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RÉSUMÉ 

Des défaillances ou détériorations imprévues ou non détectées des machines-outils entraînent des 

pertes de production et de qualité, d'où la nécessité d'une maintenance prescriptive et normative 

utilisant la surveillance de l'état des machines-outils. Cette recherche présente la méthodologie et 

les solutions développées pour surveiller l’état de précision des machines-outils à cinq axes en 

analysant les erreurs volumétriques de la machine-outil. L’erreur volumétrique est définie comme 

un vecteur d'erreur cartésien représentant l'écart de la position réelle de l'outil par rapport à sa 

position attendue par rapport au repère de la pièce et projeté dans le repère de base. 

La méthode SAMBA (Scale and Master Ball Artefact) a été utilisée pour mesurer les erreurs 

volumétriques de la machine-outil expérimentale à cinq axes. Les erreurs volumétriques acquises 

contenant les états normaux et défectueux de la machine-outil constituent la base de données pour 

cette recherche. De plus, des pseudo-fautes et les fautes graduelles et soudaines simulées ont 

également été utilisées. Les caractéristiques du vecteur d'erreurs volumétriques extraites par des 

mesures de similarité de vecteur sont utilisées comme entrée pour le graphique de contrôle basé 

sur les moyennes mobiles pondérées exponentiellement, où le changement anormal du vecteur 

unique d'erreurs volumétriques peut être détecté. Pour surveiller de manière exhaustive l’état de 

précision de la machine-outil, une matrice de mesures de similarité vectorielle combinée contenant 

toutes les caractéristiques d’erreurs volumétriques acquises a été proposée et traitée par le 

graphique de contrôle de la moyenne mobile pondérée exponentiellement. Pour les mêmes défauts, 

les deux traitements de données ci-dessus peuvent tous détecter automatiquement le temps exact 

d’apparition du défaut. Sur la base d'une logique de surveillance complète des erreurs 

volumétriques, une analyse fractale des coordonnées d'erreur volumétrique a également été 

explorée. Les résultats des tests révèlent qu’il s’agit d’un outil efficace pour représenter la 

fonctionnalité des erreurs volumétriques. Pour comprendre le processus de changement de l'état de 

la machine-outil, les erreurs volumétriques historiques acquises ont été traitées par analyse en 

composantes principales et par K-moyennes. D'une part, les méthodes proposées séparent les états 

normaux et défectueux de la machine-outil (près de 100%), d'autre part, les machines-outils 

désignées fournissent les références pour la reconnaissance de l'état d’autre machines-outils lors 

du traitement de nouvelles données d'erreurs volumétriques.  
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En résumé, le travail de recherche effectué dans cette thèse a contribué à la mise au point d’une 

solution efficace de surveillance de l’état de la précision des machines-outils à l’aide des erreurs 

volumétriques des machines-outils, basées sur des méthodes d’extraction de caractéristiques, de 

reconnaissance des modifications et de classification des états. Le système développé peut 

reconnaître les points de changement exacts des défauts réels du codeur d'axe C, des pseudo-défauts 

EXX et EYX. De plus, il atteint une précision proche de 100% dans la classification de l'état 

défectueux et normal de la machine-outil. 
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ABSTRACT 

Unexpected or undetected machine tool failures or deterioration results in production and quality 

losses, hence proactive and prescriptive maintenance using machine tool condition monitoring is 

sought. This research presents the methodology and solutions developed to monitor the accuracy 

state of five-axis machine tools by analyzing the machine tool volumetric errors which are defined 

as the Cartesian error vector of the deviation of the actual tool position compared to its expected 

position relative to the workpiece frame and projected into the foundation frame. 

The scale and master ball artefact (SAMBA) method has been used for the measurement of 

volumetric errors of the experimental five-axis machine tool. The acquired volumetric errors 

containing machine tool normal and faulty states provide the database for this research. In addition, 

pseudo-faults and the simulated gradual and sudden faults have also been used. Volumetric error 

vector features extracted by vector similarity measures are used as the input for the exponential 

weight moving average control chart where the abnormal change of the single volumetric error 

vector can be detected. To comprehensively monitor the machine tool accuracy state, a combined 

vector similarity measure array containing all acquired volumetric errors features has been 

proposed and processed by the exponential weight moving average control chart. Towards the same 

faults, the above two data processing can all automatically detect the exact fault occurrence time. 

Based on the logic of comprehensive monitoring of volumetric errors, fractal analysis of volumetric 

error coordinates has also been explored. The testing results reveal that it is an effective tool for 

volumetric errors features representing. To understand the change process of the machine tool state, 

the acquired historical volumetric errors have been processed by principal component analysis and 

K-means. For one thing, the proposed methods separate the normal and faulty states of the machine 

tool (Nearly 100%), for another thing, the designated machine tools provide the references for 

machine tools state recognition when processing new volumetric errors data.  

In summary, this research contributed to the development of an efficient solution for machine tool 

accuracy state monitoring using machine tools volumetric errors based on feature extraction, 

change recognition and state classification methods. The developed system can recognize the exact 

change points of real C-axis encoder faults, pseudo-faults EXX and EYX. In addition, it achieves 

close to 100% accuracy in machine tool faulty and normal state classification. 
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1 

 INTRODUCTION 

The availability and use of machine tools directly affect the economy of the manufacturing 

industry. Unplanned maintenance caused by the sudden faults, process or machine component 

failures decreases the availability of machine tools. Meanwhile, the degeneration of machine tools 

also limits the precision of machine tools in positioning accuracy and repeatability and leads to big 

losses to machining quality and efficiency, hence proactive and prescriptive maintenance using 

machine tool condition monitoring is sought.  

For handling large or geometrically advanced components in a single setup, multi-axis machine 

tools have been widely applied in industry to perform different types of machining operations. 

Multi-axis machine tool contains several subsystems, for example, mechanical structures, feeding 

axis systems, cooling systems and numerical controllers. etc. All of them are involved in the 

workpiece machining operations for desired geometrical tolerances. Therefore, the stability of the 

machine tool components and the machining process have become the main targets for monitoring 

purposes. Regular machine tools state checkup can help reduce the possibility of severe machine 

tool failures and breakdowns and guarantee the machining quality and efficiency. 

Concerning the machine tool systems, structural and functional components such as mechanical 

structures, feeding drives and CNC controllers are usually monitored. Regarding the machining 

process, tool wear, tool collision and tool breakage detection have been broadly studied. To 

investigate the precision of machine tools in the areas of geometric errors and volumetric errors, 

methods such as Ball-bar, R-test, Laser tracker and interferometry. etc. have been widely applied. 

 Problem definition 

Partially monitoring machine tool main components’ condition cannot provide a holistic view of 

its condition. The degradation of machine tools can bring a problem on machining quality 

evaluation. To increase the availability of machine tools, a monitoring strategy from the perspective 

of machine tool errors is therefore researched and developed in this PhD project. Machine tool 

errors, especially Volumetric errors, can reflect the positioning capability of machine tool and are 

related to most of machine tool components. Therefore, they have great potential for machine tool 

condition monitoring. However, there is still a lack of knowledge towards the application of 
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volumetric errors for machine tool condition monitoring. In the present thesis, strategies and 

techniques are proposed to answer the following main research question: 

❖ How to monitor the machine tool condition by using volumetric errors?  

The main question can be detailed in the form of the below sub-questions: 

➢ How to measure the volumetric error exactly and efficiently for monitoring purposes? 

➢ How to extract features from volumetric errors and how to automatically recognize the 

changes of volumetric errors? 

➢ Could the recognized faults be used for volumetric error change recognition or for the 

investigation of change reason? 

➢ How to comprehensively recognize the volumetric error change without analyzing the 

change of a single volumetric error vector? 

 Objectives 

The main objective of this research project is to develop a volumetric error-based condition and 

health monitoring system for machine-tools. This solution needs to monitor and recognize the 

change of machine tool accuracy condition by analyzing volumetric errors measured with good 

precision and without adding downtime. From this core objective, stem five key sub-objectives are 

as follows:  

1. Develop a series of measures for machine tool volumetric errors feature extraction; 

2. Develop data processing methods which can comprehensively monitor machine tool 

volumetric errors change; 

3. Develop a monitoring strategy based on volumetric errors for automatic detection of 

machine tool abnormal change; 

4. Develop a data processing method for machine tool volumetric error data classification 

using artificial intelligence methods; 

5. Develop a monitoring software contained all developed methods or strategy for 

volumetric errors feature extraction, change recognition and state classification. 
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 Hypotheses 

In this thesis, the following hypotheses are assumed: 

• Rigid body kinematics: the scale and master ball artefact (SAMBA) method for volumetric 

error measurement/estimation is developed assuming that the machine joints and structure 

are rigid; 

• The SAMBA method has good robustness in volumetric error measurement; 

• During the SAMBA measurement, the ambient temperature of machine tools controlled by 

the air conditioner is strictly controlled at 21~23℃. 
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 LITERATURE REVIEW 

This chapter provides a brief review of the research works in the field of machine tool condition 

monitoring systems (MTCMS). In addition, the research trend in machine tools accuracy state 

monitoring is also presented and discussed. Since the volumetric errors are the main monitoring 

object of this research, this will be explained in detail accompanied with its measurement methods. 

 The state of the art in MTCMS 

Currently, MTCMS could be established from two points of view; the machining process and the 

machine tool systems [1]. Machining capability can directly reflect the machine tools condition. 

As the key part in the machining process, the tools are in direct contact with the workpieces and 

finish the contour machining. Therefore, monitoring systems related to the machining process can 

be looked as narrow-sense MTCMS or a component of generalized MTCMS. In the other hand, 

machine tools systems are composed of its main components in terms of the spindle system, the 

feeding system, the cooling system, the hydraulic system, the electric system, etc. which are related 

with machine tool condition [2]. Typical examples of machine tool condition monitoring system 

are shown in Figure 2-1. 

 

 

(a) 
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 (b) 

Figure 2-1. Typical monitoring strategy for machine tool, (a) monitoring system for turning [3]; 

(b) monitoring system for milling or machine tool components 

2.1.1 Machining process-based MTCMS 

This kind of MTCMS is reviewed in two parts- the techniques for tool condition monitoring in the 

research domain and the commercial tool condition monitoring systems. Regarding the machining 

process, tool wear, tool breakage detection and tool remaining tool life prediction are three main 

research topics that have been widely studied by the research community [4-7]. From the research 

literature, all kinds of physical signals have been analyzed for tool condition monitoring in turning, 

milling, grinding and broaching [2].  

An on-line tool wear monitoring system based on force and vibration sensors for turning operation 

is developed and reveals the most sensitive direction of the forces and the vibration to tool wear 

monitoring, in addition, it is possible to identify trends in the sensor signals as the tool insert wore  

[8]. In the milling process, a real-time tool breakage monitoring system uses the current of the feed 

driver AC motor to identify tool breakage, the advantage of this system is its high reliability and 

low cost. It is also effective in untended milling operations identification and in tool breakage 

detection of linked-cell manufacturing systems [5]. In the band sawing of AL alloy and low carbon 

steel, the audible sound energy has been acquired for real-time saw state recognition [9]. For the 

broaching, turning and milling of aero-engine materials, PXI hardware and Labview software 
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platforms are selected for the development of a machining process monitoring system. 

Accompanied by advanced signal processing techniques, the proposed system can construct good 

thresholds for tool-malfunction-free zones. Then, tool wear can be precisely detected [10]. In 

addition, monitoring objectives such as optical, stress/strain, workpiece surface finish quality, 

workpiece dimension, torque have also been used [11-13]. For example, a laser displacement meter 

has been used in an online tool geometry measurement system [14], and a vision system has been 

developed to detect small dimension tap broken. To be mentioned, this tool break detection is 

hardly perceived by just analyzing indirect in-process signals (for example, acoustics emission, 

torque and motor current) [15].   

Main commercial machine tools condition monitoring systems are reported in Table 2-1 with 

considering the used signal sources (sensors), the applications and their highlights. Those devices 

have similar monitoring functions such as tool breakage, tool missing and tool wear detection by 

analyzing the direct variations (cutting force measured with dynamic force sensors, vibration 

amplitude using accelerometers, audible sound, acoustic emission and torque) and indirect 

variations (current, voltage or power of the servo and/or spindle motor) of the machining process.  

Table 2-1. Typical commercial tool condition monitoring system [16] 

Brand Sensors Typical applications Highlights 

MARPOSS 

Force, power, 

vibration, 

torque, 

acoustics 

emission, 

accelerometer. 

etc. 

Tool monitoring 

(breakage, missing and 

wear), grinding process 

monitoring, online 

dimension measurement 

Adaptive control; online 

dimension measurement; 

multifunctional acoustics 

emission sensor 

NORDMANN 

Tool breakage, tool wear, 

tool collision and tool 

unbalance check 

Tool length measurement, drill 

breakage monitoring and in-

process control of mandrel 

lateral eccentricity and 

oscillations 

MONTRONIX 

GMBH 

Tool monitoring (broken, 

wear, missing and 

collision) and machine 

tool components over 

vibration monitoring 

Small tool (dimension< 3mm) 

and micro-chipping condition 

monitoring 

TMAC 

Tools wear, tool broken 

and adaptive control in 

machining 

Adaptive control by adjusting 

the feeding rate 
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The main commercial condition monitoring systems have different highlights in adaptive 

controlling, online workpiece dimension measurement and machining process optimization. These 

commercial tool condition monitoring systems have been applied in various machine tools such as 

grinders, gear cutting machine tools and CNC machining centers. For example, STUDER S31 

internal grinder utilizes MARPOSS grinding monitoring system as a selective accessory to 

optimize the grinding process. In addition, MARPOSS has been used to compensate the imbalance 

of emery wheel during the cutting and grinding of crankshaft grinder and has also been combined 

with the CNC machine tool to test the performance of specialized grinding & dressing wheel [17]. 

ARTIS CTMV6 helps Liebherr gear cutting machine tool to respond efficiently to some potentially 

catastrophic conditions such as chip welding, chip broken or damaged teeth and peeling of the 

coatings [18]. Montronix monitoring system has been used to validate possible correlation of the 

progress of the surface roughness during polishing on the Robot Assisted Polishing machine [19].  

The above analysis shows that physical signals such as force, vibration, acoustics signals, current, 

temperature etc. have been widely used in the machining process monitoring, for example, turning, 

milling and drilling. From the perspective of signal sources, possible new research venue is to 

explore novel signal measuring devices such as intelligent and integrated sensors which can pre-

process signals or transfer signals wirelessly. Additionally, machining process-based MTCMS is a 

direct method to decrease the effect of tool and machining parameters on final parts machining 

quality. In fact, it does not improve or correct the machine tool accuracy state. Therefore, this type 

of MTCMS is mostly used as an auxiliary tool for machining quality control. 

2.1.2 Machine tool systems-based MTCMS 

The machine tool is mainly composed as the spindle, cooling system, feeding systems, mechanical 

structures and the electronical parts. etc [20] (Figure 2-2). These components accounting for the 

main sources of malfunctions of machine tools are the main objectives of machine tool systems-

based MTCMS.  
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Figure 2-2. Typical components of the CNC machine tool (example) 

Spindle condition monitoring systems commonly use displacement, vibration, acoustic emission 

or accelerometer sensors to detect the sensitive properties of the spindle. For example, near the 

front bearings of the spindle, two displacement sensors installed in orthogonal direction are used 

to investigate the machine tool spindle error and cone wear [21]. Spindle monitoring system 

produced by PROMETEC can not only monitor the damage and the imbalance of the 

bearing/spindle but can also identify unsatisfactory machining conditions such as tool broken, tool 

damage and heavy cutting conditions [16]. In addition, a spindle error analyzer is developed to 

detect spindle error motion, radical error and predicted errors such as surface finish and roundness 

[22].  

Coolant monitoring systems can provide damage information about cutting tools, parts, and 

machine components caused by improper coolant concentration and/or pH levels [23]. The coolant 

system pump outlet pressure, tank level and/or pump motor temperature are measured to define the 

health parameters of the coolant system [24]. When the significant changes of these parameters are 

detected by the automatic model based on artificial intelligent, maintenance work will be activated. 

Similar research can also be found about controlling the quality of used metal-working fluid to 

maintain it at its optimum condition without a machine tool operator’s interference [25]. 
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A current-based feeding system condition monitoring plan targets on the faults caused by pitting, 

wear, corrosion, and cracks [26]. A thin film sensor has been used to monitor the ball screw drive 

condition, and it reveals good capability in recognizing the dynamic load during the movement of 

the ball screw drive [27]. Similarly, an integrated sensory ball screw double nut system has been 

developed to recognize the wear of the ball screw drive [28]. Vibration signal and fuzzy neural 

network have been combined to analyze the motion precision and wear status of the guideway [29]. 

The above methods usually cannot get good results in feed axis life prediction because of the 

changeable load in the machining process. Therefore, a new sensor-based method identifies the 

changes of the linear and angular errors to estimate the performance degradation of linear axes 

[30]. This method was the first to introduce the concept of using the error parameters into feed axis 

condition monitoring. 

Machine tools structures such as column and foundation affect the static state and geometric error 

of machine tools. Meanwhile, thermal errors introduced by the thermal deformation of machine 

tool mechanical structures directly affect the machining accuracy of the machine tool. Temperature 

sensor and infrared displacement measurement device have been used to measure and compensate 

the spindle thermal deformation [31]. Similarly, T-type thermocouple and displacement meter have 

been used for Z-axis thermal deformation measurement and compensation. The results show that 

spindle elongation decreased from 6 μm to about 1 μm after compensation [32]. In addition, the 

thermal error compensation technique has been used to estimate the deformation of the machine 

tool and adjust the feeding speed for the machining process optimization [33].  

Electrical faults can be caused by machine tool software and hardware failures. Software failure is 

related to the logic control program failure in PLC or CNC controller software; hardware failure 

refers to the damage of circuit boards, cables, connectors and non-normal damage of other electrical 

parts. The conventional methods to detect electrical faults mainly include visual inspection, 

instrument test, signal and warning instruction analysis method and interface state inspection 

method [34]. Besides, modern CNC controllers usually equip with fault detection circuit or 

program which can recognize the faults of servo amplifiers, switches and operator interface units.  

Machine tool systems-based MTCMS targets the main components of machine tools. The physical 

state of machine tools components is monitored. However, this is still not enough to grasp the 

machine tool comprehensive condition because of the absent of the monitoring of machining 



10 

 

 

process. In addition, it is difficult to monitor the machining process by using information measured 

from machine tool main components. Lastly, it is difficult to set failure flags for the identification 

of state degeneration related faults. 

2.1.3 MTCMS data processing methods 

Typical MTCMS data processing can be divided into the following four areas: monitoring signal 

feature extraction (MSFE), machine tool health assessment (MTHS), machine tool health diagnosis 

(MTHD) and machine tool performance prediction (MTPP). Some typical methods related with 

each area are summarized in Table 2-2. 

Table 2-2. Data processing methods for MTCMS [35-44] 

MSFE MTHS MTHD MTPP 

Time-domain  Logistic Regression 
Feature Map 

Pattern Matching 

Autoregressive Moving 

Average 

Frequency domain  
Statistical Pattern 

Recognition 

Support Vector 

Machine 

Elman Recurrent 

Neural Network 

Time-Frequency 

domain 

Gaussian Mixture 

Model 

Bayesian Belief 

Network 
Match Matrix 

Wavelet/Wavelet 

Packet method  

Feature Map Pattern 

Matching 

Hidden Markov 

Model 

Trajectory Similarity-

Based Prediction 

Autoregressive Model 
Neural Network 

Pattern Matching 
 Stochastic Filtering 

Principle Component 

Analysis 
Adaptive Filtering  Fuzzy Logic-based 

method 

Partial Least square 

analysis 

Hidden Markov 

Model 
  

It is worth noting that before undergoing data processing, we need to consider the characteristics 

of the data set [41, 45]. For example, features of signals such as force, power and acoustics emission 

are processed in the time domain in the form of standard deviations, kurtosis, mean values and root 

mean square values [46]. As for vibration signals, features are mostly processed in the frequency 

domain or using wavelet analysis [47].   
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 Machine tool errors 

The precision of machine tools is defined by its positioning error and repeatability [48]. The 

positioning error reflects the difference between the actual and nominal axis position, and it has a 

direct impact on the volumetric error.  The range of variations for the repeated positioning error 

measurement is defined as the repeatability of the machine tool. The positioning errors are 

influenced by the following factors, for example, the environmental factors, machine tool 

components mechanical and assembly errors and the dynamics errors generated from the 

machining process (Figure 2-3). They could be classified into two main sources: 

1) Quasi-static errors: They are related to the machine structure and they could be classified as 

the kinematic, geometric and thermal errors [49]. 

2) Dynamic errors: They are caused by the error motion of spindle, vibrations of the machine 

tool components and structure, vibration-induced from a machining process and the errors related 

to CNC controller. 

 

Figure 2-3. Machine tool error sources [48] 

2.2.1 Machine tool geometric errors 

Machine tools geometric errors account for most machine error sources. They finally result in 

position and orientation errors of the tool related to the workpiece (volumetric error). They are 

generally caused by the imperfection of machine tool mechanical components and inaccuracies 
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induced by assembly [50]. Machine tool geometric errors can be classified into two parts: link error 

parameters and motion errors [51, 52]. Link error parameters are position-independent; they 

include the joints misalignments, rotary axes separation error, angular offsets. etc. while motion 

errors are position-dependent. They are related to component errors: scale error, straightness error, 

roll, yaw, pitch of linear axis and angular error, tilts, radial and axial errors of the rotary axis. The 

machine tool geometric errors (link and location errors of the linear and rotary axis) are revealed 

in Figure 2-4. 

 

(a) 

 

 (b) 

Figure 2-4. Error motions and link error of linear and rotation axes [52] 
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2.2.2 Machine tool volumetric errors 

Due to the existence of machine errors, in the 3D space, position and orientation inaccuracies of 

the linear and rotary axes of machines could be found. This could generate a volumetric error 

related to the tool and workpiece. It could be defined as the Cartesian error vector of the deviation 

of the actual tool position compared to its expected position relative to the workpiece frame and 

projected into the foundation frame [53]. Take a general five-axis machine tool as an example, 

there will be no mismatch between tool and workpiece in the nominal machine tool model (Figure 

2-5, a). However, because of the existence of machine tool geometric errors and dynamic errors in 

the measurement, mismatches between the tool and workpiece could be found in the real machine 

error model (Figure 2-5, b).  

           

Figure 2-5. Machine tool volumetric errors, (a) Nominal machine error model of HU40-T five-

axis machine tool; (b) Real machine error model containing the geometric errors and dynamic 

errors [54]. 

2.2.3 Error measurement methods 

Direct and indirect approaches can measure the errors of five-axis machine tools [52]. Direct 

methods usually require specialized devices or instruments, precise setups and professional 

operators. The error measurement process is time consuming accompanied with downtime in 

normal production. Thus, indirect methods are generally well-received by the five-axis machine 

tool users. Since five-axis machine tools have widely equipped the touch-trigger probe, research 

utilizing the touch probe for machine tool error measurement is widely sought. 
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The difference between direct calibration and indirect calibration method is that, direct calibration 

works with one axis at a time, while indirect calibration involves multiple axes [55, 56]. The laser 

interferometer and rotary axis calibrator are the most widely applied instrument to measure 

positioning errors of the linear and rotary axis (Figure 2-6). In addition, the straightness and 

squareness errors can also be measured separately by using different setups of optics measurement.  

 

Figure 2-6. Typical measurement methods for geometric errors [52] 

As for the indirect methods, they can identify geometric errors using different measurement devices 

or methods, for example, ball-bar, 2D or 3D master ball artefacts [57], laser trackers [58], laser-

tracer [59], “chase the ball” calibration [60]and the scale and master ball artefact method [54]. 

As for the volumetric errors, they could be mainly measured by the indirect method such as the 

ball-bar [51], R-test [61], laser-tracer [62] and the scale and master ball artefact method [54] 

(Figure 2-7). To be mentioned, the indirect volumetric error measurement methods could also be 

used for indirect geometric error measurement.  

 

Figure 2-7. Volumetric errors measurement methods  
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Ballbar (Figure 2-7, a) [63] is a typical measurement device for machine tools. Machine tool’s 

behavior could be graphically represented by Ball bar. Ball bar has two precision magnetic sockets, 

one is installed onto the machine tool table surface and the other is installed to the machine tool 

spindle. A linear sensor inserted into the bar connects and measures the two precision balls [64]. 

The distance between the two precision balls will be calibrated before its application. It can provide 

the referenced value for volumetric error calculation. Then a circular path is followed. The 

precision ball installed in the spindle is considered as the circle center. The other precision ball 

mounted on the magnetic sockets of the machine table should rotate around this center. The length 

of the ball bar, defined as the radius of the circle, will be real-time measured and recorded. 

Theoretically, the circular path will match a perfect circle. However, the machine tool table can 

move away from the programmed position due to the existence of the machine tools errors. Then, 

an unexpected circle pattern could be detected. The volumetric errors are then calculated by taking 

the difference between the actual radius and the known radius of the circle. Meanwhile, by 

comparing the test pattern, different types of machine tool errors can be estimated.  Even though 

the ballbar test can provide rich accuracy information to machine tool users, there are still some 

unknown or unestimated geometric and motion error parameters.  

The R-rest device is used to measure the backlash, positioning, squareness and parallelism errors 

of the five-axis machine tools [61]. Three precision distance sensors installed on the tool holder 

can measure the displacements of the precision ball mounted on the workpiece side (machine tool 

table) (Figure 2-7, b). During the R-test measurement, the rotary axis will combine with the linear 

axis movement. Finally, all axes' movements are achieved. A circular path is measured both in 

clockwise and counterclockwise directions with the movement of the linear and rotary 

simultaneously. Using the R-test method, around 20 minutes will be spent to evaluate the rotary 

axes location and 42 geometric errors for a parallel kinematic five-axis machine tool. Similarly, by 

calculating the differences between the actual center and the known center, the volumetric errors 

can be calculated. 

Laser tracker (Figure 2-7, c) has been widely used in industries for large-scale metrology [62, 65, 

66]. As a portable coordinate measurement device, it can obtain the coordinates of the target mirror 

by analyzing the azimuth and distance related to the objective target lens. The laser tracker 

measures the same motion trajectory of the linear and rotary axis with a laser tracker located at 
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different base stations (at least four positions). Then, using the mathematical model of sequential 

multi-lateration measurement, multi-body system theory and error separation technology for the 

linear axis and rotary axis, errors of multi-axis NC machine tool can be calculated [65].  

The scale and master ball artefact (SAMBA) method (Figure 2-7, d) is conducted using a various 

number of master ball artefacts and one scale bar artefact under different calibration strategies to 

identify machine geometric error parameters and volumetric errors [54] [67]. The proposed master 

ball artefact consists of a master ball and a carbon rod. The master ball is mounted at the tips of the 

rod with different lengths. They are installed into the machine tool table by screwing. The scale bar 

artefact installed on the machine tool table needs to be calibrated and measured at least one time. 

Finally, the scale errors of the linear axis will be estimated. During the test, the master ball artefact 

centers are measured under the setup of rotary axes in different angular positions of (indexation). 

The measured master ball artefact coordinates are the inputs of the “13” and “84” machine error 

models [54, 68] (Figure 2-8) for estimating the VEs and geometric errors.  

 

 (a)                                                  (b) 

Figure 2-8. (a) The “13” machine error model of SAMBA method; (b) The “84” machine error 

model of SAMBA method 

The naming of the two machine error models is derived from the number of estimated machine 

error parameters [69]. Using the “13” machine error model, 13 machine error parameters namely 

the eight axis location errors (EA0B, EC0B, etc.), three linear gains (EXX1, EYY1, EZZ1) and 

two spindle offsets (EY0S, EX0S) (according to the standard ISO 230-1 [70]) can be estimated 
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[69]. The “84” machine error model can estimate 26 types of machine errors related to the linear 

and rotary axis. These error parameters are expressed with third-degree polynomials for a total of 

84 coefficients [68]. The estimated machine error parameters from the “13” and “84” machine error 

models are listed in Table 2-3 and Table 2-4. In addition, volumetric errors can be estimated from 

each master ball artefact probing position. The artefact is reconfigurable, does not need calibration 

and has good robustness in the periodic mounting of the artefact and probe on the estimation results, 

which makes the measurement faster and easier to conduct [71].  

Table 2-3. Machine errors of the “13” machine error model [54, 72] 

Machine errors Description of errors 

EA0B  Out-of-squareness of the B-axis relative to the Z-axis 

EC0B  Out-of-squareness of the B-axis relative to the X-axis 

EX0C  Offsets between the B and C axes 

EA0C  Out-of-squareness of the C-axis relative to the B-axis 

EB0C  Out-of-squareness of the C-axis relative to the X-axis 

EB0Z  Out-of-squareness of the Z-axis relative to the X-axis 

EA0Y  Out-of-squareness of the Y-axis relative to the Z-axis 

EC0Y  Out-of-squareness of the Y-axis relative to the X-axis 

EY0S  An offset of the spindle relative to the C-axis in Y direction 

EX0S  An offset of the spindle relative to the B-axis in X direction 

EXX1  Positioning linear error of the X-axis 

EYY1  Positioning linear error of the Y-axis 

EZZ1  Positioning linear error of the Z-axis  

Table 2-4. Machine errors of the “84” machine error model 

Axis Description of machine errors 

X axis EXX EYX EZX EAX EBX ECX 

Y axis EXY EYY EZY / / / 

Z axis EXZ EYZ EZZ EAZ EBZ ECZ 

B axis EXB EYB EZB EAB EBB ECB 

C axis EXC EYC EZC EAC EBC ECC 

In summary, Ball bar test usually requires an experienced operator and its full automation is 

difficult. R-test can obtain three-dimensional ball center position displacements when B and C-axis 
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share different positions. Laser tracker can calibrate machine tools with a large working volume in 

a short time, but its high cost and strict utilization environment limit its application. These methods, 

for the most, require specialized devices and extra maintenance for accuracy maintaining. The 

SAMBA method uses low price measurement devices with low maintenance requirements, and it 

can be run automatically. In addition, as already stated at the start of this subsection, the touch-

trigger probe has been widely used by most five-axis machine tools users, and this can make the 

use of the SAMBA for machine tool errors measurement easier. 

 Machine tool errors monitoring 

Machine tool accuracy may decline or change with the following factors: servo mismatch, friction, 

wear or degeneration of feeding axis, mechanical structure deformation, change of ambient 

temperature, etc. [73]. Therefore, how to maintain machine tools accuracy state is still a critical 

problem the industry is facing today. 

Digital drive signals of feed axis have been successfully applied into the monitoring of the typical 

disturbances like backlash, pitting and backlash on the linear axis of a three-axis machine tool [74]. 

The advantage of this approach is the availability of low-cost and reliable sensor signals. Recently, 

an optical sensor integrated into the machine tool structure has been presented for online machine 

error measurement [75]. A frequency modulating interferometer combined with a Gaussian laser 

beam can measure the motion errors of the feeding axis and the thermal conditions of machine 

tools in fast and automation way [75]. Compared with the state-of-the-art offline machine tool 

calibration method, this proposed method has advantages in measurement accuracy, cost and 

device dimensions. A similar idea could be found in an inertial measurement unit (IMU). It has 

been used to identify the axis degradation related changes of each feeding axis [30, 76]. The 

verification and validation of this method are processed in a linear axis testbed. The results revealed 

that the IMU-based method could measure geometric errors with acceptable uncertainty. In 

addition, a geometric accuracy monitoring method based on discrete strain gauges has also been 

proposed. The straightness can be evaluated through the reconstructed strain field of the machine 

tool basis [73].  
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Upon from the mentioned on-line monitoring methods, offline periodic inspection methods such 

as Ball-bar, R-test and Laser tracker have also been used to obtain machine tools geometric errors 

[75, 77].  

Volumetric errors are affected by the main components of machine tools. They can reflect the 

machining capability and the machine tool accuracy condition. In addition, it is helpful in 

maintenance strategy for avoiding great damages, failures and downtime of the machine tool. 

However, the research on volumetric errors is generally focused on its modeling, measurement and 

compensation [65, 78-82]. A TANGO concept followed by the associated mathematical models 

has been developed for machine error parameters and volumetric errors estimation. Its prediction 

capability in volumetric errors has been assessed by comparing with the artefact data measured 

with CMM. Relatively low standard deviation could be found in the residuals which demonstrate 

the effectiveness of the TANGO method [83]. Ballbar, laser tracker and R-test are being widely 

applied for volumetric error measurement of a multi-axis machine tool. The scale and master ball 

artefact (SAMBA) method related indirect volumetric error measurement methods are attracting 

the attention from the industry and academic area. Regarding the volumetric error compensation, 

a general volumetric error formulation based on the idea of the SAMBA method and an off-line 

compensation scheme for G-code correction has been proposed and partly tested. The results reveal 

that there is a huge accuracy improvement (about 90%) after error compensation [72, 81]. 

In summary, it is possible to use some machine tools geometric errors in long-term continuous 

monitoring. However, volumetric errors are still rarely used in MTCMS. This could be possibly 

caused by the following reasons. Firstly, it is hard to measure volumetric errors online without 

interfering with the normal machining time. Secondly, a stable environment is needed during the 

entire volumetric errors measurement process in order to decrease the thermal effect caused by the 

machining process or the change of ambient temperature. Thirdly, the volumetric error 

measurement usually takes a long time although it is largely correlated to the volumetric error 

measurement devices or strategy.  

 Conclusion of the literature review 

The reviewed monitoring systems usually use physical variables (force, current, power, vibration, 

acoustics emission, etc.) of either the machine tool main components or the tools for the condition 
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monitoring of the machine tool or the machining process. The significant advantages of the 

mentioned systems are their real-time monitoring performance. The present limitations in the body 

of work related to MTCMS can be summarized as follows: Firstly, the overall condition of the 

machine tool cannot be simply judged by analyzing condition information from partial machine 

tool components. Secondly, it is hard to bridge the machine tool degeneration to the machining 

process by just using the mentioned physical signals. Lastly, degeneration related faults are hard 

to identify because of the difficulty in setting failure flags.  

Although VEs have great potential in MTCMS, VE is still rarely applied in MTCMS. To apply VE 

into MTCMS and industry efficiently, we need to explore a simple VE measure strategy with short 

measurement time and simple maintenance needs. The scale and master ball artefact (SAMBA) 

method is known for its low maintenance cost, short measurement time and good precision in error 

estimation. Therefore, how to use the SAMBA method for VE measurement for MTCMS purposes 

and how to process VE for monitoring purposes are still important challenges that need to be solved 

by the research community. 
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 ORGANIZATION OF THE WORK 

Chapter 3 presents the overall structure of this thesis and links the introduction (Chapter 1), the 

literature review (Chapter 2) and the published/submitted papers (Chapter 4/5/6/7) which contain 

the main contributions of this doctoral research. The outcomes of this thesis at different stages are 

presented in Chapter 8, followed by the conclusion, limitations and future work in Chapter 9.  

All tests and volumetric errors presented in this thesis were conducted on a HU40-T five-axis 

machine tool in Virtual Manufacturing Research Laboratory (Polytechnique Montréal) using the 

SAMBA method, which is an indirect machine tool machine error parameters and volumetric error 

estimation method. 

The article entitled “Five-axis machine tools accuracy condition monitoring based on volumetric 

errors and vector similarity measures,” which was published in March 2019 in the International 

Journal of Machine Tools and Manufacture, Elsevier, Editor-in-Chief: D. Axinte, is in Chapter 4. 

The research work, presented therein, explores the possibility of using machine tool volumetric 

errors for machine tools accuracy state monitoring. Moreover, different types of vector similarity 

measures such as distance-based measures, angle-based measures and the comprehensive measures 

are presented and discussed for volumetric errors feature representation. This is the core foundation 

for the machine tools accuracy state monitoring presented in this PhD thesis. A monitoring plan 

based on volumetric errors, vector similarity measures and the exponentially weighted moving 

average (EWMA) control chart is proposed and tested using real and pseudo-faults. Simulated 

faults with gradual and sudden changes, caused by the change of the modeled machine error 

parameters of the SAMBA “13” machine error model, are used to validate the performance of the 

proposed monitoring plan. Finally, the performance of vector similarity measures and the proposed 

monitoring plan are discussed. 

Chapter 5 is composed of the paper entitled “Machine tool accuracy condition monitoring using 

combined vector similarity measures array of volumetric errors”, which was submitted in October 

2019 to CIRP Journal of Manufacturing Science and Technology, Elsevier, Editor-in-Chief: L. 

Monostori. In this paper, the machine tool volumetric error state is newly represented by the 

combined vector similarity measures array (CVSMA) of volumetric errors. Unlike the data 

processing in Chapter 4, volumetric errors are comprehensively monitored instead of monitoring 
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the change of volumetric error in a single volumetric error measurement position. To verify the 

performance of CVSMA in volumetric errors feature extraction, principal component analysis has 

also been used. Volumetric errors acquired from the experimental five-axis machine tool 

containing a C-axis encoder fault, pallet location faults and the uncalibrated C-axis encoder faults 

provide the database for this research. Combining with the exponentially weighted moving average 

(EWMA) control chart, the performance of CVSMA in terms of the change point detection of the 

sudden and gradual changes fault are also discussed. 

Chapter 6 consists of the article “Five-axis machine tool fault monitoring using volumetric errors 

fractal analysis”, published in June 2019 in the CIRP Annals Manufacturing Technology, The 

International Academy for Production Engineering, Elsevier journal. In this paper, volumetric 

errors are processed by vector similarity measures and by volumetric error norms. This was carried 

out to reveal if one can monitor the machine tool state by only using the original volumetric error 

vectors instead of different types of volumetric error data processing methods. This research 

provides a new outlook in terms of using Fractal analysis as a novel approach for machine tool 

volumetric error state feature extraction. Using the same volumetric error dataset, different fractal 

measures are tested, and their performance is also discussed and compared with the statistical 

analysis of volumetric error norms. The results reveal that fractal analysis measures perform well 

in volumetric errors feature extraction. Using this logic, fractal analysis of vector similarity 

measures of volumetric errors is also discussed, the results are reported in Appendix 1.   

Chapter 7 presents the paper “Machine tool volumetric error features extraction and classification 

using principal component analysis and K-means”, which was published in the Journal of 

Manufacturing and Materials Processing, MDPI, Editor-in-Chief Prof: Dr. Steven Y. Liang, in 

September 2018. Lots of volumetric errors are acquired from the experimental five-axis machine 

tool at variable time intervals under different machine tool conditions. This paper identifies the 

transition of machine tools state by analyzing the acquired volumetric error data. As well as 

recognizing the changed states using the references of historical volumetric errors data. This was 

achieved by using the acquired volumetric errors as the input for principal component analysis. 

Then, the principal components representing the machine tool accuracy state are then extracted and 

processed by K-means for state classification. Using this data processing, the deep-level meaning 

of machine tool states hidden in the volumetric errors database is revealed. 
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Finally, the highlights of the mentioned four papers are shown in Figure 3-1. 

 

Figure 3-1. Thesis organization 
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 ARTICLE 1: FIVE-AXIS MACHINE TOOLS ACCURACY 

CONDITION MONITORING BASED ON VOLUMETRIC ERRORS 

AND VECTOR SIMILARITY MEASURES 

Kanglin Xing, Sofiane Achiche, J.R.R Mayer 

Department of Mechanical Engineering, École Polytechnique (Montréal) 

*Published in International Journal of Machine Tools and Manufacture, Volume 138, Pages 80–

93, 2019 

Abstract: The accuracy of a machine tool affects the geometry and dimensions of machined parts. 

A machine tool accuracy condition monitoring scheme using volumetric errors (VEs), vector 

similarity measures (VSMs) and exponentially weighted moving average (EWMA) control chart 

is proposed in this research. The usefulness of this scheme is tested with simulated machine error 

data as well as real machine tool tests using NC induced geometric error changes and a real C-axis 

encoder fault. Both sudden and gradual changes were considered for the simulated faults. The 

results show that VE is a meaningful quantity for the monitoring of the machine tool accuracy 

condition. The proposed VSMs work well in VEs feature extraction. Amongst the studied VSMs, 

the module of the vectorial difference of two consecutive VE vectors (Dist) and the angle between 

those vectors (Cos2) are more stable and perform better for monitoring faults with sudden and 

gradual changes than the remaining VSMs in real VE data processing. Finally, this research 

provides guidelines for the use of VEs as well as a VE-based monitoring strategy for monitoring 

machine tool accuracy condition. 

Keywords: Machine tools, accuracy monitoring, volumetric error, vector similarity measures, 

EWMA.  

 Introduction 

CNC machine tools play an important role in manufacturing owing to their high accuracy, 

versatility, and productivity. As a result, from an operational perspective, the machine precision, 

its evolution over time and whether maintenance or recalibration is necessary are relevant issues to 

address. Machine tool condition monitoring systems (MTCMSs) aim to address such issues. 

MTCMSs are intended to provide in-process monitoring of the actual condition of the machine 
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tool. In addition, they should provide not only early indications of potential problems but also 

activate necessary control functions for possible corrective actions such as checking the status of 

key components, updating the machine tool compensation tables, or calling for urgent technical 

assistance. These active monitoring mechanisms shall increase the reliability of machine tools. 

Advances in sensor technologies, automated data acquisition systems and communication links 

provide new opportunities for real-time collection of physical variables of CNC machine tools. 

Currently, MTCMSs target two aspects of areas, namely the machining process and the machine 

tool systems [1]. This classification is based upon the machining capabilities and the different 

structures of the machine tool. Regarding the machining process, the tool wear and breakage 

detection, and the remaining tool life estimation have been widely studied by the research 

community [2-6]. This kind of MTCMS analyzes variations related directly to the machining 

process such as the cutting force, vibration, sound and temperature and some indirect variations 

such as the feed motor or the spindle motor current, voltage or power [7-10]. Meanwhile, the 

combined measuring of multiple quantities is also possible [11]. Other MTCMS track structural 

and functional components. A machine tool can be roughly divided into three main parts: the 

mechanical structures, the feed drives, and the control system which together form the main sources 

of malfunction of machine tools [12]. A structural health monitoring system (SHMS) for machine 

tools can determine the presence of damage in a structure, the location of the damage as well as the 

type or severity of the damage [13, 14]. Some of the signals and devices that are related to SHMS 

are acoustic emission, fiber optic sensors and scanning laser doppler vibrometer [15]. Coolant 

monitoring systems can prevent damage to the machine components caused by improper coolant 

concentration and/or abnormal pH levels [16]. The steady state characteristics of the coolant system 

such as the pump outlet pressure, the pump motor temperature and the tank level can be used to 

prevent defects in the coolant system. The spindle condition monitoring system can monitor the 

damage and the imbalance of a bearing or spindle [17]. Using the instrumented hammer, strike-

based tests provide the spindle stationary properties. Using  temperature, force, vibration, electric 

current and displacement sensors allow tracking the spindle dynamic property, insufficient cooling 

or the loss of cooling, and even collision [18]. Feed axis condition monitoring systems were tested 

and proved to recognize typical faults caused by wear by analyzing of the signals such as current, 
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backlash error, vibration and acoustic emission [19-21]. As for the NC controller, it has fault 

detection circuits or programs which can recognize faults from servo amplifiers, switches, etc. [22].  

MTCMSs have been extensively researched. However, there are still major limitations that need to 

be overcome. Monitoring partial key components of machine tools cannot reflect a holistic picture 

of the machine tool condition. The effect of some mechanical parts degradation on machining 

quality is hard to predict.  Nevertheless, advantages such as, the absence of interference with the 

normal machining process, the real-time data acquisition and mature sub-monitoring techniques, 

still make these solutions widely used and researched for machine tool [23]. 

The volumetric accuracy condition of the machine tool is affected by numerous machine 

components. Volumetric error (VE) is the deviation between the actual and ideal positions of the 

tool with respect to the functional point in the workpiece frame. It affects the machining quality 

and capability of machine tools. The advantages of using VE in machine tool condition monitoring 

are that the accuracy condition can be grasped and tracked to ensure machining quality. In addition, 

the measured VE can be directly used for compensation after the change of machine tool accuracy 

state are detected. However, currently, the literature reveals that research concerning VE is 

generally focused on its modeling, prediction and compensation and it remains unused for machine 

tool condition monitoring [24-26]. 

This paper presents an investigation of the use of VE as a basis for a MTCMS. It begins by 

presenting the state of the art in MTCMSs and some of the questions that need to be addressed 

concerning the subject. It then presents an introduction to machine tool volumetric error. Then, the 

structure of the proposed volumetric error monitoring system is exposed followed by the VE 

sources used in this research project and a discussion of the validation results. Finally, the paper 

concludes with a summary and an overall discussion. 

 Machine tool volumetric error 

Part quality is directly related to volumetric errors (VEs)[27]. VEs are affected by a wide range of 

machine components which make them potentially able to provide a broad view of the machine 

condition. Machine tool VEs are often classified as quasi-static errors including geometric errors, 

thermo-mechanical errors and dynamic errors which come from loads, dynamic forces, motion 
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control and control software [28]. Some VE components are associated with individual axes 

whereas others are related to the relative location of axes.  

In this paper, VE is defined as the relative Euclidian error vector between the tool frame and the 

workpiece related frame in 3D space [29]. The tested machine, a HU40T five-axis machine tool, is 

shown in Figure 4-1. It has three linear axes (X, Y and Z) and two rotary axes (B and C) and has 

the topology WCBXFZYST, from the workpiece to the tool, where S stands for the spindle. In this 

structural loop, geometric errors include the inter- and some intra-axis errors adhering to the ISO 

230-1:2012 [30] nomenclature. A perfectly functioning machine will be able to correctly measure 

the position of master balls mounted on its table using a touch probe. However, owing to the 

existence of machine errors, there will be some Cartesian mismatches (VEs) between the estimated 

coordinates of the master ball artefact and the calculated master ball artefacts coordinates using the 

nominal (no errors) machine model. In this case, VEs contains accuracy information of the machine 

tool including the modeled and non-modeled machine errors. The SAMBA machine calibration 

method is used because it provides not only estimated values of the machine error parameters but 

also estimates of the master balls positions that best explain the data [33]. The SAMBA method 

can also be performed without estimating any of the machine tool ISO230-1:2012 inter- and intra-

axis errors. In this case, the algorithm will estimate the balls center position that minimizes the 

difference between the estimated ball centers and the nominal machine model prediction of the 

balls positionses (represented by the stylus tip center when probing the ball). It is unlikely that any 

estimated ball positions will be able to cancel the effect of the ISO error parameters. However, it 

was found that the algorithm instead of finding the actual ball’s position, finds slightly different 

values which reduce the volumetric errors of the machine. It was found in our previous work that 

as we enrich the machine model, the algorithm is better able to explain the measurements by 

attributing to the balls more realistic positions and the machine better error estimates which result 

in larger, and more realistic, volumetric errors. A good compromise is to use the “13” machine 

error model which keeps testing time reasonably short while giving better estimates of the balls 

position and as a result better estimates of the volumetric errors. The 13 machine error parameters 

are the eight axis location errors (EA0Y, EB0Z, EC0Y, EX0C, EA0B, EA0C, EB0C, EC0B), three 

linear gains (EXX1, EYY1, EZZ1) and two spindle offsets (EX0S, EY0S). In the end, the 
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calculated volumetric errors should contain not only the effect of the modeled errors but also those 

non-modeled errors that the estimated balls position are unable to imitate. 

 

(a)                                                                                                       (b) 

Figure 4-1. (a) Nominal kinematic models of the target five-axis machine tool; (b) Illustration of 

the 10 axes alignment errors of the target five-axis machine tool with WCBXFZYST topology 

shown holding a machine probe and with some master ball artefacts mounted on the machine 

workpiece table; these axes alignment errors lead to VEs in 3D space. 

 Volumetric error monitoring system 

The functional information flow of the proposed accuracy monitoring system is shown in Figure 

4-2. During the machine tool maintenance period, accuracy measurement is conducted using the 

SAMBA method [31] to acquire the necessary machine tool VEs information using the commercial 

software AxiSAMBATM. The VEs are inputs for the next module for feature extraction. Then the 

VEs feature information is processed in the VE change recognition module for accuracy condition 

recognition. 

VEs 

Measurement

VEs

Feature extraction

VEs 

Change recognition
  

Figure 4-2. Information flow for machine tool condition monitoring using VEs. 
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4.3.1 VEs data acquisition 

Commonly used VE measurement methods are the ball-bar circular test, the R-test, tracking 

interferometers and machining tests. One recent development is the scale and master ball artefact 

method (SAMBA) [32, 33]. The SAMBA method, which is used in this work, is an indirect method 

requiring master ball artefacts and specialized VE estimation software. A set of four master balls 

with only nominally known positions are fixed to the machine tool table and probed sequentially 

with a touch-trigger probe fitted to the tool attachment (Figure 4-9). This probe allows the machine 

to read its x, y and z-axis positions when the probe contacts the sphere. A sequence of probing and 

a simple algorithm are used to estimate the readings of the machine axes corresponding to the stylus 

tip being at the center of the sphere. This can be thought as the coordinates of the sphere center in 

the machine frame. These coordinates are inputs to the SAMBA’s mathematical model to estimate 

the machine errors parameters as well as VEs. The SAMBA method follows these general steps: 

machine error model selection, balls positions, indexation design and numerical verification, 

probing G-code generation, measurement and data processing. Its convenient setup which can be 

mounted on a dedicated palette and the use of the machine probe renders the entire measurement 

process automatic which makes it attractive for frequent measurements as would be required for 

monitoring purposes. VEs can then be obtained throughout the machine workspace while 

mobilizing all machine axes as well as an indexable spindle.  

4.3.2 VEs feature extraction 

VE data estimated with the “13” machine error model will be processed with vector similarity 

measures (VSMs) to extract the features of VEs. The concept of similarity refers to how alike two 

objects are. In practice, many data mining and data analysis techniques including the comparison 

of objects through similarity measures such as clustering, nearest-neighbour search, automatic 

categorization, and correlation analysis have been widely applied [34]. McGill et al. [35] reported 

that there are about 60 different similarity measures with the most popular types being: distance-

based similarity measure and angle-based similarity measure. Each object can be viewed as an N-

dimensional vector where the components are features related to the data of the object. The 

mathematical framework of this can be represented as vector [x1, x2, x3, …, xN]. As a Euclidian 

vector composed of three components [VEx, VEy, VEz], VE can be processed with the above-
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mentioned VSMs. The “Euclidean distance” is a distance-based vector similarity measure that can 

be widely used in various domains; for a VE vector, it can amplify the effect of large VE 

components in distance measurement. However, in some situations, distance measures only 

provide a skewed view of VE data especially when the VE vector is scattered in 3D space and the 

differences in distance between any two VE vectors are small. To account for this shortcoming, 

angle-based parameters can be considered and used together with the distance-based method. The 

angle-based “cosine” vector similarity measure is associated with the angle between two vectors. 

Its advantage is its independence from the length of the vector without amplifying the large values 

of the component of the VE vector.  

Based on the core ideas of VSMs and the characteristics of VEs, seven similarity measures are 

proposed and applied in this research. For distance-based similarity measures, three parameters – 

the module (Modu) of a VE vector (Eq. (1)), the module of the vectorial difference of two adjacent 

VE vectors written as Dist (Eq. (2)) and the module difference of two adjacent VE vectors written 

as Diff (Eq. (3)) are applied. The first parameter evaluates the norm of the single VE vector, while 

the remaining two parameters evaluate the relationship between two adjacent VE vectors, the 

referenced VE vector and the newly acquired VE vector. The angle-based parameters use two 

different measures: Cosine1 (Cos1) and Cosine2 (Cos2) (Eq. (4)-(5)). Cos1 is calculated using the 

VE vector and the unit vector along the Z-axis ([0, 0, 1]), whereas Cos2 is obtained using two 

adjacent VE vectors. This vector reveals the included angle information from each VE vector 

viewpoint.  In addition, Cos1 has the advantage of decreasing the random effect of the reference 

VE vector on VE change recognition. The Cos2 parameter reveals the included angle change 

information of the two adjacent VE vectors. Finally, the comprehensive measures, Area and 

Volume (Volu) (Eq. (6)-(7)), which consider the effect of the angle and distance together, are also 

developed and used. The area parameter calculates the area between a VE vector and the Z-axis 

while the volume parameter calculates the volume of a cone resulting from the rotation of the VE 

vector around the Z-axis. These two parameters take into account the effect of the angle and 

distance and so the only difference between them is the weight of the angle and the distance. The 

geometric meanings of these measures are illustrated in Figure 4-3. 
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Figure 4-3. Geometric meanings of the proposed VSMs 

The VE data is processed in three steps.  

Step 1: Build the VE vectors. 

Machine tool probing data measured at a set of specific positions is processed with the SAMBA 

method to estimate the VE at each position as [𝑉𝐸𝑥 ,𝑉𝐸𝑦 , 𝑉𝐸𝑧]. 

Step 2: Classification of VE vectors based on the volumetric information measurement positions. 

A total of 109 master ball artefact positions are used to estimate the VEs of the machine tool as 

vectors VE( , )  = (𝑉𝐸x( , )
, 𝑉𝐸y( , )

, 𝑉𝐸z( , )
) (where i stands for the VE measurement positions 

identifier (1≤i≤109), and j stands for the measurement repetition thus resulting in a time series of 

VEs, same definitions for the Eq. (1)-(11). 

Step 3: Data processing. 

The VSMs are calculated using Eq. (1)-(7). For the measures such as Dist, Diff, Cos1 and Cos2, 

the first measured 𝑉𝐸( , )  data, j=1, is used as a reference to which the remaining 𝑉𝐸( , ),  j>1, data 

can be compared. For the remaining measures, VSMs can be calculated directly. Then, these VE 

feature time series are written as the 𝑉𝑆𝑀𝑠( , ) , where VSMs included seven parameters, for the 

latter change recognition processing. For example, 𝑀𝑜𝑑𝑢( , ) represents all VE feature time series 

which have been processed with the measure Modu. 

𝑀𝑜𝑑𝑢( , ) = ‖𝑉𝐸( , )‖ = √𝑉𝐸𝑥( , )
2 + 𝑉𝐸𝑦( , )

2 + 𝑉𝐸𝑧( , )
22  (1) 
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 𝑖𝑠𝑡( , ) = ‖𝑉𝐸( , ) − 𝑉𝐸( ,1)‖

= √(𝑉𝐸𝑥( , )
− 𝑉𝐸𝑥( ,1)

)
2

+ (𝑉𝐸𝑦( , )
− 𝑉𝐸𝑦( ,1)

)
2

+ (𝑉𝐸𝑧( , )
− 𝑉𝐸𝑧( ,1)

)
22

 
(2) 

 𝑖  ( , ) = ||𝑉𝐸( , )| − |𝑉𝐸( ,1)||

= |√(𝑉𝐸𝑥( , )
)

2

+ (𝑉𝐸𝑦( , )
)

2

+ (𝑉𝐸𝑧( , )
)

22

− √(𝑉𝐸𝑥( ,1)
)

2

+ (𝑉𝐸𝑦( ,1)
)

2

+ (𝑉𝐸𝑧( ,1)
)

22

| 

(3) 

𝐶𝑜𝑠1( , ) = 𝐶𝑜𝑠(𝑉𝐸( , ), 𝑉) =
  𝑧(𝑖, )

‖  (𝑖, )‖
   where V= [0, 0, 1] (4) 

𝐶𝑜𝑠2( , ) = 𝐶𝑜𝑠(𝑉𝐸( , ), 𝑉𝐸( ,1)) =
𝑉𝐸( , ) ∙ 𝑉𝐸( ,1)

‖𝑉𝐸( , )‖ ∙ ‖𝑉𝐸( ,1)‖

=
𝑉𝐸𝑥( , )

∙ 𝑉𝐸𝑥( ,1)
+ 𝑉𝐸𝑦( , )

∙ 𝑉𝐸𝑦( ,1)
+ 𝑉𝐸𝑧( , )

∙ 𝑉𝐸𝑧( ,1)

[(𝑉𝐸𝑥( , )
2 + 𝑉𝐸𝑦( , )

2 + 𝑉𝐸𝑧( , )
2) ∙ (𝑉𝐸𝑥( ,1)

2 + 𝑉𝐸𝑦( ,1)

2 + 𝑉𝐸𝑧( ,1)
2)]

1/2 

(5) 

𝐴𝑟𝑒𝑎(𝒊,𝒋) =  .5 ∙ √(𝑉𝐸𝑥( , )
)

2

+ (𝑉𝐸𝑦( , )
)

22

∙ |𝑉𝐸𝑧( , )
| (6) 

𝑉𝑜𝑙𝑢(𝒊,𝒋) =
1

3
∙ 𝜋 ∙ ((𝑉𝐸𝑥( , )

)
2

+ (𝑉𝐸𝑦( , )
)

2

) ∙ |𝑉𝐸𝑧( , )
| (7) 

4.3.3 VEs change recognition 

The time sequences, 𝑉𝑆𝑀𝑠( , ), obtained from the VSM time series are used as the original input 

for the automatic VE change detection algorithm, which is based on the idea of statistical process 

control (SPC). A SPC system can continuously monitor the collected data of an event and 

accordingly decides whether a situation is under or out of control, or whether any immediate and 

necessary action should be taken. SPC has been widely applied in today’s manufacturing industries 

[36]. Control charts, based on the normal distribution, are common tools in SPC. However, it may 

occur that a monitored process does not follow a normal distribution [37]. In addition, the limitation 
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of the size of the acquired data makes it hard to justify the normality in the industry. The 

exponentially weighted moving average (EWMA) is a memory control chart based on current and 

historical data. It has high sensitivity in detecting small and moderate shifts in the process [37]. 

The advantage of using the EWMA control chart is its good performance when the observations 

are not normally distributed or are autocorrelated [38]. In addition, it can also be used to forecast 

the observation in the next period, which can help analysts take preventive actions before the 

process departures to the out-of-control state. Moreover, it has been shown that, for certain values 

of the smoothing constant 𝜸 (e.g., a=0.05), compared with the other control charts such as moving 

average chart and Shewhart chart, EWMA control chart shows more robustness for the non-normal 

distributed data [36]. Therefore, we used the EWMA control chart as the monitoring tool in this 

research. Based on the 𝑉𝑆𝑀𝑠( , ) dataset and EWMA theory [36], the EWMA control chart is 

established as shown in Eq. (8). 

𝑁𝑉𝑆𝑀𝑠( , ) = (1 − 𝜸)𝑁𝑉𝑆𝑀𝑠( , −1) + 𝜸𝑉𝑆𝑀𝑠( , )  (8) 

where 𝜸 is the smoothing coefficient, such that 0< 𝜸 <1, i stands for the VE measurement positions 

(109 in total) and j stands for the total VE measurement or simulation times. The initial value 

𝑁𝑉𝑆𝑀𝑠( ,0) is the expected mean value of some K observation- 𝑉𝑆𝑀𝑠( , )(𝑗 = 1 to K).  Taking the 

𝑉𝑆𝑀𝑠(1, ) as an example, when the observations are independent and identically distributed with 

variance 𝜎2, with the increase of the 𝑉𝑆𝑀𝑠(1, ), the upper and lower control limits of EWMA 

control chart will approach the following steady-state values (asymptotic control limits): 

𝜇0 ± 𝐿𝜎√
𝜸

2 − 𝜸
 (9) 

Where 𝜇0  is the mean value of the 𝑉𝑆𝑀𝑠(1, )(𝑗 = 1 to K) and 𝐿  is the width parameter of the 

EWMA control chart. The general choices are 2.6≤ 𝐿 ≤3 and 0.05≤ 𝜸 ≤  .25, where smaller 𝜸 

allow detecting smaller shifts [36]. A detailed discussion on EWMA control schemes design can 

be found in Montgomery [36]. Here, we assume that with the increase of the number of the 

𝑉𝑆𝑀𝑠( , 1)  (𝑗1 is the data size for learning), which are acquired for learning, follows the same 

distribution as 𝑉𝑆𝑀𝑠( , )  when 𝑗=+∞. Then, the asymptotic control limits will not bring much 
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effect on the recognition results of EWMA. The data processing sequence is shown in Figure 4-4. 

As a supervised learning method, EWMA control chart includes two steps-learning and checking 

processes. In the learning process, the acquired data (𝑉𝑆𝑀𝑠( , )(𝑗 = 1 to 𝑗1)) from machine tool in 

the normal condition is used to develop the EWMA control chart and calculate the control limits, 

the upper control limit (UCL) and the lower control limit (LCL), under the parameters that 𝐿 =2.6 

and 𝜸 =0.05. In the checking process, the new acquired data (𝑉𝑆𝑀𝑠( , )(𝑗 > 𝑗1)) will be inputted 

into the EWMA model to compare with the UCL and the LCL. When this data (𝑉𝑆𝑀𝑠( , )(𝑗 > 𝑗1)) 

is within the two control limits, we conclude that the machine tool accuracy condition is stable and 

under control. Meanwhile, this new acquired data will be added to the normal database to update 

the control limits. The update could be made periodically. Otherwise, the condition is said to be 

out of control. The data for checking will be recorded and recognized as the abnormal changing 

point. Similarly, all the new acquired data will be processed according to the above procedures.  

Learning data

EWMA

Checking data

UCL

LCL

LCL<NVSMs<UCLVEs features

Normal state

Abnormal state

Yes

No

NVSMs

Normal 

State database

Yes No Abnormal 

State database
 

Figure 4-4. Flowchart of automatic VE change detection program based on EWMA control chart 

4.3.4 Performance comparison 

The monitoring plan is aiming to monitor the machine tool state from single VE measurement 

position. Therefore, the VE time series of each VE measurement positions (109 in total) need to be 

checked. The recognition rate (RR) is defined as the ratio between the total number of the 

successful recognition positions of an abnormal behavior (TSRP), where the change point can be 

successfully recognized, and the total VE measurement positions (TMP=109) (Eq. (10)).  

𝑅𝑅 =
𝑇𝑆𝑅𝑃  

𝑇𝑀𝑃
 ∗ 1  % (10) 
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RR is calculated for the monitoring plan with VEs features extracted by each VSM. RR value will 

be used to analyze and compare the performance of these VSMs, to assess the usefulness of using 

VE to monitor the machine tool condition change, and to reveal the performance of the proposed 

monitoring plan. 

 VE data source 

Simulated and real VE data are used to evaluate the proposed approach. The simulated data comes 

from three sources: 1. the SAMBA simulator - AxiSAMBATM software which uses geometric and 

kinematic modeling of the machine tool; 2. X-axis EXX error and straightness error EYX are 

induced via the real machine compensation tables or via machine readings modification and 3. 

Periodic experimental tests. The SAMBA simulator predicts VEs caused by changes in each 

machine error parameter with different amplitude and change shape. The remaining two options of 

VE generations are obtained from the real machine tool and are based on actual VE measurement 

coming from the periodic experimental tests. The recognition rate for various changes will be 

compared in order to discuss the effectiveness of the VEs and VSMs. 

4.4.1 Simulated VE data with SAMBA simulator 

In this research, SAMBA tests are numerically simulated for the “13” machine error model. 

Different machine tool states can be simulated by varying both the initial machine tool error 

parameters and their evolution in time. Each machine error parameter will be set to five different 

initial values accompanied with three types of change shape: expansional growth shape, inverted 

U shape and S shape. The simulation process is illustrated in Figure 4-5. As an example the 𝐸𝑋𝑋1 

error parameter is expressed as shown in Eq. (11), where parameter k , see Figure 4-5, is the 

amplifier that controls the size of the change in the shape of the machine error parameter, and 

parameter Echange, is a constant value set to 1E-05. Using this equation, 30 simulation tests (j∈ 

[1,30]) are generated for each machine error parameter with a specific change shape. The VEs of 

all the 30 tests are combined into a time series for analysis. The five-different initial values of 

machine error parameters 𝐸𝑋𝑋1(𝑖, 𝑗), where 𝑖=1 to 5, are 1E-05, 5E-05, 10E-05, 15E-05 and 20E-

05, respectively. 
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𝐸𝑋𝑋1(𝑖, 𝑗) = 𝐸𝑋𝑋1(𝑖) + 𝑘 ∗ 𝐸𝑐ℎ𝑎 𝑔𝑒   where j=1,2, 3, …, 3  (11) 
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Figure 4-5. VE simulation based on AxiSAMBATM software 

4.4.2 Simulated VE data by X-axis pitch error compensation tests 

Error compensation functions of the machine tool were used not to compensate the errors of the 

machine but to as an economical method to degrade the geometric behavior of the machine to 

simulate a malfunction. The pitch error compensation table modifies the linear positioning error of 

a linear axis. This facility, which is normally used to correct a positioning error of an axis, will be 

used instead to create a positioning error such as EXX. The VEs of the machine tool are measured 

before and after EXX error injection. The implementation process is illustrated in Figure 4-6.  

CNC controllerMachine tool

Simulsated

Pitch error 

No error 

SAMBA

Measurement VE 

(Normal state) 

VE 

(Fault state) 

 

Figure 4-6. Main data processing steps for X axis pitch error simulation 
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The HU40-T horizontal five-axis machine used for this experiment is equipped with a FANUC 

Series 15i CNC controller that is capable of pitch error compensation via a compensation table. A 

U shape EXX error with a maximum amplitude of 35 μm was added (Figure 4-7). After the error 

injection, the SAMBA measurements were repeated five times. Then, the VE data estimated from 

five times repeated tests after error injection and the VE data estimated from seven times repeated test 

before error injection are composed together to form VE time series-VE( , ) (𝑖=1:109, 𝑗=1:12) 

which can indicate the change of machine tool state caused by the change of EXX error. 

    

Figure 4-7. A U shape EXX error with amplitude of 35um 

4.4.3 Simulated VE data by X-axis straightness error injection tests 

Straightness error is one of the fundamental error motions which affect the accuracy of CNC 

machine tools. One such error motion is the straightness error in Y of the X-axis, EYX. The 

experimental machine tool controller does not offer a straightness error compensation function. 

Based on the properties of straightness error, for the X-axis, the existing of straightness error can 

make the movement of X axis miss its normal destination position. For the master ball position 

measurement, this inaccuracy can be revealed in the Y coordinate. Therefore, an error is added to 

the Y coordinate of the measured position of the master balls as a function of the X-axis x position. 

Figure 4-8 shows these data processing steps and the error to be added. In this schematic, 𝑖 stands 

for the total number of master ball measurement positions (i.e. 109), j stands for the simulation 

repetition, and 𝐴  represents the amplification coefficient whose values are 1.35, 1.4, 1.5, 1.55 and 

1.65, respectively. The 𝑥  of the measured master ball positions will be inputted in the EYX error 

equation to get the reference EYX, and the coefficient  𝐴   is used to simulate straightness error in 

different states. These errors 𝐸𝑟𝑟𝑜𝑟  are added to the original coordinate (𝑦 ) of the master ball 
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positions readings to get the final simulated master ball positions 𝑃(𝑖, 𝑗). They are used as the input 

of the AxiSAMBATM software to generate VE data. The newly simulated five times VE data and 

the previous measured six-times VE data are combined to form a VE time series-VE( , ) (𝑖=1:109, 

 𝑗=1:11) in time domain for analysis. 

“84“ machine error 

model (SAMBA)

Master ball positions

𝑃 = (  , 𝑦 ,   )

𝐸𝑟𝑟𝑜𝑟 = E  ∗ 𝐴 

𝑁𝑦( , ) = 𝑦 +𝐸𝑟𝑟𝑜𝑟 
New master ball positions

𝑃( , ) = (𝑥 , 𝑁𝑦( , ),   )

E   ( 3.3E 10)∗  +(1.33E 08)∗ 2

𝐴 =  1.35,…1. 5 ,

where j=1:5

𝑥 

“13“ machine error 

model (SAMBA)

VEs

 

Figure 4-8. X-axis straightness error injection flowchart 

4.4.4 Periodical tests of the experimental machine tool 

The raw data is collected from the HU40-T five-axis machine tool with a MP700 Renishaw touch 

trigger probe (Figure 4-9) and processed with the AxiSAMBATM software. The machine tool 

volumetric information is measured periodically twice a week at an ambient temperature ranging 

from 21 to 23℃. The touch trigger probe measures the positions of the accessible master balls at 

27 indexations (the angular positions pair of the B- and C-axes) and generate 109 ball center 

positions.  

 

Figure 4-9. The laboratory a five-axis machine tool undergoing a SAMBA test 

The scale bar is measured for indexation B=C=0°. This experimental data is then processed with 

the “13” machine error model to generate the estimated ball positions from which the VEs are 
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calculated. During the test phase a fault developed on the C-axis encoder causing significant ECC 

error which affected the machine tool condition. We selected 24 tests: 12 tests with VE data of the 

machine tool in its normal working condition and 12 tests with the machine tool in this faulty state. 

 Results and discussion 

4.5.1 Simulated VE data change recognition 

For the simulated VE changes, only one of the 13 machine error parameters is changed at a time. 

For machine error parameter EXX1, three types of error curve shapes and five different initial 

values (Figure 4-5) are defined. The resulting simulated VEs are processed with the VSMs, as 

shown (partial results) in Figure 4-11. Generally, there are two metrics standards to verify if VE is 

good for machine tool accuracy condition monitoring. Firstly, different machine errors values 

should result in different VE values. This can make VE reflect the machine tool accuracy 

information with different states. Figure 4-10 reveals that the VEs features (𝑀𝑜𝑑𝑢( , )) are different 

(V-1 to V-5) and can be clearly recognized when simulating VEs with EXX1 machine error 

parameter at five different initial values (section 4.4.1). For example, for the VE module value with 

the shape 1, their values are in direct proportion to EXX1 machine error parameter.  

 

Figure 4-10. Features (𝑀𝑜𝑑𝑢( , )) of VEs simulated by EXX1 error parameter with five initial 

values, expressed as V-1 to V-5, and three shapes, where S-1 means the initial EXX1 has 

expansional growth shape, S-2 and S-3 mean the initial EXX1 has inverted U shape and S shape 

individually; VEMT means VE measurement times; IMEV means initial machine error value. 

When considering the change in shape of VEs (Figure 4-10), the VSMs’ shapes resembles the 

shapes of the AxiSAMBATM simulator input-EXX1 in the time domain (section 4.4.1).  From the 
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perspective of the VE measurement time series, VE’s shape can show the change tendency of the 

machine tool accuracy parameters with time. So, VE has capability in reflecting the machine tool 

accuracy information with different amplitudes and change tendency in the time domain. For the 

performance of the VSMs, we can find that VSMs such as Dist, Diff, Area and Volu show clearer 

VE curve shapes than the remaining measures (Figure 4-11). These VE curve shapes are similar 

with the shape of the simulated EXX1 (Figure 4-5). The Cos1 measure seems to have less 

recognition ability in VE change than the other measures. These change shapes expressed with 

VSMs are similar to the machine tool EXX1 error parameters’ change shapes. In addition, for the 

remaining 12 machine error parameters, their VE module values also perform the same as EXX1 

parameters in curve shapes and initial values. 

 

Figure 4-11. Features of the simulated VEs with the input Exx1=1E-05, and with three change 

shapes, where S-1 means exponential growth shape, S-2 and S-3 mean inverted U shape and S 

shape individually, MECS means machine error curve shape, VEMT means volumetric error 

measurement times 

4.5.2 X-axis pitch error change recognition 

The VEs are repeatedly measured, with the SAMBA method, before and after the X-axis pitch 

error injection for seven and five times respectively. The final VSMs change recognition results 

are shown in Figure 4-12. The fault occurrence time (the 8th test) is shown with a red grid to reflect 
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the transition between the machine tool ‘normal’ and faulty states. The ‘normal’ state before the 

red grid and abnormal state after the red grid needs to be classified by visual inspection or by a 

change detection algorithm (EWMA method). For VSMs such as Dist, Diff, Cos1 and Cos2, 

obvious gaps could be found at the red grid. As for the remaining parameters, the gaps are not 

obvious. 

4.5.3 X-axis straightness error change recognition 

Using the straightness error injection method, VEs are produced eleven times while the first six 

times condition are for a normal machine tool condition. The final VSMs results are shown in 

Figure 4-13. The fault occurrence time (the 7th test) is shown with a red grid to reflect the transition 

between the machine tool ‘normal’ and abnormal working conditions. Figure 4-13 reveals that the 

change in the simulated EYX straightness error, by manual error injection, is reflected in the VE 

as seen through the VSMs. As for VSMs, measures such as Dist, Diff, Cos1 and Cos2 have a greater 

ability to reveal the machine status change than the other measures. 

 

Figure 4-12. Recognition results of VE change caused by the EXX pitch error compensation, 

where VEMP and VEMT means volumetric errors measurement positions and times. 
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4.5.4 C-axis encoder fault change recognition 

In the periodic machine tool accuracy measurement sequence, 24 tests are selected with 12 tests 

measured from the machine tool in its normal condition. In Figure 4-14, the fault occurrence time 

(the 13th test) is shown with a red grid to reflect the transition between the machine tool’s C-axis 

encoder normal and abnormal working conditions. The C-axis encoder fault is visually reflected in 

the VSMs graphs. All the measures reveal the VE change. The changes in the Dist and Diff 

measures are particularly evident. Neither the injected non-linear pitch error EXX the straightness 

error EYX nor the C-axis encoder faults ECC are estimated by the “13” machine error model. 

Nevertheless, the analysis of the estimated VE through the VSMs can detect the effect of their 

variation. 

 

Figure 4-13. Recognition results of VE change caused by the straightness error compensation, 

where VEMP and VEMT means volumetric errors measurement positions and times. 
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Figure 4-14. Recognition results of VE change caused by C-axis encoder fault, where VEMP and 

VEMT means volumetric errors measurement positions and times 

4.5.5 Recognition rate of the three mentioned faults 

The simulated faults are all processed with VSMs, and their changes are automatically recognized 

with the EWMA control chart. In addition, the final recognition rate (RR) has been calculated. The 

key parameters of EWMA control chart for the three faults change recognition are shown in Table 

4-1. 

Table 4-1. EWMA control chart parameters setup 

Fault type 
Data 

length 

Change 

point 

Learning 

data size 

Smoothing 

coefficient 

Width 

parameter 

Pitch error 

(EXX) 
12 8th 6 0.05 2.6 

Straightness 

error (EYX) 
11 7th 6 0.05 2.6 

C-axis encoder 

fault 
24 13th 12 0.05 2.6 

Let us take the C-axis encoder fault change recognition as an example. VEs features are extracted 

with Modu measure. The length of the total VE measure series is 24. The first ten acquired VE 

characteristics, 𝑀𝑜𝑑𝑢( , )where 𝑖=1 to 109 and 𝑗=1 to 10, have been used to develop the EWMA 

control chart and the control limits UCL and LCL (Eq. (9)). All 24 VE characteristics, 
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𝑀𝑜𝑑𝑢( , )where 𝑖=1 to 109 and 𝑗=1 to 24, have been processed by the EWMA model to detect if 

the processed VE characteristics 𝑁𝑀𝑜𝑑𝑢( , )is in the range of the two control limits (Figure 4-15).  

 

Figure 4-15. Recognition results of the 𝑀𝑜𝑑𝑢( , ) by EWMA control chart where the white line 

stands for the fault occurrence time. 

This detection process is repeated for each VE measurement position (i=1~109) as the following 

rules: when the processed VE characteristics 𝑁𝑀𝑜𝑑𝑢( , ) is within the control limits, LCL and 

UCL, the detected VE is associated to a with normal state. This processed VE characteristics 

𝑀𝑜𝑑𝑢( , )  will be saved as the learning data and used for control limits updating; when the 

processed VE characteristics 𝑁𝑀𝑜𝑑𝑢( , )is out of the control limits, the position of this measure in 

the VE time series is compared with the exact fault occurrence time T=13. When N=T the fault is 

successfully detected. If N≠T, the fault is not successfully detected; For the VE measurement 

tests, VEs are estimated from 109 positions. Therefore, the total VE recognition positions (TRP) is 

109. The total number of successful recognition positions, TSRP, in this particular case is 78 so 

that using Eq. (10) the final recognition rate RR=72%. It means that using Modu measure and 

EWMA method, under the current EWMA setup, the faults can be successful recognized in 72% 

of the VE measurement positions. 

Table 4-2 shows the final recognition results for the three tested faults. Considering all the VSMs, 

Dist and Co21 measures have the highest recognition rate, followed by the Volu and Cos1 

measures; the remaining VSMs have similar recognition rates. However, only Dist and Cos2 

measures can get recognition rates close to or equal to 100% for all three faults while the remaining 
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measures only get a maximum of 86% recognition rate. The possible reason is that the recognition 

rate can be affected by the limited learning data and the setup parameters (Table 4-1) of the EWMA 

control chart. VSMs without fully 100% recognition rate means that a single VE measurement 

position is not sensitive to all kinds of faults. However, the change of the machine tool condition 

can be reflected in most VE measurement positions. This leads to the conclusion that the use of all 

mentioned VSMs can help to increase the fault recognition rate than the use of a single measure 

such as VE-Modu (the volumetric error vector norm) which is a commonly used indicator. The 

other proposed measures mostly have better performance than Modu when extracting VE 

characteristics (Table 4-2, Mean_RR, which is the mean value of the recognition rate of each 

measure).  

Table 4-2. The final recognition results of the mentioned simulated and real faults 

Faults 
VSMs 

Modu Dist Diff Cos1 Cos2 Area Volu 

Pitch error (EXX) 55% 95% 55% 80% 98% 41% 54% 

Straightness error (EYX) 58% 98% 58% 86% 100% 62% 73% 

C-axis encoder fault 72% 100% 71% 70% 98% 59% 82% 

Mean_RR 62% 98% 61% 73% 99% 54% 70% 

4.5.6 Discussion 

The proposed VE feature extraction and change recognition methods were used for machine tool 

VEs change recognition. The recognition results of the faults data reveal this monitoring plan is 

effective in recognizing VEs change. Firstly, the VSMs performs equally in the identification of 

the simulated faults without considering the non-modeled machine errors and real random errors 

of the real measurement. However, for the real data, VSMs could perform differently depending 

on the measurement conditions. And the VEs change could only be detected in some VEs 

measurement positions. Vector similarity measures-Dist and Cos2 are sensitive to all types of faults 

mentioned in this paper and perform better than the remaining measures. Secondly, VSMs do not 

only contain the proposed measures but also include the unlisted or the measures developed based 

on the ideas of VSMs. For the same faults, they could probably work well. However, for the first 

time, the geometrically based measures are applied in VEs feature extraction. Thirdly, the 

application of EWMA control chart includes two parts – learning and checking. The size and the 
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quality of the learning data can affect the recognition results. The increase of the VEs data size for 

learning and the precise selection of VEs data with least noise are two useful ways to improve the 

accuracy of the control limits – UCL and LCL. In addition, the smaller width parameter and 

smoothing coefficient are helpful for the gradual change detection. In application, depending on 

the user’s request, the other statistical parameters of VSMs such as the maximum or the mean VE 

norm could also be used as the secondary control limits. Therefore, two types of control limits used 

together can improve the performance of the proposed monitoring plan. Lastly, the results show 

that not only the fault related to the modeled pitch error change was detected, EXX1, but also the 

faults related to the non-modeled errors, EYX and ECC were successfully detected.  

 Validation of the proposed monitoring system 

The degeneration and some sudden faults of the machine tool could cause gradual increases or 

abrupt changes to the machine tool error parameters. For the machine tool, the sudden faults could 

be caused by a collision. The environmental factors such as ambient temperature and wear could 

cause slower gradual changes to the machine tool accuracy status. To verify the capability of the 

proposed method in VE change detection, simulations of the erroneous machine tool and of the 

SAMBA process are conducted for errors undergoing sudden or gradual changes. The estimated 

13 machine error parameters obtained from the real machine tool in its normal state are used as the 

references to simulate the sudden and gradual VEs changes. Two types of faults simulated by each 

single and all the modeled machine error parameters are generated. Random errors have been added 

to the parameters to simulate the effects caused by the environment change during the SAMBA 

measurement. Using the “13” machine error model, the VEs in the normal, transition and faulty 

states are simulated. Then, these simulated VEs will be processed with the proposed VSMs and 

EWMA control chart with the same setups (the smoothing coefficient 𝜸 is 0.05 and the width 

parameter 𝑳 is 2.6) for VEs change fault detection. 

The flowchart for the simulation of the VEs with sudden and gradual changes is shown in Figure 

4-16. The referenced machine error parameters,  𝐸𝑚𝑒𝑝(𝑚, 𝑛), are the mean value of the machine 

error parameters of 11 measurements with the machine tool in the normal state. The new machine 

error parameters-  𝐸𝑛𝑚𝑒𝑝(𝑚, 𝑛)  are simulated by amplifying the referenced machine error 

parameters  𝐸𝑚𝑒𝑝(𝑚, 𝑛) with considering the amplification coefficient A (from Eq. (12)-(15), 
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where the Matlab function-rand is used to simulate random errors in the measurement, 0.15 is the 

amplifier of the random error, m stands for the machine error identifier from the “13” machine 

error model and n stands for the simulation identifier, K is the curve shape coefficient which is 

related to n). Finally, 𝐸𝑛𝑚𝑒𝑝(𝑚, 𝑛) are inputted into the SAMBA simulator of VEs. The green 

bar, yellow bar and red bar of Figure 4-16 are used to show the VEs measured with machine tool 

in normal, transition and fault states. For the gradual change simulation, the VEs simulated in the 

transition region occur over a period of about three times the measurement times of VEs in the 

normal or faulty states. For the sudden change simulation, VEs in faulty states are simulated by ten 

times. Simulations are conducted with faults caused by changing each error on its own and then all 

errors together.  

𝐾 =

{
 
 

 
 

1      𝑛 ∈  1,1  
𝑛

  
+

5

 
     𝑛 ∈  11,39 

   
1.5     𝑛 ∈  4 ,49 

 (12) 

𝐾 = {
1       𝑛 ∈  1,1  

1.5      𝑛 ∈  11,2  
 (13) 

𝐴 = 𝐾 + 𝑟𝑎𝑛𝑑(1, 𝑛) ∗  .15 (14) 

𝐸𝑛𝑚𝑒𝑝(𝑚, 𝑛) = 𝐸𝑚𝑒𝑝(𝑚, 𝑛) ∗ 𝐴 (15) 

SAMBA 

The 13 machine error model
VEs

Machine error 

parameters
Eq.14

Normal state Measurement simulation VEs simulation

Eq.15

 

Figure 4-16. Flowchart for the simulation of faults with sudden and gradual changes 
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4.6.1 Recognition results of the faults with sudden change  

The changing points detected will be compared with the exact fault changing points (the 11th) to 

verify the performance of the proposed monitoring plan. The first 10 VEs estimated with machine 

tool in normal state is used for the modeling of the control limits of EWMA control chart, the latter 

simulated VEs will be inputted into the EWMA model for fault detection. Figure 4-17 reveals the 

change recognition results of the VEs caused by the sudden change of all the machine error 

parameters by 1.5 times. The white line stands for the exact fault occurrence time.  

 

Figure 4-17. Change recognition result of VEs caused by a sudden change of all machine error 

parameters, the white line stands for the exact simulated fault occurrence time (the 11th), N stands 

for the VEs measured with machine tool in normal state and F stands for the VEs measured with 

machine tool in fault state, the cyan and red square bar stands for the normal state and the faulty 

state of machine tool respectively. 

Visually, the seven measures all perform well in VEs change recognition with the exception of the 

Cos1 measure. For all other measures the sudden change fault can be exactly detected at all the 
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VEs estimation positions. For the VEs changes caused by the single machine error parameter, the 

recognition rate is calculated and revealed with the recognition rate of the fault caused by all 

machine error parameters together in Table 4-3. For the fault caused by the change of one machine 

error parameter at a time, the faults could be precisely detected in all the VE estimation positions. 

Only the Cos1 measure has relatively small recognition rate in the detection of the faults caused by 

EY0S, EX0S and EX0C. For the faults caused by the change of all machine error parameters, Cos1 

measure also performs well, just because its value is close to the control limit UCL and LCL, so 

there are no obvious differences in color comparison. Therefore, the VSMs expect for Cos1 

perform equally in VEs change recognition (Mean_RR). 

Table 4-3. Recognition rate (RR) of sudden change faults caused by the change of a single and 

then all machine error parameters 

Faults Faults types 
VSMs 

Modu Dist Diff Cos1 Cos2 Area Volu 

Single machine 

error parameter 

change 

EXX1 99% 100% 99% 100% 100% 99% 99% 

EYY1 100% 100% 100% 100% 100% 100% 100% 

EZZ1 100% 100% 100% 100% 100% 100% 100% 

EY0S 100% 100% 100% 92% 100% 100% 100% 

EX0S 100% 100% 100% 52% 98% 95% 96% 

EA0Y 95% 100% 95% 98% 100% 98% 100% 

EB0Z 99% 100% 99% 100% 100% 99% 99% 

EC0Y 100% 100% 100% 100% 100% 100% 99% 

EX0C 100% 100% 100% 51% 100% 100% 100% 

EA0B 100% 100% 100% 100% 100% 99% 99% 

EA0C 100% 100% 100% 100% 100% 99% 98% 

EB0C 99% 100% 99% 100% 100% 99% 100% 

EC0B 100% 100% 100% 100% 100% 100% 99% 

Mean_RR 99% 100% 99% 92% 100% 99% 99% 

All parameters 

change 
All parameters 100% 100% 100% 100% 100% 100% 100% 

4.6.2 Recognition results of the faults with gradual change 

The gradual change of VEs are also simulated with the faults caused by the gradual change of each 

single or all machine error parameters. Three specific changing points at the beginning (the 11 th), 

within (the Nth, the first detectable changing point) and the end (the 40th) of the transition region of 

the fault are defined to verify the performance of the proposed monitoring plan. The first 10 VEs 
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estimated with machine tool in the normal state are used for the modeling of the EWMA control 

chart, the VEs features of the latter simulated VEs will be inputted into the EWMA model for fault 

detection.  

Figure 4-18 reveals the change recognition results of the VEs caused by the gradual change of all 

the machine error parameters by 1.5 times. The cyan, yellow and red square bar stands for the 

normal state, the transition region of the fault and the faulty state of machine tool respectively. For 

the change point at the beginning of the transition region (cyan line), by visual check-up, none of 

the measures can identify the VEs change. The first detectable changing point is the 18th (white 

line). After that, there are no changes in the recognition rate before the end of the transition region 

(green line). Therefore, for the faults with gradual changes, they could be detected in all VE 

measurement positions at one specific point (the 18th) of the transition region before the true faulty 

state. The Cos1 measure still cannot reveal the VEs changes by visual check-ups. So, the 

recognition rate, RR, of Cos1 needs to be considered. 

For the VEs changes caused by a fault of a single machine error parameter, the recognition rates of 

VSMs are separately calculated and listed in Table 4-4 together with the results when all the 

machine error parameters are simultaneously affected. The faults caused by a single machine error 

parameter cannot be detected by all the measures early in the transition region. However, they 

could be detected in the 18th VEs measurement times in all VEs estimation positions (RR value is 

close or equal to 100%) of the transition state (the value of Cos1 is closing to the control limit UCL 

and LCL, so there are no obvious differences in color comparison). Similarly, they could be 

detected in all the VEs estimation positions at the 40th measurement of the true faulty state. The 

Mean_RR of each VSM is closing, so they perform equally in fault detection. For the fault caused 

by the change of all machine error parameters, it has the similar recognition result and could be 

detected at the same position in the time domain as the fault caused by the change of the single 

machine error parameter. Therefore, for the faults with gradual changes, they could be recognized 

in the transition state before the faulty state using the proposed monitoring strategy. As for the 

exact fault occurrence time, it is probably related to the fault type, the range of the random error 

and the parameters such as smoothing coefficient and width parameter for EWMA model. 
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Figure 4-18. Change recognition results of VEs caused by gradual change of all machine error 

parameters, N stands for the VEs measured with machine tool in normal state, T stands for the 

VEs measured with machine tool in the transition region and F stands for the VEs measured with 

the machine tool in the faulty state, the cyan line stands for the changing point at the beginning of 

the transit state, the white line stands for the first detected changing point of gradual change fault 

in the middle of the transit state and the green line stands for the changing point in the end of the 

transit state. 

By considering the recognition results of the simulated faults, we can find that, firstly, the simulated 

faults could all be recognized at each VE measurement position. Secondly, VSMs perform equally 

except Cos1 (Mean_RR, Table 4-3 and Table 4-4) and they have no obvious effect on the final 

recognition results. This is different from the recognition results of faults with VEs measured in 

real machine tool. This is probably caused by the differences between the random error in the 

simulation and real measurement. In addition, for the SAMBA simulation, the modeled errors have 
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linear relationship with the estimated VEs. Therefore, the change of the model errors brings the 

synchronous change for VEs. This could be mostly reflected in the magnitudes but not in the 

direction of the VEs. So, angle-based measures especially for Cos1 may not perform well (Figure 

4-19, example). The values of the VE features extracted by Cos2 are almost to 1. This can verify 

that there are no directional changes in the simulated VEs data. As for Cos1 measure, its value is 

stable which means that there is no change in the angle between the Z axis and each simulated VE 

vector. Therefore, there are no obvious color changes in the curve shape (Figure 4-17 and Figure 

4-18). The two measures together prove that no change is included in VEs directions. Therefore, 

the proposed angle-based measures can also effectively extract the VEs’ directional information. 

 

Figure 4-19. VEs features extracted by the Cos1 and Cos2 measures 
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Table 4-4. Recognition rates (RR) of the gradual change faults caused by each single and by all 

machine error parameter change 

Faults 
Faults 

types 

Changing 

points 

VSMs 

Modu Dist Diff Cos1 Cos2 Area Volu 

Single 

machine 

error 

parameter 
change 

EXX1 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 99% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EYY1 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EZZ1 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EY0S 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 99% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EX0S 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 95% 100% 94% 95% 

40th 100% 100% 100% 98% 100% 100% 100% 

EA0Y 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 99% 100% 99% 100% 100% 98% 99% 

40th 100% 100% 100% 100% 100% 100% 100% 

EB0Z 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 98% 99% 

40th 100% 100% 100% 100% 100% 100% 100% 

EC0Y 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EX0C 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 97% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EA0B 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EA0C 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 98% 

40th 100% 100% 100% 100% 100% 100% 100% 

EB0C 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

EC0B 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

Mean_RR 99% 100% 99.96% 100.00% 99.96% 100.00% 99.96% 

All 
parameters 

change 

All 
parameters 

11th 0% 0% 0% 0% 0% 0% 0% 

18th 100% 100% 100% 100% 100% 100% 100% 

40th 100% 100% 100% 100% 100% 100% 100% 

Mean_RR 100% 100% 100% 100% 100% 100% 100% 
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 Conclusions 

Volumetric errors (VEs) of a five-axis machine tool are investigated for use in machine tool 

condition monitoring. A monitoring plan based on vector similarity measures (VSMs) and 

exponentially weighted moving average (EWMA) control chart is proposed, tested and verified 

with both simulated and real machine tool accuracy changes. It has been observed that: 

1. VEs are meaningful quantities for the monitoring of the machine tool accuracy condition. 

When using the SAMBA technique for estimating the machine tool errors, the obtained VEs can 

not only reflect the accuracy change caused by modeled machine error parameters but also the 

accuracy change caused by non-modeled machine errors; 

2. The simulation results reveal that the shapes of the VE’s VSMs closely matched the shape of 

the machine tool accuracy change as shown for a single machine tool error parameter with an 

exponential growth shape, an inverse U shape or an S shape. In addition, VSM values are 

synchronized with the values of the machine errors. Thus, VE is a promising quantity for use in 

machine tool condition monitoring systems (MTCMS); 

3. VSMs successfully extract the characteristics of VEs. When considering the final recognition 

rate (RR), the module of the vectorial difference of two consecutive VE vectors (Dist) and the angle 

between the same (Cos2) perform better than the remaining measures in detection. This can provide 

guidance on the selection and the use of VSMs for VE feature extraction;  

4. The VE monitoring plan based on VSMs and EWMA control chart can be used to detect the 

machine tool accuracy change caused by machine errors such as an X-axis linear positioning error 

EXX, a straightness error EYX and a ECC error caused by a C-axis encoder fault. Validation results 

of the simulated faults by the SAMBA method simulator also show that the proposed monitoring 

plan could detect the faults with both gradual and sudden changes. 

Future work will focus on optimizing the current monitoring method and proposing a new 

combined variable containing all the VE information from multiple positions with a view to 

automate the monitoring process. In addition, the faults caused by the non-modeled machine errors 

will be further investigated in a machine tool condition monitoring context. 
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Abstract:  Volumetric errors (VEs) feature extraction is an important step in VEs monitoring. A 

new VE feature extraction method combined vector similarity measures array (CVSMA) is 

proposed in this paper. Using the VE data measured periodically from the experimental five-axis 

machine tool, the performance of CVSMA has been verified with principal component analysis 

(PCA) in VE feature extraction. The real fault of the machine tool, the pseudo faults caused by the 

change of the straightness error EYX and linear positioning error EXX and the simulated faults 

based on the change of the modeling machine error parameters are used to verify the VE monitoring 

plan developed with CVSMA, vector similarity measures (VSMs) and the exponentially weighted 

moving average (EWMA) control chart. The results show that CVSMA performs better than PCA 

in VE feature extraction. The proposed VE monitoring plan can precisely recognize the change 

point of the real, pseudo and simulated faults. In addition, the CVSMA modeling with the distance-

based similarity measures are recommended for their stable ability in VEs change recognition. 

Keywords: Machine tools, condition monitoring, volumetric error, combined vector similarity 

measures array, EWMA. 

 Introduction 

Machine tool failure causes production loss. Maintaining a machine tool condition may allow the 

detection of the developing faults before the degradation in part quality or production loss. 

Currently, machine tool condition monitoring systems (MTCMSs) are applied either to the 

machining process or to the machine tool systems or the machine tool key components [1]. Tool 

wear, tool breakage detection and tool remaining life estimation are the three main areas which 
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have been widely studied [2-6]. This is achieved by analyzing the physical variations related to the 

machining process such as the cutting force, temperature, current, voltage vibration, sound, or 

power of the spindle motor or the feeding systems. Regarding the machine tool system based 

MTCMS, they track the structural and functional components such as mechanical structures and 

control systems. The two parts mainly lead to the malfunctions of machine tools. The presence of 

damage in the mechanical structure, the location as well as its severity can be confirmed by the 

developed machine tool structural monitoring system by analyzing acoustic emission signals [7, 

8]. As for the spindle condition monitoring, the damage and the imbalance of bearing/spindle 

detection have been realized [9]. Besides, the spindle stationary and dynamic properties or even 

the collisions can be accessed by analyzing physical signals such as the temperature, force, 

vibration, and spindle motor current [10]. For the Feeding axis, the general faults could be caused 

by pitting, wear, corrosion and cracks. By analyzing the signals related to current, acoustic emission 

and backlash error, these faults can be successfully determined [11, 12]. A coolant monitoring 

system can prevent damage caused by improper coolant concentration to machine tool components 

[13]. Besides, the state of the coolant systems can be evaluated by analyzing pump outlet pressure, 

pump motor temperature and tank level. As for NC controller, it generally contains some fault 

detection circuits or programs. These insercted programmes can be used to recognize faults related 

to servo amplifiers, switches, etc [14]. In addition, methods such as similar path sets, artificial 

neural networks and architecture expansion have been used to locate the fault in the CNC software 

without depending on the experience and intuition of maintainers method [15, 16]. By observing 

trends in producing highly accurate parts, it is possible to schedule machinery maintenance/repair 

before major malfunction occurs. This can significantly decrease costs and downtime caused by 

machinery breakdowns.  

We intend to use volumetric errors (VEs) for maintaining purpose. VE is the relative deviations 

between the actual and ideal position of the tool in the machine working space. It is affected by the 

full condition of machine tool mechanical components. Currently, VEs modeling, VEs prediction 

and VEs compensation are the three main research topics [17-19]. Recently, VEs has been 

attempted in the area of condition monitoring. Techniques such as vector similarity measure 

(VSMs) [20], principal component analysis and K-means have been used for VEs feature extraction 

and classification [21]. Different sets of VEs can be estimated in one measurement using direct or 
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indirect VE measurement methods. They are distributed in the machine tool working space. All of 

them are useful reflectors of the machine tool accuracy condition because they are caused by or 

related to the relative location of linear and rotary axes. To apply VEs in MTCMS, the VE data 

processing method is critical. How to extract useful information from VEs for machine tool 

condition monitoring, considering all possible VE data, is the main task to be carried out in this 

paper. 

The primary contribution of this paper is the development of a novel VE feature extraction method: 

the combined vector similarity measure array (CVSMA) and a novel VE monitoring plan based on 

CVSMA and exponentially weighted moving average (EWMA) for the purpose of accuracy 

monitoring of machine tools. The remainder of the paper is organized as follows: Section 5.1 

introduces the background of the machine tool condition monitoring system and VEs. The VE 

monitoring plan is developed in Section 5.2, and VE data acquired with real, pseudo and simulated 

faults for this research are described in Section 5.3. The CVSMA performance in VE feature 

extraction is compared with principal component analysis (PCA) in Section 5.4. Section 5.5 

presents the recognition results of the machine tool faults using the proposed VE monitoring plan, 

and Section 5.6 summarizes the paper and presents the conclusions. 

 VEs monitoring plan 

The data processing of the proposed VEs monitoring plan is revealed in Figure 5-1. When the 

machine tools are in the maintenance, the volumetric information of the machine tool is measured. 

Using these measurement master ball artefact coordinates, the VEs are estimated and are processed 

for feature exaction. After that, the VEs features are processed for VEs condition change 

recognition.  

 

Figure 5-1. VEs data processing for machine tool condition monitoring 
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5.2.1 VE and its measurement method 

Herein, VE is defined as the Euclidian error vector between the tool actual position related to their 

nominal position [22] (Figure 5-2). For the nominal machine tool model (Figure 5-2 (a)), the 

measured master ball artefact centres are matched with their nominal positions. However, for the 

real machine tool model, machine errors exist. Then, there will be mismatches between the 

coordinates of the nominal master ball artefact and the actually measured ball coordinates (Figure 

5-2 (b)). For the data processing, the mismatches between the measured master ball artefact 

coordinates and their nominal positions need firstly to be calculated, Then, these mismatches 

containing the draft volumetric information will be used as the input of the scale and master ball 

artefact (SAMBA [23]) machine error model for VE and machine errors estimation.  VEs can be 

acquired using methods including ball-bar, R-test, tracking interferometers, machining tests and 

the SAMBA method [23, 24]. The SAMBA method uses master balls artefacts and a scale bar 

artefact to acquire the necessary machine tool raw volumetric information for the estimation of VE 

and geometric errors. Its simple setup and automatized operation make it a good tool for machine 

tool accuracy measurement.  

 

(a)                                                                                                                                (b) 

Figure 5-2. VE of the HU40T five-axis machine tool modeled with the “13” machine error 

model, (a) Nominal machine tool model of HU40-T five-axis machine tool; (b) Real kinematic 

machine error model of HU40-T five-axis machine tool. 

The SAMBA method either using a “13” machine error model or using the “84” machine error 

model for volumetric errors and geometric error estimation. The naming method of the error 
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models is related to the number of machine error parameters to be estimated. For example, the “13” 

machine error model can estimate eight axis location errors (EA0B, EC0B, etc.), three linear gains 

(EXX1, EYY1, EZZ1) and two spindle offsets (EY0S, EZ0S) (Figure 5-2) for a total of 13 error 

parameters. For the “84” machine error model, each axis is modeled as a nominal link, a nominal 

motion and an erroneous motion using third-degree polynomial representations of each of the six 

error motions and positioning backlashes of the B and C axes. The differences between the “13” 

and “84” machine error models regarding VE estimation are reflected in the VE values, VE vector 

directions, the minimal VE probing positions and the total VE measurement time. The “13” 

machine error model is used for the estimation of VEs in this research as it is less time consuming 

to carry-out. For more details on the SAMBA method, please refer to papers [23, 25].  

5.2.2 VEs feature extraction 

Feature extraction is an important pre-step for VE change recognition. The changes in VE are 

analyzed by vector similarity measures (VSMs) which reveal how alike two data objects are. About 

60 different kinds of similarity measures could be found in the literature [26]. The most popular 

ones could be classified as two types, distance-based similarity measure, angle-based similarity 

measures. In addition, the comprehensive parameters consider the effect of angle and distance-

based measures together are expected to have a better VE feature extraction capability. Therefore, 

they have also been developed and used in this study. Six VSMs belonging to each of the three 

subgroups are selected and applied for VE feature extraction (Figure 5-3). 

Module (Modu) measure (one of the distance-based similarity measures) calculates the module of 

a VE vector. The Distance (Dist) measure calculates the module of the difference of two timewise 

adjacent VE vectors. As for the angle-based measures, Cosine parameter has been selected in two 

types-Cos1 and Cos2. Cos1 is the cosine of the angle between one measured VE vector and the 

unit vector representing of the Z-axis [0, 0, 1]. Cos2 calculates the angle value between two VE 

vectors, one is the first measured VE vector while the other is the newly acquired VE vector. Cos1 

has an advantage in terms of decreasing the random effect of VE reference vector selection on VE 

change extraction. The above measures extract the VE features from a single viewpoint, distance-

based or angle-based similarity check-up. The comprehensive measures, Area and Volume (Volu), 

considered the effect of angle and distance-based measures on VSMs. However, different weight 
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of the angle and the distance has been used. Area measure calculates the area value between a VE 

vector and the Z-axis, while Volu measure reflects the cone volume resulting from the rotation of 

VE vector around the Z-axis. The geometric meaning of the proposed VSMs could be found in 

[27]. 

The estimated VEs can be written as VE(i,j) =  VE𝑥(i,j)
, VEy(i,j)

, VEz(i,j)
] where i stands for the VE 

measurement positions (1≤i≤N) and j stands for the measurement times during the machine tool 

maintenance. Then, the VSMs are calculated according to Eq.(16)-(21). For the Dist, Cos1, Cos2 

measures, the first measured VE(i,1) data is used as a reference to the remaining VE(i,j) where j>1for 

similarity comparison. While the remaining VSMs are calculated directly. Finally, these new 

acquired VE feature time series, written as the VSMs(i,j) are used for the latter data processing.  

Modu(i,j) = ‖VE(i,j)‖ = √VEx(i,j)
2 + VEy(i,j)

2 + VEz(i,j)
22
 (16) 

Dist(i,j) = ‖VE(i,j) − VE(i,1)‖

= √(VEx(i,j)
− VEx(i,1)

)
2

+ (VEy(i,j)
− VEy(i,1)

)
2

+ (VEz(i,j)
− VEz(i,1)

)
22

 

(17) 

VE(Cos1)(i,j) = Cos(VE(i,j), V) =
VEz(i,j)

‖VE(i,j)‖
    where V= [0, 0, 1] (18) 

Cos2(i,j) = Cos(VE(i,j), VE(i,1)) =
VE(i,j) ∙ VE(i,1)

‖VE(i,j)‖ ∙ ‖VE(i,1)‖

=
VE(i,j) ∙ VE(i,1) + VE(i,j) ∙ VE(i,1) + VE(i,j) ∙ VE(i,1)

[(VEx(i,j)
2 + VEy(i,j)

2 + VEz(i,j)
2) ∙ (VEx(i,1)

2 + VEy(i,1)

2 + VEz(i,1)
2)]

1/2 

(19) 

Area(i,j) =  .5 ∙ √(VEx(i,j)
)

2

+ (VEy(i,j)
)

22

∙ |VEz(i,j)
| (20) 

Volu(𝐢,𝐣) =  .33 ∙ π ∙ ((VEx(i,j)
)

2

+ (VEy(i,j)
)

2

) ∙ |VEz(i,j)
| (21) 

As mentioned, the VE data used for this research are measured from N positions (N=29) of the 

machine tool working volume. The possible monitoring process of VEs can be classified into two 

types based on the usage number of VE data (Figure 5-3). The first type is monitored from a single 

VE measurement position, VEs are processed with the VSMs for feature extraction. This process 
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is repeated in all VE measurement positions respectively and processed by EWMA for VE change 

recognition. The change detection needs to be repeated in each VE probing position [27]. This 

monitoring plan could bring difficulties in decision making because not all the VE measurement 

positions are sensitive for one specific machine tool fault. In addition, partly recognition results do 

not provide a criterion for the machine tool’s comprehensive volumetric evolution. To overcome 

this limitation, the proposed second type of monitoring plan uses a combined vector similarity 

measure array (CVSMA) for VEs change recognition. CVSMA contains the features of all VEs 

extracted by VSMs. As a primary VE feature vector, they will be processed with VSMs again for 

CVSMA feature extraction. Finally, the CVSMA features are the inputs of the EWMA for VE 

change recognition.  

 

Figure 5-3. Feature extraction flowchart of VEs from the single and whole VE measurement 

positions 

The CVSMA data processing is carried out as follows. After the VSMs processing, the VSMs(i,j) 

are used as the basic components for CVSMA. Let us take the Modu measure as an example, 

CVSMA can be written as the  

CModuAj =  Modu(1,j), Modu(2,j), … ,Modu(N,j)                                             (22) 

VSMs based on distance and angle measures are used to extract the features of the CVSMA, 

VSM(CVSMA)j. Only three similarity measures including Modu, Dist and Cos2 are selected for 

CVSMA feature extraction because the remaining four measures have no geometric meanings for 

feature extraction. Similarly, the firstly acquired VSMs(CVSMA)1data is used as the reference, the 

remaining VSMs(CVSMA)j where j>1, will be compared with this reference to reveal the change of 
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VE data. Take the Modu similarity measure as an example, Modu(CModuA)j could be written as 

the Eq. (23). Using the proposed data processing method, all the VEs feature information can be 

included in one valuable. 

Modu(CModuA)j = ‖CModuAj‖ = √Modu(1,j)
2 + Modu(2,j)

2 + ⋯+ Modu(N,j)
22
                                                (23) 

In addition, as a correlation-based similarity measure-Pearson coefficient (PC) has also been used 

for VE similarity check-up. Pearson coefficient mirrors the level of direct relationship between two 

inputs and extends from +1 to -1. +1 implies that there is a positive direct relationship between 

inputs or the two inputs have fundamentally the same as tastes, while -1 shows that the inputs have 

totally different tastes.  Here it is used for the similarity check-up of the VE features. It is assumed 

that when the two VE features are acquired from two similar states, their PCs should be close. Or 

there will be a big change in PC value. The calculation of PC is shown in Eq. (24) with two inputs, 

the first measured VE feature CVSMA1 and the newly acquired VE feature CVSMAj . The data 

length of two inputs is related to the total VE probing positions N. To be mentioned, the 

recommended minimum number of N for PC analysis should be bigger than 25 [28]. For the “13” 

machine error model of the SAMBA method, the minimum number of VE measurement position 

is 29. It satisfies the minimum input of PC. For the “84” machine error model, the VE measurement 

positions are around 109. The VEs data size is bigger than the minimum size of PC input. 

Therefore, when using the PC measure, there is no need to consider the size of the two inputs of 

PC. 

𝑃𝐶(𝐶𝑉𝑆𝑀𝐴) = 𝑃𝐶(𝐶𝑉𝑆𝑀𝐴 , 𝐶𝑉𝑆𝑀𝐴1)

=
(𝐶𝑉𝑆𝑀𝐴 − 𝜇𝐶 𝑆𝑀𝐴 

) · (𝐶𝑉𝑆𝑀𝐴1 − 𝜇𝐶 𝑆𝑀𝐴 
)

√(𝐶𝑉𝑆𝑀𝐴 − 𝜇𝐶 𝑆𝑀𝐴 
)

2
√(𝐶𝑉𝑆𝑀𝐴1 − 𝜇𝐶 𝑆𝑀𝐴 

)
2

 

where μCVSMAj
=

1

N
(CVSMA(1,j) + CVSMA(2,j) + ⋯+ CVSMA(N,j))  

and μCVSMA 
=

1

N
(CVSMA(1,1) + CVSMA(2,1) + ⋯+ CVSMA(N,1)) 

(24) 
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Therefore, CVSMA data processing contains two steps; first, the calculation of the CVSMA data- 

CVSMAj and second, the selection of VSMs. Finally, six types of CVSMA and four types of VSMs 

generate 24 types of CVSMA feature data-VSM(CVSMA)j , and they will be inputted into the 

EWMA control chart for VE change detection. The capability of the feature data VSM(CVSMA)j 

on the fault recognition will be evaluated and ranked in the following section. 

5.2.3  VEs change recognition 

Statistical process control has been widely applied in today’s manufacturing industry [29]. The 

exponentially weighted moving average (EWMA) control chart not only has good capability in 

small and moderate shifts detection but also has perform well in processing observations that are 

not normally distributed or are autocorrelated [30]. Therefore, the EWMA is selected to recognize 

the abnormal VEs change automatically. The VEs features VSM(CVSMA)j are the input of EWMA 

which is built as follows: 

NVSM(CVSMA)j = (1 − γ)NVSM(CVSMA)j−1 + γVSM(CVSMA)j (25) 

γ is the smoothing coefficient, it is in the range from 0 to 1. The initial value NVSM(CVSMA)0 is 

the mean value of the first K observation- VSM(CVSMA)k . When the observations 

NVSM(CVSMA)k are independent and have a normal distribution σ2, the upper and lower control 

limits (UCL/LCL) of the EWMA control chart are calculated by Eq. (26)-(27). The width parameter 

L defines the control limits of the EWMA control chart. It is recommended to select L  and γ from 

the following ranges, 2.6≤ L ≤3 and 0.05≤ γ ≤  .25, respectively. Generally, smaller γ  can 

promote the EWMA control chart to detect a smaller change [31]. The detailed application of the 

EWMA control chart can be found in Montgomery [31].  
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UCL = μ0 + Lσ√
γ

2 − γ
 (26) 

LCL = μ0 − Lσ√
γ

2 − γ
 (27) 

In this research, the hypothesis for the VEs data is that  VSM(CVSMA)n (n is the VEs learning data 

size and n<j) have the same distribution as VSM(CVSMA)n when n→+∞. EWMA control chart is 

used as a supervised method. Put it in detail, it includes two steps-learning and checking (see Figure 

5-4). In the learning process, the VE feature data with machine tool in normal condition is acquired 

and is used to develop the EWMA control chart (control limits calculation). Herein, L=2.6 and γ 

=0.05. They are selected based on the recommended range [29].  In the evaluation process, the 

calculated VE features VSM(CVSMA)n+1 will be inputted into the EWMA chart. The calculation 

value will be compared with the control limits. The machine tool will be defined as normal only 

When the NVSM(CVSMA)n+1  is within the two control limits. Otherwise, the machine tool 

accuracy condition is deemed an unstable state and out of control.  

 

Figure 5-4. Flowchart of EWMA control chart in VE change recognition [27] 

 VE data sources 

For CVSMA and the proposed VE monitoring plan performance discussion, mass of VE data are 

acquired from the experimental HU40-T five-axis machine tool. Three specific real faults were 

acquired over a two years’ period. To enlarge the fault range for the discussion of the proposed 

method, VEs are also acquired from Pseudo and simulated faults. Pseudo fault data come from the 

change of X-axis linear positioning error EXX and X-axis straightness error EYX induced with 

mathematical method. Simulated faults are generated with the SAMBA simulator by changing the 
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setup values of the modeled machine error parameters. The flowchart of the VEs data acquisition 

is revealed in Figure 5-5. The four procedures (a, b, c and d) stand for the generation process of the 

mentioned VEs sources. 

 

Figure 5-5. VEs data acquired from machine tool with real (Procedure a), pseudo (Procedure b 

and c) and simulated faults (Procedure d) [27] 

5.3.1 Machine tool periodical measurement 

The VE data is collected from the experimental HU40-T five-axis machine tool with a MP700 

Renishaw probe and processed with the SAMBA method. The test is processed periodically as of 

twice per week at an ambient temperature range 21~23℃. The touch trigger probe, installed on the 

spindle, measures the positions of the four master ball artefacts and one scale ball bar artefact at 27 

indexations (angular positions pairs of the B and C axes) (Figure 5-5, procedure a). Finally, the 

109 ball centre coordinates measured in one cycle would be used for SAMBA processing. 67 VE 

measurements cycle containing two normal states and three faulty states are selected from the 

periodical measurement of machine tool and used for the comparison of the performances of the 

principal component analysis (PCA) and CVSMA in VEs feature extraction. The three fault states 

are the C-axis encoder fault (faulty state 1), pallet location fault (faulty state 2) and the uncalibrated 

pallet location fault (faulty state 3), two extra states before and after fault maintenance are looked 

as the normal states 1 and 2. In the time domain, the normal state 1 is before three faults states-1,2 
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and 3 which followed by the other normal state 2. The measurement times of each state are 12, 12, 

16, 5 and 22 individually. 

5.3.2 Pseudo faults by EXX and EYX 

Pitch error compensation table which is normally used for reducing EXX error herein is used to 

generate pseudo EXX change (Figure 5-5, procedure b). A U-shaped curve with a magnitude of 50 

um is induced into the CNC controller by the error compensation method. After inducing the Exx 

error, the SAMBA measurements were repeated five times. Then, the new simulated VE data with 

5 times measurements and the previously measured VE data with 7 times are composed together 

to form a VE time series which can indicate the change of machine tool state caused by the EXX 

error. Figure 5-5, procedure c reveals the generation of the pseudo fault induced by straightness 

error, EYX. We manually inject errors to the probing file measured from the machine tool in its 

normal condition to simulate the faults induced by straightness error. Figure 5-6 shows the detail 

data processing of straightness error. The original master ball positions 𝑃  are obtained from a test 

carried out with the machine tool in its normal state. The pseudo straightness error E   estimated 

from the “84” machine error model is used as the basic reference value for latter error injection. 

Finally, the modified probing results 𝑃( , ) are processed with the “13” machine error models for 

VEs estimation.  

 

Figure 5-6. Generation process of pseudo fault caused by the straightness error, where i stands for 

the 29 master ball measurement positions, j stands for the pseudo measurement times, and  𝐴  

represents the amplification coefficients with the values of 1.35, 1.4, 1.5, 1.6 and 1.65, 

respectively. These amplification coefficients are randomly selected and used to simulate a small 

change of the straightness error. 
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5.3.3 Simulated faults caused by the change of the modeled errors 

The degradation and some sudden faults of the machine tool could cause gradually increasing or 

abrupt changes to the machine tool error parameters. They both could generate changes to the 

machine tool accuracy status. To verify the performance of the proposed monitoring strategy, both 

gradual and sudden change faults caused by a single machine error parameter are simulated with 

the “13” machine error model. The flowchart for the simulation of the VEs with sudden and gradual 

changes is shown in Figure 5-5, procedure d. The referenced machine error parameters are the mean 

value of the machine error parameters of the 10 SAMBA measurements with the machine tool in 

the normal state. The new machine error parameters Enmep(m, n) are simulated by amplifying the 

referenced machine error parameters Emep(m,n) considering the amplification coefficient E (the 

Matlab function-rand is used to simulate random errors in the measurement, m stands for the 

machine error number of the “13” machine error model and n stands for the simulation times). 

Finally, Enmep(m, n) are inputted into the SAMBA simulator for the simulation of VEs. For the 

gradual change fault simulation, the VEs simulated in the transition state are about three times of 

the measurement times of VEs in normal or faulty states. For the sharp change fault simulation, 

VEs in fault states are simulated for ten times which is the same as the VEs measurement in the 

normal state.  

 Performance of CVSMA in VEs feature extraction 

Using the CVSMA data processing method, six types of CVSMA, CVSMAj, can be generated based 

on the types of VSMs. After processing them by four VSMs (Modu, Dist, Cos2 and PC), the final 

24 types of VE features, VSM(CVSMA)j, could be extracted. To verify CVSMA’s performance in 

VE feature extraction, it is compared with the principal component analysis (PCA) method which 

has been widely and successfully applied as a general for signals feature extraction [32]. The data 

processing for the comparison of CVSMA and PCA in VEs feature extraction is shown in Figure 

5-7. The acquired VE data VE(i,j) is firstly processed with VSMs to extract the draft VE features 

(Modu(i,j)) of each VE measurement position. Then, Modu(i,j) will be processed with CVSMA and 

VSMs and PCA separately. Finally, the curve shape and the number of the distinguished machine 

tool states will be compared by the features extracted by CVSMA and PCA. CVSMA data 
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processing can be deemed as a new effective tool in VE feature extraction if it is capable to extract 

features which are similar to PCA. 

 

Figure 5-7. Flowchart for the CVSMA performance comparison with PCA method in VEs feature 

extraction 

5.4.1 PCA data processing 

As a feature extraction method, PCA is an orthogonal transformation of the original data converting 

the observations vectors X into vectors Y of smaller dimension without losing too much 

information. The elements of the new vector Y stand for the set of linearly uncorrelated variables 

called principal components [33]. This transformation can be written as Y=WX, where matrix W 

is the cross covariance of the input data X. The PCA components arranged in the order according 

to their decreasing variance represent the most important statistical information contained in the 

original set of data. The acquired principal components stand for the new features of the original 

data. Therefore, PCA could be used as an effective tool for the feature extraction of VE data. The 

main steps of PCA in VE feature extraction are as follows [34]: 

Step 1: Subtract the mean from each corresponding input feature  Modu(j,i)  to create a new 

normalized matrix NModu(j,i). The VE feature dataset Moduj∗i is prepared with 2*i ≤ j (where i 

means the VE measurement positions and j stands for the VE measurement times) because PCA 

has a strict requirement in data size or the subject to item rate [35]. Then, the mean value of each 

column is calculated. This is a necessary step before the VE data processing because the measured 

VEs norms have different magnitudes (from 1.2 μm to 164 μm). Otherwise, the magnitude of 

certain VEs dominates the connections between the VEs in the sample. In this step, the mean of 

each column of the VE feature data is calculated and subtracted from every data of their respective 
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columns. Then, the new matrix NVSMs(j,i) has data with zero means. Here, Ij∗1 is the unity column 

vector and M1∗i is a row vector containing all the mean values of each column [Mc]. 

Mc =
1

j
∑ Modu(l,c)

j
l=1     c = 1, 2,… , i                                                                           (28) 

NModu(j,i) = Modu(j,i) − IM                                                                                                              (29) 

Step 2: Calculate the covariance matrix (C) of the new normalized matrix. Covariance matrix can 

find out the variance of the data from the mean towards other data in that row. The covariance of 

a data with respect to itself is equivalent to the variance of that data. The calculation process is as 

follows: 

C =
1

j−1
NModu(j,i)

TNModu(j,i)           (30) 

Step 3: Calculate the eigen values and eigen vectors of the covariance matrix. The eigen vectors 

λN are arranged in decreasing order according to their respective eigen values. The first column of 

the eigen vector matrix is the first principal component. The second column in the eigen vector 

matrix is called the second principal component and so on.  

Step 4: Select the eigen vectors by setting a threshold which denotes the approximation precision 

of the new largest eigenvectors. The general technique for estimating the number of principal 

components is the cumulative percent variance (CPV) which is defined as follows: 

CPV(N) =
∑ λn

N
n= 

trace(∑)
*100%            (31) 

It requires the minimal number N of principal components which can capture a large percentage 

(e.g., ≥85%) of the total variance. In this research, we select the CPV threshold to be 90%. 

Step 5: Calculate the final projected data set. It reveals the modelled variation of Modui∗j with 

considering of the first N components. The initial data set Moduj∗i is finally projected on to a new 

structure which is written as the matrix PModuj∗N  where Bi∗N  is the matrices of N retained 

eigenvectors.  



74 

 

 

PModuj∗N = Moduj∗i × Bi∗N (32) 

5.4.2 Results comparison 

VE features PModui∗N  extracted by PCA and VE features CVVj   extracted  by CVSMA data 

processing are compared in the curve shape and machine tool states distinguishing for comparing 

their performances in VE feature extraction. Take the original data Modu29∗67  as an example, 

Figure 5-8 reveals the curve shapes of the processing results from PCA and CVSMA separately. 

To be mentioned, the original probing positions of the SAMBA method is 109, to satisfy the needs 

of PCA data processing, 29 probing positions data are selected for the “13” machine error model 

in VEs calculation. For the PCA processing, two principal components (PCs) contain 92.1% of the 

original VE information. The shape of the CVSMA feature curve and two PCs are similar. The 

increase and decrease tendency are also the same. In order to clearly distinguish the machine tool’s 

sates indicated by VEs, the two components of PCA are projected into a 2D space in Figure 5-8. 

The members of each cluster are plotted with different colors which are decided by the machine 

tool states classified by the CVSMA processing results. The classification results of CVSMA and 

PCA are close, they all can separate the fault states from the normal states of the machine tool. 

Meanwhile, the machine tool’s two normal states could be classified into one group by PCA 

because they are too close to each other, and this also could be found in the Modu(CModuA)j  

curve as the first and last parts have similar values. Therefore, the CVSMA data processing method 

has good capability for VE feature extraction. 

Although the PCA method could also extract the VE features and reveals the machine tool states 

in a visual plotting, it still has some limitations. Firstly, the performance of PCA is related to the 

input data size. Considering the total VE probing positions of SAMBA method, the periodical VE 

measurement, at least twice the number of probing positions, needs to be accumulated before the 

application of PCA. Therefore, for the processing of VEs estimated from the “84” machine error 

model, huge of VEs need to be acquired. Secondly, PCA method orthogonally transforms the 

original VE data into vectors with the small dimension with some information loss (8% loss, for 

the above case). However, the drawbacks of PCA are the great advantages of CVSMA data 

processing. It has no requirement in VE data size and contains all the features of VE without the 
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loss of any information. Therefore, VEs estimated from the “13” or “84” machine error model 

could be processed directly. In addition, CVSMA data processing is simpler than the PCA in theory 

and calculation complexity. Therefore, the CVSMA data processing could be an alternative of the 

PCA for VE feature extraction.  

 

Figure 5-8. CVSMA and PCA processing results of the real faults of machine tool, where the 

faulty state 1 stands for C-axis encoder fault, faulty state 2 means the pallet location fault and the 

faulty state 3 means the uncalibrated pallet location fault. 

5.4.3 VEs feature extraction of pseudo faults 

Figure 5-9 illustrates the VEs features extracted from the pseudo faults-linear positioning error and 

straightness error. Sharp changes can be noticed in most graphs (19 subfigures) where the 7th point 

of the graphs can reflect the transition of the machine tool normal states before and after the pseudo 

faults. However, the transition could not be revealed by some VEs features such as Cos2(CDistA)j, 

PC(CDistA)j and PC(CCos2A)j. The possible explanation is that VSMs have different capability 

on the VE feature extraction and this could also be reflected in the VSM(CVSMA)j. This explanation 
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will be discussed in the means of the final change recognition results of the EWMA in the following 

part. 

 

Figure 5-9. VEs features extracted by CVSMA on the pseudo faults caused by straightness error 

and linear positioning error, VEMT stands for the VE measurement times 

 Recognition results and discussion 

5.5.1 Recognition results of real and pseudo faults 

The final VE features data, VSM(CVSMA)j are processed by the EWMA control chart to recognize 

the exact change points of C-axis encoder fault (Selected from the real fault) and pseudo faults 

induced by X-axis linear positioning error and straightness error. The successful recognition result 
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is deemed as the exact finding of the changing point position (Table 5-1) in the CVSMA feature 

series by EWMA.  

Table 5-1. VE measurement times in the normal state, fault state and the actual transition points 

Fault types 
VEMT 

in normal state 

VEMT 

in faulty state 

Actual 

changing point 

C-axis encoder fault 11 12 13th 

Pseudofault linear positioning error 6 5 7th 

Pseudofault straightness error 6 6 7th 

Figure 5-10 illustrates the recognition results of the EWMA control charts for the fault recognition 

using different VE features. Six types of CVSMA data, CVSMAj, have all been processed by the 

four measures for the calculation of the VE features. The setup parameters-width parameter L and 

smoothing coefficient γ of EWMA control charts are 2.6 and 0.05, respectively. For the C-axis 

encoder fault, twelve VE measurements are used for the EWMA establishment and the 13th point 

is the exact change point of this fault. VE features except Cos2(CDistA)j , PC(CDistA)j  and 

PC(CCos2A)j,  the exact change point could be recognized by the EWMA.  

For the pseudo fault induced by X-axis linear positioning error and straightness error, 6 VE 

measurements data are used for the control chart establishment and the 7th point is the exact change 

point of this fault. The recognition results of the two pseudo faults and the C-axis encoder fault are 

revealed in Table 5-2.  
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Figure 5-10. EWMA control chart for VE change recognition of the C-axis encoder fault using 

CVSMA data processing 
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Table 5-2. Final recognition results with the affection from CVSMA data and VSMs 

Faults 
CVSMA 

No. VSMs Modu Dist Cos1 Cos2 Area Volu S1 

C-axis 

encoder fault 

1 Modu Y Y Y Y Y Y 6 

2 Dist Y Y Y Y Y Y 6 

3 Cos2 Y N Y Y Y Y 5 

4 PC Y N Y N Y Y 4 

linear 

positioning 

error fault 

1 Modu Y Y Y Y Y Y 6 

2 Dist Y Y Y Y Y Y 6 

3 Cos2 Y N Y Y Y Y 5 

4 PC Y N Y N Y Y 4 

straightness 

error fault 

1 Modu Y Y Y Y Y Y 6 

2 Dist Y Y Y Y Y Y 6 

3 Cos2 Y N Y Y Y Y 5 

4 PC Y N Y N Y Y 4 

S2 12 6 12 9 12 12  

For each combination plan-combination of CVSMA and VSMs, if the detected change point is 

equal to the exact change point, then, it will be labeled with YES (Y). If not, no (N) label is added. 

For the linear positioning fault, the exact change point could be recognized by the EWMA with 

VE features except Cos2(CDistA)j , PC(CCos2A)j and PC(CDistA)j. For the fault induced by X-

axis straightness error, the exact change point of the VE features could be recognized by the 

EWMA except  Cos2(CDistA)j, PC(CCos2A)j and PC(CDistA)j. Therefore, the recognition results 

of the exact change points of each fault is related to the CVSMA data and the VSMs. To see this 

effect, two extra statistical parameters (S1 and S2) have also calculated. S1 parameter is related to 

the effect of VSMs on final recognition results while S2 parameter is related to the effect of the 

CVSMA on final recognition results. Take the S1 parameter as an example, for the linear 

positioning error fault, when CVSMA data processed with Modu measure, the number of the label 

Y is calculated and is used to set S1 value (4). Similarly, S2 parameter can be calculated. By ranking 

the number of S1, the affection of VSMs on the final recognition results can be found. Diff measure 

has more effect on the final recognition results than the remaining three measures in CVSMA data 

processing. When considering the parameter S2, the components of the CVEV data containing the 

results of the original VE processed by Diff, Dist and Cos2 measures have more effect on the final 

fault recognition results than the remaining types of VSM(CVSMA)j. 
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The combination of the CVSMA and VSMs reveal different capabilities in fault recognition. Good 

combinations of the two elements are able to detect the exact change points of faults. Based on the 

analysis of the parameters S1 and S2. The good combination of CVSMA and VSMs are shown in 

Figure 5-11. Using the proposed CVSMA (Modu, Area, Volu) and VSMs (Diff, Modul, Dist and 

Cos2) combination plan, exact change point towards different types of faults could be detected 

without considering the combination of CVSMA and VSMs. For the CVSMA composed with Dist, 

Cos1 and Cos2, the selection of VSMs need to be considered (Modu and Dist are more stable than 

Cos2 and PC. The worst combination of CVSMA and VSMs are PC(CDistA)j and PC(CCos2A)j. 

 

Figure 5-11. A recommended CVSMA feature extraction plan considering CVSMA types and 

VSMs 

5.5.2 Recognition results of the simulated faults 

The proposed methods are validated with simulated faults with sudden and gradual changes. For 

the faults with sudden change, the VEs measurement times is 20 with ten measurements in normal 

state. The first ten VEs are used for EWMA modeling. The remaining ten data is inputted into the 

developed EWMA control chart for change recognition. As for the faults with gradual changes, 

similarly, the first ten measured VEs are used for EWMA modeling. The remaining VEs will be 

checked with the EWMA control chart for the first change point detection. The setup parameters-

width parameter L and smoothing coefficient γ of the EWMA control chart are 2.6 and 0.05, 

respectively. Figure 5-12 reveals the part change recognition results of the fault with sudden and 

gradual change caused by the change of EC0B by analyzing Modu(CVSMA)j  and 

Dist(CVSMA)j. For the sudden change fault, they could be all detected at the 11th point which is 

the starting point of the faulty state. While the gradual change faults could be detected at the 16 th 
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point of the transition state before the faulty state and after the normal state by most CVSMAs 

(except Figure 5-12, c, data contained in a green rectangle). 

To see the effect of CVSMA and VSMs on the final recognition results of each fault, all the faults 

recognition results are shown and compared in Table 5-3 and Table 5-4. Similarly, S1 is related to 

the effect of CVSMA on the final recognition results while S2 is related to the effect of VSMs on 

the final recognition results. By checking and ranking S1 and S2 parameters, for the sharp change 

faults, expect from the draft feature CDistAj, the remaining features processed by VSMs can mostly 

reflect the faults with sudden changes. In addition, Modu and Dist perform better than the 

remaining two VSMs. Finally, the combination of CVSMA composed with Modu, Cos2, Area and 

Volu and VSMs can recognize the simulated sharp change faults.  

For the faults with gradual change, similarly, CVSMA and VSMs all have affection on the final 

recognition results. By analyzing the S1 and S2 parameters, CVSMA composed with Modu, Cos1, 

Area and Volu perform better than Dist and Cos2 measures. As for the effect of VSMs on final 

recognition results, S2 parameter reveals that Modu, Cos2 perform better than the remaining two 

measures. The VEs changes could also be detected by the CDistA but at the 17th measurement 

times. The fault detected time is later than the remaining CVSMA. So, they all perform badly in 

the simulated gradual change fault recognition. The combination of CVSMA composed with 

Modu, Cos1, Area and Volu and VSMs can recognize all the simulated faults with gradual changes. 

While the worst combination of CVSMA and VSMs are VSM(CDistA)j for the simulated gradual 

change faults. Considering the recognition results of the simulated faults with sudden and gradual 

change, CVSMA has more affection than VSMs. The VSMs can work well in VE change 

recognition when using CVSMA containing with Modu, Cos1, Area and Volu. By adjusting the 

setups of CVSMA and VSMs, all the simulated faults can be precisely detected. Considering the 

recognition results of the faults-C-axis encoder fault, pseudo faults caused by X-axis linear 

positioning error and straightness error (Figure 5-12), the stable setups of CVSMA and VSMs in 

VEs change recognition are shown in Figure 5-13.  
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Figure 5-12. (a) Part recognition results of the sudden change fault caused by the change of EC0B 

using Modu measure; (b) Part recognition results of the gradual change fault caused by the 

change of EC0B using Modu measure; (c) Part recognition results of the gradual change fault 

caused by the change of EC0B using Dist measure (to clearly show the change, only 25 VEs are 

shown); 

Table 5-3. Final recognition results with the effect of CVSMA data and VSMs on the sharp 

change faults, the results which are detected in the 11th point will be written as Y, or it will be 

written as N. 

 No. 1 2 3 4 

S1 

No. VSMs Modu Dist Cos2 PC 

1 Modu 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
52 

2 Dist 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

N/N/N/N/N/Y/N/N/N/ 

N/N/N/N 

N/N/N/N/N/Y/N/N/N/ 

N/N/N/N 
28 

3 Cos1 
Y/Y/Y/Y/N/Y/Y/Y 

/Y/Y/Y/N/Y 

Y/Y/Y/Y/N/Y/Y/Y/ 

N/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
48 

4 Cos2 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
52 

5 Area 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
52 

6 Volu 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y 
52 

 S2 76 76 64 64  

Faults EXX1/EYY1/EZZ1/EY0S/EX0S/EA0Y/EB0Z/EC0Y/EX0C/EA0B/EA0C/EB0C/EC0B 
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Table 5-4. Final recognition results with the effect of CVSMA data and VSMs on the gradual 

change faults, the results which are detected in the 16th point will be written as Y, or it will be 

written as N. 

 No. 1 2 3 4 

S1 

No. VSMs Modu Dist Cos2 PC 

1 Modu 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y 
52 

2 Dist 
N/N/N/N/N/N/N/N 

/N/N/N/N/N 

N/N/N/N/N/N/N/N/ 

N/N/N/N/N 

N/N/N/N/N/N/N/N/ 

N/N/N/N/N 

N/N/N/N/N/N/N/N/N/ 

N/N/N/N 
0 

3 Cos1 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y 
52 

4 Cos2 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

N/N/N/N/N/N/N/N/ 

N/N/N/N/N 

Y/Y/Y/Y/N/Y/Y/Y/ 

N/Y/Y/Y/Y 

N/N/N/N/N/N/N/N/N 

/N/N/N/N 
24 

5 Area 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 

Y/Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y 
52 

6 Volu 
Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/ 

Y/Y/Y/Y/Y 
Y/Y/Y/Y/Y/Y/Y/Y/Y 

/Y/Y/Y/Y 
52 

 S2 65 52 63 52  

Faults EXX1/EYY1/EZZ1/EY0S/EX0S/EA0Y/EB0Z/EC0Y/EX0C/EA0B/EA0C/EB0C/EC0B 

 

Figure 5-13. A recommended CVSMA feature extraction plan considering CVSMA types and 

VSMs 
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5.5.3 Discussion 

The proposed data processing method based on a combined vector similarity measure array 

(CVSMA) has been used for machine tool VEs feature extraction. The machine tool states indicated 

by CVSMA are the same to the results extracted and classified by PCA. In addition, the monitoring 

plan based on CVSMA, VSMs and EWMA control chart has been used for fault recognition. The 

testing fault data and the validation faults data reveal CVSMA and the proposed monitoring plan 

is effective in VEs feature extraction and change recognition. Firstly, CVSMA and VSMs can all 

affect the fault recognition results. The better setups of CVSMA and VSMs can be seen in Figure 

5-13 with blocks in yellow. It can provide guidance on the use of CVSMA on fault recognition. In 

real applications, the final VE features processed by CVSMA using Modu, Area and Volu 

parameters and VSMs (Modu, Dist, Cos2 and PC) are simple and stable to recognize the mentioned 

real and simulated faults with sudden and gradual changes. For the simulated faults generated by 

SAMBA simulator, the change of machine error parameters can bring a linear change of VEs. This 

change is mostly reflected in VEs magnitude, not VEs’ directions. This can make the CVSMA 

modelled by Cos1 and Cos2 have lower performance than the other measures. In addition, CDistA 

still can recognize the VEs change at 17th measurement time although there is a bit late than the 

remaining CVSMA. Secondly, for the application of PC in VE monitoring, the absolute value of 

PC and its conference interval is not considered. The key is to detect the abnormal change of PC 

value which indicates the change of correlation relationship between the monitored machine tool 

state and the referenced machine tool state. Thirdly, the application of the EWMA control chart 

includes two parts-learning and checking. The size and the quality of the learning data, the setup 

parameters such as the width parameter and the smoothing coefficient can affect the final 

recognition results. The increase of the VEs data size for learning and the precise selection of VEs 

data without extra noisy are two useful ways to improve the accuracy of the control limits-UCL 

and LCL, in addition, smaller width parameter and smoothing coefficient are helpful for the gradual 

change detection. 

 Conclusions 

This paper proposed a novel VE data feature extraction method in terms of CVSMA used in 

MTCMS. The paper mainly investigates how to build and apply CVSMA in machine tool accuracy 
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condition monitoring and verifies the performances of CVSMA by comparing it with PCA method 

in VE features extraction as well as the performances of CVSMA in fault recognition. This research 

can provide guidelines on the usage of CVSMA and VSMs in an industrial setting. And the 

following list summarizes the three main conclusions of the presented work:  

1. The combined vector similarity measure array (CVSMA) combining all VE information in one 

measurement is a valuable tool in VE feature extraction. The performance of CVSMA in VE 

feature extraction has been compared with PCA method. The results reveal that CVSMA is a valid 

tool for VE features extraction in equivalent terms with the widely used PCA. In addition, its 

special advantage is that it does not have strict requirements in terms of VE datasets when 

compared with PCA. 

2. The performance of CVSMA in VE change recognition is related to the CVSMA datatype and 

which vector similarity measures (VSMs) are used. The combination of CVSMA and VSMs can 

improve the recognition results towards different types of faults caused by machine tool geometric 

errors. Modu, Area and Volu similarity measures are recommended in CVSMA modeling. These 

CVSMAs processed by the proposed four VSMs (Modu, Dist, Cos2 and PC) have good 

performance in fault detection. 

3. The VE monitoring plan based on CVSMA and EWMA control chart can successfully recognize 

faults with sudden and gradual changes. 

Future work will focus on the investigation of the effect of EWMA setup parameters on the fault 

recognition results. In addition, the performance or the robustness of the CVSMA data processing 

method will be verified with larger faults dataset.  
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Abstract: Detecting machine tool condition deterioration affecting its accuracy is a constant 

challenge for industrial machine maintenance. Machine tool volumetric errors (VEs) exhibit 

complex variations due, for example, to normal thermal variations, wear or faults and defective 

components. A monitoring technique based on the fractal analysis of VEs, estimated with the scale 

and master ball artefact method, is studied. Different fractal parameters from the VE vectors are 

compared with magnitude based quantities for the detection of abnormal machine states. Results 

using both actual data with real and pseudofaults as well as simulated faults using ISO230-1 error 

parameters are presented. 

Keywords: Machine tool, Error, Fractal analysis 

 Introduction 

Unexpected or undetected machine tool failures or deterioration results in production and quality 

losses, hence proactive and prescriptive maintenance using machine tool condition monitoring is 

sought. Machine tool condition monitoring systems target two aspects, namely the machining 

process and the machine tool systems. Concerning the machining process, topics such as tool wear, 

tool collision and tool breakage detection have been broadly studied [1]. Regarding the machine 

tool system, structural and functional components such as mechanical structures, drives and the 

control system are usually monitored. However, recently, a linear axis, as a complete functional 

sub-system, was monitored using an inertial measurement unit (IMU) [2]. 

Partially monitoring key components of a machine tool cannot provide a holistic picture of its 

condition. The effect of mechanical parts degradation on machining quality is difficult to evaluate 
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[3]. Volumetric errors (VEs) embed the effect of numerous geometric error components of the 

structural loop into a three-dimensional error map at the tool relative to the workpiece [4]. Research 

concerning VE is focused on its modeling, prediction and compensation but its use in condition 

monitoring is recent. Time series of statistical parameters derived from VEs were analysed using 

vector similarity measures and control chart, principal components analysis and K-means [5, 6]. 

Extracting raw data features and recognizing pattern changes are two key topics in condition 

monitoring. As a feature extraction method, fractal analysis, originating from chaos theory, has 

been applied in various areas, e.g., biology and computer science [7]. Fractals were presented as 

natural objects that have a repetitive shape pattern at different scales of observation. Fractal 

dimension is a scalar estimating the complexity of such shape. In practice, the fractal dimension 

can be linked with the signal complexity. It was applied to cutting force and acoustic emission 

signals for machining process monitoring of composite and multimaterials and also to tool life 

diagnosis [8]. 

In this paper, the Cartesian VE vectors form the basic dataset representing a particular machine 

tool accuracy state. The VE dataset gathered over a period of time is analysed as a time series using 

fractal analysis. Validations are conducted using experimental real and pseudofaults as well as 

simulated faults. 

 Monitoring strategy  

The flowchart of the VEs monitoring scheme is shown in Figure 6-1. VEs are acquired at variable 

time intervals under different machine tool conditions and VEs features are extracted using fractal 

analysis. For industrial use, those VE features can then be processed by control charts, e.g., 

exponentially weighted moving average (EWMA), for VE pattern change recognition triggering 

corrective actions when a fault is detected. 

 

Figure 6-1. Flowchart for VEs data processing. 
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6.2.1 VEs measurement 

VEs are comprehensive indicators of a wide range of machine components. Some VE components 

are associated with individual axes whereas others are related to the relative location of axes [4]. 

This makes VE potentially able to provide a broad view of the machine condition. In this paper, 

VE is defined as the Cartesian error vector of the deviation of the actual tool position compared to 

its expected position relative to the workpiece frame and projected into the foundation frame. 

Some methods for VEs measurement are the Lasertracer [4], R-test [4] and the scale and master 

ball artefact (SAMBA) [9]. The SAMBA method is here selected for VEs estimation. It has good 

robustness in periodic mounting of the artefact and probe on the estimation results. The machine 

tool probe, a SAMBA artefact and a rich measurement strategy involving many angular axes 

position sets are used. The raw probing data is processed by the SAMBA algorithm to estimate a 

set of 13 machine error parameters (EXX1, EB(0X)Z, etc.) as well as the positions of four artefact 

balls. These positions are then used as reference values to calculate the VEs each time a ball is 

probed. An example of the VE vectors estimated by the SAMBA method, for one execution, are 

shown in Figure 6-2 (a). The number of VEs is dictated by the number of master ball probing 

positions N (N = 109 in this case). Their norms and components are shown in Figure 6-2 (b and c). 

 

Figure 6-2. (a) VEs estimated by the SAMBA method at various measurement positions in the 

foundation frame for the HU40-T five-axis machine tool, for a single execution, amplified 1000x; 

(b) VEs norms at each probing position; (c) VEs components of all VEs vectors as in Eq. (36). 
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6.2.2 VEs feature extraction using fractal analysis 

Different kinds of fractal analysis emerged in the past decades. Herein, the fractal regularization 

analysis is selected based on its relative robustness and ability to be easily automated [8, 10]. It 

relies on the convolution of a curve "s" with different rectangle sized kernels ga – affine function 

with a width of "a", as displayed in Eq. (33) [11]. Then, sa is presumed to have a finite length which 

is named la. Finally, the regularization dimension, a fractal dimension estimation, is calculated as 

per Eq. (34). 

𝐬a = 𝐬 ∗ 𝐠a (33) 

D = 1 − lim
a→0

log la
log a

 (34) 

In practice, the limit in Eq. (34) is assessed as the slope estimation (log la vs log a) for the lowest 

“a” value and where the R-squared of this slope estimation tends to 1. Figure 6-3 presents fractal 

dimension determining graphs (log la vs log a) for different machine conditions; different curve 

patterns can be distinguished between the normal (M1 and M9) and faulty states (M16 and M24). 

Other fractal parameters exist allowing to extract different key features such as ruggedness 

(measured by the topothesy G) and auto-scale regularity of signals (R2) [7]. 

 

Figure 6-3. Fractal dimension evaluation for C-axis encoder fault (see section 6.3). 

In this study, the range of the slope determination is defined based on preliminary evaluations. In 

this region of interest different fractal parameters are extracted such as the fractal dimension D 

(slope estimation), the topothesy G (y-intercept) and R2 of the slope estimation, which can be 
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defined as the auto-scale regularity. In addition to those three parameters, the following combined 

index is also used [12]: 

Inde =  
D. G

R2
 (35) 

The effect of the order of components on the spread of the fractal results was assessed using one 

thousand times randomized ordinated VEs components giving a spread lower than 3.5% of the 

relative standard deviation. Although this selected fractal analysis technique has a good robustness 

on VEs probing sequence, it is recommended to keep the same probing sequence to assess different 

machine states. In this research, the VEs fractal features are extracted from VEs Cartesian 

components, for each SAMBA execution, seen as a curve (Eq. (36), where i stands for the 

measurement execution and N = 109). 

VE yzi =  VE i,1, VEyi,1, VEzi,1, … , VE i,N, VEyi,N, VEzi,N  (36) 

 VEs data source 

VE data from real, pseudo and simulated faults are used to verify the proposed approach. Regarding 

the real fault, the raw volumetric information is acquired from a five-axis machine tool equipped 

with a MP700 Renishaw touch-trigger probe. The master ball artefacts’ centres are measured at 27 

angular positions pairs of the B- and C-axes resulting in 109 position readings (Figure 6-4). This 

probing data is processed for VEs calculation (procedure a, Figure 6-4). During the test phase, a 

fault developed with the main C-axis encoder which triggered an alarm from the machine tool. The 

faulty C-axis encoder, which directly measured the C-axis angular position, was removed for 

maintenance, hence the position of the C-axis was controlled by the C-axis motor encoder. This 

was likely to cause a change in the C-axis behaviour. Twelve SAMBA executions were recorded 

before and after this fault. 

Two pseudofaults were generated. The machine tool error compensation tables normally used to 

correct the positioning errors of linear axes are used here as a means of producing a fault as a 

change of the X-axis positioning error. A U-shape error with magnitudes of 35 µm was added to 

the pitch error compensation table. SAMBA tests are then repeated seven times before and five 
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times after the table alteration (procedure b, Figure 6-4). Procedure c (Figure 6-4) illustrates the 

generation of another pseudofault, this time as a change of the X-axis straightness error in Y, EYX. 

The raw Y-axis coordinate probing readings, y, are modified manually as a function of the X-axis 

coordinates, x (Figure 6-5). 

 

Figure 6-4. VEs data generated by one of three procedures. Procedure a: real C-axis encoder fault 

acquired from a Mitsui Seiki HU40-T five-axis machine tool. Procedure b: pseudo EXX fault. 

Procedure c: pseudo EYX fault. 

 

Figure 6-5. Generation of a straightness error pseudo EYX fault. 

To further test the proposed monitoring strategy, simulated faults with both steep and gradual 

changes (A) and another two types of gradual change faults (B and C), which differ from A by a 

change of error factor sign, are introduced by numerical modification of machine error parameters 

(ISO230-1) [13]. A SAMBA simulator software, which includes a comprehensive machine error 

model based on homogenous transformation matrices, is used for this purpose (Figure 6-6). 
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Figure 6-6. Simulated faults caused by the steep or gradual change of machine error parameters; 

The blue, yellow and red bars stand for the normal states, transition states for gradual changes 

and faulty states, respectively; Some randomness (uniform distribution with magnitude of 0.15) is 

added for a "more realistic" effect. Type B gradual change involves a change from positive to 

negative values. 

 Results and discussion 

The VEs fractal features are calculated for each SAMBA measurement execution. Then, the fault 

occurrence time identified from the fractal parameters is compared with the known value. In 

addition, the VE norms, their maximum and mean values are also calculated for each SAMBA 

execution as alternatives to fractal feature performance analysis (Eq. (37) to (39)) where i stands 

for the measurement execution and j stands for a particular VE probing position (N = 109, j ∈ [1, 

N]). 

VEMi,j = √VExi,j
2 + VEyi,j

2 + VEzi,j
2
 (37) 

Ma _VEMi = Ma [VEMi,1, VEMi,2, , … , VEMi,N] (38) 

Mean_VEMi = (VEMi,1 + VEMi,2 + ⋯+ VEMi,N)/N (39) 
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6.4.1 Monitoring validation for real C-axis encoder fault 

All four fractal parameters from the VExyz series allow detecting the C-axis encoder fault (Figure 

6-7). The fault occurred at the 13th execution which is reflected by both fractal and magnitude 

features. For the VEs feature results contained in the blue rectangles, a slightly different normal 

machine condition is suggested. This pattern change can be assessed by all fractal parameters 

(Figure 6-7, a-d) and, to a lesser extent by Mean_VEM (Figure 6-7, f). It suggests that extracting 

VEs fractals features from VEs components contains more VE feature information than using the 

magnitude features. 

 

 

Figure 6-7. VEs fractal features (a-d), and VEs components, and maximum and mean norms (e-g) 

for the C-axis encoder fault; the faulty state starts from the red line or mesh; VEME stands for 

volumetric error measurement execution; VEMP stands for volumetric error measurement 

position of the probing. 



98 

 

 

6.4.2 Monitoring validation for pseudofaults EXX and EYX 

The pseudofault caused by the linear positioning error EXX starts at the 7th execution. Figure 6-8 

displays VEs features extracted by fractal analysis and the magnitude features VEM, Max_VEM 

and Mean_VEM for the same machine states. Compared with the magnitude features (Figure 6-8, 

e-g), the VEs fractal parameters (Figure 6-8, a, c and d)– D, R2 and Index – show clearer changes 

in values between the normal states and faulty states. For parameter G (Figure 6-8, b), there is little 

variation of its value between normal and faulty states. Similar conclusions are drawn from VEs 

fractal and magnitude features results for the induced pseudofault causing a straightness error, 

EYX. All parameters except G can reflect the fault occurrence. 

 

 

Figure 6-8. VEs fractal features (a-d), and VEs components, and maximum and mean norms (e-g) 

for pseudofault linear positioning error EXX; the faulty state starts from the red line or mesh; See 

Figure 6-7 for the meaning of VEME and VEMP. 
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The detected fault time by fractal parameters matches the known fault occurrence time. Similarly, 

the VEs fractal features – D, R2 and Index – are more stable before and after the fault occurrence 

and display clearer transition points than those processed by magnitude features. 

6.4.3 Monitoring validation for simulated gradual and steep fault 

Figure 6-9 shows results for the simulated EB(0X)Z and EB(0X)C fault with gradual change (type 

A). The fractal parameters (Figure 6-9, a-d) reveal the same change tendency as Figure 6-6.  

The gradual change (type A) could be detected in the transition period before the faulty state by 

using control limits developed with the VEs acquired in the normal state (for example, the first 

detected change point is at the 16th measurement execution when using the control chart method). 

The simulated gradual change faults of the remaining 11 machine error parameters manifested 

similar trends as EB(0X)Z and EB(0X)C. Similar results and observations were obtained for steep 

changes of type A faults. The 13 types of steep and gradual change faults all support the 

effectiveness of the proposed fractal features for fault detection. 

For the simulated gradual change fault EZZ1 (type B) (Figure 6-10), Max_VEM and Mean_VEM 

become ineffective in the separation of normal and faulty state data although the gradual change 

can be recognized at the 12th position during the transition. However, VEs fractal parameter D 

(Figure 6-10, c) can clearly reveal the gradual change fault EZZ1 and also detect the fault at the 

12th measurement. Type C EZZ1 fault shows fractal parameters (Figure 6-10, e and f) may become 

ineffective in the detection of sign changed fault in the absence any other machine errors (blue and 

red squares). 

 



100 

 

 

 

 

Figure 6-9. VEs fractal features (a-d), and VEs components, and maximum and mean norms (e-g) 

for the simulated gradual change EB(0X)Z and EB(0X)C fault (type A); the faulty state starts 

from the red line or mesh; the red line stands for the first detected change position by control 

chart using the VEs in normal state; the color bar has the same meaning as in Figure 6-6. 
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Figure 6-10. VEs fractal features (c-f) and maximum and mean norms (a-b) for the simulated 

gradual change fault-EZZ1 (type B) and EZZ1 (type C); Type B EZZ1 fault is simulated with 

“13” machine error parameters based on the mean value of 10 SAMBA tests in normal machine 

tool state; Type C EZZ1 fault is simulated with EZZ1 parameter of 1E-5 and all remaining 12 

parameters set to 0; Blue square corresponds to VEs measured during a machine tool normal 

state, the red square highlights results during a machine tool faulty state. 

 Conclusions 

Fractal features of volumetric errors components, VEs, are used to assess and monitor a five-axis 

machine tool condition. Real, pseudo and simulated faults with steep and gradual changes were 

considered. For the analysed cases of real, pseudo and simulated gradual faults, fractal features 

have excellent performance for fault sensitivity. The effect of gradual and steep change faults on 

volumetric errors can also be clearly revealed by the fractal features. Fractal parameters D, R2 and 

Index are more robust than the G parameter in VE feature extraction. Compared with the traditional 

VEs vector magnitude processing measures such as their maximum and mean values, fractal 

features can extract VEs features containing additional and complementary volumetric error 

information. This might be helpful in the detection of minor fluctuations of the normal state as well 
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as faults with gradual change. Fractal parameter D performs well in the detection of gradual fault 

change with a sign change contrary to VEs magnitude features. However, in a very specific case, 

fractal parameters became ineffective and so did the VEs magnitude measures. With fractal 

analysis, the complex set of volumetric error components (327 components in the case studied) are 

reduced to a set of three scalar quantities that can be monitored automatically using simple control 

chart approaches. 
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Abstract: Volumetric errors (VE) are related to the machine tool accuracy state. Extracting 

features from the complex VE data provides with a means to characterize this data. VE feature 

classification can reveal the machine tool accuracy states. This paper presents a study on how to 

use principal component analysis (PCA) to extract the features of VE and how to use the K-means 

method for machine tool accuracy state classification. The proposed data processing methods have 

been tested with the VE data acquired from a five-axis machine tool with different states of 

malfunction. The results indicate that the PCA and K-means are capable of extracting the VE 

feature information and classifying the fault states including the C-axis encoder fault, uncalibrated 

C-axis encoder fault, and pallet location fault from the machine tool normal states. This research 

provides a new way for VE features extraction and classification. 

Keywords: machine tools; volumetric errors; feature extraction; feature classification; principal 

component analysis; K-means 

 Introduction 

Modern manufacturing demands high machining productivity and high accuracy. The unplanned 

maintenance and arbitrary failure of machine tools have a direct effect on the machining capability 

and accuracy of parts. Therefore, monitoring the machine tool state is a necessary part of modern 

manufacturing. Currently, a variety of approaches have been applied to machine tool condition 

monitoring. Regarding the significant failures of machine tools, they mostly monitor the machining 

process and mechanical structures of machine tools (feeding systems, tool changer, pallet and 

spindle system) by physical signals such as the vibration, power, current, acoustic emission, etc. 

[1-4]. The acquired signals are generally processed with the pattern recognition methods, such as 

neural networks, expert systems and fuzzy logic for condition monitoring and fault diagnosis [5]. 
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Currently, it is possible to measure the condition of some key elements of machine tools but it is 

not yet possible to measure the condition of all parts [5]. Finding a signal which is related to more 

parts of the machine tool can provide a new look in machine tool condition monitoring. The 

condition of most machine tool elements can be reflected in the means of machine tool accuracy 

parameters. However, the machine tool accuracy information frequently measured during the 

maintenance period of machine tools are rarely used for continuous condition monitoring of 

machine tools. In addition, the measurement of geometric errors is generally a time-consuming 

process. 

Volumetric errors (VEs) are related to the machine tool mechanical structures and components 

such as the linear and rotary axes. They are the comprehensive reflections of machine tool quasi-

static errors and hysteresis errors. As an important indicator of machine tool performance, its use 

for monitoring the machine tool accuracy states appears relevant. For the application of VE, 

currently, most works have been found in VE modeling, estimation and its compensation [6-11]. 

Rarely research about VE has been seen in machine tool condition monitoring. The application of 

VE in machine tool condition monitoring includes two main parts—VE features extraction and VE 

data classification. 

For the signal processing, feature extraction is one important step for the condition monitoring 

system. Features are any parameters extracted from the measured VEs to expel the effect from the 

random noises in the error measurement through signal processing methods. Feature selection is 

helpful to reduce dimensionality and discard deceptive features. It is even critical to the success of 

the VE classification. If the VE feature extraction is incorrect or incomplete and it will inevitably 

lead to erroneous classification and false positives. The general feature extraction methods include 

independent component analysis, principle component analysis (PCA), nonlinear principal 

components analysis. etc.[12]. PCA is an unsupervised automatically feature extraction technique. 

It was first proposed to decorrelate the statistical dependency between variables in multivariate 

statistical data [13]. Since then, it has been widely applied in areas such as statistical analysis, 

process monitoring and diagnosis and pattern recognition [13]. PCA is a simple nonparametric 

method which can extract the most relevant information from a set of redundant or noisy data and 

form some new variables, the principal components, and explained the maximum amount of 

variability of the original data. In the area of machine condition monitoring, PCA method has been 
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investigated to identify the most representative features from a variety of characteristic features of 

roller bearings and gearbox in time, frequency and or time-frequency domains [14, 15]. The 

effectiveness of PCA has been verified experimentally on a bearing test machine, the results 

validated the suitability of the PCA features selection scheme [14]. With reference to geometric 

tolerances, PCA can reveal the signatures of machined items in the manufacturing [16]. As for the 

machine tool thermal monitoring, PCA has proved able to extract the features from eight fiber 

Bragg grating signals and six thermal signals with data dimensionality reduction [17]. This is useful 

in processing a large amount of data in real-time or in a long period of time. When using the force 

signature for the failure detection in assembly, PCA can compress the force signature and as a 

result reduce the number of examples required for mathematical modelling [18]. For machine tool 

thermal errors compensation, PCA has allowed to select the optimization data of the temperature 

measurement points with dimension reduction of temperature data from 11 down to 4 [19]. 

Clustering can assign a set of objects into different groups so that the objects in the same cluster 

are more similar to each other. It plays an important role in data analysis and pattern classification. 

Clustering techniques can be classified as hierarchical clustering, partitional clustering, graph 

theory-based clustering, to clustering or neural networks based clustering, etc. [20]. As a squared 

error-based clustering method, the K-means algorithm can not only be simply implemented in 

solving many practical problems but also can be applied directly to industrial environments without 

the need to be trained by data measured on a machine under a fault condition [20-22]. As an 

unsupervised method, K-means has been used to detect faults in rolling element bearing and used 

in the crack fault classification for planetary gearbox [23]. In addition, it has been used to 

investigate the best signals from the force, electrical current, and electrical voltage for a condition 

monitoring system. In summary, K-means is a useful tool for monitoring systems in fault 

classification. Therefore, it is selected for the VE features classification. 

In this research, VE has been firstly used to monitor the machine tool accuracy condition. For the 

VE data processing, we explore how to apply the PCA method to extract VE features and use the 

K-means method to classify the machine tool states indicated by these features. The results are the 

preliminary work with a scope to be extended further for a VE based condition monitoring solution 

in the future. The novelty of this paper lies in the development of an effective tool for VE features 

extraction and classification. The paper begins by presenting the state-of-the-art in machine tool 
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condition monitoring, PCA and K-means clustering methods. Section 7.2 presents the knowledge 

of volumetric error of machine tools. The VE measurement and processing plan are described in 

detail in Section 7.3. After that, the VE data source for this research is introduced in Section 7.4. 

The processing results of PCA and K-means in VE data are analyzed and discussed in Section 7.5 

and, finally, the conclusions are drawn in Section 7.6. 

 Volumetric Error 

Volumetric errors (VEs) are affected by a wide range of machine components which make them 

potentially able to provide a broad view of the machine condition. Machine tool VEs come from 

quasi-static errors including geometric errors, elastic, thermo-mechanical errors and hysteresis 

errors which come from manufacturing, assembly, loads, motion control and control software. VE 

components are caused by individual machine axis errors whereas others are related to the relative 

location of axes. 

In this paper, VE is defined as the relative Euclidian error vector between the tool frame and the 

workpiece related frame in 3D space [9]. The tested machine is a Mitsui Seiki HU40-T 5-axis 

machine tool (Mitsui Seiki (USA) Inc., New York, USA), with three linear axes (X, Y, Z) and two 

rotary axes (B, C) and it has the topology WCBXFZYST where S stands for the spindle, W for the 

workpiece, F for the foundation and T stands for the touch-trigger probe (Figure 7-1, a). For the 

nominal machine tool model, the measure provided by the machine axis readings will correspond 

to the stylus tip position when it corresponds to the center of the master ball. However, owing to 

the presence of quasi-static errors (Figure 7-1, b), there will be a “mismatch” between the center 

of the probe and the master ball artefact. The “mismatch” between the calculated coordinates of 

the master ball artefact and the touch probe stylus tip coordinates represents the raw volumetric 

information that contains the accuracy information of the machine tool. 
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(a) (b) 

Figure 7-1. (a) Illustration of the nominal kinematic model of the target five-axis machine tool 

with WCBXFZYST topology; and (b) the real kinematic model of the machine tool with 10 axis 

alignment errors which lead to VEs in 3D space [24]. 

 VE Measurement and Processing Plan 

The functional information flow of the VE data processing is shown in Figure 7-2. During the 

machine tool maintenance period, accuracy measurement devices/methods will be run to acquire 

the VE data. Then, PCA is used to extract the VE features from the preprocessed VE data. The VE 

features are classified by the K-means to check the states of machine tool indicated by the VE. 

After that, the change of the states of the machine tool can be revealed for maintenance decision 

purposes. 

 

Figure 7-2. VE data processing steps. 

7.3.1 VE Measurement Method 

VE measurement methods include ball-bar test, R-test, laser tracker quadrilateration, machining 

tests and the scale and master ball artefact (SAMBA) method, etc. [24-26]. We chose to use the 

SAMBA method to estimate the VE in this research because of its advantages in terms of its simple 
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installation and maintenance, automated data acquisition and processing [24]. In addition, using 

the SAMBA method, only 30 minutes are needed for the measurement and estimation of geometric 

errors and VEs. This promotes the monitoring of VE as a faster alternative for machine tool 

accuracy condition monitoring. 

The SAMBA method assumes that the rigid body kinematics hypothesis applies and so the machine 

is modelled using a series of homogeneous transformation matrices incorporating nominal axis 

locations and their location errors as well as the perfect axis motions of individual axes and their 

error motions. The “13” and “84” machine error models are the two SAMBA models which can 

estimate the VE and geometric errors. The naming of the two models is derived from the number 

of estimated machine error parameters. The “13” machine error model can estimate 13 machine 

error parameters namely the eight axis location errors (according to the standard ISO 230-1 [27]) 

such as EA0B, EC0B, etc., three linear gains (EXX1, EYY1, EZZ1) and two spindle offsets (EY0S, 

EX0S). The “84” machine error model can estimate 26 types of machine errors of linear and rotary 

axes which are expressed with third-degree polynomials for a total of 84 coefficients. Some errors 

such as EAY, EBY and ECY errors are not distinguishable from EXY, EYY, and EZY, they are, 

therefore, not included in the “84” machine error model. 

The steps of the SAMBA method are shown in Figure 7-3. Machine tool’s actual kinematic model 

is firstly estimated. Considering the user’s requirements such as error types (inter or intra axis 

error), total measurement time, a machine error model needs to be firstly selected. After that, the 

error which are either those of the “13” machine error model or of the “84” machine error model 

can be automatically selected. The total number of machine error parameters helps to select the 

number of possible master ball positions and indexations (the relative positions of all rotary axis). 

Then, a collision test will be processed using the simulation method in VERICUT software 

(CGTech Ltd., California, USA). The indexations and the positions of master ball artefacts need to 

be optimized until there is no collision. The master ball artefacts and scale bar artefact installed on 

the machine tool pallet are probed, in simulation, by the touch trigger probe which is installed in 

the spindle under different indexations sets of the rotary axis. Then, all the setup parameters 

including the machine error parameters, indexation and the master ball artefacts to be probed in 

each indexation will be inputted into the SAMBA mathematical model to calculate the conditioning 
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number and rank of the mathematical model. When the two values are deemed within acceptable 

limits, the proposed measurement plan can be applied to the real machine tools. 

 

Figure 7-3. Flowchart of the SAMBA method in its application. 

In this research, the “13” machine error model is selected to estimate the geometric errors and VEs. 

Four master ball artefacts and one scale bar artefacts are mounted, and 13 indexations are selected 

to accumulate the master ball center coordinates from 29 VE measurement positions. These 

measured master ball coordinates inputted into the SAMBA model are firstly used to estimate the 

machine error parameters of machine tool (Figure 7-4). Then, under the SAMBA model, the 

estimated geometric error parameters are used for the estimation of VE (Eq. (40)). 

𝐸 = 𝐽𝐸𝑃 (40) 
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where 𝐸  is the volumetric error column matrix at the measured joint positions in the tool frame, 𝐽 

is the Jacobian matrix generated for the “13” machine error model describing the sensitivity of the 

observed volumetric deviations to the machine error parameters and 𝐸𝑃  is the machine error 

parameters having 13 rows. For details of the SAMBA method in VE estimation, please refer to 

[24, 26, 28]. 

 

Figure 7-4. General steps of SAMBA method for VE estimation. 

7.3.2 VE Preprocessing 

After the VE measurement, the measured VE data needs to be preprocessed for later VE feature 

extraction and classification. The estimated VE is written as 𝑉𝐸⃑⃑⃑⃑  ⃑ =  𝑉𝐸𝑥 , 𝑉𝐸𝑦 , 𝑉𝐸𝑧 . Then each VE 

vector is processed by a vector similarity measure, the module parameter (Eq. (41)): 

‖𝑉𝐸⃑⃑⃑⃑  ⃑‖ = √𝑉𝐸𝑥
2 + 𝑉𝐸𝑦

2 + 𝑉𝐸𝑧
22
 (41) 

The basic VE dataset of one measurement cycle can be written as  𝑽𝑬𝑴1× =

 |𝑉𝐸⃑⃑⃑⃑  ⃑
1|, |𝑉𝐸⃑⃑⃑⃑  ⃑

2|, |𝑉𝐸⃑⃑⃑⃑  ⃑
 |, … , |𝑉𝐸⃑⃑⃑⃑  ⃑

 |  where 𝑗 = 1 to 29 and it stands for the jth VE measurement position. 

For periodic monitoring cycles, the VE data can be expressed as 𝑽𝑬𝑴 ×  where i represents the 

VE measurement time. It contains all the VE information. 

7.3.3 VE Feature Extraction 

The basic concept behind PCA in VE feature extraction is to project the VE dataset onto a subspace 

of lower dimensionality. In the reduced space, the VE data are represented with the removed or 

greatly decreased collinearity by explaining the variance of the preprocessed 𝑽𝑬𝑴 ×  in terms of 

a new sets of independent variables. In this paper, we will not discuss the mathematical details of 

PCA, but more details can be found in [13]. The VE feature extraction is easily processed with 
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program developed by Matlab (MathWorks Inc., Massachusetts, USA). The general steps of PCA 

in VE data feature extraction are as follows: 

1. VE data preparation. The preprocessed 𝑽𝑬𝑴 ×  is prepared as the input of the PCA model. VE 

data size can affect the performance of PCA. Small sample data manifests itself in factors that are 

specific to one data set. This can bring large sampling errors to the PCA results. However, there is 

no absolute standard for the minimal size or subject to item ratio of data for PCA application, but 

large sample size or subject to item ratio are always recommended [29]. Subject to item ratio is 

defined as the ratio of the total VE testing times (67) and VE measurement positions (29) in one 

test, it is 2.3 for this research, similar application of the subject to item ratio (55/22) could be found 

in [30]. 

2. The 𝑽𝑬𝑴 ×  is used to create a new normalized matrix 𝑵𝑽𝑬𝑴 × . This is a necessary step for 

the VE data processing because the VEs measured in 29 positions have different magnitudes (from 

1.2 µm to 164 µm). Otherwise, the magnitudes of certain VEs dominate the connections between 

the VEs in the sample. The normalization is carried out in each row j with Eq. (42): 

𝑵𝑽𝑬𝑴𝒊×𝒋 =
𝑽𝑬𝑴 × − 𝑴𝒊𝒏(𝑽𝑬𝑴 × )

𝑴𝒂𝒙(𝑽𝑬𝑴 × ) − 𝑴𝒊𝒏(𝑽𝑬𝑴 × )
       𝑗 = 1: 29 (42) 

3. Calculate the covariance matrix 𝐂 of the new normalized matrix 𝑵𝑽𝑬𝑴 × : 

𝐂 =
1

𝑗 − 1
𝑵𝑽𝑬𝑴 × 

𝑇𝑵𝑽𝑬𝑴 ×  (43) 

4. Calculate the eigenvalues and eigenvectors of the covariance matrix 𝐂. 𝜆  (j   1,2, 3, …, n) are 

the eigenvalues and they are sorted in descending order, 𝜆𝑃 (P   1,2, 3, …, n) are the corresponding 

eigenvectors. The eigenvectors corresponding to the largest eigenvalues would bring the smallest 

errors in new feature representation. In addition, the maximum variance could be found in the 

direction of the eigenvectors: 

𝐂𝜆𝑃 = 𝜆 𝜆𝑃 (44) 
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5. Choose the components by considering the cumulative percent variance (CPV) which denotes 

the approximation precision of the new largest eigenvectors which account for all the variation of 

the raw VE data 𝑽𝑬𝑴 × . The number of principal components which need to be extracted is 

determined by the principle that the CPV value is more than 85%: 

CPV = ∑ 𝜆𝑃

𝑁

𝑝 = 1

∑ 𝜆𝑃

 

𝑝 = 1

⁄  (45) 

where 𝜆𝑃 is the Pth eigenvalue of the covariance matrix. The first N largest eigenvalues are retained 

in the PCA model. 

6. Calculate the final projected data set which represents the modelled variation of 𝑽𝑬𝑴 ×  based 

on the first N components. The initial data set 𝑽𝑬𝑴 ×  is finally projected onto a new structure 

with new sets of data matrix 𝑷𝑽𝑬𝑴 ×𝑁, where 𝑩 ×𝑁 is the matrices of N retained eigenvectors: 

𝑷𝑽𝑬𝑴 ×𝑁 = 𝑽𝑬𝑴 × × 𝑩 ×𝑁 (46) 

The final selected N components will be selected as the inputs of K-means for VE features 

classification. 

7.3.4 VE Features Classification 

K-means is a vector quantization method for cluster analysis. It has been widely adopted in 

scientific fields due to its ease of implementation, simplicity and efficiency in application [31]. The 

main aim of K-means clustering in VE feature classification is to classify machine tool accuracy 

states into different clusters by analyzing the VE features extracted by PCA. The observation 

𝑷𝑽𝑬𝑴 ×𝑁 groups using an iterative process that begins with the random assignment of a cluster to 

each data point. Then, the data are rearranged within the clusters by assigning them to the nearest 

cluster center. Finally, VE data measured from the machine tool with the same condition can be 

grouped together. The flowchart of the K-means in VE feature classification is divided into 6 steps: 

Step 1: Prepare the VE feature data 𝑷𝑽𝑬𝑴 ×𝑁. 
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Step 2: Randomly select K cluster center setups 𝐂  (1 ≤ n ≤ K). This setup can guarantee no empty 

cluster appears after initial assignment in the subroutine. 

Step 3: Calculate the Euclidean Distance between each data object 𝑷𝑽𝑬𝑴𝑎×𝑁 (1 ≤ a ≤ i) and all K 

cluster centers 𝐂  (1 ≤ n ≤ K) and assign each data object to the nearest cluster. 

Step 4: Update the K cluster center at periodic intervals after all VE features have been assigned. 

Step 5: Repeat steps 2 to 4 until there is no change in the sum value of the total squared errors 

(SSE) for each cluster center. After this process, the VE features could be separated into different 

groups: 

𝐒𝐒𝐄 = ∑ 𝑴𝒊𝒏‖𝑷𝑽𝑬𝑴𝑎×𝑁 − 𝐂 ‖𝟐       (𝑛 ∈ (1, 2, … , k))

 

𝑎= 1

 (47) 

Step 6: Reveal the classification results of VE features in a 2D figure. 

According to the above algorithm principle, MATLAB, one kind of engineering calculation 

software, is used to develop the program of VE feature classification by K-means. The selection of 

K value directly affects the final classification. K-means is significantly sensitive to the initial 

cluster number. Owing to the random selection of K value, different classification results can be 

achieved. Several methods can be used as a reference for K value selection. It can either be selected 

based on the user’s knowledge of the dataset, the elbow method, the silhouette method, or even 

using a systematic approach which assigns the K value in the range 2 ≤ K ≤ (√𝑖 ≈ 8), where i = 

67 is the VE measurement times [32-34]. 

 VE Data Source for This Research 

The SAMBA test is carried out on the Mitsui Seiki HU40-T five-axis machine tool (Mitsui Seiki 

(USA) Inc. New York, USA) fitted with a MP700 Renishaw touch trigger probe (Renishaw, Inc. 

Wotton-under-Edge, UK) on the spindle and four master ball artefacts and one scale ball bar 

(Laboratoire de recherche en fabrication virtuelle, Polytechnique Montréal, Montréal, Canada) on 

the pallet (Figure 7-5). The positions of the artefacts are measured by the probe with B and C axes 

in 13 different indexations (different angular position pairs). The measured 29 master ball artefact 
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center coordinates are used as the inputs of the SAMBA mathematical model (the “13” machine 

error model). For each test, 29 VE vectors can be estimated. The machine tool has been periodically 

tested twice times per week at an ambient temperature of 21 ± 1 °C. Finally, 67 cycles of VE 

measurements are selected for this research. 

 

Figure 7-5. SAMBA measurement in HU40-T five-axis machine tool, Numbers 3, 4, 5, and 6 

indicate the four master ball artefacts, Numbers 1 and 2 indicate the scale ball artefact. 

The experimental machine tool experiences five different states during the SAMBA measurement 

(Table 7-1): normal state 1, fault state 1 (C-axis encoder fault), fault state 2 (uncalibrated C-axis 

encoder fault), and fault state 3 (pallet location fault), and another normal state 2 after fixing all the 

mentioned faults. Normal state 1 and normal state 2 are viewed as the similar states of the machine 

tool without any faults. 

Table 7-1. Machine tool states and corresponding measurement times (or cycles). 

State No. 
Normal 

State 1 

Fault 

State 1 

Fault 

State 2 

Fault 

State 3 

Normal 

State 2 

VE measurement 

times 
1–12 13–23 24–39 40–44 45–67 
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 Result and Discussion 

7.5.1 VE Feature Extraction 

The VE data are preprocessed with the Module measure. Then, the processing result 𝑽𝑬𝑴𝒊×𝒋 will 

be processed by PCA. Figure 7-6 illustrates the contribution rate of the four main principal 

components (PCs) to the VE data. The 5th to 29th PC contributes less than the 4th PC to the VE 

data, so they are not shown in Figure 7-6. The four components account for 98% of the measured 

VE data information. Although the four new PCs account for the most percentage of the VE data, 

they are not all efficient for the machine tool accuracy states recognition. 

 

Figure 7-6. (a) Contributions of the single PC; and (b) contributions of the added PCs. 

Owing to the differences of the contribution rate, each component performs differently in machine 

tool states reflection. For the PC selection, firstly, the CPV value needs to be larger than 85%. So, 

at least two components need to be selected (Figure 7-6, b). Secondly, the selected PCs need to 

reflect the main states of the machine tool without adding noisy information. The first and the 

second PCs can identify the five states of the machine tool (Figure 7-7). 

 

Figure 7-7. Variation tendency of the new PCs indicating machine tool with five states, MT 

stands for the VE measurement time. 
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However, the remaining two principal PCs are unable to separate the transition of machine tool 

states and their curves do not have a similar change tendency. Two separate states (red ring, normal 

state 1 and fault state 1, fault state 2 and fault state 3) of the PC3 and PC4 are merged together. 

Therefore, the third and fourth PCs would probably add unnecessary noise to the machine tool state 

recognition. So, only the first and second PCs are extracted as the new features of VE in this 

research. They account for a total of 92.1% of the input VE data. After the PCA processing, the 

dimension of the original VE data is, therefore, decreased from 67 × 29 to 67 × 2. 

7.5.2 VE Feature Classification 

7.5.2.1 K Value Selection 

After the PCA processing, the first and second PCs are processed with the K-means method for 

feature classification. As mentioned above, elbow and silhouette methods are used for the K value 

selection. The Elbow method is a visual method. It starts with K = 2 and keeps increasing it in each 

step by 1, calculating the clusters and the sum of squared errors (SSE) of each classification. Then, 

SSE curve is plotted with the number of clusters K. The location of a bend (knee) in the plot is 

generally considered as the indicator of the appropriate number of clusters. To improve the 

precision of K value selection, Elbow method is firstly applied, after that, the silhouette method is 

used to verify the selection result. The silhouette coefficient has a range of [ 1, 1]. +1 indicates 

that the sample is far away from the neighboring clusters, so the classification is good. A value of 

0 indicates that the sample is on or very close to the decision boundary between two neighboring 

clusters and negative values indicate that those samples might have been assigned to the wrong 

clusters. 

Figure 7-8 reveals the change tendency of SSE with different K values. With the increase of K 

value, SSE decreases gradually. Cluster number 3, number 4, and number 5 can each be deemed 

as the knee point because a large change can be found between cluster numbers 2 and 4, cluster 

numbers 3 and 5, and cluster numbers 4 and 6. For cluster number 3, it does not match the actual 

states of the machine tool. Thus, cluster number 3 is not considered. For the selection of cluster 

numbers 4 and 5, the silhouette values of the two-cluster number should be calculated. 
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Figure 7-9 illustrates the silhouette value of the K-means classification plan with K = 4 and K = 5. 

By checking the silhouette values of the two-classification plan, most of them are bigger than 0.2 

and close to 1. However, the silhouette values of the classification plan with K = 4 are larger than 

those of the other classification plan with K = 5. Therefore, K = 4 is the recommended value for 

the classification of the VE data obtained by the elbow and silhouette methods. 

 

Figure 7-8. Sum value of the total squared errors (SSE) of K-means classification with different 

K values. 

 

Figure 7-9. Silhouette value of different cluster number. 

However, the measured VE data contains two normal states and three fault states. This indicates 

that one of the clusters of the classification plan with K = 4 contains the components which are 

classified in two different clusters in the classification plan with K = 5. To see the differences 

between the normal state 1 and normal state 2, the K-means classification plan with K = 4 and 5 

has been both tested in this research. 

7.5.2.2 Classification Results Analysis 

As mentioned, VEs are measured from the machine tool with five states: normal state 1, fault states 

1, 2, and 3, and another normal state 2. The five different states could be roughly classified by PCs 

when they are projected into 2D space (Figure 7-10, a). The PCA classification results could also 
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be used as a reference for the verification of the cluster number K. For the propose of comparison 

for the K-means results, different colors have been manually added to the components of the PCA 

classification results according to the VE testing sequence (Figure 7-10, b). By this operation, the 

PCA classification results can clearly reflect the machine tool accuracy states classified by the 

machine tool user. K-means classification results are generated automatically without manual 

supervision (Figure 7-10, c and d). The K-means classification results reveal that the VE data 

belonging to the same machine tool state can be classified into one single cluster. The accuracy of 

the K-means is calculated as the Eq. (48) where m is the number of VE samples of each state, 𝑌  

and 𝑅  stands for the manual label and the K-means cluster label, respectively. 𝜎(𝑌 , 𝑅 )  is a 

function that equals to 1 when 𝑌=𝑅, if not, it is equal to 0. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
∑ 𝜎(𝑌 , 𝑅 )

𝑚
 =1

𝑚
 (48) 

For the machine tool fault states 1, 2, and 3 can be perfectly categorized by K-means with K = 4 

and K = 5. The classification results match the PCA labelled data (Figure 7-10, b). For the machine 

tool normal states 1 and 2, they can be classified into one cluster by K-means when K = 4 (Figure 

7-10, c). Compared with the labelled data shown in (Figure 7-10, b), normal state 1 and state 2 

have been mixed together in one cluster. This indicates that normal state 1 and normal state 2 are 

very similar when compared with the fault states. When K = 5 (Figure 7-10, d), K-means could 

classify the normal state 1 and normal state 2 roughly although some VEs features have been 

“wrongly” classified. Nine points in the normal state 1 have been classified into normal state 2 and 

sixteen points in the normal state 2 have been classified into normal state 1. This classification 

result reveals that for the VE data measured from each normal state, there are still some differences. 

This is matched with the change tendency of the first PC (Figure 7-7). In addition, it can also be 

explained by the fact that the acquired VE data are measured from machine tool in cold states. This 

can affect the actual measured VE data and let them perform small changes.  
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(a) (b) 

 

(c) (d) 

Figure 7-10. Classification results of VE features with the K-means and PCA method, (a) 

Original PCA classification results; (b) PCA classification results with manual color adding to 

separate the machine tool states; (c) K-means classification results with K=4; (d) K-means 

classification results with K=5. 
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Table 7-2 reveals the accuracy of K-means with different K value. For the fault states, they could 

be perfectly recognized from the normal states. As for the normal states 1 and 2, VEs measured in 

each state are closing but with small differences, so they could be “wrongly” classified. However, 

this can add a new understanding for the VE measured in the two normal states. 

Table 7-2. Accuracy of K-means with K = 4 and K = 5 in fault recognition. 

K Value 
Normal State 

1 

Fault State 

1 

Fault State 

2 

Fault State 

3 

Normal State 

2 

4 100% 100% 100% 100% 100% 

5 25% 100% 100% 100% 30% 

5.3. Discussion 

Using the PCA method, the VE features could be extracted and classified by the K-means method. 

The two methods together can explain the acquired VE data and recognize the machine tool 

accuracy states. PCA can subtract two principal components from the original VE features. The 

physical significance of the two principal components has not been investigated because the 

original VE data are acquired from 29 positions in the machine tool working space with B and C-

axis in different angular positions. However, there is not specific position requirement on the linear 

and rotary axis setup when using the SAMBA modelling. Therefore, axis position contributes to 

VE with the same importance. Meanwhile, the recognition results are more related to the proposed 

method based on PCA and K-means than the physical meaning of each component. 

The proposed VE data processing plan has the following advantages. Firstly, machine tool accuracy 

states are monitored without considering the sensitivity of VE measurement positions on the faults, 

in addition, the fault states can be recognized from the normal state of the machine tool. Secondly, 

it can reveal the differences of the VE measured from the machine tool with similar normal states 

and provide a visible machine tool accuracy state plot to the machine tool user. Lastly, the features 

subtracted from PCA shown in the 2D figure could also be used as a reference for K value selection 

(Figure 7-10, a). By visual inspection, the K value could be selected as 4 which is matched with 

the K value selected by the elbow and silhouette methods. 
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However, some factors can limit the performance of the VE monitoring plan based on PCA and K-

means. For the PCA method, the accumulation of VE data is needed before the implementation of 

PCA. The VE data size is related to the total SAMBA measurement circles (i) and the VE 

measurement positions (j) in one SAMBA measurement. Where j is fixed, a large amount of VE 

measurement circles are needed (for example, at least two times of j value). This needs to be 

verified in the future because no literature reveals the necessary VE data size in PCA application. 

For K-means, an exact K value can directly affect the classification results of VE data. To improve 

the accuracy of K value selection, three K value selection methods are included in the following 

plan (Figure 7-11). PCA method is firstly used for the rough classification of VE data. After that, 

the VE features will be processed with K-means to find the possible K value by considering the 

elbow points of SSE value. Meanwhile, the silhouette value is also calculated for K value 

verification. In the next step, the cluster number by PCA classification and the K selected by elbow 

and silhouette method will be compared. When they are matched together, we can get the final K 

value. 

 

Figure 7-11. Selection procedure of K value for K-means classification of VEs data. 

 Conclusions 

This paper explores the use of principal component analysis (PCA) to extract the features of 

volumetric error vectors (VE) and the use of K-means to classify the machine tool states. The VE 

data containing two normal states (normal states before and after fault states) and three fault states 

(C-axis encoder fault, uncalibrated C-axis encoder fault, and pallet location fault) are processed by 

PCA and K-means. The testing results reveal that the two proposed methods are effective in their 

applications. For the PCA method, it can not only subtract the VE feature containing 92.1% of the 

original VE data but also can reduce the VE data dimension from 67 × 29 to 67 × 2. K-means can 
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automatically classify the VE feature data and successfully recognize the three faults from the 

machine tool normal states. In addition, the differences of the VE measured in each normal state 

can also be revealed. Therefore, the two methods could be combined as a new tool for machine 

tool accuracy state recognition. 

However, the question that how to use the classified results to automatically recognize the newly-

acquired VE data state still needs to be answered. Therefore, the future work is to develop an online 

machine tool accuracy state monitoring system using the labelled data and the plan based on PCA 

and K-means. 

 Acknowledgements 

This research was supported by Natural Sciences and Engineering Research Council of Canada 

(NSERC) under the CANRIMT Strategic Research Network Grant NETGP 479639-15. The 

authors wish to thank the technicians Guy Gironne and Vincent Mayer for conducting the 

experimental part of this work. In addition, authors also acknowledge the financial support of the 

China Scholarship Council (No. 201608880003). 

 References 

 

[1] Sofiane Achiche, Marek Balazinski, Luc Baron, and Krzysztof Jemielniak, Tool wear 

monitoring using genetically-generated fuzzy knowledge bases, Engineering Applications 

of Artificial Intelligence, vol. 15, no. 3-4, pp. 303-314, 2002. 

[2] Qun Ren, Marek Balazinski, Luc Baron, Sofiane Achiche, and Krzysztof Jemielniak, 

Experimental and fuzzy modelling analysis on dynamic cutting force in micro milling, Soft 

Computing, journal article vol. 17, no. 9, pp. 1687-1697, 2013. 

[3] Nitin Ambhorea, Dinesh Kambleb, Satish Chinchanikara, and Vishal Wayala, Tool 

condition monitoring system: A review, Materials Today-Proceedings, vol. 2, no. 4-5, pp. 

3419-3428, 2015. 

[4] D.E. Dimla Sr. and P.M. Lister, On-line metal cutting tool condition monitoring. I: force 

and vibration analyses, International Journal of Machine Tools & Manufacture, vol. 40, no. 

5, pp. 739-768, 2000. 

[5] K. F. Martin, A Review by Discussion of Condition Monitoring and Fault-Diagnosis in 

Machine-Tools, International Journal of Machine Tools & Manufacture, vol. 34, no. 4, pp. 

527-551, 1994. 



124 

 

 

[6] Yi Zhang, Jianguo Yang, Sitong Xiang, and Huixiao Xiao, Volumetric error modeling and 

compensation considering thermal effect on five-axis machine tools, Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 

vol. 227, no. 5, pp. 1102-1115, 2012. 

[7] Md Mizanur Rahman and J.R.R. Mayer, Five axis machine tool volumetric error prediction 

through an indirect estimation of intra- and inter-axis error parameters by probing facets on 

a scale enriched uncalibrated indigenous artefact, Precision Engineering-Journal of the 

International Societies for Precision Engineering and Nanotechnology, vol. 40, pp. 94-105, 

2015. 

[8] Pooyan Vahidi Pashsaki and Milad Pouya, Volumetric Error Compensation in Five-Axis 

Cnc Machining Center through Kinematics Modeling of Geometric Error, Advances in 

Science and Technology Research Journal, journal article vol. 10, no. 30, pp. 207-217, 2016. 

[9] Mehrdad Givi and J.R.R. Mayer, Volumetric error formulation and mismatch test for five-

axis CNC machine compensation using differential kinematics and ephemeral G-code, The 

International Journal of Advanced Manufacturing Technology, vol. 77, no. 9-12, pp. 1645-

1653, 2014. 

[10] Jennifer Creamer, Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers, Philip L. 

Freeman, and Samuel J. Easley, Table-Based Volumetric Error Compensation of Large 

Five-Axis Machine Tools, Journal of Manufacturing Science and Engineering, vol. 139, no. 

2, pp. 021011-1-11, 2016. 

[11] S. M. Wang and K. F. Ehmann, Volumetric error compensation for multi-axis machines, in 

[Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, 

1992, pp. 183-188 vol.1. 

[12] Samina Khalid, Tehmina Khalil, and Shamila Nasreen, A survey of feature selection and 

feature extraction techniques in machine learning, in 2014 Science and Information 

Conference, 2014, pp. 372-378. 

[13] J. Edward Jackson, A User’s Guide to Principal Components. New York: John Wiley & 

Sons, 1991. 

[14] Arnaz Malhi and Robert X. Gao, PCA-based feature selection scheme for machine defect 

classification, IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 6, pp. 

1517-1525, 2004. 

[15] Qingbo He, Ruqiang Yan, Fanrang Kong, and Ruxu Du, Machine condition monitoring 

using principal component representations, Mechanical Systems and Signal Processing, vol. 

23, no. 2, pp. 446-466, 2009. 

[16] Maria Colosimo Bianca, Gutierrez Moya Ester, Giovanni Moroni, and Stefano Petrò, 

"Statistical Sampling Strategies for Geometric Tolerance Inspection by CMM," in 

Economic Quality Control vol. 23, ed, 2008, pp. 109-121. 

[17] Potdar Akshay, Longstaff Andrew P., Fletcher Simon, and Mian Naeem S., Application of 

multi sensor data fusion based on Principal Component Analysis and Artificial Neural 

Network for machine tool thermal monitoring., presented at the Laser Metrology and 

Machine Performance XI, 2015. 



125 

 

 

[18] Alberto Rodriguez, David Bourne, Mathew Mason, Gregory F. Rossano, and JianJun Wang, 

Failure detection in assembly: Force signature analysis, in 2010 IEEE International 

Conference on Automation Science and Engineering, 2010, pp. 210-215. 

[19] Qiang Cheng, Yanwei Yu, Guangpeng Li, Weishuo Li, Bingwei Sun, and Ligang Cai, A 

Hybrid Prediction Method of Thermal Extension Error for Boring Machine Based on PCA 

and LS-SVM, presented at the MATEC Web of Conferences 95, 2016. 

[20] Rui Xu and Donald Wunsch, Survey of clustering algorithms, IEEE Trans Neural Netw, 

vol. 16, no. 3, pp. 645-78, 2005. 

[21] Meik Schlechtingen, Ilmar Ferreira Santos, and Sofiane Achiche, Using Data-Mining 

Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study, Ieee 

Transactions on Sustainable Energy, vol. 4, no. 3, pp. 671-679, 2013. 

[22] Sana Raouafi, Sofiane Achiche, Mickael Begon, Aurélie Sarcher, and Maxime Raison, 

Classification of upper limb disability levels of children with spastic unilateral cerebral 

palsy using K-means algorithm, Med Biol Eng Comput, vol. 56, no. 1, pp. 49-59, 2018. 

[23] Christos Yiakopoulos, Konstantinos Gryllias, and Ioannis A. Antoniadis, Rolling element 

bearing fault detection in industrial environments based on a K-means clustering approach, 

Expert Systems with Applications, vol. 38, no. 3, pp. 2888-2911, 2011. 

[24] J.R.R. Mayer, Five-axis machine tool calibration by probing a scale enriched reconfigurable 

uncalibrated master balls artefact, CIRP Annals, vol. 61, no. 1, pp. 515-518, 2012. 

[25] Soichi Ibaraki and Wolfgang Knapp, Indirect Measurement of Volumetric Accuracy for 

Three-Axis and Five-Axis Machine Tools A Review, International Journal of Automation 

Technology, vol. 6, no. 2, pp. 110-124, 2012. 

[26] N. Alami Mchichi and J.R.R. Mayer, Axis location errors and error motions calibration for 

a five-axis machine tool using the SAMBA method, 6th Cirp International Conference on 

High Performance Cutting (Hpc2014), vol. 14, pp. 305-310, 2014. 

[27] ISO 230-1:2012, Test code for machine tools, Test code for machine tools, in Part 1: 

Geometric accuracy of machines operating under no-load or quasi-static conditions. 2012. 

[28] Tibet Erkana, J.R.R Mayer, and Yannick Dupont, Volumetric distortion assessment of a 

five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact, 

Precision Engineering-Journal of the International Societies for Precision Engineering and 

Nanotechnology, vol. 35, no. 1, pp. 116-125, 2011. 

[29] Daniel J. Mundfrom, Dale G. Shaw, and Tian Lu Ke, Minimum Sample Size 

Recommendations for Conducting Factor Analyses, International Journal of Testing, vol. 

5, no. 2, pp. 159-168, 2005. 

[30] S. Shahid Shaukat, Toqeer Ahmed Rao, and Moazzam A. Khan, Impact of sample size on 

principal component analysis ordination of an environmental data set: effects on 

eigenstructure, Ekológia (Bratislava), vol. 35, no. 2, pp. 173-190, 2016. 

[31] Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining: Concepts and Techniques. 

Morgan Kaufmann Publishers Inc.: Waltham, MA, USA, 2011. 



126 

 

 

[32] Dae-Won Kim, Kwang H. Lee, and Doheon Lee, On cluster validity index for estimation 

of the optimal number of fuzzy clusters, Pattern Recognition, vol. 37, no. 10, pp. 2009-

2025, 2004. 

[33] Trupti M. Kodinariya and Prashant R. Makwana, Review on determining number of Cluster 

in K-Means Clustering, International Journal of Advance Research in Computer Science 

and Management Studies, vol. 1, no. 6, pp. 90-95, 2013. 

[34] Purnima Bholowalia and Arvind Kumar, EBK-Means: A Clustering Technique based on 

Elbow Method and K-Means in WSN, International Journal of Computer Applications, vol. 

105, no. 9, pp. 17-24, 2014. 



127 

 

 GENERAL DISCUSSION 

The general discussion of the thesis highlights the significant outcomes of every step carried out in 

this PhD work.  

It is worth mentioning that the same volumetric errors (VEs) data set was used for all the different 

research steps. This database not only contains VEs data acquired from the experimental five-axis 

machine tool with variable time intervals under different machine tool conditions but also contains 

VEs data generated with the SMABA simulator caused by the change of some machine error 

parameters with gradual or sudden changes. In addition, pseudo-faults caused by the change of 

EXX and EYX have also been used. 

In the first step, a machine tool accuracy condition monitoring scheme using VEs, vector similarity 

measures (VSMs) and exponentially weighted moving average (EWMA) control chart is proposed. 

Seven types of VSMs have been used for VEs features extraction. This strategy allows to monitor 

the VE change from a single VE vector. The usefulness of this scheme is tested with simulated 

VEs data with different types of change shapes, in addition, real machine tool tests using NC 

induced geometric error changes and a real C-axis encoder fault has also been used. Finally, for 

the validation of the proposed methods. Simulated VEs data with sharp and gradual changes have 

also been used.  

Firstly, VEs proved to be a suitable variable for the monitoring of the machine tool accuracy 

condition because VEs can change synchronously with the modeled machine error parameters with 

different shapes as in exponential growth shape, inverted U shape and S shape.  

Secondly, the proposed VSMs are effective in VEs features extraction with different performances. 

Amongst the studied VSMs, the module of the vectorial difference of two consecutive VE vectors 

(Dist) and the angle between those vectors (Cos2) are the more stable and perform better for 

monitoring faults with sudden and gradual changes than the remaining VSMs in the real VE data 

processing.  

As for the application of the EWMA control chart, it has been discussed in the Appendix-A, 

ARTICLE 5. The testing results prove that the Time-varying control limits are better than 

asymptotic control limits for VEs change recognition when the amount of acquired VEs data is 
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limited. The combination of relatively small smoothing coefficients (closing to 2.6) and width 

coefficient (closing to 0.05) are recommended for a better VEs change recognition. 

This first research work is the foundation of the latter works as it provides a primary attempt for 

the use of VEs, serials of VEs features extraction measures as well as a VE-based monitoring 

strategy for monitoring machine tools accuracy condition.   

During the second stage of this PhD work, the machine tools condition is monitored using all 

measured VEs.  Utilizing this monitoring plan, it can simplify the VEs change recognition process 

without considering the change of each VE vector. Therefore, a new VE features extraction method 

“combined vector similarity measures array” (CVSMA) is proposed. The real C-axis encoder fault 

of the machine tool, the pseudo-faults caused by the change of the straightness error EYX and 

linear positioning error EXX and the simulated faults based on the change of the modeling machine 

error parameters are used to verify the VE monitoring plan developed with CVSMA, vector 

similarity measures (VSMs) and the exponentially weighted moving average (EWMA) control 

chart. In addition, to use as a base for comparison, principal component analysis (PCA) has been 

used to process the VEs data in order to verify the performance of CVSMA in VE features 

extraction. The key findings are explained in the following paragraph.  

CVSMA performs better than PCA for VE features extraction. However, the VEs dataset needs to 

be over a minimal size (the VEs measurement times should be over, at least, two times of the VEs 

probing positions) to be guaranteed before using the PCA method, while CVSMA can overcome 

this limitation. Additionally, the proposed VE monitoring plan can precisely recognize the change 

points of the real, pseudo and simulated faults. The change point of each fault could be detected by 

the proposed data processing approach. Finally, the performance of CVSMA on VEs feature 

extraction is related to CVSMA data components. CVSMA data modeling with the distance-based 

similarity measures are recommended for their robustness in detecting VEs change recognition. 

The first two stages of this PhD work proposed the solutions for the first two research goals: data 

processing methods which can comprehensively monitor machine tool volumetric errors change 

and a monitoring strategy based on volumetric errors for automatic detection of machine tool 

abnormal change. 
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For the third stage of this PhD work, a monitoring technique based on the fractal analysis of VEs 

vector components, rather than the VEs vector features (the first research objective), is studied. It 

is the subsequent work used to reach the second research goal. Different fractal parameters from 

the VE vector components are compared with magnitude-based quantities for the detection of 

abnormal machine states. Results using both actual data with real and pseudo-faults as well as 

simulated faults using ISO230-1 error parameters are presented. This work explores the idea that 

monitoring VEs change with considering all VEs vectors can be carried out. The key findings are 

summarized in the following paragraph. 

For the analyzed cases of real, pseudo and simulated gradual faults, fractal features have excellent 

performance for fault sensitivity. The effect of gradual and sudden change faults on VEs can also 

be clearly detected by the fractal features.  

Fractal parameters D, R2 and Index (Chapter six) are more robust than the G parameter in VEs 

features extraction. Compared with the traditional VEs vector magnitude processing measures such 

as their maximum and mean values, fractal features can extract VEs features containing additional 

and complementary VEs information. This might be helpful in the detection of minor fluctuations 

of the normal state as well as faults with gradual change. Fractal parameter D performs well in the 

detection of gradual fault change with a sign change contrary to VEs magnitude features. However, 

in a very specific case (Figure 6-10), fractal parameters became ineffective and so did the VEs 

magnitude measures.  

With fractal analysis, the complex set of VEs vector components (327 components in the case 

studied) are reduced to a set of three scalar quantities that can be monitored automatically using 

control chart approaches (for example, EWMA control chart). This work targets on the second 

research goals, aiming to explore some potential VEs feature extraction methods. As another 

comprehensive VEs feature extraction method, the fractal parameters are also effective in VEs 

feature extraction. 

The last stage of this PhD work is carried out towards reaching the third research goal in terms of 

the development of a data processing method for machine tool volumetric error data classification 

using artificial intelligence. It is generated based on the background hypothesis that if we can use 

the acquired VEs data to recognize the machine tool state or using the known VEs data to recognize 
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the new state of the machine tool. A solution based on principal component analysis (PCA) and K-

means has been used to extract the features of VEs and to classify machine tool accuracy state, 

separately. The proposed solution has been tested with the VEs data acquired from a five-axis 

machine tool with different states of malfunction. The results indicate that the PCA and K-means 

are capable of extracting the VEs feature information and classifying the fault states including the 

C-axis encoder fault, uncalibrated C-axis encoder fault, and pallet location fault (100%). This 

approach provides a new way for VEs features extraction and classification. However, in order to 

use this plan, subject to the item ratio of VEs data which is defined as the ratio of the total VEs 

testing times and VEs measurement positions in one test are needed. Generally, small subject to 

the item ratio (less than 2) manifests itself in factors that are specific to one data set. This can cause 

large sampling errors to the PCA results. However, there is no absolute standard for the minimal 

size or subjects to the item ratio of data for PCA application, but large sample sizes or subjects to 

the item ratio (for example, more than 2) is always recommended.  Therefore, for the proposed data 

process plan, the VEs dataset with sufficient data are needed. 
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 CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, the main conclusions of this research are presented as well as recommendations for 

future works. 

 Conclusions and contributions of the work 

This thesis mainly presented an accuracy condition monitoring system for five-axis machine tools. 

The main contributions are summarized as below; 

• Vector similarity measures (VSMs) are proposed for volumetric errors (VEs) feature 

extraction. Distance-based measure, angle-based measure and comprehensive measure 

based on distance and angle-based measure have been used or developed. Their 

performance of each measure has been discussed. Amongst the studied VSMs, the module 

of the vectorial difference of two consecutive VE vectors (Dist) and the angle between those 

vectors (Cos2) are more stable and perform better for monitoring faults with sudden and 

gradual changes than the remaining VSMs in the real VE data processing. The highest mean 

recognition rate reached for the real and pseudo-faults was 99% and 98% using Cos2 and 

Dist measures respectively.  

• A monitoring plan based on VEs, VSMs and EWMA control chart is proposed. Several 

VEs data measured from the machine tool in the normal state are used for EWMA control 

chart building. Then, the new acquired VEs data will be inputted into the EWMA control 

chart for change recognition. The proposed monitoring plan performs well in the case of 

gradual and sudden change fault recognition, especially for Cos2 and Dist measures. 

• A data processing method based on combined vector similarity measure array (CVSMA) is 

proposed. This data processing considers all the VEs vectors measured in one SAMBA 

measurement. It can simplify the change recognition of VEs, and by combining it with the 

EWMA control chart, it proved well suited for gradual and sudden change faults 

recognition.  

• Based on the idea that recognition the VEs change with considering all VEs vectors, fractal 

analysis of VEs has also been proposed. Fractal features have excellent performance for 

fault sensitivity. The effect of gradual and steep change faults on volumetric errors can also 
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be clearly revealed by the fractal features. Fractal parameters D, R2 and Index (Chapter six) 

are more robust than the G parameter in VEs feature extraction. 

• A data processing method, machine tool volumetric error features extraction and 

classification based on principal component analysis and k-means, is proposed. It can 

recognize faulty states from the normal state with 100% accuracy. It provides a new way 

for VE features extraction and classification. In addition, it makes the acquired VEs data 

containing known faults could be used for new VEs data state recognition. 

• A monitoring software programed in Matlab was proposed (Appendix B). This software 

contains all the developed solutions in this research. It could be used for a machine tool 

accuracy state change recognition and states classification by analyzing VEs. 

• The proposed technologies are independent from the VEs measurement method. In this 

research, the Scale and master ball artefact method has been used for VEs measurement 

due to its simple maintenance, low cost and good robust in master ball estimation. However, 

VEs measured from methods such as R-test, Ball bar test and Laser tracer can also be used 

as the inputs for the developed methods of this research. 

• The general rules for EWMA control chart applications in volumetric errors change 

recognition have also been discussed. Time-varying control limits are better than 

asymptotic control limits for VEs change recognition when the amount of acquired VEs 

data is limited. The combination of relatively small smoothing coefficients (closing to 2.6) 

and width coefficient (closing to 0.05) are recommended for a better VEs change 

recognition (Appendix A, ARTICLE 5). 

In summary, this research work provides the theory and tools for the use of volumetric errors for 

machine tool accuracy condition monitoring. The abnormal changes of machine tool state can be 

recognized and the transition of machine tool accuracy state from normal to abnormal can be 

detected. Therefore, the health and degradation of the machine tools can be assessed.  

 Recommendations for future works 

Regarding the research contributions and proposed approaches in machine tool accuracy condition 

monitoring, the following subjects are suggested for future work; 
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• Combining with the SAMBA method, a failure-finding system needs to be developed after 

the detection of the change of machine tool accuracy condition. Theoretically, VEs not only 

contain the modeled machine error parameters (eight axis location errors (EA0Y, EB0Z, 

EC0Y, EX0C, EA0B, EA0C, EB0C, EC0B), three linear gains (EXX1, EYY1, EZZ1) and 

two spindle offsets (EX0S, EY0S)) in SAMBA modeling but also contain some non-

modeled error parameters. So, after the detection of VEs change, a failure-finding system 

needs to be developed for machine error parameters change recognition. In this case, the 

possible reason for machine tool state change could be found. 

• Integrating the developed technology into five-axis machine tools. Industry 4.0 promotes 

five-axis machine tools with functionalities such as self-awareness, self-maintenance and 

self-optimization. Then, the machine tools can assess its own health and degradation and 

make timely maintenance decisions. Currently, machine tools rarely have an accuracy 

condition monitoring functionality. Our developed technology provides solutions for the 

machine tool health analysis in terms of accuracy state. Most NC controllers provide the 

secondary development function which makes it possible to integrate our developed 

technology into CNC controllers.  

• Testing further the robustness of the proposed method using VEs. The acquired VEs data 

may contain noise caused by the thermal effect of the machine tool with different levels. 

This could affect the modeling of the machine tool normal state database and the control 

limits of the EWMA control chart. While this is not considered in our current research, the 

effect of the noise on the control limits design needs to be investigated. 

• Developing an error compensation functions by the actual machine tool accuracy condition 

monitoring systems. After the detection of machine tool change, the failure-finding system 

needs to identify the fault’s reason. If one error has significant change, this error needs to 

be measured and compensated. When using the scale and master ball artefact (SAMBA) 

method for machine tool calibration, VEs and machine error parameters could all be 

acquired at the same time. It will be convenient and meaningful if the error compensation 

values could be calculated by the condition monitoring system. 
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• The developed machine tool accuracy condition monitoring system is not limited to only 

process VEs measured from SAMBA method but could also process VEs measured from 

R-test, Ballbar test, etc. For industrial applications of the proposed monitoring system, the 

VEs data need to be collected and transformed in a fully automated manner, meaning with 

little to human interference. Currently, the developed technology can automatically process 

the VEs data measured by the SAMBA method. When it comes to the remaining methods, 

the recorded VEs data are in different styles. Therefore, developing automatic data 

transformation methods is another crucial future step. 
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Abstract: The exponentially weighted moving average (EWMA) control chart is a popular tool in 

quality control and effective in detecting small shifts in the monitored signals. Herein, EWMA has 

been used for machine tool volumetric errors (VEs) change recognition. To improve its recognition 

capability, the influence of setup parameters including smoothing coefficient, width coefficient and 

control limits (time-varying control limits and asymptotic control limits) of EWMA are studied 

using real machine tool faults, pseudo-faults and simulated faults. The results reveal that time-

varying control limits are better than asymptotic control limits for VEs change recognition when 

the amount of acquired VEs data is limited. The combination of relatively small smoothing 

coefficient and width coefficient are recommended for a better VEs change recognition. Finally, 

the general EWMA input calculation method Ⅰ is recommended while the proposed EWMA input 

calculation method Ⅱ could be used as the second tool for the stability check-up of faulty state data. 

Keywords: Machine tool; Volumetric error; Change recognition; EWMA 

1. Introduction 

The sudden failure or the degeneration of machine tool could significantly affect their productivity 

and capability. Condition monitoring is preferred in industry because of its efficient role in 

improving plant production availability and reducing downtime cost of machine tools. Currently, 

the monitoring objectives of machine tools are focused on machine tool main components such as 

feeding systems, spindle system, main mechanical structure, coolant system, etc. as well as the 

machining process [1]. A non-contact structure monitoring system for machine tools based on the 

vibration signal results in a reliable monitoring without altering the structure of the machine tool 

[2]. Spindle bearings condition monitoring via the use of acoustic emission signals and Hilbert–

Huang transform analysis reveals good correlation between the AE data and the increase in the 

preload, the change in the dimensions and geometry of the spindle bearings [3]. In the machining 
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process, tool wear, tool collision and tool life prediction have been monitored by analyzing signals 

such as the spindle current, feed, forces, acoustic emission, vibrations, etc. [4]. 

Although machine tool condition monitoring system has been extensively researched, there are still 

major limitations that need to be overcome. It is hypothesized that the holistic state of the machine 

tool condition cannot be reflected just by partially monitoring some of its key components. In 

addition, it is difficult to link the degradation of the monitored mechanical parts such as the feed 

drive systems with the quality of machined parts [5]. Even though, the real time monitoring 

techniques without interference on the normal machining process still makes the current monitoring 

strategy widely used in industry [4]. 

Machine tool geometric information is often periodically measured during the maintenance of 

machine tools. However, this geometric information has rarely been used for accuracy monitoring. 

Take the machine tool volumetric errors (VEs) as an example, VEs are defined as the relative 

Euclidian vector between the tool frame and workpiece frame [6]. They are the compact reflection 

of machine tool geometric condition [7]. Therefore, they are greatly valuable for machine tool 

condition monitoring. The research on VEs is focused on the VE modeling, prediction and 

compensation. Recently, it has been used for machine tool condition monitoring. Techniques such 

as vector similarity measure (VSMs) [8], principal component analysis and K-means have been 

used for VEs feature extraction and classification [7, 9]. Unlike the physical signals such as power, 

vibration, force. etc., VEs cannot be acquired by real time measurement but under the normal 

maintenance period. This drawback makes it impossible to build a large VEs data set in a short 

time. Therefore, how to precisely use the limited VEs data for machine tool condition monitoring 

is a crucial question before implementing it as a valuable condition monitoring solution.  

The EWMA control chart based on current and past historical data is widely used for industrial 

quality control, since it is especially suited for detecting small and moderate shifts in a process, and 

it shows good robustness for the non-normal distributed data for certain values of setup values [10]. 

In the structure monitoring area, it cannot identify the presence of damage at early stages but also 

the severity of the damage [11]. Similarly, it reveals good efficiency in detecting and identifying 

faults such as short-circuit faults, open-circuit faults and partial shading faults in a photovoltaic 

system [12]. 
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Control limits (time-varying control limits and asymptotic control limits) of EWMA control chart 

and its setup parameters-smoothing coefficient and width parameter can affect its capability in fault 

change recognition. For example, time-varying control limits are useful when the smoothing 

coefficient is small (for example, less than 0.3) [13]. In addition, the EWMA control chart is more 

robust for smaller values of the smoothing coefficient [14]. The objective of the present study is to 

study the application of EWMA control chart on the VEs change recognition. The effects of control 

limits (time-varying control limits and asymptotic control limits), the setup parameters and the 

inputs of the EWMA on VEs change recognition is also discussed, and this provides deep 

understanding of EWMA control chart in VEs change recognition. In this paper, VEs monitoring 

system is introduced in Section 2. Section 3 presents the EWMA control chart and its application 

process in VE change recognition. VEs data used for this research is shown in Section 4. Section 

5 presents the results and discussion, followed by the conclusions in section 6. 

2. VEs monitoring system 

Volumetric errors (VEs) are dependent on a wide range of machine components which make them 

potentially be able to provide a broad view of the machine condition. Let us take the five-axis 

machine tool with the error enriched kinematic diagram shown in Figure A-1 as an example. It has 

axis alignment errors such as the axis location errors (EA0Y, EB0Z, EC0Y, EX0C, EA0B, EA0C, 

EB0C, EC0B), three linear gains (EXX1, EYY1, EZZ1) and two spindle offsets (EX0S, EY0S) 

potentially causing VEs in 3D space (Figure A-1). Other intra-axis errors, within each individual 

axis, may also occur. 

 

Figure A-1. Illustration of the modelled geometric errors of the experimental five-axis machine 

tool with WCBXFZYST topology, where a tough trigger probe is installed on the spindle and 

some master ball artefacts are mounted on the machine workpiece table 
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The flowchart of the VEs data monitoring is shown in Figure A-2. During the machine tool 

maintenance period, machine tools VEs are measured with the scale and master ball artefact 

(SAMBA) method [15]. Then, the VEs features are extracted with vector similarity measures 

(VSMs). Finally, these VE features will be processed by the exponentially weighted moving 

average (EWMA) control chart for VE change recognition. When the fault is detected, possible 

corrective actions for machine tool will be activated. 

 

Figure A-2. Flowchart for VE monitoring system 

The general VEs measurement method includes laser trackers, R-test and the Scale and Master ball 

artefact (SAMBA) method. Owing to its simple setup, the SAMBA method is selected for VEs 

acquisition. The raw probing data are acquired by on-machine probing a series of master balls and 

a scale bar with a tough trigger probe. The probing data are then processed using a kinematic model 

to estimate a set of 13 machine error parameters (EXX1, EB(0X)Z, etc.) as well as the positions of 

master ball artefacts which are the reference values for VEs calculation. Using our designed 

SAMBA measurement plan, 27 angular positions pairs of the B- and C-axes and 109 ball center 

positions are acquired for each test run. For each test run a set of VE(i,j) can be written as:  

VE(i,j)  = (VEx(i,j)
, VEy(i,j)

, VEz(i,j)
)  (49) 

where i stands for the VE measurement positions identifier (1≤i≤109, i is related to the SAMBA 

measurement plan) and j stands for the measurement repetition thus resulting in a time series of 

VEs) with the “13” machine error model (Figure A-3, (a)).  

The concept of similarity refers to how alike two objects are. Usually, each object can be viewed 

as an N-dimensional vector with its feature components. Their similarity could be compared by 

vector similarity measures. There are about 60 different similarity measures with the most popular 

types being: distance-based similarity measure and angle-based similarity measure. The VSMs 

including the module (Modu) and Cosine (Cos) are used for VE feature extraction (Eq. (50) and 

(51)). The Modu measure is the Euclidean magnitude of the VE. The Cos measure calculates the 

angle between the first measured VE and the remaining VEs. They are calculated separately at each 

VE probing position. The geometric meanings of the two measures are shown in Figure A-3 (b). 
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Using these two measures, the VEs features could be extracted considering the magnitude and 

directional information. These extracted VE features VEF, are the inputs for the EWMA control 

chart for VEs change recognition. 

VEF = Modu(i,j) = √VEx(i,j)
2 + VEy(i,j)

2 + VEz(i,j)
22
 (50) 

VEF = Cos(i,j) = Cos(VE(i,j), VE(i,1)) =
VE(i,j) ∙ VE(i,1)

‖VE(i,j)‖ ∙ ‖VE(i,1)‖
 (51) 

 

Figure A-3. (a) VEs estimated with the SAMBA method in 3D space, amplified 1000x; (b) 

Geometric meanings of Modu and Cos measures 

3. EWMA control chart 

For VEs monitoring, the objective is to detect the faults with gradual or sudden change. Usually, 

gradual change faults caused by the degeneration of machine tool account for an important 

percentage of machine tool faults [16]. The exponentially weighted moving average (EWMA) 

control chart was first introduced as a good alternative to the Shewhart control chart for detecting 

smaller shifts in the process parameters [17]. Therefore, an EWMA chart is a promising tool for 

VEs change recognition. EWMA chart for VEs change recognition is developed using a statistic 

of the following form: 

NVEFi = (1 − γ)NVEFi−1 + γVEFsi (52) 

Eq. (52) is presented as a general form for a single VE measurement position, where i∈[1, n], and 

it stands for the ith VE measurement or simulation and n is the number of VEs features to be 
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monitored. Under the assumption of independent and normally distributed data, the time-varying 

control limits-upper control limit (UCL) and lower control limit (LCL) are expressed as follows. 

UCL = NVEF0 + Lσ√(
γ

2 − γ
)(1 − (1 − γ)2i) (53) 

LCL = NVEF0 − Lσ√(
γ

2 − γ
)(1 − (1 − γ)2i) (54) 

where NVEF0 is the expected mean value of the first k VEs features VEF. It is worth noting that 

the common values for the width parameter L and smoothing coefficient γ are 2.6≤L≤3 and 0.05≤γ 

≤0.25 [17]. When i increases, this variance can quickly converge to a steady-state value. Then the 

asymptotic control limits can be generated by Eq. (55) and (56). 

UCL = NVEF0 + Lσ√γ 2 − γ⁄  (55) 

LCL = NVEF0 − Lσ√γ 2 − γ⁄  (56) 

Theoretically, the recognition results of EWMA control chart are related to the selection of the 

control limits and its setup parameters (the smoothing coefficient and the width parameter). For the 

selection of control limits, with the increase of the VEs dataset, the asymptotic control limits could 

be considered by the users to replace the time-varying control limits. For the selection of the setup 

parameters, in this research, they are selected from the recommended range (2.6≤L≤3 and 0.05≤γ 

≤0.25). 

Herein, EWMA is used as a supervised learning method including two parts- learning and testing. 

In the learning process, the EWMA control chart is developed and the control limits-UCL and LCL 

are determined with labelled VEs features. Owing to the limitation of the number of VEs features, 

the two kinds of control limits are all applied and discussed. In the testing process, the new acquired 

VE data NVEFi will be inputted into the EWMA model for condition monitoring. When NVEFi is 

within UCL and LCL, machine tool accuracy condition is considered stable and under control. 

Otherwise, some necessary maintenance work is needed. 
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There are several ways to calculate newly acquired VE data NVEFi. The calculation process is 

shown in Figure A-4. Firstly, it can be calculated with the previous VEF  to VEF  (Figure A-4). 

This is the usual way for the calculation of NVEFi (method Ⅰ). Alternatively, NVEFi (method Ⅱ) 

can also be calculated with the new VEFi  and the k VEF of learning data (Figure A-4). For 

monitoring, the two types of NVEFi may both functions. The only difference is how many test data 

NVEFi uses. NVEFi (method Ⅰ) uses i-1 VEF while NVEFi (method Ⅱ) uses k+1 VEF including 

each newly acquired VE and the learning data (i>k). It is worth noting that the application of NVEFi 

calculated by method Ⅰ/Ⅱ in VEs change recognition are also studied. 

 

Figure A-4. The calculation of NVEF  using method I and method Ⅱ 

4. VEs sources 

Real and persuade faults are used to discuss the mentioned questions. Periodic experimental tests 

on the machine tool provide the VEs data with real fault. The raw volumetric information is 

acquired from the HU40-T machine tool with a MP700 Renishaw touch-trigger probe and series 

of master ball artefacts and scale bar artefact, the coordinates of master ball artefacts are measured 

under 27 angular positions pairs of the B- and C-axes and 109 ball center positions are recorded 

(Figure A-5). The probing data are then processed with the “13” machine error model for VEs 

calculation (Procedure a). During the test phase, a fault developed by C-axis encoder causing 

significant ECC error has been detected. 12 SAMBA testing results before and after this fault are 

used for C-axis encoder fault representation. 



149 

 

Two pseudofaults are generated based on the same SAMBA model and testing plan of the 

periodical tests. Machine tool error compensation function is designed to correct the increased 

geometric errors of one linear or rotary axis. Here, it is used as a non-destructive tool to simulate a 

fault caused by the change of X-axis positioning error. A U-shape error with magnitudes of 35um 

have been added into the pitch error compensation table to generate the pseudofaults. The SAMBA 

tests are repeated for six times before and after error injection (Figure A-5, procedure b). 

Procedure c of Figure A-5 reveals the modeling process of the pseudofaults caused by the change 

of X-axis straightness error in Y of the X-axis, EYX. It can make the movement of X-axis miss its 

normal destination position. For the SAMBA measurement, this inaccuracy can be revealed in the 

Y coordinate of master ball artefacts. The straightness error compensation table is not activated in 

HU40-T machine tool; therefore, this error is generated by manually modifying the raw probing 

results. An error (Figure A-6) is added to the Y coordinate of the measured position of the master 

balls as a function of the X-axis x position. Then, the pseudofaults EYX is generated. 

To further discuss the effect of the EWMA set up parameters, control limits and the calculation of 

NVEFi on VEs change recognition results, simulated faults with gradual changes (type A and type 

B) are introduced by numerical modification of machine error parameters (ISO230-1). The 

difference between type A and B is the error factor magnitude and the existing of the change of 

error factor sign. A SAMBA simulator software including the “13” machine error model is used 

for this purpose (Figure A-7). 

 

Figure A-5. VEs data sources for this research 
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Figure A-6. Pseudofaults caused by the change of straightness error by manual correction [6] 

 

Figure A-7. Simulated faults caused by the gradual change (type A and type B) of machine error 

parameters; The blue, yellow and red bars stand for the normal states, transition states for gradual 

changes and faulty states, respectively; Some randomness is added for a "more realistic" effect; 

The error factor is an amplifier of each machine error parameter to control the changing shape of 

the simulated fault. 

5. Results and discussion 

The acquired VEs are classified as two parts-learning and testing based on the known fault 

occurrence time. The learning data is used for EWMA modeling, the testing data inputted into the 

EWMA model for the abnormal change detection. The recognition process is repeated in each VE 

probing position (109 times). The recognition rate (RR) is calculated for the discussion of the effect 

of the control limits and setup parameters of EWMA on final recognition results. RR is defined as 

the ratio between the total number of the successful recognition positions of an abnormal behaviour 

(TNSRP), where the detected change occurrence time is equal to the known fault occurrence time, 

and the total VE measurement positions (TVEMP=109) (Eq. (57)). 
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RR =
TNSRP  

TVEMP
 ∗ 1  % (57) 

5.1The effect of control limits on final recognition results 

The time-varying control limits and asymptotic control limits of the real and pseudo-faults are all 

calculated for the VEs change recognition. Theoretically, the time-varying control limits are 

suitable for limited amounts of VEs data. With the increase of the amount of VEs data, the time-

varying control limits will become or even closing to the asymptotic control limits. The VEs 

features extracted by Modu and Cos are used as the inputs of the EWMA for fault detection.  

The first measured 12 VEs are used for EWMA modeling. Figure A-8 reveals the control limits of 

time-varying and asymptotic towards the C-axis encoder fault where the setup parameter γ 0.05 

and L=2.6. Figure A-8 (a) shows the recognition process of the C-axis encoder fault using two 

kinds of control limits. When using small size VEs data, the control limits are close but the time-

varying control limits have narrow monitoring range. This can promote VEs change recognition. 

This fault can be mostly detected at the 13th measurement time by visual checking (Figure A-8 (b) 

and (c)), there are no obvious differences in the number of VEs measurement positions where this 

fault can be successfully detected. 

 

(a) 
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 (b)                                                                        (c) 

Figure A-8. (a) Recognition result of C-axis encoder fault in the 1st VE measurement position, in 

order to show the control limits well, only 15 VEs are shown; VEMT means volumetric errors 

measurement times and VEMP means volumetric errors measurement position (the same 

definition for the following figures); (b) Recognition result of this fault using asymptotic control 

limits; (c) Recognition result of this fault using time-varying control limits. 

The recognition rates of real and pseudofaults using asymptotic and time-varying control limits are 

calculated and shown in Table A-1. Using the same setup parameters and VEs features, the time-

varying control limits can improve the recognition rate by about 2%~5% when compared with 

asymptotic control limits. Therefore, the time-varying control limits are recommended for VEs 

change recognition when the learning samples are limited. 

Table A-1. RR of VEs using different control limits 

Faults Asymptotic control limits Time-varying control limits 

C-axis encoder 

fault 
70% 93% 74% 95% 

Linear positioning 

error 
45% 95% 62% 97% 

Straightness error 58% 100% 67% 100% 

 Modu Cos Modu Cos 

5.2 The effect of setup parameters on final recognition results 

Smoothing coefficient γ and width coefficient L directly affect the performance of EWMA control 

chart. Theoretically, the closer γ is to 1, the more the EWMA chart resembles a Shewhart chart 
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(When γ  1, the EWMA chart is equal to Shewhart chart). When γ is near 0, a small weight is 

applied to almost all the past observations, then the performance of the EWMA chart parallels that 

of a cusum chart. For our dataset containing faults, the time-varying control limits are used for the 

discussion of the setup parameters on final recognition results. 

The recognition results of the C-axis encoder fault, pseudofaults caused by linear positioning errors 

and straightness errors are discussed separately using the values of L andγin the ranges of 2.5≤L≤3 

and 0.05≤γ≤0.25 (Figure A-9). The step increasement of the two parameters- L and γ are 0.05 and 

0.01 respectively. For the NVEF-Modu, the change ranges of recognition results are around 4% 

(68%~72%), 35% (27%~62%) and 30% (39%~69%). For the NVEF(Cos), the change ranges of 

recognition results are around 4% (95%~99%), 2% (95%~97%) and 0% (100%~100%). Figure A-

9 illustrates that Modu and Cos measures have different capabilities in VEs change detection. At 

the same fault, Cos performs better than Modu. In addition, the setup parameters directly affect the 

final recognition results. 

 

(a) 

 

(b) 
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 (c) 

Figure A-9. (a) Recognition rate (RR) of C-axis encoder fault using VEs feature extracted by 

Modu and Cos measures; (b) RR of the pseudofault caused by linear positioning error; (c) RR of 

the pseudofault caused by straightness error 

For the same width coefficient setup, a smaller smoothing coefficient is helpful in improving the 

recognition rate. Similarly, a smaller width coefficient can also improve the recognition rate. 

Therefore, in the recommended ranges of the setup parameters 2.6≤L≤3 and 0.05≤γ≤0.25, small 

smoothing coefficients and width coefficients are recommended for a better VEs change 

recognition. 

5.3 The effect of  𝐍𝐕𝐄𝐅𝐢 calculation on final recognition results 

The NVEFi are calculated according to the above methods Ⅰ/Ⅱ (Figure A-4). Based on the results 

of the above analysis, the smoothing coefficient γ and width coefficient L are selected as 0.05 and 

2.6. The time-varying control limits are used for VEs changes recognition.  

Figure A-10 reveals the recognition results of the C-axis encoder fault using NVEFi calculated by 

method Ⅰ/Ⅱ. From Figure A-10 (a), one can see that there are no differences in the recognition 

results of VE acquired in the 1st measurement position when using NVEFi (method Ⅰ/Ⅱ). At the 

23rd VE measurement position (Figure A-10 (b)), the first detected VE change point is the 14th 

with a one-time delay (the exact fault occurrence time is the 13th). After the fault change time, 

NVEFi (method Ⅰ) reveals the VE change clearly. However, for NVEFi (method Ⅱ), although the 

VEs data are measured in the faulty state, they could be wrongly recognized as the normal state 

(Figure A-10 (b)). This could mislead the machine tool user. The recognition results of all VEs 

measurement positions are revealed in Figure A-10 (c and d). At the 13th position, most faults 

could be detected. However, under some cases (1~10 VEs measurement positions), although the 
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exact fault occurrence time can be detected by NVEFi (method Ⅱ) the VEs in the faulty state could 

be wrongly classified as the normal state (Figure A-10 (c and d), yellow block). 

The recognition rate (RR) of real and pseudo-faults using asymptotic and time-varying control 

limits are the same as the RR value calculated by time-varying control limits (Table A-1). This 

means that the two methods of NVEFi are all effective in the detection of the first change point of 

the faulty state. However, owing to the presence of the noise in VEs data, the faulty state data could 

be also be wrongly classified as the normal state when using NVEFi (method Ⅱ). For the NVEFi 

(method Ⅰ), the faulty state could be easier detected. In addition, using NVEFi (method Ⅱ), the 

stability of the faulty state data could be revealed. This is its advantage that NVEFi (method Ⅰ) does 

not have. 

 

(a) 

 

(b) 
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 (c)                                                                   (d) 

Figure A-10. (a) Recognition result of C-axis encoder fault in the 1st VE measurement position 

using NVEFi calculated by (method Ⅰ/Ⅱ); (b) Recognition result of this fault in the 23rd VE 

measurement position; (c) Recognition result of this fault of all VE measurement positions using 

NVEFi (method Ⅰ); (d) Recognition result of this fault of all VE measurement positions using 

NVEFi (method Ⅱ). 

6. Verification of the above findings using the simulated faults 

The two types of simulated gradual change faults (type A and type B) are separately processed with 

the time-varying control limits and asymptotic control limits, NVEFi calculated by methodⅠ/Ⅱ and 

different setups of EWMA setup parameters.  

Figure A-11 shows the recognition results of the two types of gradual change faults caused by the 

change of the EB0C and EZZ1 errors using the time-varying control limits and asymptotic control 

limits. The values of the two kinds of control limits are close, and the time-varying control limits 

are narrower than the asymptotic control limits. The EB0C and EZZ1 faults are detected at the 16th 

and the 12th measurement in each probing position. In some VEs measurement positions, the NVEFi 

is smaller than the LCL. Therefore, the change is not shown in  Figure A-11 (b) and (d). Figure A-

11 (e) also reveals that the combination of small smoothing coefficients and width coefficients are 

helpful for VEs change recognition. 

Figure A-12 presents the recognition results of the gradual change faults caused by the change of 

the EZZ1 error using NVEFi (method Ⅰ/Ⅱ). The exact fault occurrence time could be detected by 

the NVEF-Modu at the 12th measurement using NVEFi (method Ⅰ/Ⅱ). However, the fault can only 

be detected at this measurement when using NVEF-Cos calculated by method Ⅰ. NVEF-Cos 
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calculated by method Ⅱ reveals the fault change at the 13th measurement. Similarly, in some VEs 

measurement positions, the NVEFi is smaller than the UCL, therefore, the change cannot be shown 

in Figure A-12 (b) and (c). The change tendency of the NVEFi (method Ⅱ) can reveal the transition 

and the faulty states while it is hard to see this from NVEFi (method Ⅰ) (Figure A-12 (a)). For the 

remaining simulated faults, the same data processing has been applied to each fault. The results all 

prove the above finds. 

 

(a) 

 

(b) 

 

(c)                                                                (d) 
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 (e) 

Figure A-11. (a) Recognition result of type-A gradual change fault caused by EB0C in the 1st VE 

measurement position; (b) Recognition result of EB0C fault from all VEs measurement positions 

with the asymptotic control limits and time-varying control limits; (c) Recognition result of type-

B gradual change fault caused by EZZ1 in the 1st VE measurement position; (d) Recognition 

result for EZZ1 fault from all VEs measurement positions with the asymptotic control limits and 

time-varying control limits; (e) Recognition rate (RR) of the simulated EB0C fault with the setup 

of using the values of L andγin the ranges of 2.5≤L≤3 and 0.05≤γ≤0.25. 

 

(a) 



159 

 

 

 (b)                                                (c) 

Figure A-12. (a) Recognition result of type-B gradual change fault caused by EZZ1 in the 1st VE 

measurement position using NVEFi (method Ⅰ/Ⅱ); (b) Recognition result of this fault from all VEs 

measurement positions with NVEFi (method Ⅰ); (c) Recognition result of this fault from all VEs 

measurement positions with NVEFi (method Ⅱ). 

7. Discussion 

The EWMA control chart performed well in VEs changes recognition. It is able to detect the sudden 

change fault (to some extent, the real and pseudo-faults are with a sudden change tendency) and 

the simulated gradual change faults (type A and type B). The setup parameters smoothing 

coefficient and width parameter can affect the recognition capability of the EWMA control chart. 

The selection of relatively small smoothing coefficient and width parameter can improve the 

recognition rate. Although the time-varying and asymptotic control limits are close, the time-

varying control limits can promote the recognition rate of VEs faults when using limited VEs data 

for learning. For the NVEFi calculated by method Ⅰ/Ⅱ, they are all effective in the detection of first 

fault change position. However, NVEFi calculated by method Ⅱ may mistakenly classify the faulty 

state data as a normal state. This can make maintenance planning more complex for the operators 

of the machines. So, it is not recommended to be used solely for VEs change recognition. However, 

under the application of NVEFi  calculated by method Ⅰ, NVEFi  (method Ⅱ) can be used as an 

additional tool to check the stability of faulty states. For the gradual change fault (type B), NVEF-

Cos does not perform well because the estimated VEs by the SAMBA simulator have a linear 

relationship with the modelled machine error parameters. Therefore, the changes are rarely 

reflected in the Cos measure. 
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8. Conclusions 

This study examines the performance of the EWMA control chart using asymptotic, time-varying 

limits and different setups of smoothing and width coefficients and two types of NVEFi calculation 

for VEs change recognition. We conclude that the shift detection ability of the EWMA chart can 

be improved by using time-varying limits instead of asymptotic control limits. Smaller values of 

the smoothing parameter and width parameter (2.5≤L≤3 and 0.05≤γ≤0.25) are recommended for 

VEs change recognition when the learning data set is small. NVEFi calculated by method Ⅰ has 

good performance in VEs change recognition; NVEFi calculated by method Ⅱ could be used as a 

second tool for the stability check-up of the faulty state data.  
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APPENDIX B   MACHINE TOOL ACCURACY CONDITION MONITORING SYSTEM SOFTWARE 

The machine tool accuracy condition monitoring system (MTACMS) software is developed based on the proposed new technology in 

this research. It mainly includes the following functions: data setups, SAMBA testing result analysis, Volumetric errors analysis, 

Machine errors analysis and others. This software is programmed by Matlab. The main GUI is shown in Figure B-1. In the following, 

some typical sub-functions are shown here as examples.  

 

Figure B-1. Main GUI of MTACMS 
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Figure B-2 reveals the data setups for MTACMS. The work dictionary of this software will be firstly set here. After running, we can 

know the data size and measurement times of the total testing results. In addition, the probing strategy for the experimental machine tool 

(HU40-T five-axis machine tool) can also be reviewed. 

 

Figure B-2. Data setups GUI for MTACMS 

Figure B-3 reveals the data processing of a single SAMBA measurement result. Data will be firstly read from the work dictionary. Then, 

after data processing, the estimated machine error parameters, VE norms and their statistical parameters (Max_VE_norm and 
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Mean_VE_norm), the main contribution rate of each machine error parameter to VEs and the VEs vectors of one ball (an example) will 

be shown here. Finally, by analyzing these parameters, the evaluation result of this single SABMA measurement will be reported.   

 

Figure B-3. Single SAMBA measurement analysis GUI of MTACMS 

Figure B-4 reveals the recognition of VEs change by analyzing the VSMs. The data shown here contains the C-axis encoder fault which 

could be clearly revealed by VSM-Modu. In addition, this software allows the software user to validate this result by analyzing other 

VSMs which could be selected by the switch. The detail for VEs data processing could be found in Paper 1. By inputting different setup 
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parameters (smoothing coefficient, width parameter and learning data size) of EWMA, the change point of machine tool accuracy state 

reflected by VSMs will be detected. Here, we can clearly find that the first changing point is 13th.  

 

Figure B-4. Single VE vector analysis GUI of MTCAMS 

When many testing results are accumulated, we can know the change tendency of machine tool states by using the following software 

function. Figure B-5 reveals the data processing GUI for machine tool states classification. The data is firstly processed by PCA method; 

then, the contribution rates of each principal component (PC) to the original database will be calculated and compared. The number of 

PCs will be selected when the contribution rates of all selected PCs to the original data are over 80%. Herein, 3 PCs are selected. By 
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visual checkup of the SSE value and data showing 3D figure-PC1,PC2 and PC3, the possible K value (here, 5) for automatic machine 

tool states classification could be selected. Finally, the automatic classification results could be generated and saved into one Excel file. 

 

Figure B-5. Machine tool state classification and recognition GUI 

Expect from the analysis of VEs, this software also allows the users to analyze the change of machine error parameters measured from 

machine tools. Similarly, this software reads a series of SAMBA testing results from the work dictionary. Then, the estimated machine 

error parameters towards different measurement days will be processed by the GUI in Figure B-6. The change tendency of machine error 

parameters can be revealed accompanied with the testing dates. To automatically check the change of each machine error parameter, the 
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software user can use the GUI shown in Figure B-7. Anyone of the 13 machine error parameter can be selected by adjusting the Error 

selection switch. Then, the EWMA function could be activated by pressing the run button. Under the setup of different EWMA control 

chart parameters, any kinds of changes can be detected (Here, the first changing point can be detected at the 13th ). 

 

Figure B-6. Machine errors analysis GUI of MTCMS 
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Figure B-7. Single machine error analysis GUI 

 


