildings in a very short time. Studies at the city scale are now accessible to all thanks to the timely 

execution of thousands of simulations on relatively affordable cloud computing platforms. 
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Automation techniques with regards to the preparation of models further elevate modelling on the 

urban scale (see chapter 4 for more details on Urban Building Energy Modelling). 

Table 2-1 Modern tools for energy simulation of buildings in Integrated Design 

 
Name Company/Source Compatible with Engine Cost 

1 Sefaira Trimble /  

sefaira.com 

SketchUp and Revit EnergyPlus, 

Fulcrum, Radiance, 

DaySIM 

Variable depending 

on the chosen 

modules 

2 OpenStudio NREL /  

openstudio.net 

SketchUp, 

EnergyPlus and files 

such as gbXML 

EnergyPlus and 

Radiance 

Free 

3 BEopt NREL /  

beopt.nrel.gov 

n/a EnergyPlus Free 

4 gEnergy GreenspaceLive /  

greenspacelive.com 

n/a EnergyPlus 800 $/users-yr 

5 Ladybug + 

Honeybee 

Grasshopper3d /  

grasshopper3d.com 

SketchUp, Revit, 

EnergyPlus and files 

such as gbXML 

EnergyPlus, 

DaySIM, Radiance, 

Therm+Window 

Free 

6 Insight 360 Autodesk /  

insight360.autodesk.com 

Revit and 

FormIt 360 

EnergyPlus Included in the 

subscription of Revit 

or Formit 360 Pro 

7 IES VE Integrated Environmental 

Solutions Limited/ 

iesve.com 

SketchUp, Revit ApacheSim Variable depending 

on the chosen 

modules 

8 TRNSYS Thermal Energy System 

Specialists, LLC / 

trnsys.com 

Sketchup TRNBuild 

(Type56) 

5060$ (single-user 

license) 

9 DesignBuilder DesignBuilder Software 

Ltd / designbuilder.co.uk 

Revit, Microstation, 

ArchiCAD and 

SketchUp using 

gbXML 

EnergyPlus, 

Radiance 

Variable depending 

on the chosen 

modules 

10 DIVA/ 

Archsim 

Solemma LLC Rhino EnergyPlus, 

Radiance 

950 $ (single-user 

license) 

11 Green 

Building 

Studio 

Autodesk /  

gbs.autodesk.com 

Revit and files such 

as gbXML 

DOE-2 Included in the 

subscription to 

Autodesk 

Source: Aggregated data from (Overbey, 2016; Roberts, 2013) and this author. 

Many tools presented so far focus on the impact of the design with respect to the orientation of the 

building, its shape, the performance of the envelope, the amount of glazing, the equipment and 

lighting loads, etc. While this does provide some insight into which design choice can have the 

biggest positive impact on energy consumption, these tools usually do not focus on the HVAC 

systems themselves and certainly don’t look at the context of district energy systems. The design 

of thermal systems within the building cannot occur if it ignores the design of a larger district 

energy system. In fact, if building systems are not designed to receive energy in the form that is 
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supplied by a DES, then half the equation is missing. For example, low temperature district energy 

systems supply temperature that is not high enough to be used in regular vertical radiator units. 

Systems such as radiant floors are needed. In the case of heat-sharing networks, heat pumps are 

necessary for both the heating demand and domestic hot water preparation. This may seem trivial 

with respect to system design, but the designers must understand that the design of thermal systems 

within buildings will determine how easily a building can receive or reject thermal energy. 

2.5.2 Tools in District Energy Planning 

The scale and the impact that district energy networks have on the built environment carry their 

share of technical and economic obstacles. Only good planning in conjunction with economic 

incentives can render the technology competitive against local heat sources such as gas boilers and 

electrical heating (Aronsson & Hellmer, 2011). To assess or to ensure this competitiveness, many 

tools have been created to support district energy system planning across all the stages of planning. 

Many quantitative models with various goals, outcomes, and targeted users offer insights into 

various stages of the lifecycle of a district energy project: hydraulic models, energy system models, 

control and operational models, financial models, decision-making models, urban planning models, 

etc. A study by Bradford et al. (2015) published a thorough literature review of modelling 

approaches for urban energy and district energy. They analyzed commercially available tools from 

the perspective of their main characteristics and complexity and whether or not they were 

proprietary or open source models. Most notably, this research—funded by the International 

Energy Agency District Heating and Cooling program (IEA-DHC)—proposed its own simplified 

methodology as an Excel workbook: Plan4DE (Sustainability Solutions Group, 2016). In the 

author’s paper Balancing demand and supply: Linking neighborhood-level building load 

calculations with detailed district energy network analysis models (Letellier-Duchesne, Nagpal, 

Kummert, & Reinhart, 2018), a summary of various tools is presented in a figure that highlights 

their aim and time of use before and after the construction of a district energy system (figure 2.4). 
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Figure 2.4 A typical district energy project development timeline and examples of tools used during each phase. 

*UESM stands for urban energy systems model. Source: (Letellier-Duchesne et al., 2018) 

2.5.3 Challenges and Limitations 

One of the major obstacles to using specialized simulation tools in preliminary design stages is 

their complexity and the significant time they require to set up an analysis. This is why engineers 

often develop tools and techniques that are approximations, rules of thumb. It is therefore necessary 

to design tools that bridge the gap between speed and accuracy. In Selection criteria for building 

performance simulation tools: contrasting architects’ and engineers’ needs (Attia, Hensen, 

Beltrán, & De Herde, 2012), the authors encourage interdisciplinary research in the field of energy 

simulation to address the criteria of architects and engineers in the development of energy 

simulation tools for buildings as well as the design process. 

The challenge is to have a tool that is not overly restrictive or oversimplified. The outputs must 

reflect reality and be useful at the same time. Tools must also provide rapid information turnaround 

and enable quick decision-making. This is highlighted by design cognition research that 

demonstrated a stark divide between a designer’s action and the computer’s reaction, where high 

latency could create “change blindness,” effectively preventing designers to evaluate model 

changes (Erhan, Woodbury, & Salmasi, 2009, p. 820). For instance, it was shown that the time 

between when a user taps the “simulate” button and the time the results appear on the screen, will 

impact the user’s ability to associate the design change to its impact on energy performance. 

Other authors argue that “more and better tools are needed in ID” (Leoto & Lizarralde, 2019, p. 

44). Although this is accurate, we cannot fall into self-deception; the ID process’s main flaw is 
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simply that there is too little information at the beginning of the process which eventually renders 

all tools inaccurate. The question then becomes whether or not this inaccuracy works against the 

better good of the project. As George E. P. Box (1919–2013) famously said: “Essentially, all 

models are wrong, but some are useful.” 

2.6 Discussion 

This chapter aimed at presenting this thesis through the lens of collaboration between urban 

planning, architecture and engineering. First, the role of integrated design as a means to improve 

energy efficiency in the built environment was discussed. Then, the importance of creating the 

requirements for a holistic design space to create sustainable and livable districts was outlined. The 

multidisciplinary workshop discussed in section 2.3.1 highlighted the importance of establishing a 

diagnosis of a district and the need for open access to data, while positioning the citizens at the 

centre of the effort. The various tools discussed in section 2.5 draw attention to the needs of users 

in interdisciplinary teams, such as fast model setup and the seamless integration with existing 

popular shape modelling tools. 

These observations present many challenges that could be solved from many different angles. This 

thesis focuses on bringing knowledge-based evidence to interdisciplinary teams. One key outcome 

of this objective is the thermal diversity index which fills a gap in quantitative indicators used in 

the ID process. This indicator is formally presented in the next chapter.
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 DISTRICT ENERGY NETWORKS IN THE REALM OF 

URBAN DESIGN 

This chapter investigates methods and processes involved in the development of district energy 

networks during urban planning and design. First, we lay the foundations for understanding district 

energy systems and present the concept of heat-sharing networks. Next, we propose methodologies 

for DES planning, introducing a spatial and temporal adaptation of the thermal diversity index, a 

key contribution of this thesis. This chapter concludes with the identification of three fields of 

work—1) building energy demand prediction, 2) energy supply generation and 3) distribution—

where compatible methodology with the Integrated Design Process is lacking. They form the base 

of the three subsequent chapters. 

3.1 Evolution of District Heating and Cooling Systems 

District energy systems are, like all technologies, evolving rapidly. Since their advent at the end of 

the 19th century, different generations of district heating (DH) systems have continued to evolve. 

The birth of modern district heating is attributed to Birdsill Holly, Jr. (1822–1894), an American 

hydraulics engineer who pioneered the technology. At the time, pressurized steam was used as the 

main carrier fluid with temperatures greater than 200 °C. Steam power plant efficiency was 

increased by making double use of the heat produced from steam boilers used in electricity 

production. Around the 1930s, the second generation of DH emerged with pressurized water 

(𝑇𝑠𝑢𝑝𝑝𝑙𝑦 > 100°C), replacing the dangerous and inefficient steam (Frederiksen & Werner, 2013). 

Subsequently, increased building efficiency allowed further reduction of the carrier fluid 

temperature in the third generation (to between 70 °C and 100 °C). Furthermore, thanks to the 

reduced operating pressure, the introduction of pre-insulated plastic jacket pipes combined with 

prefabricated substations (customer stations) “democratized” DH around the world. Today, the 

majority of district energy systems around the world are of the 2nd and 3rd generations (Werner, 

2017, p. 622). 

Like district heating, district cooling (DC) can be categorized into generations, and authors often 

tie them to district heating generations. Early generations primarily served small systems in the 

food supply chain (e.g., grocery stores) and practical applications appeared as early as 1889 with 

the Colorado Automatic Refrigerator Company. At the time, ammonia and salt water was used to 



29 

produce ice (Fernald, 1891), even before the invention of the modern centrifugal chiller by Willis 

Carrier in 1921. Large-scale commercial systems appeared in the 1930s (Phetteplace, 2013). At the 

time, centralized condensers served decentralized evaporators for each customer using refrigerant 

as the carrier fluid.5 Today, modern district cooling systems distribute thermal energy in the form 

of chilled water (approx. 3 °C to 6 °C) from a centralized production plant. The first large cooling 

systems served private institutions as early as the 1930s in the United States. This market paved 

the way for commercial district cooling systems with chilled water as a commodity for air 

conditioning around the 1960s in the United States, Europe and Japan. Although most systems 

were developed in the United States, there has been a notable increase in activity in the Middle 

East and in Europe after 1990 motivated by the eminent phasing out of CFCs 

(chlorofluorocarbons), the principal refrigerant used in cooling systems for buildings (Frederiksen 

& Werner, 2013). 

3.1.1 Fourth Generation DHC (4GDHC) 

As mentioned in the introduction, many attempts have been made to define the future of district 

energy systems. Most notably, Henrik Lund and Sven Werner, two important authors in the field, 

coined the term 4th Generation district Heating in their most cited work (H. Lund et al., 2014). 

Researchers agree that future district energy networks should aim to better meet the challenge of 

more energy efficient buildings as well as integrate holistically with smart energy systems (i.e., 

smart grids). According to the definitions detailed in their paper, a significant drop in the 

temperature of the carrier fluid is the main characteristic differentiating generations. 

Correspondingly, the 1st generation is identified as having a carrier fluid operating at more than 

200 °C, the second generation higher than 100 °C, the 3rd generation lower than 100 °C and the 4th 

generation lower than 70 °C. The consistent reduction of operating temperatures have introduced 

some challenges—e.g., the difficulty to produce domestic hot water while minimizing risks of 

                                                 

5 A more modern concept of this method has been proposed by Weber and Favrat (Weber & Favrat, 2010) and then 

further refined (Henchoz, Chatelan, Maréchal, & Favrat, 2016; Henchoz, Weber, Maréchal, & Favrat, 2015). This 

concept uses a network of evaporators and condensers (just like the 1st generation DC) circulating CO2 as the carrier 

fluid. A concept for the city of Geneva shows that this technology could supply the city’s heating and cooling 

demand with only 16% of the energy the city currently uses. 
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Legionella bacteria or the necessity to match the demand between the source energy and the load 

energy—which various research projects around the world are currently tackling (e.g., Schmidt, 

Kallert, Orozaliev, et al., 2017). Surprisingly, Lund et al. (2014) does not mention district energy 

networks operating at even lower temperatures. As we will see later, district energy networks 

operating at ambient temperatures between 15 °C and 25 °C have been proposed in certain energy 

supply schemes and have been, in some cases, in operation even at the time of Lund’s publication. 

These DES are part of what a few authors are now calling the Fifth Generation of district heating 

in a few recent publications (Buffa, Cozzini, D’Antoni, Baratieri, & Fedrizzi, 2019; Pattijn & 

Baumans, 2017; von Rhein, Henze, Long, & Fu, 2019). 

3.2 Fifth Generation District Heating & Cooling (5GDHC) 

The fifth generation follows the trend of temperature drops and efficiency gains described by the 

previous generation schemes, using carrier fluid temperatures in the range of 15 °C to 25 °C. 

However, this very low temperature range is only permissible by using decentralized heat pumps 

that elevate (in heating) or lower (in cooling) the supply temperature at each building. Renewable 

energy sources such as solar thermal energy and geothermal energy can connect to 5GDHC 

networks to help balance the network (see figure 3.1). 

 

Figure 3.1 Illustration of the structure of a 5GDHC network. Residential and 

commercial prosumers can work together with power stations and renewable 

energy sources to balance the network. A 5GDHC network is scalable and 

can connect to other networks. 

There is little consensus amongst researchers as to how to characterize and identify the district 

energy technologies currently tagged as 5GDHC. This is highlighted by Buffa et al. (2019) in the 
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first review of district energy systems of this kind. The study, financed by the FLEXYNETS 

European program (European Commission, 2015), uncovered a wide range of nomenclature and 

terms for technologies. Some examples include cold district heating (or “cold ring”), low 

temperature district heating and cooling, low temperature networks and even “anergy grids.”6 One 

of the first implementations in Canada is described as an “Ambient Temperature Loop” (Hart & 

Lindquist, n.d.; Perry & Ren, 2013). A summary of the nomenclature of district energy is presented 

in Table 3-1 along with references to the key literary work. 

Table 3-1 Summary of various district heating nomenclature and key references on the subject. 

Gen. Name Acronym Supply temp. Return temp. Refs 

3rd District Heating DH ~85 °C ~45 °C 10 

 District Cooling DC ~6 °C ~16 °C 10 

4th Low-temperature District Heating LTDH 55 °C to 75 °C  25 °C to 40 °C 1 

 Ultra-Low Temperature District Heating ULTDH 35 °C to 50 °C 20 °C to 35 °C 4 

 Fourth Generation District Heating 4GDH 30 °C to 70 °C 20 °C to 40 °C 5 

 Two-way District Heating -   7 

5th Fifth Generation District Heating & Cooling 5GDHC 15 °C to 25 °C -3 °C to 15 °C 2 

 Cold District Heating (“cold ring”) CDH   3 

 Low Temperature District Heating & Cooling LTDHC    

 Low Temperature Networks LTN   6 

 Anergy Grid    9 

 Ambient Temperature Loop    8 

 District Energy Sharing System DESS   11 

 

                                                 

6 Anergy refers to “low-grade” energy (heat) which is difficult to convert into other forms of energy.  

Refs 

1 (Averfalk & Werner, 2018; Ommen, Thorsen, Markussen, & Elmegaard, 2017; Schmidt, Kallert, Blesl, et al., 

2017) 

2 (Buffa et al., 2019; Bünning, Wetter, Fuchs, & Müller, 2018; Pattijn & Baumans, 2017; von Rhein et al., 

2019) 

3 (Pellegrini & Bianchini, 2018) 

4 (R. Lund, Østergaard, Yang, & Mathiesen, 2017; Ommen et al., 2017) 

5 (Cirule, Pakere, & Blumberga, 2016; H. Lund et al., 2014) 

6 (Pellegrini & Bianchini, 2018; Schluck, Kräuchi, & Sulzer, 2015; Vetterli & Sulzer, 2015) 

7 (Brange, Englund, & Lauenburg, 2016; Pöyry Management Consulting Oy, 2016) 

8 (Hart & Lindquist, n.d.; Perry & Ren, 2013; Schluck et al., 2015; Zarin Pass, Wetter, & Piette, 2018) 

9 (ETH Zurich, 2012; Köppl & Schleicher, 2018) 

10 (Frederiksen & Werner, 2013) 

11 (Patent No. WO2010145040-A1, 2010) 
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In trying to keep the same temperature drop analogy suggested by Lund et al., the authors of the 

review suggested that the term fifth generation district heating and cooling or 5GDHC be 

reaffirmed following its introduction at the genesis of the FLEXYNETS program (2015). While 

the concept of generations is common in the circle of district energy specialists, it can be quite 

uninformative to non-experts. On the other hand, the concept of energy sharing between buildings, 

which is at the core of the newest iteration, is arguably more self-evident. Then again, heat-sharing 

applies not only to fifth-generation networks but also to some of the fourth-generation networks 

that include two-way district heating and cooling where customers can both use and sell heat. The 

heat-sharing terminology encompasses systems (both 4th and 5th gen) that offer the possibility of 

using waste heat and is therefore a less restrictive term. This plurality explains why the term heat-

sharing networks was chosen for the title of this thesis as opposed to the arcane 5GDHC name. 

Nevertheless, this thesis embraces the fifth-generation terminology and leverages on its 

applications in the respective contributions. 

Figure 3.2 proposes a graphical representation of the evolution of district energy systems towards 

heat sharing in the 4th and 5th generations. It illustrates the decreasing temperature trends of district 

heating generations, but most importantly it reveals how heating and cooling supply temperatures 

are converging towards ambient temperature fluid in the fifth generation. 

The figure integrates some of the elements of the illustration suggested by Lund et al. (2014) but 

makes some adjustments to better represent the larger context of district energy systems. For 

instance, district cooling is represented in the third and fourth generation. There is no evidence in 

the literature as to whether or not supply temperatures increased between the third and the fourth 

generation of district cooling system, but it is possible to defend such an argument. Unfortunately, 

there is a lack of worldwide statistical information for district cooling, as stated by Sven 

Werner (2017). 

The figure also lists many of the energy sources that serve district energy systems. In particular, 

the notion of prosumer is included for commercial and residential buildings for the fifth generation. 
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Figure 3.2 The five generations of district heating & cooling. The fifth generation marks a departure in both the carrier fluid temperature level and the energy 

sources (electric and thermal) as well as the inherent sharing of endogenous excess heat.
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3.3 Advantages and Drawbacks of Heat-Sharing Technology 

A thorough SWOT (Strength, Weaknesses, Opportunities and Threats) analysis is presented by 

Buffa et al. in their review paper of 5GDHC systems in Europe (Buffa et al., 2019). The authors 

state that the most important benefit of 5GDHC is its ability to reduce the primary energy needed 

to meet the building heating and cooling demands by enabling the recovery of all types of excess 

heat that would otherwise have been lost to the environment. Equally important is the fact that this 

excess heat can come from a low-exergy source, meaning that the temperature level of the excess 

heat can be lower than the one imposed by the demands. This low-grade excess heat can be 

recovered directly in the network without the use of heat pumps, which is typically required in 

traditional district energy networks. In addition, because urban excess heat generally occurs close 

to the heat demand, there is no need to build transmission pipelines outside the city area. 

Amongst other benefits, 5GDHC can supply both air conditioning and heating year-round as the 

networks are bidirectional in terms of thermal power (they can deliver “heat” and “cold”). It also 

provides modularity, flexibility and resilience to changing boundary conditions, such as increases 

in building performance in the future7  or sudden load changes from service area expansions. 

Modularity is achieved by connecting independent clusters supplied by their own micro-grid (Buffa 

et al., 2019). Flexibly is achieved by offsetting the time of energy production and the time of energy 

consumption thanks to the use of either decentralized thermal energy storage (TES) systems at the 

network level or through decentralized TES at the user substation level (this notion of TES is heat-

sharing network is discussed along with the concept of thermal diversity in sections 3.4 and 3.5). 

Furthermore, due to the low temperature of the network, pipes do not need to be insulated; they 

can also be made from polymer (high-density polyethylene [HDPE] pipes) rather than steel as it is 

often the case in the water supply industry. This translates directly into lower installation costs. 

As weaknesses, the 5th generation requires larger investments in substations (connections to each 

building) as not only a heat exchanger but also a heat pump is necessary to increase or reduce the 

                                                 

7 As society increasingly invests into improving the energy efficiency of buildings, existing district energy networks, 

which rely on a certain heat demand to operate, are faced with the challenge of lower demand which can disrupt their 

long-term viability. This possibility of obsolescence has been highlighted by Lund et al. as one of the challenges for 

the 4th generation of district energy networks (H. Lund et al., 2014).  
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supply temperature. The installation of a tank for domestic hot water is also necessary. 

Furthermore, the low temperature difference between the supply pipe and the return pipe requires 

larger pipe diameters so that carrier fluid is transported at an appropriate velocity, resulting in a 

higher pumping energy. 

Since heat pumps use an electricity source to operate, one might argue that the overall carbon 

balance of a 5th generation district heating system can be less desirable than other generations. 

Indeed, the advantages of 5GDHC systems are dependent on the environmental footprint of the 

energy source that runs the heat pumps. This is analogue to the potentially negative impact of 

electric car use in areas where electricity is produced by coal plants or other fossil fuel-based power 

plants (Van Vliet, Brouwer, Kuramochi, Van Den Broek, & Faaij, 2011). Fortunately, in Quebec, 

this factor is negligible given the low carbon content of electricity which amounts to a low 

~2 gCO2eq/kWh. As a comparison, electricity generated with natural gas generates ~600 

gCO2eq/kWh, which is 300 times more (Transition Énergétique Québec, 2019). 

Another relevant topic that was not reviewed by Buffa et al. is the resilience offered by 5GDHC. 

The resilience of a system is not only characterized by its ability to sustain external and internal 

disruptions to its service but also by the speed at which the system can recover its functions when 

a disruption occurs (Hosseini, Barker, & Ramirez-Marquez, 2016). The resilience of heat-sharing 

networks is arguably less ideal than a third or fourth generation district energy system. In fact, a 

5th generation system will be impacted more importantly by a disruption of the electrical grid 

because the decentralized heat pumps rely on the grid to operate and to produce heat and cold in 

each building. In the case of 3rd and 4th generation district energy, it makes economic sense to 

install generators to operate the centralized system in anticipation of electrical grid faults. This is 

why, for example, when hurricane Sandy damaged the electricity grid of New York City, 

communities connected to a district energy system were the quickest to recover both their heat and 

electricity. Furthermore, district energy networks (which comprise all technologies including 

5GDHC) have an inherent “mass” which can provide some thermal storage. For example, the 

Copenhagen cooling network has an autonomy of 3 hours8 simply from the energy contained in the 

volume of water circulating through the network. It is also easier to include other forms of thermal 

                                                 

8 The 3 hours autonomy was disclosed to the author by the thermal grid operator Hofor A/S (2017). 



36 

storage strategies and advanced control strategies for peak shaving, allowing building operators, 

for instance, to answer demand-response calls from grid operators in an effort to reduce the strain 

on the grid. 

Although resilience seems to be a qualitative attribute, it is possible to measure with a few key 

metrics. For instance, the resilience of a network can be measured by the maximum betweenness 

centrality and the average node connectivity. Betweenness centrality is defined as the “The 

importance of a node in terms of how many shortest paths use that node” (Boeing, 2017a, p. 77). 

For example, district energy networks with a high maximum betweenness centrality are more prone 

to failures or disruptions should a single choke point fail. This vulnerability explains why district 

networks tend to have a “ring” topology instead of a simple tree structure as it lowers the 

betweenness centrality (Vesterlund, Toffolo, & Dahl, 2016). 

3.4 Measures of Complexity in District Energy 

The competitiveness of heat-sharing networks is linked with the notion of “complexity,” a notion 

rooted in urban design that we shall discuss here. As Salat et al. put it: “Complexity is one of the 

more essential aspects of the sustainable city” (Salat, Bourdic, & Nowacki, 2010). What they imply 

here is that the complexity of the urban fabric maximizes points of contact, exchange and interface 

which ultimately will increase the energy efficiency of the city. One could then argue that more 

complexity results in more efficient district energy networks. In fact, as we will see in this section, 

diversity of building usages—say for example the proportions of office buildings, restaurants, 

homes and schools—offers a better exergy efficiency, indicating that diversity is linked to better 

system performance. 

Other well-known measures of complexity in the area of district energy are the linear heat density 

and the effective width. Linear heat density is defined as the annual heat delivered per unit length 

of the distribution network (Frederiksen & Werner, 2013). It is an indicator of the viability of a 

network. This viability is reduced to two components: (i) the competitiveness of centralized heat 

supply versus decentralized heat supply and (ii) the cost of heat distribution (Urban Persson & 

Werner, 2011). Unfortunately, estimating linear heat density before a network is established in a 

city or neighbourhood is particularly difficult since the length of the network is unknown. Without 

empirical evidence, it becomes very difficult to justify district energy solutions in (re)development 
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projects. Effective width is a parameter that replaces the need to calculate the linear heat density 

and is perfectly adapted for district heating systems. On the other hand, it is also tied to specific 

district heating markets. Nonetheless, the density of the heat demand is not the only criterion for 

successful heat-sharing systems, as the complementarity between thermal rejection profiles and 

thermal load profiles is also important. This complementarity can be quantified with the thermal 

diversity index, discussed in section 3.4.2. 

3.4.1 System Cost & Linear Density 

As mentioned earlier, the cost function of a district heating network can be defined in terms of 

generation cost and capital distribution cost. The heat generation cost is discussed in the second 

part of chapter 6. The second component, dealing with the cost of distributing heat in a DES, is 

explored here to understand how the competitiveness of district networks can be assessed in an 

urban planning context. 

The capital distribution cost of a network is expressed as the ratio of the annuity-adjusted total 

network investment cost (𝑎 ∙ 𝐼, $) and the heat annually sold (𝑄𝑠, GJ/y).  

 𝐶𝑑 =
𝑎 ∙ 𝐼

𝑄𝑠
 (3.1) 

The network investment cost 𝐼 can be split into 1) the trench cost, which only depends on the length 

of the network, and 2) the cost of the pipe, which is a function of the diameter as well as the length. 

Introducing construction cost coefficients for buried pipes (𝐶1, $/m and 𝐶2, $/m2) and the average 

pipe diameter (𝑑𝑎, m), the network investment cost becomes: 

 𝐼 = (𝐶1 + 𝐶2𝑑𝑎) ∙ 𝐿 (3.2) 

Substituting in 3.1, the capital distribution cost is: 

 𝐶𝑑 =
𝑎 ∙ (𝐶1 + 𝐶2 ∙ 𝑑𝑎) ∙ 𝐿

𝑄𝑠
 (3.3) 

For a known network length, the heat annually sold can be expressed as the linear heat density 

(
𝑄𝑠

𝐿
, GJ/m), and the equation above can be reformulated to show this linear heat density:  
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 𝐶𝑑 =
𝑎 ∙ (𝐶1 + 𝐶2 ∙ 𝑑𝑎)

𝑄𝑠

𝐿

 (3.4) 

Authors have developed price curves based on localized markets and urban densities (Urban 

Persson & Werner, 2011). A typical heat density threshold in the UK and Scandinavia is 4 MWh/m-

year (Heat Network Partnership for Scotland, 2017). In other words, if the linear heat density of a 

newly planned DES exceeds this threshold, a centralized distribution scheme should be more 

competitive than a decentralized solution.  

As mentioned earlier, the linear heat density is hard to estimate if the length of the network is 

unknown. As a solution, Persson and Werner (2011) proposed the concept of effective width (𝑤), 

which helps to reduce the required empirical parameters of the cost function to one. Thermal width 

is defined as the ratio of the land area (𝐴𝑙𝑎𝑛𝑑, m²) to the total length of the district energy network 

route (𝐿) in this area: 

 𝑤 =
𝐴𝑙𝑎𝑛𝑑

𝐿
 (3.5) 

This is an indicator of the effectiveness of the area coverage by a district energy network with 

smaller numbers corresponding to more desirable conditions: very densely populated city centres 

are typically in the range of 50 <  𝑤 < 60 m (Urban Persson & Werner, 2010). 

The land area is related to the building floor area (𝐴𝑓𝑙𝑜𝑜𝑟 , 𝑚²) by the Floor to Area Ratio (FAR, 

also known as the Plot Ratio) of a site: 

 𝐹𝐴𝑅 =
𝐴𝑓𝑙𝑜𝑜𝑟

𝐴𝑙𝑎𝑛𝑑
 (3.6) 

As Persson and Werner (2011) have shown in their effective width study, it is possible to develop 

an empirical equation from known district energy networks. Data from existing district energy 

networks in Sweden was collected and analyzed to develop a power function that would apply to 

this specific district heating market: 

 𝑤 = 61.8 ∙ 𝐹𝐴𝑅−0.15 (3.7) 
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The heat annually sold (𝑄𝑠, GJ/y) is related to the heat demand intensity (𝑞, GJ m-2 y-1) and to the 

land area: 

 𝑄𝑠 = 𝑞 ∙ 𝐴𝑓𝑙𝑜𝑜𝑟 = 𝑞 ∙ 𝐴𝑙𝑎𝑛𝑑 ∙ 𝐹𝐴𝑅 (3.8) 

 

Substituting 𝑄𝑠/𝐿 in equation 3.4 to introduce 𝑤 and 𝑞 gives: 

 𝐶𝑑 =
𝑎 ∙ (𝐶1 + 𝐶2 ∙ 𝑑𝑎)

𝐹𝐴𝑅 ∙ 𝑞 ∙ 𝑤
 (3.9) 

Here the heat demand intensity is expressed in terms of building conditioned area (kWh/m2), which 

is a better-known metric in the building industry. The concept of effective width is therefore 

interesting in traditional district energy planning schemes, but the empirical equation for the 

effective width is specific to the heat production and construction economy of a given region. 

Therefore, in other areas where the district energy experience is limited, planners have no choice 

but to estimate the length of the network to calculate linear heat density and evaluate the benefit of 

district heating versus decentralized solutions. 

Moreover, the effective width has been previously only applied to traditional district energy 

networks, so no known study of effective width has looked particularly at heat-sharing networks, 

which have very different economics. Therefore, equation 3.7 cannot be applied directly to this 

type of network. In contrast, the thermal diversity index, a key contribution of this thesis, is adapted 

to heat-sharing networks and can help estimate the compatibility of customers. 

3.4.2 Thermal Diversity Index 

Diversity is the most common spatial measure of complexity in the urban design and planning 

literature (Boeing, 2017a, p. 69). It is used in a myriad of metrics from social diversity to land use 

diversity. As we have seen so far, the proper balance of the cooling and heating loads in a heat-

sharing network is key to ensure its high performance. Not only does a greater imbalance between 

the cold and heat loads result in higher flow rates in the network (Pellegrini & Bianchini, 2018, 

p. 10), but the costs of bringing online and running a balancing thermal plant increase. It is thus 

preferable to design a network that has a more balanced heating load profile from the start. That is 
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a network that connects buildings with concurrent and compatible loads—i.e., the excess heat of 

one is the source of another. However, at the planning stage, it is quite difficult to predict the energy 

balance of the whole project. Could there be a simple index to inform planners on the suitability of 

certain buildings, building types or groups of buildings to connect to a network and participate 

positively to its thermal balance? 

We can find some inspiration in the field of urban planning and spatial statistics. As mentioned 

above, an indicator of imbalance, or rather of balance depending on how we look at it, is the 

diversity. The diversity is a quantitative measure that reflects how many different types (or 

categories) are in a certain domain (e.g., a dataset). Serge Salat (2010) adapted the Simpson Index 

to reflect diversity in city services. He suggested a diversity index between 0 and 1, where 0 is 

complete dominance of a singular service and 1 is complete balance. In other words, the closer the 

indicator is to 1, the closer the distribution is to an even distribution. Salat’s diversity index is 

presented as follows: 

 𝑑𝑖𝑣 =
𝐶

𝐶 − 1
[1 − ∑𝑝𝑖

2

𝐶

𝑖=1

] (3.10) 

where div is the diversity, C is the number of distinct categories and p is the frequency of occurrence 

of each category, i. But since optimal diversity implies an equal number of representatives of each 

category, designing with an “perfect” diversity of office buildings, restaurants, homes and schools 

would yield a disastrous city with as many schools, homes, restaurants and office buildings. What 

diversity therefore needs to represent is the scales and shapes of the heat demands in order to reflect 

the ability to share waste heat. Zarin Pass et al. (2018) adapted this definition to the categories of 

interest in our case: the building-side thermal loads and the equipment COPs. The authors defined 

the diversity for 2 service categories C (heating and cooling demands imposed on the network). 

Consequently, equation 3.10 becomes: 

 𝑑𝑖𝑣 = 2

[
 
 
 

1 − (
�̇�𝑐𝑜𝑜𝑙

�̇�𝑐𝑜𝑜𝑙 + �̇�ℎ𝑒𝑎𝑡 (1 −
1

𝐶𝑂𝑃ℎ𝑒𝑎𝑡
)
)

2

− (
�̇�ℎ𝑒𝑎𝑡 (1 −

1
𝐶𝑂𝑃ℎ𝑒𝑎𝑡

)

�̇�𝑐𝑜𝑜𝑙 + �̇�ℎ𝑒𝑎𝑡 (1 −
1

𝐶𝑂𝑃ℎ𝑒𝑎𝑡
)
)

2

]
 
 
 

 (3.11) 
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where �̇�𝑐𝑜𝑜𝑙 and �̇�ℎ𝑒𝑎𝑡 (always positive) are the zone cooling and heating demands at a given time 

and 𝐶𝑂𝑃ℎ𝑒𝑎𝑡 is the COP of the heat pump. The use of the COP modifies the zone load into the load 

“seen” by the network—effectively the energy taken from the district loop. Readers should note 

that in Zarin Pass’s study, the cooling loads are met directly by the network fluid in a free-cooling 

fashion. The �̇�𝑐𝑜𝑜𝑙 variable is thus not adjusted for a chiller COP in equation 3.13. The complete 

equation, including a cooling COP is: 

 

𝑑𝑖𝑣 = 2

[
 
 
 

1 − (
�̇�𝑐𝑜𝑜𝑙 (1 +

1
𝐶𝑂𝑃𝑐𝑜𝑜𝑙

)

�̇�𝑐𝑜𝑜𝑙 (1 +
1

𝐶𝑂𝑃𝑐𝑜𝑜𝑙
) + �̇�ℎ𝑒𝑎𝑡 (1 −

1
𝐶𝑂𝑃ℎ𝑒𝑎𝑡

)
)

2

− (
�̇�ℎ𝑒𝑎𝑡 (1 −

1
𝐶𝑂𝑃ℎ𝑒𝑎𝑡

)

�̇�𝑐𝑜𝑜𝑙 (1 +
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𝐶𝑂𝑃𝑐𝑜𝑜𝑙
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𝐶𝑂𝑃ℎ𝑒𝑎𝑡

)
)

2

]
 
 
 

 

(3.12) 

This equation will be used for the remainder of the following analysis. First, we can observe the 

effect of the fraction of cooling load and the relationship with the COP of the heat pump. In other 

words, the diversity and the relative heating and cooling loads can be illustrated with different heat 

pump performances. Figure 3.4 illustrates this relationship for 5 different heat-sharing network 

temperatures. COPs are assumed to be 30% of the theoretical COP of a Carnot heat engine for a 

source temperature ranging from 6 °C to 70 °C and a load temperature of 6 °C in cooling and 70 °C 

in heating. The selected points are illustrated in figure 3.3 and are used in figure 3.4.  

With figure 3.4, it becomes apparent that the asymmetric function of the heating and cooling COPs 

shifts the diversity such that a perfect diversity occurs when there is slightly more heating demand 

than cooling demand. This is in fact an advantage of heat-sharing networks in heating-dominated 

climates like Montréal. 
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Figure 3.3 Selected operation points for heating (h) and cooling (c) COPs. The 

target temperature in heating is 70 °C and the target temperature in cooling is 6 °C. 

 

 

Figure 3.4 The impact of the fraction of total load as cooling and the COP on 

the diversity. Pairs of COPs are derived from figure 3.3. 

The thermal diversity presented so far is applicable to a system state (or an instant). Varying loads 

and system conditions throughout the year will have an impact on system performance and thus 

produce varying degrees of diversity. To evaluate an “annual diversity”, one could simply return 

the average value, but that would penalize moments when large heating loads and cooling loads 

are concurrent compared to similar concurrency with smaller loads. This is why Zarin Pass et al. 

suggest weighing the average by the amplitude of both loads imposed on the network: 
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 𝑑𝑖𝑣𝑎𝑛𝑛𝑢𝑎𝑙 =
∑ 𝑑𝑖𝑣𝑡 ∙ �̇�𝑡𝑜𝑡,𝑡

𝑛
𝑡=0

∑ �̇�𝑡𝑜𝑡,𝑡
𝑛
𝑡=0

 (3.13) 

where  𝑑𝑖𝑣𝑡  is the diversity calculated with equation 3.12 and �̇�𝑡𝑜𝑡,𝑡  is the sum of both loads 

(always positive) for a given hour 𝑡 and 𝑛 is the duration (e.g., 8 760 hours). 

This concludes the literature review of the thermal diversity. Next, we look at how this indicator 

behaves under various thermal load conditions and we suggest a method to transform the static 

indicator in a spatial indicator that can more directly answer urban planning requirements.  

3.5 Thermal Diversity as an Urban Planning Metric 

In the context of urban planning, we ask the question, “what are the chances of success of a heat-

sharing network in a given neighbourhood?” According to the definition of thermal diversity, a 

cluster of buildings which has an overall thermal diversity closer to one, will result in more heat-

sharing within the cluster. With respect to the network itself and the energy centre, this can imply 

two things: 1) the energy centre can store a certain amount of thermal energy, and 2) the network 

can reach a larger cluster of buildings thereby further improving the performance of the system. 

The next two sections discuss both variables, starting with the notion of “temporality” for storage 

and then the notion of “spatiality” for the network’s extent. The method is then applied in an area 

around Downtown Montréal. 

3.5.1 Temporal Filter 

To understand how the annual diversity responds to different system conditions, we present the 

following theoretical cases. First, let us imagine a situation that would produce the worst diversity 

possible, by establishing a sort of boundary in the form of one hour of heating demand during the 

winter and one hour of cooling demand during the summer. Then, we can imagine different 

scenarios where the load profile is increasingly favourable to diversity by changing cycling periods 

between cooling and heating. 6 cases are presented in figure 3.5. 
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Figure 3.5 Theoretical load cases for analyzing the behaviour of the annual diversity. Heating loads (full lines) and 

cooling load (dashed lines). 

The first four cases have no overlapping heating and cooling demands. Evidently, they all produce 

an annual diversity of 0. The two last cases show simultaneous heating and cooling loads and 

therefore show some diversity (0.5 for 2 cycles shifted and 1 for constant loads). But thermal 

networks sharing heat between buildings could include thermal storage, which would increase the 

“match” between some cooling and heating loads. To model given levels of thermal storage 

(expressed in hours of capacity), a moving average function is applied as a filter through the 

different time series. In presence of “infinite” storage, or an average function with a width equal to 

the duration of the load profile, it is expected that the diversity will be 1 if the total heating and 

cooling loads are equal. The next figure (figure 3.6) presents the annual diversity as a function of 

the amount of thermal storage hours (the width in hours of the moving average function). 

The two extreme cases (“constant loads” and “1h cooling 1h heating”) bound the possible values 

of diversity as expected. With 2 and 4 cycles of heat and cold demand, perfect diversity is achieved 

before “infinite” storage is reached at 1460 hours and 4 380 hours respectively. Finally, the case 

showing some simultaneous loads experiences a non-zero diversity with zero storage (H=0) and 

gradually increases as storage increases. 
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Figure 3.6 Annual Diversity of 6 theoretical load profiles with increasing storage capacity. 

A similar behaviour is shown in the next figure for two practical cases (figure 3.7). An additional 

pair of curves illustrates a typical load profile for an urban development of approximately 

10 million square metres of mixed-use space (“typical building loads”) simulated in Montréal. The 

second curve simulates the effect of having a constant external source of heat such provided from 

a data centre for example (“typical building loads + DC”). Both curves were modelled by 

normalizing the simulated load profiles and scaling them to a certain annual energy quantity. The 

ratio of cooling energy demand to total energy demand was adjusted for 3 cases (one fifth, one 

third and half the total energy demand, represented in figure 3.7).  

With a cooling demand representing 20% of the total annual demand (left), the figure shows that 

the presence of a data centre without any storage provides the same positive effect on the diversity 

than 3 356 hours of storage without the data centre. (This study is performed using a simple storage 

model that ignores thermal losses and transfer efficiencies; more detailed storage models may show 

different magnitudes, but the trends will be largely the same.) 

The thermal diversity increases sharply as storage is added until approximately 24 hours of storage 

capacity is reached. At this point, the capacity is enough to smooth out much of the diurnal energy 
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demands. As the capacity is increased, the observed rate of change decelerates until it reaches a 

second “knee” at 700 hours of storage. Beyond this point, the system reaches storage capacities 

that allow seasonal storage to occur and a gradual increase in thermal diversity is observed. In this 

range of storage hours, energy stored in the summer can be used in the winter. Interestingly, Duffie 

and Beckman (2013) describe a similar phenomenon with solar thermal energy storage systems: 

adding thermal storage rapidly increases the solar fraction of a system until daily cycles can be 

smoothed out by the storage capacity (i.e., the storage has a capacity of 24 h). Further increasing 

the thermal storage capacity only increases the solar fraction marginally until much larger 

capacities are reached that smooth out seasonal phenomena. While the study focused on smaller 

scale systems, the authors argued that a similar curve would be observed for community-scale 

systems such as district energy systems. 

 

 

Figure 3.7 Behaviours of thermal diversity with respect to the fraction of the total load as cooling. 

3.5.2 Spatial Filter 

Applying a thermal diversity equation as a filter across an equally spaced grid of points in a given 

region of interest adds a geographical dimension to the thermal diversity index. A filter, in GIS 

terminology, “essentially creates output values by a moving, overlapping neighbourhood window 

that scans through the input raster” (ESRI, 2016). As the filter passes over each input cell, the value 



47 

of that cell and its neighbours are used to calculate the output value using an aggregator function—

e.g., mean, max, etc. The thermal diversity spatial filter works similarly but with two important 

distinctions:  

1. The neighbourhood region is a circular buffer of a certain radius around the cell for which 

the diversity is calculated. Any building intersecting with this buffer will be part of this 

neighbour region including the processing cell itself; 

2. The aggregator is the annual diversity as defined by equation 3.13, potentially including a 

time-based filter to represent thermal storage. 

Figure 3.8 illustrates this process with a circular neighbourhood of 4 cells (radius). The figure only 

shows the results of two cell values (on the right), but one must imagine that the moving filter is 

applied to all cells across all rows and columns of the cell grid. 

 

Figure 3.8 Diversity filter with circular neighbourhood example (radius = 4 cells). The thermal diversity index is 

applied to a grid of cells by use of a filter which is applied to a moving window of a certain radius. In this image, two 

resulting cells are shown (right) along with the cells (or buildings intersecting with the region) that participated in their 

calculation (left). 

In practice, the thermal diversity index is a 3-step operation. First, a sum aggregation filter is 

applied: the dynamic load profiles of each building that geographically intersect a cell 

neighbourhood (light gray in figure 3.8) are summed along the time axis, returning the total load 

profile (one profile for heating and another for cooling). At this stage, thermal storage can be 

simulated by applying a temporal filter; in this study, a simple moving average is used, but more 

advanced algorithms could be applied. Second, the diversity (equation 3.12) is calculated for the 
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cell neighbourhood at each time step (8 760 diversities for a full year if hourly load profiles are 

used). In equation 3.12, the �̇�𝑐𝑜𝑜𝑙 and �̇�ℎ𝑒𝑎𝑡 variables are the previously spatially aggregated time 

step profiles. Third, the annual diversity is calculated for each cell by use of Equation 3.13: the 

time step diversities are averaged and adjusted to the magnitude of the total load (�̇�𝑡𝑜𝑡,𝑡). This 

operation yields a thermal diversity index that is aware of spatiality and thermal storage. Finally, a 

colour map is applied to visually distinguish the diversity values between 0 and 1 (as shown below 

in figure 3.9 in the following section). 

3.5.3 Application 

A practical example is presented here. It was created by this author as part of a study prepared for 

the C40 Reinventing Cities project in Montréal (C40 Reinventing Cities, 2019). In this example, 

the thermal diversity index was calculated for an area including Downtown Montréal and other 

neighbourhoods in a radius of 5 km around the city centre. The spatial filter cell radius was chosen 

as 250 metres on grid discretized by 100 × 100 metre squares.  

The underlying data used to create this map originates from the results of the building stock energy 

model presented in chapter 5 which estimates the hourly load profiles of all buildings on the Island 

of Montréal using a method of Urban Building Energy Modelling. The heating loads (space heating 

+ domestic hot water) and cooling loads (space cooling demand) were converted to network loads 

using a constant COP of 3 (in heating and cooling). 

Figure 3.9 shows areas of the city where the heating and cooling demands are concurrent (darker 

red) clearly identifying which areas of the city are best suited for a heat-sharing scheme. The 

method can therefore offer insight for planning protocols of heat-sharing networks. 

It is also worth mentioning that the cell-radius can be adjusted to reflect the service area of the 

planned network. This parameter indicates the extent of the network. For example, with a cell radius 

of 500 m, the computed diversity includes buildings as far as 500 m around the centre of each cell. 

Combined with the notion of thermal storage, the same area modelled in figure 3.9 is represented 

for 3 different network extents and 3 thermal storage capacities (see figure 3.10). 

Increasing the extent of the network increases the thermal diversity by allowing it to reach buildings 

with different heat demand/rejection profiles, but only up to a certain degree: in the absence of a 

large constant heat consumer/heat rejecter, space cooling and refrigeration can match only some 
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demands for domestic hot water and perhaps a small share of space heating. Adding thermal storage 

increases the thermal diversity, potentially modifying the relative attractiveness of different areas 

for heat-sharing networks. If synergies with different forms of storage are present (e.g., large water 

reservoir, planned geothermal field in conjunction with the network), assessing the spatially and 

temporally filtered thermal diversity of a neighbourhood would help urban planners to target 

specific areas to implement bylaws or regulation favouring heat-sharing networks. 

While thermal diversity can serve as an urban planning metric for diagnosing an existing 

neighbourhood or even an entire city, the next section explores how building density and the 

diversity of building usages influences competitiveness of heat-sharing networks.  

 

Figure 3.9 Spatial application of the Thermal Diversity Index (250m cell radius) on a 100-meter 

grid. Darker areas, with a higher thermal diversity, present better synchronicity between heating 

and cooling loads within the 250 m radius. The map is centred on downtown Montréal, Canada. 

(Light Gray Canvas Map sources: Esri, DeLorme, HERE, MapmyIndia) 
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Figure 3.10 Varying spatial and temporal Thermal Diversity Indices. (Light Gray Canvas Map sources: Esri, 

DeLorme, HERE, MapmyIndia) 

3.6 Impact of Density and “Mixity” on Heat-Sharing 

Competitiveness 

The effective width was presented earlier as a means of estimating the competitiveness of district 

heating while the thermal diversity index was presented as a way of estimating the compatibility 

of buildings in a heat-sharing network. Density refers to the amount of built floor space on a given 

land. It is expressed as the ratio of floor area to land area or simply the Floor-to-Area Ratio (FAR, 

see figure 3.11). “Mixity,” on the other hand, refers to the primary activities (or uses) occurring in 

multiple buildings. While diversity of usage would more properly identify this metric, “mixity” 
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was chosen as not to be confused with the thermal diversity. In the following example, we look at 

how density and “mixity” influence both metrics.  

 

 

Figure 3.11 Floor-to-Area Ratio (FAR), illustrated 

3.6.1 Input data 

The example is applied to a fictitious neighbourhood known as a “protoblock” or a prototype of a 

city block. It measures ~250 metres on each side and holds 15 large buildings. The area of the lot 

is taken as 64 000 m2. Three cases of the same protoblock are compared with three densities: low, 

mid, high (figure 3.12). The density of the protoblock is adjusted by increasing the height of the 

buildings, effectively adding stories. This is shown in the “mid” and “high” protoblocks which 

present extra towers (up to 100 m). 

 

Figure 3.12 Protoblocks showing three different urban densities. 
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Density: For the density indicator, we rely on the Floor-to-Area Ratio (FAR) as it is a parameter 

of the distribution cost function detailed above. Another density metric such as the “compactness” 

could be used.  

“Mixity”: “Mixity” is expressed as the “share of commercial buildings” in the total floor area. For 

example, if a quarter of the floor area of the protoblock is reserved for office buildings and the 

other 75% is reserved for housing, the “mixity” for this neighbourhood is 25%. 

Network Length: Since the location of the buildings in the protoblock is known, an approximation 

of the network length can be calculated by use of an algorithm well known in graph theory: the 

minimum spanning tree algorithm. The centroid of each building serves as the point where heat is 

delivered, and the possible routes are represented by all the combinations of connections between 

all the buildings (a “complete graph” in graph theory). Using the edge length as a weight, the 

minimum spanning tree is a structure that connects all buildings (identified A through O) with the 

smallest cost, or in this case, the smallest total length. With this definition, the network has a length 

of 682 m (figure 3.13).  

 

 

origin end Length (m) 

A E 87 

B C 67 

B H 87 

D E 30 

D K 72 

E F 29 

F G 31 

G H 29 

H I 31 

I J 30 

K L 50 

L M 46 

M N 50 

N O 43 

total 682 
 

 

Figure 3.13 Minimum network length of the district energy network in the protoblock. 

Refer to Figure 3.12 for the identification of the buildings. 
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Thermal width: Since both the number of buildings (and their location) and the lot size do not 

change, the calculated theoretical thermal width is evidently the same for all 3 cases. This 

highlights one of the limitations of the effective width in which it ignores density that is increased 

by building vertically as opposed to density which is increased by building on unused land. 

Buildings loads: This example uses building archetypes modelled by the U.S. Department of 

Energy (NREL, 2011). Specifically, the “Midrise Apartment” and the “LargeOffice” archetypes 

are used and simulated for the Montréal climate. Simulation results are normalized by floor area 

(kWh/m2) and multiplied by the assumed floor area for each building type according to the 

investigated “mixity.” 

3.6.2 Results 

The results presented below (see figure 3.14) show that the thermal diversity index reaches a 

maximum around 20%. It is also interesting to point out that the maximum occurs with a relatively 

low fraction of commercial space. At the end of the spectrum, 100% of commercial space shows a 

low 10% thermal diversity, due to the use of a single office building archetype in this example. In 

addition, the thermal diversity, interestingly, seems to be blind to the various magnitudes of the 

heat and cold demand. As shown in Table 3-2, the low, mid and high cases present the same 

diversity for the same share of commercial space (“mixity”). Because the same profiles are simply 

scaled to cover more floor area, the thermal diversity does not change. 

In reality, we would typically see a larger share of housing space when density is increased by 

building more stories, which would produce lower thermal diversities. Understanding not only the 

annual heat density but also the dynamic heat/cold demand profiles is hence very important, which 

is why this thesis proposes a method to estimate the shape of annual heat and cold demands as 

discussed in chapter 5. 
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Figure 3.14 Thermal diversity as a function of the share of commercial space (“mixity”). 

 

Table 3-2 Thermal Diversity Index Results 

 Density 

“mixity” Low: 1.01 Mid: 1.58 High: 2.49 

0% 0.00 0.00 0.00 

25% 0.21 0.21 0.21 

50% 0.20 0.20 0.20 

75% 0.14 0.14 0.14 

100% 0.07 0.07 0.07 

3.7 Discussion 

In this chapter, we explored the evolution of district heating and cooling through their various 

generations and laid out the rationale for a fifth generation of district heating and cooling (5GDHC). 

This latest generation follows the trend of decreasing supply temperature and reaches a convergent 

point where heating and cooling is supplied using the same network. This duality promises 

increased performance as low-exergy excess heat can be more easily reintroduced in the supply 

network. On the other hand, the use of heat pumps at each customer (building) requires a clean 

source of electrical energy; otherwise the efficiency gains will be compromised by a higher 

environmental impact. 

The chapter then presented how DES can be planned in areas where typical district heating metrics 

such as the linear heat density are harder to obtain. Along with demographic data, the effective 

width is an indicator which can replace the linear heat density in the cost function of a network. As 

effective width only changes with respect to the density of the heat demand and not the mixed-use 
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complementarity of the heat demand, another indicator is necessary to address the particular case 

of heat-sharing networks. This indicator is the thermal diversity index. 

The thermal diversity is identified in the literature as a concept that can evaluate the compatibility 

of buildings within a heat-sharing network. The behaviour of the indicator has been assessed using 

simple theoretical cases which helped demonstrate how more or less “diverse” heat demands 

function. Temporal and spatial “filters” were developed to take into account energy storage (a key 

aspect of successful integration of 5GDHC networks into smart grids) and to obtain an index that 

can integrate with urban planning in the form of a visual indicator. These contributions as an urban 

planning metric allow planners to identify areas of the city where heat-sharing networks have the 

best chance of being successful, but also to organize urban planning for the heat-sharing capability 

of buildings.  

This chapter then ends with an illustration of the impact of density and “mixity,” two urban 

planning dimensions, on the competitiveness of heat-sharing infrastructures. This analysis 

concludes that the thermal diversity is not enough to assess the competitiveness of heat-sharing 

networks and that a more advanced analysis is required such as the one presented in chapter 6.  

Such an analysis would require hourly load profiles, but also a way of estimating the shape (or 

path) of the network. These requirements form the basis for the objectives of the upcoming 

chapters: the need for a method that quantifies energy demand dynamically is answered in 

chapter 5, and the need to propose a topological network structure is answered in chapter 6. But 

first, we must review the foundations of building stock energy prediction and propose a way of 

accelerating the creation of building stock models in the next chapter.
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 ARCHETYPES IN URBAN BUILDING ENERGY 

MODELLING 

This chapter addresses the theoretical and practical frameworks of building energy use estimation 

at macro—i.e., city block, districts or whole city—scales, culminating with Urban Building Energy 

Modelling theory and analysis. Designing and sizing energy supply systems relies heavily on 

drawing a portrait of energy consumption in buildings. Where measured data is unavailable, 

scholars and professionals have developed advanced modelling techniques that mimic the thermal 

behaviour of buildings in to predict their energy consumption. While some techniques have been 

well suited for single building analysis, a new set of techniques had to be developed to enable city-

scale simulations. Recent advances in urban building energy modelling (UBEM) have proposed 

workflows for creating “bottom-up” models with comfortable computing time, even on a larger 

scale. This chapter then focuses on one of the main challenges at the core of any bottom-up 

approach: the creation of building archetypes that require tedious manual work. The availability of 

National Reference Building Models (NRBMs), such as the Department of Energy’s residential 

and commercial prototype building models (NREL, 2011; US DOE - Building Technology Office, 

2018) or Natural Resources Canada’s Building Technology Assessment Platform 

(CanmetENERGY, 2019), based on the EnergyPlus platform (US Department of Energy, 2010), is 

an opportunity to accelerate the creation of UBEMs. The chapter presents the process of converting 

multi-zone building archetypes to archetype templates which form the data structure of the 

“Shoeboxer” method, a promising UBEM technique based on two-zone distributed models (Dogan 

& Reinhart, 2017). Finally, we present the methodology for producing more than 15 000 archetype 

templates covering several cities in Canada and the United States. 

4.1 Foundations of Building Stock Energy Prediction 

So far, this dissertation has laid out the case for a data-driven district energy planning methodology, 

but solutions have been shown to rely on understanding dynamic energy flows in buildings. 

Fortunately, a recent field of research in engineering and building physics studies the development 

of building stock models that can not only estimate the energy use of buildings but also evaluate 

their dynamic performance over a typical year. This field of work is part of the larger study of 

building stock energy modelling.  



57 

Building stock energy models are tasked with providing aggregated views of energy consumption 

of an entire building stock in terms of net energy demand, final energy, environmental impact and 

energy-saving measure costs. Authors of review papers have consistently separated methods into 

two large categories: The top-down and the bottom-up approaches (Frayssinet et al., 2018; Kavgic 

et al., 2010; Lim & Zhai, 2017; Reinhart & Cerezo Davila, 2016; Swan & Ugursal, 2009). These 

categories are broken down next and a summary is presented in figure 4.1. 

While top-down approaches are usually the easiest to set up, they aim to show the links between 

the energy sector and the overall economic outputs through the relationships between historical 

energy consumption and socio-economic factors such as demography, fuel prices, climate 

conditions, and national economics (Lim & Zhai, 2017). They focus on the macroeconomic 

behaviour of the building stock and are therefore not adapted to the study of heat-sharing networks. 

On the other hand, bottom-up methods calculate the individual end-uses of buildings or groups of 

buildings and apply various weighting techniques to predict energy consumption at various scales 

(Swan & Ugursal, 2009). Bottom-up methods can be further broken down into statistical and 

engineering-based methods on the basis of the type of modelling techniques they use.  

Statistical methods use historical data in combination with energy utility billing data and survey 

data that includes energy retrofitting surveys to recreate the patterns of energy consumption of 

buildings. Statistical methods use this information to regress the energy consumption as a function 

of building characteristics. When based on annual data, statistical methods cannot estimate higher 

resolution patterns such as monthly or hourly profiles, but they have the advantage over 

engineering-based methods of being more “robust” since they are based on measured building data 

and thus can encompass occupant behaviour, a notoriously difficult factor to model analytically 

(Cerezo Davila, Reinhart, & Bemis, 2016; Swan & Ugursal, 2009). In fact, engineering-based 

methods typically rely on detailed thermodynamic and heat transfer analysis that must presume a 

certain occupant behaviour. For this reason, some authors have focused on developing more 

accurate occupancy patterns in an effort to mitigate errors due to this important modelling factor 

(Cerezo, Sokol, Reinhart, & Al-mumin, 2015; Dong et al., 2018; Page, Robinson, & Scartezzini, 

2007; Rakha, Rose, & Reinhart, 2014; Wilke, Haldi, Scartezzini, & Robinson, 2013). 

Engineering-based methods can further be broken down into two other categories: deterministic or 

stochastic methods. The first method, referred as the archetype method, implies that a sample of 
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representative buildings, known as building archetypes, covers the whole building stock and that 

individual variations in building properties within a representative subset of similar buildings are 

ignored. The second method works similarly but goes one step further by suggesting some 

variability in uncertain model parameters through distribution functions (e.g., uniform probability 

distributions). When measured data is available for a subset of buildings, Bayesian calibration 

techniques can achieve more realistic probabilistic distributions (Cerezo et al., 2017). Such a 

stochastic method will tune the shape of the distribution of certain model parameters to the 

observed data. While this method promises the creation of building stock models that are closer to 

reality, significant challenges can slow down their development. First, the availability of building 

properties which offer a high spatial granularity and the availability of measured energy data 

(especially for residential buildings) poses a challenge for the calibration of parameter 

distributions. Second, the uncertainty accompanied by occupancy patterns still presents the same 

challenge as with deterministic methods. Finally, challenges arise from the data availability of 

measured building energy data for calibrating archetypes. Sokol et al. (2017) assessed the impacts 

of these challenges by comparing stochastic modelling with deterministic modelling. The authors 

found that the deterministic archetypes were unable to properly represent the measured Energy Use 

Intensity (EUI) distribution of the buildings within the study area while probabilistic parameters 

(e.g., infiltration rate, occupancy density, temperature setpoints, plug loads intensity and domestic 

hot water demand intensity) led to more accurate distributions of building energy. 

Another area of research focuses on the local context of buildings within UBEM (Reinhart & 

Cerezo Davila, 2016). Individual building models that use dynamic thermal simulation engines 

such as EnergyPlus, DOE2, TRNSYS or IDA-ICE can model solar shading and building adjacency 

conditions, but this evaluation is usually replicated to the whole building stock when end-use 

results are simply scaled up; this is usually the case with deterministic methods. A context-aware 

urban model is based on the premise that the context of each building, and by extension the solar 

incidence, has a non-negligible impact on model accuracy. The variations in building geometry 

(e.g., depth, width, etc.) suggested by a finer 3D modelling context will also give more weight to 

considerations such as the ratio between core and perimeter thermal zoning. Context awareness 

also suggests that buildings which have adjacent walls will behave differently than isolated 

buildings. 
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An example of a context-aware UBEM was developed by Cerezo Davila et al. (2016) to model the 

City of Boston by creating as many multi-zone building energy models as there are buildings in 

the city (83 541 modelled buildings) and assigning the thermal properties of 52 different archetypes 

based on building use and age. The Lawrence Berkeley National Laboratory (LBNL) developed a 

similar approach called “CityBES” (City Building Energy Saver). This web-based tool offers an 

automated workflow to combine city GIS datasets which provide the building massing information 

(building footprint, year built, building type, building height, and number of stories) with a library 

of EnergyPlus building archetypes that are generated programmatically (Chen, Hong, & Piette, 

2017; Hong, Chen, Lee, & Piette, 2016). To circumvent issues of simulation time, CityBES 

leverages a server farm to parallelize the simulation of each individual building. This evidently 

comes at a high cost which cities—the target customer of the tool—usually have resources for. 

Another team developing a similar strategy claim that they achieved “realistic” simulation times 

by deploying EnergyPlus simulations on a national supercomputer (New et al., 2018). These 

examples suggest that simulating the urban context of buildings requires a “brute force” simulation 

strategy. It appears that some solutions may not be a viable avenue for all types of users. 

As a result, Dogan (2015) proposed a solution that would reduce the simulation time—and by 

extension, the simulation cost—of UBEMs while taking the urban context into account. The 

method was integrated into the UMI tool and later refined (Dogan & Reinhart, 2017; Reinhart, 

Dogan, Jakubiec, Rakha, & Sang, 2013). The approach is known as the “Shoeboxer” and operates 

on the principle of distributed two-zone models—that resemble shoeboxes—and for which 

archetype templates are applied. Another method known as the BBEE method (Building Blocks 

Energy Estimation) assumes that “the energy demand of [the] whole building mass in the district 

is close to the sum of each part” (Zhu, Yan, Sun, An, & Huang, 2019). A large library of typical 

building zones (different zones for different zone uses and orientations) is pre-simulated. Then the 

studied district is divided into multiple standard zones, similar to Lego blocks, and the energy 

demand by zone is aggregated back to whole buildings. While this technique does account for the 

orientation of thermal zones, context shading due to surrounding buildings does not seem to be 

supported. 

As stated above, UBEMs rely on building archetypes that are theoretical buildings representative 

of the building stock. We discuss next how archetypes are created and summarize available public 

sources of archetypes. 



60 

 

Figure 4.1 Summary of building stock energy prediction methods. UBEM methods are part of the engineering-

based subgroup. 

4.1.1 Archetypes 

Various UBEM methods rely on “building archetypes” that are common representations of 

buildings with similar properties. Reinhart and Cerezo Davila (2016) identified 17 studies of 

archetype creation for UBEMs which varied widely in terms of the number of archetypes per study 

(5 to 3 168) but also the number buildings represented by each archetype (50 to 500 000). By 

surveying the literature of UBEMs, the authors observed a wide range of methods that do not seem 

to follow an accepted guideline. Many studies fall back on a deterministic approach where the 

building stock is segmented (sometimes referred as the classification step of an UBEM creation) 

into clusters based on the main building use (e.g., residential, office, etc.). Refinements of the 

segmentation can occur with respect to other commonly available data points such as the 

construction year (e.g., average U-value of the building, infiltration rate, etc.) and the heating 

system (e.g., indoor temperature setpoints, fuel types, etc.).  

Characterization of building archetypes occurs with respect to the technical parameters common 

to each building segment group. These inputs vary largely depending on the type of thermal model 

(steady state vs. dynamic) and the zoning scheme (single vs. multi-zone models). Most 

deterministic approaches will assign a single value to each parameter which will be used for all 

buildings. Further improvements can be achieved by “probabilistic estimation” of some parameters 

such as temperature setpoints, occupancy, lighting power density and plug loads density (Cerezo 
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et al., 2015). For this kind of analysis, modellers can provide statistical distributions for parameters 

that present limited or no information. If measured data is available, these distributions can be 

refined using Bayesian calibration and updated to a “posterior probability distribution” that takes 

into account the evidence related to the measured data (Sokol et al., 2017). 

Many of the UBEM studies that have created building archetypes do not publish the archetypes 

themselves but rather publish the energy and statistical results. This leaves modellers with the task 

of developing custom archetypes or to adapt archetypes from a few public repositories. A summary 

of publicly available building archetype databases is presented in Table 4-1. For North America, 

the most notable sources of building archetypes are the Commercial Reference Buildings and 

Commercial Prototype Building Models developed for the US Department of Energy (NREL, 

2011; US DOE - Building Technology Office, 2018). 16 base prototypes representing 

approximately 70% of the US commercial building stock are available for various locations and 

for different reference vintages (e.g., pre-1980, post-1980 and new constructions). In the case of 

the prototype building models, building code assumptions for the ANSI/ASHRAE/IES Standard 

90.1 (ASHRAE, 2013) and the International Energy Conservation Code (IECC) are published in 

their various vintages. A recent adaptation of those archetypes to the Canadian context is in 

development by CanmetEnergy, an applied research branch of Natural Resources Canada, under 

the project Building Typology Assessment Platform (BTAP) (CanmetENERGY, 2019). For the 

residential sector, the Pacific Northwest National Laboratory developed two base prototypes 

(single-family and multi-family) that fit editions of the IECC. Another notable effort in the 

residential sector is the TABULA project which developed residential archetypes for 17 EU 

countries (TABULA Project Team, 2012). The archetypes are available through a web tool along 

with an API that allows the retrieval of archetype parameters for specific building types, countries, 

etc.  

The TABULA archetypes are published in the form of archetype templates which are stripped of 

geometric properties. In fact, once an archetype is defined, the non-geometric properties required 

for a thermal model can be extracted and stored in an “archetype template.” We discuss archetype 

templates in the next section and suggest a method to accelerate their creation. 
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Table 4-1 Summary of publicly available building archetype databases in North America and Europe. 

Reference Identification Building heat-

balance 

modelling 

Number of archetypes Application to 

geographical 

region(s)—sector 

(CanmetENERGY, 

2019) 

Building 

Technology 

Assessment 

Platform (BTAP) 

EnergyPlus 

(Open Studio) 

10 080 (16 reference building 

types, across 70 climate 

locations and 9 different 

vintage building codes) 

CAN-NR, MFD 

(NREL, 2011) Commercial 

Reference Buildings 

EnergyPlus 48 (16 reference building 

types across 16 climate 

locations and 3 vintages) 

USA-NR, MFD 

(US DOE - Building 

Technology Office, 

2018) 

Commercial 

Prototype Building 

Models 

EnergyPlus 2 448 (16 commercial 

building types in 17 climate 

locations and 9 vintage 

building codes) 

USA-NR, MFD 

     

(Mendon & Taylor, 

2014) 

Residential 

Prototype Building 

Models 

EnergyPlus 11 424 (32 models simulated 

across 119 climate locations 

for 3 IECC editions) 

USA-R 

(TABULA Project 

Team, 2012) 

TABULA EN ISO 13790 17 countries EUR-R, NR 

R, residential sector; NR, services sector; MFD, Multi-Family Dwellings; 

4.1.2 Archetype Templates 

Archetype templates differ from regular archetypes in the fact that they are stripped of any 

geometrical relationship. Therefore, an archetype template can be applied to any building form in 

an UBEM. In the context of the Integrated Design process and urban modelling applications, 

knowledge of the building’s interior and HVAC systems is generally unknown9. In this case, a 

common modelling approach is to define a large core zone at the center of the building, and one 

4.6 m-deep perimeter zone for each façade orientation (this pattern is typically repeated for each 

floor, optionally grouping identical intermediate floors between the ground floor and the last floor. 

                                                 

9 Although this is generally true, detailed city-scale building data structures that integrate interior zoning are being 

developed with the aim of mapping accurately buildings across the globe. The most widely accepted data structure is 

the OGC City Geography Markup Language (CityGML) Encoding Standard, developed by the Open Geospatial 

Consortium. It aims to “reach a common definition of the basic entities, attributes, and relations of a 3D city model” 

(Gröger et al., 2012). The last detail tier of CityGML, dubbed LOD4 (Level Of Detail 4), denotes details as small as 

individual furniture elements. Therefore, it remains in the realm of the possible to imagine a city model that contains 

accurate and up to date zoned building models for the purpose of large-scale multi-zone building energy simulations. 
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This practice is for example recommended by ASHRAE Standard 90.1 Appendix G (ASHRAE, 

2013).While the separation of the floor plan into core and perimeter zones allows the creation of 

distinct thermal behaviours, in practice, models often end up having fully conditioned spaces with 

uniform program distributions and similar temperature setpoints and schedules. This creates 

situations where the overall temperature difference between two adjacent zones is negligible thus 

possibly resulting in weak energy flows between them. Dogan (2015) argues that, in those cases, 

the computational overhead invested in simulating multiple zones is not worth the added accuracy. 

Therefore, there should be an alternative calculation method that overcomes the computational cost 

of simulating multiple zones while providing an accurate thermodynamic behaviour. Dogan offers 

a solution in the form of an algorithm known as the “Shoeboxer.” 

The shoebox method solves the simulation time constraint by reducing the number of zones needed 

to model all buildings in the UBEM. The method assumes that the main driver of energy 

consumption variations between archetypes is the diurnal and seasonal exposure to solar radiation. 

Therefore, the method clusters façades by orientation and context-dependent solar radiation 

incidence and assigns a representative “shoebox” with a specific area weight. Different 

programmatic uses within a building are assigned different shoeboxes, but identical programmatic 

uses with geometric similarities (e.g., floor/façade, roof/floor, ground/floor, core/perimeter) across 

the UBEM can share the same shoebox; this further speeds up simulations by a factor as high as 

300% when compared to standard multi-zone models zoned according to the ASHRAE 90.1 

method (Dogan & Reinhart, 2017).  

Because this method yields results that are in line with traditional context-aware multi-zone 

building models while increasing the simulation speed by more than 2 orders of magnitude, the 

shoebox method is a promising option. However, publicly available archetypes such as the 

Commercial Prototype Buildings are often developed as full BEMs, and it is a tedious task to 

summarize them into archetype templates. 

4.2 Automated Archetype Template Generation 

The shoebox method described in the previous section solves the issue of computing cost, but 

another challenge remains: the data acquisition and description of parameters needed to define 

building archetypes used in the model. If a student, a researcher or a consultant wishes to make an 
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UBEM model, the time spent on defining and converting the archetype parameters to the data 

format dictated by their tool will be significant. In the author’s experience, modellers will often 

give up on creating adequate archetypes because the time cost is too high, and they would rather 

fall back on existing archetypes created in earlier projects or shared within their organization even 

if they do not fit the local context. 

These shortcuts have the perverse effect of adding uncertainty to the overall model accuracy 

through what we identify as “model input blindness.” This blindness is the result of accepting too 

quickly model input assumptions without making the proper “sanity checks”. Input blindness is 

similar to the phenomenon of “change blindness” reported by developers of design-focused 

software which results in user failing to see changes in models (Davis, 2013, p. 44). 

Another factor which throws in more uncertainty with model input blindness is the fact that putting 

more time and effort in making sure model inputs are correct does not guarantee that simulation 

results will be closer to reality. Different levels of effort in creating UBEM model inputs were 

assessed by comparing model results to building measured data in a co-authored study (Leroy, 

Letellier-Duchesne, & Kummert, 2019). Archetypes developed using more refined parameters did 

not necessarily deliver better results. 

If valid archetype parameters from one format (originally incompatible with the shoebox method) 

could be translated, it would significantly reduce model input blindness. This chapter’s main 

contribution is an algorithm that aims to solve this issue. It fills a gap between the conversion of 

multi-zone EnergyPlus models to archetype templates used by the UBEM “Shoeboxer” method. 

In short, the algorithm approximates the non-geometric parameters of a multi-zone BEM by 

dissecting and combining core zones and perimeter zones. As we will discuss later, this approach 

introduces a robust method to convert detailed multi-zone models to archetype templates, stripped 

of geometric properties. Until a standard data structure of thermal model properties is devised 

(similar to efforts in the field of urban topology characterization such as the CityGML model), such 

a method will in fact be tailored to specific tools. In this case, the proposed methodology complies 

with the EnergyPlus and UMI frameworks. 
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4.2.1 Methods 

EnergyPlus models follow an object-oriented structure of zone geometries, surface assemblies, 

materials, loads, HVAC elements, schedules and more. Together, they form a complex model 

description that can be read by the EnergyPlus engine. The proposed algorithm essentially converts 

the EnergyPlus data structure to the UMI template data structure. To robustly interpret the 

Energyplus data structure, the algorithm leverages a scripting language called eppy (Philip, Tran, 

Youngson, & Bull, 2004) that translates the EnergyPlus model definition file (.idf) into a python 

object-oriented structure (see section 4.2.2). On the other end of the conversion methodology, the 

Shoeboxer method uses another data structure that organizes model parameters as archetype 

templates. This data structure was first suggested by Cerezo Davila et al. (Cerezo Davila, Dogan, 

& Reinhart, 2014) and later integrated into a graphical user interface called the “UMI Template 

Editor”.  

The algorithm begins by reading a multi-zone model (see A in figure 4.2) and establishes the list 

of zones. Using the zone geometry parameters, it computes zone areas and zone adjacencies and 

stores the information for later use (B). At this stage, the algorithm also establishes the different 

template data structure elements (listed in figure 4.3) by reading and treating the zone surfaces 

(constructions), loads, HVAC systems and more. Finally, the algorithm separates core and 

perimeter zones in two distinct groups (C) and performs a model complexity reduction by 

“aggregating” elements of each lists into two final perimeter- and core-zone definitions (D). 
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Figure 4.2 Visualizations of the model complexity reduction. Non-geometric properties from core zones and perimeter 

zones are combined into a shoebox. In this example, the Hospital prototype building is shown. 

This aggregation occurs at every level of the model structure. For example, two lighting power 

densities (LPD) and schedules from two adjacent core zones are combined and weighted by their 

zone area; the subsequent aggregations will occur with respect to the cumulative area of the 

combined zones; this occurs until all core-zones (and perimeter zones independently) are covered. 

For each of the model elements that need to be defined in the final model structure, a series of 

assumptions are made which can bring their fair share of limitations, as we will discuss in the next 

section. 

4.2.2 Model Structure & Assumptions 

For clarity, the following section will present the assumptions related to each step of the algorithm. 

Each section details the necessary input data, the effective processes and calculations as well as 

any limitations imposed either by EnergyPlus or the final data structure. 

As discussed earlier, the final data structure follows a pattern of zones and zone parameters. 

Figure 4.3 illustrates the various data elements that are defined for each thermal zone. It is the task 

of the algorithm to reduce the final number of zones to only two—i.e., one core zone and one 

perimeter zone. In the various following subsections, we will detail the assumptions that are made 
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when treating an EnergyPlus model. Right after, we will present examples of this method and 

demonstrate its validity. 

 

Figure 4.3 Archetype template input data structure. An archetype template zone contains a data structure represented 

here with their main definition. For a detailed graph dependency structure with all object parameters, readers are 

referred to the Appendix A. 

4.2.2.1 Zone 

Zones are defined in EnergyPlus using the Zone object. The algorithm uses the zones defined in 

the model as the starting point for the model complexity reduction. Most importantly, the zone 

object offers insight into the geometry of the zone (Area, Volume, Height) but also the adjacency 

of the zone (the elements that are geometrically next to the zone). By identifying the adjacency of 

zone surfaces (walls, floors, ceiling and windows), the algorithm can use the outside boundary 

condition of the zone surfaces to determine if a zone is considered a core zone or a perimeter zone. 

Core vs. Perimeter: What exactly defines a core zone and a perimeter zone is open to debate. By 

ASHRAE 90.1 standard, a core zone does not have an adjacency with the outdoors, except for the 

lower floor core zone and the upper floor core zone. These 2 zones are in contact with the ground 

and the outdoor conditions respectively. For its simplicity, this is the definition that is assumed in 

the algorithm: if any of the wall surfaces (effectively excluding floors and ceilings) has the field 

Outside_Boundary_Condition = “Outside”, the zone will be marked as a perimeter zone. 
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Limitations: Some multi-zone energy models contain plenums or attic spaces. These zones are 

modelled as zone objects that span a whole floor to help model underfloor air distribution (UFDA) 

systems or to account for thermal losses through the roof. Although these zones participate to the 

overall thermal behaviour of the model, they pose an accounting issue in the automatic process. 

This is why, for now, the algorithm will ignore plenums and attic spaces, but future versions of the 

algorithm could implement a more robust method. 

4.2.2.2 Zone Conditioning 

Zone Conditioning defines the HVAC settings for a zone: temperature setpoints, mechanical 

ventilation availability, heat recovery type, heating and cooling capacity and Coefficient of 

Performance (COP) of the heating and cooling systems. While temperature setpoints are zone-

dependent, many of the conditioning parameters are shared between multiple zones since one 

HVAC loop usually supplies multiple zones. In order to be able to combine zone parameters 

independently from their assignment to an HVAC loop, it has been decided to apply the overall 

building HVAC efficiency to all zones. Therefore, the COP of the HVAC loop supplying a core 

zone is the same as the COP supplying a perimeter zone. Economizer and heat recovery settings 

are also shared among all zones. A summary of the assumptions for zone conditioning parameters 

are detailed in Appendix B. 

4.2.2.3 Zone Loads 

Zone Loads define the various internal zone loads such as the occupancy density, the lighting power 

density and the equipment density. These metrics are simply weighted by zone area. 

4.2.2.4 Zone Ventilation 

Zone Ventilation controls various ventilation assumptions such as the supply forced ventilation or 

natural ventilation. The presence of such settings in any original zone is propagated to the final 

core and perimeter zones. 

Infiltration is also handled in this object. The zone air changes per hour (ACH) are retrieved from 

the original archetype and weighted by area in the aggregation process. 
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4.2.2.5 Schedules 

Schedules are an intrinsic part of building energy models. They apply temporality to model 

parameters by adjusting scalars at a particular time step. As shown in Figure 4.4, EnergyPlus 

defines schedules in many different ways posing a challenge when trying to produce a standard 

schedule representation. Since UMI defines schedules using the Year-Week-Day pattern, a routine 

was developed to parse virtually any EnergyPlus schedules into a set of Schedule:Year 

Schedule:Week:Daily and Schedule:Day:Hourly objects. It is worth mentioning that 

schedules are also aggregated by weighting the zone area, but they are first scaled by the quantity 

they modify (e.g., a lighting schedule modifying the LPD) and then normalized in order to keep 

the integrated quantities constant. An example is presented in section 4.2.3. 

 

 

Figure 4.4 Data Structure for EnergyPlus schedules. Schedules are defined using one of four Yearly Schedule objects. 

The Schedule:Year object is in turn constructed through a combination of Week Schedules and Day Schedules. 

4.2.2.6 Opaque Constructions 

Zone surfaces are defined as Opaque Constructions. The final data structure of the algorithm can 

only define one opaque construction per surface type and per zone type ([facade, ground, slab, roof 

and partition] x 2 zones). Therefore, a maximum of only 10 different constructions can define all 

the surface types for a reduced archetype template. Since it is not uncommon to have more than 10 
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different surface assemblies in an EnergyPlus model, a simplification must be performed. For 

example, it is not uncommon to have a certain wall construction for the first floor of a building and 

then another wall construction for the other stories. Two options are then possible: 1) keep the 

“dominant” wall construction or 2) create a new wall construction based on the shared thermal 

properties of the two surfaces. While the first method is quite straightforward, the second method 

poses a bigger challenge especially when trying to devise a parametrized solution. Should the 

combined wall have a constant u-factor? Should the final density of the combined wall be weighted 

in terms of the dominant wall (larger surface area) or should they be taken equal? Plausible results 

have been achieved in this algorithm by assuming certain assumptions, but as it will be 

demonstrated, the first option is still recommended. 

To demonstrate the second method, the following assumptions are taken: 

1. The u-value of the combined wall should be equal to the wall-area weighted average of 

their respective u-values. 

2. The total thickness of the combined wall should be equal to the wall-area weighted average 

of their respective total thicknesses. 

3. The combined wall should be constructed from materials of both constructions. Effectively, 

the set of the list of materials is taken. 

In the following example, we demonstrate the simple algorithm and highlight problems that might 

occur with regards to the thermal property of the combined wall. Let us assume two different façade 

wall constructions. The first is a 36 cm thick face brick and concrete wall and the second is a 28 

cm thick insulated concrete wall as detailed by Tsilingiris (2004). The walls are made from a 

combination of materials with different thicknesses. Let us also assume that both walls have an 

area of 1 m2. Both walls are illustrated in figure 4.5 and materials and thermal properties are listed 

in Table 4-2.  

With the assumptions listed above, the combined wall would have a thickness of 31.9 cm and a U-

value of 0.72 W/m2 K, which is consistent with the conductivity of the original walls. Although 

these results seem plausible, they omit one important factor: the wall time constant. 
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Figure 4.5 Example: Combining two wall constructions of different total thickness, mass, 

thermal resistance and heat capacity. 

 

Table 4-2 Wall layer thicknesses, thermophysical properties and calculated U and  
(𝜌 ∙ 𝑐 ∙ 𝛿)𝑒𝑞 for two wall assemblies and the combined wall. 

Wall assembly Wall 

Layer 

Material 

Description 

Thickness 

(cm) 

𝑘 
(W/m K) 

𝜌 
(kg/m3) 

𝑐 
(J/kg K) 

U 

(W/m2 K) 

(𝜌 ∙ 𝑐 ∙ 𝛿)𝑒𝑞 

(J/K m2) 

Face brick & 

Concrete Wall 

(36 cm) 

1 Face brick 10 1.20 1900 850 0.6740 574 260.0 

2 Thermal 

Insulation 

4 0.041 40 850   

3 Hollow 

Concrete 

Block 

20 0.85 2000 920   

4 Plaster 2 1.39 2000 1085   

Insulated 

Concrete Wall 

(28 cm) 

1 Plaster 2 1.39 2000 1085 0.7710 511 360.0 

2 Concrete 

Layer 

20 1.70 2300 920   

3 Thermal 

Insulation 

4 0.041 40 850   

4 Plaster 2 1.39 2000 1085   

Combined Wall  

(31.9 cm) 
1 Concrete 

Layer 

7.6 1.70 2300 920 0.7169 533 397.7 

2 Plaster 4.4 1.39 2000 1085   

3 Hollow 

Concrete 

Block 

7.9 0.85 2000 920   

4 Face brick 8.0 1.20 1900 850   

5 Thermal 

Insulation 

4.0 0.041 40 850   
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Limitations: When multiple constructions are defined for a single surface type, the selection of 

the dominant wall construction can create modeling discrepancies. Window constructions pose a 

similar problem. Windows assemblies and their parameters are detailed in section 4.2.2.8. 

4.2.2.7 Internal Mass Constructions 

As explained above, the complexity reduction algorithm iterates over the list of core and perimeter 

zones. When two adjacent zones are combined, the partition wall that separates the two zones is 

transformed into an internal mass. This is standard practice in BEM modelling where a subdivided 

floorplan of a unique function (e.g., offices) is estimated as a single zone where partition walls are 

modelled as an internal mass. By accounting for thermal mass in this way, the algorithm manages 

to give the reduced model a thermal mass equivalent to the full model. 

4.2.2.8 Windows 

Window settings define the various window-related properties of a zone. Control of some natural 

ventilation settings and shading is also defined here (see section 4.2.2.4 for ventilation settings). 

The algorithm detects the window construction (materials and thicknesses) and common shading 

devices. Windows that are defined as a “WindowMaterial:SimpleGlazingSystem” — a 

simplified way in EnergyPlus to define a window by specifying the Solar Heat Gain Coefficient 

(SHGC), the U-factor and the Visible Transmittance — must be converted to a regular window 

construction made from a glass material, as required by the final data structure. The algorithm 

performs this step automatically by calling an implementation of the step-by-step method outlined 

by Arasteh, Kohler, and Griffith (2009) which abstracts the simple window properties to a single 

glass pane. This procedure is the same used internally by EnergyPlus to process the simple glazing 

system objects. This procedure could be easily adapted to a more recent method (RP-1588) which 

creates an equivalent multilayered construction (Kruis, Lyons, & Wong, 2017). 

Limitations: Combining two window constructions of different optical and thermal properties 

could be quite helpful but the added complexity may not be worth the trouble. The algorithm 

therefore keeps the “dominant” window construction, based on the total area, whether it is when 

choosing a window construction from multiple windows on the same surface or when choosing a 

window construction from two different zones; only one window construction can be defined for 
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an archetype template in the final data structure. On the other hand, the WWR of the original model 

is calculated by façade orientation and is included in the model comments. 

4.2.2.9 Domestic Hot Water (DHW) 

Domestic hot water (DHW) is referred in EnergyPlus as service water. Loads are defined through 

WaterUse:Equipement objects. The area-weighted flow rate intensity (m3/h-m2) is reported by 

zone along with the corresponding schedule. 

Limitations: The current algorithm cannot properly model the water consumption of a hot water 

plant loop, as it is often the case in larger buildings. Only the zone spot consumption is reported, 

which could underestimate the actual water consumption. 

4.2.3 Results 

To demonstrate the capabilities of this algorithm, results of the model complexity reduction are 

compared with the original EnergyPlus model for an archetype of the Commercial Reference 

Database (US DOE - Building Technology Office, 2018). The purpose of this section is to 

demonstrate the methodology using an archetype that features a designer-centric zoning scheme 

(i.e., as opposed to the ASHRAE 90.1 zoning scheme). The Strip Mall archetype is constructed 

from 10 adjacent zones (see Figure 4.6) which have various internal load conditions. The resulting 

archetype template defines a perimeter zone that is duplicated for the core-zone because the original 

archetype contains only perimeter zones. 

 

Figure 4.6 Shoebox archetype (foreground) and EnergyPlus archetype (background). 

Four shoeboxes are represented over the geometry (screenshot from UMI). 
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Results of the complexity reduction algorithm show a good agreement with the original archetype. 

For example, the three different occupancy patterns that define the internal gains due to occupants 

in the zone are compared with the equivalent template; one typical week is represented in 

Figure 4.7 (top). The equivalent schedule, as calculated by the complexity reduction algorithm, is 

shown below. The combined schedules, which are constructed such that an integrated quantity is 

kept constant (see Figure 4.7) produces the expected results. For instance, the original archetype’s 

three occupancy patterns compute a total weekly occupancy of 5 005 person-hours for the 10 zones. 

This value is the result of the integration of the product of the zone occupancy density (person/m2) 

by the zone area (m2) and scaled by the occupancy schedule (see Table 4-3 below). Similarly, the 

single combined occupancy of the archetype template is multiplied by the shoebox perimeter zone 

occupancy (computed as 0.086 person/m2) and the perimeter zone area (equivalent to the whole 

building conditioned area; 2090 m2). The archetype template yields the same 5 005 person-hours 

for the shoebox approximation. 

The current methodology focuses on the creation of data inputs for the shoebox method 

implemented in UMI. While it would have been of interest to compare simulation results between 

the original EnergyPlus strip mall archetype and its approximation as a shoebox model simulated 

in UMI, this would have had the effect of crossing the boundary into the validation of the 

“shoeboxer” method. The shoebox method was tested on some 10 000 variants and it was shown 

to be accurate by the authors of the method (Dogan & Reinhart, 2017). 
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Table 4-3 Details of the occupancy calculation of the strip mall building archetype. 

Original archetype  Archetype template  

Zone 

Name 

Area  

(m2) 

Occupancy  

(person/m2) 

Schedule Name Weekly 

traffic 

(person-

hours) 

 Zone 

Name 

Area 

(m2) 

Occupancy 

(person/m2) 

Schedule 

Name 

Weekly 

traffic 

(person-

hours) 

LGstore1 348 0.086 Type1_OCC_SCH 961  Perim 1045 0.086 Combined  2 502.5 

LGstore2 348 0.086 Type3_OCC_SCH 918  Core 1045 0.086 Combined 2 502.5 

SMstore1 174 0.086 Type1_OCC_SCH 481       

SMstore2 174 0.086 Type2_OCC_SCH 270       

SMstore3 174 0.086 Type2_OCC_SCH 270       

SMstore4 174 0.086 Type2_OCC_SCH 270       

SMstore5 174 0.086 Type3_OCC_SCH 459       

SMstore6 174 0.086 Type3_OCC_SCH 459       

SMstore7 174 0.086 Type3_OCC_SCH 459       

SMstore8 174 0.086 Type3_OCC_SCH 459       

total 2090   5 005   2090   5 005 

 

 

Figure 4.7 Occupancy pattern of the strip mall archetype. The original building archetype has three different 

occupancy schedules (top, labelled Type 1, 2 and 3). These schedules are represented by only one equivalent 

schedule in the archetype template (bottom, labelled combined). 
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4.3 Towards a National Archetype Template Database. 

Public repositories of archetypes such as summarized in Table 4-1 can be used to produce an 

equivalent archetype template database. EnergyPlus models developed for various climate zones 

can be converted to archetype templates using the method described in 4.2. 

As a proof of concept, a template library of a selection of archetypes from 3 vintages was converted 

using the Montréal climate file (CWEC). The resulting template library is shown as opened in the 

UMI Template Editor (Figure 4.8), a graphical user interface designed to manually edit archetype 

templates for the UMI software. 

With more than 15 072 combinations of archetypes, climate zones and vintages, the resulting 

archetype template database would benefit modellers seeking to create UBEMs of various scales. 

Moreover, with more than 1042 weather locations in the United States and 71 weather locations in 

Canada, it would be possible to generate an even more refined database that would be fine-tuned 

to individual weather files, e.g. adapting the seasonal coefficient of performance of chillers to the 

detailed simulation results for a particular weather data file. For analyses involving future weather, 

morphed weather files that are adjusted to global climate models could be used to produce a future-

set of archetype templates. 

 

Figure 4.8 The UMI Template Editor. 27 archetype templates created automatically from three 

sources of building archetypes. 
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4.4 Discussion 

This chapter focused on the building energy use estimation at an urban level. The importance of 

building archetypes was uncovered thanks to various studies of urban building energy modelling. 

Two of the biggest challenges of UBEM were found to be the creation of building archetypes and 

the significant computational demand of large-scale studies. With the advent of a promising 

solution known as the “shoebox” method centred around building archetypes templates, a 

methodology for the automatic creation of archetype templates was proposed. This methodology 

leverages existing public libraries of building archetypes and suggests a way forward to accelerate 

the creation of UBEMs across the United States and Canada. 

This chapter specified all the details of the methodology and highlighted some limitations that 

could be addressed in future iterations of the method. Yet again, in the larger context of this 

dissertation, a simplified vision of building energy use at the urban level is sufficient to move 

forward with other objectives of this dissertation. 

The next chapter looks particularly at modelling the building energy use of the City of Montréal 

with a focus on the difficulties that arose from the unavailability of the necessary datasets that are 

fundamental to the creation of UBEMs. 
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 ACQUIRING, ANALYZING AND VISUALIZING HEAT 

DEMAND 

On the path towards the planning and integrated design of urban heat-sharing networks, estimating 

the dynamic building energy profiles of individual buildings is a requirement; this has been 

demonstrated earlier in chapter 3. Chapter 4 has introduced the theoretical landscape of building 

stock energy use estimation and presented a methodological contribution to accelerate the creation 

of urban building energy models; Chapter 5 implements a method that is adapted to the data 

availability and the context of Montréal, Qc. with the objective of producing a dynamic heat map 

of space heating, space cooling and domestic hot water demand. Gathering this information is 

crucial for the next phase of this dissertation’s methodology which occurs in chapter 6: the 

topology optimization of the heat-sharing network. 

5.1 Introduction 

Analyzing heat demand at the city scale blurs the lines between geography, data science and 

mechanical engineering. Because of a prevalent spatial context, specialized geographic information 

systems (GIS) form the underlying data structure necessary to acquire, analyze and visualize heat 

demand. Additionally, national statistical surveys, municipal property assessment rolls, energy use 

surveys, open source GIS databases such as OpenStreetMap and other forms of occupant- and 

building-related data enable the process of archetype segmentation, characterization and 

quantification. 

We can study the effects of design decisions with district energy and urban building energy 

modelling through various building energy performance visualizations. Different methods have 

been developed to estimate energy consumption at the building level including the top-down and 

bottom-up methods detailed in chapter 4. Other innovative methods rely on completely different 

methodologies. For example, Hay et al. (2011) used thermography equipped drones to map the 

thermal signature of homes at night from which energy usage was extrapolated. Persson et al. 

(2014) produced large-scale heat maps of excess heat availability by converting CO2 emission data 
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into potential excess heat data. This work spanned European Union nations at the NUTS3 level10. 

Here, the goal was to map areas where excess heat was abundant to help plan the extension of new 

urban energy systems. Similarly, the same authors mapped the location of potential heat sources 

for the large-scale implementation of heat pump thermal plants in Denmark (R. Lund & Persson, 

2016). This granularity, in the thousands of square kilometres for most regions, is ideal for 

identifying regions where district energy expansion is feasible at the national level but is not 

detailed enough for studies at the district scale. The Scotland Heat Map (Scottish Government, 

2018) is another example of an effort to map heat demand at the national level. 

On the other hand, other works proposed heat maps at the building level. Such examples are the 

Heat Atlas by Möller and Nielsen (Möller & Nielsen, 2014), the Energy Atlas Berlin 

(Senatsverwaltung für Wirtschaft Energie und Betriebe, 2019), the French National Heat Map 

(Cerema, 2014) or the London Heat Map (Centre for Sustainable Energy, 2019). Energy maps are 

a valuable tool for determining cost‐effectiveness of energy efficiency policies and renewable 

energy programs (Howard et al., 2012). On the other hand, many of the heat maps presented so far 

are based on top-down methodologies. For example, the France Heat Map can be used to estimate 

the impact of converting domestic hot water from carbon-intensive fuels to renewable sources such 

as solar energy, but cannot be used to estimate, for instance, the impact of improving building 

infiltration levels. Only physics-based models can answer this kind of question. 

Furthermore, many of the heat map models detailed so far aggregate indicators to annual metrics. 

This is fine if the target questions relate to evaluations of Energy Use Intensity (EUI) or Thermal 

Energy Demand Intensity (TEDI). In the case of district energy simulation, a heat map detailing 

the annual peak heating demand of each building can be paired with a typical normalized load 

duration curve (LDC)—an indicator of the variability of the heating demand with respect to the 

time of the year—and a simulation of the DES can be performed quite simply as demonstrated by 

Dorfner et al. (2017). As seen in the next chapter, when optimizing the topology—or the shape—

of a heat-sharing network, a single load duration curve cannot reproduce the behaviour of all heat 

loads across the service area, thus requiring a heat map model that retains the hourly energy profiles 

                                                 

10 NUTS, or Nomenclature of Territorial Units for Statistics, is a standard referencing system of the subdivision of 

countries for statistical reasons in the European Union. Regions of increasing granularity are labeled 1 to 3. 
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of each building. There is a need to optimize the energy performance of a district and not only 

assess its energy use; thus it is necessary to understand where and when the energy is used.  

Such a dynamic heat map allows different stakeholders to answer different questions. For city 

officials, they may want to focus on the impact of energy policies on buildings across the city and 

the benefits in terms on air quality and GHG emissions. For utility companies, the aim is to 

understand the impact of policy changes and new urban development on grid power demand (peak 

electricity) and resilience. If heat sharing technology is adopted en masse, what will be the impact 

of the added demand? Will this require infrastructure upgrades? For district energy utilities, heat 

maps may answer questions linked to service area expansion. What other areas are worth 

connecting to grow the network? Will the expansion require extra capacity? Where are located the 

surrounding energy sources? All these questions need to be identified prior to developing the heat 

map as this will narrow down the necessary data inputs. 

In the following section, the heat map that is created tries to answer the following questions: 

1. What is the space heating use profile of each building? 

2. What is the domestic hot water use profile of each building? 

3. What is the space cooling use profile of each building? 

5.2 Methodology 

The archetype method (see 4.1) aims to produce an hourly heat map of an urban context. In this 

chapter, the method is applied to the context of the city of Montréal. The following sections present 

the methodology behind the various data manipulations that are necessary to produce a dynamic 

heat map of the City of Montréal. 

5.2.1 Multiple Data Inputs 

Collecting the required data is the most important and time-consuming step in the preparation of a 

heat map or a building stock model. In Preparing for a City-Scale Building Energy Upgrade 

Analysis (NREL, 2019), the authors identify five categories of data that cities should compile: (1) 

building type and location, (2) building stock geometry, (3) building stock characteristics, (4) 

energy consumption and (5) cost.  
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The first two categories of data refer to the “Building Massing Model,” a 3D representation of the 

city; this massing model is supplemented by data from the “virtual building footprint” analysis that 

uses LiDAR (3D laser scanning) data provided by the City. The third category focuses on building 

characteristics such as the year built, the building materials and the type of fuel used for heating 

and domestic hot water (e.g., electricity, gas or oil); this information is covered by the 

“Segmentation Using Property Assessment Rolls” dataset. Although this dataset does not include 

fuel types, the absence of this information does not prevent the estimation of space heating and 

space cooling energy demand. Finally, the fourth and fifth categories relate to metered building 

energy consumption and energy costs. In the absence of publicly available data, an archetype-based 

energy model estimates building energy use. Table 5-1 summarizes the various data sources used 

in the preparation of this heat map. 

Table 5-1 Heat map input data availability describing the building stock of Montréal, Qc. 

Data Type Name / Source Features 

GIS OpenStreetMap Road Networks and Building 

Footprints 

Property 

Assessment 

Roll 

Unités d’évaluation foncière (property assessment roll) 

http://donnees.ville.montreal.qc.ca/dataset/unites-evaluation-

fonciere 

Building type, year built, number 

of floors, number of residential 

units, number of commercial units, 

number of industrial units 

GIS Utilisation du sol 2016 — Communauté Métropolitaine de 

Montréal 

http://cmm.qc.ca/donnees-et-territoire/observatoire-grand-

montreal/produits-cartographiques/donnees-georeferencees/ 

Number of residential units, 

number of commercial units, 

number of floors, year built,  

 

5.2.2 Building Massing Model Using Virtual Building Footprints 

Depending on the scope of the study and the scale of the built environment, there are many ways 

to determine the volume occupied by building structures or the geometric massing model. In studies 

spanning larger areas such as this one, designers can rely on public data sources often provided by 

city councils or even open source datasets like OpenStreetMap (OSM). The information such as 

the building footprints and the number of floors can serve as the basis for a massing model. 

Extruding a building footprint to the product of the number of stories by some average floor-to-

floor height (often taken as 3 metres) produces what is known as a 2.5D model. Such a model 

represents the general shape of buildings but will not properly represent more complex building 

shapes such as setbacks often found in higher buildings. 
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To get building footprints, one typically looks for an existing dataset provided by city geomatic 

departments or from other sources such as OpenStreetMap. The methodology behind the creation 

of building footprints can be either manual or automatic; it can be based on aerial/satellite imagery 

or on Airborne Laser Scanning (ALS) data (also known as LiDAR data). Manual methods imply 

having a technician draw the contour of a building on top of georeferenced satellite imagery or 

aerial photography. This method produces the most accurate results and even differentiates 

adjacent buildings such as rowhouses but has the highest cost. Automatic methods, on the other 

hand, currently use high-resolution imagery combined with pattern detection and geometry 

simplification algorithms. The largest known dataset was created by a research team from 

Microsoft. The team analyzed aerial imagery by using a technique called “Semantic Segmentation” 

which is based on deep convolutional neural networks (CNNs). This technique effectively 

produced 11 842 186 building footprints from all Canadian provinces and territories (Microsoft, 

2019a) and 125 192 184 building footprints in all 50 US States (Microsoft, 2019b). Unfortunately, 

all the aforementioned sources of building footprint data lack one essential attribute, the elevation 

(or the height) of the building’s roof, which is needed to extract the number of stories and the 

building floor area. ALS data, on the other hand, meets this requirement. ALS implies having a 

plane (or a drone) equipped with some onboard laser scanning apparatus fly over a region and 

collect 3D point coordinates (xyz) of the survey area at a certain resolution. The advantage of ALS 

over image recognition is that ALS has no adverse effects from tree canopy penetration and 

insensitivity to some lighting conditions such as shadows that can affect image recognition 

algorithms (Yan, Shaker, & El-Ashmawy, 2015; Yu, Liu, Wu, Hu, & Zhang, 2010).  

LiDAR techniques have been used to produce digital terrain models (DTM) and digital surface 

models (DSM). The Digital Terrain Model (DTM) is a simplified representation of ground 

altimetry. In the case of the city of Montréal, the available data is in the form of an irregular 

triangular mesh (TIN)11. It is a surface numerical geographic dataset constructed by triangulating 

a set of points gathered with LiDAR technology. The vertices of various altitude are connected to 

a series of segments to form a mesh of triangles of different dimensions. For this study, the TIN 

model was converted to a regular raster DTM in order to pair easily with another dataset: The 

                                                 

11 http://donnees.ville.montreal.qc.ca/dataset/modele-numerique-de-terrain-mnt 
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Digital Surface Model (DSM). The DSM is a representation of the terrain relief that includes 

volumetric buildings present in the landscape.  

In this study, the DSM and DTM datasets are georeferenced raster images which have a resolution 

of 1 × 1 metre. Each pixel (or cell) value represents the average altitude of the object in place that 

reflected the pulsing laser (approximately 10 points per square metre). According to the metadata, 

the dataset has an accuracy of ± 20 cm. The DTM is already processed and cleaned by the city’s 

geomatic department to ignore other human-made structures such as buildings and bridges. 

Similarly, the DSM is pre-processed to include human-made structures but ignore trees and other 

smaller irrelevant structures. A derived feature of DTM and DSM is the normalized DSM (nDSM) 

which can be extracted by subtracting the DSM with the DTM layer (see figure 5.1). Thus, the 

space contained between the two layers, one being the ground and the other similar to a blanket 

carefully covering all buildings, represents the volume of the built environment. The subtraction 

of both layers produces the height of the built environment which is the key piece of information 

here. As a bonus, the count of non-zero pixel values yields the total area (m2) of building footprints 

(the built area) and the sum of non-zero pixel values yields the total volume of all buildings (m3).  

 

Figure 5.1 Sketch showing both the Digital Surface Model (green) and the Digital Terrain 

Model (DTM) and their relationship with the built volume between them. 

5.2.2.1 How does VBF compare with hand-drawn footprints? 

In this study, a dataset containing detailed footprints but covering only a small part of the study 

area is used as a reference to evaluate the error of the VBF method. A sample of the datasets is 

presented in Figure 5.2 for a region containing a few residential buildings of different heights. This 

figure shows that both datasets diverge slightly from the aerial imagery, especially for more 
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complex structures and landscapes such as the large terraced multi-residential building shown in 

the center of each image. In this case, the hand-drawn dataset ignores part of the building while the 

VBF incorrectly interpret part of the land as building area. Finally, recreating the general shape of 

buildings using VBFs comes with one caveat: the resolution of 1 × 1 metre creates a jagged 

perimeter which can overestimate building footprint areas. Although this is undesirable if we were 

to create 2.5D geometries, this level of detail is more than enough to produce our city-level building 

energy model which will depend on the height of buildings and their total floor area as the following 

error analysis shows. 

 

Figure 5.2 Side by side comparison of satellite imagery, hand-drawn building footprints and Virtual Building 

Footprints. (Satellite Imagery Source: Google Maps) 

5.2.2.2 Error Analysis 

Looking at the whole dataset, we can compute the relative error introduced by the VBF method. 

Since the hand-drawn dataset covers a smaller area than the LIDAR data, the following analysis 

and results will be constrained to the boroughs where more detailed footprints are available. 

Assuming that the detailed footprints are the “reference” dataset, although it may contain some 

errors as we have shown in the figure above, the VBF method overestimates the total building 

footprint area by 30%. This error varies by borough between 13% and 55% (see table A-1 in 

Appendix A). This variation is illustrated in Figure 5.3 showing the relative error of the total 

footprint area. 
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This relatively large error can be explained by two components: first, the VBF can present 

structures that are not “buildings,” such as large storage tanks; these artefacts will be ignored once 

the building characterization is crossed-referenced with the tax-assessment dataset (see section 

5.2.3). Second, the pixels at the periphery of each building extend beyond the actual building limit, 

thus overestimating the area of the footprint. This is illustrated in Figure 5.4. 

 

Figure 5.3 Relative difference of the footprint area between the reference BF (where 

data is available) and the approximation based on LiDAR data (VBF). The island of 

Montréal, Qc is shown. 
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Figure 5.4 Overestimation of building footprints by use of virtual building 

footprints. On the left, the satellite imagery showing a single building. On the 

right, the hand-drawn building footprint (blue) over the VBF (black). 

 

5.2.2.3 Calculating the floor area 

There is no consensus amongst researchers as how to approximate the floor-to-floor height of 

buildings. It is generally accepted to choose an all-around height of 3 metres, but some authors 

have suggested to vary the height by building type or by district (Chun & Guldmann, 2012; Dorfner 

& Hamacher, 2014). For instance, in a study by Yu et al. (2010) in the city of Houston, the authors 

approximated the floor height by choosing a value for 6 different urban districts, ranging from 3 to 

4 metres. In another study, Dorfner (2011) used a height of 3.125 metres. In a study on higher 

buildings such as skyscrapers, Saroglou et al. (2017) suggested a height of 3.1 metres for residential 

towers (with a 4.65 metres high ground level) and 3.9 metres for commercial towers. These 

assumptions were based on the Council on Tall Buildings and Urban Habitat (CTBUH) typical tall 

building characteristics (CTBUH, 2015a). 

In the study presented in this chapter, the building floor height—and consequently the building 

floor area—was determined for 3 categories of buildings (office, other/mixed-use and 

residential/hotel) and two categories of building height (regular buildings and tall buildings higher 

than 23 metres). This creates a set of 6 formulas that are summarized in Table 5-2. The formulas 

of the tall buildings are based on the CTBUH assumptions mentioned earlier (CTBUH, 2015b). 
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Table 5-2 Number of floors (s) based on building type and building height. 

Building Type Regular Buildings  

(ℎ < 23 m) 

Tall Buildings  

(ℎ ≥ 23 m) 

Office 
𝑠(ℎ) =

ℎ

3.9
 𝑠(ℎ) =

200ℎ

819
−

20

7
 

Other/Mixed-Use 
𝑠(ℎ) =

ℎ

3.5
 𝑠(ℎ) =

25

721
∗ (8 ∗ ℎ −  77) 

Residential/Hotel 
𝑠(ℎ) =

ℎ

3.1
 𝑠(ℎ) =

150 ∗ (4 ∗ ℎ −  31)

1891
 

 

The building floor area is estimated by multiplying the building footprint area by the number of 

stories calculated using the formula in Table 5-2. The accuracy of these results can be assessed by 

comparing our calculations with the building floor area attributes contained in the property 

assessment roll. The error distribution is summarized in Figure 5.5. As expected, a large portion of 

the building stock is well represented with some cases where the building floor area is 

underestimated or overestimated. The smaller variations could be explained by the fact that floor 

area information provided in the property assessment roll excludes common areas. Larger 

variations could be explained by disparities between newly constructed or demolished buildings 

that do not appear in both data sets. 

 

Figure 5.5 Relative error distribution of the estimation of building floor areas. 

Only features with a valid “floor area” attribute are shown. 
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5.2.3 Segmentation Using Property Assessment Rolls 

Once the building massing model is created, the segmentation of each building into clusters occurs 

with respect to the attributes of the property assessment roll. This database is one of the best readily 

available sources of information which can be used to identify important building characteristics. 

These records are often part of the public realm and most cities will publish updated GIS data files. 

The tax rolls in Montréal are updated monthly and offer insight on the main activity occurring in 

the building. At the time of writing, the dataset contained 513 235 MultiPolygon12 features with 16 

attributes such as the address, the year built, the floor area of the unit and most importantly, in our 

case, the unit’s main utilization. 

These polygons are shaped according to the lot, not the building footprint itself. In other words, a 

single feature in the dataset, or a unit, represents the boundary of the lot on which it lies. Moreover, 

the number of features in the dataset does not represent the number of buildings, as condos and 

interior parking spaces are considered as individual units. Therefore, one lot on which stands a 

high-rise apartment tower, for example, can have hundreds of overlapping features making up the 

whole building. Moreover, a unit can span across more than one lot as seen in Figure 5.6. To extract 

the floor area contained on a lot, a spatial query13 is performed and units within the same lot are 

aggregated. Later, this aggregation occurs with respect to the unit’s utilization code. 

                                                 

12 Georeferenced datasets take the form of geometric shapes that have coordinates on the earth’s surface. Such shapes 

include Points, LineStrings, LinearRings, Polygons as well as collections of those shapes: 

MultiPoint, MultiLineString and MultiPolygon. 

13 A Spatial Query is a special type of database query in which the geometry of a feature is used to perform a spatial 

predicate. The most common predicates are Within, Contains, Intersects and Covers. 
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Figure 5.6 Multiple polygon features overlap for distinct 

property units. Units may span more than one property lot. 

The utilization code specifies the main activity occurring in a unit (e.g., school, office building, 

restaurant, etc.). This attribute plays an important role in the segmentation step of the UBEM model 

creation by helping break down units into typical space type clusters. In the case of the Montréal 

dataset, the utilization code is based on the provincial “Codes d’utilisation des biens-

fonds (CUBF)14” or Property Use Codes. This codification ensures uniform identification of the 

different building uses in the province of Québec and consists of a four-digit code (e.g., 1 000 for 

regular housing). Because the CUBF is a provincial requirement, this methodology should be easily 

applicable to other cities providing open data access.  

The segmentation of the building stock was performed with respect to the existence of building 

archetypes of the commercial reference database (NREL, 2011). These archetypes are defined as a 

combination of 16 space types (usages) and 3 construction years (pre1980, post1980 and new2004). 

The building archetypes were matched to CUBF codes manually. These codes include industrial 

activities, so that industrial building archetypes could be part of a city model in the future. In our 

approach, these buildings were ignored because such industrial activities are not included in the 

selected archetypes (NREL, 2011). Finally, the level of granularity offered by the property 

                                                 

14 https://www.mamh.gouv.qc.ca/evaluation-fonciere/manuel-devaluation-fonciere-du-quebec/codes-dutilisation-des-

biens-fonds/ 
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assessment roll allowed a segmentation to occur with respect to various usages within a single 

building. This segmentation also kept the geographical designation of unit clusters in order to be 

able to map the results. 

The characterization of the building stock describes each building archetypes with its technical 

characteristics based on the segmentation process. As mentioned above, these building archetypes 

come from the Commercial Reference Database and are simulated in EnergyPlus using the 

Montréal weather file. The space heating, space cooling and domestic hot water annual profiles are 

extracted and normalized by the floor area. 

Finally, the quantification step propagated the energy profiles to all localized unit clusters by 

scaling them by the total floor area they represent. A summary of this segmentation is provided in  

Table 5-3 by building type and vintage. 
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 Table 5-3 Summary of the building segmentation, characterization and quantification of the building stock of the 

Island of Montréal. 

Building Type Vintage Count Floor Area [m2]  Building Type Vintage Count Floor Area [m2] 

FullServiceRestaurant All 223 92 431  QuickServiceRestaurant All 29 14 277 
 

new2004 32 13 861  
 

new2004 9 5 114 
 

post1980 73 29 262  
 

post1980 5 4 005 
 

pre1980 118 49 309  
 

pre1980 15 5 158 

Hospital All 50 2 088 934  RetailStandalone All 620 1 810 180 
 

new2004 7 510 117  
 

new2004 121 483 820 
 

post1980 3 49 091  
 

post1980 221 773 274 
 

pre1980 40 1 529 726  
 

pre1980 278 553 085 

LargeHotel All 1 136 3 295 658  RetailStripmall All 256 2 946 342 
 

new2004 408 916 432  
 

new2004 14 179 696 
 

post1980 572 885 571  
 

post1980 98 1 056 520 
 

pre1980 156 1 493 655  
 

pre1980 144 1 710 127 

LargeOffice All 6 022 16 860 175  SecondarySchool All 160 1 557 370 
 

new2004 476 1 227 308  
 

new2004 2 30 698 
 

post1980 1 171 5 501 354  
 

post1980 16 103 759 
 

pre1980 4 375 10 131 513  
 

pre1980 142 1 422 913 

MediumOffice All 794 2 206 980  SmallHotel All 77 168 604 
 

new2004 111 166 029  
 

new2004 1 19 367 
 

post1980 200 735 942  
 

post1980 3 1 567 
 

pre1980 483 1 305 009  
 

pre1980 73 147 670 

MidriseApartment All 429 475 106 127 914  SmallOffice All 121 83 592 
 

new2004 66 810 11 658 328  
 

new2004 29 23 299 
 

post1980 98 248 21 373 183  
 

post1980 15 9 872 
 

pre1980 264 417 73 096 403  
 

pre1980 77 50 422 

Outpatient All 130 145 080  Supermarket All 131 582 754 
 

new2004 24 27 397  
 

new2004 27 177 198 
 

post1980 23 13 946  
 

post1980 39 169 405 
 

pre1980 83 103 737  
 

pre1980 65 236 151 

PrimarySchool All 387 1 932 415  Warehouse All 41 580 10 871 423 
 

new2004 7 35 863  
 

new2004 22 436 1 746 500 
 

post1980 28 134 752  
 

post1980 14 945 4 183 898 
 

pre1980 352 1 761 800  
 

pre1980 4 199 4 941 025 
         

All 
 

   
 

All 481 191 150 784 130 
  

   
 

new2004 90 514 17 221 026 
  

   
 

post1980 115 660 35 025 403 
  

   
 

pre1980 275 017 98 537 701 
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5.3 Results 

The application of the aforementioned methodology results in a heat map for which the space 

heating, space cooling and domestic hot water load profiles are known at an individual building 

resolution. 

Although such a large database is best viewed in an interactive environment, visualizing a static 

heat map can be achieved by assigning the centroid of each building with its annual heat demand 

(kWh) and applying a spatial kernel density estimation to distribute the demand around each 

centroid. This results in a visualization where any cell of the map represents the absolute energy 

demand at that location, which can be divided by the cell area to obtain a heat density. For example, 

Figure 5.7 shows a colour map on a 100-meter cell grid with a kernel density radius of 1 000 metres. 

The scale shows kWh per square metres of land area. Each of the three distributions’ colour 

gradient is adjusted to 98% of the dataset to remove outliers. 

Integrating the results of these heat maps over the whole island of Montréal shows that, over the 

period of one typical year, the buildings of Montréal require approximately 21.4 TWh of space 

heating, 3.5 TWh of space cooling and 6.0 TWh of domestic hot water. According to data from 

Hydro-Québec, the provincial utility company, the Urban agglomeration of Montréal consumed in 

2011 approximately 30 TWh of electricity (Ville de Montréal, 2011). While this metric does not 

translate easily in terms of space energy demand and domestic hot water demand, it shows that 

results are in same order of magnitude. 

A second figure illustrates the dynamic nature of this heat map by showing one sample data 

(Figure 5.8). A large mixed-use building is selected and a week of October inside the shoulder 

season is shown. The dynamic energy profiles present in this heat map offer an additional value 

compared to the other examples presented earlier. This added value can manifest, for example, 

through the identification of concurrent energy demands, as shown by moments of simultaneous 

heating and cooling demands in Figure 5.8. This kind of information could not have been provided 

by regular heat maps. More importantly, this added value enables the visualization of the thermal 

diversity index presented in chapter 3. 
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Figure 5.7 Annual energy demand intensity (by land area) of building space heating (top), space cooling (middle) 

and domestic hot water (bottom). Light Gray Canvas Map sources: Esri, DeLorme, HERE, MapmyIndia 
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Figure 5.8 Dynamic load profiles of the Montréal heat map. A sample week in October for a selected 140 000 m2 

mixed-use building show space heating and space cooling demands. Light Gray Canvas Map sources: Esri, 

DeLorme, HERE, MapmyIndia. 
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5.4 Discussion 

This chapter presented the creation of a dynamic heat map of the City of Montréal using available 

public data sources. The availability of such data sources dictated the level of detail the heat map 

could portray. In the absence of building footprints covering the whole study area and the presence 

of inconsistencies in the floor area attributes of the property assessment roll, an indirect estimation 

of the total floor area, by use of the virtual building footprints, was required. This feature extraction 

from ALS data, using numerical land models together with numerical surface models, offered an 

alternative to estimate building footprint areas and building heights. 

Compared to other heat maps, the methodology applied in this chapter provides an additional level 

of insight; various questions related to the dynamic energy demand of buildings can be answered. 

From the questions relating to heat-sharing networks, a dynamic heat map can provide the 

necessary inputs to evaluate thermal diversity, for example. 

As shown in this chapter, the need to combine partially complete and sometimes contradictory data 

sources greatly complicates the process to obtain an Urban Building Energy Model (and its results 

in the form of dynamic heat maps). Some cities are currently deploying efforts to collect, compile, 

and publish building-focused metrics, which would facilitate the process and make it more robust 

and accurate. For example, the NYC Housing Authority (NYCHA) publishes energy use data for 

the building stock they manage in New York City15. Heating gas, electricity and water consumption 

is also published at the meter level, showing a high granularity. The US Department Of Energy has 

generated unique identification numbers for the buildings of New York City (and others), enabling 

a better cross-referencing of data sources and helping reduce double counting of energy metrics 

(Pacific Northwest National Laboratory, 2018). Public access to high-quality energy use data 

would allow the calibration of models, enhancing the accuracy of heat maps. 

Areas of improvements in the science of urban building energy modelling is a vast research subject. 

One particular element, which has been ignored in this chapter, is the window-to-wall ratio of 

buildings. Archetypes have a pre-defined WWR for each façade. Yet, in an urban context, buildings 

                                                 

15 https://data.cityofnewyork.us/Housing-Development/Heating-Gas-Consumption-And-Cost-2010-March-2019-

/it56-eyq4 
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have various WWRs even if they share similar properties. Nevertheless, WWRs are rarely a piece 

of information collected by cities and would thus be hard to characterize at the urban scale. Studies 

of Remote Façade Surveying (Ramallo-González, Vellei, Brown, & Coley, 2015), could provide 

an alternative. Perhaps image recognition algorithms could scour Google Maps or Apple Maps 

street-level imagery for façade windows. 

This thesis began by forecasting that better urban design can be achieved through data driven 

design. The last step in designing city-scale energy systems is to model and optimize the energy 

sources that serve the heating and cooling requirements of the buildings, and how heat can be 

distributed within the urban environment. This is discussed in the next chapter of this thesis. 
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 HEAT-SHARING NETWORK TOPOLOGY 

OPTIMIZATION 

Energy supply is both the generation and the distribution of energy. Various energy generation 

strategies combined with various distribution methods offer endless possibilities. To select the best 

outcome, this chapter presents decision making through the optimization of energy supply 

scenarios with a focus on fifth generation district heating and cooling. 

6.1 Introduction 

Various modeling approaches have been used to analyse district-scale energy systems, with 

different aims, whether it is district energy, renewable energy and urban microclimate. Tozzi & Jo 

(2017) reviewed different tools by their scale—multiscale, district-level system, or region-level 

system—with the intention of helping users and researchers choose the appropriate tool for the 

task. The authors also make the distinction between simulation (assessing the performance of a 

given system design) and optimization (selecting system configuration and size based on a set of 

criteria and constraints).  

Another important literature review on urban energy modeling was conducted by Allegrini et al. 

(2015). The authors presented academic and commercial tools from 4 angles: (1) holistic simulation 

tools and (2) district energy modeling, (3) renewable energy and (4) urban microclimate. In the 

first category, the authors analysed the main popular simulation engines (TRNSYS, EnergyPlus, 

ESP-r) along with more “conceptual tools” such as the Urban Modeling Interface (UMI) (Reinhart 

et al., 2013) and the Urban Energy Management (MEU) (Rager, Rebeix, Maréchal, Cherix, & 

Capezzali, 2013). In the second category, the authors listed various network modelling tools that 

focus on the hydraulics of a district energy network. The balancing of energy supply and demand, 

which makes use of advanced optimization algorithms, was also discussed.  

Studies specifically addressing heat-sharing networks are scarce. A recent study proposed a 

topology analysis tool to look at the detailed evaluation of heating and cooling supply in a 5GDHC 

network (von Rhein et al., 2019). The model uses a combination of URBANopt (National 

Renewable Energy Laboratory, 2019b) and EnergyPlus (National Renewable Energy Laboratory, 

2019a) to create reduced order models of buildings as well as Modelica (Modelica Association, 

2019) to model a bi-directional hydraulic network. The paper focused on the implementation of a 
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hydraulic network to model the transient effects occurring in a bi-directional district energy 

network. The authors concluded that the exhaustive search, where all possible network layouts 

were considered, created a problem size too large to solve. This problem size issue suggested that 

an optimization approach would be required to conduct a proper topology optimization. 

Two main questions must be addressed to design a district-scale heating and cooling (or heat-

sharing) system: how to distribute the heat efficiently from heating/cooling plants to consumers, or 

between prosumers; and which sources/sinks and conversion devices offer the best performance to 

supply heat or cold to the network. The design process can be expressed as a mathematical 

optimization problem, as proposed for example by Dorfner (2016b).  

The next section describes in more detail approaches that have been proposed in the literature and 

their limitations and proposes a method to optimize simultaneously the topology of a 5GDHC 

network and the choice of thermal plants. 

6.2 Proposed Topology Optimization Algorithm 

The study of heat-sharing networks in the context of urban planning poses the question: given a 

certain energy generation capacity, which buildings should connect to a network in order to 

maximize profits? This question confronts two contradicting elements of the energy supply sector: 

the cost of reaching one more client as opposed to the revenues this client will bring. Moreover, as 

seen in Chapter 3, the design choices dictating the share of commercial space together with the 

design choices dictating building energy performance has an impact on the ability of buildings to 

share waste heat. Therefore, such an optimization would suggest that design choices can be 

confronted to their ability to maximize heat compatibility which is also a proxy for the global 

environmental performance of the network. In other words, design choices can be assessed by 

computing their impact on the final optimal network topology. 

This question can be solved using optimization techniques that balance energy distribution costs, 

energy generation costs and heat/cold revenues. Such an optimization scheme was suggested by 

Dorfner (2016b) in the form of a mixed-integer linear program (MILP). This mathematical model 

focused on traditional district heating networks and district cooling networks and has shown 

promising applications in existing district energy network markets (Dorfner & Hamacher, 2014; 

Dorfner et al., 2017). 
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Although this method offers a simple and promising approach to solve topology optimization 

problems, it is not adapted to the context of heat-sharing networks. The next section details the 

areas where improvements can be suggested and where different strategies are needed, after which 

the mathematical model is detailed and applied. 

6.3 Data Preparation 

6.3.1 Structural representation: Network graph 

Most district energy networks follow paths that are dictated by the terrain and obstacles as well as 

by a careful attention to reduce costs (or the total length). This usually results in the networks 

following the street grid. The complexity of a topology optimization mathematical model can be 

alleviated by using a graph structure, a representation of street edges and intersections in 

mathematical form. 

uesgraphs (Müller et al., 2016) is a good example of an open source effort to describe DES in graph 

form. This package leverages the networkx library and adds methods and analysis tools to represent 

buildings and energy sources in the graph. A package like uesgraph can structure the setup of a 

DES model, but it does not offer topological cleaning & preparation of the network itself. 

On the other hand, OSMnx (Boeing, 2017b) focuses on the analysis of street graphs and allows the 

retrieval of clean street grid topologies based on the Open Street Map (OSM) database. Leveraging 

this tool speeds up the network grid preparation process. Yet again, this topology cannot be used 

right away to build the network graph. In fact, a pre-processing step must be performed to return a 

clean and simplified graph exempt of unnecessary vertices, loops and parallels edges. The 

methodology presented in this chapter implements this topological cleaning, but, for clarity, this 

process is presented in section 7.3.3 of the chapter that summarizes the open source 

implementations of this thesis.  

A complex problem like the one that is presented here is best explained using a simple case study. 

For now, let us assume that the street topology on which the final network will be based is 

topologically sound and that it has the following structure of edges (streets) and nodes 

(intersections): 



100 

 

Figure 6.1 A basic topological example forms the underlying 

structure of the problem. Nodes and edges are represented in a 

basic coordinate system and identified by an integer. 

The street topology presented in Figure 6.1 represents all possible branches of a DES—i.e., sections 

of piping that could be installed. The load (heat added or removed) on a given segment—e.g., 

between 4 and 6—represents all buildings physically located along that edge (or street), as 

discussed below. Nodes represent possible intersections between pipes, and possible locations for 

thermal plants. 

6.3.2 Load Duration Curve Clustering 

After establishing the structure of the network topology, buildings and their energy demands need 

to be expressed in a way that can be used by an optimization model. To reduce the problem size, 

the heat load profile is usually segmented in small number of typical periods that coincide with the 

different seasons, which can be seen as a discretization of the load duration curve (LDC) in 

successive “steps”. This has been the case in many studies with the goal of reducing the number of 

variables in the problem by discretizing the time series (Unternährer, Moret, Joost, & Maréchal, 

2017). This technique of model complexity reduction has generally delivered good results in 
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various studies of standard district heating technologies (Dorfner, 2016a; Dorfner & Hamacher, 

2014; Dorfner et al., 2017). An example of the discretization of a heating load profile extracted 

from the heat map of Chapter 6 is shown in Figure 6.2. 

 

Figure 6.2 Discretization of a load duration curve (LDC) in 5 typical periods (time-steps) of various 

durations. 

As pointed out by Kotzur et al. (2018), the difficulty with discretizing time series is that the system 

determines the level of detail required. For example, renewable energy systems require a higher 

resolution of the input time-series (solar radiation, wind, temperature, etc.) in order to correctly 

model transient effects. For conventional district energy design problems, as few as 10 time-steps 

can be sufficient to represent the full time series (Bahl, Kümpel, Seele, Lampe, & Bardow, 2017). 

On the other hand, newer district energy technologies that are built on the notion of heat exchange 

between buildings cannot follow the same assumptions. By the temporal nature of the heat 

balance—consumer and prosumer signals—as well as the spatial nature of district-sharing 

networks—consumer dominated areas versus prosumer dominated areas—the optimization 

algorithms can no longer apply a single LDC discretization. To fully capture the spatial and 

temporal dynamics of the district-sharing network, problems must be defined using annual load 

profiles for every substation. This would result in a very large optimization problem difficult to 

tackle with currently available algorithms and computing power. 

The solution is to use a temporal- and spatial-aggregation that captures the most out of the 

prosumer/consumer duality across the whole district while keeping the number of time durations 

small enough. The spatial energy demand aggregation is explained next, followed by the temporal 

energy demand aggregation. 
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6.3.2.1 Spatial Energy Demand Aggregation 

To spatially aggregate building energy profiles, one can create a raster with a certain cell width and 

sum up or apply statistical indicators for all buildings within each cell; this is essentially how the 

thermal diversity index is calculated in 3.5.2. Another method is to aggregate geographically close 

buildings into clusters. Such a technique was used by Unternährer et al. (2017) to reduce the model 

complexity of a large-scale study by subdividing the urban context in smaller systems. 

In the case of heat-sharing infrastructures, a method that respects the topology of the site is needed. 

As discussed in section 6.3.1, the closest topological structure that fits our requirements is the street 

network. Streets connect buildings together and can form the initial available paths between energy 

centers and their clients (i.e., buildings). For a complete topology, buildings are connected to the 

street segments, each street segment is connected to one another and together they connect to the 

thermal plant. This higher resolution topology effectively considers individual buildings as 

decision variables in the optimization problem. Consequently, the problem size can become 

quickly problematic. One solution is to lower the spatial resolution by aggregating the energy 

demand of buildings to the street segment that is closest to their centroid. 

The identification of the closest edge to a point is an area of research in itself, but thanks to 

algorithms such as the kd-tree16, a fast implementation could be prepared by the author of this 

dissertation and published as part of the OSMnx package (Boeing, 2017b). The novelty of this 

implementation is that the kd-tree algorithm processes a list of coordinates instead of calculating 

iteratively the Euclidian distance. Therefore, significant speed improvements are observed 

compared with iteratively identifying the closest point along a polyline. The general process of the 

algorithm is presented below for reference and the contribution is available on GitHub (Letellier-

Duchesne, 2019) together with a speed benchmark comparing 3 methods (kd-tree, balltree and 

iterative). 

  

                                                 

16 “The kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies 

an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a 

particular value.” (The SciPy community, 2019) 
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1 function getNearestEdges(Street Graph 𝐺 = (𝑉, 𝐸), 𝑋, 𝑌, 𝑑𝑖𝑠𝑡=10) 

2  let 𝑋 and 𝑌 be the set of coordinates for which to get the nearest edge in graph 𝐺 

3  let 𝑁𝑒 be the list of nearest edges for all pairs of 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 coordinates 

4  Let 𝑉𝑥𝑦  be the point coordinates matrix for created points along edges 𝑒 ∈ 𝐸 in G 

5  for all edge 𝑒 ∈ 𝐸 in G: 

6   create 𝑠, the evenly spaced points on edge 𝑒 separated by length 𝑑𝑖𝑠𝑡 

7   assign the id of edge 𝑒 to all created points 

8   add x,y coordinates 𝑐 ∈ ℝ2 to 𝑉𝑥𝑦  for all created points 

9  end for 

10  build a k-d tree 𝒌 for Euclidean nearest node search from 𝑉𝑥𝑦  

11  for all coordinates 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 from sets 𝑋 and 𝑌: 

12   set 𝑁𝑒(𝑥, 𝑦) to the location returned by querying the k-d tree 𝒌(𝑥, 𝑦) 

13  end for 

14  return 𝑁𝑒 

15 end function 

Algorithm 6.1 Closest edges for a list of point coordinates in a spatial graph. 

6.3.2.2 Temporal Energy Demand Aggregation 

Once the energy demand is spatially aggregated to each street segments, a temporal aggregation 

discretizes the load profiles in distinct periods. The ideal number of periods depends mostly on the 

type of energy system that is studied. As a general rule, around 10 typical periods of 24 hours 

(typical days) is found to provide enough accuracy in complex energy systems optimization while 

reaching significant solving durations (Kannengießer et al., 2019; Kotzur et al., 2018).  

Because time-series aggregation smooths out extreme conditions, it is suggested to add an 

additional peak demand in the aggregation method as a heuristic. Some authors use an additional 

duration time step of 1h (Dorfner & Hamacher, 2014) while others use the day containing the peak 

demand as a typical period. 

The method of time series aggregation applied to the building load profiles in this section is the 

one proposed by Kotzur et al. (2018) and publicly available as the python-based time series 

aggregation module (TSAM). This tool performs a time series aggregation in 4 steps: 
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1. Preprocessing the timeseries: A number of periods and a period length (e.g., 1h, 24h, 186h) 

are chosen. A normalization of the time series is applied. 

2. Aggregation algorithm: Four different aggregation algorithms can be applied to the group 

of time series: averaging, k-means clustering, k-medoids clustering and hierarchical 

clustering. 

3. Additional extreme period: To avoid cutting off peak periods (e.g. peak heating and peak 

cooling) that are relevant in this district energy design context, additional periods can be 

specified. 

4. Scaling back to original scale: The time series that were previously normalized in the first 

step are scaled back to their original scale. 

An application of this method to our small example is done using a sample of buildings from the 

heat map of Chapter 5. The discretized annual time steps are shown in Figure 6.3. The purpose of 

this figure is to illustrate the resulting clustering process by which every hours of the time series is 

identified as belonging to a particular period (6 in this case). The period length is specified as 6 

hours to represent the thermal mass of a district energy network.  

 

Figure 6.3 Example of a time series discretization using the k-means algorithm. The load profiles are discretized into 

4+2 periods. The 2 extra periods preserve the period where the peak occurs. The top plot shows a full year while the 

bottom plot shows a single week sample. Each color represents one of 6 periods where the k-means algorithm 

determined a fit. 

Once the heating and cooling profiles have been spatially and temporally aggregated, the 

optimization problem can be formulated. 
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6.4 Mathematical Formulation of the Optimization Problem 

The model leverages the structure of the dhmin (seasonal) model presented in the thesis work of 

Johannes Dorfner (2016b, p. 89). Sets, parameters and equations were modified in a way to 

simulate heat-sharing networks. For clarity, the following mathematical description reproduces the 

original work and new additions are marked when necessary.  

6.4.1 Sets 

The mathematical representation of the model uses a graph structure of vertices and edges. Vertices 

are points corresponding to intersections or to endpoints. Edges are segments, such as streets, 

comprised of pairs of vertices. Let 𝑉 be the set of vertices 𝑣𝑖 and 𝐸 be the set of edges 𝑒𝑖𝑗. To allow 

flow to go in one or the other direction in an edge, 𝐸 is considered to by symmetric where 𝑒𝑖𝑗 and 

𝑒𝑗𝑖 are both elements of 𝐸. Sources vertices, such as thermal plants, are denoted 𝑉0 and are a subset 

of 𝑉. In order to represent the temporality of the model, a set of discrete time steps 𝑇 is introduced. 

These time steps represent different states of operation. Theoretically, 8760 time-steps would 

simulate the full operation of individual hours and produce an exact solution. In practice, the 

number of time steps can be reduced to less than 10 through aggregation or clustering, as described 

above. 

6.4.2 Parameters 

Parameters define the techno-economic properties of the model. They apply to edges and vertices 

as well as to the whole model. Vertices have a maximum capacity, denoted 𝑄𝑖
𝑚𝑎𝑥, representing the 

maximum power output given in kW. Since source vertices can operate as sources and sinks, the 

effective maximum capacity is ±𝑄𝑖
𝑚𝑎𝑥. Vertices that are not sources have this parameter set to 0. 

Edges attributes are defined as the edge length, 𝑙𝑖𝑗 (m), the edge peak demand 𝑑𝑖𝑗 (kW) and the 

edge annual demand 𝐷𝑖𝑗 (kWh/a). Furthermore, to take into account existing pipes, which would 

not increase investment cost because they are already installed, edges have a binary parameter, 𝜖𝑖𝑗, 

that indicates the pre-existence of a pipe (𝜖𝑖𝑗 = 1). Finally, the maximum power flow capacity of 

a pipe is denoted 𝐶𝑖𝑗
𝑚𝑎𝑥 (KW) and can be obtained from the maximum available pipe diameter. 
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Other parameters relate to the techno-economic properties of the network. For technical parameters 

the thermal losses in the pipes are represented by a fix and variable parameter, 𝓋𝑓𝑖𝑥 and 𝓋𝑣𝑎𝑟. The 

former represents the fixed thermal loss and depends on the pipe length (kW/m). The latter is the 

variable thermal loss and depends on both the pipe length and the power flow ((𝑘𝑊/𝑚) 𝑘𝑊⁄ ). 

Dimensionless parameters 𝛽 and 𝛾 fix an undesirable effect of the aggregation of load profiles on 

edges that overestimate the heat demand by consumers. Indeed, aggregating load profiles based on 

coarse assumptions and uniform usage patterns results in overestimated peak loads, for example if 

all modeled office buildings use the same occupancy schedules. Moreover, we cannot assume all 

buildings along a street segment will connect to the network. Parameter 𝛽 is the concurrence effect, 

which reduces the peak demand on a street and parameter 𝛾 is the connection quota which reduces 

the annual heat demand. The first parameter has the effect of reducing the investment costs while 

the other has the effect of reducing the heat revenues. If none of these effects is desired, they can 

simply be set to one. Additionally, a fixed plant investment cost term (𝑐_ℎ𝑒𝑎𝑡𝑓𝑖𝑥) was introduced 

to consider the power-dependant nature of thermal plant heat supply optimization (Frederiksen & 

Werner, 2013). 

While dhmin uses a single pair of scaling factor 𝑠𝑡 and duration 𝑤𝑡 for each time-step, this work 

uses individual pairs for each edge as well as for heating and cooling demands—i.e., 

2 pairs per edge × 𝑛 time-steps. The original idea behind using a single pair per time step is that, 

in traditional district heating systems, the shape of the load duration curve is more or less the same 

for the whole network and the individual buildings. It is then acceptable to assume that the demand 

will change similarly across the whole network. On the other hand, in the case of a heat-sharing 

network, the load duration curve can be quite different in different parts of the network, depending 

if the thermal diversity is high or low. Having different scaling factors for each edge during a 

timestep 𝑡 ∈ 𝑇 fixes this issue. A summary of the parameters is presented in Table 6-1. 
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Table 6-1 Model input parameters 

Model component/Input parameter Units Symbol 

Global Parameters   

 Fixed pipe investment cost  $/m 𝑐𝑓𝑖𝑥 

 Variable pipe investment cost  $/kW/m 𝑐𝑣𝑎𝑟  

 Operation & maintenance costs  $/m 𝑐𝑜𝑚 

 Retail price for heat  $/kWh 𝑐𝑟𝑒𝑣
ℎ𝑒𝑎𝑡 

 Retail price for cold $/kWh 𝑐𝑟𝑒𝑣
𝑐𝑜𝑙𝑑 

 Annuity factor (years, interest)  𝛼 

 Fixed thermal losses  kW/m 𝓋𝑓𝑖𝑥 

 Variable thermal losses  (kW/m)/kW 𝓋𝑣𝑎𝑟  

 Concurrence effect  - 𝛽 

Edge-specific Parameters   

 Pipe-exists already (1=yes)  𝜖𝑖𝑗 

 Connection quota  - 𝜆𝑖𝑗 

 Peak heating demand  kW 𝑑𝑖𝑗
ℎ𝑒𝑎𝑡  

 Peak cooling demand  kW 𝑑𝑖𝑗
𝑐𝑜𝑙𝑑  

 Maximum pipe capacity  kW 𝐶𝑖𝑗
𝑚𝑎𝑥 

 Length  m 𝑙𝑖𝑗  

Energy Source Parameter   

 Fixed heating plant investment cost  $/kW 𝑐ℎ𝑒𝑎𝑡𝑓𝑖𝑥 

 Fixed cooling plant investment cost  $/kW 𝑐𝑐𝑜𝑜𝑙𝑓𝑖𝑥 

 Variable heating plant investment cost  $/kWh 𝑐ℎ𝑒𝑎𝑡𝑣𝑎𝑟  

 Variable cooling plant investment cost  $/kWh 𝑐𝑐𝑜𝑜𝑙𝑣𝑎𝑟  

 Source vertex capacity  kW ±𝑄𝑖
𝑚𝑎𝑥  

Time dependent   

 Heating demand scaling factor - 𝑠𝑖𝑗𝑡
ℎ𝑒𝑎𝑡 

 Cooling demand scaling factor - 𝑠𝑖𝑗𝑡
𝑐𝑜𝑜𝑙  

 Duration (hours) h 𝓌𝑡 

 Source vertex availability (1=yes, 0=no) - 𝑦𝑖  

 

6.4.3 Variables 

The optimization algorithm asserts a series of variables that define the optimal solution. The 

primary variable is the decision to build or not a pipe. This binary decision variable is denoted 

as 𝑥𝑖𝑗. For each time step, the decision to use a pipe is denoted by the variable  𝑦𝑖𝑗. If its value is 

1, then it is assumed a power flow 𝜋𝑖𝑗𝑡
𝑖𝑛  enters the pipe in the direction 𝑖 → 𝑗. It also implies the any 

demand on this edge is also satisfied. The power flow exiting the pipe is denoted 𝜋𝑖𝑗𝑡
𝑜𝑢𝑡 and is 
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reduced by the thermal losses and the edge heat demand but is increased by the edge cooling 

demand. Consequently, this model allows situations were 𝑃𝑖𝑗
𝑜𝑢𝑡 > 𝑃𝑖𝑗

𝑖𝑛 , which can translate into 

edges acting as energy sources (this is not the case in dhmin). The non-negative variable 𝒽𝑖𝑡 

represents the thermal power out of a source vertex while the negative variable 𝒸𝑖𝑡 represents the 

thermal power into a source vertex. 

Table 6-2 Model Variables 

Model variables Symbol 

Total system cost (objective) 𝜁 

Binary decision variable: 1=build pipe 𝑥𝑖𝑗  

Binary decision variable: 1=use pipe 𝑦𝑖𝑗𝑡  

Thermal power flow capacity for edge 𝒆𝒊𝒋 �̅�𝑖𝑗 

Thermal power flow from 𝒗𝒊 into edge 𝒆𝒊𝒋 𝜋𝑖𝑗𝑡
𝑖𝑛  

Thermal power flow out of edge 𝒆𝒊𝒋 into 𝒗𝒋 𝜋𝑖𝑗𝑡
𝑜𝑢𝑡 

Heat generation power in source vertex 𝒗𝒊 (positive) 𝒽𝑖𝑡 

Heat extraction power in source vertex 𝒗𝒊 (negative) 𝒸𝑖𝑡 

 

6.4.4 Equations 

The model is defined using a set of equalities and inequalities (constraints) that bound the solution 

domain. The first equation is the cost function which acts as the objective function of the model. 

This cost function is formed by three elements: the network investment cost 𝒩 (annualized 

investment), the heat generation (or extraction) cost 𝒢, and the heat sold (revenues) ℛ. Together, 

they form the objective function which is equal to 

 𝜁 = 𝒩 + 𝒢 − ℛ (6.1) 

The first element forms the network investment and operation & maintenance costs and is a 

combination of fixed and variable components. For clarity, these are represented by 𝑘𝑖𝑗
𝑓𝑖𝑥

 and 𝑘𝑖𝑗
𝑣𝑎𝑟 

whose definitions are given below. 

 𝒩 = ∑ (𝑘𝑖𝑗
𝑓𝑖𝑥

𝑥𝑖𝑗 + 𝑘𝑖𝑗
𝑣𝑎𝑟�̅�𝑖𝑗)

𝑒𝑖𝑗∈𝐸

 (6.2) 
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The second element of the cost function is the heat generation cost. In this model, the heat 

generation has an energy dependant component ($/kWh) and an extra demand dependant 

component ($/kW). This allows the model to account for more complex thermal plant cost 

functions and to properly model plant operation based on economic efficiency. For example, a 

thermal plant which typically satisfies the base load will have a high fixed cost but a low variable 

cost. On the other hand, a thermal plant that is brought online during peak hours will have a low 

fixed cost and a high variable cost. 

 
𝒢 = ∑(𝑘𝑖

ℎ𝑒𝑎𝑡𝑓𝑖𝑥
𝒽𝑖𝑡 + 𝑘𝑖

ℎ𝑒𝑎𝑡𝑣𝑎𝑟𝓌𝑡𝒽𝑖𝑡 − 𝑘𝑖
𝑐𝑜𝑜𝑙𝑓𝑖𝑥

𝒸𝑖𝑡 − 𝑘𝑖
𝑐𝑜𝑜𝑙𝑣𝑎𝑟𝓌𝑡𝒸𝑖𝑡)

𝑣𝑖∈𝑉
𝑡∈𝑇

 
(6.3) 

Finally, the last component is the heat revenues. This component is separated between revenues 

for selling heat and revenues for selling cold. The model assumes the demands are the ones that 

are “seen” by the network and are therefore already increased/reduced by the COP of the heat 

pumps. Whether the revenues should be associated to this demand or to the space heating/cooling 

demand directly is debatable. This model assumes two cost parameters that can be adjusted 

consequently.  

 
ℛ = ∑ (𝑟𝑖𝑗

ℎ𝑒𝑎𝑡𝑥𝑖𝑗𝑠𝑖𝑗𝑡
ℎ𝑒𝑎𝑡𝓌𝑡 + 𝑟𝑖𝑗

𝑐𝑜𝑜𝑙𝑥𝑖𝑗𝑠𝑖𝑗𝑡
𝑐𝑜𝑜𝑙𝓌𝑡)

𝑒𝑖𝑗∈𝐸

𝑡∈𝑇

 
(6.4) 

The definition of the elements above are: 

∀𝑒𝑖𝑗 ∈ 𝐸: 𝑘𝑖𝑗
𝑓𝑖𝑥

= [𝑐𝑓𝑖𝑥𝑙𝑖𝑗𝛼(1 − 𝜖𝑖𝑗) + 𝑐𝑜𝑚𝑙𝑖𝑗]/2 (6.5) 

∀𝑒𝑖𝑗 ∈ 𝐸: 𝑘𝑖𝑗
𝑣𝑎𝑟 = [𝑐𝑣𝑎𝑟𝑙𝑖𝑗𝛼(1 − 𝜖𝑖𝑗)]/2 (6.6) 

∀𝑣𝑖 ∈ 𝑉: 𝑘𝑖
ℎ𝑒𝑎𝑡𝑣𝑎𝑟 = 𝑐ℎ𝑒𝑎𝑡𝑣𝑎𝑟/𝛽 (6.7) 

∀𝑣𝑖 ∈ 𝑉: 𝑘𝑖
𝑐𝑜𝑜𝑙𝑣𝑎𝑟 = 𝑐𝑐𝑜𝑜𝑙𝑣𝑎𝑟/𝛽 (6.8) 

∀𝑣𝑖 ∈ 𝑉: 𝑘𝑖
ℎ𝑒𝑎𝑡𝑓𝑖𝑥

= 𝑐ℎ𝑒𝑎𝑡𝑓𝑖𝑥𝛼 (6.9) 

∀𝑣𝑖 ∈ 𝑉: 𝑘𝑖
𝑐𝑜𝑜𝑙𝑓𝑖𝑥

= 𝑐𝑐𝑜𝑜𝑙𝑣𝑎𝑟𝛼 (6.10) 
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∀𝑒𝑖𝑗 ∈ 𝐸: 𝑟𝑖𝑗
ℎ𝑒𝑎𝑡 = 𝑐𝑟𝑒𝑣

ℎ𝑒𝑎𝑡𝑑𝑖𝑗
ℎ𝑒𝑎𝑡𝜆𝑖𝑗/2 (6.11) 

∀𝑒𝑖𝑗 ∈ 𝐸: 𝑟𝑖𝑗
𝑐𝑜𝑙𝑑 = 𝑐𝑟𝑒𝑣

𝑐𝑜𝑙𝑑𝑑𝑖𝑗
𝑐𝑜𝑙𝑑𝜆𝑖𝑗/2 (6.12) 

6.4.5 Constraints 

 

Figure 6.4 Visual representation of the demand satisfaction equation (6.13) 

The demand satisfaction equation represented graphically in Figure 6.4 above, is the main 

constraint of the network edges. It links the decision to use a pipe (𝑦𝑖𝑗𝑡) with the satisfaction of heat 

and cold demand on an edge ( 𝑑𝑖𝑗
ℎ𝑒𝑎𝑡  and 𝑑𝑖𝑗

𝑐𝑜𝑙𝑑 ). This equation is formed by three derived 

components 𝜂𝑖𝑗, 𝛿𝑖𝑗𝑡 and 𝜑𝑖𝑗𝑡. The demand satisfaction equation is reduced to: 

∀𝑒𝑖𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 ∶ 𝜂𝑖𝑗(𝜋𝑖𝑗𝑡
𝑖𝑛 + 𝜑𝑖𝑗𝑡𝑦𝑖𝑗𝑡) = 𝜋𝑖𝑗𝑡

𝑜𝑢𝑡 + 𝑙𝑖𝑗𝓋𝑓𝑖𝑥 + 𝛿𝑖𝑗𝑡𝑦𝑖𝑗𝑡 (6.13) 

The parameter 𝜂𝑖𝑗 represents the variable thermal losses that are proportional to the power flow 

into an edge 𝑒𝑖𝑗 including the power flow created by a cooling demand (𝜑𝑖𝑗𝑡𝑦𝑖𝑗𝑡). A fixed thermal 

loss parameter is represented by 𝑙𝑖𝑗𝓋𝑓𝑖𝑥𝑦𝑖𝑗𝑡. The other two parameters, 𝛿𝑖𝑗𝑡 and 𝜑𝑖𝑗𝑡, refer to the 

time-dependent edge demands, 𝑑𝑖𝑗
ℎ𝑒𝑎𝑡 and 𝑑𝑖𝑗

𝑐𝑜𝑙𝑑 respectively reduced by the connection quota and 

concurrence effect parameters. Their equations are: 

∀𝑒𝑖𝑗 ∈ 𝐸 ∶ 𝜂𝑖𝑗 = 1 − 𝑙𝑖𝑗𝓋𝑣𝑎𝑟 (6.14) 
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∀𝑒𝑖𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 ∶ 𝛿𝑖𝑗𝑡 = 𝛽𝜆𝑑𝑖𝑗
ℎ𝑒𝑎𝑡𝑠𝑖𝑗𝑡

ℎ𝑒𝑎𝑡 (6.15) 

∀𝑒𝑖𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 ∶ 𝜑𝑖𝑗𝑡 = 𝛽𝜆𝑑𝑖𝑗
𝑐𝑜𝑙𝑑𝑠𝑖𝑗𝑡

𝑐𝑜𝑙𝑑 (6.16) 

The second constraint satisfies energy conservation in a vertex; in simple terms, everything that 

goes in must go out: 

∀𝑣𝑖𝑗 ∈ 𝑉, 𝑡 ∈ 𝑇 ∶ ∑ (𝜋𝑖𝑗𝑡
𝑖𝑛 − 𝜋𝑖𝑗𝑡

𝑜𝑢𝑡) = 𝒽𝑖𝑡 +
𝑛∈𝑁𝑖

𝒸𝑖𝑡 (6.17) 

Various other constraints with respect to the pipe capacity, the unidirectionality of flow, the build 

capacity or the symmetry of the decision to build a pipe share the same assumptions as the 

traditional district heating model of developed by Dorfner (2016b). Readers are referred to this 

work for mathematical details of these constraints. 

6.5 Example Model Results 

Results of the mathematical optimization algorithm are illustrated in this section using a simple 

example of a fictitious neighbourhood. This example uses the same topological structure as Figure 

6.1. 

First, the data preparation is presented to lay down the assumptions of the model. Second, the 

aggregation of the thermal loads is described, and the global energy demand of the neighbourhood 

is illustrated. Third, the techno-economic context of the model is described and finally, the solution 

is presented and analyzed. 

6.5.1 Edge Thermal Loads 

First, building loads are assigned to a few segments of the street grid. This step corresponds to the 

spatial aggregation described in 6.3.2.1, but to simplify the process for the purpose of this example, 

let us assume that typical building load profiles are scaled such that the peak demand (kW) 

occurring on each edge corresponds to hand-picked arbitrary thermal load conditions. In a real 

scenario, the peak demand on each edge would correspond to the aggregated demand of all 

buildings belonging to an edge. Figure 6.5 illustrates the peak thermal demands for heating (red) 

and cooling (blue). For example, the buildings located next to the edge going from vertex 7 to 
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vertex 8 (henceforth referred to as edge 7–8) have a peak heating demand of 240 kW and a peak 

cooling demand of 20 kW. The figure also illustrates the location of three possible energy centre 

locations at vertices 0, 2, and 12 which all have a maximum capacity of 1 000 kW. The role of the 

energy centres is to supply the necessary power to meet the thermal demands along each edge. 

 

Figure 6.5 Thermal peak loads of a fictitious neighbourhood and locations of three possible energy centres. 

An illustration of the dynamic heating profile of buildings aggregated to edge 7–8 is shown in 

Figure 6.6. This figure shows the hourly demands in slices of 24 hours and is well adapted to 

convey visually the effect of the aggregation algorithm that is applied in the next step. 

 

Figure 6.6 Initial heating demand profile of edge 7–8. 
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6.5.2 Load profile aggregation 

The shape of the thermal loads such as the one occurring in edge 7–8 are weighted against the 

thermal loads of the other edges thanks to a time series aggregation (see section 6.3.2.2). This 

algorithm identifies patterns and attempts to group portions of the profiles into representative 

periods. It is possible to adjust the period length and the number of periods. For instance, 

aggregating all the loads of each edges into 6 periods of 6 hours has the following effect on the 

heating load profile of edge 7–8: 

  

Figure 6.7 Effects of the aggregation algorithm on edge 7–8 (see Figure 6.6 for the original profile). 

We can observe a clearer organization of the daily variations as well as a significant 

underestimation of the peak demand. On the other hand, the annual integrated quantity 

(497 134 kWh) is kept constant compared to the original profile. Figure 6.8 further illustrates the 

impact of the load profile clustering for edges 7–4 and 5–9. In the case of edge 7–4, the peak is 

properly portrayed because the overall neighbourhood peak occurs in that edge and has thus been 

chosen as a cluster centre in the aggregation algorithm. On the other hand, edge 5–9 experiences 

the same peak underestimation as in edge 7–8 (the peak of the original time series is 50 kW).  
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Figure 6.8 Data input of the network. 

While the clustering algorithm can identify periods of peak demand, this period only occurs with 

respect to individual edges, which does not necessarily represent the combined peak of the whole 

network. Moreover, the mathematical optimization model can only model one discrete peak per 

period, which forces typical periods with a duration higher than 1 hour to be averaged, effectively 

creating a step discretization of the load duration curve. This effect is portrayed in the load duration 

curves shown in Figure 6.9. The load duration curves are the sorted hourly values of the combined 

demands. This figure more easily illustrates the corresponding period lengths between the various 

cooling and heating periods which allows the model to take into account the dynamic and 

concurrent nature of heating and cooling demands. Figure 6.9 shows the 6 steps that approximate 

the load duration curves as a result of the time aggregation. As illustrated in the figure, about 
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250 hours with a high cooling load and a low heating load were aggregated together and replaced 

with their average (period 4). Similarly, period 2 is shown to have 3000 hours of low heating and 

cooling loads (period 2).  

 

Figure 6.9 Heating (top) and cooling (bottom) load duration curves of total edge 

demands. The correspondence of period ids and time durations for 2 cases is 

highlighted. 

6.5.3 Techno-Economic Optimization 

The objective of the optimization algorithm is to maximize heat and cold revenues while 

minimizing generation and distribution costs. The best financial performance is achieved when the 

solver has found combinations of variables (see section 6.4.3) that respect the model constraints 

(see 6.4.5). For instance, the decisions to use a particular pipe, to use one or more thermal plants, 

to allow flow in a certain direction and the proportion of flow in an edge are weighted for each 
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period (symbols identified with a 𝑡 in Table 6-2). The decision to build a pipe or the determination 

of the maximum capacity of a pipe, on the other hand, are evaluated globally. 

All the aforementioned decisions are influenced by techno-economic parameters that can change 

the solution. For instance, higher heat prices could encourage reaching farther clients. In the current 

example, typical values of these parameters were taken from different sources in the literature to 

produce a consistent thermodynamic and economic set, which does not aim to represent a particular 

location or district energy market. An annuity of 40 years with an interest rate of 6% factors 

investment costs in annual payments. Table 6-3 summarizes these parameters. 

Table 6-3 Summary of model parameters. 

Input parameter Units Value 

Global Parameters   

 Fixed pipe investment cost  $/m 600 

 Variable pipe investment cost  $/kW/m 0.015 

 Operation & maintenance costs  $/m 5 

 Retail price for heat  $/kWh 0.07 

 Retail price for cold $/kWh 0.05 

 Annuity factor (40 years, 6%) - 0.0665 

 Fixed thermal losses  kW/m 0.02 

 Variable thermal losses  (kW/m)/kW 1.00E-07 

 Concurrence effect  - 1 

Edge Parameters (for all edges)   

 Connection quota  - 1 

 Maximum pipe capacity  kW 1 000 

Three distinct cost characteristics can model the investment costs and the operation costs of thermal 

plants that could act as a base load plant (vertex 12), an intermediate plant (vertex 0) and a peak 

load plant (vertex 2). The energy source parameters are taken from Frederiksen & Werner (2013, 

p. 513). Table 6-4 summarizes these parameters.  

Table 6-4 Summary of model parameters (continued). 

   Vertex  

Energy Source Parameter Units 

2 

peak 

0 

interm. 

12 

base 

 Capacity (heating or cooling) kW 1 000 1 000 1 000 

 Variable heating plant investment cost  $/kWh 0.072 0.036 0.018 

 Fixed heating plant investment cost  $/kW 10 46 154 

 Variable cooling plant investment cost  $/kWh 0.072 0.036 0.018 

 Fixed cooling plant investment cost  $/kW 10 46 154 
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6.5.4 Solution 

With all the conditions detailed so far, the solver converges to a solution to the optimization 

problem. In this particular example, the Gurobi (Gurobi Optimization LLC, 2019) solver was used 

but other solvers such as the free GLPK solver could be used (see section 7.3.5 for more details on 

the specific tools used to solve this problem). A detailed illustration of the network operation is 

presented in Figure 6.10 on page 119. This figure shows the six operation periods described by the 

time aggregation step. These periods are identified with the same colour coding as in Figure 6.9 

and are ordered according to the decreasing succession of periods of the heating LDC. Figure 6.10 

shows the individual edge demands on the left side and the resulting edge power flow balance on 

the right side.  

For example, the top two graphs correspond to period “T3” which experiences the network heating 

peak demand. Looking specifically at edge 7–8, a heating demand of 215.4 kW and a cooling 

demand of 4.4 kW are shown. This energy is supplied by the base load plant (vertex 12) which 

follows a path along edges identified by nodes 11, 6, 4 and 7. The heating demand of edge 4–7 

(202.3 kW) and thermal losses along that edge (0.5 kW, not shown in the figure) are met by the 

incoming flow (414.4 kW). The remaining power flow (211.6 kW) meets the net demand on edge 

7–8 (215.4 kW of heating minus 4.4 kW of cooling, i.e. 211 kW) and the thermal losses on that 

edge (0.6 kW, not shown in the figure). This results in zero power going to vertex 8, and thus 

completes the balance of this branch of the network at that particular period. 

The cooling dominated operation of the network is a perfect example of the heat-sharing 

capabilities of 5GDHC networks. For period “T4,” which experiences, overall, a cooling load of 

564.3 kW, cooling demands are met by the capacity of the intermediary plant (vertex 0). In this 

case, edge 5–9 has nearly identical heating and cooling demands which results in little power flow 

coming from the rest of the network (numerical rounding hides the actual values). Edge 3–4, on 

the other hand, has a large cooling demand (362.8 kW) which is equivalent to a heating power flow 

that splits at vertex 4 to supply the heating demands of edges 4–7 and 7–8. The reminder of the 

power flow travels back to the thermal plant through vertices 6 and 1, picking up excess heat from 

edge 10-6 along the way. 

The final solution suggests that only two of the three energy centres were needed, avoiding the 

costlier peak thermal plant (vertex 2). The solution also suggests that supplying every edge with a 
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heating or cooling demand is financially attractive. The capacities of both thermal plants are 

summarized in Table 6-5 for each period. A design of the thermal plants would choose moments 

of peak demand (emphasized in bold), resulting in a thermal plant capable of providing 660 kW of 

heating and 565 kW of cooling (after rounding). 

Table 6-5 Plant sizing results. 

 
 

Cooling capacity (kW)  Heating capacity (kW) 

 time-step t0 t1 t2 t3 t4 t5  t0 t1 t2 t3 t4 t5 

vertex 0 
    

-564.3 
 

 0.56 
 

0.56 
   

 12 -71.88 
    

  
 

190.0 1.72 658.6 
 

353.2 

The financial performance of the network is summarized in Table 6-6. For the particular set of 

economic parameters, the given network delivers a net benefit of about 80 k$. 

Table 6-6 Financial performance. 

Name Units Value 

Network Cost $ 12 136 

Heat/Cold Production $ 44 443 

Revenues $ 140 320 

Balance $ 83 741 

 

  



119 

Figure 6.10 Detailed results of topology optimization. Rows represents periods identified in Figure 6.9 and ordered 

according to the heating LDC. 
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Figure 6.10 (Continued) Detailed results of topology optimization. 

  



121 

6.6 Discussion 

The subject of this chapter is the culmination of all previous chapters which have prepared the 

methodological landscape necessary to design an optimized heat-sharing infrastructure. The core 

contribution of this chapter is a methodology that expands the capability of state-of-the-art 

optimization algorithms used for district heating and cooling networks: it allows bidirectional 

power flows that are inherent to heat-sharing networks, and to optimize the long term 

competitiveness of heat supply by balancing the total operating costs and the total investment costs 

of multiple heat supply units. The optimization weighs in the benefits of reaching farther clients 

that can have beneficial thermal demands to the overall performance (thermal and economic) of 

the network.  

The model leverages different complexity reduction methods that are applied to the simulation of 

urban heat-sharing networks. For instance, simplifying the model formulation by avoiding 

nonlinearities avoids non-convexity of the problem, a necessity for fast convergence of problem 

solvers (Dorfner & Hamacher, 2014; Mehleri, Sarimveis, Markatos, & Papageorgiou, 2012). In 

addition, the spatial aggregation helps reduce the number of nodes (or buildings) in an energy 

system network as suggested in other related studies (Mancarella, 2014; Unternährer et al., 2017). 

This model considers both the temporal and the spatial aggregation of building loads, further 

decreasing the problem domain. 

The proposed methodology shares with most other optimization algorithms the risk of over-

simplifying the problem and finding a theoretically optimal solution which is inferior to other 

solutions in practice. In particular, the mathematical formulation presented above is capable of 

dealing with considerations on key temporal states such as the moment when the overall peak 

demand occurs, but this has not been implemented in the proposed algorithm. Comparisons with 

detailed simulations and measured data from 5GDHC networks could be performed to inform 

algorithm refinements.
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 OPEN SOURCE SOFTWARE IMPLEMENTATION 

This thesis hopes to contribute to the exploration of heat-sharing networks in innovative ways. A 

focus on tools produced different methodological frameworks in the hopes of providing a useful 

toolkit for other researchers and users alike. This chapter presents these tools from the angle of 

their main functionalities.  

7.1 Introduction 

Three tools accompany this thesis and are listed in Table 7-1. 

Table 7-1 Summary of open source tools developed in this thesis. 

 Tool Description 

1 archetypal a Python package designed with the objective of helping building energy 

modelers and researchers maintain collections of building archetypes. 

2 district a Python package designed to model district energy networks in a GIS 

environment. 

3 UMI Energy Supply Plugin an UMI Plugin focused on the analysis of district energy supply scenarios. The 

economic and environmental performance of centralized energy production 

systems can be quickly assessed.  

 

archetypal helps modellers analyze collections of building archetypes created with the EnergyPlus 

architecture. It offers three major capabilities: 

1. Run, modify and analyze collections of EnergyPlus models in a persistent environment; 

2. Convert EnergyPlus models to UMI Template File; 

3. Convert EnergyPlus models to TRNSYS Models. 

district, on the other hand, is focused on the analysis of district energy networks in a python-based 

GIS environment. The core element of district is the implementation of the algorithm detailed in 

Chapter 6. Moreover, district can leverage archetypal to create building energy profiles from 

building archetypes. 

The UMI Energy Supply Plugin is a tool developed in collaboration with the Sustainable Design 

Lab at the Massachusetts Institute of Technology. The tool is a plugin for the UMI platform, which 

has been referred to in various occasions in this thesis. The tool leverages the shape modelling 
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platform of Rhino and the building energy modelling capabilities of UMI to analyse the impact of 

various supply energy scenarios. 

The three tools are presented next. 

7.2 archetypal: Methodology and Functionality 

archetypal aims to make the collection and analysis of building archetypes simple and consistent. 

archetypal is a free, open-source Python package developed by this author that allows users to 

easily run collections of EnergyPlus models, to create summaries of parameters and to extract 

specific time series profiles. Users can also convert collections of models into archetype templates 

under a format known the UMI Template File. archetypal leverages Python’s eppy 17  and 

geomeppy 18  packages to handle parsing and modifications of EnergyPlus files. It also takes 

advantage of pandas19 and matplotlib20 libraries for efficient and robust time series analytics and 

rich visualizations. 

By the nature of the open source community, modifications and additions to the eppy package were 

suggested through the pull request system. Otherwise, additional functionalities that were deemed 

particular to the development of archetypal were developed for the package directly. For example, 

although eppy proposes a method to run an EnergyPlus model, a bespoke methodology was created 

in archetypal to handle the caching of results. This feature prevents EnergyPlus models to be rerun 

every time a new analysis is performed on the same unchanged model, when the model is no longer 

in memory. 

The main features of archetypal are described next with some examples. 

                                                 

17 https://pypi.org/project/eppy/ 

18 https://pypi.org/project/geomeppy/ 

19 https://pandas.pydata.org 

20 https://matplotlib.org 
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7.2.1 Run EnergyPlus Models 

The main functionality of archetypal is to run an EnergyPlus file using the EnergyPlus executable 

in a Python environment. Assuming users have installed EnergyPlus, the archetypal run_eplus 

method will execute an IDF file using a defined weather file and various simulation parameters. 

Contrary to other open-source EnergyPlus tools, archetypal detects if the version of the IDF file is 

older than any EnergyPlus installations on the user’s computer and proceeds with upgrading the 

file to the correct version. Another feature of the tool is that it simplifies the process of adding the 

necessary output commands to the IDF file. For example, if a user is interested in returning the 

Heat Exchanger Transfer Energy for a building, a specific output would need to be added to the 

IDF file prior to its simulation; in this case the “HeatRejection:EnergyTransfer” key. With 

archetypal, the user can specify additional inputs using the prep_putputs parameter. For 

simplification, a predefined list of useful outputs is automatically added to the IDF file when the 

parameter is simply set to True. An example of such a query that will upgrade the model, prepare 

the required outputs and run the simulation for the design day period is shown in Figure 7.1. 

 

Figure 7.1 archetypal showcase: Run an EnergyPlus model and retrieve simulation results using a 

simple command. 

Furthermore, archetypal introduces a caching method that handles simulation results. This is 

particularly useful for reproducible workflows such as the Jupyter Notebook programing 
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environment21. Reopening a closed notebook and running a cell containing a command such as the 

one presented in Figure 7.1 will use the cached simulation results instead of launching EnergyPlus 

again. This offers a drastic workflow speed gain especially when larger IDF files can take several 

minutes to complete. On the other hand, if the original IDF file is modified manually or if other 

input files needed by the model are updated, or if simulation parameters or modified, cached results 

will be ignored, and a new simulation will be executed. For convenience, the different cached 

simulations are kept in the file system along with a description of the simulation parameters and 

date & time of execution. 

archetypal features an EnergyPlus Exception module, which detects when EnergyPlus fails to 

execute, and displays the EnergyPlus detailed error-log in the regular Python console. This way of 

handling model errors means that most coding errors can be caught in the programming 

environment instead of going back and forth between the simulation files and the code. 

7.2.2 Analyse EnergyPlus Models 

The process of maintaining archetype models can sometimes require simple model analytics 

without necessarily running the simulation. For instance, users can return a summary of the 

Window-to-Wall ratio of a model for each orientations of the building (Figure 7.2). They can also 

get a summary of the thermal properties of the envelope of the model (for the whole building, 

surface groups or for a particular surface). 

                                                 

21 https://jupyter.org 
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Figure 7.2 archetypal showcase: Summary of the Window-to-Wall ratio. Various summaries can be returned from an 

EnergyPlus model in a similar fashion. 

Moreover, archetypal exposes the EnergyPlus simulation results in a visual database format 

popular amongst python users: Pandas DataFrames. This database format offers a robust method 

to analyse and display EnergyPlus results in the Jupyter interactive environment. 

7.2.3 Visualize Energy Profiles 

Time series are particularly interesting to analyze in the context of building energy simulations. 

EnergyPlus has the advantage of centralizing all simulation time series through a database format 

known as sqlite22. archetypal lets users query this database to return specific time series and returns 

them in a DataFrame format. For convenience, useful time series such as the space heating, space 

cooling and domestic hot water profiles are accessible by default. 

To analyse and visualize time series, archetypal makes use of the pandas library for the heavy 

lifting of time series data in combination with pint23 for handling units and unit conversion. This 

allows users to easily aggregate and plot time series in the units of their choice.  Feedback is 

provided when incompatible units are asked in order to limit human errors. 

With matplotlib, time series can be visualized using many different plot styles: line plots, histogram 

plots, density plots or box and whisker plots, to name a few. A particularly useful plot type in the 

                                                 

22 https://www.sqlite.org 

23 https://pint.readthedocs.io 
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case of annual time series is the Time Series Heat Map (TSHM), which will display the timeseries 

as a matrix with each value having a unique color. This type of plot is best for comparing 

observations of two different datasets. 

Heat maps are slightly more complicated to setup, therefore archetypal provides a method that 

handles this process in a single command. One can specify the period length (e.g.: 24 hours), 

colormap as well as minimum and maximum values for the color normalization. For example, the 

space heating profile of the building presented previously is shown below (Figure 7.3).  

 

 

Figure 7.3 archetypal showcase: Visualizing time series from an EnergyPlus model as a time series heat map. Here a 

heat map is created by specifying the “plot_2d” method. The same image can be obtained by running the 

“test_plot_2d” unit test in the archetypal package. 

Another useful visualization is the 3D plot of a timeseries (shown below). This plot type resembles 

the heat map presented above but with a third dimension. This type of visualization is best view in 

an interactive environment such as the Jupyter Notebook where it is possible to rotate and zoom 

the figure. 
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Figure 7.4 archetypal showcase: Visualizing time series in 3D form. 

7.2.4 Create Archetype Templates 

The UBEM method detailed in chapter 4 relies on so-called archetype templates. As a reminder, 

archetype templates differ from regular archetypes in their abstraction of any geometry. It is the 

role of the building massing model in combination with the shoebox method to recreate the 

geometry/physical model relationship between the model parameters specified by the template and 

the climatic conditions (solar incidence and temperature). 

Therefore, another important contribution of archetypal is the automatic conversion of regular 

archetypes (EnergyPlus models) to archetype templates. archetypal lets users specify a list of 

EnergyPlus models to convert and outputs an UMI Template File (see Figure 7.5).  
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Figure 7.5 archetypal showcase: Automatically create an archetype template from a regular EnergyPlus 

model. 

If the different archetype templates share similar elements such as surface constructions or 

schedules, unnecessary duplications will be removed in an attempt to reduce the size and 

complexity of the template file. 

7.2.5 Handle EnergyPlus Schedule Formats 

This capability relates to the specific handling of EnergyPlus schedules as detailed in section 

4.2.2.5 of the chapter on Automated Archetype Template Generation. EnergyPlus schedules can 

take various forms in the IDF file. The authors of EnergyPlus aimed at giving users different 

methods to input schedules of various complexity. For example, a constant schedule can be defined 

using less than 4 lines while a more complex schedule can be defined using a semantic logic that 

is more human readable. This presents a challenge especially when interoperability between 

models and tools is sought. For instance, the UMI Template File has data structure that resembles 

the original EnergyPlus Year-Week-Day format. This format uses 3 types of schedule definitions: 

24h days form different weeks and lists of weeks form a whole year. To address this challenge, a 

utility was built into archetypal to convert any EnergyPlus schedule to the Year-Week-Day format. 
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7.2.6 Command Line Interface 

archetypal features a command line interface to operate the building template creation 

methodology. This allows users to run archetypal directly from the command line, also known as 

the Terminal on MacOS computers or the Command Prompt on Windows computers (see Figure 

7.6 below). This allows users to use archetypal in other scripting languages simply by invoking 

archetypal commands. 

 

Figure 7.6 archetypal showcase: Excerpt of the Command Line Interface of archetypal shown here when a user 

inputs the “help” command. 
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7.3 district: Methodology and Functionality 

District features various capabilities that aim to structure the data collection and analysis of heat-

sharing networks in a Python-based coding environment: the tool implements methods to retrieve 

various sources of GIS building data and leverages rich visualization of categorical features and 

heat maps. Then, the tool structures the retrieval of topological street graphs to serve as the 

underlying grid on which the district energy network is built. Finally, district has built-in functions 

to analyze district energy networks, project and visualize networks, and quickly and consistently 

calculate various metrics (topological and energy measures). 

7.3.1 Download Building Data 

GIS data is collected at different scales. For urban energy studies, the data can amount to very large 

databases that can become quickly bloated and impractical to use. To speedup the retrieval of GIS 

data, district implements methods to download portions of complete building datasets that 

correspond to a certain geographical extent. 

For example, retrieving data in a 1km radius using the following parameters: 

 

Figure 7.7 district showcase: Retrieve portions of datasets 

yields a GeoDataFrame containing only features that are contained in the polygon. 

7.3.2 Visualize Building Data and Heat Maps 

district can visualize GIS data in specific projections. For the data retrieved in Figure 7.7, the 

following code produces a figure with categorical colors and the street grid in overprint: 
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Figure 7.8 district showcase: Visualize GIS data 

 

Figure 7.9 Image produced from the code in Figure 7.8 
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7.3.3 Construct Networks 

district simplifies the process of acquiring a street network and to prepare it for a district energy 

graph topology. The tool leverages the OSMnx package to handle the communication with the OSM 

server and to perform a first topological simplification. For instance, inconsistent nodes, extra 

points along a street segment where the street curves, etc. are removed while maintaining the full 

spatial geometry of the network. After the pre-process, the network may still contain loops and 

parallel edges which need to be removed before creating the mathematical model of a district 

energy network topology. 

Given a topological street graph G recovered from OSM, a simple command returns the corrected 

graph: 

 

Figure 7.10 district showcase: correct topological errors 

7.3.4 Create Network Topology Model 

The creation of a topology optimization model such as the one presented in Chapter 6 is possible 

using a graph structure thanks to the available from_graph classmethod. Simply put, a complex 

optimization problem is setup with specific parameters: 
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Figure 7.11 district showcase: Create a topological optimization problem 

7.3.5 Optimize the Topology 

The topology optimization algorithm uses the pyomo to organise the mathematical problem 

formulation. The advantage of pyomo is that it can communicate with various solvers to solve the 

same mathematical problem; the same model formulation can be used by different solver 

languages. In this thesis, Gurobi and GLPK solvers have been successfully tested. 

The optimization problem created in the code in Figure 7.11 is solved by running: 

 

Figure 7.12 district showcase: Solving the optimization problem 
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7.3.6 Analyze and Visualize the Network 

Once the optimization solver has converged on a solution, district accelerates the visualisation of 

the resulting solution. For instance, Figure 6.10 was generated with the following command: 

 

Figure 7.13 Visualizing the results of the topology optimization 

Finally, various district energy network measures have been implemented in the package to quickly 

assess the performance of the solution. These metrics are summarized in Table 7-2: 
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Table 7-2 District energy network measures. 

Measure Definition 

effective width Information about the length of district heat pipes required to heat the buildings 

in the area 

population density Inhabitants per hectare within the service are of the network  

specific heat demand The area normalized heat demand (W/m2) 

specific heat use The area normalized heat use (kWh/m2) 

total network length The total length of the network (km) 

network cost The investment costs and operational/maintenance costs of buried pipes ($) 

total heat sold The revenues due to the sale of heat ($) 

relative distribution heat loss The annual heat loss compared to the annual heat input from the heat supply 

units (%) 

heat generation cost The costs of producing heat ($) 

specific distribution capital cost The total investment cost dived by the district heat sold per annum ($/GJ) 

specific heat generation cost The total heat generation cost dived by the district heat sold per annum ($/GJ) 

specific heat revenue The total heat revenues dived by the district heat sold per annum ($/GJ) 

net profits The balance of distribution costs, heat generation costs and heat revenues ($) 

installed power The combined maximum power capacity of the heat supply units (kW) 

linear heat density The district heat sold per annum divided by the trench length of the network 

(GJ/m) 

effective width The ratio between the land area and the route length of the network; a proxy for 

the techno-economic conditions in a particular district energy market 

(dimensionless) 

 

7.4 UMI District Energy Plugin 

Evaluating the suitability of certain energy supply technologies—e.g., combined heating and 

power, centralized heat pumps or wind power—is covered by this contribution known as the 

Energy Supply Plugin for UMI, a Rhinoceros-based software.  

This tool was developed in collaboration with the Sustainable Design Lab at the Massachusetts 

Institute of Technology. The tool focuses on balancing demand and supply in district energy 

systems in an effort to understand the drivers of sustainability of various heat supply scenarios in 

different climate contexts (see Figure 7.14). 
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This analysis was the subject of a scientific publication (Letellier-Duchesne et al., 2018). The 

method presented in this paper is found to be a simple way of identifying the impact of a design 

decision on the performance of a neighborhood with a district heating system. 

 

Figure 7.14 Three different energy supply scenarios that can be simulated using the 

energy supply plugin. source: (Letellier-Duchesne et al., 2018) 

 

7.5 Discussion 

In line with the motivation of this thesis, methodological contributions have been implemented in 

tools that contribute to the rapid expansion of the body of open source software.  

The primary features of these tools have been exposed and detailed with examples of their use in 

the elaboration of the study presented in this thesis.  
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 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Synopsis of the Dissertation 

The sustainable use of energy in cities is becoming one of the most important challenges of our 

time. With the increasing urbanization of the global population, existing energy systems are 

experiencing unprecedented strains. Nevertheless, solutions to this complex problem will have to 

compete with other solutions applied to the many areas of sustainability. Improving the flow of 

heating and cooling energy in cities by developing an integrated design toolkit for heat sharing 

networks is one promising solution proposed by this thesis.  

Because building energy use is mostly a design problem, this thesis focused on the inherent links 

between architects and engineers and pushed the analysis further up to the urban planning level. 

This dissertation presented this interdisciplinary context in chapters 2 and 3. The second chapter 

introduced the inherent interconnections between urban planning, architecture and engineering and 

highlighted the importance of holistic design. These foundations laid the groundwork for the urban 

scale problem space of district energy networks presented in chapter 3. With the role that district 

energy systems need to play in sustainable cities clearly spelled out, the other chapters described 

the implementation of various methodologies and tools to enhance their design. 

Chapter 4 tackled the quantification of building energy demand at the urban scale and suggested 

one method to accelerate the analyses of urban building energy modelling. Chapter 5 focused on a 

more local context by estimating the building energy demands of the city of Montréal, Québec. 

This new data not only enabled studies in chapter 3 but also provided the basis for the last 

contribution of this dissertation which focused on the topology optimization of a heat-sharing 

infrastructure elaborated in chapter 6. 

Finally, chapter 7 presented the various tools that were developed to support the contributions of 

this thesis. Methodological contributions were embedded in these tools to help organize their 

implementation. 

8.2 Summary of Key Contributions 

Across six central chapters, this thesis makes various contributions to the literature. We review 

them here in order. 
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Chapter 2, although more focused on establishing the interdisciplinary actions enabled by the 

integrated design process, makes an argument for district energy networks as a catalyzer of the 

development of sustainable neighborhoods. 

Consequently, chapter 3 proposes a data-driven analysis of the compatibility of buildings that 

would participate to a heat-sharing infrastructure. This chapter presents the theoretical aspects of 

thermal diversity and demonstrates its applicability in urban planning with a compelling example. 

A formal contribution in the form of an urban planning metric is presented as the thermal diversity 

index which builds on a temporal and a spatial filter that represent the effects of thermal storage 

and network extent for a given geographical context. 

Chapter 4 focuses on the data preparation of urban building energy models and more specifically 

on the lack of building archetype templates. Its contribution is in the form of an algorithm that can 

convert automatically regular building archetypes to building archetype templates. These 

archetypes templates have the main advantage of enabling faster studies of urban building energy 

modeling, a necessary condition for large-scale adoption of UBEMs in urban development studies. 

Chapter 5 prepares a dynamic heat map of the city of Montréal. Its main contribution is the 

methodological aspects of preparing the required building-related data in the presence of scarce 

and inconsistent data sources. The proposed methodology includes the use of virtual building 

footprints based on Airborne Laser Scanning (ALS) data (also known as LiDAR data) to estimate 

building footprint areas and building heights. The resulting heat map also contrasts with other 

example in the literature in the fact that it can model the dynamic energy profiles of buildings 

across the city and not just annual metrics. 

Chapter 6 is enabled by the combined contributions of chapters 2 to 4. It introduces a heat sharing 

network topology optimization algorithm which finds optimal configurations of heat-sharing 

networks. This algorithm is specific to the operational context of fifth generation urban district 

heating and cooling system, which has been left unanswered until now. 

Chapter 7 presents a toolkit assembling the methodological contributions of the former chapters 

into 3 open source tools: archetypal, a tool for researchers and practitioners to collect and analyse 

building archetypes. Submitted to Journal of Open Source Software (Letellier-Duchesne & Leroy, 

2019); district: a tool for acquiring and preparing district energy network optimization and analysis. 
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In stage of manuscript preparation process; UMI Energy Supply Plugin, a tool integrated in UMI 

to analyse the impact of various supply energy scenarios. 

8.3 Future Research 

This thesis developed various methodological contributions to the analysis of the district scale 

dynamic energy demand. In all cases, the required energy was only analysed from the point of view 

of the energy sector and could benefit from a larger point of view inclusive of the life cycle 

assessment (LCA) of district energy. Although LCA is less popular than building energy simulation 

(BES) because it is not required by energy-rating systems such as LEED (Leoto & Lizarralde, 

2019, p. 43), the inclusion of LCA into the development of district energy networks is a beneficial 

avenue. 

This thesis introduced in chapter 4 a methodology for the automated approximation of complex 

multi-zone building energy models through archetype templates, which lack geometric attributes. 

Developing this contribution has uncovered certain areas of research which merit further 

exploration. First, a framework of modelling parameters structured around existing formats such 

as gbXML or CityGML (gbxml, 2019; Gröger, Kolbe, Nagel, & Häfele, 2012) could democratize 

earlier work on the standardization of building properties template files initiated by Cerezo Davila 

et al. (2014). This promising urban building energy modelling method enabled by archetypal 

should not only focus on the necessary data inputs needed by thermal models but also on the 

frameworks that allow various building energy simulation tools to communicate with each other. 

One such interoperability framework is the functional mock-up interface standard (FMI), which 

could create model-exchange formats between EnergyPlus models, for example, and archetype 

templates. Implementing this exchangeability would result in a more robust and enduring 

methodology. More concretely, enabling these frameworks would necessitate the creation of 

functional mock-up units that would include a description of the archetype template model that is 

understood by the master software, for example via DLLs. 

This thesis has developed an urban scale dynamic heat map of building energy demands thanks to 

the availability of building archetypes. From the various represented groups of buildings, an 

obvious exclusion of industrial archetypes is observed. Characterizing typical industrial activities 

that are more common in cities such as the manufacturing sector should be implemented to improve 



141 

urban building energy models. Moreover, the current version of the dynamic heat map does not 

leverage the work on archetype templates that would allow using context-aware models. 

The early work on empirical effective width analysis of regular district energy networks uncovered 

in chapter 3 paves the way for an analysis of effective width tied to the particular context of heat-

sharing networks. There seems to be an increasing amount of fifth generation district heating and 

cooling systems as demonstrated by the extensive literature review of Buffa et al. (2019). An 

analysis of these existing systems could help establish accurate width correlations that could 

supplement the insights provided by the thermal diversity index.  
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APPENDIX A SUPPORTING DATA 

 

Virtual Building Footprints Supplemental Data 

Table A-1 Difference between hand drawn building footprints and VBFs. 

Borough Number of Footprints  BF Area {m²}   VBF Area {m²}  Relative difference 

Ahuntsic 14081        2,597,150         3,347,866  0.29 

Bordeaux-Cartierville 7247        1,587,983         2,169,329  0.37 

Centre-Sud 4654        1,163,987         1,462,741  0.26 

Côte-des-Neiges 8416        2,367,453         2,963,672  0.25 

Faubourg Saint-Laurent 1389           712,749            952,398  0.34 

Hochelaga-Maisonneuve 5988        1,603,030         1,863,574  0.16 

Le Plateau-Mont-Royal 14347        2,660,467         3,203,335  0.20 

Mercier-Est 8435        1,103,343         1,504,674  0.36 

Mercier-Ouest 7260        2,114,166         2,552,868  0.21 

Notre-Dame-de-Grâce 10683        1,735,582         2,330,230  0.34 

Parc-Extension 3187           495,512            627,157  0.27 

Peter McGill 2125        1,122,715         1,375,129  0.22 

Petite-Bourgogne 1004           450,359            508,530  0.13 

Petite-Patrie 8488        1,560,867         1,871,516  0.20 

Pointe Saint-Charles 2166           663,209            793,656  0.20 

Pointe-aux-Trembles 11163        1,893,482         2,668,395  0.41 

Rivière-des-Prairies 11763        2,180,385         3,357,128  0.54 

Rosemont 12303        1,980,502         2,700,999  0.36 

Rosemont-La Petite-Patrie 20791        3,541,369         4,572,515  0.29 

Saint-Henri 1959           653,426            780,621  0.19 

Saint-Michel 8632        1,552,143         2,015,603  0.30 

Vieux-Montréal 567           557,224            862,294  0.55 

Ville-Émard/Côte Saint-Paul 5868           997,887         1,168,755  0.17 

Villeray 9392        1,522,372         1,889,436  0.24 
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APPENDIX B MODEL COMPLEXITY REDUCTION 

Software availability 

The archetype template generation tool detailed in chapter 4 has been integrated in archetypal, an 

open source python package, available on the GitHub repository24. Accompanying documentation 

is hosted on a website25. Readers are referred to this online documentation for more details on the 

data structure and the model assumptions. 

Detailed model assumptions 

Table B-2 Model assumptions of the complexity reduction algorithm presented in section 4.2 

Parameter Description Parameter values Algorithm Assumption 

Cooling 

COP 

Performance factor of 

the cooling system 

Float greater than 0 The annual COP of the cooling system is 

calculated for the whole building as the 

ratio of input energy and the energy 

removed in the zone by the HVAC system. 

Cooling 

Limit Type 

Limits the capacity of 

the cooling equipment 

for this zone 

LimitFlowRate, 

LimitCapacity, 

LimitFlowRateAndCapacity 

or NoLimit 

Uses the UserDesignLoads from the 

ZoneSized report. See MaxCoolFlow and 

MaxCoolingCapacity 

Cooling Set 

Point 

The temperature above 

which the zone cooling 

is turned on 

Float Uses the average value of the cooling 

schedule 

Cooling 

Schedule 

The availability 

schedule for space 

cooling in this zone. If 

the value is 0, cooling 

is not available, and 

cooling is not supplied 

to the zone. 

A yearly schedule with values 

between 0 and 1 

The zone thermostat setpoint is converted 

to an availability schedule, where 0 means 

the system is unavailable and any other 

value means the system can supply cooling 

to the zone 

Economizer 

Type 

Specifies if there is an 

outdoor air 

economizer. 

NoEconomizer, 

DifferentialDryBulb, or 

DifferentialEnthalpy 

Same assumption for the entire building. 

Economizer Type values that are not 

supported by UMI default to 

DifferentialEnthalpy 

                                                 

24 https://github.com/samuelduchesne/archetypal 

25 https://archetypal.readthedocs.io/en/latest/ 
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Parameter Description Parameter values Algorithm Assumption 

Heat 

Recovery 

Type 

Heat recovery 

parameters for this 

zone 

None, Sensible, or Enthalpy Defaults to Enthalpy if any of the 

Economizer Type are detected 

Heat 

Recovery 

Efficiency 

Latent 

The latent heat 

recovery     

effectiveness, where 

effectiveness is defined 

as the change in supply 

humidity ratio divided 

by the difference in 

entering supply and 

relief air humidity 

ratios 

Float between 0 and 1 - If the HeatExchanger is an AirToAir 

FlatPlate, 

  HeatRecoveryEfficiencyLatent = 

HeatRecoveryEfficiencySensible (= 0.05) 

- If the HeatExchanger is an AirToAir 

SensibleAndLatent, 

HeatRecoveryEfficiencyLatent = Latent 

  Effectiveness at 100% Heating Air Flow 

- If the HeatExchanger is a Desiccant 

BalancedFlow, the default value is used 

(=0.65). 

Heat 

Recovery 

Efficiency 

Sensible 

 

The sensible heat 

recovery effectiveness, 

where effectiveness is 

defined as the change 

in supply temperature 

divided by the 

difference in entering 

supply and relief air 

temperatures 

Float between 0 and 1 - If the HeatExchanger is an AirToAir 

FlatPlate, HeatRecoveryEfficiencySensible 

= 
𝑇𝑠𝑢𝑝𝑝𝑙𝑦−𝑇𝑖𝑛𝑙𝑒𝑡

𝑇𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑖𝑛𝑙𝑒𝑡
−𝑇𝑠𝑢𝑝𝑝𝑙𝑦

  

- If the HeatExchanger is an AirToAir 

SensibleAndLatent, 

HeatRecoveryEfficiencySensible = 

Sensible 

  Effectiveness at 100% Heating Air Flow 

- If the HeatExchanger is a Desiccant 

BalancedFlow, default value for the 

efficiency (=0.70) 

Heating COP Performance factor of 

the heating system 

Float greater than 0 The annual COP of the heating system is 

calculated for the whole building as the 

ratio of input energy and the energy 

supplied to the zone by the HVAC system. 

Heating 

Limit Type 

Limits the capacity of 

the heating equipment 

for this zone 

LimitFlowRate, 

LimitCapacity, 

LimitFlowRateAndCapacity 

or NoLimit 

Set to LimitFlowRateAndCapacity if the 

capacity can be calculated from the 

ZoneSizes report; NoLimit otherwise. 

Heating Set 

Point 

The temperature below 

which the zone heating 

is turned on 

Float Uses the average value of the heating 

schedule 

Heating 

Schedule 

The availability 

schedule for space 

heating in this zone. If 

the value is 0, heating 

is not available, and 

heat is not supplied to 

the zone 

A yearly schedule The zone thermostat setpoint is converted 

to an availability schedule, where 0 means 

the system is unavailable and any other 

value means the system can supply heating 

to the zone 

Is Cooling 

On 

Whether or not cooling 

is available 

0 or 1 If cooling schedule, set to 1, else 0 

Is Heating 

On 

Whether or not heating 

is available 

0 or 1 If heating schedule, set to 1, else 0 
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Parameter Description Parameter values Algorithm Assumption 

Is 

Mechanical 

Ventilation 

On 

Whether or not 

mechanical ventilation 

is available 

0 or 1 If mechanical ventilation controller, set to 

1, else 0  

Minimum 

Fresh Air per 

Area 

The design outdoor air 

volume flow rate                 

per square meter of 

floor area (units are 

m3/s-m2). 

Float Set to OutdoorAirFlowperZoneFloorArea 

Minimum 

Fresh Air per 

Person 

The design outdoor air 

volume flow per 

person for this zone in 

cubic meters per 

second per person.  

Float, default is 0.00944 (20 

cfm per person) 

Set to OutdoorAirFlowperPerson 

Mechanical 

Ventilation 

Schedule 

The availability 

schedule of the 

mechanical ventilation. 

If the value is 0, the 

mechanical ventilation 

is not available and air 

flow is not requested. 

A yearly schedule Set to the schedule of the 

Controller:MechanicalVentilation object 
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