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RÉSUMÉ

De nos jours, la robotique gagne rapidement en popularité et promet un large éventail de nou-
velles applications. Bien que le marché actuel soit dominé par les robots téléguidés, plusieurs
compagnies cherchent à révolutionner notre quotidien avec des robots pleinement autonomes
comme les voitures sans conducteur. En effet, les géants des technologies de partout dans
le monde nous promettent régulièrement de nouvelles percées extraordinaires au niveau de
l’autonomie des robots et multiplient des démonstrations plus impressionnantes les unes que
les autres. Toutefois, ces systèmes autonomes devront se prouver extrêmement fiables et
sécuritaires afin d’obtenir l’acceptabilité sociale nécessaire à leur succès. Malheureusement,
les techniques présentement offertes par la littérature scientifique n’ont pas un niveau de
robustesse à la hauteur des attentes de la population. C’est pourquoi les chercheurs uni-
versitaires et industriels doivent redoubler d’efforts afin de trouver de meilleures solutions
qui sauront inspirer la confiance du public envers les systèmes robotiques autonomes. En
particulier, une des composantes cruciales de tels systèmes est la localisation du robot dans
son environnement. Cette composante est essentielle pour le déploiement de robots dans
des environnements sans GPS (ex. à l’intérieur, sous terre, sous l’eau, etc.), puisque dans
ces situations un robot doit estimer précisément sa position sur la seule base des mesures
extraites à partir de ses propres senseurs. Pour y parvenir, une des techniques les plus
populaires est la cartographie et localisation simultanée (SLAM) lors de laquelle un robot
construit une carte de son environnement afin de suivre et estimer son propre mouvement et
sa position. Cette technique est efficace, mais elle est tout de même vulnérable aux erreurs
d’association et à la présence de mesures aberrantes. Les ingénieurs contournent générale-
ment ce problème en performant une calibration très précise. Une telle calibration spécifique
à l’environnement d’opération est appropriée pour des environnements très contrôlés comme
ceux qu’on retrouve dans les laboratoires de recherche. Par contre, cette solution n’est pas
viable pour des systèmes robotiques vendus au grand public et opérés par des utilisateurs sans
formation. Une des principales causes d’erreurs en cartographie et localisation simultanée est
l’aliasing perceptuel. Ce phénomène engendre des mesures aberrantes lorsqu’un robot con-
fond deux endroits différents comme étant le même. L’addition de mesures aberrantes dans
l’estimateur mène généralement à l’échec complet du système et donc possiblement à des
conséquences dramatiques en termes de sécurité. Afin d’offrir des solutions à ces enjeux de
robustesse, ce mémoire propose deux contributions à la littérature scientifique. La première
introduit une nouvelle formulation pour le problème d’optimisation au coeur de la cartogra-
phie et localisation simultanée. Cette nouvelle formulation inclut un modèle explicite du
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phénomène d’aliasing perceptuel de façon à rejeter efficacement les mesures aberrantes. La
seconde présente une nouvelle méthode de cartographie et localisation simultanée pour sys-
tèmes multi-robot qui est distribuée et robuste aux mesures aberrantes. Cette contribution
est particulièrement importante puisque les systèmes multi-robots sont davantage vulnérables
à l’aliasing perceptuel que les systèmes avec un seul robot. Plusieurs résultats expérimentaux
obtenus lors de simulations, avec des jeux de données réelles et sur le terrain montrent que
les techniques proposées produisent des estimés précis de localisation en présence de mesures
aberrantes.
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ABSTRACT

Autonomous robotics is growing fast in popularity and has a large range of potential new
applications. While the current market is dominated by human-controlled robots, many com-
panies aim to revolutionize our daily lives by focusing on autonomous robotic platforms such
as self-driving cars. Indeed, companies around the world regularly promise ground-breaking
innovations and show very impressive demontrations of autonomous robots. However, to get
the public acceptance they need to prosper, those autonomous systems have to be as safe and
as reliable as possible. Unfortunately, the current implementations are not yet sufficiently ro-
bust, so academic and industrial researchers need to investigate better and more trustworthy
solutions to the many challenges of autonomous navigation and behaviors. In particular, one
of the most crucial components of most autonomous systems is the self-localization mecha-
nism. This component is essential for the deployment of robots in GPS-denied environments
(e.g. indoors, underground, submarine, etc.) since a robot would need to estimate is own
position in its environment based on the measurements acquired by its own onboard sen-
sors. In that regard, one of the most popular techniques is the simultaneous localization and
mapping (SLAM) approach in which the robot builds a map of its surrounding environment
to track and estimate its own movements and position. This technique has been proven to
be very efficient, but it is also known as quite vulnerable to data association errors and the
presence of spurious measurements. Engineers often circumvent those problems by doing a
very precise, yet cumbersome, parameter tuning. Such environment-specific parameter tun-
ing is appropriate for the controlled environment found in research laboratories, but it is by
no means a sufficient solution for consumer robots deployed in the wild and sold to untrained
customers. One of the main causes of errors in SLAM is the perceptual aliasing phenomenon
in which two different places are confused as the same by the robot. This phenomenon leads
to the addition of spurious measurements in the estimation mechanism which in turn leads
to the failure of the whole system. In regard to the robustness challenges in SLAM sys-
tems, this thesis proposes two contributions to the scientific literature. The first introduces
a new robust formulation of the core optimization problem in SLAM that models explicitly
the perceptual aliasing phenomenon to efficiently reject spurious measurements. The second
presents a distributed, online and robust solution for multi-robot SLAM in robotic teams.
This contribution is particularly important since multi-robot systems are more vulnerable
to perceptual aliasing than single-robot systems. Extensive experimental results in simula-
tion, on datasets and on the field show that the proposed techniques can produce accurate
localization estimates in the presence of spurious measurements.
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CHAPTER 1 INTRODUCTION

This Master’s thesis presents the research work accomplished within the MIST Laboratory
of Polytechnique Montréal (Montréal, Québec, Canada) and the SPARK Laboratory of the
Massachusetts Institute of Technology (Cambridge, Massachusetts, United States of America)
between January 2018 and September 2019. This document is in the format of a thesis by
articles - one published and one submitted contributions are presented in Chapters 4-5.

• Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca Carlone, “Modeling percep-
tual aliasing in SLAM via discrete-continuous graphical models,” IEEE Robotics and
Automation Letters (RA-L), 2019.

Giovanni Beltrame and Luca Carlone were cosupervisors of this work and I was helped by
Siyi Hu for the experiments.

• Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Giovanni Bel-
trame, "DOOR-SLAM: distributed, online, and outlier resilient slam for robotic teams,"
IEEE Robotics and Automation Letters (RA-L), 2020. [2nd revision].

In this work, Luca Carlone was a supervisor for the distributed SLAM back-end while Gio-
vanni Beltrame was the overall supervisor. Benjamin Ramtoula was in charge of the dis-
tributed SLAM front-end and had a key role in the experiments. Yun Chang helped with
the experiments on the DARPA datasets.

1.1 Context and Basic Concepts

Robotics research has been thriving for decades now, yet there are still no widely adopted
autonomous consumer robotic applications. While industrial robots have had more success,
they are usually kept inside cages and they are only executing repetitive and precisely cal-
ibrated tasks. This speaks to the fact that most current autonomous robots are deemed
unreliable and/or unsafe even for highly trained workers. Therefore, it is imperative to dras-
tically improve the robustness and the resilience of robotic systems in order to finally fulfill
the dreams of researchers and other sci-fi enthusiasts. Moreover, we need not only to convince
those who are already excited by robotics, but we need to reassure the general public that
those systems are safe. Otherwise, even promising technologies in terms of convenience and
productivity, such as autonomous cars, will not get the public approval they absolutely need
to prosper.
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Although every part of a robotic system is vulnerable to failures, the perception engine, used
to fuse the data from the onboard sensors to understand the environment, is particularly
prone to mistakes. Perception is one of the key aspects of autonomy in robotics since this
is how a robot can localize itself. While some simple autonomous applications (e.g. going
from point A to point B) using GPS can circumvent to need for onboard perception, it
is absolutely essential for applications navigating without external positioning systems or
involving interactions with the environment (e.g. grasping, transport of objects, etc.). In
those applications, the perception system needs to provide an accurate localization of the
robot in its environment in order to get reliable navigation and stable control. Indeed, if a
robot is asked to moveX meters forward, it needs some sort of feedback from the environment
through sensing (i.e. perception) to estimate its own movement and know when to stop.

1.1.1 Simultaneous Localization and Mapping

A practical solution to the localization problem for autonomous robots is called Simultane-
ous Localization and Mapping (SLAM). To estimate the precise motion and localization of
a robot, a SLAM system collects distinctive features (usually visual or spatial) in the sur-
rounding environment and uses them to produce a map and to compute the position of the
robot within it. As shown in Fig.1.1, SLAM systems can usually be split into two parts called
the front-end and the back-end. In the front-end, information is collected from the onboard
sensors and used to produce measurements of the surrounding environment such as motion
estimates or the distance to some distinctive features. Given those noisy measurements, the
back-end needs to estimate the map with the maximal likelihood or, in other words, the
map that best explains all the collected measurements. For the sake of simplicity, this thesis
focuses on visual SLAM systems.

Figure 1.1: SLAM Overview

Front-End

The front-end itself can be split into two parts: the odometry module and the loop closure
detection module. The odometry module estimates the motion of the robot and the loop
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closure detection module is used to reduce the localization error accumulated over time.

Odometry To estimate the motion of the robot, the odometry module periodically collects
features from an onboard sensor and tracks them over time. Then, the module can infer the
motion of the robot from the inverse motion of the collected features around it. Therefore,
the odometry module can produce noisy motion measurements at every time step and feed
them to the SLAM back-end. While odometry can be computed in various ways, a visual
version based on stereo camera images is used in Chapter 5. In visual stereo odometry, the
environment features are represented by keypoints extracted from the left and right images
(e.g. SIFT [1], SURF [2], ORB [3], etc.) and they are tracked from frame to frame.

Loop Closure Detection When performing odometry, each motion measurements pro-
duced is noisy and therefore, when we concatenate those measurements to estimate the
localization of the robot, there is an accumulation of the error over time (i.e. drift). To
correct the accumulated error, SLAM front-end systems use a second component called the
loop closure detection module. When humans get lost in a city, their first instinct will be to
look around to find something they can recognize, because once they find it they can localize
themselves with respect to this known feature of the environment. Loop closures detection
implements this idea in the SLAM system. The component works as a place recognition
system and produces measurements called loop closures when a place, seen previously, is
recognized. The addition of loop closures in the computed map limits the accumulation of
noise and thus reduces the localization error of the robot.

Back-End

Many techniques are available to implement the SLAM back-end, however, this thesis focuses
on pose graph optimization since it is the technique used in Chapter 4 and 5. Pose graph
optimization is often preferred over the competing filtering techniques because it is generally
faster to solve. To understand the pose graph optimization, we first need to introduce the
notion of pose which is the state of the robot (i.e. rotation and translation) at a given time
frame. The robot pose at time i is defined as Ti

.= [Ri ti] comprised of a translation vector
ti ∈ Rd and a rotation matrix i.e. Ri ∈ SO(d), where SO(d) is the special orthogonal group
and d = 2 in planar problems or d = 3 in three-dimensional problems. The robot poses
are initially unknown and the aim of pose graph optimization is to compute the most likely
estimate of the robot poses given the noisy measurements computed by the front-end.
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Figure 1.2: Simple pose graph

The poses are the nodes in the pose graph and the relative measurements between the poses
are the edges. As mentioned before, the front-end feeds the back-end with two types of noisy
measurements: odometry and loop closures. The odometry measurements link consecutive
poses while the loop closures link non-consecutive poses in the graph. Fig.1.2 shows a very
simple pose graph in which the poses are in blue, the odometry measurements are in orange
and a single loop closure is shown in green.

Each noisy measurement Tij
.= [R̄ij t̄ij] between two poses is assumed to be sampled from

the following generative model:

t̄ij = RT
i (tj − ti) + tεij, R̄ij = RT

i RjR
ε
ij (1.1)

where tεij ∈ Rd and Rε
ij ∈ SO(d) represent translation and rotation measurement noise,

respectively.

Pose Graph Optimization (PGO) Assuming the translation noise is Normally dis-
tributed with zero mean and information matrix ωtId (i.e. inverse of the convariance matrix)
and the rotation noise follows a Langevin distribution [4,5] with concentration parameter ωr,
the back-end can solve the following minimization problem to find the pose estimates with
the maximal likelihood from the relative pose measurements in set E :

min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈E

ωt‖tj−ti−Rit̄ij‖2
2 + ωr

2 ‖Rj −RiR̄ij‖2
F (1.2)

In this equation, ‖ · ‖F denotes the Frobenius norm. The resulting poses give an accurate
estimation of the position of the robot along its trajectory and can, therefore, be used to
evaluate its motion over time and accomplish its tasks.
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1.2 Problem Statement

1.2.1 Perceptual Aliasing

Figure 1.3: Examples of perceptual aliasing

Unfortunately, some phenomenons can cause the failure of the SLAM estimator. In particular,
the presence of spurious measurements among the loop closures usually causes a considerable
distortion in the resulting estimates since Eq.1.2 is using an L2 cost function which is known
to be vulnerable to outliers. The phenomenon of perceptual aliasing, in which two different
places are considered as the same by the SLAM front-end, is the main cause of such spurious
measurements. Indeed, when two different places look very similar (see Fig.1.3 for examples),
it is sometimes hard to differentiate them during the loop closure detection phase. This
leads to the addition of incorrect loop closures in the pose graph, which in turn leads to
very problematic distortions in the resulting estimates. Those distortions are usually very
significant even in the presence of one single spurious measurement and, of course, a robot
using a distorted pose graph will fail at localizing itself accurately. This can lead to the
failure of the robot’s mission and to dangerous or unpredictable behaviors.

Spurious Measurements

For the sake of clarity, a spurious measurement is a measurement that is wrong in the
sense that the information it contains does not match with the physical reality. Spurious
measurements due to perceptual aliasing are usually arbitrarily wrong and are not accounted
for in the noise model. In this thesis, the term outlier is also used to refer to a spurious
measurement.

1.2.2 Initialization

Another issue with the classical PGO techniques implementing formulations similar to Eq.1.2
is the need for an accurate initial guess. Indeed, since this is a local optimization problem,
the initial estimates have to be close to the optimal solution in order to avoid falling into a
local minimum.
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1.2.3 Robust Estimation

The research work in this thesis focuses on tackling the problem of perceptual aliasing in
SLAM systems. Although it could be solved by major improvements in the SLAM front-end,
it is safer and realistic to expect failures from the front-end and to have a back-end able to
handle spurious measurements. Therefore, the SLAM back-end needs to be based on robust
estimation techniques. In the context of pose graph optimization, robustness means that the
estimator can detect and ignore the wrong measurements or at least it can mitigate their
effects on the resulting pose graph.

1.2.4 Multi-Robot Systems

Also, this thesis explores the robust estimation in the case of multi-robot SLAM. Multi-
robot systems offer a lot of benefits over single robots in terms of resilience and productivity.
Thus, it is crucial to develop techniques handling the spurious measurements in multi-robot
systems. Also, while the initialization issue is not a big deal for single robot systems since the
odometry usually provides a reasonably accurate initial guess, it is not possible to determine
an initial alignment between multiple trajectories when we assume that there might be some
outliers among the inter-robot loop closures. Hence, to solve this particular class of problem,
we need SLAM estimators that do not rely on initial guesses.

1.3 Research Objectives

The research work presented in this thesis and the articles presented in Chapters 4 and 5
pursues the following objectives:

• Build a mathematical model of the perceptual aliasing phenomenon.

• Develop a pose graph optimization formulation robust to spurious measurements due
to perceptual aliasing.

• Develop a distributed outlier rejection technique for multi-robot systems.

• Develop a multi-robot SLAM system robust to spurious measurements using the dis-
tributed outlier rejection technique.

• Perform field experiments of the multi-robot system robust to perceptual aliasing to
prove that it works in real conditions.
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1.4 Thesis Outline

The remainder of this thesis is divided into five sections. Chapter 2 presents a literature
review. Chapter 3 gives an overview of the research approach and the organization of the
thesis explaining the consistency between the articles and the research objectives. Chapter
4 presents an article proposing a new formulation of the robust pose graph optimization
problem that explicitly models the perceptual aliasing phenomenon. Chapter 5 presents an
article on a novel multi-robot SLAM system robust to spurious measurements. Chapter 6
offers a general discussion of the results shown in the previous chapters. Chapter 7 sums up
the findings, the limitations and suggests future avenues of research. Finally, the references
are presented in the last section.
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CHAPTER 2 LITERATURE REVIEW

This chapter is an overview of the existing contributions in the two main fields of research
covered in this thesis: pose graph optimization and loop closure detection. A greater emphasis
is put on the former since it is at the core of the contributions presented in both Chapters
4 and 5. The existing contributions specifically related to multi-robot SLAM scenarios are
also presented in each section. Multi-robot setups usually add new constraints to the SLAM
problem such as the available communication bandwidth or connectivity maintenance.

2.1 Pose Graph Optimization

As stated in Chapter 1, Pose Graph Optimization (PGO) consists in the estimation of a set
of poses from relative pose measurements. While this formulation is specific to robotics, a
very similar problem exists in computer vision and many othe fields, usually involving the
rotation estimation only. This formulation is used in solving the problem of Structure from
Motion (SfM) [6] which consists to build a 3D representation of an object using a set of 2D
images from a moving camera.

The classical derivation of the PGO problem (1.2), presented in Chapter 1, is taken from [5,
Proposition 1].

min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈E

ωt‖tj−ti−Rit̄ij‖2
2 + ωr

2 ‖Rj −RiR̄ij‖2
F (2.1)

First, it is important to note that the rotation matrices are in the Special Orthogonal group
SO(d) and, since this set is not convex, solving this problem involves performing a nonconvex
optimization. This means that the problem has multiple local minima and is therefore vul-
nerable to an incorrect initial guess. Indeed, if the initial guess is closer to a local minimum
than to the global minimum, a nonconvex optimization will not converge to the optimal so-
lution. However, [5,7] show that it is possible to compute the globally-optimal solution using
convex relaxations when the measurement noise is reasonable. In other words, it has been
shown that we can approximate the original nonconvex problem to a convex formulation
by relaxing the problematic constraints such as the ones on the rotation set SO(d). This
kind of approximation is only valid if the noise in the measurements is not too high. This
result is at the foundation of the work presented in Chapter 4. We will leverage the exis-
tent convex relaxation techniques to build a globally-optimal formulation robust to outlying
measurements.
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2.1.1 Multi-Robot PGO

The problem of multi-robot PGO is at its core the same as in single robot scenarios with the
addition of inter-robot loop closures that link individual robot graphs together. Section 2.3.1
explores the ways to gather such inter-robot measurements. Most current multi-robot PGO
techniques can be classified as either centralized or distributed. In the centralized approaches,
the system collects all measurements from each robot at a central computation node which
then jointly computes the pose estimates for all the robots involved [8–12]. The major draw-
back of such centralized techniques is that the computation workload and the communication
bandwidth grow at least linearly with the number of robots in the team. Therefore, many
research groups look into ways to compute the multi-robot PGO in a distributed fashion.
Those techniques aim to rely only on local computation and communication between the
robots. They can be thought of as peer-to-peer systems as opposed to master-slave systems
in the centralized case. Among the early techniques to perform this distributed estimation,
there are the distributed Jacobi approach to estimate 2D poses [13] and the use of Gaussian
elimination [14, 15]. In more recent works, Choudhary et al. [16] developed a distributed
Gauss-Seidel approach. This method requires only the communication of the latest pose
estimates involved in the inter-robot measurements and has the benefits to avoid information
double counting and complex bookkeeping. Hence, the method is used as the optimization
workhorse in Chapter 5. This technique also has the benefit of preserving the privacy of the
robot trajectories. Indeed, since the robots do not send their whole trajectories to each other,
this limits the possibilities of attacks by an adversarial agent in the system.

2.2 Robust Pose Graph Optimization

Since the minimization problem (1.2) presented in Chapter 1 relies on the assumption that
the measurement noise is light-tailed (e.g. Normal distribution), this formulation produces
totally distorted pose estimates in presence of spurious measurements. In other words, the
L2 cost function used is known to be brittle and not robust to outliers. Thus, it is important
to mitigate the presence of such outlying measurements. RANSAC [17] and branch and
bound [18] are certainly among the first techniques used to solve the problem. The former
iteratively select random samples of measurements until it finds a mutually consistent set
while the latter performs a graph-based search using some heuristics to select the consistent
measurements. Unfortunately, they either rely heavily on precise and tedious parameter
tuning or they require an exponential computation time. Those shortcomings motivated the
research on robust estimators specific to pose graph optimization. Early work include the
use of various robust M-estimators [6, 19] (e.g. Huber loss), or max-mixture techniques [20]
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which consider multiple hypotheses on the noise distribution of a measurement. The approach
presented in Chapter 4 is based on the implementation of an ideal robust M-estimator known
as the Truncated-Least-Squares.

Instead of simply mitigating the effect of spurious measurements, more recent approaches
generally try to explicitly disable the outlying measurements during the optimization. To
do so, the Vertigo technique [21, 22] introduces latent binary variables, relaxed to continu-
ous variables, in the PGO problem to activate or deactivate the loop closure measurements.
The DCS technique [23] adapts the Vertigo technique to dynamically adjust the measurement
covariances to significantly reduce the weight of the outliers in the cost function. Other tech-
niques reformulate the problem of rejecting outlying measurements as, instead, the selection
of large sets of mutually consistent measurements [24–27]. While an outlier is hard to define,
those techniques have the advantage of providing a simple definition of an inlier which is a
measurement that is consistent with the greatest number of other measurements. Therefore,
it is easier to select those well-defined measurements than to reject the outliers following an
unknown distribution.

2.2.1 Multi-Robot Robust PGO

A few works have extended the research on robust PGO to multi-robot setups. In particular,
Mangelson et al. [28] adapts the methods based on the selection of sets of mutually consis-
tent measurements among the inter-robot loop closures, which are the most likely to contain
outliers. This approach leverages some recent results in graph theory to formulate the selec-
tion of inliers as a maximal clique problem and solves it efficiently. Other works adopt an
expectation-maximization approach [12] or use some extra data, such as the wireless channel
information [29], to verify if a measurement is valid. Indeed, a robot can roughly estimate the
distance and angle-of-arrival of a WiFi signal by collecting and analyzing multiple subsequent
measurements. Then this information can be used to verify the likelihood of the vision-based
measurements.

2.3 Loop Closure Detection

Considering that the spurious measurements are typically among the loop closure measure-
ments, the detection of loop closure and the generation of such measurements is very relevant.
This section focuses on the visual techniques since this is the type used in Chapter 5. First,
as stated before, the detection of loop closures is essentially a place recognition problem.
Therefore, most techniques compute some sort of image descriptors to compare them effi-
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ciently and to match the ones representing the same places. Those descriptors need to be
relatively invariant to view-point and illumination changes because the robots are "seeing"
the places at different moments. To build such descriptors multiple works have used global
visual features [30,31] or local visual features [2,32] (e.g. SIFT [1], SURF [2], ORB [3], etc.)
quantized in a bag-of-word model [33]. However, the current techniques that yield the best
results are based on convolutional neural networks (CNN) [34, 35] which produce trained
descriptors instead of "hand-crafted" ones. Yet, those trained descriptors can be vulnerable
to environments significantly different from the ones used to train them. Indeed, even though
they aim to learn a general understanding of the place recognition problem, it is not clear
that they can still work on data sampled from a different distribution than the one they were
trained on.

2.3.1 Multi-Robot Loop Closure Detection

In multi-robot scenarios, the challenge of finding loop closures is even greater since the robots
may have different sensors or calibrations. On top of this, it is unlikely that two robots
will "see" a place from the exact same angle and illumination level. Furthermore, since
the information needs to be transmitted, it has to be compressed as much as possible to
avoid overloading the communication bandwidth. To solve parts of the bandwidth problem,
Tardioli et al. [36] propose the use of visual vocabulary indexes which are smaller than
the full traditional keypoint descriptors (e.g. SIFT [1], SURF [2], ORB [3], etc.). Other
techniques [37–39] leverage the assumption of full connectivity maintenance among the team
of robots to efficiently split the communication and computation workload. By enforcing this
connectivity constraint, they can safely assign a portion of the visual descriptors "spectrum"
to each robot. Then, each robot only has to send its visual data to the robot in charge
of the corresponding range of descriptors. Some related works also consider the resources
available and adapt their communication and computation strategies accordingly [40–42].
Those adaptative strategies are a good starting point for solutions on resource-constrained
platforms such as drones.
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CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION

This chapter presents the research approach used, its consistency with the objectives stated
in Section 1.3, the links between the articles presented in Chapters 4 and 5, and the detailed
organization of the thesis. The research approach follows two distinct axes to tackle the
problem of perceptual aliasing in SLAM. The first axis is from the construction of theoretical
models to the practical applications in robotics systems. The second axis is from single robot
systems to multi-robot systems.

3.1 From Theory to Practice

Theoretical models are really useful to describe the phenomenons we are facing and get a
better understanding of them. Therefore, it is useful to build them and to base our techniques
on the insight they provide to produce solutions that target specifically the effects of those
phenomena. In Chapter 4, we aim to explicitly model the perceptual aliasing phenomenon
within the minimization problem of pose graph optimization. The new formulation resulting
from this inclusion is then able to efficiently reject the spurious measurements within the
loop closure measurements. However, while experiments on datasets and in simulations are
a good indicator of the correctness of one solution, they are not enough to prove that the
technique can overcome the reality gap and work in real-world scenarios. Proofs of concept,
such as the one presented in Chapter 4, are often too computationally expensive to be directly
applied to robotic platforms with limited resources. Yet, the development of fast solvers is
generally a non-trivial problem on its own. Therefore, in order to build a real-world solution
to the problem of perceptual aliasing, Chapter 5 presents a technique that drops some of the
theoretical guarantees presented in Chapter 4, but that can solve the pose graph optimization
problem with fewer computational resources. Both techniques contribute to the progress of
science. One opens new avenues that may lead to new fast and robust PGO solvers, while
the other provides an actual solution adapted to the current robotic platform constraints.

3.2 From a Single Robot to a Team of Robots

While most current SLAM techniques are focused on single robot systems, many autonomous
robotic applications would benefit from a multi-robot SLAM solution. According to many
researchers, the future of robotics will be defined by the collaboration of multiple simple
robots to accomplish complex tasks, instead of very complex and task-specific single robot
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systems. In fact, teams of robots are often more effective since they can work in parallel
or accomplish their tasks even if some members fail. On top of this, collaborative SLAM
systems have the benefit of producing a shared reference frame or map for the robotic team.
Such collaborative maps, also called global maps in opposition to the individual local maps,
enable a large range of new applications. Indeed, many multi-robot systems need to share
pieces of spatial information (e.g. position of objects, distance to an obstacle, etc.) between
the robots, but spatial data is often meaningless if the robots sharing it do not have the same
reference frame. So, multi-robot SLAM systems are essential to many applications in GPS-
denied environments. Therefore, it is interesting to go beyond the current works and try to
bring robust SLAM solutions to multi-robot systems. This entails solving many additional
challenges such as distributing efficiently the computational workload and minimizing the
required bandwidth between the robots. To that end, Chapter 5 provides a practical solution
to the multi-robot SLAM problem in presence of outliers and its related challenges.

3.3 Document Structure

This document follows the recommended structure for a thesis by articles in which the pub-
lished or submitted contributions are included in the body of the work as separate chapters.

• Chapter 1 introduces the research context and the basic concepts.

• Chapter 2 provides an overview of the relevant contributions in the literature.

• Chapter 3, this chapter, presents the research approach and the links between the
different chapters.

• Chapter 4 provides a unified framework to model perceptual aliasing in SLAM and
provides practical algorithms that can cope with outliers without relying on any initial
guess. This work was published in the IEEE Robotics and Automation Letters in
January 2019.

• Chapter 5 presents a fully distributed SLAM system with an outlier rejection mecha-
nism that can work with less conservative parameters. This work has been submitted
to the IEEE Robotics and Automation Letters in September 2019.

• Chapter 6 provides a general discussion of the results presented in chapters 4 and 5. It
also presents a summary of the work, their limitations, and future research directions.

• Chapter 7 presents a summary of the work, their limitations, and future research di-
rections.
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CHAPTER 4 ARTICLE 1: MODELING PERCEPTUAL ALIASING IN
SLAM VIA DISCRETE-CONTINUOUS GRAPHICAL MODELS

Preface:
Full Citation: Pierre-Yves Lajoie1, Siyi Hu2, Giovanni Beltrame1, and Luca Carlone2,
“Modeling perceptual aliasing in SLAM via discrete-continuous graphical models,” IEEE
Robotics and Automation Letters (RA-L), 2019.
DOI: 10.1109/LRA.2019.2894852
Copyright: c© 2019 IEEE. Reprinted, with permission from the authors.
Abstract - Perceptual aliasing is one of the main causes of failure for Simultaneous Lo-
calization and Mapping (SLAM) systems operating in the wild. Perceptual aliasing is the
phenomenon where different places generate a similar visual (or, in general, perceptual) foot-
print. This causes spurious measurements to be fed to the SLAM estimator, which typically
results in incorrect localization and mapping results. The problem is exacerbated by the fact
that those outliers are highly correlated, in the sense that perceptual aliasing creates a large
number of mutually-consistent outliers. Another issue stems from the fact that most state-of-
the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between
inliers and outliers and this makes the resulting pipeline brittle, since the accumulation of
error may result in incorrect choices and recovery from failures is far from trivial. This work
provides a unified framework to model perceptual aliasing in SLAM and provides practical
algorithms that can cope with outliers without relying on any initial guess. We present two
main contributions. The first is a Discrete-Continuous Graphical Model (DC-GM) for SLAM:
the continuous portion of the DC-GM captures the standard SLAM problem, while the discrete
portion describes the selection of the outliers and models their correlation. The second con-
tribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates
with provable sub-optimality guarantees. Experimental results on standard benchmarking
datasets show that the proposed technique compares favorably with state-of-the-art methods
while not relying on an initial guess for optimization.

This work was carried out during P. Lajoie’s research stay in LIDS, and was partially funded by the
Natural Sciences and Engineering Research Council of Canada (NSERC), the J.A. DeSève Foundation, ARL
DCIST CRA W911NF-17-2-0181, ONR RAIDER N00014-18-1-2828, and MIT Lincoln Laboratory.

1P. Lajoie and G.Beltrame are with the Department of Computer and Software Engineering, École Poly-
technique de Montréal, Montreal, Canada {pierre-yves.lajoie,giovanni.beltrame}@polymtl.ca

2S.Hu and L.Carlone are with the Laboratory for Information & Decision Systems (LIDS), Massachusetts
Institute of Technology, Cambridge, USA, {siyi,lcarlone}@mit.edu
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4.1 Introduction

Simultaneous Localization and Mapping (SLAM) is the backbone of several robotics ap-
plications. SLAM is already widely adopted in consumer applications (e.g., robot vacuum
cleaning, warehouse maintenance, virtual/augmented reality), and is a key enabler for truly
autonomous systems operating in the wild, ranging from unmanned aerial vehicles operating
in GPS-denied scenarios, to self-driving cars.

Despite the remarkable advances in SLAM, both researchers and practitioners are well aware
of the brittleness of current SLAM systems. While SLAM failures are a tolerable price to
pay in some consumer applications, they may put human life at risk in several safety-critical
applications. For this reason, SLAM is often avoided in those applications (e.g., self-driving
cars) in favor of alternative solutions where the map is built beforehand in an offline (and
typically human-supervised) manner, even though this implies extra setup costs.

Arguably, the main cause of SLAM failure is the presence of incorrect data association and
outliers [43]. Incorrect data association is caused by perceptual aliasing, the phenomenon
where different places generate a similar visual (or, in general, perceptual) footprint. Per-
ceptual aliasing leads to incorrectly associating the measurements taken by the robot to the
wrong portion of the map, which may lead to map deformations and potentially to catas-
trophic failure of the mapping process. The problem is exacerbated by the fact that those
outliers are highly correlated: due to the temporal nature of the data collection, perceptual
aliasing creates a large number of mutually-consistent outliers. This correlation makes it
even harder to judge if a measurement is an outlier, contributing to the brittleness of the
resulting pipeline. Surprisingly, while the SLAM literature extensively focused on mitigating
the effects of perceptual aliasing, none of the existing approaches attempt to explicitly model
positive correlation between outliers.

Contribution. This work provides a unified framework to model perceptual aliasing and
outlier correlation in SLAM. We propose a novel approach to obtain provably-robust SLAM
algorithms: rather than developing techniques to mitigate the impact of perceptual aliasing,
we explicitly model perceptual aliasing using a discrete-continuous graphical model (DC-GM).
A simple illustration is given in Fig. 4.1. The figure shows a DC-GM where the continuous
variables, shown in blue, describe a standard SLAM formulation, i.e., a pose graph [43],
where the triangles represent the trajectory of a moving robot while the edges represent
measurements. The figure shows that we associate a discrete variable (large red circles) to
each edge/measurement in the pose graph. The discrete variables decide between accepting
or rejecting a measurement. The red edges in the top portion of the figure model the cor-
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Figure 4.1: We introduce a Discrete-Continuous Graphical Model (DC-GM) to model percep-
tual aliasing in SLAM. The model describes the interactions between continuous variables
(e.g., robot poses) and discrete variables (e.g., the binary selection of inliers and outliers),
and captures the correlation between the discrete variables (e.g., due to perceptual aliasing).

relation between discrete variables. The expert reader can recognize the top of the figure
(graph in red), to be a discrete Markov Random Field (MRF) [44]. The proposed model can
naturally capture positive correlation between outliers: for instance, we can model the corre-
lation between three nearby edges, (T1, T6), (T2, T6), (T3, T6) in Fig. 4.1, as a clique involving
the corresponding discrete variables (θ16, θ26, θ36) in the MRF (red triangle in the figure).
Similarly, we can capture the temporal correlation of wheel slippage episodes by connecting
variables corresponding to consecutive edges (e.g., θ12, θ23).

Our second contribution is the design of a semidefinite (SDP) relaxation that computes
a near-optimal estimate of the variables in the DC-GM. Inference in DC-GM is intractable
in general, due to the nonconvexity of the corresponding estimation problem and to the
presence of discrete variables. We show how to obtain an SDP relaxation with per-instance
sub-optimality guarantees, generalizing previous work on provably-correct SLAM without
outliers [4,5,7,45,46]. The SDP relaxation can be solved in polynomial time by off-the-shelf
convex solvers without relying on an initial guess.

Our last contribution is an experimental evaluation on standard SLAM benchmarking datasets.
The experimental results show that the proposed DC-GM model compares favorably with
state-of-the-art methods, including Vertigo [21], RRR [24] and DCS [23]. Moreover, they con-
firm that modeling outlier correlation further increases the resilience of the proposed model,
which is able to compute correct SLAM estimates even when 50% of the loop closures are
highly-correlated outliers. Our current (Matlab) implementation is slow, compared to state-
of-the-art methods, but the proposed approach can be sped-up by designing a specialized
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solver along the lines of [7]. We leave these numerical aspects (which are both interesting
and non-trivial on their own) for future work.

Paper structure. Section 4.2 provides preliminary notions on MRFs and pose graph op-
timization. Section 4.3 presents our new hybrid discrete-continuous graphical model. Sec-
tion 4.4 presents a semidefinite programming relaxation for inference in the DC-GM. Section 4.5
presents experimental results, while Section 4.6 concludes the paper.

4.2 Preliminaries and Related Work

This section reviews basic concepts about Markov Random Fields and Pose Graph Optimiza-
tion.

4.2.1 Markov Random Fields (MRFs)

Markov Random Fields (MRFs) are a popular graphical model for reconstruction and recog-
nition problems in computer vision and robotics [44, 47, 48]. A pairwise MRF is defined by
a set of ` nodes we want to label, and a set of edges or potentials, representing probabilistic
constraints involving the labels of a single or a pair of nodes. Here we consider binary MRFs,
where we associate a binary label θi ∈ {−1,+1} to each node i = 1, . . . , `.

The maximum a posteriori (MAP) estimate of the variables in the MRF is the assignment
of the node labels that attains the maximum of the posterior distribution of an MRF, or,
equivalently, the minimum of the negative log-posterior [47]:

min
θi∈{−1,+1}
i=1,...,`

−
∑
i∈U

c̄iθi −
∑

(i,j)∈B
c̄ijθiθj (4.1)

where U ⊆ {1, . . . , `} is the set of unary potentials (terms involving a single node), B ⊆
{1, . . . , `} × {1, . . . , `} is the set of binary potentials (involving a pair of nodes). Intuitively,
if c̄i > 0 (resp. c̄i < 0), then the unary terms encourage +1 (resp. −1) labels for node i.
Similarly, if c̄ij > 0, then the binary term (i, j) encourages nodes i and j to have the same
label (positive correlation) since that decreases the cost (4.1) by c̄ij. While several choices of
unary and binary potentials are possible, the expression in eq. (4.1) is a very popular model,
and is referred to as the Ising model [44, Section 1.4.1].

Related works consider extensions of (4.1) to continuous [49], discrete-continuous [50], or
discretized [51] labels, while to the best of our knowledge, our paper is the first to propose a
semidefinite solver for discrete-continuous models and use these models to capture perceptual
aliasing in SLAM.
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4.2.2 Pose Graph Optimization (PGO)

Pose Graph Optimization (PGO) is one of the most popular models for SLAM. PGO consists
in the estimation of a set of poses (i.e., rotations and translations) from pairwise relative pose
measurements. In computer vision a similar problem (typically involving only rotation) is
used as a preprocessing step for bundle adjustment in Structure from Motion (SfM) [6].

PGO estimates n poses from m relative pose measurements. Each to-be-estimated pose
Ti

.= [Ri ti], i = 1, . . . , n, comprises a translation vector ti ∈ Rd and a rotation matrix
Ri ∈ SO(d), where d = 2 in planar problems or d = 3 in three-dimensional problems. For
a pair of poses (i, j), a relative pose measurement [R̄ij t̄ij], with t̄ij ∈ Rd and R̄ij ∈ SO(d),
describes a noisy measurement of the relative pose between Ti and Tj. Each measurement is
assumed to be sampled from the following generative model:

t̄ij = RT
i (tj − ti) + tεij, R̄ij = RT

i RjR
ε
ij (4.2)

where tεij ∈ Rd and Rε
ij ∈ SO(d) represent translation and rotation measurement noise,

respectively. PGO can be thought as an MRF with variables living on manifold: we need to
assign a pose to each node in a graph, given relative measurements associated to edges E of
the graph. The resulting graph is usually referred to as a pose graph.

Assuming the translation noise is Normally distributed with zero mean and information
matrix ωtId and the rotation noise follows a Langevin distribution [4, 5] with concentration
parameter ωr, the MAP estimate for the unknown poses can be computed by solving the
following optimization problem:

min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈E

ωt‖tj−ti−Rit̄ij‖2
2 + ωr

2 ‖Rj −RiR̄ij‖2
F (4.3)

where ‖ · ‖F denotes the Frobenius norm. The derivation of (4.3) is given in [5, Proposition
1]. The estimator (4.3) involves solving a nonconvex optimization, due to the nonconvexity
of the set SO(d). Recent results [5, 7] show that one can still compute a globally-optimal
solution to (4.3), when the measurement noise is reasonable, using convex relaxations.

Unfortunately, the minimization (4.3) follows from the assumption that the measurement
noise is light-tailed (e.g., Normally distributed translation noise) and it is known to produce
completely wrong pose estimates when this assumption is violated, i.e., in presence of outlying
measurements.

An interpretation of landmark-based SLAM as a pairwise MRF with continuous variables is given by
Dellaert in [52].
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(a) (b)

Figure 4.2: (a) Cost associated to each residual error in the least squares (LS), Huber, and
truncated LS estimators. (b) The correlation terms c̄(ij)

(i′j′) in eq. (4.9) have the effect of altering
the error threshold in the truncated LS estimator.

4.2.3 Robust PGO

The sensitivity to outliers of the formulation (4.3) is due to the fact that we minimize the
squares of the residual errors (quantities appearing in the squared terms): this implies that
large residuals corresponding to spurious measurements dominate the cost. Robust estimators
reduce the impact of outliers by adopting cost functions that grow slowly (i.e., less than
quadratically) when the residual exceeds a given upper bound r̄. This is the idea behind
robust M-estimators, see [53]. For instance, the Huber loss in Fig. 4.2 grows linearly outside
the quadratic region [−r̄,+r̄]. Ideally, one would like to adopt a truncated least squares (LS)
formulation (Fig. 4.2) where the impact of arbitrarily large outliers remains bounded. Such
a formulation, however, is non-convex and non-differentiable, typically making the resulting
optimization hard.

Traditionally, outlier mitigation in SLAM and SfM relied on the use of robust M-estimators,
see [6,19]. Agarwal et al. [23] propose Dynamic Covariance Scaling (DCS), which dynamically
adjusts the measurement covariances to reduce the influence of outliers. Olson and Agar-
wal [20] use a max-mixture distribution to accommodate multiple hypotheses on the noise
distribution of a measurement. Casafranca et al. [54] minimize the `1-norm of the residual
errors. Lee et al. [55] use expectation maximization. An alternative set of approaches at-
tempts to explicitly identify and reject outliers. Early techniques include RANSAC [17] and
branch & bound [18]. Sünderhauf and Protzel [21, 22] propose Vertigo, which augments the
PGO problem with latent binary variables (then relaxed to continuous variables) that are
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responsible for deactivating outliers. Latif et al. [24], Carlone et al. [26], Graham et al. [27],
Mangelson et al. [28] look for large sets of “mutually consistent” measurements. Pfingsthorn
and Birk [56,57] model ambiguous measurements using hyperedges and mixture of Gaussians,
and provide a measurement selection approach that also constructs an initial guess for PGO.
Both [20] and [57] implicitly model negative correlation (or, more precisely, mutual exclusiv-
ity) between multiple edge hypotheses. The introduction of discrete variables has also been
used to reconcile data association and semantic SLAM [58], and to deal with unknown data
association in SfM [59].

4.3 Discrete-continuous Graphical Models for Robust Pose Graph Optimization

We propose a novel approach for robust PGO that addresses the three main limitations of
the state of the art. First, rather than mitigating outlier correlation, we explicitly model it.
Second, our PGOmethod (Section 4.4) does not rely on any initial guess. Third, we go beyond
recently proposed convex relaxations for robust rotation and pose estimation [46,60,61], and
use a nonconvex loss, namely, the truncated LS cost in Fig. 4.2. This circumvents issues with
convex robust loss functions which are known to have low breakdown point (e.g., the Huber
loss [46] or `1 norm [46,60,61] can be compromised by the presence of a single “bad” outlier).

4.3.1 A unified view of robust PGO

Let us partition the edges of the pose graph into odometric edges Eod and loop-closure edges
Elc. Perceptual aliasing affects exteroceptive sensors, hence —while we can typically trust
odometric edges— loop closures may include outliers.

According to the discussion in Section 4.2.3, an ideal formulation for robust PGO would use
a truncated LS cost for the loop-closure edges in Elc:

min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈Eod

ωt‖tj−ti−Rit̄ij‖2
2 + ωr

2 ‖Rj −RiR̄ij‖2
F

+
∑

(i,j)∈Elc

ωtfc̄t(‖tj−ti−Rit̄ij‖2) + ωr
2 fc̄R

(‖Rj −RiR̄ij‖F )
(4.4)

where, for a positive scalar c, the function fc(·) is:

fc(x) =

 x2 if |x| ≤ c

c2 otherwise
(4.5)

While the formulation (4.4) would be able to tolerate arbitrarily “bad” outliers, it has two
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main drawbacks. First, fc(·) is non-convex, adding to the non-convexity already induced by
the rotations (SO(d) is a non-convex set). Second, the cost is non-differentiable, as shown
in Fig. 4.2, hence also preventing the use of fast (but local) smooth optimization techniques.

The first insight behind the proposed approach is simple but powerful: we can rewrite the
truncated LS cost (4.5) as a minimization over a binary variable:

fc(x) = min
θ∈{−1;+1}

(1 + θ)
2 x2 + (1− θ)

2 c2 (4.6)

To show the equivalence between (4.6) and (4.5), we observe that for any x̄ such that x̄2 < c2

(or |x̄| < c), the minimum in (4.6) is attained for θ = +1 and fc(x̄) = x̄2; on the other hand,
for any x̂ such that x̂2 > c2 (or |x̂| > c), the minimum in (4.6) is attained for θ = −1 and
fc(x̂) = c2.

We can now use the expression (4.6) to rewrite the cost function (4.4) by introducing a binary
variable for each rotation and translation measurement:

min
ti∈Rd

Ri∈SO(d)
θt

ij∈{−1;+1}
θR

ij∈{−1;+1}

∑
(i,j)∈Eod

ωt‖tj−ti−Rit̄ij‖2
2 + ωr

2 ‖Rj −RiR̄ij‖2
F+

+
∑

(i,j)∈Elc

ωt
(1 + θtij)

2 ‖tj−ti−Rit̄ij‖2
2 + ωt

(1− θtij)
2 c̄2

t

+ωr2
(1 + θRij)

2 ‖Rj −RiR̄ij‖2
F + ωr

2
(1− θRij)

2 c̄2
R

(4.7)

where c̄t and c̄R are simply the largest admissible residual errors for a translation and rota-
tion measurement to be considered an inlier. Intuitively, θtij decides whether a translation
measurement is an inlier (θtij = +1) or an outlier (θtij = −1); θRij has the same role for rotation
measurements. While eq. (4.7) resembles formulations in the literature, e.g., Sünderhauf’s
switchable constraints [21], establishing connections with the truncated LS cost provides a
physically meaningful interpretation of the parameters c̄t and c̄R (maximum admissible resid-
uals). Moreover, we will push the boundary of the state of the art by modeling the outlier
correlation (next sub-section) and proposing global semidefinite solvers (Section 4.4).

4.3.2 Modeling outlier correlation and perceptual aliasing

The goal of this section is to introduce extra terms in the cost (4.7) to model the correlation
between subsets of binary variables, hence capturing outlier correlation. For the sake of
simplicity, we assume that a unique binary variable is used to decide if both the translation
and the rotation components of measurement (i, j) are accepted, i.e., we set θtij = θRij

.= θij.
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This assumption is not necessary for the following derivation, but it allows using a more
compact notation. In particular, we rewrite (4.7) more succinctly as:

min
Ti∈SO(d)×Rd

θij∈{−1;+1}

∑
(i,j)∈Eod

‖Tj − TiT̄ij‖2
Ω +

∑
(i,j)∈Elc

(1 + θij)
2 ‖Tj − TiT̄ij‖2

Ω + (1− θij)
2 c̄ (4.8)

where for two matrices M and Ω of compatible dimensions ‖M‖2
Ω

.= tr
(
MΩMT

)
, and

–following [62]– we defined:

Ti
.= [Ri ti], T̄ij

.=
 R̄ij t̄ij

0T
d 1

 , Ω .=
 ωr

2 Id 0d
0T
d ωt


and for simplicity we called c̄ .= ωrc̄

2
t + ωt

2 c̄
2
R.

We already observed in Section 4.2.1 that to model the correlation between two discrete
variables θij and θi′j′ we can add terms −c̄(ij)

(i′j′)θijθi′j′ to the cost function, which penalize a
mismatch between θij and θi′j′ whenever the scalar c̄(ij)

(i′j′) is positive. This leads to generalizing
problem (4.8) as follows:

min
Ti∈SO(d)×Rd

θij∈{−1;+1}

∑
(i,j)∈Eod

‖Tj − TiT̄ij‖2
Ω+

∑
(i,j)∈Elc

(1 + θij)
2 ‖Tj − TiT̄ij‖2

Ω + (1− θij)
2 c̄ −

∑
(i,j),(i′,j′)∈C

c̄
(ij)
(i′j′)θijθi′j′

(4.9)
where the set C contains pairs of edges that are correlated, i.e., pairs of edges (i, j), (i′, j′) for
which if (i, j) is found to be an outlier, it is likely for (i′, j′) to be an outlier as well.

In the supplemental material (appendix A), we show that the correlation terms have the
effect of altering the threshold c̄. For instance, if all neighbors (i′, j′) of an edge (i, j) are
inliers (θi′j′ = 1), the correlation terms become c̄(ij)

(i′j′)θij and they have the effect of increasing
c̄. We also show that perturbations of c̄ are bounded in the interval [c̄− 2∑(i′,j′)∈Cij

c̄
(ij)
(i′j′), c̄+

2∑(i′,j′)∈Cij
c̄

(ij)
(i′j′)], where Cij is the set of edges correlated to the edge (i, j), see Fig.4.2(b) for

an illustration.

Problem (4.9) describes a discrete-continuous graphical model (DC-GM) as the one pictured
in Fig. 4.1: the optimization problems returns the most likely assignment of variables in the
graphical model, which contains both continuous variables (Ti) and discrete variables (θij).
The reader can notice that if the assignment of discrete variables is given, (4.9) reduces to
PGO, while if the continuous variables are given, then (4.9) becomes an MRF, where the
second sum in (4.9) defines the unary potentials for each discrete variable in the MRF.
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4.4 Inference in DC-GM via Convex Relaxation

The DC-GM presented in Section 4.3 captures two very desirable aspects: (i) it uses a robust
truncated LS loss function and (ii) it can easily model outlier correlation. On the downside,
the optimization (4.9) is intractable in general, due to the presence of discrete variables and
the non-convex nature of the rotation set SO(d).

Here we derive a convex relaxation that is able to compute near-optimal solutions for (4.9)
in polynomial time. While we do not expect to compute exact solutions for (4.9) in all cases
in polynomial time (the problem is NP-hard in general), our goal is to obtain a relaxation
that works well when the noise on the inliers is reasonable (i.e., similar to the one found
in practical applications) and whose quality is largely insensitive to the presence of a large
number of (arbitrarily “bad”) outliers.

In order to derive our convex relaxation, it is convenient to reformulate (4.9) using a more
compact matrix notation. Let us first “move” the binary variables inside the norm and drop
constant terms from the objective in (4.9):

min
Ti∈SO(d)×Rd

θij∈{−1;+1}

∑
(i,j)∈Eod

‖Tj − TiT̄ij‖2
Ω +

∑
(i,j)∈Elc

‖(1 + θij)
2 (Tj − TiT̄ij)‖2

Ω

−
∑

(i,j)∈Elc

θij
2 c̄ −

∑
(i,j),(i′,j′)∈C

c̄
(ij)
(i′j′)θijθi′j′

(4.10)

where we noted that (1+θij)
2 is either zero or one, hence it can be safely moved inside the

norm, and we dropped 1
2 c̄.

We can now stack pose variables into a single d× (d+ 1)n matrix T
.= [T1 . . . Tn]. We also

use a matrix representation for the binary variables Θ .= [Θ1 . . . Θ`] ∈ {−Id; +Id}` where
` = |Elc| denotes the number of loop closures and Id denotes the identity matrix of size d.
Finally, we define:

X = [T Θ Id] ∈ (SO(d)× Rd)n × {−Id; +Id}` × Idnote: XTX =


T TT T TΘ T T

ΘTT ΘTΘ ΘT

T Θ Id


 (4.11)

The following proposition provides a compact reformulation of problem (4.10) using the
matrix X in (4.11):

Proposition 1 (Inference in DC-GM). Problem (4.10) can be equivalently written in compact
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form using the matrix variable X in (4.11) as follows:

min
X

tr
(
QXTX

)
+
∑

e=(i,j)∈Elc

tr
(
UeX

TXWeX
TX

)
subject to X ∈ (SO(d)× Rd)n × {−Id; +Id}` × Id

(4.12)

where Q,Ue,We ∈ R(n(d+1)+d`+d)×(n(d+1)+d`+d) are sparse matrices (for all loop closures e ∈
Elc). The expressions for these (known) matrices are given in Appendix.

Intuitively, Q in (4.12) captures the terms in the first, third, and fourth sum in (4.10), while
the sum including Ue,We (one term for each loop closure e) captures the terms in the second
sum in (4.10) which couples discrete and continuous variables.

The final step before obtaining a convex relaxation is to write the “geometric” constraints
in (4.12) in terms of linear algebra. Towards this goal, we relax the set SO(d) (rotation
matrices) to O(d) (orthogonal matrices), i.e., we drop the constraint that rotation matrices
need to have determinant +1. In related work, we found the determinant constraint to be
redundant [63]. Moreover, this is done for the sake of simplicity, while the determinant
constraints can be still modeled as shown in [63]. Then, we obtain an SDP relaxation of
Problem (4.12) by (i) introducing a matrix variable Z = XTX and rewriting (4.12) as a
function of Z, (ii) noting that any matrix Z = XTX is a positive-semidefinite (Z � 0)
rank-d matrix, and (iii) relaxing the non-convex rank-d constraint.

Proposition 2 (Semidefinite Relaxation of DC-GM). The following SDP is a convex relaxation
of Problem (4.12):

min
Z

tr (QZ) +
∑

e=(i,j)∈Elc

tr (UeZWeZ)

subject to [Z]ii =
 Id ∗
∗ ∗

 i=1,...,n

[Z]ii = Id i=n+1,...,n+`+1

[Z]ij = idiag([Z]ij) i,j=n+1,...,n+`+1

Z � 0

(4.13)

where [Z]ij denotes the block of [Z] in block row i and block column j, the symbol “*” denotes
entries that are unconstrained (we follow the notation of [62]), and where [Z]ij = idiag([Z]ij)
enforces the block [Z]ij to be an isotropic diagonal matrix, i.e., a scalar multiple of Id.

Let us explain the constraints in (4.13), by using the block structure of Z described in (4.11).
For i = 1, . . . , n, the diagonal blocks [Z]ii are in the form of T T

i Ti, hence the first constraint
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in (4.13) captures the orthogonality of the rotation matrix included in each pose Ti. For i =
n+ 1, . . . , n+ `, the diagonal blocks [Z]ii are in the form of ΘT

i Θi and since Θi ∈ {−Id,+Id},
ΘT
i Θi = Id, which is captured in the second constraint in (4.13); similar considerations

hold for i = ` + 1. Finally, the products ΘT
i Θj (captured by the blocks [Z]ij when i, j =

n+ 1, . . . , n+ `+ 1) must be diagonal matrices, producing the third constraint in (4.13).

The SDP relaxation can be solved using off-the-shelf convex solvers. In particular, we note
that the constraint [Z]ij = idiag([Z]ij) can be implemented as a set of linear equality con-
straints. Indeed, this constraint can be rewritten as [Z]ij = [Z]ij,11 · Id where [Z]ij,11 is the
top left entry of [Z]ij. Therefore, the constraint enforces that the matrix has offdiagonal
elements equal to zero and diagonal elements equal to a single scalar [Z]ij,11. The SDP
relaxation (4.13) enjoys the typical per-instance optimality guarantees described in related
work [4, 5, 7, 46]. In particular, if the solution Z? of (4.13) has rank d, then the relaxation
solves (4.12) exactly. Moreover, the optimal objective of (4.13) is a lower bound for the
optimal objective (4.12), a property that can be used to evaluate how sub-optimal a given
estimate is, see [4, 5].

4.5 Experiments

This section presents two sets of experiments. Section 4.5.1 reports the results of Monte Carlo
runs on a synthetic dataset and shows that the proposed technique compares favorably with
the state of the art, and that modeling outlier correlation leads to performance improvements.
Section 4.5.2 evaluates the proposed techniques in three real benchmarking datasets and
shows that our approach outperforms related techniques while not requiring any initial guess.

4.5.1 Experiments On Synthetic Dataset

Methodology. For this set of experiments, we built a synthetic dataset composed of a simple
trajectory on a grid of 20 by 10 nodes. Then we added random groups of loop closures between
the rows as described in [21]. Typically, in presence of perceptual aliasing, the outliers are in
mutually-consistent groups, e.g., the SLAM front-end generates multiple false loop closures
in sequence. To simulate this phenomenon, we set the loop closures in each group to be either
all inliers or all outliers. We set the standard deviation of the translation and rotation noise
for the inlier measurements (odometry and correct loop closures) to 0.1m and 0.01rad. The
maximum admissible errors for the truncated LS (4.5) is set to 1σ of the measurement noise.
We tested the performance of our techniques for increasing levels of outliers, up to the case
where 50% of the loop closure are outliers. Fig. 4.4 shows the overlay of multiple trajectories
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(5 runs) estimated by our techniques versus the ground truth trajectory (green), when 50%
of the loop closures are outliers.

Compared Techniques. We evaluate the performance of the proposed technique, DC-

GM, which solves the minimization problem (4.9). In order to show that capturing outlier
correlation leads to performance improvements, we also test a variation of the proposed
approach, called DC-GMd, which implements the minimization problem (4.8), where outliers
are assumed uncorrelated (the “d” stands for decoupled). In both DC-GM and DC-GMd, we
solve the SDP using cvx [64] in Matlab. If the resulting matrix does not have rank d = 2
(in which case we are not guaranteed to get an exact solution to the non-relaxed problem),
we round the result to detect the set of outliers, and re-run the optimization without the
outliers.

We benchmarked our approach against three other robust PGO techniques, i.e., Vertigo [21],
RRR [24] and DCS [23]. For Vertigo we use the default parameters, while for RRR and DCS we
report results for multiple choices of parameters, since these parameters have a significant
impact on performance. In particular, for RRR we consider three cluster sizes (tg = {1, 5, 10})
and for DCS we considered three values of the parameter Φ = {1, 10, 100} [23]. For all these
techniques, we used the odometric estimate as initial guess.

Results and Interpretation. Fig. 4.3 reports the average translation error for all the
compared approaches and for increasing percentage of outliers. Vertigo’s error grows quickly
beyond 30% of outliers. For DCS, the performance heavily relies on correct parameter tuning:
for some choice of parameters (Φ = {10, 100}) it has excellent performance while the approach
fails for Φ = 1. Unfortunately, these parameters are difficult to tune in general (we will
observe in Section 4.5.2 that the choice of parameters mentioned above may not produce
the best results in the real tests). The proposed techniques, DC-GMd and DC-GM, compare
favorably against the state of the art while they are slightly less accurate than RRR, which
produced the best results in simulation.

In order to shed light on the performance of DC-GM and DC-GMd, Fig. 4.5 reports the average
percentage of outliers rejected by these two techniques. While from the scale of the y-axis we
note that both techniques are able to reject most outliers, DC-GM is able to reject all outliers
in all tests even when up to 50% of the loop closures are spurious. As expected, modeling
outlier correlation as in DC-GM improves outlier rejection performance. We also recorded the
number of incorrectly rejected inliers: both approaches do not reject any inlier and for this
reason we omit the corresponding figure.

In our tests, the SDP relaxation (4.13) typically produces low-rank solutions with 2 relatively
large eigenvalues, followed by 2 smaller ones (the remaining eigenvalues are numerically zero).
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Figure 4.3: Average translation error of the 9 approaches tested in this paper with an in-
creasing percentage of outliers.

(a) DC-GM (b) DC-GMd

Figure 4.4: Trajectory estimates computed by the proposed techniques (black, overlay of 5
runs) versus ground truth (green) for the simulated grid dataset.
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The interested reader can find statistics on the average rank, results for different choices of
the thresholds c̄ and c̄

(ij)
(i′j′), and additional tests in a simulated Manhattan World in the

supplemental material (appendix A).

4.5.2 Experiments On Real Datasets

Methodology. In this section, we consider three real-world standard benchmarking datasets,
the CSAIL dataset (1045 poses and 1172 edges), the FR079 dataset (989 poses and 1217
edges), and the FRH dataset (1316 poses and 2820 edges). We spoiled those datasets with
20 randomly grouped outliers. We add correlation terms with c̄(ij)

(i′j′) = 1 for each pair of edges
connecting consecutive nodes, e.g., (i, j) and (i ± 1, j ± 1). We benchmarked our approach
against Vertigo, RRR, and DCS.

Results and Interpretation. Table 4.1 presents the average translation error (computed
with respect to the optimized trajectory without outliers) for all datasets and techniques.
We also report the average translation error of the odometric estimate. All compared tech-
niques achieve very good results on the FRH dataset. This is probably due to the fact that
this dataset provides a very good initial guess, hence the techniques that rely on iterative
optimization are favored. This intuition is confirmed by the high accuracy of the odometry.
The results on the FR079 dataset are more interesting. In this case, DC-GM and RRR achieve
the best results with a slight advantage towards DC-GM. However, Vertigo performs poorly and
DCS performance remains worse than the proposed technique even with its best parameter
choice. DC-GM has also the best performance on the CSAIL dataset. Again, RRR achieves
very good results while Vertigo and DCS have poor performance except for some parameter
choice (e.g., DCS performs well for Φ = {100}). We attribute this performance boost to the
fact that the proposed approach provides a more direct control on the maximum admissible

Figure 4.5: Percentage of rejected outliers for the proposed techniques.
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(a) CSAIL (b) FR079 (c) FRH

Figure 4.6: Trajectory estimates computed by DC-GM (black) versus ground truth (green) for
the real datasets CSAIL, FR079, and FRH.

Table 4.1: Average translation error (meters) on real benchmarking datasets

DC-GM Vertigo RRR (tg=1) RRR (tg=5) RRR (tg=10)
FRH 0.0008 0.0005 0.0004 0.0003 0.0003
FR079 0.0438 0.2751 0.0546 0.0520 0.0521
CSAIL 0.0430 1.4625 0.0495 0.0613 0.0506

DCS (Φ = 1) DCS (Φ = 10) DCS (Φ = 100) Odometry
FRH 0.0004 0.0004 0.0004 0.0021
FR079 0.2721 0.1804 0.1250 0.2836
CSAIL 1.4576 1.4240 0.0521 1.4480
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error of each measurement, while the parameters in DCS and Vertigo have a less clear physical
interpretation. This translates to the fact that it is more difficult for DCS and Vertigo to
strike a balance between outlier rejection and inlier selection. Therefore, even when these
approaches are able to discard most outliers, they may lose accuracy since they also tend
to discard good measurements. The difficulty in performing parameter tuning for DCS is
confirmed by the fact that the value Φ = 1 (recommended by Agarwal et al. [23]) leads to
good results on FRH, but fails on FR079 and CSAIL.

Fig. 4.6 shows the trajectory estimates produced by DC-GM for the three real datasets, CSAIL,
FR079, and FRH.

4.6 Conclusion

We introduced a discrete-continuous graphical model (DC-GM) to capture perceptual alias-
ing and outlier correlation in SLAM. Then we developed a semidefinite (SDP) relaxation
to perform near-optimal inference in the DC-GM and obtain robust SLAM estimates. Our
experiments show that the proposed approach compares favorably with the state of the art
while not relying on an initial guess for optimization. Our approach also enables a more intu-
itive tuning of the parameters (e.g., the maximum admissible residual c̄). The supplemental
material (appendix A) contains extra results to provide more insights on the performance
and limitations of the proposed approach. This paper opens several avenues for future
work. First, our Matlab implementation is currently slow: we plan to develop specialized
solvers to optimize the SDP relaxations presented in this paper efficiently, leveraging previous
work [7]. Second, we plan to extend our testing to 3D SLAM problems: the mathematical
formulation in this paper is general, while for numerical reasons we had to limit our tests to
relatively small 2D problems. Third, it would be useful to develop incremental solvers that
can re-use computation when the measurements are presented to the robot in online (rather
than batch) fashion. Finally, it would be interesting to provide a theoretical bound on the
number of outliers the proposed technique can tolerate.

4.7 Appendix

This appendix proves Proposition 1 by showing how to reformulate problem (4.10) using
the matrix X in (4.11). Let us start by rewriting problem (4.10) and replacing the (scalar)
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discrete variables θij ∈ {−1,+1} with “binary” selection matrices Θij ∈ {−Id; +Id}:

min
Ti∈SO(d)×Rd

Θij∈{−Id;+Id}

∑
(i,j)∈Eod

‖Tj − TiT̄ij‖2
Ω

−
∑

(i,j)∈Elc

c̄

2dtr (Θij)−
∑

(i,j),(i′,j′)∈P

c̄
(ij)
(i′j′)

d
tr
(
ΘT
ijΘi′j′

)

+
∑

(i,j)∈Elc

1
4‖Tj − TiT̄ij + ΘT

ij(Tj − TiT̄ij)‖2
Ω

(4.14)

where we also rearranged the summands. Note the division by d in the second and third sum
in (4.14), needed to compensate for the fact that we are now working with d × d matrices
Θij.

The first summation in (4.14) can be written as

∑
(i,j)∈Eod

‖Tj − TiT̄ij‖2
Ω

=
∑

(i,j)∈Eod

tr
(
(Tj − TiT̄ij)Ω(Tj − TiT̄ij)T

)
= tr

(
L(God)T TT

)
(4.15)

where L(God) ∈ R(d+1)n×(d+1)n is the Connection Laplacian [7] of the graph God = (V , Eod),
which has the same set of nodes V as the original pose graph, but only includes odometric
edges Eod. We can use a derivation similar to [62] to show that the Connection Laplacian of
a generic graph G = (V,E) can be written as

L(G) = A(G)Ω(G)A(G)T (4.16)

where, the matrices A(G) ∈ R(d+1)|V |×(d+1)|E| and Ω(G) ∈ R(d+1)|E|×(d+1)|E| are given as
follows:

[A(G)]r,e .=


−T̄ie,je if r = ie,

+Id+1 if r = je,

0d+1 otherwise.
for e = 1, . . . , |E| (4.17)

Ω(G) .= blkdiag(Ω1, ...,Ω|E|) (4.18)

The notation [A(G)]r,e denotes the (d+ 1)× (d+ 1) block of A(G) at block row r and block
column e, while the e-th edge in E is denoted as (ie, je).
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The second summation in (4.14) can be developed as follows:

∑
(i,j)∈Elc

− c̄

2dtr (Θij) = − c̄

2dtr
(
IT
d,`Θ

)
(4.19)

where Id,`
.= [Id . . . Id] is a row of ` identity matrices.

Similarly, the third summation in (4.14) can be written as:

−
∑

(i,j),(i′,j′)∈P

c̄
(ij)
(i′j′)

d
tr
(
ΘT
ijΘi′j′

)
= − 1

2dtr
(
N (C)ΘTΘ

)
(4.20)

where N (C) ∈ Rd`×d` has d× d blocks in the form:

[N (C)]e,e′ .=


c̄

(ij)
(i′j′)Id if e = (i, j), e′ = (i′, j′) ∈ C
c̄

(i′j′)
(ij) Id if e = (i′, j′), e′ = (i, j) ∈ C

0d otherwise.
(4.21)

The first three terms in (4.14) are linear with respect to parts of the matrix XTX in (4.11),
so we write the sum of (4.15), (4.19), (4.20) compactly as tr

(
QXTX

)
where

Q =


L(God) 0(d+1)n,d` 0(d+1)n,d

0d`,(d+1)n − 1
2dN (C) − c̄

4dI
T
d,`

0d,(d+1)n − c̄
4dId,` 0d,d

 (4.22)

which is the first term in eq. (4.12). Here 0p,q denotes a zero matrix of size p× q.

In order to complete the proof, we only need to show that the last sum in (4.14) can be
written as ∑e=(i,j)∈Elc

tr
(
UeX

TXWeX
TX

)
, cf. (4.12). Towards this goal, we develop each

squared norm in the last sum using a derivation similar to (4.15) and get:

‖Tj − TiT̄ij + ΘT
ij(Tj − TiT̄ij)‖2

Ω

= tr
(
L(Ge)T TT

)
+ tr

(
L(Ge)(ΘT

ijT )T(ΘT
ijT )

)
+ tr

(
L(Ge)(ΘT

ijT )TT
)

+ tr
(
L(Ge)T T(ΘT

ijT )
) (4.23)

where Ge = (V , Eij) denotes a graph with a single edge e = (i, j). We can write T and ΘTT
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as matrix blocks in XTX:

T =[0d,(d+1)n+d` Id]XTX

[I(d+1)n 0((d+1)n,d(`+1))]T

ΘT
ijT =[0d,(d+1)n+d(e−1) Id 0d,d(`−e+1)]XTX

[I(d+1)n 0((d+1)n,d(`+1))]T

(4.24)

which enables to write each squared norm in terms of XTX as follows:

‖Tj − TiT̄ij + ΘT
ij(Tj − TiT̄ij)‖2

Ω = tr
(
UeX

TXWeX
TX

)
(4.25)

where

Ue =


L(Ge) 0(d+1)n,d` 0(d+1)n,d

0d`,(d+1)n 0d`,d` 0d`,d
0d,(d+1)n 0d,d` 0d,d


We =[0d,(d+1)n+d(e−1) Id 0d,d(m−e) Id]T

[0d,(d+1)n+d(e−1) Id 0d,d(m−e) Id]

(4.26)

Summing over all loop-closure edges results in the second term in eq. (4.12), concluding the
proof.
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CHAPTER 5 ARTICLE 2: DOOR-SLAM: DISTRIBUTED, ONLINE, AND
OUTLIER RESILIENT SLAM FOR ROBOTIC TEAMS

Preface:
Full Citation: Pierre-Yves Lajoie1, Benjamin Ramtoula1,3, Yun Chang2, Luca Carlone2 and
Giovanni Beltrame1, “DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for
Robotic Teams,” IEEE Robotics and Automation Letters (RA-L), [under review] 2019.
Copyright: c© 2019 IEEE. Reprinted, with permission from the authors.
Abstract - To achieve collaborative tasks, robots in a team need to have a shared un-
derstanding of the environment and their location within it. Distributed Simultaneous
Localization and Mapping (SLAM) offers a practical solution to localize the robots with-
out relying on an external positioning system (e.g. GPS) and with minimal information
exchange. Unfortunately, current distributed SLAM systems are vulnerable to perception
outliers and therefore tend to use very conservative parameters for inter-robot place recog-
nition. However, being too conservative comes at the cost of rejecting many valid loop
closure candidates, which results in less accurate trajectory estimates. This paper intro-
duces DOOR-SLAM, a fully distributed SLAM system with an outlier rejection mechanism
that can work with less conservative parameters. DOOR-SLAM is based on peer-to-peer com-
munication and does not require full connectivity among the robots. DOOR-SLAM includes
two key modules: a pose graph optimizer combined with a distributed pairwise consistent
measurement set maximization algorithm to reject spurious inter-robot loop closures; and a
distributed SLAM front-end that detects inter-robot loop closures without exchanging raw
sensor data. The system has been evaluated in simulations, benchmarking datasets, and
field experiments, including tests in GPS-denied subterranean environments. DOOR-SLAM

produces more inter-robot loop closures, successfully rejects outliers, and results in accu-
rate trajectory estimates, while requiring low communication bandwidth. Full source code is
available at https://github.com/MISTLab/DOOR-SLAM.git.
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(a) without outlier rejection. (b) with outlier rejection.

Figure 5.1: Trajectory estimates from DOOR-SLAM (red and blue) and GPS ground truth
(green, only used for benchmarking).

5.1 Introduction

Multi-robot systems already constitute the backbone of many modern robotics applications,
from warehouse maintenance to self-driving cars, and have the potential to impact other
endeavors, including search & rescue and planetary exploration. These applications involve
a team of robots completing a coordinated task in an unknown or partially known environ-
ment, and require the robots to have a shared understanding of the environment and their
location within it. While a common practice is to circumvent this need by adding external
localization infrastructure (e.g., GPS, motion capture, geo-referenced markers), such a so-
lution is not always viable; for instance, when robots are deployed for cave exploration or
building inspection, the deployment of an external infrastructure may be dangerous, expen-
sive, or impractical. Therefore, multi-robot SLAM solutions that can work without external
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localization infrastructure and provide reliable situational awareness are highly desirable.

Obtaining such a shared situational awareness is challenging since the sensor data required
for SLAM is distributed across the robots, and communicating raw data may be slow (due
to bandwidth constraints) or infeasible (due to limited communication range). For these
reasons, current systems either rely on a centralized and offline post-processing step [28],
assume all robots are always within communication range [38], or assume centralized pre-
processing of the sensor data (e.g., to remove outliers [16]). We believe more flexible solutions
are necessary for a broader adoption of multi-robot technologies. For instance, bandwidth
issues can be mitigated by relying on local exchange of processed data among the robots to
collaboratively compute a SLAM solution.

In addition to the communication constraints, multi-robot SLAM is challenging and prone to
failures due to incorrect data association and perceptual aliasing. The latter is particularly
problematic since it generates incorrect loop closures between scenes that look similar but
correspond to different places. While this topic has received considerable attention in the
centralized case [20,21,23,25,28,65], the literature currently lacks distributed outlier rejection
methods. We believe implementing distributed outlier rejection would improve the robustness
of multi-robot systems, allow users to be less conservative during parameters tuning, and
enable the detection of more loop closures, improving the accuracy of the SLAM solution.

Contribution. In this system paper, we present DOOR-SLAM, a fully distributed SLAM
system for robotic teams. DOOR-SLAM has the following desirable features: (i) it does not
require full connectivity maintenance between the robots, (ii) it is able to detect inter-robot
loop closures without exchanging raw data, (iii) it performs distributed outlier rejection to
remove incorrect inter-robot loop closures, and (iv) it executes a distributed pose graph
optimization to retrieve the robots’ trajectory estimates.

The proposed system includes two key modules. The first module is a pose graph optimizer
that is robust to spurious measurements. We propose an implementation of distributed pose
graph optimization along the lines of [16] combined with an outlier rejection mechanism
based on [28], that we adapted for online and distributed operation. An example of the
robustness afforded by the proposed module is showcased in Fig. 5.1, which reports the
trajectory estimates with and without outlier rejection. Our implementation is robust to
perceptual aliasing and allows practitioners to use a less conservative tuning of the SLAM
front-end. The second module is a data-efficient distributed SLAM front-end. Similar to the
recent approach [37], our system uses NetVLAD descriptors [35] for place recognition. However,
our approach trades off some data-efficiency to obviate full connectivity maintenance and
environment-specific pre-training requirements.
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DOOR-SLAM has been evaluated in simulations, benchmarking datasets (KITTI [66]), and field
experiments, including tests in GPS-denied subterranean environments. DOOR-SLAM runs
online on an NVIDIA Jetson TX2 computer, successfully rejects outliers, and results in accurate
trajectory estimates, while requiring a low bandwidth. We release the source code and Docker

images for easy reuse of the system components by the community: https://github.com/
MISTLab/DOOR-SLAM.git.

5.2 Related Work

5.2.1 Distributed Pose Graph Optimization (PGO)

Pose Graph Optimization (PGO) is a popular estimation engine for SLAM. Centralized ap-
proaches for multi-robot PGO collect all measurements at a central station, which computes
the trajectory estimates for all the robots [8–12]. Since the computation workload and the
communication bandwidth of a centralized approach grow with the number of robots, related
work has also explored distributed techniques, in which robots only exploit local computa-
tion and communication. Aragues et al. [13] use a distributed Jacobi approach to estimate
2D poses. Cunningham et al. [14, 15] use Gaussian elimination. Recent work from Choud-
hary et al. [16] introduces the Distributed Gauss-Seidel approach, which supports 3D cases
and avoids the complex bookkeeping and information double counting required by the pre-
vious techniques. It requires only to share the latest pose estimates involved in inter-robot
measurements. Recent distributed SLAM solutions [37] and [29] have used the implementa-
tion of Choudhary et al. [16] as back-end for their experiments. While here we focus on PGO,
we refer the reader to [16] for an extensive review on other distributed estimation techniques.

5.2.2 Robust PGO

The problem of mitigating the effects of outliers in pose graph optimization has received
substantial attention in the literature, due to the dramatic distortion that even one incorrect
measurement can cause. Early work in the field includes techniques such as RANSAC [17],
branch & bound [18], and M-estimation (see [6, 19] for a review). Sünderhauf et al. [21]
introduce the idea of outliers deactivation using binary variables that are then relaxed to
continuous variables. Agarwal et al. [23] build on top of this idea to dynamically scale the
measurement covariances. Other works on the single robot case include Olson and Agar-
wal [20] and Pfingsthorn and Birk [56, 57] which consider multi-modal distributions for the
noise. Recent work from Lajoie et al. [65] and Carlone and Calafiore [46] focus on robust
global solvers based on convex relaxations. Instead of classifying the measurements indi-

https://github.com/MISTLab/DOOR-SLAM.git
https://github.com/MISTLab/DOOR-SLAM.git
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vidually, Latif et al. [25], Carlone et al. [26], Graham et al. [27] look for sets of mutually
consistent measurements. Mangelson et al. [28] extend the latter idea to the multi-robot
case and propose an effective graph-theoretic technique to find pairwise-consistent mea-
surements among the inter-robot loop closures. Alternatives for multi-robot cases include
Dong et al. [12] which search for consistent inter-robot measurements using expectation
maximization. Wang et al. [29] leverage extra information from wireless channels to detect
outliers during a multi-robot rendezvous.

5.2.3 Distributed Loop Closure Detection

Inter-robot loop closures are critical to align the trajectories of the robots in a common
reference frame and to improve the trajectory estimates. In a centralized setup, a common
way to obtain loop closures is to use visual place recognition methods, which compare compact
image descriptors to find potential loop closures. This is traditionally done with global
visual features [30, 31], or local visual features [2, 32] which can be quantized in a bag-of-
word model [33]. More recently, convolutional neural networks (CNN), either using features
trained on auxiliary tasks [34] or directly trained end-to-end for place recognition, such
as NetVLAD [35], have generated more robust descriptors. Geometric verification using local
features is then used to validate putative loop closures and estimate transformations between
the corresponding observation poses [67,68].

Distributed loop closure detection has the additional challenge that the images are not col-
lected at a single location and their exchange is problematic due to range and bandwidth
constraints. Tardioli et al. [36] use visual vocabulary indexes instead of descriptors to reduce
the required bandwidth. Cieslewski and Scaramuzza [37] propose distributed and scalable
solutions for place recognition in a fully connected team of robots. A first approach [38]
relies on bag-of-words of visual features [33] which are split and distributed among the team.
Another one [39] pre-assigns a range of descriptors from NetVLAD to each robot, allowing
place recognition search over the full team by communicating with a single other robot.
These methods minimize the required bandwidth and scale well with the number of robots,
but are designed for situations with full connectivity in the team. Tian et al. [40, 41] and
Giamou et al. [42] propose complementary approaches to these methods. They consider
robots having rendezvous and efficiently coordinate the data exchange during the geometric
verification step, accounting for the available communication and computation resources.
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5.3 The DOOR-SLAM System

Our distributed SLAM system relies on peer-to-peer communication: each robot performs
single-robot SLAM when there is no teammate within communication range, and executes a
distributed SLAM protocol during a rendezvous.

Our implementation leverages Buzz [69], a programming language specifically designed for
multi-robot systems. Buzz offers useful primitives to build a fully decentralized software
architecture, and seamlessly handles the transition between single-robot and multi-robot
execution. Buzz is a scripting language that lets us abstract away the details concerning
communication, neighbor detection and management, and provides a uniform framework to
implement and compare multi-robot algorithms (such as SLAM, task allocation, exploration,
etc.). It provides a uniform gossip-based interface, implemented on WiFi, Xbee, Bluetooth,
or custom networking devices. Buzz is thought of as an extension language, i.e. it is designed
to be laid on top of other frameworks, such as the Robot Operating System (ROS). This
allows us to run DOOR-SLAM on virtually any type and any number of robots that support
ROS without modification. Experiments [69] show that Buzz can scale up to thousands of
robots.

A system overview of DOOR-SLAM is given in Fig. 5.2. Each robot collects images from an
onboard stereo camera and uses a (single-robot) Stereo Visual Odometry module to pro-
duce an estimate of its trajectory. In our implementation, we use the stereo odometry
from RTAB-Map [70]. The images are also fed to the Distributed Loop Closure Detection
module (Section 5.3.1) which communicates information with other robots (when they are
within communication range) and outputs inter-robot loop closure measurements. Then, the
Distributed Outlier Rejection module (Section 5.3.2) collects the odometry and inter-robot
measurements to compute the maximal set of pairwise consistent measurements and filters
out the outliers. Finally, the Distributed Pose Graph Optimization module (Section 5.3.2)
performs distributed SLAM. For simplicity, in the current implementation, we only consider
inter-robot loop closures [16] (i.e., loop closures involving poses of different robots). The sys-
tem can be easily extended to use intra-robot loop closures (i.e., the loop closures commonly
encountered in single-robot SLAM) by replacing stereo odometry [70] with a visual SLAM
solution.

In the following sections, we focus on the distributed place recognition module and on the
distributed robust PGO module, while we refer the reader to [70] for a description of the
stereo visual odometry module.
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Figure 5.2: DOOR-SLAM system overview

5.3.1 Distributed Loop Closure Detection

The distributed loop closure detection includes two submodules. The first submodule, place
recognition, allows to find loop closure candidates using compact image descriptors. The
second submodule, geometric verification, computes the relative pose estimate between two
robot poses observing the same scene. The process is illustrated in Fig. 5.3.

The place recognition submodule relies on NetVLAD descriptors [35] which are compact
and robust to viewpoint and illumination changes. Each robot locally computes the NetVLAD

descriptors for each keyframe provided by the stereo visual odometry module. Once two
robots (α and β) are in communication range, one of them (α) sends NetVLAD descriptors
to the other (β). Robot α only sends the descriptors which have been generated since both
robots’ last encounter or all of them if it is their first rendezvous. Robot β compares the
received NetVLAD descriptors against the ones it has generated from its own keyframes. By
doing so, robot β selects potential loop closures corresponding to pairs of keyframes having
Euclidean distance below a given threshold. This process provides putative loop closures
without requiring the exchange of raw data, full connectivity maintenance, or additional
environment-specific pre-training.

Each robot also extracts visual features from the left image of the stereo pair, the associated
feature descriptors, and their corresponding estimated 3D positions; these are used by the
geometric verification submodule. After finding a set of putative loop closures, robot
β sends the visual features, along with their descriptors and 3D positions, back to robot α.
This is done for each keyframe involved in a putative loop closure. Using these features,
robot α performs geometric verification using the solvePnpRansac function from OpenCV [71],
which returns a set of inlier features and a relative pose transformation. If the set of inliers is
sufficiently large (see Section 5.4), robot α considers the corresponding loop closure success-
ful. Finally, robot α communicates back the relative poses corresponding to successful loop
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closures to robot β. Once the inter-robot loop closures are found and shared, both robots
initiate the distributed robust pose graph optimization protocol described in the following
section.

5.3.2 Distributed Robust PGO

This module is in charge of estimating the robots’ trajectories given the odometry measure-
ments from the stereo visual odometry module and the relative pose measurements from
the distributed loop closure detection module. The module also includes a distributed out-
lier rejection approach that removes spurious loop closures that may accidentally pass the
geometric verification step described in Section 5.3.1.

The (to-be-computed) trajectory of each robot is represented as a discrete set of poses,
describing the position and the orientation of its camera at each keyframe. We denote the
trajectory of robot α as xα

.= [xα0 ,xα1 , ...], where xαi
= [Rαi

, tαi
] ∈ SE(3), and Rαi

∈ SO(3)
and tαi

∈ R3 represent the rotation and the translation of the pose associated to the i-th
keyframe of robot α.

The stereo visual odometry module produces odometry measurements, describing the rel-
ative pose between consecutive keyframes: for instance, z̄αi−1

αi

.= [R̄αi−1
αi

, t̄αi−1
αi

], denotes the
(measured) motion of robot α between keyframe i − 1 and keyframe i. On the other hand,
the distributed loop closure detection module produces noisy relative pose measurements
of the relative pose of two robots observing the same place: for instance, the inter-robot
measurement z̄αi

βk

.= [R̄αi
βk
, t̄αi
βk

] describes a measurement of the relative pose between the i-th
keyframe of robot α and the k-th keyframe of robot β.

Our system includes two submodules: distributed outlier rejection and distributed pose graph
optimization.

The distributed outlier rejection submodule rejects spurious inter-robot loop closures
z̄αi
βk

that may be caused by perceptual aliasing; if undetected, these outliers cause large
distortions in the robot trajectory estimates (Fig. 5.1).

We adopt the Pairwise Consistent Measurement Set Maximization (PCM) technique proposed
by Mangelson et al. [28] for outlier rejection and tailor it to a fully distributed setup. The key
insight behind PCM is to check if pairs of inter-robot loop closures are consistent with each
other and then search for a large set of mutually-consistent loop closures (as shown in [28],
the largest set of pairwise consistent measurements can be found as a maximum clique).
Although PCM does not check for the joint consistency of all the measurements, the approach
typically ensures that gross outliers are rejected. The following metric is used to determine
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Figure 5.3: Distributed loop closures detection overview.

if two inter-robot loop closures z̄
αj

βk
and z̄αi

βl
are pairwise consistent:

‖(z̄αi
αj
⊕ z̄

αj

βk
⊕ z̄βk

βl
)	 z̄αi

βl
‖Σ ≤ γ (5.1)

In this equation, ‖ · ‖Σ represents the Mahalanobis distance and we use the notation of [72]
to denote the pose composition ⊕ and inversion 	. Intuitively, in the noiseless case, mea-
surements along the cycle (shown in green in Fig. 5.4) formed by the loop closures (z̄αi

βl
, z̄

αj

βk
)

and the odometry (z̄αi
αj
, z̄βk

βl
) must compose to the identity, and the consistency metric (5.1)

assesses that the noise accumulated along the cycle is consistent with the noise covariance
Σ. The PCM likelihood threshold γ can be determined from the quantile of the chi-squared
distribution for a given probability level [28].

The key insight of this section is that the consistency metric (5.1) can be computed from
the loop closure measurements (z̄αi

βl
, z̄

αj

βk
) and the odometric estimates of the poses involved

(xαi
, xαj

, xβl
, xβk

). Since both quantities are already used in the distributed PGO algorithm
(described below), the outlier rejection can be performed “for free”, without requiring extra
communication. After the pairwise consistency checks are performed, each robot computes
the maximum clique of the measurements for each of its neighbors to find inlier loop closures.
The inliers are passed to the distributed PGO.

The distributed PGO submodule uses the odometry measurements and the inlier inter-
robot loop closures to compute the trajectory estimates of the robots. We use the approach
proposed in [16]: the robots repeatedly exchange their estimate for the poses involved in
inter-robot loop closures till they reach a consensus on the optimal trajectory estimate.
More specifically, the approach of [16] solves pose graph optimization in a distributed fashion
using a two-stage approach: first, it computes an estimate for the rotations of the robots
along their trajectories; and then it recovers the full poses in a second stage. Each stage can
be solved using a distributed Gauss-Seidel algorithm [16] which avoids complex bookkeeping
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Figure 5.4: Measurements needed to check pairwise consistency.

and information double counting, and requires minimal information exchange.

5.4 Experimental Results

This section presents four sets of experiments. Section 5.4.2 tests the performance of the
outlier rejection mechanism in a simulated multi-robot SLAM environment. Section 5.4.3
evaluates the results of DOOR-SLAM on the widely used KITTI00 sequence [66]. Section 5.4.4
reports the results of field experiments conducted with two flying drones on an outdoor
football field. Finally, Section 5.4.5 reports the results of field tests conducted in underground
environments in the context of the DARPA Subterranean Challenge [73].

5.4.1 Implementation Details

The DOOR-SLAM system is the result of the combination of many frameworks and libraries.
First, we use the Robot Operating System to interface with the onboard camera and handle
information exchange between the different core modules. We use the Buzz [69] programming
language and runtime environment for communication and scheduling. In the front-end, we
use the latest version of RTAB-Map [70] for stereo visual odometry and we use the tensorflow
implementation of NetVLAD provided in [37], with the default neural network weights trained
in the original paper [35]. We only keep the first 128 dimensions of the generated descriptors
to limit the data to be exchanged, as done in [37]. The visual feature extraction and relative
pose transformation estimation are done by adapting the implementation in RTAB-Map and
keeping their default parameters. The features used are Good Features to Track [74] with
ORB descriptors [3]. We implemented the distributed robust PGO module in C++ using the
GTSAM library [75] and building on the implementation of Choudhary et al. [16]. We fol-
lowed a simulation, software-in-the-loop, hardware-in-the-loop, robot deployment code base
implementation paradigm, starting from ARGoS simulation and ending with full deployment
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using Docker containers on NVIDIA Jetson TX2 on-board computers.

5.4.2 Simulation Experiments

To verify that our online and distributed implementation of PCM is able to correctly reject out-
liers, we designed a simulation using ARGoS [76]. We refer the reader to the video attachment
for a visualization. We use 5 drones with limited communication range following random
trajectories. We simulate the SLAM front-end by building their respective pose graphs using
noisy measurements. When two robots come within communication range, they exchange
inter-robot measurements based on their current poses and then use our SLAM back-end (PCM

+ distributed PGO) to compute a shared pose graph solution in a fully distributed manner.
Inlier inter-robot loop closures are added with realistic Gaussian noise (σR = 0.01rad and
σt = 0.1m for rotation and translation measurements, respectively) while outliers are sampled
from a uniform distribution.

Figure 5.5: Percentage of inliers and outliers rejected w.r.t. PCM likelihood threshold (100
runs avg. ± std.) in ARGoS.

Figure 5.6: Average Translation Error (ATE) w.r.t. PCM likelihood threshold (10 runs avg.
± std.) in ARGoS.

Results. We look at three metrics in particular: the percentage of outliers rejected, the
percentage of inliers rejected and the average translation error (ATE). The first evaluates if
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the spurious measurements are successfully rejected; the ideal value for this metric is 100%.
The second indicates if the technique is needlessly rejecting valid measurements; the ideal
value is 0%. The third evaluates the distortion of the estimates. Fig. 5.5 shows the percentage
of outliers (in red) and inliers (in green) rejected with different PCM thresholds while Fig. 5.6
shows the ATE (in blue); the threshold represents the likelihood of accepting an outlier as
inlier. As expected, using a lower threshold leads to the rejection of more measurements,
including inliers, while using a higher threshold can lead to the occasional acceptance of
outliers which in turn leads to a larger error. Therefore, in all our experiments, we used a
threshold of 1% to showcase the performance of our system in its safest configuration.

5.4.3 Dataset Experiments

The KITTI00 [66] sequence is a popular benchmark for SLAM. In our evaluation, we split the
sequence into three parts and execute DOOR-SLAM on three NVIDIA Jetson TX2s. We used a
PCM threshold of 1%, a NetVLAD comparison threshold of 0.15, and a minimum of 5 feature
correspondences in the geometric verification to get a high number of loop closure measure-
ments. While related work uses more conservative thresholds for NetVLAD and the number
of feature correspondences to avoid outliers [37], we can afford more aggressive thresholds
thanks to PCM.

Results. Fig. 5.7 shows that outliers are present among the loop closure measurements
and that their effect on the pose graph is significant. The average translation error (ATE)
without outlier rejection is 86.85m, while the error is reduced to 8.00m when using PCM. It
is important to note that the error is higher than recent SLAM solutions on this sequence
since for simplicity’s sake we do not make use of any intra-robot loop closures. Additionnal
results on other KITTI sequences are available in the supplemental material [?].

5.4.4 Field Tests with Drones

To test that DOOR-SLAM can overcome the reality gap and map environments with severe
perceptual aliasing using resource-constrained platforms, we also performed field experiments
with two quadcopters featuring stereo cameras, flying over a football field. The cameras facing
slightly downward are subject to perceptual aliasing, due to the repetitive appearance of the
field (see video attachment). The hardware setup is described in Fig. 5.8.

We performed manual flights with trajectories approximately following simple geometric
shapes as seen in Fig. 5.1. For the first experiments we recorded images and GPS data
on the field and we executed DOOR-SLAM in an offline fashion on two NVIDIA Jetson TX2 con-
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(a) without outlier rejection. (b) with outlier rejection.

Figure 5.7: Experiment on the KITTI00 dataset. Optimized trajectories (red, blue, and orange)
and ground truth (green).

Platform DJI Matrice 100
Camera Intel Realsense D435
Computer NVIDIA Jetson TX2

Figure 5.8: Hardware setup used in field experiments.

nected through WiFi. This allowed us to reuse the same recordings with various combinations
of the three major parameters of DOOR-SLAM and study their influence (Section 5.4.4) as well
as assess DOOR-SLAM’s communication requirements (Section 5.4.4). Finally, we performed
an online experiment where DOOR-SLAM is executed on the drones’ onboard computers during
flight (see Section 5.4.4 and video attachment).

Influence of Parameters

As practitioners know, SLAM systems often rely on precise parameter tuning, especially to
avoid outlier measurements from the front-end. We show that DOOR-SLAM is less sensitive to
the parameter tuning since our back-end can handle spurious measurements. Moreover, we
can leverage the robustness to outliers to significantly increase the number of loop closure
candidates and potentially the number of valid measurements.
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Figure 5.9: Number of inter-robot loop closures accepted and rejected by PCM w.r.t. the
NetVLAD threshold. We fix the minimum number of feature correspondences to 5.

Results. In many scenarios, loop closures are hard to obtain due to external conditions such
as illumination changes. Hence, it is important to consider as many loop closure candidates
as possible. Instead of rejecting them prematurely in the front-end, DOOR-SLAM can consider
more candidates and only reject the outliers before the optimization. To analyze the gain
of being less conservative, we looked at the number of inter-robot loop closures detected
with various NetVLAD thresholds (Fig. 5.9). As expected, when we increase this threshold, we
obtain more candidates. Interestingly, even though most of the new loop closures are rejected
by PCM (in red), we also get about three times more valid measurements (green) when using
a looser threshold (0.15) as opposed to a more conservative one (0.10). Therefore, the use of
less stringent thresholds allows adding valid measurements to the pose graph, enhancing the
trajectory estimation accuracy.

Similarly, reducing the minimum number of feature correspondences that need to pass the
geometric verification step for a loop closure to be considered successful leads to more loop
closure candidates. RTAB-Map uses a default of 20 correspondences. As shown in Fig. 5.10,
we can double the number of valid inter-robot loop closures when reducing the number of
correspondences to 4 or 5.

Table 5.1: Effect of the PCM threshold on the accuracy.
Threshold (%) 1 10 25 75 No PCM

ATE (m) 2.1930 2.3185 3.1461 18.255 22.0159
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Figure 5.10: Number of inter-robot loop closures accepted and rejected by PCM w.r.t. the
minimum number of feature correspondences to consider geometric verification successful.
We fix the NetVLAD threshold to 0.13

The last parameter we analyzed is the PCM likelihood threshold to reject outliers. As seen
in Section 5.4.2, a lower threshold leads to the rejection of more measurements, including
inliers. However, since we are mapping a relatively small environment, we get many loop
closures linking the same places. Therefore, as long as we do not disconnect the recognized
places in the pose graph, a lower PCM threshold has the benefit of filtering out the noisiest
loop closures and keeping the more precise ones. We can see in Table 5.1 that the resulting
trajectories are affected by the noisier loop closures when we use a higher threshold, but that
we still avoid the dramatic distortion caused by outliers seen in Fig. 5.1. Indeed, the average
translation error (ATE) compared to the GPS ground truth is the lowest when we use the
most conservative PCM threshold (i.e. 1%), for which we show the visual result in Fig. 5.1.
On the other hand, we can see a large increase in the error when we use a threshold larger
than 75% or no PCM, which indicates that outliers have not been rejected.

In light of those results, DOOR-SLAM can use less conservative parameters in the front-end to
obtain more loop closure candidates and a more conservative PCM threshold to keep only the
most accurate ones. This combination leads to a larger number valid loop closures and to
more accurate trajectory estimates.
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Table 5.2: Data sizes of messages sent.
Details of message sent for each Avg. Size (kB) ± Std.

Keyframe NetVLAD descriptor 1.00 ± 0.00
RGB image 900.04 ± 0.00

NetVLAD match
Keypoints Information 34.51 ± 0.68
Keypoints Descriptors 25.00 ± 0.49
Grayscale images 600.06 ± 0.0

Inter-robot loop closure Pose Estimate 0.34 ± 0.00
Loop Closure Measurement 0.34 ± 0.00

Communication

As described in Section 5.3.1, the distributed loop closure detection module needs to share
information between the robots about each keyframe to detect loop closure candidates. When
a NetVLAD match occurs, the module needs to send the keypoint information for each matching
keyframe. If there are enough feature correspondences, the module can compute the relative
pose transformation and send the resulting inter-robot measurement to the other robot. Here
we evaluate the communication cost of the proposed distributed front-end.

Results. Table 5.2 reports the average data size sent at each keyframe. These averages were
computed during our field experiments. For comparison, we also report (in gray) the size of
the messages sent in case the robots were to directly transmit camera images. We see that
the proposed front-end reduces the required bandwidth by roughly a factor of 10.

Online Experiments

We tested DOOR-SLAM online with two quadcopters. The main challenge of performing live
experiments with DOOR-SLAM on the NVIDIA Jetson TX2 platforms is to run every module
in real-time with the additional workload of the camera driver and the connection to the
flight controller. To achieve this feat, we limited the frame rate of the onboard camera to
6Hz. Modules such as the stereo odometry or the Tensorflow implementation of NetVLAD

were particularly demanding in terms of RAM which required us to add 4GB of swap space
to the 8GB initially available. We also tuned some visual odometry parameters to gain
computational performance at the cost of losing some accuracy.

Results. Fig. 5.11 reports the trajectory estimates of our online experiments, compared
with the trajectories from GPS. We performed this experiment with a PCM threshold of 1%,
a NetVLAD threshold of 0.13, and a minimum of 5 inliers for geometric verification. Although
we note a degradation of the visual odometry accuracy, the results in Fig. 5.11 are consistent
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(a) without outlier rejection. (b) with outlier rejection.

Figure 5.11: Online Trajectory estimates from DOOR-SLAM (red and blue) and GPS ground
truth (green, only used for benchmarking).

with the ones observed in Fig. 5.1.

5.4.5 Field Tests in Subterranean Environments

To remark on the generality of the DOOR-SLAM back-end, this section considers a different
sensor front-end and shows that DOOR-SLAM can be used in a lidar-based SLAM setup with
minimal modifications. For this purpose we used lidar data collected by two Husky UGVs
during the Tunnel Circuit competition of the DARPA Subterranean Challenge [73]. The data
is collected with the VLP-16 Puck LITE 3D lidar and the loop closures are detected by scan
matching using ICP. The environment, over 1 kilometer long, is a coal mine whose self-similar
appearance is prone to causing perceptual aliasing and outliers. Fig. 5.12 shows the effect
of using PCM: the left figure shows a top-view of the point cloud resulting from multi-robot
SLAM without PCM, while the figure on the right is produced using PCM with a threshold
of 1%. The reader may notice the deformation on the left figure, caused by an incorrect
loop closure between two different segments of the tunnel. Although PCM largely improves
the mapping performance, we notice that there is still an incorrect loop closure on the right
figure. This kind of error is likely due to the fact that PCM requires a correct estimate of the
measurement covariances which is not always available. To compute the trajectory estimates,
our distributed back-end required the transmission of 92.27kB, while in a centralized setup
the transmission of the initial pose graph data and the resulting estimates from one robot
to the other would require 196.30kB. In summary, our distributed back-end implementation
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roughly halves the communication burden.

(a) without outlier rejection. (b) with outlier rejection.

Figure 5.12: Lidar-based multi-robot SLAM experiment during the DARPA Subterranean
Challenge.

5.5 Conclusion

We present DOOR-SLAM, a system for distributed multi-robot SLAM consisting of a data-
efficient peer-to-peer front-end and an outlier-resilient back-end. Our experiments in simu-
lation, datasets, and field tests show that our approach rejects spurious measurements and
computes accurate trajectory estimates. We also show that our approach can leverage its
robust back-end to work with less conservative front-end parameters. In future work, we plan
to explore not only the robustness to additional perception failures, such as large groups of
correlated outliers, but also the robustness to communication issues (i.e., packet drop) to
improve the safety and resilience of multi-robot SLAM systems.
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CHAPTER 6 GENERAL DISCUSSION

This chapter presents a joint discussion of the different results presented in the previous
sections. It aims to recapitulate the main findings and to discuss the impact of those contri-
butions on the research community. First we discuss the results regarding the robustness to
outliers, then we address our results for multi-robot SLAM.

6.1 Robustness to Outliers

Chapter 4 presents a PGO formulation (DC-GM) robust to outliers that includes the modeling
of the perceptual aliasing phenomenon. The article also shows how to adapt the formulation
to be solved by global solver using convex relaxations. This work is mostly theoretical in
the sense that it provides a novel formulation, but that is essentially a proof of concept since
the implementation using the general-purpose convex solver CVX is quite slow and could not
realistically be used onboard a robot. Nonetheless, the results in Chapter 4 show that the DC-

GM technique compares favorably to the other current state-of-the-art techniques. Moreover,
the technique does not require an initial guess and its main parameter is easier to tune than
the ones of the other techniques since it has a clear physical meaning which is based on the
expected level of noise in the measurements. The experiments on real-world datasets also
show how the technique is resilient to realistic levels of noise, which is sometimes a problem
with convex relaxation techniques. Indeed, performing the convex relaxation comes at the
cost of considerably changing the problem that is actually given to the solver. Therefore, if
the noise level is too high, the convex relaxation is not necessarily tight which means that
the result of the relaxed optimization is not necessarily an acceptable solution to the original
problem. Another interesting conclusion from the results is that the version without the
terms to model perceptual aliasing (DC-GMd) is performing as well as the one with those
terms (DC-GM). This indicates that the robust formulation presented in this article can also
be used to reject outliers in SLAM even in cases where the clustering of loop closures is not
an easy task. In regard to the computation time issues (the current implementation could
not be used on real-time systems), as it is hinted at in Chapter 4, the DC-GM technique
formulation is quite similar to the fast convex solver SE-Sync [7], which leads us to believe
that it is possible to build a similar fast solver for DC-GM.

While the technique presented in Chapter 4 is an interesting proof of concept, Chapter 5
introduces DOOR-SLAM which is a practical implementation of robust estimation in SLAM.
The outlier rejection technique used in DOOR-SLAM (PCM) is quite different than the DC-GM



53

approach. PCM is not part of the optimization problem. In fact, PCM is a preprocessing step to
remove the outliers among the loop closure measurements before the pose graph optimization
step. Removing measurements in preprocessing instead of during the optimization has the
drawback of relying much more on the accuracy of the odometry measurements. Indeed,
if the odometry has a high level of noise even the valid loop closure measurements will
have a low consistency with each other. However, when the outlier rejection is part of the
optimization, the valid loop closure measurements can partially correct the odometry drift
(i.e. noise accumulation) and make it easier to detect the spurious measurements. This
explains why the results show that PCM is less accurate in its classification of inliers and
outliers than DC-GM. Nevertheless, this is one of the only ways to proceed to reject outlying
measurements in multi-robot scenarios and the approach is significantly faster, so it can be
applied to real systems like DOOR-SLAM. Moreover, the PCM implementation presented in
Chapter 5 is working in a distributed fashion and is shown to lead to large improvements
in the pose graph accuracy. Another benefit of DOOR-SLAM illustrated in Chapter 5 is its
capacity to produce more valid loop closure measurements than non-robust solutions since it
can leverage the outlier rejection mechanism to use less conservative parameters in the SLAM
front-end. Since the code for DOOR-SLAM has been released publicly, it could be reused by
other research groups in the future to build even more robust and reliable SLAM solutions
for multi-robot systems.

6.2 Multi-Robot SLAM

Most robust PGO techniques are designed for single robot systems, yet multi-robot systems
are even more vulnerable to perceptual aliasing since each robot is using a different sensor.
While results in Chapter 4 are only considering single robot systems, the DC-GM formulation
is also compliant with multi-robot systems. Indeed, the main reason why most classical PGO
solver cannot be used for multi-robot systems is that they rely on the odometry measurements
to provide a good initial guess. In the multi-robot case, such an initial guess cannot be
obtained because the multiple trajectories are not initially in the same reference frame (i.e.
the alignment of the trajectories with respect to each other is initially unknown). Since the
classical methods are local solvers, the initial guess needs to be sufficiently close to the global
minimum to avoid falling into a local minimum during the optimization. However, DC-GM

offers a convex relaxation adapted for global solvers. Therefore, the resulting solution is
the global minimum even if no initial guess is given. Nonetheless, DC-GM is a centralized
technique and could not be solved in a distributed fashion on multiple robots. The robots
would need to send all their relative pose measurements to a central node that would perform
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the joint optimization of all trajectories.

In light of those challenges, a multi-robot pose graph optimization technique ideally needs to
be distributed and to use a convex formulation to avoid initialization problems. The back-end
of DOOR-SLAM proposes a solution to both challenges. The optimization is distributed with
minimal information sharing and it is based on the chordal relaxation [77] which is a convex
problem.

Also, multi-robot SLAM has limitations in terms of available bandwidth, communication
delays, and scalability. Those challenges concern mostly the front-end, which produces most
of the data to be shared. DOOR-SLAM leverages the literature to minimize the size of the
transmitted messages. One of the main findings shown in Chapter 5 is the effects of parameter
tuning in the front-end to increase the number of valid measurements. Indeed, although some
of them are outliers, the system obtains more putative loop closures by using less conservative
parameters. Then, the system can filter out the outliers and retrieve more valid measurements
than it would be possible with more conservative parameters. It is also interesting that DOOR-

SLAM, unlike DC-GM and many techniques in the field, has been tested on actual robots during
field experiments. Although this requires considerable investments in terms of time and other
resources, this provides better evidence that the system is fit for real applications. It also
a good argument to convince other research groups to build on DOOR-SLAM to develop new
and better multi-robot SLAM techniques. The code is released publicly to facilitate the
reproduction and improvement of the system.

Finally, DOOR-SLAM solves the multi-robot SLAM problem in a more flexible way than com-
peting techniques such as the one presented by Cieslewski et al. [37]. Indeed, DOOR-SLAM

strategy does not require full connectivity maintenance within the robotic team. In other
words, robots in the teams do not need to be within the communication range of each other
at every point in time. They can rather perform the inter-robot loop closures detection
and distributed pose graph optimization when they meet each other. This enables a wide
range of applications from collaborative automated warehouse management to the efficient
exploration of underground environments.
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CHAPTER 7 CONCLUSION

The research work presented in this thesis aimed at the improvement of the robustness of
current Simultaneous Localization and Mapping techniques. This thesis introduced two new
robust estimation techniques. The first one is designed for single robot systems and offers
interesting theoretical guarantees while the other tackles the specific challenges of performing
robust estimation in multi-robot systems. The results obtained have the potential to produce
significant impacts on the research community given that an accurate localization is crucial
to build a truly autonomous robotic system and that current state-of-the-art techniques are
vulnerable to data association errors and the presence of outlying measurements.

7.1 Summary of Works

Overall, the two novel techniques presented in this thesis accomplished the research objectives
initially stated. First, the DC-GM technique presented in Chapter 4 is partially based on a
mathematical model of the perceptual aliasing phenomenon which helps to remove efficiently
the outliers among the loop closure measurements. Indeed, the technique leverages the links
between the binary variables in the discrete Markov random field to explicitly model the
presence of groups of mutually consistent loop closures. The approach presented in Chapter
5 accomplished the other objectives. In fact, DOOR-SLAM is a practical, efficient and robust
solution to the multi-robot SLAM problem. The results from simulation to field experiments
show that the technique is resilient to difficult conditions, is well adapted for real applications
of multi-robot systems and works with less conservative parameters than other techniques.

7.2 Limitations

Nevertheless, even if the research objectives were accomplished, this research work presents
several limitations. First, the DC-GM technique relies on a convex relaxation and this kind
of approach is known to work only with reasonable levels of noise, which means that the
global solver will fail to find the solution to the PGO problem if the noise level is too high.
Although the experiments on real-world datasets are conclusive, the noise threshold over
which the method will fail can only be determined empirically. Also, the clustering technique
used to define which loop closures are grouped together is quite simplistic and its failure
could cause the failure of the whole system. Moreover, since the novel PGO formulation
introduced in Chapter 4 is solved using a general-purpose SDP solver in Matlab, the current
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implementation is slow and is not adapted to robotic platforms with limited computation or
real-time operations. The DOOR-SLAM technique presents also some significant limitations. In
particular, the current implementation of the technique is not resilient to networking errors,
large communication delays or packet drops. Unfortunately, those communication issues are
very common in the deployment of ad hoc networks.

7.3 Future Research

The natural next step of this research work is to ameliorate the proposed techniques by
mitigating their respective limitations. Therefore, it would be necessary to design and im-
plement a specialized fast solver for DC-GM along the lines of [7]. It would also be interesting
to develop a more effective way to group the loop closures together in order to avoid fail-
ures caused by the incorrect modeling of perceptual aliasing. Concerning DOOR-SLAM, the
next steps involve major improvement in networking management to build a system resilient
to communication failures and thus better adapted for actual multi-robot systems. Indeed,
while ad-hoc networks are solutions of choice for multi-robot systems they are not as reliable
as centralized networks.
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APPENDIX A MODELING PERCEPTUAL ALIASING IN SLAM VIA
DISCRETE-CONTINUOUS GRAPHICAL MODELS - SUPPLEMENTAL

MATERIAL

Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, Luca Carlone

This supplemental material presents a set of additional experimental results to provide more
insights on the performance and limitations of the proposed approach. The experiments
are organized in four sections. The experiments in Section A evaluate the impact of the
maximum admissible residuals parameter c̄. Section A analyzes the effect of the correlation
terms c̄(ij)

(i′j′) on the truncated least squares objective function and gives some intuition on
how to choose these parameters. Following this analysis, the experiments in Section A show
the impact of an incorrect modeling of outlier correlation in DC-GM. Finally, Section A shows
extra simulation results in a more realistic Manhattan World graph that complement the
results on the Grid graph shown in the main paper.

Effect of the Maximum Admissible Residual Threshold c̄

This set of experiments evaluates the impact of the choice of the maximum admissible resid-
uals threshold c̄. In order to illustrate the role of c̄, we used the same simulation setup of the
paper, but we varied the number of standard deviation of the measurement noise (σ) that we
wished to accept. Intuitively, we expect that a lower c̄ will lead to more inliers being rejected
and a higher c̄ will lead to more outliers being accepted.

We evaluate the results for 3 choices of c̄, in particular we consider c̄ = {0.01σ, 1σ, 2σ},
and for each set of tests we report (i) the average translation error, (ii) the percentage of
rejected inliers, (iii) the percentage of rejected outliers, and (iv) the rank of the matrix Z?

computed by the proposed SDP relaxation (in planar problems, the relaxation is tight when
rank (Z?) = 2). The rank is computed using a numerical threshold of 10−3 ·λmax, where λmax
is the maximum eigenvalue of Z?. All data points are averaged over 5 runs, and statistics
are computed for increasing percentage of outliers.
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Figure A.1: Results on the simulated grid graph with maximum admissible residuals of 0.01σ.
(a) average translation error of the DC-GM and DC-GMd solutions compared with the odometric
estimate; (b) rank of Z?, (c) percentage of rejected inliers, and (d) percentage of rejected
outliers for DC-GM and DC-GMd.

As expected, in Figure A.1 we observe that with a very low tolerance on the residuals, our
technique rejects all loop closures and therefore falls back to the odometric estimate. It
is worth noting that in this case the rank of the returned solution Z? is exactly 2 which
indicates that the relaxation is tight when all loop closures are rejected.
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Figure A.2: Results on the simulated grid graph with maximum admissible residuals of 1σ.

Figure A.2 presents the results obtained with a threshold of 1 standard deviation on the
residuals. Those results have already been discussed in the paper. We observe that for
increasing percentage of outliers, DC-GM is able to reject all outliers, while DC-GMd tends
to incorrectly accept a very small portion of outliers. The plot of the rank of the SDP
solutions provides some extra insight on the performance of the relaxation and shows that
the relaxation of the coupled approach (DC-GM) is tighter than the decoupled one (DC-GMd).
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Figure A.3: Results on the simulated grid graph with maximum admissible residuals of 2σ.

Figure A.3 shows that with a looser threshold on the maximal residual threshold of 2σ,
the proposed techniques tend to fail in presence of a large amount of outliers (40% and
above). Surprisingly, the coupled formulation DC-GM has a lower breakdown point, and
is dominated by DC-GMd for large percentages of outliers. Figure A.3(c) shows that both
techniques accept all the inliers, but Figure A.3(d) shows that the loss in accuracy of DC-GM

stems from accepting several outliers. This can be partially explained by the the rank in
Figure A.3(b), which tends to be larger in this case for DC-GM, leading to a looser relaxation.
A second explanation is provided in Section A which shows that the correlation terms have
the effect of “inflating” the maximum admissible residual threshold, making DC-GM more
prone to accept outliers when c̄ is large.

Effect of the Correlation Terms c̄(ij)
(i′j′) on the Objective Function

In order to understand the impact of the correlation terms c̄(ij)
(i′j′) on the objective function,

let us consider a single loop closure (i, j), and call Cij the set of edges correlated to (i, j).
From the coupled formulation, we can isolate all the terms involving the loop closure (i, j)
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which we report below after omitting constant terms:

(1+θij)
2 ‖Tj − TiT̄ij‖2

Ω −θij2 c̄ −
∑

(i′,j′)∈Cij

c̄
(ij)
(i′j′)θijθi′j′ (A.1)

Now assume that all neighbors “decide to accept” the corresponding measurements, i.e.,
θi′j′ = +1 for all (i′, j′) ∈ Cij. Then, eq. (A.1) becomes:

(1+θij)
2 ‖Tj − TiT̄ij‖2

Ω −θij2

c̄+ 2
∑

(i′,j′)∈Cij

c̄
(ij)
(i′j′)

 (A.2)

Similarly, when all neighbors “decide to reject” the corresponding measurements, i.e., θi′j′ =
−1 for all (i′, j′) ∈ Cij. Then, eq. (A.1) becomes:

(1+θij)
2 ‖Tj − TiT̄ij‖2

Ω −θij2

c̄− 2
∑

(i′,j′)∈Cij

c̄
(ij)
(i′j′)

 (A.3)

It is clear that in general, the presence of the correlation term alters the value of the threshold
c̄. In other words, the fact that neighboring edges accept a measurement, makes the other
edges “more permissive” by increasing the corresponding threshold c̄. The threshold however
always remains in the interval:

[c̄− 2
∑

(i′,j′)∈Cij

c̄
(ij)
(i′j′) , c̄+ 2

∑
(i′,j′)∈Cij

c̄
(ij)
(i′j′)] (A.4)

A pictorial representation is given in Figure A.4. This understanding also informs us on how
to set the coefficients c̄(ij)

(i′j′). According to (A.4), one should make sure that c̄(ij)
(i′j′) is relatively

small compared to c̄, such that the correlation does not dominate the outlier rejection de-
cisions. Similarly, the size of the interval in (A.4) depends on the number of neighbors of
edge (i, j); this suggests normalizing the coefficients by the number of neighbors such that
the term ∑

(i′,j′)∈Cij
c̄

(ij)
(i′j′) does not dominate the outlier rejection threshold c̄.
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Figure A.4: Effect of the correlation terms on the robust cost function.

Finally, it is interesting to note that the presence of the correlation terms can degrade the
performance of DC-GM if the correlation terms are chosen incorrectly. We analyze this as-
pect in the following section where we consider experiments with heterogeneous groups of
measurements (i.e., a mix of inliers and outliers).

Effect of heterogeneous groups of loop closures

The experiments in this section evaluate the impact of an incorrect modeling of the outlier
correlation. In particular, we consider a setup where heterogeneous loop closure groups
(composed of both inliers and outliers) are added to the graph and we add correlation terms
c̄

(ij)
(i′j′) between each pair of edges in the groups. This incorrect modeling is expected to
challenge the performance of DC-GM, since the model will attempt to encourage consistent
inlier/outlier decisions within each group, despite the fact that each edge in the group is
assigned to be an inlier/outlier at random. In particular, we expect DC-GM to perform poorly
when the correlation term c̄

(ij)
(i′j′) is large, while it is expected to fall back to the performance

of the decoupled approach DC-GMd when c̄
(ij)
(i′j′) is small. We present results for decreasing

value of the correlation term c̄
(ij)
(i′j′) equal to 10%, 1%, and 0.1% of the maximum admissible

residuals parameter c̄, respectively. The results, showing the percentage of rejected inliers
and outliers for increasing percentage of outliers, confirm the expected behavior.
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Figure A.5: Results on the simulated grid graph with heterogeneous groups of loop clo-
sures and correlation terms c̄(ij)

(i′j′) equal to 0.1c̄. (left) Percentage of rejected inliers; (right)
Percentage of rejected outliers.
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Figure A.6: Results on the simulated grid graph with heterogeneous groups of loop closures
and correlation terms c̄(ij)

(i′j′) equal to 0.01c̄.
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Figure A.7: Results on the simulated grid graph with heterogeneous groups of loop closures
and correlation terms c̄(ij)

(i′j′) equal to 0.001c̄.

Figures A.5, A.6, and A.7 show that the performance of DC-GM is worse when the correlation
terms are large (and incorrect) while it approaches DC-GMd when the correlation terms are
small. This is also consistent with the interpretation of the cost function in Figure A.4
where higher values of the correlation terms lead to a larger range of values for the maximum
admissible residuals. A larger range is more likely to lead to the acceptance of outliers and/or
the rejection of inliers.
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Additional simulation results

We performed additional simulation experiments to provide further insights to the reader
on the performance of the proposed techniques. These experiments involve a more realistic
Manhattan World graph. Below we report the average translation error, the percentage of
rejected inliers and outliers, and a visualization of the estimated trajectory. Statistics are
computed over 10 runs with increasing percentage of outliers. The proposed approaches (DC-

GM and DC-GMd) are compared against other techniques (Vertigo, DCS, RRR) potentially
reporting multiple choices of parameters for the competing techniques.
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Figure A.8: Results on a Manhattan World graph. (a) Average translation error for the
different techniques; (c) Ground truth (green) overlaid on the DC-GM solution (black, in-
distinguishable from the ground truth), and outlier loop closures (red). (b) Percentage of
rejected inliers; (d) Percentage of rejected outliers.

Consistently with the results on the grid graph, Figure A.8 shows that the performance of
DC-GM and DC-GMd is comparable, but DC-GM ensures slightly more accurate results when
the percentage of outliers is large. On the other hand, both Vertigo and RRR performed
remarkably worse than DC-GM and DC-GMd on the Manhattan World graph (for RRR the



72

performance was poor for any choice of parameters). DCS performed well when the tuning
parameter Φ was chosen to be 10 or 100, but performed worse than DC-GM when the default
parameter Φ = 1 was used.
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