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RÉSUMÉ

Le succès des réseaux de neurones dans la classification des images a inspiré diverses implé-
mentations matérielles sur des systèmes embarqués telles que des FPGAs, des processeurs
embarqués et des unités de traitement graphiques. Ces systèmes sont souvent limités en
termes de puissance. Toutefois, les réseaux de neurones consomment énormément à travers
les opérations de multiplication/accumulation et des accès mémoire pour la récupération des
poids. La quantification et l’élagage ont été proposés pour résoudre ce problème. Bien que
efficaces, ces techniques ne prennent pas en compte l’architecture sous-jacente du matériel
utilisé. Dans ce travail, nous proposons une implémentation économe en énergie, basée sur
une table de vérité, d’un neurone binaire sur des systèmes embarqués à ressources limitées.
Une approche d’arbre de décision modifiée constitue le fondement de la mise en œuvre pro-
posée dans le domaine binaire. Un accès de LUT consomme beaucoup moins d’énergie que
l’opération équivalente de multiplication/accumulation qu’il remplace. De plus, l’algorithme
modifié de l’arbre de décision élimine le besoin d’accéder à la mémoire. Nous avons utilisé
les neurones binaires proposés pour mettre en œuvre la couche de classification de réseaux
utilisés pour la résolution des jeux de données MNIST, SVHN et CIFAR-10, avec des ré-
sultats presque à la pointe de la technologie. La réduction de puissance pour la couche de
classification atteint trois ordres de grandeur pour l’ensemble de données MNIST et cinq
ordres de grandeur pour les ensembles de données SVHN et CIFAR-10.
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ABSTRACT

The success of neural networks in image classification has inspired various hardware imple-
mentations on embedded platforms such as Field Programmable Gate Arrays, embedded
processors and Graphical Processing Units. These embedded platforms are constrained in
terms of power, which is mainly consumed by the Multiply Accumulate operations and the
memory accesses for weight fetching. Quantization and pruning have been proposed to ad-
dress this issue. Though effective, these techniques do not take into account the underlying
architecture of the embedded hardware. In this work, we propose PoET-BiN, a Look-Up
Table based power efficient implementation on resource constrained embedded devices. A
modified Decision Tree approach forms the backbone of the proposed implementation in the
binary domain. A LUT access consumes far less power than the equivalent Multiply Accu-
mulate operation it replaces, and the modified Decision Tree algorithm eliminates the need
for memory accesses. We applied the PoET-BiN architecture to implement the classification
layers of networks trained on MNIST, SVHN and CIFAR-10 datasets, with near state-of-the
art results. The energy reduction for the classifier portion reaches up to six orders of mag-
nitude compared to a floating point implementations and up to three orders of magnitude
when compared to recent binary quantized neural networks.
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CHAPTER 1 INTRODUCTION

Neural networks form the backbone of current technologies such as face recognition [1], text
comprehension [2] and speech emulation [3]. Neural networks are mathematical models in-
spired by the neurons in our brains. The mathematical operations of each neuron can be
broken down into a series of multiply and accumulate operations. This was first proposed by
Rosenblatt in 1958 [4] . Except for a brief revival in the 1980s, neural networks were then
mostly been confined to research labs. It wasn’t until the late 2000s that neural networks
started gaining traction in the industry for commercial use. Nowadays, neural networks are
at the forefront of domains such as natural language processing [5], forecasting [6], anomaly
detection [7], etc. The recent successes of neural networks can be attributed to the algorith-
mic advances made possible in part due to the availability of powerful computational devices
and of large datasets to train them. Especially, the advent of powerful Graphical Processing
Units (GPUs) [8] and the availability of large quantities digital data [9] in the late 2000s
fueled the current revolution of neural networks (Artificial Intelligence).

Originally, neural networks were inspired by the interconnection of neurons in our brain to
solve various classification and regression problems. Nowadays the neural networks have
become more advanced and are used for more complex tasks such as generation of videos,
medical image analysis, data reduction etc. However, the base mathematical operation in
the neural networks still are MAC operations. Typical neural networks have millions of
MAC operations. This makes GPU a natural choice to implement these neural networks.
The first widely used commercial GPU, RIVA 128 was introduced by Nvidia in 1997 [10].
It consisted of 3 million transistors. It was mainly used for video games and 3D graphics
acceleration programmed with OpenGL. During the same period, the performance of the
Central Processing Units (CPUs) were limited by the clock rate and the number of cores
to execute parallel threads. Even today the CPUs can only accommodate thousands of
threads in parallel even with hyper threading. On the other hand, present day NVIDIA
GPUs have 512 CUDA processor cores organized as 16 streaming multiprocessors architecture
specifically optimized for computations and can schedule billions of threads while running
tens of thousands of threads in parallel [11]. These GPUs have a Single Instruction Multiple
Pipelines (SIMP) architecture that requires a single instruction to processes multiple data
in parallel, akin to a streaming architecture. Hence, a need arises for fast memory access to
provide data to the thousands of computation elements. These GPUs have various levels of
shared memory with some requiring just a single cycle for memory read operations. Due to
these factors, in spite of having slower clocks than CPUs, GPUs provide up to 500 × the



2

throughput for data intensive tasks such as neural networks [12]. A major drawback with
these devices is that they have extremely high-power consumption making them unsuitable
for embedded applications. Therefore, we look at other embedded devices such as Field
Programmable Gate Arrays (FPGAs) for a mobile deep learning applications that consume
less power than GPUs.

With the advancements in neural networks various new applications started to emerge. Some
of these applications required neural networks to be implemented on embedded devices. The
embedded devices have their restriction in terms of resources, power and latency. Hence,
researchers started exploring techniques to make the neural networks smaller and lighter to
fit in these embedded devices. These modifications should not be detrimental to the accuracy
of the system and also conform to the restriction of the embedded environment. FPGAs have
been the goto devices to test these new proposals. FPGAs are semiconductor devices that
can be reprogrammed to perform a given task after manufacturing. They consist of millions
of configurable gates interconnected via programmable interconnects. FPGAs offer a unique
hardware software co-design approach to build a highly parallelized and targeted system for
a particular functionality. Their flexibility in designing makes them suitable a wide range
of applications from cryptography [13] to space system designs [14]. The versatile nature of
FPGAs make them an ideal candidate for neural networks as well. A neural network consists
of two phases, namely the training phase and the inference phase. The training phase requires
repeated processing of the large dataset. GPUs are able to stream multiple data parallely
thus resulting in lower access time to fetch data that makes them suitable for training of
neural networks. On the other hand, the inference task is time critical and is required to
be implemented on mobile low power hardware, thus more suited for FPGAs than GPUs.
Over the last few years, the neural network hardware accelerators built on FPGAs have
been gaining traction over other devices such as embedded GPUs and embedded processors.
These implementations of neural networks on FPGAs incorporate certain modifications to
the existing algorithms to reduce their complexity.

A Vanilla neural network can be designed to achieve the best accuracy without much con-
siderations for power consumption and memory requirements. Traditionally, these neural
networks use 32-bit floating point representations that require expensive MAC operations
and memory read operations that are unsuitable for FPGA implementations. Early full pre-
cision implementations consumed high power and had high latency. This led to a realization
that to efficiently implement neural networks on FPGAs, it is important to tweak the training
of neural network algorithms to make it more hardware friendly. This necessitated a trade-off
between accuracy and hardware parameters (power, latency and area). Different innovations
were proposed to maintain the accuracy while making the neural networks more hardware
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friendly. Two methods namely quantization and pruning have shown promising results.

Quantization techniques have been the go-to method to make neural networks more suitable
for target FPGA hardware. It provides a dual advantage of reduced memory usage and
smaller arithmetic units (multiplier and adders). This technique has shown promising results
that resulted in current generation GPUs to include 16-bit, 8-bit and 4-bit MAC hardware.
Initially, the effectiveness quantization techniques were demonstrated on smaller datasets
such as MNIST, CIFAR-10 and SVHN. Nowadays, these methods are used to address more
difficult challenges Imagenet classification. For smaller datasets, quantization has been ap-
plied to the extreme extent of single bit binary values of weights and activations. Surprisingly,
in some cases quantization may not be detrimental to the accuracy of the network as it helps
to better generalize on the unseen data. Similarly, pruning methods remove certain weight
parameters from the network resulting in lower memory reads and MAC operations while
maintaining the accuracy. However, pruning results in irregular network structure which
requires sparse matrix techniques to efficiently implement it on hardware.

These methods, though effective, do not take the underlying hardware into consideration.
The quantization and pruning are versatile techniques that can be applied over a spectrum
of devices ranging from generic CPUs, massively parallel GPUs to task specific FPGAs.
However, tailoring the neural networks specifically for the underlying hardware in FPGAs
could lead to better implementations. To achieve a tailor-made architecture for FPGA, it is
necessary to closely examine the computational units in the FPGA. A FPGA mainly consists
of interconnected Configurable Logic blocks (CLBs). The CLBs are made of LUTs which are
the computational powerhouse inside a FPGA. The structure of FPGAs is intrinsically closer
to the architecture of a neural network because they embed millions of small computing
elements, such as LUTs, that can be interconnected to form a large network of computing
elements. However, these LUTs have limited input and output, for example Xilinx FPGAs
have 4 or 6 input bits and 1-2 output bits while each neuron in a neural network typically
contains thousands of inputs and upto 32 output bits. This mismatch still remains with
quantization or pruning thus leading to inefficient implementations on FPGA.

In this work, we build networks of tiny binary neurons and map them to FPGA LUTs,
thereby providing an improvised way to implement equivalent MAC operations while achiev-
ing near state of the art accuracy. We name this architecture and its associated building
algorithm PoET-BiN. It is very power efficient since most of the processing is done as Look-
Up operations in the binary domain and does not require floating point multipliers, adders or
external memory accesses. Our LUT-based architecture combines Decision Trees (DTs) and
weighted sums of binary classifiers. A major motivation to use LUT-based DTs is because
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it eliminates memory reads and can be implemented using simple logic gates, thus consid-
erably saving power. On the other hand, DTs alone are weak classifiers. Hence, we modify
the inherently weak classifiers to solve complex non-linear classification tasks consuming a
fraction of the power compared to other implementations. This work makes the following
contributions to combine DTs and weighted sums of binary signals to best exploit embedded
hardware resources in the context of neural network implementations :

• A modified DT training algorithm to better handle a fixed number of inputs LUTs.

• The Reduced Input Neural Circuit (RINC) : A LUT-based architecture founded on
modified DTs and the hierarchical version of the well known Adaboost algorithm to
efficiently implement a network of binary neurons.

• A sparsely connected output layer for multiclass classification.

• The PoET-BiN architecture consisting of multiple RINC modules and a sparsely con-
nected output layer.

• Automatic VHDL code generation of the PoET-BiN architecture for FPGA implemen-
tation.

The thesis is organized as follows:

• Chapter 2 provides a background on the basic concepts on neural networks

• Chapter 3 presents a comprehensive survey of current hardware-oriented deep learning
research and hardware implementations of deep learning algorithms

• Chapter 4 details the proposed PoET-BiN architecture

• Chapter 5 explores the experimental setup, results and discussions

• Chapter 6 presents some discussions on how the how the proposed architecture was
conceived

• Chapter 7 concludes the work and provides further avenues for this work
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CHAPTER 2 BACKGROUND

In this chapter we introduce the basic concepts of neural networks starting from biological
neurons to training of artificial neural networks.

2.1 A neuron

Figure 2.1: Neuron structure in human brain [Image source]

Fig. 2.1 illustrates the structure of a neuron in the human brain. These neurons have
dendrites that collect information from the sensory organs and pass it to the axon. The axon
is cable-like projection that extends up to a few millimeters in length. The axon have sodium
dependent voltage channels that control the spiking of the axons. The axons fire only over
a certain potential known as threshold potential. An artificial neuron shown in Fig. 2.2
follows a similar principle. The inputs (xi) are similar to the dendrites. These inputs are
multiplied with the weights(wnj) and the result is added to obtain the output(netj) of the
transfer function. This output is passed through an activation function (f(S)) to get the
final activation(oj) of the neuron. The neuron has a sufficient output when the output of the
transfer function is greater than a certain threshold (θj), otherwise it is insignificant. This
process is similar to the process in the axon of the neurons in a human brain. Mathematically

https://www.youtube.com/watch?v=oPQz2O4DCck


6

this can be represented as

oj = f(
n−1∑
i=0

Wjixi + bi) (2.1)

oj = f(W.x+ b) (2.2)

where b refers to the bias variable that is introduced to prevent non zero values of the transfer
function.

w0j

w1j

w2j

w(n-1)j

f(S)

x0

x1

x2

x(n-1)

Inputs Weights

oj
netj

thetaj

Transfer
function

Activation
function

Activation

Threshold

Figure 2.2: Artificial neuron

2.2 Fully connected layer

A number of these artificial neurons are stacked in parallel to form a layer of the neural
network. The number of neurons in a layer can be upto 4096 neurons. A number of these
artificial neuron layers are arranged one after the other sequentially where the inputs to the
current layer are the outputs of the previous layer as seen in Fig. 2.3. A major advantage
of the approach is that it allows non-linear representation of data. The non-linearity is
introduced by the activation function. There are various activation functions, the most
widely used being ReLU (Rectified Linear Unit) [15] and sigmoid [16] activations.

Fig. 2.3 represents a fully connected network. It is called fully connected because a neuron
in the current layer is connected to all the outputs of the neurons in the previous layer.
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x1

x2

xm

y1

yn

Input
Layer

Hidden
Layer

Output 
Layer

Figure 2.3: Fully connected layer

This results in millions of MAC operation in a network with 2 fully connected layers of 4096
neurons and a last layer of 100 neurons. The final fully connected layer in a network is called
the output layer. It is different from the other layers as the number of neurons in the last
layer is equal to the number of classes in the dataset. Each class is mapped to a neuron in
the output layer and the activation of each neuron represents the probability of the input
belonging to that class. Hence, it is used a classifier.

2.3 Convolutional neural networks

Sometimes, this non-linear classification by fully connected layers is not enough to adequately
classify the images. It is necessary to extract meaningful information from the image first.
This is called feature engineering and it has been done traditionally using filters [17], SIFT [18]
and other techniques. However, these processes become tedious for large datasets. Lecun
et al. [19] introduced the Convolutional Neural Network (CNN) that automatically extracts
features from the image without any hand crafted features. It uses a 2d-Convolution layer
to extract features from the input image. The input image is either in RGB or gray-scale
format. The convolution layer contains 4 dimensional weights of size, output_channel ×
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input_channel × kernel_size × kernel_size. A subimage containing input_channel ×
kernel_size× kernel_size is multiplied with each weight and added to form one feature of
the convolutional layer as shown in Fig. 2.4. This helps capture spatial information such
as edges or other distinct features. The new feature map spans over out_channels. The
output_size can be obtained from the input size as follows:

output_size = input_size+ 2× padding − (kernel_size− 1)
stride

(2.3)

There are numerous variations of the convolution layer such as tiled convolution [20], convo-
lution with padding, large stride convolution etc.

Input size

Input 
Channels

Input
Size

Output
Channels

Kernel
Size

Output
Channels

Output size

Figure 2.4: Convolutional layer

2.4 Training neural networks

A typical neural network consists of a series of convolutional layers stacked one after the other
followed by the fully connected layer. The convolution layer acts as feature extractor while
the fully connected layers act as classifiers. Fig. 2.5 shows a typical neural network. There
are various standard architectures such as AlexNet [21], VGGNet [22], ResNet [23], etc. The
max pooling layer is a non-parameterized layer used to reduce the size of the feature map for
better generalization and reducing computations. Each instance of the convolution and fully
connected layers contains a set of weights and bias. These weights and a bias must be chosen
appropriately so that the whole network works in tandem to achieve higher classification
accuracy. Larger networks such as VGGNet and ResNet have millions of parameters. It is
impossible to exhaustively search entire combinations of inputs. Hence, we need to iteratively
train the network to achieve higher classification accuracy.
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Figure 2.5: LeNet CNN architecture (Chidambaram et al.,2018)

Initially the weights of the neural networks are randomly initialized. An image is propagated
through the network from the first convolution layer to the last fully connected layer. This
step is called forward propagation. The last fully connected layer is connected to a loss
function. The loss function calculates how far the predicted system output is from the
original output in the dataset. The loss is directly proportional to the difference between
the predicted and correct output. If the system accurately predicts the output, then the loss
function is zero. Then, the next step is to calculate the gradient of the loss with respect
to each parameter. This is called back propagation as we calculate gradients from the last
layer and progressively move towards the first layer. Each parameter is subtracted by the
gradient value (weighted by a learning rate). This can be seen as making small baby steps
towards the local minima of the loss function. This is known as weight update. This process
is repeated multiple times for each image in the dataset. Fig. 2.6 shows the loss function (J)
that depends on weights (w). Jmin is the local minima of the function. The arrows indicate
the small steps taken by the network to achieve the lowest loss.

2.5 Inference of neural networks

Once the algorithm is trained, it performs well on the samples in the dataset. However, we
need the network to perform on unseen data as well. Hence a given dataset is divided into
3 parts. First part is the training set that is used to train the parameters of the neural
network. Second part is the validation set used to fine tune the hyper-parameters such as
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J(w)

w

Jmin(w)

Gradient

Initial
weight

Figure 2.6: Gradient descent

the learning rate. Third part is the testset that is not used during training. It is only used
to test the generalization capability of the network i.e the ability of the network to perform
any unseen data. Generally 80% of the dataset is used as training set, 10% as validation set
and 10% as testset. During the inference phase of neural networks only forward propagation
is performed. It does not affect the weights. It is the inference phase that is implemented on
embedded systems such as robots, microprocessors etc.
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CHAPTER 3 LITERATURE REVIEW

In the earlier chapter basic concepts of neural networks was introduced. Traditionally,
floating-point weights and activation are used in a neural networks [19]. It was necessary
so as to allow sufficient representational capacity of the intermediate layers. Moreover, the
hardware for neural networks were meant to only accelerate full-precision MAC operations.
Hence, there was no necessity for smaller networks. In the meantime with better algorithms,
more data and powerful computation devices, these neural networks have shown tremendous
results [24]. Neural networks, especially for computer vision applications, started performing
better than traditional computer vision application on image classification tasks [25]. With
further innovation, neural networks started bettering humans [26]. This led to wide spread
use of neural networks in industry [27]. Tasks ranging from chat boxes [28] to medical diag-
nosis [29] deployed neural networks extensively. Some of these applications were time critical
and required limited power consumption. This necessitated modifications in the neural net-
work algorithms to make them more hardware aware. In this chapter we mainly discuss two
levels of modifications/innovations, firstly innovations at the algorithmic level and secondly
innovations at the hardware level to better implement neural networks in space and power
constrained hardware.

3.1 Algorithm level modifications

The inference phase of the Vanilla neural network is computation intensive. In order to
implement these algorithms on power and memory constrained hardware, it is necessary to
reduce the computation effort. In this section, we discuss three techniques, namely quantiza-
tion, pruning and decision tree approach to efficiently implement these neural networks for
classification of images.

3.1.1 Quantization

Quantization techniques have been the most popular technique for reducing the computa-
tions in the neural networks. It was first introduced by Courbariaux et al. [30] in 2016.
The authors used a simple yet powerful technique of quantization of weights to reduce the
computation complexity. Fig. 1 explains in detail the BinnaryConnect algorithm used to
train these binary weighted neural networks. First the weights are randomly initialized as
32 bit floating point numbers. During forward propagation, the weights are binarized to
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Algorithm 1 BinaryConnect Training Algorithm (Adapted from [30]
Input: minibatch of (inputs,targets), C is the cost function, L is the number of layers,
wb are the binarized weights, wt are the full precision true weights, b is the bias, a is the
activation, clip and binarize are clipping and binarizing functions respectively
1. Forward propagation
wb ← binarize(wt−1)
For k=1 to L, compute ak knowing ak−1,wb and bt−1
2 . Backward Propagation
Initialize output layer’s activations gradient dC

daL

For k=L to 2, compute dC
dak−1

knowing dC
dak

and wb
2. Parameter Update
Compute dC

dwb
and dC

dbt−1
knowing dC

dak
and ak−1

wt ← clip(wt−1 − α dC
dwb

)
bt ← bt−1 − α dC

dbt−1

either -1 or 1. Stochastic and deterministic binarization were experimented with and were
found to produce similar results. These binary weights eliminate the need for floating-point
multipliers. During backward propagation as well the binarized weights are used to calculate
the gradients. However, these gradients are small, hence requiring floating point precision.
These gradients are further multiplied by the learning rate (less than 1). The resulting value
needs to subtracted from the current parameter values. This step is known as weight update.
To better capture the resulting changes, the weight update step is performed on the original
full precision weights that are stored in the memory. Though this does not decrease the com-
plexity during training, the inference (forward propagation) complexity is greatly reduced.
The reduction in inference time and complexity is due to reduced memory requirements to
store the binary weights and as well as the elimination of floating-point multiplication. The
reduction in memory by 32× allows the weights to be stored in on-chip memory thereby
reducing the long delays associated with fetching weights from external DDR3 memory.

BinaryConnect still require floating point adders and subtractors for the forward propaga-
tion. These operations are power and time intensive. Hence, Courbariaux et al. [31] then
introduced BinaryNet, a neural network with binarized weights and activations. In this work,
along with binarizing the weights, they also binarized the activation during the forward and
backward pass. Hence the floating point additions and subtractions are substituted by XNOR
multiplications and popcount [32] additions. With this architecture they were able to achieve
7× faster inference as compared to Vanilla neural networks.

Along with reducing the computation effort, the BinaryConnect and BinaryNet architecture
were able to maintain near state-of-the-art accuracy on the MNIST [33], CIFAR-10 [34], and
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SVHN datasets. In fact the validation accuracy of BinaryConnect is better than Vanilla
neural network (neural networks with full precision weights and activations) in the case of
CIFAR-10 and SVHN and almost similar in the case of MNIST. This is due to the reg-
ularization effect [35]. In BinaryConnect, using binary weights injects some noise in the
system preventing over-fitting. This results in better generalization on unseen data. Hence,
BinaryConnect performs better than the Vanilla neural networks. On the other hand, in Bi-
naryNet there is not enough precision to represent the entirely the features extracted. Hence,
the BinaryNet accuracy is slightly worse than Vanilla neural networks. Nevertheless, it is
negligible reduction and the computation and memory reduction achieved by binarization is
massive.

Figure 3.1: XNORNet (Rastegari et al., 2016) [With Permission]

The BinaryNet and BinnaryConnect focus on reducing the computations and memory re-
quirements for the inference part of the network. There are other works in the literature that
use various other quantization methods to reduce the computation. One such work, XNOR-
Net developed by Rastegari et al. [36], proposes a unique method to quantize the weights
and activations while achieving better accuracies than BinaryNet or BinaryConnect. In this
work, in addition to binarizing the weights and activations during forward propagation, they
introduce a scaling constant layer (K) to scale the outputs after convolution operation to
scale the the output values. These scaling constants are learned during the training phase.
It can be represented mathematically as
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X ∗W ≈ (sign(X) ∗ sign(W ))�Kα (3.1)

where X is the input to a convolution layer, W refers to the weights of the layer and α refers
to the learning rate. Using this technique the authors achieved 80% top-5 accuracy on the
ImageNet dataset [9] while BinaryNet achieves 69% with AlexNet architecture.

These were some of the first papers to introduce Quantized neural networks for a better,
faster and cheaper inference phase. These works still need full precision weights to be stored
during the training phase. Since then, there have been many works to reduce the computation
during the training phase. One such work, Gated-XNOR [37] inspired by XNOR-Net uses a
similar approach for the forward and backward propagation albeit a ternary precision -1,0,1
network instead of binary precision. The major change is in the weight update step. In
XNOR-Net the weights are stored and updated with full precision. However, in the Gated-
XNOR architecture the gradient information is used to stochastically update the weights
to either one of the ternary states. Hence weights and activations are represented with
ternary precision throughout the training and inference phase. The authors achieved similar
accuracies to that of XNOR-Net for the MNIST and CIFAR-10 datasets. Fig 3.2 represents
the state changes for various possible combination in the Gated-XNOR work. v refers to the
gradient, τ is a stochastic transformation function applied on the gradients.

These are some of the influential works in quantizing neural networks. Other works in
quantization employ techniques such as quantization of gradient [38] and quantization of loss
function [39] to name a few.

3.1.2 Pruning

Pruning is another technique often used to reduce computations in neural networks. It
involves removing select neurons from the network while achieving similar accuracies to that
of Vanilla networks. In some extreme cases, the network is reduced by 49× without affecting
the accuracy [40]. Karnin [41] was one of the first to show that it is possible to achieve similar
accuracies by removing some neurons from a neural network. He modified the cost function
to account for the removal of neurons. Pruning neurons eliminates MAC operations and also
eliminates the need to store the corresponding weights of the neuron. Fig. 3.3 illustrates the
connections in a pruned neural network. A similar work by Wan et al. [42], Dropconnect
proposed to make the weight parameters zero instead of the entire neuron. They achieved
almost 90% accuracy on CIFAR-10 and 98% accuracy on SVHN.

As this work does not use pruning we do not go into the details of these implementations.
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Figure 3.2: Gated-XNOR Weight Update (Deng et al., 2018) [With Permission]

Standard neural nets After pruning

Figure 3.3: Pruned neural networks

3.1.3 Decision Trees

Decision Trees (DT) are a classical machine learning method used for data classification.
With the advent of neural networks they have often been overlooked. Decision trees are
flowchart like structures made of nodes, each implementing one if condition. The DTs try
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Figure 3.4: Basic decision tree

to reduce the entropy of the system to a maximum extent possible by choosing the best
features at each node. They follow a greedy approach in reducing the entropy. The branch
nodes represent an if condition and the leaf nodes contain the class label. DTs can be used
for binary as well as multiclass classification. Fig. 3.4 illustrates a basic DT for binary
classification. Depending on the feature X2, the right or left path is chosen at each node.
Similarly, at the second node the path taken is determined by input X5. The leaf nodes
contains the class label (True or False). Each sample arrives at any one of the leaf nodes
based on the input values of X2 and X5. If the DT can contain more nodes then other input
features (X1, X3,etc.) are considered.

Abdelsalam et al. [43] used this approach of DT for the classification of the MNIST and
CIFAR-10 datasets. They implemented the DT as a Sum of Products (SOP) shown in Fig.
3.5 for binary classification. Multiple decision trees are grouped together using the Adaboost
algorithm. The authors employed a one-vs-all method to use these binary classifiers for
one-vs-all classification. The one-vs-all classification involves building a binary classifier for
each class of the dataset. In each binary classifier each class is considered true and all other
classes are considered false. Once a binary classifier has been trained for a single class, the
target labels are reassigned in the data making the the next class true and and other class
false. Once all the class have been trained it is possible to have a multiple true prediction
by the classifiers. These ties are solved using a confidence circuit. These decision trees, the
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Figure 3.5: POLYBiNN (Abdelsalam et al., 2018) [ c©, 2018 IEEE]

Adaboost algorithm and the confidence circuit are implemented on the FPGA together known
as POLYBiNN. They achieved competitive accuracy in the case of MNIST and CIFAR-10
while using a fraction of the resources as compared binary neural network implementations
as they eliminate all MAC operations and memory fetches.

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest
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Figure 3.6: Deep Forest

The decision trees are weak classifiers as compared to Multi Layer Perceptrons (MLP). To
augment the capacity of decision trees, Zhou et al. in their work, cascaded decision layers
one after another [44]. This increased the classification capacity of the decision trees. Fig.3.6
shows the Deep Forest architecture where the input feature along with the features generated
from the previous layer are fed as inputs to the current layer. The authors use Random
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forests [45] instead of Adaboost to group the decision trees. In this work, the authors try
to eliminate the convolution layers with series of these random forest layers. However, the
authors could only achieve 68% accuracy on the CIFAR-10 dataset. This suggests that
Convolution layers are indispensable to achieve higher accuracies. Moreover, a hardware
implementation of the deep forest architecture would be power and resource intensive owing
to the use of multi-class decision trees [46]. The authors conclude that DTs alone cannot
be used for classification of complex datasets such as CIFAR-10. A mixed approach using
neural networks and decision trees is needed to classify complex problems in a resource and
power efficient manner.

Neural Decision Forests [47] propose such a mixed approach with differentiable decision trees
to integrate neural networks and decision trees. The authors achieve almost 94% accuracy
on the the Imagenet dataset. However, the authors only replace the final layer with decision
tree as shown in Fig. 3.7. The rest of the network remains the same. The figure shows the
neurons in the final fully connected (FC) layer neuron implemented as DTs. The decision
nodes (dx) replace the corresponding last fully connected layer nodes (fx). The inputs to the
network come from the CNN architecture and gets routed to one of the leaf nodes depending
on the decisions at each of the decision node. The leaf nodes (lx) of the DTs provide the
probability for each class (named A,B and C for illustration purpose). As most of the network
architecture remains the same to that of an original CNN network it does not allow for huge
gains in terms of power and resources. Nevertheless, it opens the door for more power efficient
networks using the representational capacity of neural networks and power efficient decision
trees.
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Figure 3.7: Deep neural decision forest
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3.2 Hardware implementation of neural networks

In the previous subsections various innovations to better implement neural networks in hard-
ware were discussed. These innovations proposed changes at the algorithmic level. In this
section, we introduce and compare actual implementations of neural networks in hardware.
Hardware implementation of neural networks come in four different types [48] :

• A single inference engine processing each layer sequentially.

• A streaming architecture with a single processing engine per layer and all the layers
work in parallel.

• A vector processor with application specific instructions to accelerate convolutions and
matrix multiplications

• A neurosynaptic processor implementing spiking neural networks

One of the first implementations of binary neural networks was FINN (A Framework for Fast,
Scalable Binarized Neural Network Inference) by Umuroglu et al. [48]. The FINN architecture
is a streaming architecture with a single processing engine per layer as shown in Fig. 3.8a.
The processing engines of each layer are pipelined. The authors main focus was to easily
build custom low power inference engines on FPGAs. As shown in Fig. 3.8b, the major part
in a FINN system is a synthesizer that takes high level network parameters from the Theano
code and generates the high level C++ code to be given to the Vivado HLx [49]. The Vivado
HLx generates the Hardware Description Language (HDL) for hardware implementation.
The generated hardware is targeted for low power implementations. As seen in Fig. 3.8a,
the FINN is a streaming architecture that uses a processing engine for each layer. These
layers operate in parallel increasing the utilization of shared peripherals such as memory and
drastically reducing the latency.

Horowitz et al. [50] provide the power consumption of each operation in a neural network.
It can be observed that the DRAM memory fetching instruction consumes 10× more power
than a multiplication operation. Hence, it becomes vital to reduce the memory requirements.
Therefore, by employing a binary quantization scheme, the weights were stored in the on-chips
SRAM rather on than external DRAMs. This significantly reduced the power consumption
and increased the throughput. The authors could achieve 15000 frames per second (FPS) at
250 KHz while consuming just 0.2 W of power.

Our previous work [51] is an example of a vector processor. In this work we introduced a vec-
tor processor to accelerate a CNN for the MNIST dataset on Application specific configurable
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Figure 3.8: FINN

processor. We built a custom module to accelerate the MAC operation in the convolution
and fully connected layer by a factor of 5× and 3.6× respectively. We also built specific
custom instructions for max pooling and activation functions. We achieved an overall accel-
eration of 4.8× as compared to a sequential implementation of the same neural network on
the configurable processor. Fig. 3.9 illustrates the processor architecture. The user custom
block generated are used as alternative to the ALU to accelerate a specific computation.
Other embedded modules such as DSP are added to further accelerate the computations.
Apart from the computations, other memory management techniques are used to accelerate
the data fetches. First, the weights fetched from the external memory are stored in the extra
register file to prevent repeated costly and time consuming memory fetch operation. Sec-
ond, we reuse overlapping weights in the convolutional layer using a special circuitry in the
dot product custom instruction. Our work was published at in the IEEE DASIP conference
proceedings [51].

Apart from the conventional artificial neural networks another class of neural networks called
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Figure 3.9: Vector processor (Chidambaram et al., 2018)

Spiking neural networks have shown promising results. Spiking neural networks were intro-
duced by Xin et al. in [52]. Spiking neural networks are mathematical structures more
resembling the neurons in the human brain. They use differential equations to model the
neurons. Apart from the spatial configuration of the neurons, they take into consideration the
time between firing of connected neurons. TrueNorth by Akopyan et al. [53], is a cornerstone
of spiking neural networks achieving state-of-the-art accuracies on the MNSIT dataset while
consuming a fraction of the power as compared to full precision neural networks. They decode
the (Echo ElectroGram)EEG of the brain to design the neurosynaptic processor encoding the
information in the spikes of the neurons.

There have been numerous implementations of neural networks on a variety of embedded de-
vices such as FPGAs, microprocessors, configurable processors [54] and embedded GPUs [55].
Table 3.1 adapted from [56] gives a brief comparison between hardware implementations of
neural networks on FPGAs. Various recent implementation of Quantized neural networks
for MNIST, CIFAR-10 and SVHN datasets were studied. They implementation are com-
pared in terms of throughput, power and resources (LUTs, BRAMs and DSP) used. The
implementations are arranged in terms of their level of quantization. Binary networks such
as [57], [58], [58], [59] employ extreme form of quantization. Ternary networks [60] quantize
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the weights and activations to 2-bits. Other quantized networks range from 8 bits to 32 bits
fixed point implementation. As expected, the binary networks have the highest through-
puts. [58] could achieve a throughput of 849 GOPs and 32 bits fixed point implementations
have some of the lowest throughputs with Zhang et al. [61] achieving only 9 GOPs. Although,
Moss et al. [58] could achieve very high throughput, it comes at the expense of resources.
They consume 9 times more resources as compared to other binary implementations [57].
This trend is observed across the table with various implementation sacrificing resources for
better througputs [61], [60], etc. The power reported is the static + dynamic power. The
static power depends on the resources and the area utilized by the design, while the dynamic
power depends on the throughput. Hence the total power depends on both the throughput
and the resources utilized. It should be also noted that the throughput, power and area
heavily depends on the FPGA board and its technology.

This concludes the literature review chapter. More focus has been given to the quantization
techniques and decision tree over pruning and the hardware implementations as the majority
of the work in this thesis is built on these techniques.
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Table 3.1: FPGA implementation comparisons

Network FPGA Dataset Quant Power(W ) Throughput LUTs BRAM DSP
Nakahara et al., 2017, [57] Zynq CIFAR-10 1-bit 2.3 143 14509 32 1
Moss et al, 2017, [58] Arria CIFAR-10 1-bit 48 849 115000 - -
Umuroglu et al., 2017 [48] PYNQ CIFAR-10 1-bit 2.5 166 42823 270 32
Zhao et al., 2017, [59] Zynq CIFAR-10 1-bit 4.7 143 46900 94 3
Jiao et al., 2017, [60] Zynq MNIST 2-bit 2.26 181 44000 105 89
Guo et al., 2017, [62] Zynq SVHN 8-bit 4.5 24 29867 85 190
Ma et al., 2017, [63] Arria CIFAR-10 8-bit 21.2 31 16100 1900 1518
Qiu et al., 2016, [64] Zynq CIFAR-10 16-bit 9.63 14 - - -
Zhang et al., 2018, [65] Virtex-7 CIFAR-10 16-bit 26 13 300000 1248 2833
Shen et al., 2018, [66] Virtex SVHN 16-bit 26 30 170000 1232 1376
Zhang et al., 2017, [67] Arria SVHN 16-bit 37.4 48 - 1250 1320
Podili et al., 2017, [68] Stratix V CIFAR-10 32-bit 8.04 29 196370 256 1100
Zhang et al., 2015, [69] Virtex-7 SVHN 32-bit 18.6 3 186251 1024 2240
Zhang et al., 2017, [61] Stratix V CIFAR-10 32-bit 13.2 9 200522 4096 224
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CHAPTER 4 THE PoET-BiN ARCHITECTURE

In this chapter we detail the principal contribution, multi-level RINC architecture for bi-
nary feature representation (4.1) and also the sparsely connected output layer for multiclass
classification (4.2), who together constitute PoET-BiN.

4.1 Multi-level RINC architecture

The Reduced Input Neural Circuit (RINC) is a network of tiny binary neurons with limited
inputs. In a traditional neural network, each neuron may be connected to a large number of
other neurons, for instance up to 4096 neurons in the VGG architecture [70]. This impedes
efficient implementation on hardware as it leads to numerous and interdependent logical
circuits that adversely affect the power consumption, speed and area of the architecture.
In our architecture, the total number of inputs to each neuron is limited, usually less than
8. This poses a major challenge to choose the best inputs among the ones available and
classifying the data based on only these selected inputs.

We follow an approach inspired by DTs to implement a tiny binary neuron (subsection
4.1.1). The size of the DTs is limited by the number of LUT inputs. DTs are inherently weak
classifiers and boosting techniques are used to group weak classifiers thus forming stronger
classifiers. The Adaboost algorithm is one of the most widely used boosting algorithms. In
sub-section 4.1.2, we detail our LUT-based implementation of the Adaboost algorithm. Still,
the LUT-based algorithm is limited by the number of weak classifiers that can be grouped
together. To further enhance our classifiers, we introduce a hierarchical Adaboost algorithm,
where the number of DTs increases exponentially with every level. At each level, all the
operations are designed to exactly fit in a single LUT, thereby optimizing power and area
efficiency. The hierarchical algorithm is detailed in subsection 4.1.3.

4.1.1 RINC-0 : Modified Decision Tree algorithm

A binary neuron only has two possible outputs, so all possible input combinations can be
classified into two groups. Hence, each binary neuron is a binary classifier that can be
implemented as an Input vs Output table for all the possible input combinations in LUTs (Fig.
4.1). Hardcoding such tables in a LUT or a memory is feasible when the number of inputs
is limited. With each added input the complexity increases by a factor of 2. In most cases,
we need to model a binary neuron with more inputs than can be accommodated in a single
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LUT. Therefore, hardcoding the input-output relation is not a viable option. This demands
an algorithm to choose the best inputs from the input set so as to fit the implementation
in a single LUT. We use a greedy approach inspired by DTs to choose the best inputs from
the available set of inputs. There are many other traditional machine learning classifier such
as Support Vector Machines [71] and Naive Bayes classifier [72]. However, DTs provide a
distinctive edge as they can be easily and efficiently implemented in LUTs [43].

The original DT algorithm [73] is limited either by the depth or by the number of nodes,
which often leads to under utilization of LUTs, because the LUTs used to implement the
DTs are neither constrained by the depth or nodes, rather by the number of distinct inputs.
Hence, we propose a modified DT algorithm that attempts to optimize DTs for a given
number of inputs. Off-the-shelf DT classifiers are built one node at a time. Each node is
associated with a feature that divides the input feature space and minimizes the entropy of
the DT. Contrarily, we train DTs layer-wise. Hence, all nodes in the same level of the DT
have the same features. This divides the input feature space into 2P (where P is the number
of inputs to a LUT) sub-spaces and increases the capacity of the DT for a given number of
input features. Moreover, DTs can be evaluated in O(1) time, when implemented as a LUT.
The resulting LUT-based DT is named as Reduced Input Neural Circuit (RINC-0), where-"0"
signifies the level, which is further explained in the following sections. With this modified
DT approach we have an increased capacity RINC-0 architecture that can fit exactly into
one LUT and is limited by the number of input features.

Algorithm 2 details the training algorithm for the RINC-0 module. The training dataset
contains n examples of F dimensions each. Our goal is to choose the best P features from
the available F features that best classify the data, or, in other words, reduce the entropy.
We train a level-based DT approach where we choose the best feature (best_feature) from
all features that have not been used before, that reduces the entropy of the entire level to
the largest extent. The best feature is appended to the Used feature array(Used_features).
The label array (Label_array) contains the class label for each leaf node. A leaf node is
assigned a class that has the highest number of training examples that end up in that leaf
node. These class labels form the output column of the LUT and the best features form the
input indices to the LUT.

Fig. 4.1 illustrates a DT and its equivalent LUT. The red and green arrows at each node
represent the path taken when the feature at the node is 0 or 1, respectively. This implemen-
tation of a RINC-0 module is versatile and not limited to LUTs alone. The approach can also
be implemented in memory blocks as well, as we only have to store a table with precomputed
output values for each combination of input values. Since the memory size is computed as
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Algorithm 2 RINC0: Level wise DT training algorithm
Input: data X, size n× F
Initialize Used_features = []
Initialize Label_array = []
for i→ 1 to p do

for feat→ 1 to F do
if feat not in Used_features then

level_entropy → 0
for node→ 1 to 2p−1 do

Calculate entropy of the current node
level_entropy += node_entropy

if level_entropy ≤ min_entropy then
min_entropy → level_entropy
best_feature → feat

Append Used_features array with best_feat
for cur_node→ 1 to 2P do

S0 → Sum of class0 training examples at cur_node
S1 → Sum of class1 training examples at cur_node
if S0 ≤ S1 then

Append Label_array with 1
else

Append Label_array with 0
Return Label_array, Used_features

the base-2 exponential of the number of inputs, a 30-input LUT already requires one gigabit
of data.

Technically, implementing a N-input LUT is efficient only for small values of N (typically
under 12 inside an FPGA). In any case, it is completely unrealistic to implement a LUT
for a binary circuit that has more than 40 inputs, which is still far less than the number of
inputs in a typical neuron. In order to increase the number of inputs taken into account,
we can build several RINC-0 DTs and combine them at higher level by applying a boosting
algorithm as described in the next sub-section.

Code extract 4.1.1 illustrates the python code for RINC-0 modules. The construct_lut
function trains a P -input LUTs. The best_feature function is called by construct_lut
function and chooses the feature that has not been used before and reduces the entropy of
the level by the largest extent. This feature is then made unavailable for further levels in
the same RINC-0 module. The assign_class function assigns the class labels to the leaf
nodes. Finally, the chosen features and the leaf node class labels are returned. The predict
function performs the inference on the constructed p-input LUTs. It takes the chosen feature
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Figure 4.1: LUT and its equivalent DT

indices, class labels and the test dataset as inputs. Depending on the selected feature values
of each input image, corresponding class label is chosen. This value is compared with the
true output in the dataset. It evaluates all the images in the dataset to produce the accuracy
of the RINC-0 module.
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Listing 4.1: RINC-0 Code Extract
1#RINC -0 Code Extract ###

2 def construct_lut (X,y,max_features , weights ):
3 feature_list = np.arange(np.size(X ,1))
4 lists = np.arange(np.size(X ,0))
5 lists_new = np.zeros ((1, len(lists )))
6 lists_new [0] = lists
7 feature_array = np.zeros( max_features )
8
9 for i in range( max_features ):

10 feature_list_new = \\
11 feature_list [ feature_list >=0]
12 (best_feat2 , lists_new ) = \\
13 best_feature (X,y, feature_list_new ,i, weights )
14 feature_array [i] = best_feat2
15 feature_list [ best_feat2 ] = -1
16
17 label_class = assign_class (X,y,lists_new , weights )
18 return ( feature_array , lists_new , label_class )
19
20
21 def predict (X_train ,y_train , feature_array ,label_class ,lvl ):
22 m=lvl
23 indices_my = np.arange (2** lvl)
24 sel_ind = indices_my [ label_class == 1]
25 sparse_mat = \\
26 np.flip (((( sel_ind [:, None] & \\
27 (1 << np.arange(m)))) > 0) ,1)
28 feature_array = feature_array .astype( int )
29 y_predicted = np.zeros(np.shape( X_train )[0])
30 for i in range(np.shape( X_train )[0]):
31 X_t = ( X_train [i, feature_array ] == sparse_mat )
32 y_predicted [i] = \\
33 np.any(np.sum(X_t ,axis = 1) == lvl)
34 accuracy = np.sum( y_predicted == y_train ) \\
35 /np.shape( X_train )[0]
36 return accuracy
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4.1.2 RINC-1: Boosting the MAT units

Even with the modified DT training approach, the RINC-0 modules have low capacity and
cannot predict the output of the large binary neuron with sufficient accuracy. Hence, we
increase the capacity of the weak DTs by grouping them together using a boosting algorithm.
One of the most common boosting algorithms is Adaboost [74], where each weak classifier
(a LUT in this case) is trained sequentially and focuses on the misclassified examples of the
previous classifier. The Adaboost algorithm is explained in the following sub-section.

Adaboost algorithm

Consider a dataset (xi, yi) where i is the ith example from N samples. A weak classifier(kj)
such as a DT is boosted to become a strong classifier using the Adaboost algorithm. The
Adaboost is an iterative algorithm where we boost m weak classifiers to work together to
form a strong classifier. Initially all the samples are given equal weight(wi of 1

N
. Hence the

sum of weights of all samples is 1. We create the first weak classifier k1. There are some
samples that are correctly classified while others are wrongly classified. Let We be the sum
of weights of all the wrongly classified samples. It can be represented as

We =
∑

iε(yi 6=kj(m))
wi

Using this We, we calculate the weight of the weak classifier (αj) as follows

αj = 0.5× ln(1−We

We

) (4.1)

Using this weight(αj), we reassign the weights(wi) of each sample. For the correct samples,
we reduce the weight by

w
(m+1)
i = w

(m)
i ×

√
1−We

We

(4.2)

while the samples that have have been incorrectly classified, their weights(wi) are increased
by

w
(m+1)
i = w

(m)
i ×

√
We

1−We

(4.3)

Then the weights(wi) are normalized to make the sum equal to 1 again. This weight adjust-
ment allows the next weak classifier to focus more on the samples that have been incorrectly
classified by the current classifier and focus less on correctly classified samples. In this way
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Adaboost creates a series of weak classifiers that works together to form a strong classifier.
The final strong classifier is represented as a weighted sum of the weak classifiers:

Cm(x) = α0k0 + α1k1 + α2k2 + α3k3 + ...+ αm−1km−1 (4.4)

LUT based implementation of the Adaboost algorithm

The hardware for the Adaboost algorithm is detailed in the Multiply-Accumulate and Thresh-
old (MAT) unit shown in Fig. 4.2. Each RINC-0 module is assigned a weight (Wx), x in-
dicates the corresponding RINC-0 module and ranges from 0 to P − 1. The output of each
classifier is multiplied with its respective weight and added. Finally, this weighted sum is
thresholded and the binary output is obtained. The architecture is detailed in the MAT
unit shown in Fig. 4.2. Each MAT unit theoretically requires P multiplications and P − 1
additions. Nevertheless, since each MAT module consists of P input bits and one output bit,
it can also be implemented in a LUT where we pre-compute the 1-bit output for all possible
2P inputs combinations. This MAT operation can now be performed as a single look-up
operation. Thanks to the addition of the Adaboost layer, the number of inputs to the overall
architecture has increased from P to P 2. We denote this module as RINC-1, where-"1" is
the number of Adaboost levels. However, the number of inputs to the LUT-based implemen-
tation of the MAT module is still limited. Hence, it is not possible to group more than P

weak classifiers. To overcome this issue, we propose a hierarchical Adaboost algorithm in the
following sub-section.

The Python code extract in 4.1.2 is used to build a RINC-1 classifier. It uses the construct_lut
and predict_out_lut function to train and perform inference on the RINC-0 modules respec-
tively. Each RINC-0 modules is created iteratively and assigned a corresponding weight
(weights) according to the Adaboost algorithm.
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Figure 4.2: RINC-1 architecture with p=6
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Listing 4.2: RINC-1 Code Extract
1 def adaboost_train (X_train ,y_train ,X_test ,y_test , \\
2 n_trees ,lvl , init_weights ):
3
4 weights = np.copy( init_weights )
5 label_array = np.zeros (( n_trees ,2** lvl ))
6 feats_array = np.zeros (( n_trees ,lvl ))
7 new_weights = np.copy( init_weights )
8 alpha = np.zeros( n_trees )
9 p_outputs_store = np.zeros (( n_trees ,shape( X_train )[0]))

10 p_test_store = np.zeros (( n_trees ,shape(X_test )[0]))
11
12 for i in range( n_trees ):
13 ( feature_array , lists_new , l_class ) = \\
14 lvl_wise_copy2 . construct_lut \\
15 (X_train ,y_train ,lvl , weights )
16 label_array [i ,:] = l_class
17 feats_array [i ,:] = feature_array
18 predicted_outputs = predict_out_lut \\
19 (X_train ,y_train ,feature_array ,l_class ,lvl)
20 p_outputs_store [i] = predicted_outputs
21 predicted_test_out = predict_out_lut \\
22 (X_test ,y_test ,feature_array ,l_class ,lvl)
23 p_test_store [i] = predicted_test_out
24 cur_error = \\
25 sum( weights [where( predicted_outputs != y_train )])
26 new_weights [where( predicted_outputs != y_train )]
27 =0.5* weights [where( predicted_outputs != y_train )]
28 / cur_error
29 new_weights [where( predicted_outputs == y_train )]
30 =0.5* weights [where( predicted_outputs == y_train )]
31 / (1 - cur_error )
32 weights = new_weights
33
34 return p_test_store , p_outputs_store , \\
35 alpha ,label_array , feats_array
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4.1.3 RINC-L: Hierarchical Adaboost algorithm
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Figure 4.3: RINC-2 architecture

In FPGAs with 6-input LUTs, even with P 2 inputs, the RINC-1 module can accommodate
only 36 inputs which is highly insufficient. Hence, we propose a hierarchical Adaboost al-
gorithm to increase the capacity. Firstly, we build a RINC-1 module with P DTs. We also
call it a subgroup in this architecture. In each subgroup, the weights are represented as
wxy where y indicates the index of a RINC-0 module and x indicates the sub-group number
as shown in Fig. 4.3. This subgroup is considered a weak classifier. Using the Adaboost
algorithm, we construct up to P subgroups. Each subgroup is assigned a weight (Wx), where
x indicates the sub-group number. Hence, this creates two levels of Adaboost, one within the
subgroup and second across subgroups. The binary outputs of the subgroups are multiplied,
added and thresholded in a MAT module. Again this module can be implemented as a LUT.
We can observe from Fig. 4.3 that adding another level of Adaboost increases the number
of RINC-0 modules exponentially, thus accommodating PL+1 inputs. In a hierarchical Ad-
aboost algorithm with L levels and p inputs per LUT, there are pL RINC-0 modules and
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∑L−1
l=0 p

l Look-Up based MAT modules. Thus,

LUTs required = pL +
L−1∑
l=0

pl =
L∑
l=0

pl = PL+1 − 1
P − 1 (4.5)

Algorithm 3 details the hierarchical Adaboost algorithm. We create groups of P DTs together.
Each DT is associated with a weight, that is multiplied with the corresponding output of the
DT and thresholded. Now we consider this P group of DTs as a weak classifier and assign a
new weight to each group. We further build such groups of DTs and assign a weight to each
of them according to the Adaboost algorithm. Again, a MAT module is required to group
these sub groups and it is implemented as a LUT. This can be viewed as 2 levels of Adaboost.
Considering this RINC-2 as weak classifier, we can build sub-groups of RINC-2 classifier and
group them together using a MAT module to build a RINC-3 architecture. Similarly, further
levels of hierarchical Adaboost can be added to build a RINC-L architecture.

The Python code for RINC-2 architecture is illustrated in 4.1.3. The rinc_2 function
takes the trainset and testset as inputs. The adaboost_train function called in the rinc_2
function creates a RINC-1 module. We build totalestimators

inpDT
such RINC-1 modules, where

total_estimators refers to the total number of decision trees required per neuron, and
inp_DT refers to the value P . The corresponding weights for each of the RINC-1 modules
are calculated in the new_init_weights. The RINC-2 MAT module weights are calculated
in the alpha_next_level variable. The function returns the predicted outputs of the RINC-2
module for the trainset and testset. This function is called once each for a neuron. Moreover,
given sufficient computation and memory resources, multiple instances of this function can
be run in parallel.

Algorithm 3 RINC-L: Hierarchical Adaboost training algorithm
Input: data X, size n× F
for l→ 1 to L do

Construct P RINC-(l − 1) classifiers
Multiply their outputs with corresponding weights
Sum and threshold the result
Encode the MAT operation as LUT
Consider these P RINC-(l − 1) classifiers as a single weak classifier
Assign the new weights to each training example

Output: Thresholded result of the final MAT operation
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Listing 4.3: RINC-2 Code Extract
1 def rinc_2(X_train ,X_test ,y_train ,y_test ):
2
3 for i in range( int ( total_estimators /inp_DT )):
4 BNNout_temp , BNNout_train_temp ,alpha ,label_array , \\
5 feats_array = adaboost_v1 . adaboost_train (X_train ,\\
6 y_train ,X_test ,y_test ,inp_DT ,inp_DT , init_weights )
7 BNNout = np. transpose ( BNNout_temp )
8 BNNout_train = np. transpose ( BNNout_train_temp )
9 cur_weights = np.zeros (( hyp_inp ,1))

10 cur_weights [: ,0] = alpha
11 sum_cur = np.sum( cur_weights )
12 th = sum_cur * 0.5
13 F_next_lvl_test [:,i] = \\
14 np.matmul(BNNout , cur_weights )[: ,0] > th
15 F_next_lvl_train [:,i] = \\
16 np.matmul(BNNout_train , cur_weights )[: ,0] > th
17 cur_error = np.sum( init_weights [ y_train != \\
18 F_next_lvl_train [:,i]])
19 new_init_weights [where( F_next_lvl_train [:,i] \\
20 != y_train )] = 0.5 * init_weights [where \\
21 ( F_next_lvl_train [:,i] != y_train )] / cur_error
22 new_init_weights [where( F_next_lvl_train [:,i] \\
23 == y_train )] = 0.5 * init_weights [where \\
24 ( F_next_lvl_train [:,i] == y_train )] /(1- cur_error )
25 init_weights = new_init_weights
26
27 all_weights = np.zeros (( total_estimators /inp_DT ),1)
28 all_weights [: ,0] = alpha_next_level
29 sum_aw = np.sum( all_weights )
30 th = sum_aw / 2
31 BNNout_f = matmul( F_next_lvl_test , all_weights )
32 BNNout_f_train = matmul( F_next_lvl_train , all_weights )
33 BNNout_f_bin = BNNout_f > th
34 BNNout_f_train_bin = BNNout_f_train > th
35 BNNacc = np.sum(y_test == BNNout_f_bin [: ,0]) \\
36 / shape( BNNout_f_bin )[0] *100.0;
37 return BNNout_f_train_bin [:,0], BNNout_f_bin [: ,0]
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4.2 Binary to multiclass classification

The RINC-L modules can be used to implement any tiny binary neuron in the network. How-
ever, RINC-L being a binary classifier, it cannot be used directly for multiclass classification.
Traditionally, multiclass classification using DTs have been solved using two approaches,
Multiclass DTs [46] and One-vs-all classifications [75]. Modifying the RINC architecture as
Multiclass DT makes it expensive to implement on hardware. In Multiclass DTs the leaf
nodes refer to either one of the nc classes, where nc is the number of classes. This requires
each DT to be represented over log2 nc bits. Therefore, the RINC-0 and MAT modules
cannot be confined to a single LUT. This effect would cascade over the entire architecture
and would make it inefficient. Also, we do not consider one-vs-all classifications using Bi-
nary DTs as there is a large drop in accuracy between each individual binary classifier and
the overall multi-class classifier designed by comparing the confidences [43]. Moreover, the
one-vs-all classification also requires a confidence comparison circuit that consumes more re-
sources. Hence, it is imperative to look for other alternatives to use our RINC classifiers for
multiclass classification.

On the other hand, fully connected layers have been successful in multiclass classification
than DTs. Hence, we formulate a combined approach with our RINC architecture and fully
connected layer to overcome the multiclass challenge. We preserve the output fully connected
layer, while replacing the hidden layers in the classifier with our RINC-L architecture. We
then adapt the output fully connected layer to work in tandem with the RINC-L architecture
for multiclass classification. In a way, we break the task of the classifier into two parts, first
the binary classification of the hidden layer representations (sub-section 4.2.1) and then the
multiclass classification of the output layer (sub-section 4.2.2).

4.2.1 Replacing the hidden layers

We use a back-to-front approach where we start replacing the binary neurons in the network
with our RINC-L architecture from the last layers and progressively move towards the initial
layers. Given sufficient capacity of the RINC-L modules, it is possible to replace multiple
layers of the neural network with a single RINC-L module. In order to optimize the number of
RINC-L modules required, we add a fully connected layer with binary sigmoid activation [76]
after the last hidden layer. We call this fully connected layer, intermediate layer. It consists
of nc×P neurons, where nc is the number of classes in the multiclass classification. Typically,
the value of P ranges from 6 to 8 and the value of nc is 10 for the MNIST, CIFAR-10 and
SVHN datasets. Hence, the intermediate layer has 60-80 neurons for these datasets. Thus,
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the intermediate layer with binary sigmoid activation can be viewed as a set of binary neurons.
This enables us to train a RINC-L module to emulate a binary neuron representation in the
intermediate layer. Similarly, binary sigmoid activation can be introduced in the earlier layers
and can be replaced with RINC-L modules. Since there are fewer neurons in the intermediate
layer than in the hidden layers, it takes fewer resources to train a RINC-L classifier for each
of the neuron in the intermediate layer. On the other hand, this restricts the representation
space. Hence, the hyper parameter P must be chosen carefully to balance the trade-off
between accuracy and resources.
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4.2.2 Sparsely connected output layer

The outputs of the RINC-L modules (emulating the intermediate layer representation) are
connected to the output layer. However, this output layer needs to be optimized for LUT
based implementation. Firstly, we modify the output layer to be sparsely connected to the
intermediate layer. Each neuron in the output layer is connected to only P neurons of the
intermediate layer as shown in Fig. 4.4. Hence, each neuron depends on P inputs and
therefore can be implemented as a single Look-Up operation. Also, the output layer can be
seen as a small set of P−input fully connected layers stacked in parallel. Since the output
layer is trained as a fully connected network, it inherits all the properties of neural networks
to classify multiclass data effectively. The output layer is separately retrained with RINC-L
outputs to adapt the weights of the output layer. The retraining of the sparsely connected
output layer for multiclass classification adapts the weights to the RINC-L binary hidden
layer representations.

The output layer activation is not binary. Nevertheless, since it is sparsely connected to
the previous layer, it can still be efficiently implemented with LUTs. Each output neuron
is quantized to q-bits precision, thus requiring q LUTs per output neuron. Therefore, the
output layer can be implemented using q × nc LUTs. This is negligible as compared to the
resources required by the RINC-L modules. Thus, with the help of few more LUTs we achieve
higher accuracy on multiclass classification than using costly multiclass DTs or One-Vs-All
classifiers. This final architecture with multiple RINC-L modules and q-bit quantized output
layer implemented as LUTs make the announced PoET-BiN.

4.3 Parser to generate VHDL code

Once the architecture of the network is decided and the accuracy obtained, we need to im-
plement it on a embedded system. FPGA with its programmable logic provides an ideal
platform to implement our architecture. However, our architecture can contain tens of thou-
sands of LUTs. It is impractical to manually code each LUT. Hence we designed parsers that
take in the features, class labels and weights from the Python files to generate the VHDL
code. Code 4.3 illustrates the parser for RINC-0 modules. First, we generate the interme-
diate signals then we generate the actual LUT. Similarly Code 4.3 is a parser for the MAT
modules. Code 4.3 illustrates a parser for the output layer. While code 4.3 is a parser to
generate the VHDL testbench to compare the outputs generated by the VHDL module and
Python.
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Listing 4.4: Parser for RINC-0 modules
1### Signal RINC L1###

2 for i in range(np.shape( RINC_0_feats )[0]):
3 for j in range(np.shape( RINC_0_feats )[1]):
4 for k in range(np.shape( RINC_0_feats )[2]):
5 f.write(’signal C_’+ str (i)+’_S_ ’+ str (j)
6 +’_L_ ’+ str (k)+’_out : std_logic := \\
7 \’0\’; \n’)
8f.write(’\n’)
9### Signal RINC L2###

10 for i in range(np.shape( RINC_0_feats )[0]):
11 for j in range(np.shape( RINC_0_feats )[1]):
12 f.write(’signal C_’+ str (i)+’_S_ ’+ str (j)+ \\
13 ’_out : std_logic := \’0\’; \n’)
14f.write(’\n’)
15### First level of RINC ###

16 for i in range(np.shape( RINC_0_feats )[0]):
17 for j in range(np.shape( RINC_0_feats )[1]):
18 for k in range(np.shape( RINC_0_feats )[2]):
19 f.write(’C_’+ str (i)+’_S_ ’+ str (j) \\
20 +’_L_ ’+ str (k)+’_inst : LUT8 generic map
21 (INIT => "’)
22 for l in range(shape( RINC_0_labels )[3]):
23 f.write (\\
24 str ( RINC_0_labels [i,j,k,shape \\
25 ( RINC_0_labels )[3] - l - 1]))
26 f.write(’") port map( O =>’ + \\
27 ’C_’+ str (i)+’_S_ ’+ str (j)+’_L_ ’+ str (k) \\
28 +’_out ’)
29 for l in range(shape( RINC_0_feats )[3]):
30 f.write(’, I’ + str (l) + ’ => \\
31 inp_feat (’ + \\
32 str ( RINC_0_feats [i,j,k,shape \\
33 ( RINC_0_feats )[3] -l -1]) + ’)’)
34 f.write(’); \n’)
35f.write(’\n’);
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Listing 4.5: Output layer parser
1 for i in range(10):
2 for j in range(8):
3 f.write(’C_’+ str (i)+’_B_ ’+ str (j)+’_inst : \\
4 LUT8 generic map(INIT => "’)
5 ###LUT 8###

6 for k in range(2** np.shape( MAT_weights )[1]):
7 f.write( str ( MAT_labels_bin [i ,\\
8 shape( MAT_labels_bin )[1] - k - 1,j]))
9 ###In reverse order ###

10 f.write(’") port map( O =>’ + ’C_’+ str (i)\\
11 +’_B_ ’+ str (j)+’_out ’)
12 for k in range(np.shape( MAT_weights )[1]):
13 f.write(’, I’ + str (k) + ’ => \\
14 C_’+ str (i*8 + k)+’_out ’)
15 ### Inputs Linearly ###

16 f.write(’); \n’)
17 f.write(’\n’);
18
19f.write(’\n’);

Listing 4.6: Testbench parser
1 for i in range(100):
2 f.write(’inp_feat <= \"’ );
3 for j in range(np.shape( inp_data )[1]):
4 f.write( str ( inp_data [i, \\
5 shape( inp_data )[1] - j - 1]))
6 f.write(’\"; ’)
7 f.write(’cor_in <= \"’ )
8 for j in range(np.shape( out_data )[1]):
9 f.write( str ( out_data [i,j]))

10 f.write(’\" ; wait for 10 ns; \n’);
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Listing 4.7: MAT module parser
1### Printing the signals ###

2 for i in range(80):
3 f.write(’C_’ + str (i) + ’_out <= inp_feat (\\
4 ’ + str (i) + ’); \n’)
5f.write(’\n’);
6 for i in range(80):
7 f.write(’signal C_’ + str (i) + \\
8 ’_out : std_logic := \’0\’; \n ’)
9f.write(’\n’);

10 for i in range(np.shape( MAT_labels )[0]):
11 f.write(’C_’+ str (i)+’_inst : LUT8 generic map(INIT =>"’)
12 for l in range(np.shape( MAT_labels )[2]):
13 f.write( str ( MAT_labels [i,-1,\\
14 shape( MAT_labels )[2] - l - 1]))
15 f.write(’") port map( O =>’ + ’C_’+ str (i)+’_out ’)
16 for l in range(np.shape( RINC_0_feats )[3]):
17 i f l < (np.shape( MAT_labels )[1] - 1):
18 f.write(’, I’ + str (l) + ’ => \\
19 C_’+ str (i)+’_S_ ’+ str (l)+’_out ’)
20 e l se :
21 f.write(’, I’ + str (l) + \\
22 ’ => \’ 0 \’ ’)
23
24f.write(’); \n’)

This chapter introduces our LUT based approach to build neural networks. Traditionally
neural networks can be expressed as multiplication, addition and other non-linear activation
operations. We replace these operations as LUT access, which consumes less power, area and
is faster then multiplication or addition operation. We propose a method to train these LUTs
using the modified Adaboost algorithm and also propose a hierarchical Adaboost algorithm
to group these LUTs together making a strong binary classifier. We also proposed a mixed
DT and neural network approach using LUTs for multiclass classification. In the next chapter
we will look at using these techniques to build CNN networks to solve image classification
tasks on the MNIST, CIFAR-10 and SVHN datasets.
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CHAPTER 5 EXPERIMENTAL SETUP, RESULTS AND DISCUSSIONS

5.1 Experimental setup

In this section we detail how we train the proposed architecture and test its performance
with various datasets.
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Figure 5.1: Overall work flow

We developed the workflow shown in Fig. 5.1 to train the RINC modules starting from a
Vanilla CNN network. Firstly, we use a pretrained full precision CNN as our base architecture
(Vanilla network). The base architecture for each dataset is mentioned in Table 5.1. FE refers
to the feature extractor which consists of convolutional, maxpooling and activation layers.
In the vanilla network, the features are represented with full precision. However, RINC
modules can only be trained on binary features. Hence, we replace the ReLU with binary
sigmoid activation after the last convolutional layer to obtain the binary features. This is
represented by the Bin act. module in the Binary Feature Representation Network in Fig.
5.1. Further, an intermediate layer and a binary sigmoid activation are added after the last
hidden layer. This forms the teacher network. Then, we replace all the hidden layers and
the intermediate layer in the classifier using our RINC architecture which is the student
architecture in our work. Finally, the output layer is retrained with the RINC outputs. The
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output layer activations are quantized to q bits for efficient hardware implementation. In our
test it was observed that when q = 4, the loss in accuracy was quite significant as compared
to the original floating point implementation. On the other hand, with q = 8 the loss in
accuracy was minimal. In the case when q = 16 the accuracies were similar to that of 8-bit
quantization but it requires twice the amount of LUTs as compared to 8-bit quantization.
Hence we use 8-bit quantized output layer.

The architecture hyperparameters are listed in Table 5.1 and explained in detail in the
following sub-sections for each dataset. We use techniques such as batch normalization [77],
exponentially decreasing learning rate, squared hinge loss [78] and ADAM optimizer [79] in
all the vanilla networks. Also, we do not retrain with the validation set. We do not use any
image augmentation techniques except for padding in CIFAR-10.

Table 5.1: Network architecture

Architecture (Arch.) Symbol Dataset
LeNETFE − (512FC)− (10FC) M1 MNIST
V GG11FE − (4096FC)− (4096FC)− (10FC) C1 CIFAR-10
V GG11FE − (2048FC)− (2048FC)− (10FC) S1 SVHN

5.1.1 MNIST

As seen in Table 5.1, we use the LeNet architecture for the MNIST dataset. Using two
convolutional layers of 5× 5 convolutions and two pooling layers of size 2× 2, we transform
the feature space to 512 binary features. The classifier portion consists of only one hidden
fully connected layer of 512 neurons with ReLU activation and an output layer of 10 neurons.
We use 8-input LUTs (P = 8). Hence, the intermediate layer contains 10× 8 = 80 neurons.
We train a 2-level RINC (RINC-2) module with 32 DTs for each neuron in the intermediate
layer. Therefore each RINC-2 module selects a maximum of 256 ( = 32 × 8) features from
the available 512 binary features. These predicted outputs of the RINC-2 modules are used
to retrain the final 8−bit quantized output layer.

5.1.2 CIFAR-10

The CIFAR-10 training procedure is similar to the one used for MNIST, but for a bigger net-
work, i.e. a VGG-11 architecture with 8 convolution layers and 3 fully connected layers. The
full precision implementation proposed by Kuang [80] is used as reference. The convolutional
layers transform the input to a binary feature space of 512 features. There are 2 hidden fully
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connected layers with 4096 neurons each. To augment the capacity of RINC modules, we
use 8−input LUTs (P = 8) and 40 DTs for each of the neuron in the intermediate layer.
The intermediate layer consists of 8× 10 = 80 binary neurons. The predicted outputs of the
RINC-2 modules are used to retrain the output layer which is quantized to 8 bits.

5.1.3 SVHN

SVHN is implemented with an architecture similar to the one used for CIFAR-10, except
that LUTs have 6 inputs (P = 6), leading to 36 DTs per neuron with 2 hierarchical levels
(RINC-2) of Adaboost. We also use the extra dataset from the SVHN dataset for training.

5.2 Results and Discussions

We analyse the accuracy, power consumption and latency of PoET-BiN for the MNIST,
CIFAR-10 and SVHN datasets.

5.2.1 Classification accuracy

We report four sets of accuracies for each dataset in Table 5.2. Firstly, we report the accuracy
of the Vanilla network (A1), followed by the accuracy with binary sigmoid activation after
the last convolutional layer to obtain the binary features (A2). Then we report the accuracy
after binarizing the intermediate layer (A3). This forms the teacher network. Finally, we
replace the classifier portion of the teacher network with the RINC classifiers and quantize
final layer whose accuracy is reported as (A4). This helps isolate and study the effect of each
modification. We report the best accuracy achieved over different sets of hyper-parameters
such as number of DTs and LUT size for RINC modules. Fig. 5.1 illustrates the progressive
modifications with relevant accuracies.

Table 5.2: Overall classification accuracy on MNIST, CIFAR-10 and SVHN dataset

Arch. Dataset A1(%) A2(%) A3(%) A4(%)
M1 MNIST 99.20 99.06 98.93 98.15
C1 CIFAR-10 91.02 89.88 89.10 92.64
S1 SVHN 97.36 96.98 96.22 95.13

In Table 5.2 , we observe a drop in accuracy of approximately 0.3% for MNIST, 1.9% for the
CIFAR-10 dataset and 1.1% for the SVHN datasets between the Vanilla and teacher network
(A1−A3). This is expected as we restrict the feature space by using binary representations.
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This teacher network is used to train our RINC classifiers and quantized sparsely connected
output layer. This results in a further dip in accuracy of 0.8% for MNIST and 1% for SVHN.
An interesting observation in the case of CIFAR-10 is that by replacing the fully connected
layers with PoET-BiN, the accuracy improves by 1.5% for CIFAR-10. This anomaly could
be due to better generalization as a result of the noise injected into the system due to the
inaccuracies in intermediate layer prediction by the RINC modules. Similar observations
were seen in Dropconnect [42].

Table 5.3: Comparison with other techniques

Implementation Accuracy (%)
MNIST CIFAR-10 SVHN

BinaryNet [31] 98.97 89.76 95.06
POLYBiNN [43] 97.52 91.58 94.97
NDF [47] 99.42 90.46 95.20
Our work 98.15 92.64 95.13

Now that we have obtained the final accuracy of the PoET-BiN architecture, it is necessary
to have a fair comparison with other architectures present in the literature. We choose
three starkly different architectures, namely BinaryNet [31], POLYBiNN [43] and Neural
Decision Forest (NDF) [47]. BinaryNet is a quantized fully connected layer approach, while
POLYBiNN is a complete Decision Tree approach and NDF is a hybrid mixture of both
with differentiable DTs. To ensure fairness we use the same feature extractor across all
architectures, and change the classifier portion of the architecture. We used our Python
implementation for BinaryNet and POLYBiNN. While, Jing’s Pytorch implementation of
NDF [81] was adapted for the comparative analysis. From Table 5.3, we can see that our
architecture performs the best in the case of CIFAR-10 and second best in case of SVHN.
Though the NDF architecture performs better than PoET-BiN on MNIST and SVHN, it is
not optimized for hardware implementations.

For MNIST, the significant reduction in accuracy can be overcome by increasing the number
of RINC classifiers. In the MNIST architecture, rather than training the RINC classifiers to
predict the intermediate layer outputs, we can train a RINC classifier for each of the neuron
in the only hidden layer in M1 architecture. This results in 512 RINC-2 modules. Retraining
the fully connected output layer with the 512 RINC classifier outputs results in an accuracy
of 98.62% that is more closer to that of NDF. However, this implementation consumes more
resources. Therefore, we do not consider this accuracy. However, it proves the versatility
of the RINC architecture in implementing binary neurons. We do not implement similar
architectures for SVHN and CIFAR-10, as they have significantly more neurons in the last
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hidden layer (2048 for SVHN and 4096 for CIFAR-10), requiring long training times.

Another important observation to be noted in Table 5.3 is that the PoET-BiN architecture
performs better than off-the-shelf DTs used in POLYBiNN across all datasets, in spite of
them having significantly more nodes in each DT. This can be attributed to our hierarchical
training algorithm and unique binary to multiclass classification technique.

Table 5.4: Comparison with other works in the literature

Architecture Accuracy (%)
MNIST CIFAR-10 SVHN

Our work 98.15 92.64 95.13
Ternary Weighted Networks [82] 99.35 92.56 -
Gated XNOR-Net [37] 99.32 92.50 97.37
XNOR-Net [36] - 91.12 -
BinaryConnect [30] 98.71 90.10 97.70
BinaryNet [31] 98.60 89.88 97.47
TNN [83] 98.33 87.89 97.27
TrueNorth [53] 92.70 83.41 96.66
POLYBiNN [43] 97.18 81.1 -
FINN [48] 95.8 80.1 94.9
Deep Forest [44] 99.26 65.67 -

In Table 5.4 we compare the accuracy of our architecture with other works in the literature. It
shows that our network has the best accuracy for the CIFAR-10 dataset among the compared
works. The base architecture adapted from Kuang [80] achieves a high accuracy on the
CIFAR-10 dataset. This effect trickles down till the final architecture. In the case of the
MNIST dataset, we can see that our network achieves a comparable accuracy with respect
to other quantized implementations. On the other hand for the SVHN dataset, our network
under performs. This could be because our base floating point architecture itself was not
state-of-the-art. We didn’t use state-of-the-art architectures for the SVHN dataset as those
networks entailed complex mathematical operations to help boost the accuracy. Using such
networks would have lead to inefficient hardware implementations. It must be noted each of
these networks compared have different architectures. For example, the BinaryConnect and
BinaryNet architectures use AlexNet for CIFAR-10 classification, while XNOR-Net uses a
Resnet architecture and we use a VGGNet architecture. On the other hand, FINN uses a
custom architecture, TrueNorth uses Spiking neural networks and Deep Forest does not use
any convolutional layers.
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Table 5.5: RINC power results

Data set MNIST CIFAR-10 SVHN
Dynamic(W ) 0.468 0.300 0.374
Static(W ) 0.045 0.041 0.043
Total(W ) 0.513 0.341 0.417

5.2.2 Power

One of the most important metrics apart from accuracy for hardware implementations of
neural networks is power. We compare the power consumed by the PoET-BiN architecture
to the classifier portion of the Vanilla neural network and quantized neural networks. We
implement our PoET-BiN architecture based classifier on Spartan-6 45-nm FPGA from Xilinx
to calculate the power consumption. Typically, the PoET-BiN architecture used for the three
datasets consists of thousands of LUTs. It is quite cumbersome to write a HDL script for
such a large implementation. Hence, we developed a Python script to generate the VHDL
code automatically from the trained LUTs. The retrained final layer is also implemented
on the FPGA automatically by our script. To report the power of this architecture, it has
to fit in the FPGA. The Spartan-6 FPGA has 276 input/output ports but our architecture
has 512 features. Hence the inputs are provided through a shift register with a single input.
This enables us to fit the architecture into the target FPGA. However, this also adds some
logic and signal power which is 4 mW in the case of MNIST and CIFAR-10 and 6 mW in the
case of SVHN. The power consumed by the PoET-BiN architecture (subtracting the power
consumed in the shift registers) are reported in Table 5.5. The outputs generated by the
FPGA and those generated by PyTorch are verified in the testbench, that is automatically
produced by another Python script.

We compare the power consumed to that of the Vanilla neural network and quantized neural
networks. Most of the hardware implementations of neural network in the literature pro-
vide the power consumed for the entire network including the convolutional layers. It is
difficult to accurately estimate the power consumed in the fully connected layers from this
data. Hence we use a bottom-up approach to estimate the power of the classifier portion of
these networks. Mathematical operations (multiplication and addition) and memory fetching
operations consume most of the power in the fully connected layers. Power consumption of
memory fetching operations depends on the evaluation platform, memory type and other
factors. Hence, it is quite difficult to estimate the power required for memory fetching op-
erations accurately without an actual implementation. On the other hand, we can estimate
the power required for the mathematical operations. First, we implement a single multipli-
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Table 5.6: Single arithmetic operation power results

Operation Dynamic (W ) Static Total
(at 62.5 Mhz) clock logic signal IO (W ) (W )
Multiplication (16 bits) 0.001 0.001 0.000 0.020 0.036 0.058
Addition (16 bits) 0.001 0.000 0.001 0.024 0.036 0.062
Multiplication (32 bits) 0.002 0.001 0.001 0.035 0.037 0.076
Addition (32 bits) 0.001 0.000 0.002 0.048 0.037 0.088
Multiplication (FP) 0.005 0.006 0.005 0.046 0.037 0.098
Addition (FP) 0.004 0.003 0.005 0.034 0.037 0.083

Table 5.7: Total arithmetic operations

Operation MNIST CIFAR-10 SVHN
Addition 267,264 18,915,328 5,263,360
Multiplication 267,264 18,915,328 5,263,360

cation and an addition on the same FPGA. Table 5.6 provides the power consumption for a
single multiplication and an addition operation. The multiplication is implemented with a
Digital Signal Processor (DSP) block in the FPGA, which consumes less power compared to
a LUT-based implementation. The addition operation is implemented with LUTs and dedi-
cated carry chains. We use IP cores provided by Xilinx to implement the multiplication and
addition. Now, that we know the power consumed by each operation, we calculate the total
number of multiplications and additions in each of the fully connected layers of the Vanilla
architecture Table 5.7. From these data we estimate the power consumed in the classifier
portion of the Vanilla and quantized neural networks except binary quantized networks.

In the case of binary quantized neural network, each multiplication or addition operation
consumes an insignificant amount of power. Hence, we estimate the power consumption by
implementing a binary neuron. Each binary neuron consists of multiple binary multiplications
(XNOR operation) followed by a tree structured adder [84] and a comparator. We then
multiply this value with the number of neurons in the classifier portion of the respective
network for each dataset to estimate the total power consumption of classifier portion of
each network. In the case of MNIST, each binary neuron consumes 34 mW of logic + signal
power. However, this includes the power consumed by two shift registers that are used to
feed in the values for the inputs and weights. Each shift register consumes 4mW of power
that needs to be subtracted from the total power. Hence, the power consumed by the binary
neuron portion alone is 34− 4− 4 = 26 mW . There are 522 binary neurons in the classifier
portion of the M1 architecture. Therefore the total dynamic power consumed by all the
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binary neurons is 26 ∗ 522 = 13.572 W . This value is multiplied by the time period of the
clock (16 ns) to obtain the energy shown in Table 5.8. Similarly, we estimate the energy in
the classifier portion of binary quantized networks for the CIFAR-10 and SVHN datasets.

Such a method to estimate the power has the advantage of considering the same target device
for all the estimations as illustrated in Table 5.6. Other works use the metrics proposed by
Horowitz in [50] but we have not been able to find a fair estimation of a small LUT. Moreover,
the power analyzer gives a detailed report on the power distribution in the FPGA. The total
power can be coarsely divided into static and dynamic power. The static power, as the name
suggests, is constant for a given FPGA device. The dynamic power can be further sub-divided
into clock, logic, signal and IO power. The clock and IO power are also constant for a given
FPGA device at a given frequency of operation. Hence, the actual energy involved in the
computation of a combinational function is only concerned by the logic and signal columns of
Table 5.6. Therefore, we only use these values to estimate the power of a given architecture.

Along with power, energy is also an important metric to be taken into consideration. The
energy is calculated in Table 5.8 from the power values mentioned in Table 5.5 and Table
5.6. To calculate the energy value we use the time period of the clock. Our PoET-BiN
classifier requires single cycle to implement the inference. For the SVHN dataset, we use a
RINC-2 classifier with P = 6 that is easily implementable on Xilinx LUTs as they support
6 input LUTs. Hence, we use a 100 MHz clock for the RINC-2 classifier implementation for
SVHN. On the other hand, MNIST and CIFAR-10 require RINC-2 classifiers with P = 8.
As each 8-input LUT requires four 6−input LUTs, the critical path increases. Therefore,
we use a slower clock with a frequency of 62.5 MHz. We can increase the frequency of the
implementation by pipelining the architecture, but this will lead to more power consumption
due to the extra registers. Hence, we stick to single cycle implementations. Using these
information, the energy results are calculated and detailed in Table 5.8. We observe that
the PoET-BiN architecture as compared to a full precision vanilla network consumes 1× 104

times less energy in the case of MNIST, almost 1 × 106 for CIFAR-10 and 4 × 105 in the
case of SVHN. Even in the case of 16-bits quantized network, the PoET-BiN architecture
consumes almost 1 × 103 less energy in MNIST, 1 × 105 in CIFAR-10 and 2.5 × 104 in the
case of SVHN. Comparing the PoET-BiN to 1-bit quantization (binary), we observe our
architecture consumes 25× less energy in the case of the MNIST dataset, 7× 103 less energy
for the CIFAR-10 dataset and 2× 103 less in the case the SVHN dataset.

Actually, these values are the worst case scenario of power reduction since we do not consider
the power required for memory fetching operations in vanilla and quantized neural networks.
These operations are 10× more power intensive than multiplication operations [50]. On the
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Table 5.8: Energy consumption

Technique Energy (J)
MNIST CIFAR-10 SVHN

Vanilla 8.0× 10−5 5.7× 10−3 1.6× 10−3

1-bit Quant 2.1× 10−7 3.9× 10−5 9.2× 10−6

16-bit Quant 8.5× 10−6 6.0× 10−4 1.0× 10−4

32-bit Quant 1.7× 10−5 1.2× 10−3 3.6× 10−4

PoET-BiN 8.2× 10−9 5.4× 10−9 4.1× 10−9

other hand, the PoET-BiN architecture does not need any memory access operations. Hence,
in reality our architecture is even more power efficient than what we report here.

5.2.3 Latency and Area

Apart from accuracy and power, embedded application are often time critical and demand
low latency. Even with a single cycle implementation, the PoET-BiN architecture has a low
latency. From Table 5.9, we can observe that the latency is 5.85 ns in the case of SVHN,
while for CIFAR-10 and MNIST it is 9.48 ns and 9.11 ns respectively. This translates to a
throughput of up to 166 M images per second in the case of SVHN and 100 M images per
second in the case of MNIST and CIFAR-10.

Along with accuracy, power and latency, the area required to implement the inference archi-
tecture is an important metric. The PoET-BiN architecture stands out from other inference
techniques such as quantization or pruning in this regard as our implementation is focused
on making each sub operation fit a single LUT. This yields a highly optimized architecture
in terms of area as seen in Table 5.9. Especially in the case of SVHN, the PoET-BiN archi-
tecture with P = 6 and 2 levels (RINC-2) requires 2660 LUTs. This can be verified with
manual calculations as follows. Firstly, each RINC-0 module requires a single LUT. Then,
a RINC-1 module with P = 6, consists of 6 RINC-0 modules and a MAT module, hence
requiring 6 + 1 = 7 LUTs. A RINC-2 module consists of 6 RINC-1 module and a MAT
module, thus requiring 7 ∗ 6 + 1 = 43 LUTs. Sixty such RINC-2 modules are required to
emulate the intermediate layer, therefore consuming 43 ∗ 60 = 2580 LUTs. The final output
layer consists of 10 neurons whose values are quantized to 8 bits. Hence each neuron in the
output layer requires 8 LUTs. Therefore, 2580 + 80 = 2660 LUTs are required to implement
the classifier architecture for SVHN. This is the exact count given by the Xilinx synthesizer
as well. As there are no overlaps between inputs in each DT, the Xilinx synthesizer cannot
further simplify the design. This supports the idea that our training algorithm produces a
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Table 5.9: Implementation results

Data set MNIST CIFAR-10 SVHN
Latency(ns) 9.11 9.48 5.85
LUTs 11899 9650 2660

highly efficient implementation.

In the case of MNIST and CIFAR-10 we use 32 and 40 DTs per RINC-2 module, respectively,
with P = 8. Since Xilinx LUTs have a maximum of 6 inputs, each 8−input LUT requires four
6−input Xilinx LUTs. Sometimes, this conversion results in redundancy and the synthesizer
removes a few LUTs that do not affect the result. Further analysis reveals that most of the
LUTs removed by the synthesizer are MAT modules. This is because some DTs have a very
low weight assigned by the Adaboost algorithm, which finally does not affect the result of the
MAT operation. This suggests that it is possible to further improve our training algorithm.
Such opportunity is predominately visible in the case of CIFAR-10 where approximately
36% of the LUTs are removed by the synthesizer producing a smaller architecture in spite
of having more DTs per RINC-2 module as compared to the PoET-BiN implementation of
MNIST.

In Table 5.10 we compare our architecture to the other implementations in the literature
on the basis of power, throughput and resources consumed. The implementations marked
with ∗ indicate implementation results of only the classifier portion of the network. We
can observe that our architecture consumes a fraction of the power compared to the other
architectures. It is because we map each operation in our architecture to the LUTs in the
networks, and eliminate all MAC and memory read operations. A LUT access consumes
a fraction of energy compared to MAC and memory operations. Even the binary neural
networks that use XNOR operation for multiplication and Popcount operation for additions
consume considerably more power and resources than our POLYBiNN architecture. The
XNOR multiplication and Popcount additions in binary neural networks cannot be efficiently
mapped to the LUTs, thus consuming more power and resources(Table 5.8).

Also, in Table 5.10, we compare the throughput across various architectures. In neural
network implementations, they measure the MAC and memory operations per second while in
our case, we measure the LUT access operations in our network. We calculate the throughput
(GOPS) from Table 5.9. In our architecture, the number of operands is the number of LUTs
and the time taken is the latency rounded to the nearest higher integer. Dividing both
gives us the GOPS for our architecture. We achieve a much higher throughput than other
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implementations.

We have to keep in mind that the values for our implementation take into account only
the classifier part of the architecture. A direct comparison with the other classifier only
implementation of Abdelsalam et al. [43] shows that we achieve an higher accuracy with fewer
resources. Other implementations report the resource and power consumed for the entire
network. It is difficult to estimate the power and resource utilized of only the classifier portion
these networks from the information provided in their papers. However, we believe that even
with full implementation of the PoET-BiN architecture for the convolutional layers and the
classifier will yield significantly less power and resources compared to other implementations.

5.2.4 Simulation results

Figure 5.2 shows a part of the VHDL code automatically generated by the parser from high
level network information. We can observe the repeating structure of the code.

Figure 5.2: Parser generated VHDL code

Figures 5.3, 5.4, 5.5 show the predicted outputs of the VHDL code generated (pred_out) and
provides a comparison with the the GPU generated output(cor_in). Each output contains
contains 80 bit that represents the 8 bit output of each neuron in the final output layer of
each network. As there are 10 neurons in the output layer, the output contains 80 bits. The
and_output signal compares the two outputs and generates 1 when all the bits matches and
0 otherwise.
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Figure 5.3: MNIST simulation of generated VHDL code

Figure 5.4: SVHN simulation of generated VHDL code

Figure 5.5: CIFAR-10 simulation of generated VHDL code
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Table 5.10: Hardware implementation comparisons

Network FPGA Dataset Met- Power Throughput LUTs BRAM DSP
-hod (W ) (GOPS) (kB)

Nakahara et al., 2017, [57] Zynq CIFAR-10 1-bit 2.3 143 14509 32 1
Moss et al., 2017, [58] Arria CIFAR-10 1-bit 48 849 115000 - -
Umuroglu et al., 2017 [48] PYNQ CIFAR-10 1-bit 2.5 166 42823 270 32
Zhao et al., 2017, [59] Zynq CIFAR-10 1-bit 4.7 143 46900 94 3
Ma et al., 2017, [63] Arria CIFAR-10 8-bit 21.2 31 16100 1900 1518
Qiu et al., 2016, [64] Zynq CIFAR-10 16-bit 9.63 14 - - -
Zhang et al., 2018, [65] Virtex-7 CIFAR-10 16-bit 26 13 300000 1248 2833
Podili et al., 2017, [68] Stratix V CIFAR-10 32-bit 8.04 29 196370 256 1100
Zhang et al., 2017, [61] Stratix V CIFAR-10 32-bit 13.2 9 200522 4096 224
Abdelsalam et. al. 2018, [43]∗ ZYNQ CIFAR-10 DT 0.591 - 28,735 0 0
Our Work∗, Spartan-6 CIFAR-10 DT 0.341 965 9650 0 0
Umuroglu et al., [48] ZYNQ MNIST 1-bit 8.8 2465 82989 396 -
Jiao et al., 2017, [60] ZYNQ MNIST 2-bit 2.26 181 44000 105 89
Abdelsalam et al. 2018, [43]∗ ZYNQ MNIST DT 1.106 - 109653 0 0
Our Work∗, Spartan-6 MNIST DT 0.513 1189 11899 0 0
Guo et al., 2017, [62] Zynq SVHN 8-bit 4.5 24 29867 85 190
Shen et al., 2018, [66] Virtex SVHN 16-bit 26 30 170000 1232 1376
Zhang et al., 2017, [67] Arria SVHN 16-bit 37.4 48 - 1250 1320
Zhang et al., 2015, [69] Virtex-7 SVHN 32-bit 18.6 3 186251 1024 2240
Our Work∗, Spartan-6 SVHN DT 0.417 476 2660 0 0
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CHAPTER 6 CONCEPTION OF PoET-BiN

The conception of PoET-BiN was not a straight forward process. Rather we had to experi-
ment with various ideas and techniques. In this chapter we details some of the other ideas
that we experimented with.

6.1 Attempt 1: Accelerating the Inference Phase in Ternary Convolutional Neu-
ral Networks using Configurable Processors

First I started my thesis research with an implementation of Ternary Neural Networks [37]
on a configurable processor. This was an exploratory work to analyse the viability of imple-
menting neural networks on configurable processors. We implemented a LeNet network for
classification of the MNIST dataset. The work was published in the IEEE DASIP confer-
ence. We could achieve almost 5 × increase in throughput with just 30% increase in resources.
However, the overall throughput was still less compared to other FPGA implementations due
to the hardware limitations of configurable processors.

6.2 Attempt 2: Decision Trees and Adaboost

We then came across Decision Trees and the Adaboost algorithm to implement neural net-
works. This led us to work on overcoming the challenges faced by [43]’s POLYBiNN archi-
tecture. Some of the problems we tried to address were :

• The sum of products were unoptimized, i.e the sum of product expressions were not in
the canonical form.

• They used a one-vs-all classification technique that was both expensive and led to large
degradation in the accuracy when compared to an individual classifier.

• They only implemented the classifier portion of the neural network. The convolution
layers were not implemented on the FPGA.

In this thesis, first we tried to address the issue of reducing the sum of product expressions.
We reduced the binary expressions generated by [43] to the lowest possible canonical form. We
used Binary Decision Diagrams (BDD) to reduce the binary expression. Once, we checked the
equality of our reduced expression with the original expression, we implemented our binary
expression on the FPGA and compared it to the original implementation. Unfortunately,
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both the implementations consumed similar amounts of LUTs. This was because the Xilinx
synthesizer reduced the expression to the lowest possible canonical form before implementing
on FPGA. Hence, the work done by us was already done by the synthesizer. Therefore,
we did not achieve lower resource utilization. Nevertheless,the experience gained in writing
parsers came in handy to generate scripts of the PoET-BiN architecture.

Then we tried to address the second weakness of one-vs-all classification technique. We im-
plemented multi-class Decision Trees using the scikit-learn library. These multiclass decision
trees performed slightly better in terms of accuracy than one-vs-all decision trees. However,
after the estimated hardware costs for multi-class decision trees was much higher than the
one-vs-all classifier. Moreover, we required large DTs that necessitated the use of external
memory, which significantly increases the delay. These increases in resources and delay would
not justify the slight increase in accuracy. Hence, this idea was dropped.

With repeated unsuccessful attempts in building DTs with off-the-shelf classifiers for large
scale classification, we had to abandon the above ideas. We came to the realization that to
efficiently build DTs for large scale image classification, we had to tackle the problem from
a bottom to top approach. We tried a completely new approach that lead to the conception
of the PoET-BiN architecture explained in the previous chapters. The conception of the
PoET-BiN architecture was itself filled with many twists and turns detailed in the next
section.

6.3 Attempt 3: Conception of the PoET-BiN architecture

The investigation of hardware resources used by multiclass decision trees sparked the idea of
building binary decision trees to fit the smallest computing element in a FPGA. The smallest
computing element in a FPGA is a LUT. These are the salient features of a LUT in FPGA:

• Can implement any function as a Look-Up operation.

• These Look-Up operations consume a fraction of energy as compared to onchip memory
or external memory operations.

• The LUTs can be directly programmed using built-in functions.

The decision trees need to be adapted to these LUTs. There are many off-the-shelf libraries
to build decision trees. These off-the-shelf libraries build decision trees based on the hyper
parameters such as the number of nodes, the number of levels and number of samples in each
leaf node. However, there is no way to build a DT that is limited by the number of distinct
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inputs. Using this idea, we built decision trees from scratch that are limited by the number
of inputs as described in section 4.1.1. Using this algorithm, we could fit a decision tree in a
single LUT. However, these decision trees are weak classifiers and insufficient.

Hence, to augment the capacity of the decision tree, we experimented with various boosting
and bagging techniques. First, we tried a popular bagging technique called random forest.
In the random forest algorithm, a subset of the features is chosen at random. These selected
features are used by the DT algorithm for classification. For the next DT another random
subset of features are chosen. Finally a voting circuit averages the results of all the DTs.
This technique results in better performance than a single DT. However, since the features
are chosen randomly each time ,the accuracy varies for each try. Sometimes, the variations in
the case of the CIFAR-10 dataset, were quite significant. Hence, we had to drop this method.
Then we tried the common boosting technique of Adaboost that is explained in section 4.1.2.
The results are shown in Table 6.1. We can see that the number of DTs is quite large. With
100 DTs per class we were able to achieve 94% accuracy on the MNIST dataset without any
convolution layers. Since each DT has only 6 inputs, it can fit in a single LUT. It is easy to
estimate the number of LUTs required by such an architecture. As each DT can fit in one
LUT, 100 DTs require 100 LUTs. Since we use one-vs-all classification, there are nc classes
and each class requires 100 LUTs. In MNIST, there are 10 classes, therefore we require 1000
LUTs in total. The total LUTs are

nc × 100 = 10× 100 = 1000LUTs (6.1)

Table 6.1: Accuracy on MNIST

No. of DTs No. of Inputs Accuracy (%)
10 6 86.18
20 6 89.74
50 6 92.46
100 6 94.06

With this architecture, we were able to achieve reasonable accuracy on all datasets. However,
it required a large number of decision trees per class. This resulted in expensive MAC
operations that formed a bottleneck in the architecture. Moreover, we still used one-vs-all
classification which was a major hindrance in improving the classification accuracy. Inspired
by [44], we tried to limit the number of DTs in the Adaboost algorithm. Instead, we added
multiple layers of DTs one after the other. The intermediate outputs generated by the DTs
in each layer were used as inputs to the subsequent layers similar to the architecture shown
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in Fig 6.1. We used our single LUT instead of standard DTs. We observed that the DTs
in the subsequent layers preferred the features generated from the previous layer over the
input feature vector. This suggested that the information produced by each layer was indeed
useful. However, even with four layers, the increase in accuracy was not significant. We could
achieve a maximum of 95% accuracy on the MNIST dataset.

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Average Max Final
predictionInput Features

Concatenate

Figure 6.1: Deep Forest

Since this technique did not provide promising results, we experimented with another variant
of the multi-level decision trees as illustrated in Fig. 6.2. In this method, we used the
Adaboost algorithm with varying threshold. The first level had a very high threshold of 0.8.
We implemented a one-vs-all classification across all classes. Each sample in the dataset were
classified into three categories namely correctly classified, wrongly classified and confused
samples. The correctly classified samples were those in which only one binary classifier out
of the 10 ( = nc) binary classifiers in the one-vs-all classification produced a positive result
and that predicted class matched the true output class in the dataset. The wrongly classified
samples were those in which only one binary classifier out of the 10 ( = nc) binary classifiers in
the one-vs-all classification produced a positive result and that predicted class did not match
the true output class in the dataset. The confused sample were those in which more than one
binary classifier produced a positive result or none of the binary classifier produced a positive
result. These confused samples were provided to the next level of multiclass classification
with an Adaboost of lower threshold. In this way, we built multiple levels until we ran out
of training samples. This architecture is close to how our brain perceives an image. First,
our brain recognizes clearer (easier to perceive) images. Then, we further analyse the image
to recognize more occluded (difficult to perceive) objects.
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Figure 6.2: Multi-level Adaboost

Fig 6.3 provides an equivalent architecture for one level of the multi-level Adaboost method.
Each DT with 6 inputs can be accommodated in a single LUT. The output of the DTs are
multiplied with the corresponding weight and all the results are added. Then this result is
thresholded to produce an one bit output. This structure is repeated over all the 10 classes.
The output of the 10 classifiers are compared. If only one classifier outputs a 1 and other
classifiers output a zero, then the predicted class is matched with the true output in the
dataset. If there are multiple ones or all the outputs are zero, then the sample is sent to
the next level. The intermediate results of all the DTs are used as features in the next level
(represented in red in the figure).

This classification method yielded an accuracy of 95.6% on the MNIST dataset. This accuracy
is less than state-of-the-art neural networks. Moreover, the MAC operations would consume
more LUTs. Hence, after extensive analysis, we had to drop this idea of multi-level decision
trees.

As we can see that the MAC operation has been a bottleneck throughout all the architectures,
we set out to remove the MAC operation. Similar to the approach of just having P inputs
to a DT to fit it in a single LUT, we planned to have MAC units with P inputs only. Hence,
we first created large (P 2) DTs using the Adaboost algorithm. Then we grouped P DTs
together and assigned a MAC unit to them. The output of the MAC units were thresholded
to a binary value. P such MAC units were created from P 2 DTs. Each MAC unit was
assigned a weight equivalent to the sum of the weights of its DTs. Now we had P binary
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Figure 6.3: Architecture for a level of the multi-level Adaboost method

outputs of the MAC units with an associated weight for each. We used another MAC unit to
multiply and add these P outputs. This value was thresholded to produce the final output.
So, in a way, we approximated the MAC operation with P 2 values to a hierarchical MAC
structure taking P inputs at a time. Fig. 6.4 illustrates the approximation of MAC operation
between 9 inputs(Ii) and its corresponding weights (wi). Originally the output of the MAC
function should be

Output = threshold(
8∑
i=0

Ii × wi) (6.2)

As explained earlier, we group the MAC units with P = 3 inputs and threshold each MAC.
The weights W0, W1, W2 are assigned as follows :

W0 = w0 + w1 + w2 (6.3)

W1 = w3 + w4 + w5 (6.4)

W2 = w6 + w7 + w8 (6.5)
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With this approximation, the Adaboost is easily implementable as LUTs. We call this approx-
imation technique for the MAC operation in the Adaboost algorithm, Grouped Adaboost.
However,it is detrimental to the accuracy of the Adaboost algorithm. Hence, to counter this
effect, we came up with the hierarchical Adaboost algorithm to reduce the loss in accuracy
as seen in Table 6.2 (on the MNIST dataset).
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Figure 6.4: Grouped Adaboost

Table 6.2: Comparisons of various MAC operation grouping technique in Adaboost

No. of DTs Accuracy (%)
Original Adaboost 98.26
Grouped Adaboost 97.03
Hierarchical Adaboost 98.15

With the hierarchical Adaboost algorithm we could achieve good accuracy on binary classifi-
cation tasks. Still, the confidence circuit used to break ties between the various classifiers in
a one-vs-all classification was a hindrance to achieve better accuracy for better classification.
Inspired by the work of Kontschieder et al. in [47], we formulated a combined approach using
our Hierarchical DTs and fully connected neural network to achieve near state-of-the-art ac-
curacies on the MNIST,CIFAR-10 and SVHN datasets. The hierarchical Adaboost algorithm
with feature limited DTs was used to represent the binary features in the fully connected
network while a quantized sparsely connected network was used for the output layer. This
LUT based architecture is named PoET-BiN.
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CHAPTER 7 CONCLUSION

This work introduced PoET-BiN, an architecture and its associated building algorithm, that
is optimized to fit the LUTs or memory blocks in embedded systems such as FPGAs. The
PoET-BiN architecture combines the representational capacity of neural networks and low-
cost implementation of binary neural networks to build a powerful classifier.

First, we trained vanilla neural networks with full precision weights and activations. Then
we binarized select layers in the network to form a teacher network. These layers were then
replaced with a modified DT based architecture. These DTs were optimized for a given set of
unique inputs rather than depth or nodes as seen in off-the-shelf DT classifiers. We modified
the node based entropy DT training algorithm to a level based entropy DT training algorithm.
This helped optimize the DTs for a given number of unique inputs. However, these decision
trees were weak classifiers. Hence, to boost the weak classifier, we used a modified version of
the popular Adaboost algorithm. We call this modified version hierarchical Adaboost. In the
hierarchical Adaboost algorithm in each level there the decision trees are limited and when
there is a need for more decision trees that can be accommodated in that level then a new level
is created. The number of decision trees in each level grows exponentially with an increase
in the levels. The decision trees grouped together using a hierarchical Adaboost provide a
strong binary classifier. It is used to replace a network of neurons in the hidden layers of the
teacher networks. The final output layer cannot be binarized. Hence, we quantize the output
layer till the drop in accuracy is in the acceptable range. This final layer is also implemented
using LUTs. Thus we try to replace all the MAC computation in the network with our LUT
based architecture to the maximum extent possible.

In this work, we replaced the classifier portion of various networks with our architecture
to achieve accuracies similar to the ones obtained with full precision implementations for
the MNIST, CIFAR-10 and SVHN datasets. This classifier portion of the neural network
replaced with our LUT based implementation is refereed as PoET-BiN. It is call PoET-BiN
as the LUTs in our architecture can be though of as a neuron in a conventional neural network.
However, each LUT has limited number of inputs (often less than 10) as compared to neurons
in a neural network that have upto 4096 inputs as seen in VGG networks. Moreover, the
LUTs in our networks have a binary output. Hence our architecture contains "Tiny binary
neurons". More importantly, as the computations in our architecture is trained to efficiently
fit in an embedded system such as FPGA. Therefore, it is highly power efficient as compared
to vanilla neural networks.
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With the PoET-BiN architecture, we achieved similar accuracies to that of a vanilla network
for the MNIST and SVHN dataset. In the case of CIFAR-10, we achieved better accuracies
than the vanilla networking due to the regularization effect. More importantly, we reduced
the energy consumption for the classifier portion by up to six orders of magnitude compared
to a floating point implementations and by up to three orders of magnitude when compared
to recent binary quantized neural networks. This is due to the fact that all the arithmetic
operations are replaced by small LUTs on binary signals that are optimized for the underlying
hardware in FPGAs. This work shows that for better efficiency, we need to understand the
underlying architecture of the embedded system and train our network with computations
that can be efficiently implemented such a system. Therefore, it is necessary to have better
training strategies of neural networks for cost, power and area optimized inference engine.

7.1 Limitations

One of the major limitation of this work is that the RINC-L modules can be used to replicate
a network of binary neurons only. Hence, we need to introduce binary activation in our
network. This limits the representation capacity of our network leading to reduced accuracy
on large dataset. Therefore, to compensate this reduction in accuracy we need to have
some layers with more than 1-bit precision, leading to more power consumption in these
layers. Another limitation is that we only implement the classifier part of the network. To
effectively compare our work with that of other state-of-the-art implementations, we need
to have a complete end-to-end implementation of our architecture including the convolution
layers. Hence we only compare our work to that of the classifier portion of vanilla and
quantized neural networks.

7.2 Future Research

There are various possible avenues for future research. First, we could extend the PoET-
BiN architecture to the convolutional layers. This would provide an end-to-end model for
vision classification tasks using CNNs. Second we could expand the network to classify larger
datasets such as ImageNet. Further, this technique need not be restricted to just CNN. It
can be used to implement Recurrent Neural Networks (RNNs) for language applications in
a power efficient manner. It is possible to better the current results by using differentiable
DTs. The differentiable DTs enable the training the of DTs and convolutional layers together
to obtain better feature representation. This may result in higher accuracies as the entire
network is trained together instead of training layerwise.
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