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ABSTRACT 

The Laurentian Great Lakes (LGLs) represent the single most valuable natural 

resource on the North American continent and are a critical source of drinking water, 

important aquatic species habitat, water for the industrial sector and 

tourism/recreational activities as well as many other ecological services. LGLs 

ecosystems are changing rapidly due to climate change effects and are thus highly 

susceptible and responsive to any added anthropogenic stressors. The aquatic bacterial 

community affects critical ecosystem functions, such as nutrient cycling, water quality, 

recreational activities, etc., in ecosystems such as the LGLs, but perturbations can alter 

both the composition and functionality of the bacterial community. These changes can 

result in negative effects on whole ecosystem health with an associated loss in 

economic and social values. 

Understanding the temporal and spatial variation in the composition, diversity and 

ultimately activity of the bacterial community is paramount in understanding overall 

ecosystem services providing by the bacterial community. Characterizing spatial and 

temporal variation (and the factors that contribute to it) can provide deeper insight into 

the processes and mechanisms operating in LGLs ecosystems, and ultimately improve 

our basic knowledge and ability to predict bacterial community composition, dynamics 

and function.  

Enumeration of Escherichia coli as a bioindicator of human fecal contamination is 

widely used to quantify recreational water quality and safety. The inclusion of 

microbial source tracking (MST) as part of water quality monitoring along with E. coli 

and waterborne pathogens in a novel monitoring tool could help to determine the 

specific fecal source (e.g. human, dog, cattle, wildlife, etc.) and has great potential for 

accurate estimation of water-related health risks.  

On the other hand, we still have an incomplete understanding of freshwater 

microbial ecology and community dynamics and their response to disturbance, 

particularly to human-related environmental stressors. We must be able to predict and 

track the sources of harmful bacterial outbreaks; this will require a clear understanding 

of the impact of environmental and anthropogenic stressors on microbial community 

diversity and function.  
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The research comprising this dissertation was designed to characterize broad to fine-

scale temporal and spatial variation in freshwater bacterial community composition and 

gene transcription. Temporal variation in freshwater bacterial community composition 

(bi-hourly, monthly and seasonal variation) and gene transcription profile (seasonally) 

was significant while spatial variation was significant but limited in magnitude. A 

novel monitoring approach (nanofluidic TaqMan qRT-PCR) was designed and 

optimized for rapid and reliable monitoring of freshwater quality for waterborne 

pathogens, MST markers and E. coli as a bioindicator of fecal contamination. Finally, 

an experimental bacterial microcosm study was used to study the response of adapted 

(pre-exposure to different levels of nutrient stress) bacteria communities to very high 

nutrient stress. This experiment revealed that pre-exposure to a higher level of nutrient 

stress provides greater protection against community change than low levels when the 

bacterial community is challenged with a very high level of a stressor.   

These cumulative insights into the temporal and spatial variation of the freshwater 

bacteria community composition and transcriptome, the development of a novel 

nanofluidic TaqMan qRT-PCR tool for detecting and quantifying harmful bacteria and 

our microcosm study outcomes provide baseline knowledge and tools which will be 

valuable for improving best management practices, monitoring and accurate prediction 

of changes in freshwater ecosystem function. 
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 GENERAL INTRODUCTION  

1.1 Introduction  

The broad interest in microbial community ecology is a consequence of the 

postulate that interactions among microorganisms (microbe–microbe) are of essential 

importance for whole ecosystem dynamics and the evolutionary ecology of all 

organisms in the ecosystem. Microbes rarely live in isolation, but instead, coexist in 

complex ecologies with diverse symbiotic relationships (Saffo, 1992). The nature of 

the relationships between living organisms span a wide range, and include; win-win 

(mutualism), win-zero (commensalism), win-lose (parasitism, predation), zero-lose 

(amensalism), and lose-lose (competition) situations (Lidicker, 1979). The final 

outcome of these widespread interactions in microbial communities leads to either 

aggregations, avoidance or exclusions among microbial taxa (Berry and Widder, 2014; 

Konopka, 2009).  

Microbiome diversity is typically described, at a basic level, in terms of within (i.e., 

alpha) and among communities (i.e., beta), and that compromises the bacterial 

community composition (BCC). All biologists who sample natural communities are 

plagued with the problem of how well a sample reflects a community's “true” diversity. 

New genetic techniques, mostly based on massively parallel (next-generation) 

sequencing (NGS), have revealed extensive microbial diversity that was previously 

undetected with culture-dependent methods and morphological identification, but 

exhaustive inventories of microbial communities still remain impractical (Hughes et 

al., 2001). Reliable estimates of microbial diversity would offer a means to address 

once intractable questions, such as 1) what processes control microbial diversity? 2) 

what temporal and spatial scales do microbial communities’ function at? and 3) How 

do microbial communities affect ecosystem functioning? How are human beings 

affecting microbial communities? Several microbial studies have used alpha and beta 

diversity indices to characterize the diversity of the BCCs. Most microbial ecologists 

have borrowed diversity indices from plant and animal ecologists such as Shannon’s 

and Simpson’s indices of diversity (Ludwig et al., 1988), however, those indexes need 

a clear definition of species and an unambiguous identification of each individual, both 
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of which are difficult in bacteriology (Curtis et al., 2002). Still, others have proposed 

new diversity statistics specific to microbial samples (Watve and Gangal, 1996). 

Despite the interest, however, the value of those innovative microbial-specific tools has 

not yet been evaluated for BCs, while new potential approaches continue to be 

proposed but remain to be explored. However, specific but alpha (Chao 1 and 

Shannon) and beta (Bray-Curtis (dis)similarity) diversity indices are the most popular 

tools for measuring diversity within and among the microbial community samples 

(Leinster and Cobbold, 2012).  

A growing body of studies suggests that BCC exhibits a wide range of temporal and 

spatial variation (Lear et al., 2014; Lymer et al., 2008). Abiotic factors (e.g., light 

(Hölker et al., 2015), temperature (Villaescusa et al., 2016) and nutrients (Lv et al., 

2017)) as well as biotic factors (e.g., abundances of grazers (Wojciechowski et al., 

2017) and viral lysis (Rodriguez-Brito et al., 2010)) change the nature of microbial 

interactions and ultimately the BCC on diel to seasonal cycles in freshwater 

ecosystems. How the bacterial communities (BCs) are shaped by these episodic or 

fluctuating biotic and abiotic factors is not fully understood, yet those BC changes 

ultimately impact the productivity and ecological services of freshwater BCCs. The 

BCC is closely related to their microscale physical and chemical environments 

(O'Donnell et al., 2007), and those factors are affected by human activities such as 

agriculture, urban development, industry, tourism (including aquatic recreational 

activities), among others (Nogales et al., 2011). In response to anthropogenic stressors, 

the microbial community may exhibit resistance (does not change), resilience (changes 

but recovers due to metabolic flexibility, tolerance, rapid growth rate and adaptive 

evolution), functional redundancy (microbial composition changes, but new taxa 

perform similar functions to those of the original community) (Allison and Martiny, 

2008) and finally, community breakdown (microbial community and function change) 

(Muturi et al., 2017).  

The BCC provides critical ecosystem services, such as nutrient cycling, water 

quality, recreational activities, etc., but sometimes perturbations can alter both the 

composition and functionality of the BCs and thus result in negative effects on whole 

ecosystem health with an associated loss in economic and social values (Allison and 
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Martiny, 2008). For example, significant loss of diversity and key specialized functions 

of microbial communities in response to long-term heavy metal stress has been 

documented (Singh et al., 2014). The Laurentian Great Lakes (LGLs) represent the 

single most valuable natural resource on the North American continent (McKenna Jr, 

2019) and are a critical source of drinking water (Dodds et al., 2013). For example, 

Lake Erie serves as a source of drinking water (for ~11 million people), important 

aquatic species habitat, water for the industrial sector and tourism/recreational 

activities (Reutter, 2019). Degradation of freshwater quality also significantly reduces 

human recreational opportunities and results in economic loss (e.g., decreased tourism, 

reduced fishing activity, etc.) (Vörösmarty et al., 2010). In the US, for example, 

epidemiologic data indicate the risk for developing acute gastrointestinal illness 

symptoms is as high as 15 cases per 1000 swimmers which translates into $2.2-$3.7 

billion economic burdens annually (DeFlorio-Barker et al., 2018). Recreational water 

quality and safety currently is monitored by enumeration of Escherichia coli as a 

bioindicator of human fecal contamination (Edberg et al., 2000), however, a growing 

body of literatures reports that E. coli is a poor health risk indicator for recreational 

waters (Jang et al., 2017; Odonkor and Ampofo, 2013). The inclusion of microbial 

source tracking (MST) as part of water quality monitoring could help to determine the 

specific fecal source (e.g. human, dog, cattle, wildlife, etc.) and has great potential for 

accurate estimation of water related health risks (Harwood et al., 2014). 

We still have an incomplete understanding of freshwater microbial ecology and 

community dynamics and their response to disturbance, particularly to human-related 

environmental stressors. A better understanding of freshwater microbial ecology will 

allow us to identify potential biomarkers for monitoring and predicting the health status 

of aquatic ecosystems using rapid and novel molecular ecological technology. To better 

characterize freshwater microbial ecology, microbial co-occurrence (and exclusion), 

and microbial community dynamics must be assessed, not just tracking of harmful 

bacteria. We must be able to predict and track the sources of harmful bacterial 

outbreaks; this will require a clear understanding of the impact of environmental and 

anthropogenic stressors on microbial community diversity and function. To address 
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this critical need, five research projects (chapters 2-6) that focus on specific knowledge 

gaps make up my dissertation. 

1.2 Research chapters 

Chapter 2; Diel dynamics of freshwater bacterial communities at beaches in Lake 

Erie and Lake St. Clair, Windsor, Ontario. Short-term trends in freshwater BCC in 

large lake ecosystems are expected to be relatively stable due to the size and 

complexity of the habitat; however, this has not been systematically tested. We 

addressed this gap by short-term temporal (2-h intervals in a diel cycle) 

characterization of the BCC in Lakes Erie and St. Clair using metabarcoding and high‐

throughput sequencing of the 16S rRNA gene. Also, to provide a more accurate picture 

of freshwater safety and human health risk at fine-scale, we evaluated bi-hourly 

variation of E. coli levels using qPCR. 

Chapter 3; Temporal and spatial variation in microbial community dynamics in 

large freshwater lake ecosystems: Laurentian Great Lakes Erie and St. Clair. Long-

term trends in freshwater BCC and its dynamics are not yet well characterized, 

particularly in large lake ecosystems. We addressed this gap by temporally (15 months) 

and spatially (6 sampling locations) characterizing the BCC variation in Lakes Erie and 

St. Clair; two connected ecosystems in the LGLs using metabarcoding and high‐

throughput sequencing of the 16S rRNA gene.  

Chapter 4; Functional and virulence genes variation of bacterial communities in 

large freshwater lake ecosystems. Little is known regarding the seasonal and spatial 

variation in the ecological activity of the freshwater BC, yet metatranscriptomics 

provides a powerful new approach to characterize gene transcription variation at the 

community level. We addressed this gap using metatrascriptomic analysis of the 

freshwater BC transcription profiles at three public beaches in Lake Erie (2 beaches) 

and Lake St. Clair (1 beach), over winter, summer and fall (2019).  

Chapter 5; Nutrient stress drives adaptive changes in freshwater bacteria 

communities: Response to secondary stress mediated by horizontal gene flow and 

reduced community change. Little is known about the potential effects of aquatic 

stressors, such as nutrient overloading, on the adaptive response of the BC, including 

such processes such as biodiversity change, community composition shifts and 
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horizontal gene transfer (HGT). Here we designed a two-phase study with an adaptive 

phase (pre-stress freshwater BC to low and high levels of nutrients at moderate levels) 

and a challenge phase (challenge the adapted freshwater BC to very high levels of 

nutrients) and studied the BC shift and diversity loss in both phases (and in the control 

community) by metabarcoding and high‐throughput sequencing of the 16S rRNA gene. 

We also measured the prevalence of HGT genes using qPCR and markers for class I 

integrons (Int1 gene) and Gene Transfer Agents (GTA) in the adapted and challenged 

communities to explore the role of HGT in adaptation against a different level of 

stressors.  

Chapter 6; Recreational water monitoring: nanofluidic qRT-PCR chip for assessing 

beach water safety. For effective real-time monitoring of recreational water and 

subsequent risk management, a robust, high-throughput quantitative tool that targets 

fecal indicator bacteria (FIBs), MST markers and waterborne bacterial pathogens is 

needed. We developed a panel of novel quantitative real-time PCR (qRT-PCR) assays 

and printed and tested them on the OpenArray platform to detect and quantify 2 FIBs, 

7 MST markers and 15 bacterial pathogens in recreational freshwater.  

The outcome of my thesis will increase our ability to quantify and predict changes 

in freshwater BCs over time and in response to ecological perturbations. My research 

addresses temporal and spatial BCC variation (chapters 2 and 3) as well as their 

functional variation (chapter 4). I also address the possibility of microbial “community 

evolution”, or the adaptive response of freshwater BCC to human-derived stressors 

(chapter 5). To improve our ability to rapidly quantify risks associated with harmful 

freshwater bacteria, and to track their source (and hence improve predictability), I 

designed, optimized and validated a nanofluidic TaqMan OpenArray chip (chapter 6). 

Throughout my thesis I employed a variety of advanced molecular genetic techniques, 

my thesis chapters describe their use; however, below I provide an overview of these 

techniques for readers who may not be familiar with them. 
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 DIEL DYNAMICS OF FRESHWATER BACTERIAL COMMUNITIES AT BEACHES 

IN LAKE ERIE AND LAKE ST. CLAIR, WINDSOR, ONTARIO 1 

2.1 Introduction 

Freshwater ecosystems provide critical services, including drinking water, nutrient 

recycling, sport and commercial fisheries and recreation; however, they face many 

threats such as pesticide and fertilizer pollution, climate change, water extraction, 

habitat destruction, etc. (Dodds et al., 2013). The aquatic microbial community has 

fundamental direct and indirect roles in freshwater ecosystems, and they have served as 

biomarkers to quantify human-introduced stress on aquatic ecosystems for decades 

(Glasl et al., 2017). One of the major goals of microbial ecology is to improve our 

basic knowledge of bacterial community composition (BCC) and community 

dynamics; however, we have only a superficial knowledge of the factors that contribute 

to variation in BCC, both spatially and temporally – yet such information would allow 

microbial ecologists to better predict BCC dynamics, particularly in freshwater 

ecosystems.  

A growing body of studies suggests that BCCs exhibit a wide range of temporal and 

spatial variation (Berry et al., 2017; Butler et al., 2019; Huntscha et al., 2018); 

however, the BCC of complex ecosystems such as freshwater are often assumed to be 

relatively stable over a very short periods (minutes to hours), but this assumption is 

seldom tested. Abiotic factors are known or suspected to affect BCCs, (e.g., light 

(Hölker et al., 2015), temperature (Villaescusa et al., 2016) and nutrients (Horton et al., 

2019)), as well as biotic factors (e.g., abundances of grazers (Grubisic et al., 2017) and 

viral lysis (Lymer et al., 2008)) change on diel to seasonal cycles. How the BCCs are 

shaped by these episodic biotic and abiotic changes at the diel level is not known, yet 

they may ultimately influence the productivity and ecological services of freshwater 

BCCs.  

The Laurentian Great Lakes (LGLs) are a critical source of drinking water and 

recreational activity (Dodds et al., 2013), hence monitoring water quality and safety is 

 
1 This Chapter was published as a journal article: AH Shahraki, SR Chaganti, DD Heath, 2020. Diel Dynamics of 

Freshwater Bacterial Communities at Beaches in Lake Erie and Lake St. Clair, Windsor, Ontario. Microbial Ecology. 

https://link.springer.com/article/10.1007/s00248-020-01539-0  
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mandatory and is currently conducted by enumeration of Escherichia coli as a fecal 

indicator bacteria (FIB) (Pachepsky and Shelton, 2011). Although daily variation in E. 

coli levels at freshwater public beaches (McPhedran et al., 2013) and cultivable 

indicator bacteria over 12-hour tidal cycle in an estuarine habitat (lotic ecosystems) 

(Mill et al., 2006) have been reported before, the potential for significant variation in E. 

coli abundance across fine temporal scales (e.g., diel cycle) is not well characterized. 

Such fine scale temporal variation is a major concern for agencies charged with 

monitoring of beach safety and human health risk.  

As little is known about the freshwater BCC variation over fine temporal scales 

(diel cycle), the overall aim of this study was to measure freshwater BCC changes and 

E. coli level over hourly and day/night time scales (diurnal). Characterizing temporal 

variation of freshwater BCC at fine temporal scales would be critical to give a whole 

picture regarding community shift and consequently functional changes over a 24-hour 

period, while changes in E. coli levels over diel cycle are relevant for assessing human 

health risks. Here, we analyzed BCC diurnal dynamics at four public beaches on two 

lakes (Lake Erie and Lake St. Clair) during the summer (June, July and August) by 

metabarcoding and next-generation sequencing (NGS) of 16S rRNA gene. We also 

measured E. coli levels over diel cycles using qPCR.  

2.2 Material and methods 

2.2.1 Study sites and sample collection  

Freshwater samples were collected every 2-hours over one diel cycle (24 h) from 

four public beaches located at Windsor-Essex County (Windsor, Ontario, Canada); 

Colchester Harbour (CH) and Holiday Conservation Beach (HB) in Lake Erie, and 

Lakeview Park (LP) and Sand Point (SP) beaches in Lake St. Clair in the summer of 

2016 on three dates (June 10th, July 10th and August 10th ). As LP and SP are located in 

the urban area, they have more visitors over summer than CH and HB which are 

located in the agriculture area. LP is proximal to an adjacent urban tributary (the Belle 

River connects with Lake St. Clair at LP beach), while SP and HB are near the inlet 

and outlet of the Detroit River respectively. CH, HB and SP beaches represented high-

energy locations, while LP beach was influenced by restricted water flow due to 
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adjacent artificial piers and represented low-energy sites with low wave energy. 

(VanMensel et al., 2019) At each beach, we collected a total of 6 samples from two 

different spots; 3 samples from knee-deep (shoreline) and 3 samples from waist-deep 

(separated by approximately ~ 3-4 m for CH, HB and SP and ~ 30 m for LP) at 2-hour 

intervals over 24 h (8:00 AM, 10:00 AM, 12:00 PM, 14:00 PM, 16:00 PM, 18:00 PM, 

20:00 PM, 22:00 PM, 24:00 PM, 2:00 AM, 4:00 AM & 6:00 AM). Thus, the total 

number of samples for each beach was 216 (12 bi-hourly samples x 2 sites x - 3 

biological replicates x 3 months = 216 samples). Each water sample was 250 mL, 

collected at 0.5 m depth. Samples were transported on ice (4 oC ) to the laboratory 

within eight hours after collection. Upon arrival at the lab, water samples were 

immediately filtered using 0.2 µm polycarbonate membranes (Millipore, USA), and the 

filters stored at -20 oC until DNA extractions were performed. 

Environmental variables: As a proxy of environmental variables with known 

effect on BCC (Jørgensen et al., 1998; Shao et al., 2013), we collected water 

temperature every 2-hours after sample collection in the field. Additionally, bi-hourly 

data for precipitation, solar radiation and wind speed were collected from Environment 

Canada for each diel cycle 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). We 

controlled the collected data from Environmental Canada with the data received from 

local weather stations (Windsor Bell River, Windsor South and Windsor Riverside) to 

ensure the relevancy of data to local beach conditions.  

2.2.2 DNA extraction, PCR, library preparation and sequencing 

DNA was extracted from the filters by adding 400 mL of sucrose lysis buffer (400 

mM NaCl, 750 mM sucrose, 20 mM ethylenediaminetetraacetic acid (EDTA), 50 mM 

Tris-HCl pH 9.0); a lysis buffer which we optimized before for environmental DNA 

extraction (Shahraki et al., 2019a). The samples were homogenized using Mini-

beadbeater-16 (Lab Services BV, Nederland) for 1 min (three times) with an intensity 

of 3,450 oscillations/min-1 to break down microbial cell structure. Subsequently, 

magnetic bead DNA purification using an automated platform (Tecan Freedom Evo150 

Liquid Handling Platform, Perkin Elmer, USA) was performed (Shahraki et al., 
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2019a). Genomic DNA was suspended in 50 µL TE buffer and stored at -80 °C until 

use.  

We amplified the V5-V6 region of the 16S rRNA gene (~350 bp) using V5F 

(acctgcctgccg-ATTAGATACCCNGGTAG) and V6R (acgccaccgagc-

CGACAGCCATGCANCACCT) primers (He et al., 2017) and then sample barcode 

and adaptor sequences were added to each sample’s PCR product by a second, ligation, 

PCR. Second-round PCR products were pooled and purified using the QIAquick Gel 

Extraction Kit (QIAGEN, Toronto, ON, Canada). The concentration of purified PCR 

product mix (library) was measured using an Agilent 2100 Bioanalyzer with a High 

Sensitive DNA chip (Agilent Technologies, Mississauga, ON, Canada). The library 

was then diluted to 60 pmol/L and sequenced on an Ion PGM™ System (Thermo 

Fisher Scientific, Burlington, ON, Canada) (He et al., 2017). 

2.2.3 qPCR and measuring E. coli level 

We quantified E. coli level as a bioindicator of fecal contamination (Pachepsky and 

Shelton, 2011) using qPCR for all four beaches bi-hourly in diel cycles (only knee-

deep samples) by targeting the uidA gene (Chern et al., 2011). SYBR green qPCR 

reactions were carried out triplicates for each sample, extracted DNA from blank filters 

and negative controls during DNA extraction in 20 μL including 10 μL SYBR green 

master mix (Applied Biosystems™, USA), 1 μL primers (combined forward and 

reverse primers, final concentration 10 pmol for each), 1 μL DNA and 8 μL ddH2O. 

The PCR thermal cycle protocol was: 95 °C for 1 min followed by 40 cycles 95 °C for 

10 s and 59 °C for 60 s.  

We used uidA purified PCR product to prepare known concentrations (2, 2 x 101, 2 

x 102, 2 x 103, 2 x 104, 2 x 105 and 2 x 106 copies/reaction) of the target gene to 

generate a standard curve for SYBR green qPCR for uidA as we described before 

(Shahraki et al., 2019b). We estimated the uidA gene copy number in our water 

samples based on the standard curve, assuming that the cell recovery and DNA 

extraction efficiency were 100% in all samples and that only one gene copy was 

present per cell. The E. coli concentration based on uidA gene was calculated for a 100 

mL water sample. No-template control (NTC) reactions including SYBR green master 
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mix, forward and reverse primers of each marker and ddH2O but no DNA template for 

assay.  

2.2.4 Bioinformatics and statistical analyses  

Sequence handling: The raw NGS data were de-multiplexed, quality filtered and 

trimmed of the adaptor, barcodes and primer sequences using the Quantitative Insights 

into Microbial Ecology (QIIME V. 1.9.1) bioinformatics pipeline (Caporaso et al., 

2010). A minimum quality score of Q=20 and a molecular size cut-off of 200 bp was 

selected for quality assurance. Chimeras were removed using ChimeraSlayer in 

QIIME. Sequences were clustered into operational taxonomic units (OTUs) based on 

sequence similarity (97%) and then taxonomically assigned using BLAST against 

Greengenes 16S rRNA database version 13_8 as a reference data file (Edgar, 2010). 

Singleton and doubleton OTUs (across all samples) were removed from the OTU table 

and after testing for the effect of replicate and sampling site for each beach using alpha 

and beta diversity (see below) we combined replicates to simplify the analysis. OTU 

abundance is expressed as percent (%) relative abundance. We defined an OTU as 

“abundant” when it had a relative abundance above 1.00% of the community, 

“moderate” when the relative abundance was >0.10% and <1.00% and “rare” when the 

abundance was below 0.1% (Logares et al., 2014). The OTU table was rarefied to 4100 

reads using QIIME for further analyses. Original fastq files with metadata are 

deposited in NCBI Sequence Read Archive (ID PRJNA595580). 

Temporal and spatial effects: We used a generalized linear model (GLM) to 

measure whether or not replicates and sampling sites (knee-deep and waist-deep) had 

significant effects on BCC variation. Using GLM, replicates and sampling points for 

each sampling hour were considered as fixed factors. We also used a generalized linear 

mixed model (GLMM) to test for spatial effect (sampling beach) and temporal effects 

(month, day/night and sampling hour) on BCC variation. In the GLMM, sampling site 

at each beach, beach, month, day/night and sampling hours were included as fixed 

factors while the replicates for each sampling hour were considered as random factors. 

In both models, alpha diversity indices (Chao1 and Shannon) and the first (PCo1) and 

second (PCo2) coordinates of the principal coordinate analysis (PCoA) were used 

separately as dependent variable. SPSS version 19 (SPSS Inc, Chicago, Illinois) was 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-ecology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/quality-assurance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/relative-abundance
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used to run both GLMM and GLM. We chose Chao1, Shannon, PCo1 and PCo2 

individually as a simple measure of BCC variation. Chao1 and Shannon were 

calculated using the rarified OTU table. Bray–Curtis dissimilarity matrix of each diel 

cycle was calculated and PCoA was performed using the program Primer-e software 

version 7.0.13 (Primer-E Ltd., Plymouth, UK). We selected PCo1 and PCo2 of the 

PCoA from each diel cycle with eigenvalues >1.0 for analysis. As our principal goal 

was to assess fine-scale temporal effects, we focused only on the effects of day/night 

and sampling hour as well as the interaction effect of sampling hour with other fixed 

factors on the BCC of diel cycles. 

Environmental effects: Mean water temperature and wind speed during daylight 

hours (8:00 AM, 10:00 AM, 12:00 PM, 14:00 PM, 16:00 PM and 18:00 PM) were 

compared against night hours (20:00 PM, 22:00 PM, 24:00 PM, 2:00 AM, 4:00 AM 

and 6:00 AM) for each diel cycle using the Student t test. We applied RELATE 

analysis to correlate Bray- Curtis dissimilarity of relative abundance data of each diel 

cycle to the Euclidean distance of normalized environmental variables of each diel 

cycle as an environmental matrix by calculating Spearman’s p correlation coefficient. 

A distance-based linear model (distLM) was used for analyzing and modeling the 

relationship between the BCC of each diel cycle and the environmental variables using 

Primer-e software version 7.0.13 (Primer-E Ltd., Plymouth, UK). E. coli level (qPCR 

data) for diel cycles were correlated to environmental variables using SPSS version 19 

(SPSS Inc, Chicago, Illinois).  

Hourly variation of the BCC: First, we applied permutational multivariate analysis 

of variance (PERMANOVA) analyses with Bonferroni correction (number of 

permutations; 9999) to compare the Bray-Curtis dissimilarity of BCC of replicates and 

BCC of two sampling sites at each beach (knee- and waist-deep) using PAST v3.12 

software (Hammer et al., 2001). Then we used PERMANOVA with Bonferroni 

correction to compare the Bray-Curtis dissimilarity of BCCs across all sample hours in 

each diel cycle. We plotted the Bray-Curtis dissimilarity value of different hours to 

visualize the variations of the BCC of each hour in all diel cycles. Chao 1 was 

compared by one-way ANOVA using SPSS version 19 (SPSS Inc, Chicago, Illinois) 

between the sampling hours. The mean of the diversity indices was plotted against 



Diel Dynamics of Freshwater Bacterial Communities at Beaches in Lake Erie and Lake St. Clair, Windsor, Ontario 

7 

 

sampling hour in each diel cycle. To characterize the diel variation at the OTU level, 

we plotted hourly OTU relative abundance (only the OTUs with >1% abundance in any 

sampling hour) over each diel cycle. The abundance of taxa at the phyla/class level for 

each diel cycle was also plotted by hour in diel cycle.  

Day/night variation of the BCC: During a diel cycle, we considered the BCCs of 

sampling hours 8:00 AM, 10:00 AM, 12:00 PM, 14:00 PM, 16:00 PM & 18:00 PM as 

the day community and the BCCs of sampling hours 20:00 PM, 22:00 PM, 24:00 AM, 

2:00 AM, 4:00 AM & 6:00 AM as the night community. Then we applied 

PERMANOVA analyses to compare the Bray-Curtis dissimilarity matrix of day BCC 

versus night BCC. PCoAs were used to characterize variation in BCC between day and 

night hours using PAST v3.12 software (Hammer et al., 2001). Alpha diversity indices 

of day hours were compared against night hours by one-way ANOVA. We applied 

linear discriminant analysis (LDA) (http://huttenhower.sph.harvard.edu/galaxy/LEfSe, 

with default settings; Kruskal-Wallis test) to test for significant fluctuation of OTUs 

(top 500 abundant OTUs) and taxa between day and night within each diel cycle. The 

abundance of taxa at the phyla/class level for each diel cycle was also plotted by hour 

in the diel cycle. All plots and figures were generated using OriginPro 2018 (OriginLab 

Corporation, Northampton, MA, USA) or R software version 3.6.1 using ggplot2 

package (Wickham, 2011). 

2.3 Results and discussion 

Sequence handling: Before combing the replicates, the samples had a mean 

sequence read number of 3,389 (range: 2,102-8,509) after quality control. In total, 

29,700 OTUs were identified across all samples after removing singleton and 

doubleton OTUs. We further trimmed the data set to exclude OTUs with fewer than 20 

total reads across full diel cycles, which resulted in 4734 OTUs for analysis in all four 

locations over the three sampled diel cycles.  

Temporal and spatial effects: Replicates and sample collection site (knee- and 

waist-deep) at each beach had no significant effect (p<0.05) on alpha or beta diversity 

measures, we, therefore, combined the data from the replicates for each site at each 

beach to simplify the statistical analysis. Using GLMM, we found that beach and 

month had strong and significant effects on alpha diversity indices, but no significant 
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effect on either PCo1 or PCo2 (Table 2.1). As our goal was specifically to characterize 

the hourly variation of BCCs over a diel cycle, we focused more on the day/night and 

sampling hour effects as well as the interaction effects of hourly sampling with beach, 

month and day/night on alpha diversity indices and PCo1/PCo2.  

Our analyses showed that both day/night and sampling hour had significant effects 

on alpha diversity indices, PCo1 and PCo2 (Table 2.1). The day/night effect size was 

larger than the sampling hour effect. Day/night had a larger effect on Chao1 (F=13.05, 

p<0.0001) than the Shannon index (F=6.25, p<0.0001). Also, day/night had greater 

effect on PCo1 (F=5.06, p=0.02) than PCo2 (F=3.89, p=0.04). Sampling hour exhibited 

a similar pattern; which had larger effect size on Chao 1 (F=4.93, p=0.004) than 

Shannon (F=4.01, p=0.001), and greater effect size on PCo1 (F=4.23, p=0.001) than 

PCo2 (F=3.11, p=0.003). The interactions of beach*hours, month*hours, 

day/night*hours, all had significant effects for Chao1 and Shannon, with a larger effect 

size for Chao1 (Table 2.1). All interaction terms also had significant effects on PCo1, 

but only beach*hours showed a significant effect on PCo2 (Table 2.1). Overall, our 

GLMM showed high levels of diel variation in freshwater BCC; this variation was 

observed at the hourly level, as well as day versus night. This pattern of variation was 

consistent across four beaches from two lakes and in three summer months.  
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Table 2.1. GLMM analysis of the effects of the sampled beach and various temporal factors 

(month, day/night and hourly sampling) on freshwater BCC alpha diversity and Bray–Curtis 

dissimilarity principle coordinate axes (PCo1 & PCo2). 

 Main fixed factors Interactions 

 Beach Month Day/Night 
Sampling 

hours 

Beach 

*Sampling 

hours 

Month 

*Sampling 

hours 

Day/night 

*Sampling 

hours 

Beach*Month 

*Day/Night 

*Sampling 

hours 

Chao 1 F=18.05, 

p<0.0001 

F=34.34, 

p<0.0001 

F=13.05, 

p<0.0001 

F=4.93, 

p=0.004 

F=5.11, 

p=0.01 

F=8.2, 

p=0.006 

F=6.67, 

p=0.001 

F=1.23, 

p=0.09 

Shannon F=16.5, 

p<0.0001 

F=53.27, 

p<0.0001 

F=6.25, 

p<0.0001 

F=4.01, 

p=0.001 

F=4.01, 

p=0.01 

F=6.88, 

p=0.004 

F=4.07, 

p=0.02 

F=0.49, 

p=0.35 

PCo1 F=0.24, 

p=0.76 

F=0.13, 

p=0.85 

F=5.06, 

p=0.02 

F=4.23, 

p=0.001 

F=3.46, 

p=0.009 

F=1.75, 

p=0.04 

F=1.8, 

p=0.04 

F=0.8, 

p=0.49 

PCo2 F=0.04, 

p=0.86 

F=0.18, 

p=0.78 

F=3.89, 

p=0.04 

F=3.11, 

p=0.003 

F=1.75, 

p=0.03 

F=0.84, 

p=0.29 

F=0.9, 

p=0.4 

F=0.92, 

p=0.62 

 

Environmental effects: No precipitation was recorded by Environment of Canada 

(http://climate.weather.gc.ca) and local weather stations not only during any of our diel 

sampling but also 24 h before sampling. Mean (day versus night hours) water 

temperatures and wind speed for each diel cycle showed substantial variation 

(Appendix A; Table S2.1) for each diel cycle. Solar radiation was close to zero for our 

night period (20:00 PM to 6:00 AM) but it ranged between 80-760 (W/m2) for the day 

period (8:00 AM to 18:00 PM). The Euclidean distance of environmental variables 

(water temperature, solar radiation and wind speed) of each diel cycle was significantly 

correlated (r =0.14-0.3, p < 0.05) to the biological data (Bray–Curtis similarity matrix) 

across diel cycles. Also, distLM analysis shown that environmental variables had 

significant effect (p < 0.05) on the BCC of CH (June: r2=0.12, July: r2=0.13, August: 

r2=0.11), HB (June: r2=0.17, July: r2=0.11, August: r2=0.15), LP (June: r2=0.11, July: 

r2=0.21, August: r2=0.2) and SP (June: r2=0.12, July: r2=0.12, August: r2=0.14) 

(Appendix A; Table S2.2). 
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Freshwater BCC has been shown to be affected by various environmental factors 

such as sediment resuspension, salinity, water temperature, wind speed, precipitation 

and sunlight (Bryant et al., 2016; Shao et al., 2013). In our study, environmental 

variables (water temperature, solar radiation and wind speed) only explained 11-21% 

of the observed diel variation in BCC (mean across all diel cycles=19%). We did not 

include measures of nutrients in our bi-hourly study, and to the best of our knowledge, 

there is no study regarding the effect nutrients (such as phosphate and nitrogen) on 

fine-scale (24 hour period) temporal variation of freshwater BCC. 

2.3.1 Bi-hourly variation of the BCCs within diel cycles 

Analysis of the Bray-Curtis dissimilarity matrix showed that there was no 

significant variation (p<0.05) between the BCC of the replicates at each sampling 

hours or between the BCC of the knee- and waist-deep sample sites across all diel 

cycles. PERMANOVA analysis shown significant variation (df= 11) among the BCC 

of the different sampling hours across all diel cycles as follows; CH (June: F=1.2, 

p=0.001, July: F=2.3, p=0.001 and August: F=2, p=0.001), HB (June: F=3.8, p=0.0001, 

July: F=2.3, p=0.001 and August: F=2.8, p=0.001), LP (June: F=3.15, p=0.0001, July: 

F=5.2, p=0.0001 and August: F=4.2, p=0.0001) and SP (June: F=2.5, p=0.001 July: 

F=1.8, p=0.001 and August: F=4.4, p=0.0001). Pairwise comparison of the BCC of the 

sampling hours showed that the BCCs of some sampling hours were significantly 

different from others.  

Generally, we did not identify common patterns of hourly variation between all diel 

cycles which could be related to different environmental conditions in each beach zone 

(Cloutier et al., 2015). However, hourly variation within the diel cycles was noticeable 

(Figure 2.1). For example, the BCC of hours 16:00 PM, 18:00 PM, 20:00 PM and 

24:00 PM in the BCC of HB (July) and the BCC of hours 8:00 AM, 14:00 PM, 16:00 

PM and 18:00 PM in the BCC of SP (June) were significantly different from the BCC 

of other sampling hours in each of those diel cycles. Few studies have reported fine-

scale (diel-level) temporal variation such as that reported here. Fine-scale temporal 

variation of the coastal marine microbial community (6-hour intervals) (Gilbert et al., 

2010) and bacterial biomass and bacterial production of the BCC of Mediterranean Sea 

(sporadic temporal variation across 6-hours intervals) (Ghiglione et al., 2007; Mével et 



Diel Dynamics of Freshwater Bacterial Communities at Beaches in Lake Erie and Lake St. Clair, Windsor, Ontario 

11 

 

al., 2008) have been reported before. Our study provided substantial fine-scale 

temporal BCC variation (2-hours intervals) over the 24-sampling period at all four 

locations and across all three sampling months in freshwater lakes.  

 

Figure 2.1. Variation in mean pair-wise Bray–Curtis dissimilarity of the BCC over different hours 

in all locations (CH, HB, LP and SP) over June, July and August. Gray area in each plot represents 

the night hours. As Bray–Curtis dissimilarity value was zero for 8:00 AM, we removed it from all 

graphs.  

Bi-hourly variation of Chao1 index: No significant variation was detected among 

replicate or site samples (3 replicates x 2 sites =6 samples) using Student t test for 

alpha diversity indices within each diel cycle and we, therefore, combined the replicate 

data. We compared Chao1 index variation across sample hours within each diel cycle 
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using one-way ANOVA. We found that the mean of the Chao1 diversity index at 4:00 

and 6:00 AM were significantly higher (p<0.05) than the mean for the other sampling 

hours in all diel cycles except HB July diel cycle (where the mean Chao1 index was 

significantly lower than other sampling hours). 

Generally, the mean of Chao1 index increased from 8:00 AM at the beginning of the 

sampling to 6:00 AM of the next day in all four beaches over three sampling dates, 

except HB (July diel cycle) which showed the opposite trend (Appendix A; Figure 

S2.1). We noticed that the mean of Chao1 index remained constant (CH; June and HB; 

July), increased (CH; July and August, HB; June and August and LP; June and July) or 

declined (LP; August and SP; June, July and August) over day hours (Appendix A; 

Figure S2.1), but mostly increased over night hours. Shannon results plotted and 

presented in supplementary results (Appendix A; Figure S2.2).  

Bi-hourly variation of OTUs and taxa: Within each diel cycle, 7-29 and 47-169 

OTUs were identified as highly or moderately abundant, respectively. We only focused 

on the OTUs which were highly abundant in all or some of the sampling hours within 

each diel cycle. Only 2 OTUs belong to phylum Actinobacteria and family ACK-M1 

(OTU1 and OTU2) and one OTU belongs to phylum Proteobacteria and family 

Comamonadaceae (OTU3) were abundant in all bi-hourly sampling across all diel 

cycles (Figure 2.2). There was also an obvious variation in the relative abundance of 

highly abundant OTUs across different hours of each diel cycle (Figure 2.2). For 

example, OTU1 showed fluctuations across the sampling hours of the diel cycle at CH 

(June: 6.2-7.4%, July: 11.6-17.5% and August: 6.7-9.7%), HB (June: 4-9.2%, July: 

10.9-18.9% and August: 8.6-13%), LP (June: 4.6-11.4%, July: 9.4-16.8% and August: 

4-15% ) and SP (June: 5.5-15.9% , July: 16.3-21.9% and August: 6-20.5%). At the 

OTU level, our data showed that bi-hourly variation of freshwater BCC is mostly 

related to high abundant OTUs such as those belonging to family ACK-M1 of 

Actinobacteria (OTUs 1 and 2) and family Comamonadaceae of Proteobacteria 

(OTU3). 
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Figure 2.2. The relative abundance of the “abundant” OTUs across each diel cycle at the CH, HB, 

SP, and LP beaches over three sampling months (June, July, and August). OTUs which showed a 

relative abundance of > 1% even in one sampling hour were selected, and out of those OTUs, the 

top 15 OTUs with the highest standard deviation across the sampling hours were plotted. OTUs 

are listed on the Y-axis and the X-axis shows the sampling hour (started at 8:00 AM and continued 

to the next day at 6:00 AM) with a 2-h interval. 

In each diel cycle, some OTUs were consistently highly abundant (with fluctuation 

in their relative abundance across different hours) overall sampling hours, however, in 

top of those OTUs, the relative abundance of some other OTUs belong to different taxa 

(family) exceeded 1% and became highly abundant in particular sampling hours. For 
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example, in the BCC of CH (August), families C111 (OTUs 7 and 27) and ACK-M1 

(OTUs 1, 2, 4 and 10) belong to Actinobacteria, family Comamonadaceae of 

Proteobacteria (OTUs 3 and 6) and families Cyclobacteriaceae (OTU5) and 

Sphingobacteriaceae (OTU9) of Bacteroidetes were consistently highly abundant 

across all hours of the diel cycle. However, the BCC of hour 12:00 PM had 9 

additional highly abundant OTUs; 6 of them belong to different families of 

Proteobacteria including Comamonadaceae (OTU20), Methylophilaceae (OTU21), 

Oxalobacteraceae (OTU145), Pelagibacteraceae (OTUs 52 and 59) and 

Rhodobacteraceae (OTU12), 2 OTUs belong to family Chitinophagaceae of 

Bacteroidetes (OTUs 26 and 82) and 1 OTU belong to family Synechococcus of 

Cyanobacteria (OTU42).  

Actinobacteria (34.8±8.8%), Betaproteobacteria (18.5±5%) and Bacteroidetes 

(15.6±5.2%) were dominant phyla in the BCC of all diel cycles (Appendix A; Figure 

S2.3). Similar to our finding, Actinobacteria lineages has reported as a dominant 

phylum in the BCC of Lake Erie (Paver et al., 2020; VanMensel et al., 2019) and Lake 

St. Clair (VanMensel et al., 2019). Actinobacteria and Betaproteobacteria exhibited 

considerable variation in their relative abundance by sampling hours within each diel 

cycle in our study. For example, Actinobacteria changed in abundance dramatically at 

all sampled beaches: CH (June: 27.7-31.5%, July: 31.8-51.8% and August: 30.3-

40.4%), HB (June: 17.3-30.8%, July: 33.5-48.4% and August: 33.5-53.5%), LP (June: 

18.3-29.2%, July: 27-41.7% and August: 23.6-53.6%), SP (June: 19.6-36.6%, July: 

39.7-51.5% and August: 21.5-55%) (Appendix A; Figure S2.3). The bi-hourly 

variation of Betaproteobacteria was noticeable (Appendix A; Figure S2.3). Fine 

temporal-scale variation in abundance of Proteobacteria in the wastewater microbiome 

(4-hour intervals) (Guo et al., 2019) has been reported before, however, our report 

provided more bi-hourly variation of most dominant phyla in a freshwater ecosystem. 

2.3.2 Day/night variation of the BCCs 

PERMANOVA analysis (df=1) showed the BCCs of day hours were significantly 

different from the BCCs of night hours for all diel cycles (Table 2.2). Multiple 

dimensional scaling by PCoA revealed distinct clustering of the day versus night BCC 

across all four beaches for all three sampling periods (Figure 2.3). In contrast, diel-
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level (day/night) stability (no variation) of a maritime Antarctic lake (Pearce and 

Butler, 2002) and the community of a coastal microbial mat (sampled at 4-hours 

intervals during a 24-hours) (Cardoso et al., 2017) has been reported. It is surprising 

that day-night changes in the BCC have not been more widely reported, given the 

critical changes in abiotic and biotic factors from daylight to dark conditions (e.g. light 

energy, temperature, predators, etc.). While limited published evidence for day-night 

variation in BCC exists, day/night variation in the meta-transcriptome of microbial 

communities has been reported (Campbell and Kirchman, 2013; Kim et al., 2015; 

Poretsky et al., 2009). Our work showing significant and consistent day/night variation 

in the freshwater BCC corresponds to expected changes in functional BCC activity. 

Such functional shifts would fundamentally change the ecological processes that drive 

the BCC; however, more study is needed to determine the functional role of even 

greater fine-scale temporal variation in BCC in the provision of ecological services and 

the health risks of freshwater ecosystems. 

Table 2.2. Day/night variation of the BCCs according to PERMANOVA analysis for all diel 

cycles. 

  June July August 

CH F value 3.5 5.5 4 

 p value 0.0008 0.0001 0.0001 

HB F value 7.7 6.1 4.4 

 p value 0.0001 0.0001 0.0001 

LP F value 3.1 9.3 6.5 

 p value 0.0009 0.0001 0.0006 

SP F value 2.1 3.8 3.8 

 p value 0.005 0.0002 0.0006 
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Figure 2.3. Scatterplots of PCo1 versus PCo2 from PCoA of the BCCs for day versus night hours 

for CH, HB, LP & SP beaches in three different sampling times (June, July & August) showing 

high-resolution small scale (day/night) temporal variation of the BCC in a diel cycle. 

Day/night variation of Chao1 index: The Chao1 index was generally significantly 

elevated at night over most of the diel cycles. However, HB (July) showed the opposite 

effect, where the mean Chao1 index was significantly higher (df=1, F=14.34, p=0.001) 
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during daylight hours. There was also one diel sampling that showed no significant 

day-night variation (p>0.05) in Chao1 (SP (July); F=2.1, p=0.12; Appendix A; Table 

S2.3).  

Overall, we detected significant day/night variation in both alpha and beta diversity 

in the freshwater bacterial community across all sampled diel cycles, with a general 

elevation of diversity in the night community. Similar to our finding, significant 

elevation of diversity at night hours (Gilbert et al., 2010) and high production and 

growth rate of freshwater BCC (Filippini et al., 2008) has been reported previously in 

aquatic ecosystems. Those differences were identified as potentially related to the 

absence of UV stress at nigh hours and its negative impact on rare taxa (Whitman et al., 

2004). 

Day/night variation of OTUs and taxa: We applied LDA to the top 500 abundant 

OTUs in the diel cycles to compare the BCCs of the day versus night community to 

identify the OTUs which show significant changes in their relative abundance across 

the three sampled beaches over the three sampled summer months. Generally, more 

OTUs showed significant increases in their relative abundance at night than those 

showing significant increases in their relative abundance during daylight hours. For 

example, at the CH beach, the relative abundances of 33 (June), 53 (July) and 44 

(August) unique OTUs were significantly higher in the night community. This is in 

contrast to unique OTUs 13 (June), 19 (July) and 27 (August) which were more 

abundant during daylight hours. Generally, none of the 500 abundant OTUs showed 

consistent significant variation in their relative abundance in either the day or night 

community across all four beaches and all three sampling months potentially due to 

short temporal variation of abiotic variables (Bryant et al., 2016) (e.g. hydrology and 

the water chemistry, sunlight, etc.) and biotic variables (e.g. grazers, viruses, etc.) 

(Grubisic et al., 2017; Lymer et al., 2008).  

Indeed, some OTUs showed opposite patterns in their relative day versus night 

abundances. However, we found little consistency in the day/night patterns of some 

OTUs across beaches and sampling months. For example, the relative abundances of 

10 OTUs of phylum Actinobacteria belonging to families ACK-M1 (OTUs 2, 13, 18, 

25, 58, and 102) and C111 (OTUs 7, 14, 62 and 68) were significantly higher in the 
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day community, while the relative abundances of 7 OTUs of Actinobacteria belonging 

to families ACK-M1 (OTUs 1 and 110), C111 (OTUs 134 and 135) and 

Microbacteriaceae (OTUs 41, 49, and 132) were significantly higher in the night 

communities (Appendix A; Table S2.4). High abundance of Actinobacteria particularly 

families ACK-M1 and C111 in the day community could be due to the presence of 

rhodopsins (actinorhodopsins) within these taxa, a potential mechanism for 

supplemental energy generation through light-harvesting, coupled with their UV stress 

resistance and potentially better contribution in biogeochemical cycling over day hours 

(Newton et al., 2011). 

The relative abundance of OTUs belonging to phylum Cyanobacteria and family 

Stramenopiles (OTUs 42, 43, 89, 103 and 161) and phylum Betaproteobacteria and 

order Flavobacteriales (OTUs 33, 77, 80, 83, 99, 116 and 153) showed a significant 

increase only in the night community (Appendix A; Table S2.4). The apparent co-

occurrence of Cyanobacteria and Flavobacteriales in our study especially at night may 

be due to the fact that members of Flavobacteriales playing a role in degrading 

cyanobacterial toxins or other problematic organic compounds, and thus enhancing 

proliferation of Cyanobacteria (Berg et al., 2009). The relative abundance of OTUs 

belonging to Alphaproteobacteria and order Rhizobiales (OTUs 22, 53, 54, 72 and 

117) were significantly elevated in the night community, but only in some diel cycles 

such as CH and HB (August), LP (July) and SP (June). Order Rhizobiales (belong to 

phylum Proteobacteria) contain dominant nitrogen fixing taxa (Newton et al., 2011). 

We also found that OTUs assigned to family Verrucomicrobiaceae (OTUs 51, 87 and 

114) were significantly high only in the BCC of day CH (August) and HB (June and 

July) (Appendix A; Table S2.4). Taxa belong to Verrucomicrobiae are not well studied 

in the BCC of freshwater lakes potentially due to rare occurrences in many aquatic 

ecosystems (Newton et al., 2011) however, this study provided fine temporal variation 

(day/night) of this taxon as well.  

We applied LDA to compare the relative abundance of the 61 detected family-level 

taxonomically assigned bacteria between day and night assemblage across each diel 

cycle (Appendix A; Figure S2.4). Some diel cycles had limited taxonomic 

representation (4 families) but still showed a significant divergence between the BCC 
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of day and night (i.e., LP (July and August) and SP (June)). Other diel cycles had a 

large taxa diversity at the family level and also exhibited significant variation in 

relative abundance between day and night (i.e., CH (August; 19 families) and HB 

(June; 20 families). Overall, of the 61 identified bacterial families, 12 showed 

significant increases in their relative abundance only in the day (e.g. 

Gemmatimonadaceae (CH; August and HB; June and August)). 

Moreover, the relative abundance of 21 bacterial families were significantly higher 

in the day communities for some diel cycles but were significantly higher in the night 

communities of other diel cycles. For example, the relative abundance of 

Cytophagaceae was significantly higher in the day for CH in June, but higher at night 

in August. Out of the 61 identified bacterial families; 17 showed significantly elevated 

abundance only at night (e.g., Acidaminobacteraceae at CH (August) and HB (July and 

August)). More interestingly, our metabarcoding analyses showed that the relative 

abundance of Enterobacteriaceae (Gammaproteobacteria) was significantly elevated 

in the night BCCs at CH (July and August), HB (June and July), LP (June and August) 

and SP (June). Some members of Enterobacteriaceae (enteric organisms) are 

waterborne pathogens (Bridge et al., 2010) and E. coli is one well-known member of 

this family as it is currently used as fecal indicator bacteria in water health monitoring 

(Edberg et al., 2000).  

Our results showed strong day/night variation in the composition of freshwater BCC 

with the dominance of UV resistant and light-harvesting taxa such as families ACK-

M1 and C111 (Actinobacteria) in the BCC of day versus enrichment of the BCC of 

night community with heterotrophic taxa mostly involves in biogeochemical cyclings 

such as Stramenopiles (Cyanobacteria), Flavobacteriales (Betaproteobacteria) and 

Rhizobiales (Alphaproteobacteria) (Berg et al., 2009; Newton et al., 2011) and taxa 

associated mostly with health risk such as Enterobacteriaceae (Alphaproteobacteria) 

(Bridge et al., 2010). 

2.3.3 E. coli dynamic over diel cycle 

The coefficient of variance between replicates (R2) and qPCR efficiency was 0.99 

and 103% for uidA gene. E. coli was not detected directly in our metabarcoding data as 

NGS usually does not allow for this taxonomic resolution, yet the diel variation in 
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Enterobacteriaceae made it possible that E. coli levels were also varying a fine 

temporal scale in these freshwater ecosystems. We used qPCR to monitor E. coli 

abundance in our samples and found E. coli consistently decreased from 8:00 AM 

through the day, and then increased over night for all three sampled months at CH, LP 

and SP beaches (Figure 2.4). In general, reductions in E. coli levels were most 

prominent at 10:00 AM, 12:00 PM, 14:00 PM and 16:00 PM over all diel cycles. In the 

majority of sampled diel cycles, E. coli levels were significantly higher in the night 

communities in comparison to the day communities, except CH (August) and LP (July 

and August), where there was no significant variation (p>0.05) in E. coli level between 

day and night communities (Figure 2.4). We found a high level of E. coli during the 

day in comparison to night (not significantly higher; p>0.05) only at LP beach (July) 

which could be related to pollution events (river discharge) or resuspending of sand by 

beachgoers or waves (Ge et al., 2012). Similarly, previous studies of river watershed 

and creeks ecosystems have also shown higher levels of E. coli in the morning relative 

to the afternoon (Stocker et al., 2016; Traister and Anisfeld, 2006). Moreover, we 

observed a consistent diel oscillation of E. coli abundance, with a steady decrease 

throughout the daylight hours and rising E. coli levels at night. Solar radiation was the 

only environmental variable that had a significant (p=0.0001) negative correlation 

(Pearson coloration=-0.65) with E. coli level in our diel cycles. This may be related to 

the germicidal action of solar radiation in shallow aquatic habitats (Maraccini et al., 

2016; Nelson et al., 2018). We did not measure E. coli level by the culture-based 

method to compare with qPCR data, as culture-based E. coli data may have shown a 

stronger UV response than qPCR-based E. coli data. Due to considerable changes in E. 

coli level (bi-hourly and day/night variation) and extreme variability of Enterococci as 

FIB in coastal waters over 24 h (Boehm, 2007), it seems that water quality monitoring 

based on single grab sample should be replaced by multiple grab sample over different 

hours to gain high-resolution picture of water quality and human health risk.  
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Figure 2.4. Line plots of hourly variation in E. coli mean abundance (error bars represented the 

standard deviation of E. coli level in each sampling hours) based on uidA gene qPCR assays. The 

panels show data for the four sampled beaches (CH, HB, LP & SP) over three sampling dates 

(June, July and August). uidA gene counts was estimated based on the standard curve and goodness 

of fitness in 100 mL water samples. 

2.4 Conclusion 

It is well known that the bacterial community provide ecological services such as 

biogeochemical processes in all aquatic ecosystems. Our study provides novel and 

exciting evidence for fine scale temporal (bi-hourly and day/night) variation of 

freshwater BCC in large lake ecosystems which could be mostly attributed to the 
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variation of dominant phyla such Actinobacteria and Proteobacteria. Such high levels 

of fluctuation of the BCC suggests fine-scale temporal variation in the biogeochemical 

cycles in large lakes may also be occurring. While the environmental variables we 

included in our analyses (water temperature, solar radiation and wind speed) only 

explained 19% of the observed diel variation in BCC, other key biotic and abiotic 

variables could be playing important roles as well. For example, we did not 

characterize viral and protist community variation as another potential driver of the 

BCC in this study; however, those communities have been reported as important 

factors (Grubisic et al., 2017; Lymer et al., 2008), and may have contributed to the 

BCC temporal variation observed in this study. As we detected low levels of E. coli 

during day hours with a significant negative correlation with solar radiation, combined 

with low levels of diversity in the day community versus the night community, it is 

likely that UV stress is a major environmental factor contributing to the fine-scale 

variation. We detected family-level variation of Enterobacteriaceae using 

metabarcoding data, indicative of possible important human-health related diel 

bacterial dynamics. Monitoring of E. coli using more sensitive qPCR assays confirmed 

the family-level variation patterns and substantial variation in E. coli abundance 

(day/night) over the diel cycle.  
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 TEMPORAL AND SPATIAL VARIATION IN MICROBIAL COMMUNITY DYNAMICS 

IN LARGE FRESHWATER LAKE ECOSYSTEMS: LAURENTIAN GREAT 

LAKES ERIE AND ST. CLAIR 

3.1 Introduction 

Freshwater ecosystems are unique in terms of the complexity of the ecosystem 

process and interactions across trophic levels. In addition, freshwater ecosystems 

regulate climate, support nutrient cycling, transport water and materials, maintain water 

quality and complex natural communities (Castello and Macedo, 2016). Freshwater 

bacterial communities have fundamental roles in nutrient cycling (Fisher et al., 2015), 

pollutant degradation (Singh and Walker, 2006), among other processes and thus have 

a critical influence on freshwater river and lake function. Despite these critical roles, 

the temporal and spatial dynamics of freshwater bacterial communities are not well 

characterized. 

Microbes play fundamental roles in transforming organic carbon and reintroducing 

it into the food web, thus characterizing temporal and spatial changes in bacterial 

community composition (BCC) can provide deeper insight into the processes and 

mechanisms operating in lake ecosystems and ultimately improve our basic knowledge 

and ability to predict BCC dynamics and function. A growing body of literature 

suggests that BCC exhibit a remarkable range of temporal and spatial variation. BCC 

temporal variation can occur on a weekly (Berry et al., 2017), seasonal (Bush et al., 

2017), interannual (Siles et al., 2017), and possibly decadal time scales (Fuhrman et al., 

2015). Cyclic abiotic factors such as light (Hölker et al., 2015), temperature 

(Villaescusa et al., 2016) and nutrients characteristics (Lv et al., 2017), as well as biotic 

factors such as bacteriophages (Yoshida et al., 2018) may contribute to daily, weekly 

and seasonal cycles, but temporal variation goes beyond such straightforward cyclic 

relationships. BCC spatial variation also has reported within pounds (fine-scale) (Lear 

et al., 2014) within a lake (large scale) (Bouzat et al., 2013) and between the large 

water bodies (between the lakes) (Small et al., 2016), however, some studies also 

showed minor spatial variation particularly in great lakes (Rozmarynowycz et al., 

2019).  
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The Laurentian Great Lakes (LGLs) in North America differ markedly in their 

hydraulic residence time, annual lake surface temperatures, ice cover and extent, and 

primary production levels (Sterner et al., 2017). The LGLs are warming rapidly, and 

thus are highly susceptible and responsive to any added anthropogenic induced 

stressors (Adrian et al., 2009). The LGLs serve as a powerful model to study the 

response of large complex ecosystems to climate change, for example, the timing and 

duration of ice cover, changes in the timing of the annual spring algal bloom, changes 

in energy and water fluxes, the expanse and influence of hypoxic zones and the 

response of biotic communities from microbes to fishes. Lake Erie, the smallest and 

shallowest of the LGLs, has undergone dramatic swings in water quality over the past 

century due to nutrient loading (primarily phosphates) from agricultural and urban 

sources (Davis, 1964). Phosphate removal programs ultimately resulted in significant 

improvement in the trophic state of Lake Erie (Schindler et al., 2016). However, key 

ecosystem services such as drinking water (for ~11 million people), important aquatic 

species habitat, water for the industrial sector and tourism/recreational activities 

(boating, shipping and fisheries; >$50 billion annually) are currently threatened by 

frequent cyanobacterial harmful algal blooms (cHABs) and hypoxia (Bullerjahn et al., 

2016; Watson et al., 2016). Lake St. Clair, while technically not one of the five LGLs, 

is also heavily impacted by densely populated urban areas, and because of its location 

upstream, is also a potential source of nutrient load for Lake Erie (Scavia et al., 2016). 

Lake St. Clair is very shallow and highly affected by recurrent eutrophication 

symptoms (Casey, 1998). This study focusses on lakes Erie and St. Clair as two of the 

arguably most at-risk lakes within the LGL system. We predicted that the BCC in these 

two highly susceptible freshwater ecosystems would exhibit similar, but an 

unpredictable temporal and spatial variation.  

Despite numerous studies addressing the biogeographical distribution of microbial 

species, microbial ecologists lack a basic understanding of the characteristic scales of 

temporal and spatial variation in aquatic BCC (Lindström and Langenheder, 2012); as 

BCC form the cornerstone of whole freshwater ecosystems. Arguably, this is a key gap 

in our basic understanding of aquatic bacterial diversity that hinders our ability to 

develop theories about how microbial mediated function and the stability of those 
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functions are maintained across space and time. Considering previous studies (Berry et 

al., 2017; Bush et al., 2017; Siles et al., 2017),(Rozmarynowycz et al., 2019; Small et 

al., 2016), we must integrate long-term temporal sampling with large scale spatial 

sampling to allow not only assessment of change over time and space, but also the 

potential for the interaction between location and date of sampling. To address this 

knowledge gap, we sampled bi-weekly six recreational beaches locations in our two 

study lakes (Lake Erie and St. Clair) from June 2016 to August 2017 to characterize 

the BCC. We used 16S rRNA metabarcoding via next-generation sequencing (NGS) to 

insure accurate and complete BCC characterization. We hypothesized to detect 

significant temporal (bi-weekly, monthly and seasonal) and spatial (sampling location 

and lake) variations in the freshwater BCC. We predicted to observe strong temporal 

than spatial variation in the freshwater BCC, more specifically, we expected to observe 

more diversity and similarity in the BCC of two summers than other seasons. We 

expected to observe more diversity of the BCC in Lake Erie than St. Clair as Lake Erie 

is fed by Lake St. Clair. We also expected that environmental parameter such as water 

temperature has more influence on the BCC than other variables. The outcome of this 

study will increase our basic understanding of how freshwater BCC changes in 

different scales of time and space which is critical for monitoring the ecological service 

of BCC and aquatic ecosystem health. 

3.2 Materials and methods 

3.2.1 Study sites and sample collection  

Freshwater samples were collected bi-weekly over 15 months from June 2016 to 

August 2017 from shorelines at six locations, including four locations from Lake Erie 

(Cedar Beach (CB), Colchester Harbour (CH) Beach, Holiday Beach (HB), and Point 

Pelee (PP) Beach) and 2 locations from Lake St. Clair (Lakeview Park (LP) Beach and 

Sand Point (SP) Beach) at Windsor-Essex County (Windsor, Ontario, Canada) (Figure 

3.1). LP and SP are in urban areas, while CB, CH, HB and PP are located in 

agricultural areas. LP is near an urban tributary (the Belle River joins Lake St. Clair at 

LP beach), while SP and HB are near the inlet and outlet of the Detroit River 

respectively. CH, HB and SP are high-energy water movement locations, while LP has 
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restricted water flow due to adjacent artificial piers and thus is a low-energy site with 

low wave energy (VanMensel et al., 2020). Two water samples (each 250 mL) were 

collected at 0.5 m depth at each location (near-shore). In total, we collected 60 samples 

(2 replicates * 2 weeks/month * 15 months= 60 samples ) at each location. Water 

samples were transported to the laboratory on ice and were filtered using 0.2 µm 

polycarbonate membranes (Millipore, USA), and the filter immediately stored at -20 oC 

until DNA extractions were performed. Water temperature was measured at the time of 

sample collection at each location. Other environmental variables, such as precipitation 

and daylight hours, were collected from Environment Canada 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html) according to 

the sampling date. We also collected environmental data from local weather stations 

(Windsor Bell River, Windsor South and Windsor Riverside) to cross-check the 

relevancy of environmental data to local beach conditions.  

 

Figure 3.1. The sampling sites used for bacterial community composition in Lake Erie (Cedar 

Beach; CB, Colchester Harbour Beach; CH; Holiday Beach; HB and Point Pelee Beach; PP), and 

Lake St. Clair (Lakeview Park Beach; LP and Sand Point Beach; SP) in Windsor-Essex County.  
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3.2.2 DNA extraction, PCR, library preparation and parallel sequencing 

DNA was extracted following Shahraki et al (Shahraki et al., 2019) by using sucrose 

lysis buffer (400 mM NaCl, 750 mM sucrose, 20 mM ethylenediaminetetraacetic acid 

(EDTA), 50 mM Tris-HCl pH 9.0) in combination with bead-beating (0.1 mm beads) 

and magnetic bead DNA purification. Purified genomic DNA was suspended in 50 µL 

TE buffer and stored at -80 °C. The extracted DNA was used as a template to amplify 

the V5-V6 region (~350 bp) of the 16S rRNA gene using V5F (acctgcctgccg-

ATTAGATACCCNGGTAG) and V6R (acgccaccgagc-

CGACAGCCATGCANCACCT) primers (He et al., 2017). Then sample barcode and 

adaptor sequences were ligated to each PCR product by a second, ligation, PCR(He et 

al., 2017). Second-round PCR products were pooled and purified using the QIAquick 

Gel Extraction Kit (QIAGEN, Toronto, ON, Canada). The concentration of purified 

PCR product mixture (library) was measured using an Agilent 2100 Bioanalyzer with a 

High Sensitive DNA chip (Agilent Technologies, Mississauga, ON, Canada). The 

library was then diluted to 60 pmol/L and sequenced on an Ion PGM™ System 

(Thermo Fisher Scientific, Burlington, ON, Canada).  

3.2.3 Bioinformatics and statistical analyses 

Sequence handling: The raw sequence data was de-multiplexed, quality filtered 

and trimmed of the adaptor, barcode and primer sequences using the Quantitative 

Insights into Microbial Ecology (QIIME V. 1.9.1) bioinformatics pipeline (Caporaso et 

al., 2010). A minimum quality score of Q=20 and base-pair (bp) length cut-off of 200 

bp was selected for quality assurance. Chimeras were removed using ChimeraSlayer in 

QIIME. The operational taxonomic units (OTUs) were assembled based on sequence 

similarity (97%) among the sequence reads and then taxonomically assigned using The 

Basic Local Alignment Search Tool (BLAST) against Greengenes 16S rRNA database 

version 13_8 as a reference data file (Edgar, 2010). The representative sequence for 

each OTU was selected using the most abundant method for assigning taxonomy in the 

Ribosomal Database Project (RDP) Classifier program with a minimum 80% 

confidence level (Wang et al., 2007). After removing the single and double read OTUs, 

the OTU table was rarefied to 2000 quality passed sequences for each sample to 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-ecology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/quality-assurance
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calculate alpha diversity. Original OTU table (non-rarefied) was used to calculate 

relative abundance. We defined an OTU as “abundant” when it had a relative 

abundance above 1% of the community, “moderate” when the relative abundance was 

between 0.1-0.99% and “rare” when the abundance was below 0.1% (Logares et al., 

2014). 

Global spatial and temporal effects: We used nested ANOVA in R environment 

(version 3.1.1) (Team, 2013) to determine whether or not field replicates at each 

sampling event were significantly different in their BCC. Alpha diversity indexes 

(Chao1 and Shannon) and the first (PCo1) and second (PCo2) principal coordinates 

from the principal coordinates analysis (PCoA) across all samples (including 

replicates) were used as a dependent variable in the nested ANOVA (replicated were 

nested to week; week 1 and week 2 in each month) to test specifically for a replicate 

effect.  

We used a generalized linear mixed model (GLMM) with Maximum Likelihood 

(ML) method implemented in the R package lme4 (Bates et al., 2012) to test for 

sampling location, lake (Erie and St Clair), week and month (and their interactions) 

effects on Chao1, Shannon, PCo1 and PCo2 as dependent variables (note, we found no 

significant effect of replicate, hence we dropped replicate from subsequent analyses). 

We chose the Chao1 and Shannon indexes of alpha diversity, and PCo1 and PCo2 as 

simple measures of BCC variation for our preliminary analysis. Chao1 and Shannon 

were calculated using the rarified OTU table. The Bray–Curtis dissimilarity matrix of 

each sample site over 15 months was calculated using Primer-e software version 7.0.13 

(Primer-E Ltd., Plymouth, UK) and after PCoA, we selected PCo1 (16.1%) and PCo2 

(8.1%), which represented the most variation in the BCC PCoA, but did not 

incorporate PCo3 (6.5%), PCo4 (3.5%), PCo5 (3.4), PCo6 (2.2%) and PCo7 (1.5%) in 

the GLMM model as they explained a low level of variance. For each dependent 

variable, we run a global GLMM model by nesting sampling locations (6 locations) 

within lake (2 lakes) and sampling weeks (2 weeks/month) within sampling month (15 

months) to determine the effect size of month and lake on the BCCs. We used 

replicates as a random factor and sampling month and lake as fixed factors. Model 

assumptions were assessed by examining the distribution of residuals and plotting 
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fitted values against residuals. Then we used ANOVA implemented in the car package 

(Fox et al., 2012) to evaluate the significance of fixed effects in the models using R 

(version 3.1.1) (Team, 2013). To evaluate the effect of the sampling location by month 

interaction, we ran GLMM models on data from each lake separately. In these models, 

we considered month (weeks nested within 15 sampling months) and sampling 

locations as a fixed factor and replicates as a random factor. We used diversity indexes 

as simple indicators of spatial and temporal variation of the BCCs as input for GLMM 

model, but we also measured the impact of spatial (sampling locations) and temporal 

(sampling months) variation on the relative abundance of each OTU (n=2100) using 

the Kruskal–Wallis one-way analysis of variance using MATLAB software.  

Spatial variation: To characterize variation in BCC between the two sampled lakes 

as well as variation among the 6 sampling locations, we used four different approaches. 

They were: i) permutational multivariate analysis of variance (PERMANOVA) with 

9999 permutations using the Vegan package (Dixon, 2003) in R environment (version 

3.1.1) (Team, 2013) to compare the Bray–Curtis dissimilarity of the BCCs, ii) PCoA of 

the Bray–Curtis similarity matrix to visualize the pattern of the BCC variation using 

Primer-e software version 7.0.13 (Primer-E Ltd., Plymouth, UK), iii) one-way 

ANOVA to compare the mean of diversity indexes and PCo1 and PCo2 of the BCCs 

using SPSS version 19 (SPSS Inc, Chicago, Illinois), and iv) linear discriminant 

analysis (LDA) using the LEfSe method (http://huttenhower.sph.harvard.edu/lefse/) 

(Segata et al., 2011) to compare the relative abundance of taxa (class level) in the 

bacterial communities. 

Temporal variation: As we sampled two summers (2016 and 2017) but did not 

replicate sample any other seasons, we were not able to explicitly test for season 

effects. However, we applied hierarchical agglomerative clustering on the Bray–Curtis 

similarity matrix of the BCCs (top 300 highly abundant OTUs) using the group average 

method in PAST (Hammer et al., 2001) to explore the possibility of seasonal clustering 

in terms of BCC. Once we identified clear clusters, we tested for differences in BCC 

among the clusters and the 15 months of sampling following the same approach as we 

used for the spatial variation (above). Specifically, we used: i) PERMANOVA with 

9999 permutations in the Vegan package (Dixon, 2003) in R environment (version 
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3.1.1) (Team, 2013) then compare the Bray–Curtis dissimilarity of the BCCs in the 

identified clusters and the 15 months of sampling, ii) SIMPER analysis on the Bray–

Curtis dissimilarity matrix to compare the overall dissimilarity among clusters and the 

15 months of sampling in the Vegan package (Dixon, 2003), iii) PCoA of the Bray–

Curtis similarity matrix to visualize the pattern of BCCs among the clusters and the 15 

months of sampling using Primer-e software version 7.0.13 (Primer-E Ltd., Plymouth, 

UK), iv) one-way ANOVA to compare the mean of diversity indexes and PCo1 and 

PCo2 of the BCCs from the clusters using SPSS version 19 (SPSS Inc, Chicago, 

Illinois) and v) LDA (http://huttenhower.sph.harvard.edu/lefse/) (Segata et al., 2011) 

on the relative abundance of taxa (class level). Plots and graphs were generated using 

ggplot2 package (Wickham, 2011) in R (version 3.1.1) (Team, 2013) and Origin Pro 

2019. 

Environmental effects: To evaluate the relationship between the BCC at the 

various beaches and dates and environmental factors, we applied a RELATE analysis 

(Spearman’s p correlation coefficient) on the Bray Curtis similarity matrix calculated 

from whole data sets collected bi-weekly from 6 different locations (beaches) located 

in two lakes over 15 months and the matrix of Euclidean distances calculated from 

normalized environmental data (daylight hours, precipitation and water temperature) as 

the environmental matrix. A distance-based linear model (distLM) was used for 

analyzing the relationship between the Bray-Curtis similarity matrix of the BCC of 15 

sampling months and the environmental variables using Primer-e software version 

7.0.13 (Primer-E Ltd., Plymouth, UK).  

3.3 Results 

Sequence library: After quality control, 5.1 million Ion Torrent sequence reads 

remained across all 6 sample sites and 15 months. Each sample (replicate) had between 

2,102-8,509 reads, with an average of 4,789 reads. In total, 27,643 OTUs were 

detected. After removing singleton and doubleton sequence reads, as well as OTUs 

with ≤ 20 reads from the data set, 2,100 OTUs were included in this study. The OTU 

table was rarefied to 2000 reads/sample.  

Global spatial and temporal effect: Replicate had no significant effect on the 

variables (Chao1; df=1, F=0.01, p=0.75, Shannon; df=1, F=0.092, p=0.72, PCo1; df=1, 
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F=0.001, p=0.95 and PCo2; df=1, F=0.92, p=0.35), thus we combined sequence read 

data of the two replicates for each week at each location to increase the read depth for 

all further statistical analyses. Based on our global GLMM, we found that lake (as a 

broad spatial factor) had significant effects (p<0.05) only on alpha diversity indexes, 

however, month (as a broad temporal factor) had significant effects (p<0.05) on alpha 

diversity indexes, PCo1 and PCo2 (Table 2.1). In the lake-specific models (two 

models); sampling location had a significant effect (p<0.05) only on alpha diversity 

indexes but, month had a significant impact on alpha diversity indexes, PCo1 and PCo2 

(Table 2.1). The interactions of sampling location with month also had significant 

(p<0.05) effects on the variables in two lake-specific models (Table 3.1). 
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Table 3.1. Results of GLMM analysis of bacterial community variation temporally and spatially. 

Dependent variables included alpha diversity indexes and Bray–Curtis dissimilarity principal 

coordinate analysis axes (PCo1 and PCo2). Degrees of freedom, F value and p values are shown 

(significant p values are highlighted). 

Factors 
df 

Chao1 Shannon PCo1 PCo2 

F 

value 
p value F value p value F value P value F value p value 

Full model 

Lake (sampling 

location) 
5 4.8 0.000 2.7 0.02 0.002 1.000 0.000 1.000 

Month (week) 29 7.11 0.000 6.9 0.000 7.4 0.000 4.8 0.000 

R2 0.4 0.35 0.37 0.27 

Lake Erie 

Sampling 

location 
3 6.5 0.000 5.8 0.001 0.006 0.99 0.000 1.000 

Month  14 21.9 0.000 24.6 0.000 21.8 0.000 61.21 0.000 

Month (week) 15 4.4 0.000 5.7 0.000 4.8 0.000 3.5 0.000 

Sampling 

location x Month 

(week) 

42 3.6 0.002 3.3 0.003 2.1 0.005 2.19 0.001 

R2 0.83 0.79 0.21 0.18 

Lake St. Clair 

Sampling 

location 
1 10.3 

0.000 
9.3 

0.000 
0.003 

0.95 
0.000 1.000 

Month  14 24.2 0.000 14.8 0.000 48.8 0.000 25.2 0.000 

Month (week) 14 2.5 0.001 2.4 0.003 12.4 0.000 9.1 0.000 

Sampling 

location x Month 

(week) 

14 2.1 0.01 7.1 0.000 6.1 0.000 5.9 0.000 

R2 0.29 0.26 0.2 0.12 

Sampling location; 6 public beaches, Month; 15 sampling months, Week; bi-weekly sampling/month, 

Lake; two lakes. Parenthesis indicates nesting the variables and “x” indicates interaction effects.  

 

As our lake specific models showed that location (6 sampling locations) and month 

(15 sampling months) had significant effects on diversity indexes (Table 3.1), thus we 

also tested for the effects of those two main factors on the relative abundance of OTUs 

across all sites combined. Our Kruskal–Wallis analyses showed that out of 2,100 

OTUs, the relative abundance of 336 (16%) of the OTUs were significantly affected by 

location (6 sampling locations), while the relative abundance of 1453 (69%) of the 
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OTUs were significantly affected by month (15 sampling months) (Figure 3.2). The 

interaction of location and month had a significant effect on the relative abundance of 

311 (14%) OTUs (Figure 3.2). It is important to note that significance was not 

corrected for multiple simultaneous comparisons; however, the goal of this analysis 

was to show the pattern of effects on OTU relative abundance, highlighting the 

dominance of temporal effects relative to spatial and interaction effects (Figure 3.2). 
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Figure 3.2. Histograms showing the effect (Kruskal–Wallis P-value) of location (6 sampling 

locations) and month (15 sampling months) and their interactions on the relative abundance of 

2,100 bacterial OTUs sampled at 6 sites over 15 months. panel A; temporal effect (month), panel 

B; spatial effect (location) and panel C; the interaction of spatial and temporal effects (Location x 

Month). Uncorrected p values are shown on the in Y-axis and p=0.05 was used as cut-off of the 

significant effect (dashed line in each plot).  

3.3.1 Bi-weekly diversity variation of the BCCs  

We chose alpha diversity indexes and Bray–Curtis dissimilarity PCo1 and PCo2 to 

evaluate the spatial and temporal variation of the BCC across 6 different locations over 

15 months of bi-weekly sampling. PCo1 (16.1%) and PCo2 (8.1%), which represented 

the most variation in the BCC PCoA, varied substantially over the 15 month sampling 

period (Figure 3.3), while PCo3 (6.5%), PCo4 (3.5%), PCo5 (3.4), PCo6 (2.2%) and 

PCo7 (1.5%) represented only minor levels of variation in the bi-weekly BCCs and are 

not shown. Inspection of the bi-weekly plots of alpha diversity (Chao1; Figure 3.3) and 

Shannon (Appendix B; Figure S3.1) also shows substantial temporal variation over the 

course of the 15-month sampling period. Shannon results were provided in the 

supplementary data. Although there is some bi-weekly variation in all three parameters 

(Figure 3.3 and Appendix B; Figure S3.1), the majority of variation is seen at longer 

temporal scales, consistent with our statistical analyses that showed, overall, sampling 

week (within the month) had no significant effect (p>0.05) on the BCCs (Table 3.1). 
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Figure 3.3. Line plots showing mean bi-weekly variation in Chao1 index (panel A) and Bray–

Curtis dissimilarity PCo1 (panel B) and PCo2 (panel C) for the six different sampling locations 

(CB, CH, HB, LP, PP and SP) over 15 sampling months (June 2016 - August 2017). Error bars 

show standard deviation. In X-axis; numbers indicate the month in years, W shows weeks 1 and 

2, 16 and 17 also indicate 2016 and 2017 years respectively. 
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3.3.2 Spatial variation  

Broad spatial variation: There was no significant difference in the Bray–Curtis 

dissimilarity matrix for the BCCs of Lake Erie and Lake St. Clair across the full 

sampling period (PERMANOVA; df=1, F=2.064, p=0.07) (Appendix B; Figure S3.2, 

panel A). Similarly, we found no significant variation in the mean of the Chao1 

(F=1.2), PCo1 (F=0.42) and PCo2 (F=0.92) values between two lakes by one-way 

ANOVA (df=1, p>0.05). Out of the 30 detected classes of bacteria across all samples, 

the relative abundance of only 5 of the classes including classes of Acidobacteria, 

Acidimicrobiia and Thermoleophilia ( belong to Actinobacteria), Chloroplast (belong 

to Cyanobacteria) and Saprospirae (belong to Bacteroidetes).were significantly higher 

(LDA; p<0.05) in the BCCs of Lake Erie in compare to Lake St. Clair (Appendix B; 

Figure S3.3).  

Spatial variation among different locations: There was no significant difference 

in the Bray–Curtis dissimilarity matrix for the BCCs of the six sampling locations 

(PERMANOVA; df=5, F=1.06, p=0.34) (Appendix B; Figure S3.2, panel B). One-way 

ANOVA showed a significant effect of sampling locations on the Chao1 index 

(F=5.32, p<0.001). Tukey post-hoc test revealed that only the mean of Chao1 index in 

CB was significantly higher (p<0.05) than HB, PP and SP but not from CH and LP. 

Using one-way ANOVA, there was no significant effect of sampling locations on PCo1 

(df=5, F=0.644, p=0.66) and PCo2 (df=5, F=0.38, p=0.85). Out of the 2,100 OTUs, 

336 OTUs (4 highly abundant, 21 moderately abundant and 311 rare OTUs) showed 

significant variation among the six sample locations (Figure 3.2). We only identified 1-

5 classes of bacteria with significant divergence for some of the pairwise comparisons 

with no significant variation (p>0.05) at the class level between the BCC of HB and PP 

(Appendix B; Table S3.1). We identified a maximum 5 classes of bacteria with 

significant variation in their relative abundance between CB and CH, HB, LP, and SP; 

between CH and SP, between HB and SP and between LP and SP (Appendix B; Table 

S3.1). We only found a common pattern in the relative abundance of Bacilli across all 

sampling locations which was significantly (p<0.05) lower at CB (19%) compared to 

the other sampling locations (CH; 25.5%, HB; 29.23%, LP; 28.17%, PP; 28.39% and 

SP;24%). 
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3.3.3 Temporal variation 

2.2.4.1 Broad temporal variation 

BCCs variation: As week had no significant effect on the BCC (Table 3.1), we 

combined bi-weekly data from each location within each month. We thus had a total of 

90 samples (15 months x 6 locations) for our cluster analysis. UPGMA clustering 

showed five major clusters diverging at between 50-60% similarity based on the Bray–

Curtis similarity index (Figure 3.4). The BCCs of summer 2016 (June, July and 

August) were grouped in cluster 1. The BCCs of December (2016) and January (2017) 

were grouped as cluster 2. The BCCs of five months including February, March, April, 

May and June 2017 clustered together as cluster 3. The BCCs of July and August 

(summer 2017) were grouped as cluster 4 and the BCCs of fall 2016 (September, 

October and November) grouped into cluster 5 (Figure 3.4). 
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Figure 3.4. UPGMA tree showing cluster results based on Bray-Curtis similarity of the 15 monthly 

BCCs sampling across six sample sites (X-axis: 15 sampling months collected from 6 different 

location; CB, CH, HB, LP, PP and SP over 2016 and 2017. 2016 and 2017 showed as 16 and 17 

respectively in the figure). The BCCs grouped into five broad temporal community clusters, all 

clusters were above 50- 60% Bray–Curtis similarity (Y-axis) and show considerable taxonomic 

divergence (pie charts showing phyla level composition). For this analysis, the Bray–Curtis 

similarity matrix was generated using the 300 most abundant OTUs.  

There was significant variation among the BCCs of 5 clusters (PERMANOVA test; 

df=4, F=9.57, p=0.0001). Pairwise comparison of the BCCs of clusters 1-5 also 

showed significant variation (p<0.05) between the BCCs of all pairwise comparisons. 

The overall average dissimilarity of the BCCs of 5 broad clusters was 51% using 

SIMPER analysis (Appendix B; Table S3.2). 

Diversity variation among clusters: The clusters differed significantly in Chao1 

(df=4, F=27.42, p<0.0001), PCo1 (df=4, F=28.2, p<0.0001) and PCo2 (df=4, F=27.9, 

p<0.0001) using one-way ANOVA. Tukey post-hoc analysis showing that Chao1 and 
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PCo1 of cluster 1 (June, July and August; 2016) was significantly (p<0.05) higher than 

all 4 other clusters. PCo2 of cluster 2 (December and January) was significantly 

(p<0.05) lower than all 4 other clusters. More interestingly, the mean of Chao1 for 

cluster 3 (February, March, April, May and June; 2017) was significantly lower than 

all other clusters and the mean of PCo1 also was the lowest among all clusters but 

significantly lower than cluster 1 and 4 (Appendix B; Table S3.3). Variation in 

Shannon and PCo3-5 data are presented in supplementary data (Appendix B; Figure 

S3.4). 

 OTUs and taxonomic variation: At the OTU level, clusters 1, 2, 3, 4 and 5 had 7, 

12, 11, 9 and 11 highly abundant (relative abundance > 1%) OTUs, respectively. Only 

four OTUs (2, 3, 4 and 6) were common among all 5 clusters. Only four of those 

OTUs; OTUs 2 and 3 (phylum Actinobacteria and family ACK-M1), OTU4 (phylum 

Firmicutes and family Exiguobacteraceae) and OTU6 (phylum Proteobacteria and 

family Comamonadaceae) were abundant across all clusters. The relative abundance of 

many OTUs significantly varied among clusters, as expected given that the clusters 

were defined based on variation in BCC. For example, the relative abundance of OTU2 

(family ACK-M1) was significantly higher in the BCC of cluster 1 (9.5%) than all 

other clusters (2.5-3.8%). Out of 2100 OTUs; 75, 90, 79, 61 and 79 moderately 

abundant OTUs were detected in the BCCs of clusters 1, 2, 3, 4 and 5 respectively. 

Among the moderately abundant OTUs, only 11 OTUs (18, 20, 22, 27, 28, 37, 38, 43, 

44, 52 and 63) were common among all 5 clusters.  

While the BCCs of the clusters (1-5) were dominated by four phyla, the relative 

proportions of these phyla varied substantially (Figure 3.4). Actinobacteria was the 

most common (~50%) versus Firmicutes (7.16%) as the less common taxon in the 

BCC of cluster 1. In the BCC of clusters 4 and 5, Actinobacteria (~32% in both 

clusters 4 and 5) was dominant but Firmicutes (~32% in cluster 4 and ~30% in cluster 

5) became the second most common taxon. In the BCC of cluster 2, Proteobacteria 

(~39%) was the most common taxon and Firmicutes (~19%) became the third most 

common phylum after Actinobacteria (~26%). More interestingly, Cyanobacteria 

levels were elevated in the BCC of cluster 2 (2.25%) compared to the other clusters 

(0.75±0.35%). The BCC of cluster 3 was enriched for Firmicutes (~35%) as the 
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dominant phylum and by Proteobacteria (~30%) as the second most common phyla. 

We observed substantial variation in the relative abundance of 30 classes of bacteria. 

For example, the relative abundance of Bacilli was significantly lower in the BCC of 

cluster 1 compared to all other clusters, while some classes such as Actinobacteria and 

Thermoleophilia (belonging to Actinobacteria) and Cytophagia and Saprospirae 

(belonging to Bacteroidetes) conversely had significantly higher relative abundance in 

the BCC of cluster 1 relative to all the other clusters (Appendix B; Table S3.4).  

2.2.4.2 Monthly temporal variation 

BCCs variation: As lake and sampling location had effects only on alpha diversity 

indexes of the BCC and sampling week had no significant effects (Table 3.1), we 

combined the data from the six sampling locations and the two within-month sampling 

dates for our temporal analysis. Thus, our temporal analyses focus on variation among 

the 15 months of sampling. There was a statistically significant effect of sampling 

month (df= 14, F=6.1 and p=0.0001) on the Bray–Curtis dissimilarity matrix of the 

BCCs based on PERMANOVA. The pairwise comparison of the BCCs of the months 

showed significant differences for most comparisons (Table 3.2).  
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Table 3.2. Pairwise dissimilarity (%; SIMPER) (above the diagonal) and PERMANOVA significance probabilities (below the diagonal) 

for the BCCs across the 15 months of sampling (numbers indicate months, 16 and 17 show 2016 and 2017 respectively. P values 

were adjusted using a Bonferroni correction for multiple comparisons. 

Month 

/years 
6/16 7/16 8/16 9/16 10/16 11/16 12/16 1/17 2/17 3/17 4/17 5/17 6/17 7/17 8/17 

6/16  33.35 42.8 53.8 46.51 47.36 47.62 56.12 53.97 57.93 43.06 55 51.37 50.71 49.21 

7/16 0.002 
 

32.35 47.46 43.43 47.56 50.27 57.46 57.43 60.96 46.88 58.09 54.8 50.47 47.06 

8/16 0.0022 0.0023 
 

41.22 43.75 51.61 53.02 60.2 61.33 64.04 51.43 60.99 58.79 52.96 47.21 

9/16 0.0026 0.0028 0.0013 
 

41.33 47.22 52.45 55.33 55.36 55.3 50.17 54.85 53.32 49.02 48.02 

10/16 0.002 0.0031 0.0013 0.0048 
 

39.73 45.28 51.53 49.36 50.95 43.38 51.3 48.38 48.47 47.01 

11/16 0.0028 0.0022 0.0025 0.0023 0.011 
 

30.32 46.8 41.21 47.73 41.8 50.38 49.83 52.32 51.31 

12/16 0.0024 0.002 0.0018 0.002 0.0018 0.0884 
 

45.47 41.07 48.24 45.95 54.77 52.82 55.09 54.68 

1/17 0.0021 0.0019 0.0031 0.0025 0.0024 0.0024 0.032 
 

33.37 50.52 50.5 57.37 57.44 60.72 60.49 

2/17 0.0018 0.0021 0.0021 0.0026 0.0028 0.002 0.011 0.087 
 

34.33 47.31 54.69 53.79 58.25 59.35 

3/17 0.0023 0.0017 0.0021 0.0028 0.0017 0.004 0.02 0.04 0.04 
 

29.85 32.31 50.41 53.69 57.7 

4/17 0.0025 0.0035 0.002 0.0023 0.0024 0.0027 0.0027 0.0024 0.0021 0.092 
 

30.82 26.3 50.22 50.41 

5/17 0.002 0.0015 0.0016 0.0024 0.0022 0.0029 0.0025 0.0027 0.0021 0.075 0.063 
 

26.24 48.86 52.69 

6/17 0.0024 0.0021 0.003 0.0026 0.0019 0.002 0.003 0.0028 0.0024 0.0399 0.062 0.058 
 

39.16 46.87 

7/17 0.0027 0.0024 0.0029 0.0018 0.0024 0.0027 0.002 0.0022 0.0024 0.0019 0.0014 0.0017 0.036 
 

28.2 

8/17 0.0024 0.0019 0.0029 0.0022 0.027 0.0017 0.0023 0.0027 0.0026 0.0035 0.0034 0.0103 0.039 0.262 
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Diversity variation: We observed significant variation in Chao1 (df=14, F=8.97, 

p<0.0001), PCo1 (df=14, F=5.7, p<0.0001) and PCo2 (df=14, F=3.5, p=0.001) indexes 

among the 15 months of sampling using one-way ANOVA. Pairwise post-hoc tests 

showed that 30% of the comparisons among sampling months were statistically 

significant (p<0.05) for Chao1 among 15 months of sampling, while 10% of the 

pairwise post-hoc test comparisons of PCo1 and only 3% of the post-hoc test 

comparisons of PCo2 showed significant divergence (p<0.05) (Figure 3.5, Appendix B; 

Table S3.5).  
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Figure 3.5. Line plots of monthly changes of Chao1 (top panel) and Bray–Curtis dissimilarity 

components (bottom panel) of 6 different locations over 15 months of sampling. C1-5: Cluster 1-

5 is based on figure 4. PCo1 and 2 explained 22.9% and 14% variances of the BCC variation over 

15 months respectively. X-axis: numbers indicate sampling months, 16 and 17 show sampling 

years 2016 and 2017 respectively. 
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OTUs and taxa variation: Out of 2100 OTUs, the relative abundance of 1453 

(69%) OTUs changed significantly (Figure 3.2) across the months. The BCCs of July 

(2016) had the lowest number (6 OTUs) of highly abundant OTUs while the BCCs of 

February (2017) and June (2017) had the highest number of highly abundant OTUs (12 

OTUs) among the 15 months of sampling. OTUs 2, 3 (family ACK-M1), 4 (family 

Exiguobacteraceae) and 6 (family Comamonadaceae) were highly abundant across all 

15 months of sampling, but the relative abundance of others with high relative 

abundance dropped to ≤1% in some months (Figure 3.6). Some highly abundant OTUs 

showed highly variable patterns over 15 months of sampling. For example, the relative 

abundance of OTU2 (family ACK-M1) was 8.2%, 10.8% and 9.5% in June, July and 

August (2016) respectively but dropped to between 2.0% and 5.7% across all other 

months. In contrast, the relative abundance of OTU13 (phylum Bacteroidetes and 

family Cyclobacteriaceae) was 0.02-4.4% in the BCCs of June 2016 – June 2017 but 

increased up to 10.7% and 7.2% in the BCCs of July and August (2017) respectively 

(Figure 3.6, panel A). Many of even the highly abundant taxa exhibited unpredictable 

variation across the study period, highlighting the chaotic nature of BCCs. 

Across the 15 months of sampling, 60-90 OTUs had moderate relative abundance 

(0.999-0.01%), but only 2 of those OTUs (OTU37; phylum Actinobacteria, family 

ACK-M1 and OTU42; phylum Bacteroidetes, family Chitinophagaceae) were 

consistently in the moderate relative abundance range, as the abundance of most of the 

OTUs with moderate abundance dropped to <0.01% (rare abundance) while a few 

increased to above 1% (abundant OTUs). Interestingly, the relative abundance of 

family Flavobacteriaceae belonging to Bacteroidetes (OTU50) and Oscillatoriaceae 

belonging to Cyanobacteria (OTUs 65 and 90) were elevated in the January BCCs 

relative to all other months (Figure 3.6, panel B).  
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Figure 3.6. The relative abundance of highly abundant OTUs are (panel A) and Flavobacteriaceae 

(OTU50) and Oscillatoriaceae (OTUs 65 and 90) (panel B) over 15 months of sampling. 
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At the phyla level, the BCCs of June (47.56%), July (49.83%) and August (53.37%) 

in the summer of 2016, were enriched by Actinobacteria compared to June (27.47%), 

July (30%) and August (34.78%) in summer 2017 and all other months. In contrast, 

taxa belong to Firmicutes was not common in the BCCs of June (6.93%), July (7.24%) 

and August (7.31%) in summer 2016 while they were consistently common in the 

composition of the BCCs in other months (30.43 ± 6.88%). The relative abundance of 

taxa belonging to class Proteobacteria increased in January (34.72%) and February 

(43.34%) compared to other months (26.21 ± 3.84%). 

At the class level, significant variation (p<0.05) was detected among months by 

pairwise LDA among the 30 identified taxonomic classes. Only 2 bacterial classes 

showed significant differences between the BCCs of June and July (2016), meanwhile, 

24 bacterial classes showed significant variation between the BCCs of July 2016 and 

June 2017. Classes Actinobacteria, Acidimicrobiia, Thermoleophilia (phylum 

Actinobacteria) and Saprospirae and Cytophagia (phylum Bacteroidetes) showed high 

relative abundance in the June and July and August (2016) BCCs compared to other 

months (Figure 3.7). Conversely, class Bacilli had low relative abundance in the June 

and July and August (2016) BCCs compared to all other sampling months (Figure 3.7). 

Class Chloroplast became a highly abundant taxa in the BCCs of cold months 

(November and December; 2016 and January; 2017). We also observed a noticeable 

increase in the relative abundance of classes Beta, Delta and Gammaproteobacteria in 

the BCC of January (2017) and a shift in the relative abundance of class 

Planctomycetia from highly to moderately abundant in the cold months (November-

May) (Figure 3.7). 
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Figure 3.7. Bar chart showing the relative abundance of the BCCs at the class-level for combined 

sampling locations and bi-weekly sampling over the 15 months of sampling.  

We also separated OTUs belonging to putative heterotrophic (2100 OTUs) from 

phototrophic OTUs (57 OTUs) over 15 months of sampling (Appendix B; Figure S3.5) 

and combined the relative abundance of OTUs belonging to same taxa at the family 

level and focused on the dominant OTUs. Surveys of heterotrophic bacteria revealed 

significant changes in the composition of heterotrophic bacteria between the two 

summers (2016 and 2017). The change was characterized by significant reductions in 

the relative abundance of families such as C111 and ACK-M1 (Actinobacteria) in 

summer 2017 relative to summer 2016, coupled with increased abundance of 

Cyclobacteriaceae (Bacteroidetes), Enterobacteriaceae (Gammaproteobacteria) and 

Bacillaceae (Bacilli) in summer 2017 (Appendix B; Figure S3.5). More interestingly, 

Oscillatoriaceae (Cyanobacteria), a phototrophic family, exhibited noticeably higher 

abundance in colder, lower sunlight months (Appendix B; Figure S3.5, panel B) which 

coincided with an increase in the abundance of Flavobacteriaceae family (a 
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heterotrophic bacteria) in the colder months; November - March (Appendix B; Figure 

S3.5). 

Environmental variables effect: The mean water temperature varied considerably, 

with summer highs of 24.3 ± 0.4 °C and 22 ± 0.2 °C for summer 2016 and 2017 

respectively, with the highest and lowest water temperatures in August 2016 (28 ± 0.72 

°C) and January 2017 (0.05 ± 0.070 °C) (Appendix B; Figure S3.6). Environmental 

parameters (daylight, precipitation and water temperature) correlated with the BCCs of 

6 sampling locations over 15 sampling months (Spearman Rho=0.32, p < 0.05). 

Daylight (4%), precipitation (4%) and water temperature (13%) together explained 

21% of the total variation of the biological data (Appendix B; Figure S3.7). 

3.4 Discussion  

Our results showed minor spatial variation (between lakes and among sampling 

locations). It has been reported that variation of environmental parameters such as 

salinity, redox conditions and dissolved organic matters (DOM), etc. (Beck et al., 

2017), as well as habitat variation (Lear et al., 2014), among sampling locations, are 

strong drivers of the spatial variation of the microbial communities. We did not 

measure abiotic parameters such as nutrient levels at our sampling locations; however, 

due to connectivity of the two lakes by the Detroit River (Burniston et al., 2018), the 

short distances among the sampling locations and the eutrophication of Lake Erie 

(Watson et al., 2016) and St. Clair (Bocaniov et al., 2019), our sampling locations 

might have similar habitat features which consequently resulted in the little spatial 

variation of the BCCs in our study. For example, even comparisons of upper Great 

Lakes (lakes Superior and Huron) BCC data with Lake Erie returned only a few OTUs 

(383 out of ~13000 OTUs) with significant differences in their abundance 

(Rozmarynowycz et al., 2019), consistent with our observation of only relatively minor 

spatial variation effects on BCC sampled at the same time. A report of only minor 

spatial variation in the metabolic profiles in 8 carbon substrates out of 31 in the 

sediment microbial communities of Lake St. Clair (Oest et al., 2018) highlighted the 

lack of substantial spatial variation among sites even at the functional level. On the 

other hand, a study of BCC variation across long distances (~3000 km) showed two 

separate communities; upper versus lower Missouri River (Henson et al., 2018). 
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Additionally, three distinctly different bacterial assemblages were reported in the 

upper, middle and lower Yenisei River (1800 km) (Kolmakova et al., 2014) – that 

study also reported matching nutrient spatial variation. The reported presence of 

distinct BCCs across large spatial scales versus our weak spatial effects across short 

distances may reflect nutrients gradients that may occur across long distance and drives 

microbial habitat variation. 

We observed strong temporal variation over our sampling effort that included more 

than a year (15 months), which captured vast temporal (seasonal) variation. Clustering 

of the BCCs for the 15 sampling months resulted in five highly divergent BCC clades, 

which closely matched to seasonal patterns. Many studies have reported high 

prokaryotic microbial diversity in summer relative to winter (Hao et al., 2017), which 

we also observed. More interestingly, we found significant variation between the BCC 

of summer 2016 and 2017, with a significant decrease in the diversity indexes of the 

BCC of summer 2017. As the water temperature of two summers was not significantly 

different, the variation of the two summer BCCs is likely related to other abiotic (such 

nutrients bioavailability) and biotic factors that differed between the two summers 

(Bižić-Ionescu et al., 2014; Newton et al., 2011). Perhaps not surprisingly, we found 

significant correlations between selected environmental factors (daylight hours, 

precipitation and water temperature) and the BCC; however, all three environmental 

factors only explained 21% of the total variation in BCC across the 15 months. This 

study was not designed to test for annual effects; however, significant differences in 

the BCC in the two sampled summers (2016 and 2017) highlights the potential for 

unpredicted annual temporal variation along with a seasonal and monthly temporal 

variation of freshwater BCCs. Few studies have characterized monthly temporal 

variation in freshwater BCC. However, one study reported monthly monitoring of BCC 

of Lake Taihu over 3 years (2009–2011) at four different sites, and showed significant 

monthly (and consequently seasonal) variation of diversity indexes of the BCC (Peng 

et al., 2018). In line with our observation of strong seasonal variation in BCC, drastic 

seasonal transitions of microbial abundance and diversity have been reported in lakes 

(Bižić-Ionescu et al., 2014; Butler et al., 2019). Reported high levels of variability in 

BCC of bog lakes over 5 years (with unique communities in each year of sampling) 
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(Linz et al., 2017) was also consistent with our limited results regarding annual 

(summer) BCC variation in large freshwater lake ecosystems.  

Few microbial taxa showed higher abundance in Lake Erie relative to Lake St. 

Clair, despite Lake Erie is a substantially larger and deeper lake. The few that were 

more abundant in Lake Erie mostly belong to Actinobacteria. Actinobacteria are often 

the numerically dominant phylum in lakes (Newton et al., 2011), but their abundance 

decreases with oxygen limitation (Taipale et al., 2009) and overloading of the nutrients 

(Haukka et al., 2006). Low abundance of this phylum in Lake St. Clair is likely due to 

the low level of oxygen or higher loading of nutrients in the smaller, shallower Lake St. 

Clair. We found little evidence for taxonomic variation (at the class level) among 

sampling locations in Lake Erie perhaps reflecting relatively uniform microbial habitat 

characteristics among the three sampling locations (all public beaches). Interestingly, 

the abundance of Bacteroidetes and Verrucomicrobia (two taxa associated with high-

nutrient environments) (Newton et al., 2011; Wagner and Horn, 2006) and 

Planctomycetes (a key taxon in anaerobic ammonium oxidation) (Wagner and Horn, 

2006) were significantly different between the two sampling locations in Lake St. Clair 

potentially due to overloading of nutrients from an adjacent urban tributary near one of 

the sampling sites (LP).  

Previous microbial community work in Lake Erie (Mou et al., 2013; Sharma et al., 

2009; Wilhelm et al., 2014) suggested that Actinobacteria are important components of 

the microbial community, particularly in the summer, which matched to our finding for 

2016 but not in 2017. The summer 2017 BCC showed a significant reduction of 

Actinobacteria compared to summer 2016, potentially due to changes in abiotic 

variables such as reduced oxygen levels (Taipale et al., 2009) or nutrient overloading 

(Haukka et al., 2006) in summer 2017. OTUs belonging to Proteobacteria were in the 

top three most abundant phyla in the BCCs across different months and seasons. For 

example, Proteobacteria was the most abundant phylum in January and June (2017); 

the second most common in summer 2016 (June, July and August) and third most 

common in July (2017). Proteobacteria are reported as very abundant in many 

different freshwater lake habitats, but their relative abundance varies among lakes, 

within lakes and over time (Newton et al., 2011). Curiously, one ubiquitous group of 
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metabolically versatile bacterial was observed at high abundance in the coldest months 

of our study; order Pseudomonadales (families Moraxellaceae and 

Pseudomonadaceae) in January and February and Enterobacteriaceae 

(Gammaproteobacteria) in January, March, May, June and July (2017). Freshwater 

lake Bacteroidetes are often found in high abundance during periods following 

cyanobacterial blooms (Newton et al., 2011). It has been reported that Flavobacterium 

spp. (belonging to Bacteroidetes) is the dominant taxa of the winter community in 

Lake Erie (Wilhelm et al., 2014), and while we also found a significant elevation of 

Flavobacteriaceae over the cold months, we identified Proteobacteria as the dominant 

phylum in the winter (cluster 2). In our data set, the relative abundance of 

Cyanobacteria (family Oscillatoriaceae) and Bacteroidetes (family Flavobacteriaceae) 

exhibited correlated abundance in the BCC of November to March, likely reflecting the 

dependency of Bacteroidetes on the organic matter loading by Cyanobacteria (Eiler 

and Bertilsson, 2007). Previous studies have also noted high levels of Cyanobacteria 

during winter months in freshwater reservoirs (Valério et al., 2008). It has been 

suggested that high concentrations of overwintering vegetative Cyanobacteria cells 

may provide a large inoculum for blooms during warmer seasons (Ma et al., 2016), but 

the impact of family Oscillatoriaceae on algal bloom dynamics in Lake Erie and St. 

Clair is not well known.  

Cytophaga is well known to be proficient in degrading biopolymers such as 

cellulose and chitin, part of the high molecular mass fraction of DOM (Kirchman, 

2002; Newton et al., 2011). In our study, the relative abundance of Cytophaga (phylum 

Bacteroidetes) changed from being a rare component of the community in June, July 

and August (summer 2016) to high abundance in May, July and August (2017), 

indicating potentially elevated availability of DOM in the summer of 2017. Although 

Firmicutes is generally a minor freshwater lake community taxon (Newton et al., 

2011), in our study the relative abundance of OTUs belonging to Firmicutes increased 

over time. Indeed, this phylum became one of the most dominant phyla across all 

sampling points after summer 2016. Similar to our finding, a high abundance of 

Firmicutes (23%) was reported from water samples collected from freshwater public 

beaches (Ohio, Madison lake) (Lee et al., 2016). In that study, Exiguobacterium and 
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Paenisporosarcina were the most dominant Firmicutes genera (Lee et al., 2016), while 

in our study Bacillaceae (September 2016 - August 2017) and Exiguobacteraceae 

(December, February and March 2016-17) were the most abundant genera in Lake Erie 

and St. Clair. 

We noted a composition shift of the freshwater BCC from a community enriched by 

Actinobacteria (sensitive to nutrient overloading and low oxygen level) to one enriched 

by Proteobacteria (adapted to nutrient overloading) (Newton et al., 2011), 

Bacteroidetes (proficient in the degradation of complex biopolymers and DOM) 

(Newton et al., 2011) and Firmicutes (diverse metabolic capabilities and resistant to 

oxygen limitation) (Martiny et al., 2006) over time. Although we did not measure 

nutrients in our study, the observed pattern of BCC change indicated likely increases in 

the loading of nutrients into both lakes from fall 2016 onwards. However, the 

mechanism(s) responsible for the observed BCC shift requires further investigation. 

Furthermore, we observed temporal variation in Enterobacteriaceae abundance; a 

family that includes many waterborne pathogens and fecal indicator bacteria (FIBs) 

(Ramírez-Castillo et al., 2015), Pseudomonadales; a taxon which may act as an 

opportunistic pathogen in fish (Su et al., 2020) and humans (Malhotra et al., 2019) and 

Oscillatoriaceae (Cyanobacteria), all of which reflect variation in potential pathogens 

and health risk, particularly over the summer. 

3.5 Conclusion 

Our results showed that although freshwater BCC may have a cyclic seasonal or 

annual variation component, the details of the composition of the community can 

change unpredictably over the temporal and spatial scales included in our study. The 

observed BCC variation could be linked to the functional activity of the community, 

making additional studies necessary to characterize the consequence of this variation 

on the ecological services of BCC in a large freshwater ecosystem. Our results also 

showed that long term monitoring of the bacterial community could serve as a sensitive 

proxy of freshwater ecosystems health and perhaps even function. 
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 FUNCTIONAL AND VIRULENCE GENE TRANSCRIPTION VARIATION IN 

BACTERIAL METATRANSCRIPTOMES IN LARGE FRESHWATER LAKE 

ECOSYSTEMS  

4.1 Introduction 

Freshwater ecosystems are remarkable in terms of the complexity of their ecosystem 

processes and the interactions across trophic levels (Geist, 2011). While freshwater 

ecosystems provide critical services, including drinking water, nutrient recycling, sport 

and commercial fisheries and recreation, they face many threats such as pesticide and 

fertilizer pollution, climate change, water extraction, and habitat destruction, among 

others (Castello and Macedo, 2016; Dodds et al., 2013). The Laurentian Great Lakes 

(LGLs) collectively are the largest freshwater ecosystems in the world, and arguably 

represent the single most valuable natural resource on the North American continent 

(McKenna Jr, 2019). Roughly 14% of the total US population and 60% of the total 

Canadian population (~40 million Canadians and Americans) live within the LGL 

watershed (MacKenzie, 1997). The well-documented degradation of the LGL’s water 

resources dates back more than 100 years (Beeton, 1965), but recent studies report 

ongoing degradation of the LGLs ecosystem due to intensive fishing, loss of habitat, 

introduction of exotic species, nutrient enrichment, and chemicals (Jenny et al., 2020; 

Wattigney et al., 2017). 

Bacteria communities (BCs) are an important component of the microbial 

community (Berdjeb et al., 2011) and have fundamental direct and indirect roles in all 

ecosystems, but are particularly important in providing freshwater ecosystem services 

(Blaser et al., 2016). For example, Cyanobacteria are photoautotrophic, with some 

diazotrophic properties, and are one of the main players in inorganic carbon (C) and 

nitrogen (N) fixation (Vahtera et al., 2010). Heterotrophic bacteria also have a critical 

role in regenerating and mobilizing nutrients in freshwater food webs, and it has 

become clear that aquatic heterotrophic bacteria drive transformations and the cycling 

of most biologically active elements in the aquatic ecosystems (Newton et al., 2011). A 

variety of abiotic and biotic factors are known, or suspected, to affect BC composition 

and function. Abiotic factors such as light levels (day versus night) (Poretsky et al., 
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2009), water temperature (Lei and Lai, 2019) and nutrient loading (Ren et al., 2019) 

can have significant temporal effects on BC composition (Shahraki et al., 2020) and 

hence the community activity and function. On the other hand, the adaptation of BC to 

local conditions, habitats (Lear et al., 2014) and spatial variation in nutrient gradients 

(Davis et al., 2015) may also result in species sorting, which could lead to spatial 

variation in the function of the BC in aquatic ecosystems. High throughput sequencing 

of the metatranscriptome has provided an unprecedented opportunity to quantify gene 

activity in natural microbial communities (Moran et al., 2013) and hence roughly 

characterize community function. The study of functional variation of the BC in 

relation to abiotic and biotic parameters provides insights into how these parameters 

are interlinked with BC dynamics and ecological activity (Singh et al., 2009). We have 

only a superficial knowledge of the factors that contribute to variation in BC function, 

both spatially and temporally, yet such information would allow us to better predict BC 

function, particularly in freshwater ecosystems.  

Lake Erie, the smallest and shallowest of the LGLs, has been impacted by poor 

water quality as far back as the 1960s (Davis, 1964). Phosphate removal programs 

ultimately resulted in significant improvement in the trophic state of Lake Erie 

(Schindler et al., 2016). However, with changes in the ecology, climate, and the now, 

nonpoint P sources, the extent and duration of Lake Erie's cyanobacteria harmful algae 

blooms (cHABs) and hypoxia has increased dramatically since the mid‐1990s (Scavia 

et al., 2014). Increased the hypoxic areas (up to a maximum daily extent of 11,600 km2 

(Karatayev et al., 2018)), and toxic Microcystis blooms led to a “do not drink” advisory 

for 500,000 people living in the Toledo, Ohio, area (Ho and Michalak, 2015). Lake St. 

Clair (technically not one of the five LGLs) also is very shallow and highly affected by 

recurrent eutrophication (Healy et al., 2008), and is a potential source of nutrient 

loading for Lake Erie (Scavia et al., 2016). Lake Erie and St. Clair ecosystems are 

currently threatened by frequent water degradation, such as cHABs (Bullerjahn et al., 

2016; Watson et al., 2016). More studies are needed to address the temporal and spatial 

variation of bacterial function associated with variation in water quality, as well as the 

basic ecology, of these two connected water bodies. 
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The BC composition (Glasl et al., 2017) is used as a biomarker to indirectly quantify 

human-induced stress on aquatic ecosystems, and thus it is also used to monitor water 

quality and safety. However, BC composition as a health biomarker has some 

limitations, as sometimes altered BC (not resilient) might result in process rates similar 

to the original community if the members of the community are functionally redundant 

(Allison and Martiny, 2008). Thus, an altered BC may not accurately reflect 

community function and may result in a false positive for the functional breakdown. 

Since RNA is more transient in nature, and hence more responsive to temporal change, 

monitoring the BC metatranscriptome allows the identification of changes in the 

transcriptional activity of the whole BC as well as selected biomarkers (Yosef and 

Regev, 2011).  

Indicator organisms such as Escherichia coli (Soller et al., 2016) and toxin-

producing cyanobacteria (Bartram and Chorus, 1999) serve as proxies for human health 

risk in aquatic ecosystems; however, these indicators have limitations. E. coli 

monitoring is time-consuming and shows poor correlation with the occurrence of actual 

human pathogens (Ishii and Sadowsky, 2008; Jang et al., 2017; Pattis et al., 2017). On 

the other hand, the World Health Organization (WHO) developed a three-level 

guideline approach (measuring cyanobacteria abundance, chlorophyll-a, and 

microcystins) (Bartram and Chorus, 1999) to evaluate the level of health risk causing 

by cHABs in freshwater ecosystems. However, quantifying approximately 90 known 

variants of microcystin and the related toxins is difficult and time-consuming. 

Moreover, Loftin et al, (Loftin et al., 2016) argued that the presence of chlorophyll-a 

does not always equate to cHABs, since chlorophyll is common amongst all 

phytoplankton. Clearly more studies are needed to develop microbial biomarkers (at 

the community or species levels) as reliable and practical indicators of water quality 

and human risk. To this, we need standardized reference data to provide baseline 

metrics that are indicative of healthy microbial community variation and function. 

A recent study of a freshwater lake during ice-free and ice-covered periods 

(November – April), showed high nitrification activity of freshwater BC under ice-

covered conditions (Butler et al., 2019). As cHABs are the main ecosystem health 

challenge of the lower LGLs in recent years, many studies have focused on the activity 
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of the cyanobacteria community (Steffen et al., 2015) and the interaction of 

cyanobacteria and heterotrophic bacteria during bloom events (Briland et al., 2020). 

However, little is known about the temporal and spatial variation of the freshwater BC 

ecological activity in non-bloom conditions, and how the abundance of harmful 

microbes might vary naturally. To address these knowledge gaps, we sampled three 

recreational beach locations in lakes Erie (two beaches) and St. Clair (one beach), in 

the winter (January), summer (July) and fall (October) in 2019. The first aim of the 

study was to generally characterize the temporal (winter, summer and fall) and spatial 

(three sampling locations; public beaches) variation across the whole transcriptome of 

the freshwater BC under non-bloom conditions. The second aim was to examine 

temporal and spatial variation of physiologically and ecologically (i.e. ecosystem 

function) relevant genes. The third aim was to explore the “natural” temporal and 

spatial variation in the transcript abundance of genes associated with human health 

risk. 1) We hypothesized that the freshwater BC exhibits high temporal (seasonal) 

variation but limited spatial variation (due to conservation of function). 2) We also 

hypothesized high temporal (seasonal) variation in the transcription profiles of the 

physiologically and ecologically relevant genes, coupled with limited spatial variation 

in the freshwater BC. 3) We also hypothesized that the community of harmful bacterial 

and the transcripts of their related virulence genes “naturally” have temporal and 

spatial variation. This study provides a temporal and spatial snapshot of the 

physiological and ecological activity the freshwater BC in non-bloom conditions and 

the genes associated with health risk which could increase our understanding of 

microbial ecology in an ecosystem affected by human anthropogenic activity.  

4.2 Material and Methods 

4.2.1 Study sites and sample collection  

Freshwater samples were collected from three public beaches; Colchester Harbour 

(CH) and Seacliff Beach (SL) in Lake Erie, and Sand Point (SP) in Lake St. Clair on 

January 10th  (winter), July 10th (summer) and October 10th  (fall) in 2019. SP is located 

in an urban area and is close to the outlet of Lake St. Clair into the Detroit River, while 

CH and SL are located in agriculture areas (Figure 4.1). At each beach, we collected 2 
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replicate water samples offshore at ~0.5 m depth, for a total of 18 samples (2 replicates 

x 3 beaches x 3 seasons; winter, summer and fall). For each replicate, approximately 10 

liters of freshwater were collected, and 6 liters were filtered immediately in the field 

using 6 separate filters (polycarbonate membranes, 0.2 µm pore size; Millipore, USA). 

All six filters/sample were cut into small pieces using sterile scissors and then 

transferred into a 15 mL Falcon tube (RNase/ DNase free). The Falcon tubes were 

stored immediately on dry ice in the field, then transferred to the lab and stored at -80 

oC until RNA extractions were performed. 

 

Figure 4.1. Map of Windsor‐Essex County and three beaches in Lake Erie (2) and Lake St. Clair 

(1) sampled for this research. 

Environmental variables: Water temperature was measured in the field 

immediately after sample collection. Precipitation and daylight hours data were from 

Environment Canada 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). We also 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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measured total nitrogen (TN = NO2+NO3) and total phosphate (TP) levels from the 

samples according to the Environmental Protection Agency (EPA) methods (method 

365.1 and EPA 353.2) using a SmartChem 170 discrete analyzer (Westco Scientific 

Instruments, Canada).  

4.2.2 RNA Extraction, quality control and sequencing  

RNA was extracted from the filters using PowerSoil Total RNA Isolation kits 

(MoBio), following the manufacturer's protocol with slight modifications. 

DNase/RNase‐free reagents, tubes and pipet tips were kept chilled on ice when 

practical; exceptions include reagents that required room temperature (to avoid 

precipitation) and sample transfers. RNA precipitation was extended to >12 hours at 

−20°C to increase yield, and the final pellet was re-suspended in 80 μL RNase‐free 

water. Aliquots of extracted RNA were kept at −80°C until further analyses. The 

quality and quantity of extracted RNA samples were assessed in‐house using an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada) before 

RNA sequencing. All samples (with their replicates) with RNA integrity numbers 

(RIN) over 7.0 and concentrations >100 ng μL−1 were sent to the Genome Quebec 

Innovation Center at McGill University in Quebec, Canada for RNA sequencing for 

metatranscriptomic analysis. All 18 collected samples (2 replicates x 3 beaches x 3 

seasons) passed QC and were sequenced by Illumina HiSeq 4000.  

4.2.3 Bioinformatic analysis 

From the Illumina platform, we obtained paired‐end reads in fastq format (Phred 

+33), separated into individual files for each single‐end read library. The quality of 

each sequence file was evaluated by FastQC (Wingett and Andrews, 2018). Paired-end 

reads were merged using SortMeRNA version 2.0 (Kopylova et al., 2012) with default 

parameters. Ribosomal RNA sequences (5S, 5.8S, 16S, 18S, 23S, and 28S) were 

identified and excluded from the merged reads but used for taxonomic identification 

(next section). Low quality reads (length > 30 nt) and adaptors were also removed from 

the non-rRNA data for each sample using Trimmomatic version 0.39 (Bolger et al., 

2014). The non-rRNA reads were de novo assembled by Trinity version 2.0.6 after data 

cleaning (Grabherr et al., 2011). The functional annotation of the de novo assembled 
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transcripts was completed using the KO [Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Orthology] database assigned by TransDecoder and Trinotate implemented in 

Trinity version 2.0.6 (Grabherr et al., 2011) and BLASTX against SwissProt database 

(uniprot_sprot.trinotate_v2.0). To obtain gene-level transcript read counts, we mapped 

the non-rRNA read file of each sample to the de novo assembled transcriptome using 

Bowtie version 2.2.4 (Langmead et al., 2009). We used the default setting in Bowtie 

version 2.2.4 for the allowed number of mismatches in a seed alignment during 

alignment (default: 0). The gene transcript read counts were calculated by Coreset 

version 1.06 (Davidson and Oshlack, 2014) for each replicate. The reads belonging to 

archaea, eukaryotes and viruses were removed from the data to focus on bacterial 

transcriptional activity. Moreover, the data of different isoforms of the same gene was 

combined before differential expression analysis.   

4.2.4 Transcriptome analysis  

Taxonomic assignment: 16S rRNA encoding sequences that were filtered from 

non-rRNA data by SortMeRNA version 2.0 (Kopylova et al., 2012) were identified to 

taxon by performing the Basic Local Alignment Search Tool (BLAST) against the 

small subunit ribosomal ribonucleic acid (SSU rRNA) SILVA non-redundant reference 

database with a stringent e-value cut off (e-40) (Pruesse et al., 2007). The best matches 

were accepted for taxonomic assignment. Replicate SSU rRNA data were combined 

and normalized to the total number of SSU rRNA matches for each sample. We 

defined taxa as “abundant”, “moderate” and “rare” when the relative abundance (read 

count) of that taxon was ≥ 1.00%; 1.00% < and > 0.1%; ≤ 0.1% respectively (Logares 

et al., 2014). Here we present only the composition data for the taxa associated with 

water quality degradation (i.e., cyanobacteria and waterborne pathogens) assigned at 

the species level.  

Transcriptome description: The Bioconductor R package, edgeR, was used for 

transcriptome analysis (Robinson et al., 2010). The genes that had <40 reads overall 18 

samples were included in differential transcription analysis. Then, gene cluster 

transcription was normalized using the TMM (Trimmed Mean of M-values) method in 

which the library size (total read count; RC) was corrected by the estimated 

normalization factor and scaled to per million reads (Robinson and Oshlack, 2010). 



Functional and Virulence Gene Transcription Variation in Bacterial Metatranscriptomes in Large Freshwater Lake Ecosystems 

67 

 

Heat maps were generated using the normalized reads of the metatranscriptome 

sequence reads for all samples and their biological replicates (18 samples in total) to 

visualize the pattern of gene transcription among replicates and different samples over 

winter, summer and fall in the three sampling locations (CH, SL and SP beaches). 

Differences in transcript proportions among the samples were explored using multi-

dimensional scaling (MDS) plots based on the average squared distance to the mean of 

the transcripts between each pair of samples.  

4.2.5 Statistical analyses 

Whole transcriptome data: We generated a Bray–Curtis dissimilarity matrix from 

the sequence read count of transcriptomic data for each sample using Primer-e software 

version 7.0 (Primer-E Ltd., Plymouth, UK). The first (PCo1), second (PCo2) and third 

(PCo3) coordinates of the principal coordinate analysis (PCoA) of the Bray-Curtis 

dissimilarity matrices were used separately as dependent variables in a nested one-way 

ANOVA (in R software version 3.6.1) to test the effect of sampling location (replicates 

nested within locations), season and the interaction of sampling location and season on 

the metatranscriptome. We selected the first three PCos as they explained, combined, 

83% of the total variance and all had eigenvalues greater than five. As replicate was 

found to be not significant, then we used a one-way ANOVA in R software version 

3.6.1 to compare PCo1, PCo2 and PCo3 among sampling seasons, sampling locations 

(beaches) and the interaction of season and sampling location. We used a Kruskal-

Wallis test in R software version 3.6.1 to test for significant temporal (season) and 

spatial (different locations; CH, SL and SP) variation in the KEGG pathways.  

Temporal and spatial differential transcription analyses: The change in the 

differential transcription patterns over the three seasons was visualized with fitted 

model Mean-Difference (MD) plots. To control for the effects of multiple simultaneous 

tests, we corrected the false discovery rate (FDR) using the Benjamini-Hochberg 

method (Chen et al., 2016). Gene transcripts with log2-fold-changes greater than 1.5 

fold, present in at least two different species in the BC, with FDR ≤ 0.001 and P-values 

(p < 0.05) were considered as significantly differentially expressed among different 

seasons. The magnitude of the differential transcription over three sampling locations 

was visualized with a fitted model MD plots. We also performed spatial differential 
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transcription analysis using the metatranscriptomic data of the three sampling locations 

(CH, SL and SP) by determining transcripts with greater than 1.5 log2-fold-change that 

were present in at least two different species of BC with FDR ≤ 0.001 and p < 0.05 as 

evidence for significant variation among sampling locations. The transcripts of the 

genes which showed significant variation in the differential expression analysis and 

were detected at least in two different species of bacteria were normalized to an 

internal control housekeeping gene (DNA-directed RNA polymerase beta’ subunit; 

rpoB) (Nieto et al., 2009) in each sample. The transcript levels were further compared 

using a Kruskal-Wallis test (R software version 3.6.1). 

Virulence gene transcripts and taxa associated with water degradation: As we 

detected a high number of virulence gene transcripts (cyanotoxins and bacteria 

virulence genes), as well as transcripts for taxa associated with water degradation 

(cyanobacteria and waterborne pathogens), we chose to not perform individual gene 

transcript tests for temporal and spatial variation. Instead, the abundance of cyanotoxin 

genes (normalized based on rpoB gene sequence read number) was combined for each 

season and location and we used the one-way ANOVA test in R software version 3.6.1 

to determine significant temporal (seasonal) and spatial (different beaches). We also 

combined the abundance of virulence genes (normalized based on rpoB gene sequence 

read number) for each season and location to determine significant temporal (seasonal) 

and spatial (different beaches) variation using the one-way ANOVA. Taxonomic data 

of the Cyanobacteria community were also combined by season and location. 

Taxonomic data of waterborne pathogens (no Cyanobacteria) were also combined for 

each season and location. We determined significant temporal (seasonal) and spatial 

(different beaches) variation of the Cyanobacteria community (combined data) and 

waterborne pathogens (no Cyanobacteria) using one-way ANOVA. We report the 

number of virulence gene transcripts/sample for winter, summer and fall over three 

sampling locations (beaches). All plots and figures were generated using OriginPro 

2018 (OriginLab Corporation, Northampton, MA, USA) or R software version 3.6.1 

using ggplot2 package (Wickham, 2011).  

Environmental data: Paired t-tests were used to compare environmental variable 

values (water temperature, daylight, TN and TP) among sampling locations (CH, SL, 
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SP) and seasons (winter, summer and fall) using IBM® SPSS statistics 19.0 (Somer, 

NY, USA). Metatranscriptomic data of the replicates were combined for each sample 

to test the effect of the environmental variables on transcript abundance. To test for the 

relationship between the environmental variables and variation in the 

metatranscriptome, we used a RELATE analysis. For this analysis, the Bray-Curtis 

dissimilarity of the metatranscriptomic data of the samples was correlated to the 

Euclidean distance of normalized environmental variables of the samples (combined 

variables as an environmental matrix) to calculate Spearman’s p correlation coefficient. 

A distance-based linear model (distLM) was used to analyze and model the 

relationship between the metatranscriptomic data of the samples and the environmental 

variables using Primer-e software version 7.0.13 (Primer-E Ltd., Plymouth, UK). 

4.3 Results  

4.3.1 Metatranscriptome sequencing and de novo assembly  

The mean sequence length of the pair-end transcript reads was 119 ± 26 bp. 

Sequencing statistics of the metatranscriptomic profiles obtained from the Illumina 

HiSeq 4000 run for all samples are provided in Table S4.1 (Appendix C). Altogether, 

the metatranscriptomic run resulted in 29–35 million reads for each of the 18 samples. 

After removing low-quality transcripts and rRNA sequences, 268,704 ± 82,600 

transcript reads/replicate were processed for functional annotation and assigned 

through the KEGG database (Appendix C; Table S4.1). After removing the transcripts 

belonging to archaea, eukaryotes and viruses, and the transcripts with unknown 

function, 4,574 genes (combined all isoforms from a unique gene) clusters (~2.9 

million combined) were identified in 2,142 different bacterial species and analyzed in 

detail. 

4.3.2 Season and location effects 

The nested one-way ANOVA showed that season had a strong significant effect on 

the PCo1, PCo2 and PCo3 of the Bray-Curtis dissimilarity matrix form the BC 

metatranscriptome (Table 4.1). Sampling location also had a significant effect but 

compared to season the effect size was small (Table 4.1). The interaction effect of 

season and sampling location was significant, but also explained a small proportion of 
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the variance in the metatranscriptome (Table 4.1), indicating that season had similar 

effects across the three locations. 

Table 4.1. Effect of season, sampling location and their interaction on first three principle 

coordinates of the Bray-Curtis dissimilarity matrices for the bacterial meta-transcriptome. PCo1, 

PCo2 and PCo3 explained a combined 83% of the total variance. 

Variables 
 Season 

Sampling location 

(replicate nested) 

Sampling location* 

season 

df 2 2 4 

PCo1 

F value 9456 89.9 8 

P value 1.12e-15 1.13e-06 0.009 

R2 value 0.77 0.09 0.11 

PCo2 

F value 221 25 11 

P value 2.22e-08 0.0001 0.001 

R2 value 0.41 0.1 0.08 

PCo3 

F value 356 85 49 

P value 1.57e-06 2.68e-09 4.05e-06 

R2 value 0.32 0.14 0.09 

4.3.3 Bacterial community composition  

Proteobacteria were significantly more common in the metatranscriptome (based on 

16S rRNA sequence data) in winter (60%) compared to summer (46%, p=0.007) and 

fall (38%, p=0.001), and it was higher, but not significantly different (p=0.08) in the 

summer compared to fall (Appendix C; Figure 4.2A). Cyanobacteria was significantly 

more abundant in summer (13%, p=0.001) and fall (14%, p=0.001) relative to winter 

(4%) (Appendix C; Figure 4.2A). The abundance of Actinobacteria was significantly 

lower in winter (11%, p=0.02) and summer (12%, p=0.02) relative to fall (25%), while 

the relative abundance of Bacteroidetes was higher but not significantly so in winter 

(18%, p=0.07) and summer (17%, p=0.07) compared to fall (11%). Proteobacteria and 

Cyanobacteria constituted 48-49% and 9.8-11% of the BC community based on 

16SrRNA in the metatranscriptome across all three locations (CH, SL and SP) with no 

significant variation (p>0.05) among the sampling locations. The abundance of 

Actinobacteria was marginally higher, but not significantly different, in SL (18%) 

relative to CH (16%, p=0.87) and SP (14%, p=0.8) while the abundance of 
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Bacteroidetes was lower but also not significantly different, in SL (12%) relative to CH 

(16%, p=0.8) and SP (17%, p=0.75) (Appendix C; Figure 4.2A).  

We identified 22 different species of Cyanobacteria (Figure 4.2B); however, we 

combined the relative abundance of the different species for each location and season 

to evaluate their temporal and spatial variation on a broad scale (see above). Our 

analyses of the Cyanobacteria community revealed no significant (p>0.05) spatial 

variation; however, temporal (seasonal) variation was high. There was no significant 

difference in the relative abundance of Cyanobacteria species between summer and fall 

(p=0.55); however, the relative abundance of Cyanobacteria species was significantly 

higher in summer (p=0.003) and fall (p=0.004) relative to winter (Figure 4.2B).  

We identified 22 (potential) pathogens in the SSU rRNA reads; however, 7 of them 

(Acinetobacter johnsonii, A. lwoffii, Campylobacter coli, C. fetus, Francisella 

novicida, Shigella dysenteriae and S. sonnei) had relative abundances of less than <0.1 

in the collected samples. We combined the relative abundance of the different species 

for each sample to test their temporal and spatial variation on a broad scale. There was 

no spatial variation (p>0.05) in relative abundance of detected pathogens (combined 

data) among the three different sampling locations (CH, SL and SP beaches). The 

relative abundance of detected pathogens (combined data) was significantly higher in 

summer (p=0.001) and fall (p=0.003) relative to winter, while there was no significant 

differences between the abundance of combined pathogens between summer and fall 

(p=0.43) (Figure 4.2C).  
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Figure 4.2. Distribution and composition of active bacteria based on 16S rRNA sequence reads in 

the metatranscriptome of the collected freshwater samples. Panel A: Relative abundance across all 

locations and seasons sampled (phyla with <1% relative abundance are combined and displayed 

as “others”). Panel B: Relative abundance of different species of genus Cyanobacteria across the 

samples from three different locations (CH, SL and SP) over winter, summer and fall 2019. Panel 

C: Relative abundance of 15 pathogens detected in CH, SL and SP over winter, summer and fall. 

Average values of the relative abundance of replicates are shown (C).  

4.3.4 Metatranscriptome description 

Our primary analysis based on differential transcription analyses revealed strong 

seasonal clustering of the metatranscriptomic data of the collected samples from 
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different locations with no obvious variation between biological replicates of each 

sample (Figure 4.3A and 4.3B). Differential transcription analyses of summer, relative 

to winter showed 2,362 upregulated and 1,292 downregulated genes (Figure 4.3C), 

consistent with greater activity in the summer season. Differential transcription 

analyses of summer, relative to fall revealed 676 upregulated and 315 downregulated 

genes by comparing the metatranscriptome data of these two seasons, again consistent 

with seasonal-related differences in BC activity. Most of the transcripts (3,097 out of 

4,574) did not show significant variation between summer and fall (Figure 4.3C). 

Differential transcription analyses of fall, relative to winter showed 1,738 upregulated 

and 1,270 downregulated genes (Figure 4.3C). Pairwise differential expression analysis 

of the metatranscriptomic data of CH versus SP showed significant upregulation (p< 

0.05, FDR <0.001 and 1.5-fold change) of 31 and 68 unique transcripts in the 

transcriptomes of CH and SP respectively. Pairwise differential expression analysis of 

the metatranscriptomic data of SL versus SP showed significant upregulation of 72 and 

115 unique transcripts in SL and SP respectively (Figure 4.3D). There was no 

significant variation in the treansciption level of different genes between SL and CH 

(Figure 4.3D).  
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Figure 4.3. Comparison of the transcription levels across the metatranscriptome of 

seasonally (winter, summer and fall) sampled bacterial communities across three 

sampling locations (CH, SL and SP). Panel A: Heat map of the normalized transcripts 

reads of metatranscriptomic datasets for three different sampling locations over winter, 

summer and fall. Panel B: The MDS plot of the data sets showing a seasonal variation 

of the collected samples transcriptome. Panel C: Pairwise MD plot showing the 

temporal (seasonal) log-fold change and average abundance of each transcript (log 

CPM) of fall versus summer, fall versus winter and summer versus winter. Panel D: 
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Pairwise MD plot showing the spatial log-fold change and average abundance of each 

gene (log CPM) of CH versus SL, SL versus SP and CH versus SP. Significantly 

upregulated (red; 1) and downregulated (blue; -1) DE genes among pairwise contrasts 

along with the genes with no significant variation (black, 0) are highlighted (C). 

Abbreviations; Fal; Fall, Sum; Summer and Win; Winter.  

4.3.5 Temporal variation 

 Temporal variation of the BC transcriptome: Principal coordinates analysis 

(PCoA) based on the Bray–Curtis dissimilarity matrix generated using the 

metatranscriptomic data (transcript counts) showed three distinct clusters matching the 

three sampling seasons (Appendix C; Figure S4.1A). PCo1, PCo2 and PCo3 explained 

61.1%, 15.4% and 6.4% respectively, of the total variation (83%). There were 

significant seasonal effects for PCo1 (df=2, F=575, p<0.00001) and PCo2 (df=2, F=30, 

p=0.0001) but not for PCo3 (df=2, F=1.5, p=0.56) (Appendix C; Figure S4.1B).  

We identified 107 KEGG pathways in the metatranscriptome; however, we focused 

on the top 50 KEGG pathways. Notably, photosynthesis, ribosome activity and 

oxidative phosphorylation (the pathways with the top three most abundant transcripts) 

were transcribed significantly higher in both summer and fall in comparison with 

winter (Figure 4.4). In total, 17 pathways were significantly upregulated in summer and 

fall compared to winter (Figure 4.4) – most of these were involved in metabolism, cell 

cycle, biosynthesis, photosynthesis, oxidative phosphorylation and transport. Only two 

pathways were significantly upregulated in winter relative to summer and fall (bacterial 

secretion system and systemic lupus erythematosus) and only two pathways were 

significantly upregulated in fall (i.e. glycosyl phosphatidy linositol biosynthesis and 

focal adhesion) relative to winter and summer (Figure 4.4).  
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Figure 4.4. Out of top 50 abundant KEGG pathways, the 40 most abundant KEGG pathways in 

the metatranscriptomic data of winter (blue), summer (green) and fall (red) are displayed. The 

pathways marked with the letters were over-expressed (p<0.05) in the; summer and fall versus 

winter (a), winter versus fall and summer (b) and fall versus winter and summer (c). 

Temporal variation in physiological and ecological activity-related gene 

transcription: In total 4,574 genes were detected in the metatranscriptome data. We 

selected 52 genes for transcription analyses that fulfilled the criteria which we defined 

before. Transcripts for the selected genes showed significant temporal variation in their 

transcription (Table 4.2). Out of the 52 selected genes, the transcription level of 23 

(44%) genes were higher in summer versus fall and winter (Table 4.2), and the 

transcription of 19 (37%) genes was higher in both summer and fall versus winter. 

More interestingly, out of the 52 selected genes; the transcription of only 3 genes 

showed significant upregulation in the fall relative to summer (as well as being 

upregulated in summer relative to winter). Those transcripts were identified as nitrogen 

pathway genes, specifically, narB (assimilatory nitrate reductase), nirA (nitrite 

reductase) and nifH (nitrogenase) (Table 4.2). Differential expression analyses of the 
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52 selected genes also revealed that the summer BC was significantly over-transcribing 

the genes involved in the metabolism of amino acids such as arginine, glutamate, 

histidine and homocysteine compared to winter and fall (Table 4.2). Also, the 

freshwater BC significantly over-expressed the transcripts of genes involved in the 

biosynthesis of arginine, cysteine, methionine, proline and serine in summer and fall 

relative to winter. More interestingly the BC metatranscriptome of summer exhibited 

significantly elevated levels of the transcripts of the lpdA and sdhA genes (citric acid 

cycle), gpmA, gap and moxF (glycolysis), gltA2 and gcl (glyoxylate cycle) and fdsD, 

moxF, metF and argD (methylotrophy) relative to winter and fall (Table 4.2). 

Differential expression analysis also showed that the transcripts of psaA (photosystem 

I) and psbA, psbA1, psbA2, psbD1, psb27 and psbO (photosystem II) genes were 

significantly elevated in summer and fall, compared to winter. Different species of 

Cyanobacteria such as Anabaena sp., Gloeobacter sp., Microcystis sp., 

Prochlorococcus sp., Synechococcus sp., Synechocystis sp. and Thermosynechococcus 

sp. were identified as the primary sources of photosynthesis. Out of 52 transcripts, we 

only identified overexpression of the transcripts of the exeD (Type II secretion system 

protein D), pufA (Light-harvesting protein) and cspA, cspC and cspG (cold shock-like 

proteins) genes in winter, relative to summer and fall (Table 4.2). Out of 52 transcripts, 

31 (60%) genes which were part of physiological pathways (i.e. amino acid 

metabolism, Calvin cycle, glycolysis, methylotrophy, phototrophy, polyamine 

degradation, transport and translation) and nutrient cycling (nitrogen, phosphate 

assimilation) were detected, at low levels, in the winter metatranscriptomic data; 

however, transcripts of the genes involved in citric acid cycle and glyoxylate cycle 

were not detected in the winter at all (Table 4.2). 
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Table 4.2. Temporal variation in transcript abundance in the bacterial meta-transcriptome for biological/ecological relevant genes across 

three sampling seasons. We only present genes with known function that were part of well-characterized physiological and ecological 

pathways and were expressed in at least two different species of bacteria.  

Pathways Function Gene(s) Winter Summer Fall 

Amino acid 

metabolism 

Glutamate synthase  gltB - + s + 

L-histidine hisG - + s + 

Cysteine synthase cysK + + sf + sf 

L-homocysteine ahcY - + s + 

L-arginine argG + + sf + sf 

S-adenosyl methionine synthase metK + + sf + sf 

Proline-tRNA ligase proS + + sf + sf 

Serine-glyoxylate aminotransferase  argD + + sf + sf 

Iron-sulfur cluster biosynthesis iscS + + s + 

Bacterial 

secretion 

system 

Type II secretion system protein D exeD +w + + 

Calvin cycle Ribulose bisphosphate carboxylase cbbL + + sf + sf 

Citric acid 

cycle 

Dihydrolipoyl dehydrogenase lpdA - + s + 

Succinate dehydrogenase sdhA - + s + 

Succinate dehydrogenase iron-sulfur subunit sdhB - + sf + sf 

Succinyl-CoA ligase  sucD - + sf + sf 

Heat shock Cold shock-like protein cspA, cspC, cspG +w + + 

Glycolysis 

2,3-bisphosphoglycerate-dependent phosphoglycerate 

mutase 
gpmA - + s + 

Glyceraldehyde-3-phosphate dehydrogenase gap - + s + 

Methanol dehydrogenase moxF + + s + 

Phosphoglycerate kinase  pgk - + sf + sf 

Pyruvate dehydrogenase pdhA + + sf + sf 
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Pyruvate kinase pyk + + sf + sf 

Glyoxylate 

cycle 

Citrate synthase 1 gltA2 - + s + 

Glyoxylate carboligase gcl - + s + 

Malate synthase mls - + sf + sf 

Serine glyoxylate aminotransferase sgaA - + sf + sf 

Methylotrophy 

Formate dehydrogenase fdsD + + s + 

Methanol dehydrogenase moxF + + s + 

Methylene tetrahydrofolate reductase metF + + s + 

Serine-glyoxylate aminotransferase  argD + + s + 

Nitrogen 

Assimilatory nitrate reductase narB + +s +ff 

Nitrite reductase nirA + + s + ff 

Nitrogenase (N fixation)  nifH + + s + ff 

Phosphate 

assimilation 

8-phosphate phosphatase KdsC kdsC + + s + 

Alkaline phosphatase synthesis phoP + + s + 

Phototrophy 

Light-harvesting protein pufA +w + + 

Photosystem I psaA + + sf + sf 

Photosystem II 
psbA, psbA1, psbA2, psbD1, psb27, 

psbO 
+ + sf + sf 

Polyamine  

degradation 

Deoxyhypusine synthase  dys2 + + s + 

Spermidine/putrescine transport system permease potC + + s + 

Serine cycle Serine hydroxymethyltransferase glyA + + sf + sf 

Transport 

Vitamin B12 transporter BtuB btuB + + sf + sf 

Biopolymer transport protein ExbB exbB + + sf + sf 

Sulfate transport system permease protein CysT cysT + + sf + sf 

Translation Translation initiation factor IF-1 infA1 + + s +  

‘+’ indicates occurrence in winter, summer and fall. Letters indicate significantly higher transcript frequency based on differential expression analysis. 

sf; high expression in summer and fall versus winter, w; high expression in winter versus summer and fall, s; high expression in summer versus winter 

and fall, ff; high expression in fall versus summer and winter.  
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Temporal dynamic of the transcripts associated with water degradation: The 

transcript of three cyanotoxin genes belong to two different Cyanobacteria species, 

specifically, M. aeruginosa (mcyA gene) and Synechococcus sp. (mcyD and mcyE) 

were detected in the metatranscriptomic data of three seasons. There was a significant 

temporal variation in the level of cyanotoxin transcripts (df=2, F=203, p<0.00001). 

Post-hoc test revealed that the level of cyanotoxin transcripts (combined data for each 

season) was significantly higher in fall relative to summer (p=0.001) and winter 

(p<0.00001) but there was no significant (p=0.16) variation in the level of cyanotoxin 

transcripts between in summer relative to winter (Figure 4.5A). 

 

Figure 4.5. The abundance of transcripts (relative to rpoB) of three different cyanotoxins (mcyA, 

mcyB and mcyC) detected in the transcriptome data of CH, SL and SP beaches over winter, summer 

and fall are displayed in panel A. Error bars in panel A show the standard deviation of the transcript 

abundance between the replicates. The abundance of transcripts (relative to rpoB) of the genes 

associated with virulence belong to waterborne bacterial pathogens which were detected in the 

metatranscriptomic datasets of three locations (CH, SL and SP) over winter, summer and fall are 

presented in panel B. The average relative abundance of the transcripts read from the triplicates 

are shown.  

In the metatranscriptomic data, 17 different unique transcripts assigned to virulence 

genes belonging to 8 different pathogens were detected. Out of the 17 unique 

transcripts, five (exeD (Aeromonas hydrophila), fliC and pilC (P. aeruginosa), spaA 

(Salmonella typhi) and fliS (Vibrio cholerae)) genes were not detected in winter at any 

location. However, the transcripts of the 17 different virulence genes were detected in 
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both summer and fall (Figure 4.5B). We did not test temporal variation for transcripts 

of the 17 different virulence genes individually (due to statically power limitations); 

however, when we combined the transcript data of all virulence genes detected in three 

sampling locations within each season, we found significant variation in the abundance 

of virulence genes transcripts (df=2, F=10.3, p<0.0001). Post-hoc test revealed that 

abundance was significantly higher in summer relative to winter (p<0.0001) but not to 

fall (p=0.4). Additionally, the transcript abundance (combined data) was also 

significantly higher in fall relative to winter (p=0.008) (Figure 4.5B).  

4.3.6 Spatial variation  

Spatial variation of the BC transcriptome: Principal coordinates analysis (PCoA) 

based on the Bray–Curtis dissimilarity matrix generated using the metatranscriptomic 

data (transcript sequence read abundance) showed no distinct clusters for sampling 

locations (Appendix C; Figure S4.1A). There were no significant location effects 

(p>0.05) for PCo1 (df=2, F=0.25, p=0.56), PCo2 (df=2, F=0.1, p=0.87) and PCo3 

(df=1, F=0.08, p=0.92) (Appendix C; Figure S4.1B). Pairwise comparisons of the 50 

top KEGG pathways between sampling locations (CH, SL and CH) showed 

significantly location effects on transcription (p<0.05) in only 8 of the top 50 KEGG 

pathways (Appendix C; Figure S4.2). Indeed, pairwise comparison of the 

metatranscriptomic data of SL and CH showed no significant differences among the 

top 50 KEGG pathways. The photosynthesis pathway (top ranked KEGG pathway) 

was over-transcribed (p<0.05) in SP versus CH and SL. Moreover, aminoacyl-tRNA 

biosynthesis, fatty acid biosynthesis, glycolysis (pyruvate metabolism), porphyrin 

metabolism and purine metabolism pathways were significantly over-transcribed in SP 

relative to CH and SL (Appendix C; Figure S4.2). There were only two KEGG 

pathways (i.e. ribosome and two-component system) which showed a significant 

elevation in the transcript read number in CH versus SP (Appendix C; Figure S4.2). 

Overall, very few of the pairwise spatial comparisons resulted in significant location 

effects on the transcription of the top 50 KEGG pathways – indicating little functional 

variation among the three sample site BCs. 

Spatial transcriptional variation at genes data associated with physiological 

and ecological activity: We identified 17 transcripts assigned to genes within the 
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selected 52 ecologically/physiologically relevant genes with significant spatial 

variation. None of those transcripts showed significant differences between the 

metatranscriptomes of SL and CH (Appendix C; Table S4.2). In total, the transcripts of 

14 genes involved in physiological pathways in the BC metatranscriptomes were 

significantly overexpressed in SP relative to CH and SL. None of the transcripts of the 

genes which were identified as contributing to nutrient cycling (nitrogen and 

phosphate) showed significant spatial variation. The transcripts of only 3 genes (rpoB, 

phoP and rstA) were overexpressed in CH in comparison to SP (Appendix C; Table 

S4.2).  

Spatial dynamic of the transcripts associated with water degradation: There 

was no significant spatial variation in the transcript abundance of the combined 

cyanotoxin genes (mcyA, mcyD and mcyE) among the three different sampling 

locations in winter (df=2, F=0.07, p=0.65), summer (df=2, F=3.1, p=0.07) and fall 

(df=2, F= 3.6, p=0.05). There was also no significant variation in the transcript 

abundance of the virulence genes among locations in winter (df=2, F=0.04, p=0.96), 

summer (df=2, F=0.3, p=0.65) and fall (df=2, F=0.05, p=0.98) when the transcripts 

data of the virulence genes were combined in each season (Figure 4.5).  

Environmental Effects: Our analysis showed that season had a strong effect on the 

freshwater BC metatranscriptome. We collected environmental variable information to 

test the effect of these variables on the BC metatranscriptome to perhaps explain some 

of the temporal variation observed in this study. No precipitation was recorded by 

Environment of Canada (http://climate.weather.gc.ca) either during any of the sampling 

days, or in the 24 hours prior to sampling. Mean (±SD) water temperatures at the time 

of sampling were 1.33±0.15 °C, 23±0.5 °C and 12.5±0.5 °C for winter, summer and 

fall respectively (Appendix C; Table S4.3). The mean water temperature was 

significantly higher in summer relative to fall (p=0.02) and winter (p=0.0001). Also, 

the mean water temperature was significantly higher in fall (p=0.0009) relative to 

winter. The level of total nitrogen (TN) was significantly higher in summer 

(mean=0.9±0.08; p= 0.02) and fall (mean=1.9±0.5; p= 0.04), relative to the winter 

(mean=0.2±0.02), while TN level was not significantly different between summer and 

fall (p=0.06). The level of total phosphorus (TP) was significantly higher in fall 
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(mean=0.1±0.03; p= 0.04) and summer (mean=0.09±0.4; p=0.03) relative to winter 

(mean=0.03±0.005), while TP between fall and summer was not significantly different 

(p=0.05). The Euclidean distance of environmental variables (water temperature, 

daylight, TN and TP) was significantly correlated (r=0.47, p=0.01) with the Bray-

Curtis dissimilarity matrix of metatranscriptomic data. Also, our distLM analysis 

showed that environmental variables had a significant effect (r2=0.82, p < 0.05) on the 

Bray-Curtis dissimilarity matrix of metatranscriptome. Among the environmental 

variables, TP explained only 3% of total variance explained by environmental variables 

(82%) and had no significant effect (p=0.22) on the metatranscriptome data. On the 

other hand, water temperature (49%), daylight (15%) and TN (15%) all had significant 

effects (p< 0.05) on the metatranscriptome (Appendix C; Table S4.3, Figure S4.2). 

There was no significant variation (p > 0.05) of water temperature, daylight, TN and 

TP among three sampling locations (CH, SL and SP) within any season.  

4.4 Discussion 

In this study, we characterized the temporal and spatial variation of the freshwater 

BC metatranscriptome with a particular focus on gene transcripts associated with 

ecosystem and human health in recreational fresh water. We detected strong temporal 

variation associated with seasonal changes (winter, summer and fall), limited spatial 

variation (sampling locations) and minor interaction effects of season and sampling 

location on the metatranscriptome data. This pattern may be attributed to the expected 

high seasonal variation associated with environmental variables critical to BC 

composition and function. Spatial variation, on the other hand, may require a greater 

distribution of sampling sites to have a large effect on the critical environmental 

variables, and hence on the BC metatranscriptome. This study provides unique 

information regarding the combination of spatial and temporal effects on the freshwater 

BC which is critical for ecological and human health reasons (Antwis et al., 2017). In 

our study, environmental variables (water temperature, daylight, TN and TP) explained 

82% of the observed variation in the metatranscriptomic data. The strong “season” 

effect detected in this study is likely driven by environmental variables such as water 

temperature, day/night cycle length and nitrogen levels. In line with our study, others 

also suggested that temporal variation of environmental variables such as light (day 
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versus night) (Poretsky et al., 2009), water temperature (Lei and Lai, 2019) and 

nutrients (Ren et al., 2019) have a significant effect on the BC metatranscriptome and 

function.  

A key goal of this study was to characterize the temporal variation of the freshwater 

BC metatranscriptome over winter (no ice-covered condition), summer and fall under 

non-cHAB conditions. Few studies have addressed metatranscriptomic temporal 

variation of the freshwater BC at such a large temporal scale. For example, Huntscha et 

al, reported temporal variation of the BC metatranscriptome (Lake Greifensee) from 

March to August with a high level of activity (defined as upregulated transcription) of 

the BC in warm versus cold months, particularly high degradation and consumption of 

glyphosate as an alternative phosphorus source in warm temperature (Huntscha et al., 

2018). This is consistent with our observed high levels of transcription at genes 

encoding physiological and ecological function in the summer and fall, relative to the 

colder winter sampling. The 52 physiologically and ecologically relevant genes were 

selected as they were either part of key physiological pathways or involved in the basic 

ecological services/functions of the freshwater BC. Transcription levels of nitrogen 

cycle genes in our study were high in the warmer seasons (summer and fall) versus 

cold season (winter), again consistent with published reports from Lake Chaohu 

(China) (Fan et al., 2019) and a constructed wetland (Columbia, MO) (Sims et al., 

2012). In our study, season also had a large influence on the transcription profiles of 

the ecologically relevant genes. For example, we found that the transcription level of 

nitrogen cycle genes was significantly higher in fall compared to summer.  

Out of the 52 ecologically relevant genes, only 31 (60%) were detected in the winter 

metatranscriptome, highlighting the low ecological activity at very cold temperatures 

and low light levels. Butler et al, (2019) reported high nitrification activity of 

freshwater BCs under ice-covered conditions (Butler et al., 2019); however, we only 

detected the transcripts of different genes involved in nitrogen and phosphate cycles in 

winter (although we had no ice coverage) indicating low activity relative to other 

seasons. This may be due to the role played by ice covering - indeed ice duration drives 

the accumulation of nitrate, and potentially other nutrients such as phosphate, in north 

temperate lakes (Powers et al., 2017). Taken together, our data show that lack of ice 
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cover and environmental conditions such as low temperature, low light and limited 

inputs of nutrients are the main drivers of low activity of freshwater BC in winter. On 

the other hand, low transcription of the biologically related genes in winter might be 

due to a transition of many taxa of the freshwater BC into a dormant, viable but non-

culturable state (VBNC) (McDougald et al., 1998). Transcription of the genes encoding 

cold-shock proteins (cspA, cspC, cspG) were significantly elevated in our winter 

metatranscriptome, which could explain how the freshwater BC shifts their 

transcriptomic profile toward genes which may protect freshwater BC at cold 

temperatures (Chen et al., 2012; De Maayer et al., 2014). Transcription of the genes 

associated with arginine and proline biosynthesis were significantly downregulated in 

winter, perhaps due to the reported lower proline/arginine content in proteins during 

the winter, making the downregulation a possibly adaptive response to low-temperature 

conditions in psychrophilic taxa (Ayala-del-Río et al., 2010; Chen et al., 2012). 

We found Cyanobacteria as one of the most important taxa in our sampled BCs, 

with roles both in ecological and physiological community activities (e.g., 

photosynthesis, nitrogen cycle, etc.). In fact, the majority of photosynthesis genes 

(psaA, psbA, psbA1, psbA2, psbD1, psb27, psbO) were expressed by the Cyanobacteria 

community. Interestingly, many nitrogen cycle genes (narB, nirA and nifH) were also 

predominantly expressed by Cyanobacteria, highlighting the importance of 

Cyanobacteria activity in the ecology and function of freshwater ecosystems (Scott and 

Marcarelli, 2012), at least under non-cHAB conditions.  

Our study supports limited spatial variation in aquatic metatranscriptomes, at least at 

the scale of our three sampling locations (CH, SL and SP beaches). Consistent with our 

observations, gene transcription analysis of sediment BCs collected from Lake Erie and 

Lake St. Clair showed only minor spatial variation of BC activity between two lakes 

(VanMensel et al., 2020). This limited spatial variation in both water column and 

sediment BCs may be attributed to the connection between Lake Erie and St. Clair 

through the Detroit River; however, that connection should not have much effect on 

sediment BCs. This connection may have, however, resulted in a very similar water 

conditions due to mixing and hence with similar environmental conditions (i.e., no 

significant spatial variation of water temperature, daylight and nutrient levels) which 
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could lead to the low spatial variation in BC function as measured by gene 

transcription. Composition analysis of freshwater BC (bi-weekly sampling for 15 

months) of four public beaches located in Lake Erie and other two public beaches 

located in Lake St. Clair (Chapter 2 data, unpublished) also showed limited spatial 

variation. This pattern may be due to proximity of our sampling locations, and 

generally similar environmental conditions (water temperature, nutrient levels, etc.). 

Nevertheless, we still were able to capture some spatial variation in the gene 

transcription profiles. For example, the upregulation of the genes involved in 

aminoacyl-tRNA biosynthesis, fatty acid biosynthesis, glycolysis, phototrophy, 

porphyrin metabolism and purine metabolism at the SP site (urban impacted area) 

compared to the CH and SL sites (agriculture impacted area) could be due to higher 

loading of nutrients to SP from the urbanized area as reported previously for Lake 

Michigan (Fisher et al., 2015).  

It was not our intention to study the BC composition with metabarcoding in this 

study; however, we did use 16S rRNA transcripts to assess the taxonomic profile of the 

BCs. Our previous studies using metabarcoding and 16S rRNA NGS did not provide 

high-resolution taxonomic information (at the species level) to capture pathogen 

community composition in freshwater samples (Shahraki et al., 2020). However, by 

analyzing the transcript sequences from the 16S rRNA gene in the metatranscriptome 

data, we were able to identify cyanotoxin producing Cyanobacteria species as well as 

22 different human pathogens and gene transcripts for cyanotoxin genes and 17 human 

virulence genes. Both taxa and gene transcripts associated with water degradation and 

human health risk showed substantial temporal (seasonal) variation. Upregulation of 

microcystin genes transcript in the fall (August to October) versus summer (June and 

July) during a cHBA bloom has been reported before (Tang et al., 2018); however, our 

results also showed elevated transcription of cyanotoxin genes in the fall compared to 

summer under non-cHBA bloom conditions. Out of the 17 different virulence-

associated genes detected in our metatranscriptomic data, 5 of them did not occur in the 

winter, highlighting the negative impact of low water temperature on the transcription 

of virulence genes, as previously reported (Feng et al., 2016). Studies have shown that 

beach sediment could be a reservoir for a wide range of pathogens (Mohiuddin et al., 
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2017) and may explain the consistent presence of some of the pathogens reported here. 

For example, Salmonella sp. virulence genes (pipB2 and sspH2) and Bordetella 

pertussis (hlyB and cyaB) have been reported in the metatranscriptome of the sediment 

at public beaches in Lake Erie (Kingsville beach) and Lake St. Clair (Bell River beach) 

(VanMensel et al., 2020). However, to the best of our knowledge, this study is the first 

to report seasonal variation in the transcription of bacterial virulence genes associated 

with water quality degradation in a natural system. Some of the pathogens detected in 

our study, such as Salmonella and Shigella, are not commonly believed to grow in 

freshwater environments, instead they are thought to be typically introduced into 

aquatic ecosystems by surface and subsurface runoff, wastewater and agricultural 

discharge, or avian/animal excrement (Bibi et al., 2015; Field and Samadpour, 2007). 

The presence of B. dorei (a human-specific microbial source tracking marker) 

(Haugland et al., 2010) in our metatranscriptomes also suggests potential pollution of 

freshwater samples with sewage. However, most of the other pathogens detected in this 

study (such as A. hydrophila, P. aeruginosa, Listeria monocytogenes and V. cholera) 

are known to survive both in sewage and in aquatic ecosystems (Bridle, 2014). Our 

data also suggest that toxin-producing Cyanobacteria and pathogenic organisms were 

present and active in the water column of freshwater samples collected from three 

public beaches at the time of sampling, particularly in summer and fall, but they can 

survive and exhibit transcriptional activity even at very cold temperatures.  

4.5 Conclusion 

Our study provides insight into temporal (three seasons; winter, summer and fall 

2019) and spatial (three sampling locations) variation in the freshwater BC 

metatranscription profiles. We also showed that seasonal variation in environmental 

variables such as water temperature (the main driver of the transcriptomes variation) 

and nutrients level can contribute to the regulation of gene transcription of the 

freshwater BC, and can have a strong impact on the temporal variation of the BC 

metatranscriptome in freshwater ecosystems. Our transcriptomic analysis revealed that 

ecologically relevant genes and the genes associated with water quality degradation are 

very sensitive to seasonal changes, but less so to spatial effects, at least at our spatial 

scales (maximum distance; ~50 km between SP and SL). This study is a pioneering 
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study focusing on temporal and spatial variation in the function of critical 

physiological and ecological genes in freshwater BC, which will serve to direct future 

research into BC function in relatively unstressed ecosystems. Our data provide more 

information regarding the fact that gene transcription profiles are useful to not only 

evaluate the ecological activity in the BC, but also can capture the underlying 

pathogenic potential of aquatic ecosystems when considering human health risks at 

public beaches for recreation water use.  
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 NUTRIENT STRESS DRIVES ADAPTIVE CHANGES IN FRESHWATER BACTERIA 

COMMUNITIES: RESPONSE TO SECONDARY STRESS MEDIATED BY 

HORIZONTAL GENE FLOW WITH REDUCED COMMUNITY CHANGE 

5.1 Introduction 

A stressor (perturbation or disturbance) in the environment can change the bacterial 

community (BC) composition drastically either permanently or temporarily (Shade et 

al., 2012). However, the form and magnitude of the BC response at the community and 

individual taxon level might differ depending on the stressor. Following a change in 

the environment, ecosystem function might be disrupted either because the species 

composition changes, or because component species fail to adapt to the new 

environment (Lawrence et al., 2012). Specifically, the microbial composition might 

change to reflect 1) resistance (no changes in composition and function), 2) resilience 

(short-term changes in composition but quickly recover to its initial composition), 3) 

functional redundancy (permanent changes in the composition but still providing the 

same function) or 4) alterations in both composition and function (Allison and Martiny, 

2008). Irrespective of the type of response to the stressor, the stress process might 

prepare the community to be more resilient to further, and possibly more severe, 

stressors: this is the basis of adaptive bacterial community change.  

Eutrophication of freshwater lakes such as the Laurentian Great Lakes (LGLs) 

ecosystems due to anthropogenic activity is one of the most challenging of the global 

environmental problems (Bhagowati and Ahamad, 2019). Nutrient enrichment has had 

many undesirable effects on LGL ecosystems, including changes in microbial species 

composition, microbial community shifts to bloom-forming algal species, reductions in 

species diversity, water degradation, oxygen depletion, etc. (Smith and Schindler, 

2009). Many studies report nutrient enrichment can cause shifts in the freshwater 

ecosystem structure (Haukka et al., 2006) and function, which persists over extended 

periods of time (regime shifts) and may be abrupt (Hecky et al., 2010) and sometimes 

catastrophic (Scheffer et al., 2001). Environmental field surveys identified significant 

shifts in the BC composition in response to a range of environmental changes such as 

methane enrichment (Crevecoeur et al., 2015), solar UVR (Sarmento et al., 2015), 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/eutrophication
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urbanization (Li et al., 2020) among others. Those environmental stressors may drive 

changes in the nature of the BC species interactions, biodiversity and the stability of 

the microbial ecosystems. Freshwater monitoring has also shown that nutrient 

enrichment can change the composition of the cyanobacteria community from 

Microcystis in the low-phosphate regions to Anabaena and Planktothrix in the high-

phosphate regions of Lake Erie (Harke et al., 2016). An experimental study showed 

that adding nutrients (Nitrogen; N and Phosphate; P) to freshwater (collected from 

Sandusky Bay; Lake Erie) can cause toxic cyanobacterial blooms dominated by 

Planktothrix (Davis et al., 2015). Additionally, nutrient overloading has been reported 

to cause negative interactions among species of the BC (made up of 8 different species 

of bacteria) which led to less diverse communities (Ratzke et al., 2020). However, the 

nature of potentially negative impacts of different concentrations of nutrients on natural 

freshwater BC composition is not clear. 

The response of microbes to disturbance is mediated by various strategies at the 

individual (cellular) level (such as plasticity and adaptive gene expression), the 

population level (such as adaptive composition changes, modified meta-gene 

expression and changes in dispersal patterns), and the community level (such as 

diversity, compositional and functional changes) (Shade et al., 2012). All of these 

changes are facilitated by the fast population growth rates and generally high mutation 

rates of microorganisms (Allison and Martiny, 2008). Additionally, horizontal gene 

transfer (HGT) through mechanisms such as conjugation, transformation, transduction 

(Johnsen and Kroer, 2007) and mutation (Swings et al., 2017) is generally believed to 

be important components of bacterial adaptation to environmental stress. Mobile 

genetic elements such as plasmids (Tschäpe, 1994), conjugative transposons (Wozniak 

and Waldor, 2010) and integrons (Gillings, 2014), among others, are known to play 

important roles in HGT in the majority of aquatic ecosystems. Selection pressures 

imposed by anthropogenic pollutants such as chemicals, antibiotics and heavy metals 

result in rapid BC evolution and the spread of class 1 integrons among taxa in both 

clinical and environmental settings (Gillings et al., 2015). In fact, HGT can serve as a 

proxy metric for human impacts on natural environments. On the other hand, gene 

transfer agents (GTAs), virus-like particles, are now maintained in the genomes of 
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some bacteria (well characterized in alphaproteobacteria) and archaea (Lang et al., 

2017). GTA-mediated gene transfer frequencies have been documented to be a 

thousand to a hundred million times higher than estimates of HGT in the oceans, with 

as high as 47% of the culturable natural microbial community confirmed as gene 

recipients (McDaniel et al., 2010). However, the impact of nutrient loading on HGT 

rate in freshwater BCs is not well known. 

As freshwater BCs have fundamental roles in biogeochemical cycling, organic 

matter decomposition, food web function, and others, they influence the aquatic 

ecosystem function at a fundamental level (Cotner and Biddanda, 2002). 

Characterizing the effects of nutrient loading on BC composition and their potential 

adaptive responses can provide a deeper insight into the processes and mechanisms 

operating in lake ecosystems. This would improve our basic knowledge regarding the 

flexibility and tolerance of BCs against anthropogenic stressors. Although some studies 

have addressed the negative impact of nutrient overloading on freshwater ecosystems, 

they mainly focused on Cyanobacteria communities and Cyanobacteria harmful algal 

blooms (cHABs) (Gobler et al., 2016; Steffen et al., 2017). However, little is known 

about possible adaptive responses of the entire freshwater BC to stressors, and how this 

adaptation can help the adapted BC to deal with the highest levels of stress encountered 

in severely impacted ecosystems. In this study, we used nutrient loading as a stressor in 

two experiments; the phase 1 experiments (adaptation phase) consisted of exposure of 

freshwater BCs to low and high levels of nutrients, followed by the phase 2 

experiments (challenge phase) where the potentially adapted communities resulting 

from phase 1 exposure were challenged by exposure to very high levels of nutrients to 

assess BC response. This study aimed to study the adaptive response of freshwater BC 

to the different level of nutrients (low and high) as stressors by testing whether BCs 

exposed to different levels of stress (low and high nutrient loads) have different 

responses to the challenge (very high level of nutrient load). We hypothesized that: 1) 

BCs exposed to the high level of nutrient loading, relative to the low levels, will exhibit 

a reduced response to the very high challenge level of nutrient loading in the second 

phase experiments (where the reduced response would be indicated by reduced loss of 

diversity and reduces BC community composition change), 2) changes in biodiversity 
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and community composition resulting from the phase 1 experimental exposure to high 

and low nutrient loading would be irreversible, indicative of genetic shifts in the 

community and 3) the nutrient stressors would increase the levels of HGT marker 

expression in the BCs. This study thus provides a unique approach to developing 

predictive applications of adaptive response theory in natural freshwater bacterial 

communities. 

5.2 Materials and methods 

5.2.1 Study design, sample collection and treatments 

This study had two experimental phases (adaptation and challenge phases). In the 

adaptation phase experiments (phase 1); we used a low nutrient dose (LND) and a high 

nutrient dose (HND) separately to treat natural BCs collected from two locations (one 

in Lake Erie and another one in Lake St. Clair, Ontario, Canada). The LND was 5X 

above the normal level of the measured nutrients (ambient) at the sampling sites, while 

the HND was almost 100X above the normal level of the measured nutrients at the 

sampling sites (Table 1). Phosphate (P) and nitrogen (N) levels in the HND were 

equivalent to the nutrient level reported for agriculturally (but not greenhouse) 

impacted water in Windsor Essex-County (Maguire et al., 2018). In the response 

challenge phase experiments (phase 2), we challenged the adapted BCs (post phase 1) 

with the highest level of nutrients; the challenge nutrient dose (CND) was designed to 

quantify the response of the adapted BCs. To make the CND, we used the highest level 

of nutrients recorded from multiple sources to the environment in Windsor Essex-

County and are known to impact the freshwater ecosystem. We used P (2500X 

ambient) and N (820X ambient) concentrations for the CND, these levels are reported 

from Lake Erie tributaries influenced by greenhouses and agriculturally impacted areas 

in Windsor Essex-County (Maguire et al., 2018), combined with NH4Cl (460X 

ambient), a typical concentration found in Windsor municipal wastewater treatment 

effluent (1999) (Table 5.1). 

Freshwater samples were collected from from two sites; Lakeview Park (LP) beach 

in Lake St. Clair, which is proximal to an urban tributary (the Belle River connects 

with Lake St. Clair at LP beach; 42°17'51.8"N 82°42'42.6"W) and Seaclift beach (SL; 



Nutrient stress drives adaptive changes in freshwater bacteria communities: Response to secondary stress mediated by horizontal gene flow with 
reduced community change 

97 

 

42°01'45.9"N 82°36'21.2"W) in Lake Erie, which is located in the greenhouse 

impacted area of Lake Erie. Sampling was performed on July 10th, 2017. From each 

site, 50 L water was collected from 0.5 m depth, and delivered to the laboratory on ice. 

The water samples were divided into two 25 L sub-samples, and one (25 L sub-sample 

from each location) was filtered using 0.2 µm polycarbonate membrane (Millipore, 

USA) to remove bacteria, and the filtered water was immediately stored at -20 o C to 

use in the phase 2 experiment. We used the second sub-sample (unfiltered water 

sample; 25 L) from each location for the experiments in phase 1. All experiments were 

performed with 1.5 L of lake water in clear glass 2.0 L bottles, in triplicate. We used 

orthophosphate (KH2PO4; referred to as P from here on) and various forms of nitrate (a 

combination of Ca (NO3)2 plus KNO3; ratio 1:1, referred to as N from here on) and 

ammonium (NH4Cl) to make treatment doses. P (total) and total N (total) levels were 

measured at the two sample sites (LP and SL) on the day of sampling to define the 

ambient nutrient levels.  

Table 5.1. Ambient nutrient levels at the sampling sites at SL (Lake Erie) and LP (Lake St. Clair), 

with the doses used for the low (LND) and high (HND) phase 1 exposures plus the challenge 

(CND) nutrient concentrations. Abbreviation: SD; standard deviation, LND; low nutrient dose, 

HND; high nutrient dose, CND; challenge nutrient dose, ND; not determined. 

Nutrients LP SL Mean (SD), mg/L 

Adaptive phase 

(nutrients level; mg/L) 

Challenge phase 

(nutrients level; mg/L) 

LND HND CND 

P (total) 0.003 0.001 0.002±0.001 0.01 0.187  5.17 b 

N (total) 0.09 0.13 0.11±0.05 0.58 11.57  89.97 b 

NH4Cl ND ND 0.06 a 0.3 6  27.7 c 

a We did not measure NH4Cl levels in the lake samples, we used NH4Cl level measured by Windsor 

Essex-County (https://www.ontario.ca/data/drinking-water-surveillance-program) in drinking 

water (2012). b Levels measured in the streams in a greenhouse influenced area of Windsor Essex-

County (Maguire et al., 2018). c Levels measured in Windsor municipal wastewater treatment 

effluent; (Canadian Environmental Protection Act (1999).  
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Phase 1 experiments (adaptation phase): This phase consisted of nine 1.5 L glass 

bottles filled with fresh water collected from each location (Total N=18). The 

freshwater BCs in the bottles were exposed to; 1) low nutrients dose (LND community; 

N = 3), high nutrients dose (HND community; N = 3), no addition of nutrient - control 

condition (P1-Co; N = 3), replicated for the two sample sites (Figure 5.1). Phase 1 

experiments were run in a growth chamber programmed for 22 oC with 15:9 hours 

light: dark to match average ambient conditions at the two sample sites. From each 

glass bottle, we collected a 150 mL sample and filtered it using 0.2 µm polycarbonate 

membrane (Millipore, USA) after 1, 2, 3 and 4 weeks of incubation, and the filters 

were stored at -20 oC. We also filtered the initial water sample for each location before 

the experiment. At the end of the phase 1 experiment (at week 4), we transferred 50 mL 

of each incubated sample to new glass bottles filled with 1.45 L of the filtered lake 

water (stored at -20 oC).  

Phase 2 experiments (challenge phase): The experimental microcosms created at the 

end of the phase 1 experiments (see above) consisted of two types of BCs: 1) low 

nutrient adapted (LND), and 2) high nutrient adapted (HND). The phase 2 experiments 

were designed to test the “adapted” BCs for the altered response to additional, extreme 

nutrient stress, as well as relaxed selection (i.e., back to ambient conditions). Thus the 

LND BCs were transferred into two sets of the microcosms (glass bottles); the first set 

(three replicates) were treated with very high levels of nutrients (Table 5.1) as a 

challenge treatment (challenged community; C-LND), while the second set (three 

replicates) were transferred to the filtered and frozen lake water from the initial 

sampling, with no nutrient enhancement (relaxed community; R-LND). This was to 

study the BC dynamics after removing the stressor and thus constitute the relaxation of 

stress treatment (Figure 5.1). We used the same experimental design for the HND BCs 

from the phase 1 experiment to create triplicates of the nutrient challenge (challenged 

community; C-HND) and stress-relaxed (relaxed community; R-HND). We also 

transferred 50 mL of the control treatment microcosms from the phase 1 experiments to 

new microcosms (in triplicate) and filled to 1.5 L with the filtered sample site water 

with no nutrient treatment as the control in the phase 2 experiment (control community; 

P2-Co). For the phase 2 experiment challenge, we used a very high nutrient level dose, 
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described in Table 5.1. Sub-samples (150 mL) from each microcosm were collected 

from at the end of weeks 1, 2, 3 and 4 and filtered using 0.2 µm polycarbonate 

membrane (Millipore, USA) and the filters were stored at -20 oC. 

  

Figure 5.1. Schematic diagram of the designed experiment for the current study. Phase 1 

experiment was designed to adapt the freshwater BCs to low (LND) and high (HND) doses of 

nutrients and phase 2 was designed to test the impact of very high nutrients dose (CND) on the 

adapted BCs.  

5.2.2 DNA extraction, PCR, library preparation and sequencing 

DNA was extracted from the filters using the sucrose lysis buffer method according 

to Shahraki et al, (Shahraki et al., 2018). The Genomic DNA was suspended in 50 µL 

TE buffer and kept at -80 °C until use. The extracted DNA samples (two out of three 

replicates; one replicate not extracted as backup) for each week over the two 

experimental phases were amplified for the V5-V6 region of the 16S rRNA gene using 

V5F (acctgcctgccg-ATTAGATACCCNGGTAG) and V6R (acgccaccgagc-

CGACAGCCATGCANCACCT) primers (He et al., 2017) for metabarcoding. In total 

we PCR-amplified 124 BCs; 64 samples for each sample site (2 replicates x 4 weeks x 

8 treatment communities; Figure 5.1). PCR products were cleaned using Sera-Mag 
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Magnetic Beads (GE, Healthcare Life Science, UK) and then used as templates for a 

second short-cycle PCR to ligate adaptor for next-generation sequencing (NGS) and 

barcode (for sample identification) sequences to create a library for NGS according to a 

previously described protocol (He et al., 2017). The products from the second, ligation, 

PCR for all samples were pooled and purified using QIAquick Gel Extraction Kit 

(QIAGEN, Toronto, ON, Canada). The concentration of purified PCR product mix 

(library) was measured on an Agilent 2100 Bioanalyzer with a High Sensitive DNA 

chip (Agilent Technologies, Mississauga, ON, Canada). The library was then diluted to 

60 pmol/L and sequenced on an Ion PGM™ System using the Ion PGM™ Sequencing 

400 Kit and an Ion 318™ Chip (Thermo Fisher Scientific, Burlington, ON, Canada). 

5.2.3 Transcription of horizontal gene transfer markers 

Integrons are mobile genetic elements (and a key component of HGT) which have 

three core features including an integron-integrase gene (int1), a recombination site 

(attI) and a promoter (Gillings et al., 2015). We measured transcription of the int1 gene 

using a 148 bp region of the gene (int1-Forward: 5'-GGCTTCGTGATGCCTGCTT-3' 

and int1-Reverse 5'-CATTCCTGGCCGTGGTTCT-3') (Di Cesare et al., 2016b) for 

qPCR. We also measured transcription of the GTA large subunit terminase gene using 

a 168 bp of the gene (GTAtermi-Forward: 5'-TGGTCTGGCCSAACGGSGC-3', 

GTAtermi-Reverse:5'-CCCAGCCGCAGCGCRAAYT-3') (McDaniel et al., 2010) for 

qPCR. Ten-fold serial dilutions were made from the original PCR product (5 dilutions) 

for each marker and used for qPCR assays to generate standard curves for each marker. 

The standard curve was created by linear regression of the threshold cycle (CT) value 

obtained by qPCR versus known concentration to allow the calculation of the 

efficiency of the two assays (Bustin et al., 2009). As our original water samples 

collected from SL and LP were negative for Vibrio cholerae ctxA gene and the 

Escherichia coli O26 manC gene (confirmed by qPCR, details not shown), we added 

known concentrations of the amplified product of these two markers (2000 copies of 

each gene/reaction) to our extracted DNA samples as internal controls to evaluate the 

presence of inhibitors in the qPCR assays. As our goal was to determine the level of 

GTA terminase and int1 transcription as a proxy for HGT activity, we compared the CT 

values among the different treatment microcosms at week 4 in the phase 2 experiments; 
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this gave us an overview of the HGT response to challenge. SYBR green qPCRs were 

carried out on the DNA extracted from all replicate and treatment microcosms from the 

LP and SL samples (Shahraki et al., 2019). All qPCR reactions (with no template 

controls; NTC) were run in triplicate using MicroAmp Fast 96-well reaction plates and 

on a QuantStudio 12K Flex Real‐Time PCR System (Applied Biosystems). The mean 

CT values of the different treatments were compareed using one-way ANOVA by using 

SPSS version 19 (SPSS Inc, Chicago, Illinois).  

5.2.4 Sequence handling  

The raw sequence data from the ION Torrent platform were de-multiplexed, quality 

filtered and trimmed of the adaptor, barcode and primer sequences using the 

Quantitative Insights into Microbial Ecology (QIIME V. 1.9.1) bioinformatics pipeline 

(Caporaso et al., 2010). A minimum quality score of Q=20 and base-pair cut-off of 200 

bp were selected for quality assurance. Chimeras were identified and removed using 

ChimeraSlayer in QIIME. Operational taxonomic units (OTUs) were assembled based 

on sequence similarity (97%) among the sequence reads and then taxonomically 

assigned using BLAST (Edgar, 2010). The representative sequence for each OTU was 

selected using the most abundant method for assigning taxonomy in the RDP Classifier 

program with a minimum 80% confidence level (Edgar, 2010). After removing the 

singleton and doubleton OTUs, we defined an OTU as “abundant” when it had a 

relative abundance ≥1% of the community, “moderate” when the relative abundance 

was between 0.1-0.99% and “rare” when the abundance was < 0.1% (Logares et al., 

2014). The OTU table was rarefied to 2000 quality-passed sequences for each sample 

to calculate alpha diversity values.  

5.2.5 Statistical analyses 

Microcosm replicates and sampling site effects: We used a generalized linear mixed 

model (GLMM) in SPSS version 19 (SPSS Inc, Chicago, Illinois) to determine whether 

the microcosm replicates and sampling sites (LP and SL) had significant effects on the 

BC variation in phase 1 and 2 separately. Alpha diversity indexes (Chao1 and 

Shannon) and the first (PCo1), second (PCo2) and third (PCo3) coordinates of the 

principal coordinate analysis (PCoA) of the Bray-Curtis dissimilarity matrices were 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-ecology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/quality-assurance
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used separately as dependent variables for each model (phase 1 or phase 2), with 

replicate, sampling site and treatment (replicates nested within treatment) as fixed 

factors and week as a random factor in the GLMM. Bray–Curtis dissimilarity matrices 

based on the BCs were calculated and PCoA was performed using the program Primer-

e software version 7.0.13 (Primer-E Ltd., Plymouth, UK). We selected PCo1, PCo2, 

and PCo3 of the PCoA, as they had eigenvalues >5.0, for the analysis. To test for 

significant differences in the BC of two sampling locations (LP and SL), we compared 

the Bray–Curtis dissimilarity matrix of the BC of the original lake samples collected 

from two locations (LP and SL), and the BCs of LP and SL across all weekly samples 

in phase 1 and phase 2 experiments separately (4 weeks for each phase) using 

permutational multivariate analysis of variance (PERMANOVA) with 9999 

permutations and Bonferroni correction in Primer-e software version 7.0.13 (Primer-E 

Ltd., Plymouth, UK). To run PERMANOVA for each phase, replicates were nested 

within treatment, and week was considered as a random effect.  

Adaptive (phase 1) experiment: We used a principle response curve (PRC) analysis 

(Van den Brink and Braak, 1999) with a Monte Carlo permutation test (with 9999 

permutations) to evaluate overall changes in the community over time (4 weeks) for 

each sampling location individually (LP and SP) and the pooled data of the two 

locations (LP+SL) in the phase 1 experiment using Canoco 5.0 (Biometrics). We then 

focused on the BCs of week 4 in the adaptive phase 1 experiment. To test for adaptive 

changes (phase 1 experiment; week 4), we compared the BCs of P1-Co, LND, and 

HND using PERMANOVA. We compared Chao1 and PCo1, PCo2, and PCo3 of the 

week 4 phase 1 experiment microcosm BCs using one-way ANOVA in SPSS version 

19 (SPSS Inc, Chicago, Illinois). A heat map was generated by agglomerative 

hierarchical clustering (unweighted pair group method with arithmetic mean; UPGMA) 

method for high abundant OTUs detected in the BCs week 4 using Primer-e software 

version 7.0.13 (Primer-E Ltd., Plymouth, UK). We also compared the relative 

abundance of the “abundant” (> 1%) OTUs of the BCs (week 4) using Linear 

discriminant analysis (LDA) as an effect size (LEfSe) method 

(http://huttenhower.sph.harvard.edu/lefse/) (Segata et al., 2011). Plots and graphs were 

generated using ggplot2 package (Wickham, 2011) in R and Origin Pro 2019. 



Nutrient stress drives adaptive changes in freshwater bacteria communities: Response to secondary stress mediated by horizontal gene flow with 
reduced community change 

103 

 

Challenge response (phase 2) experiment: The overall response of the adapted BCs 

to challenge were evaluated by principal response curve (PRC) analysis (Van den 

Brink and Braak, 1999) over phase 2 (4 weeks) for each sampling location individually 

(LP and SP) and the pooled data of two locations (LP+SL). Then we focused more on 

the BCs of week 4 to test for the overall response of the adapted BCs to the relaxed and 

extreme nutrient challenge treatments (phase 2; week 4). We compared the BCs of the 

different challenge treatments (P2-Co, C-LND, R-LND, C-HND and R-HND) over 4 

weeks by using PERMANOVA. We also compared the Chao1 and PCo1, PCo2, PCo3 

of the week 4 phase 2 experiment microcosm BCs using one-way ANOVAs. A heat 

map was generated by UPGMA method for high abundant OTUs detected in the BCs 

week 4 using Primer-e software version 7.0.13 (Primer-E Ltd., Plymouth, UK). We 

also compared the relative abundance of abundant OTUs of the BCs (week 4) using 

LDA (Segata et al., 2011).  

We also performed a network analysis of the BCs of phase 2 microcosms (week 4) 

to identify the keystone taxa and determine the pattern of correlations among the OTUs 

in each community. For the network analysis, we computed positive and negative 

interaction effects between all pairs of OTUs (>0.05% relative abundance) using 

SparCC, a python module for computing correlation coefficients (Friedman and Alm, 

2012). Only the significant (P<0.05) and strongly positive and negative correlations (|r| 

>0.7) were included in creating edges in the networks. We identified those taxa that 

play central roles in community interactions, commonly referred as keystone species 

(Banerjee et al., 2018), as taxa whose nodes had a high degree of closeness (average 

distance of a node to any other nod; >70), and centrality (identify important nodes in a 

network; >0.36) and low betweenness centrality (the number of shortest paths between 

any two nodes in the graph passing through a node; <0.07) (Berry and Widder, 2014). 

These metrics illustrate both the number of connections and how important those 

connections are to the overall network (Banerjee et al., 2018; Berry and Widder, 2014). 

We used Cytoscape version 3.7.2 with the group attributes layout (Kohl et al., 2011) to 

visualize the OTU network OTUs. Plots and graphs were generated using ggplot2 

package (Wickham, 2011) in R and Origin Pro 2019. 
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5.3 Results 

Sequence handling: After quality control, the remaining Ion Torrent sequence 

reads for all samples were close to two million (1,916,287 reads). We removed the 

unassigned taxa sequences from the data set, as well as all OTUs with fewer than three 

reads across all samples. This resulted in individual replicate samples having 2142-

8309 reads. When the OTU table was rarefied to 2000 reads/sample, a total of 4567 

OTUs were retained. We mostly focused on the BCs of week 4 of phase 1 and 2 

experiments in this study. In the adaptation (phase 1) experiment; we identified 787, 

682 and 572 OTUs in the BCs of P1-Co, LND and HND respectively. In the challenge 

response (phase 2) experiment, we identified 620, 502, 670, 534 and 560 OTUs in the 

BCs of P2-Co, C-LND, R-LND, C-HND and R-HND respectively.  

Replicate and sample site (Lake Erie and Lake St. Clair) effects: The GLMM 

model showed that the microcosm replicates had no significant effect on Chao1 (df=1, 

F=0.52, p=0.21), Shannon (df=1, F=0.42, p=0.25), PCo1 (df=1, F=0.12, p=0.69), PCo2 

(df=1, F=0.01, p=0.92) and PCo3 (df=1, F=0.002, p=0.99). Sampling site also had no 

significant effect on Chao1 (df=1, F=0.82, p=0.14), Shannon (df=1, F=0.77, p=0.18), 

PCo1 (df=1, F=0.1, p=0.72), PCo2 (df=1, F=0.016, p=0.92) and PCo3 (df=1, F=0.008, 

p=0.98). 

The original BCs of the two sampling sites (SL and LP) showed no significant 

difference in overall composition based on the Bray-Curtis dissimilarity matrix 

comparisons (PERMANOVA; df=1, F=0.25, p=0.92). There was also no significant 

difference between the BCs of the LP and SL across the phase 1 experiments (df=1, 

F=1.7, p=0.11) or the phase 2 experiments (df=1, F=2.03, p=0.07) by PERMANOVA. 

The PCoA analysis of the Barry-Curtis dissimilarity matrix of the BCs of LP and SL 

over two phases of the experiment (4 weeks) did not show a clear separation of the 

communities of two locations (Appendix D; Figures S5.1). Based on these results, we 

combined replicates and sampling sites for further analyses, except where noted.  

5.3.1 Adaptation of the BC to the low and high level of nutrients  

Adaptation at the community level: Principal response curve (PRC) analyses of 

the community of each location (LP and SL) separately showed that nutrient as stressor 
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had a significant effect on the BC of LP (F=2.6, p=0.009) and SL (F=2.2, p=0.01). As 

there were no significant differences between the BCs among two locations (LP and 

SL) across all treatments, we combined the data of two locations for each treatment; 

however, we show PRC results for sample sites separately and combine to illustrate the 

similarity of the two sample site responses. PRC analysis of combined data (LP+SL) 

also showed that nutrient as stressor had a significant effect (p<0.05) on the BC (F=2.3, 

p=0.009) (Figure 5.2). Monte Carlo permutation test indicated that only the effect size 

of first PRC was significant which explained 61%, 53% and 57% all variance for LP, 

SL and combined (LP+SL) data respectively. Second PRC only explained 11.9%, 9.8% 

and 10.3% of the variance for LP, SL and combined (LP+SL) data respectively and the 

effect size of treatment was not significant (p>0.05) (Figure 5.2). 

 

 

Figure 5.2. Principal response curves (PRC) resulting from the analysis of the BC response to low 

and high levels of nutrients in the adaptation (phase 1) experiments. The curves show the effects 

of nutrient additions as a stressor, relative to the control treatment (P1-Co), for the BC adapted to 

LND and HND of nutrients. The Y-axis indicates the difference from the control and X-axis 

indicates the time of sampling.  

To test for the effects of the adaptive (phase 1) experiment, we compared the BC of 

the LND, HND and the control (P1-Co) for week 4 using PERMANOVA. There was a 

significant difference among the three BCs at the end of the phase 1 experiment (df=2, 
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F= 7.7, p=0.001). Pairwise comparisons of BCs for the two treatments and the control 

using PERMANOVA showed that the BC of HND was significantly different from the 

BC of both LND (F= 3.1, p=0.04) and P1-Co (F=3.7, p=0.02), while there was no 

significant difference between the BC of LND and P1-Co (F=1.5, p=0.08).  

Adaptation at OTU and taxa levels: As the sampling site had no significant effect 

on diversity indexes or principle coordinates axes (PCoA1-PCoA3); see above), we 

combined the data for the two sampling sites for the analyses of Chao 1, PCo1, PCo2 

and PCo3. PCo1, PCo2 and PCo3 explained 40, 22 and 7% of total variation 

(cumulative variation=69%) for the BCs of week 4. There were no significant 

differences between P1-Co and LND for Chao1, PCo1 and PCo2 (p > 0.05), while 

Chao1, PCo1 and PCo2 showed significantly (p < 0.05) lower values for HND 

compared to the other two microcosms using one-way ANOVA. The mean of PCo3 

was significantly lower for HND in comparison to P1-Co but was not significantly 

different from LND (Appendix D; Figure S5.2).  

 In total, 13 OTUs were highly abundant (≥ 1%) in the BC of P1-Co which were 

assigned to different phyla. Out of those 13, only 3 (23%; OTUs 9, 27 and 129) belong 

to Proteobacteria (Figure 5.3). In the BC of LND, 15 OTUs were abundant of which 5 

(34%; OTUs 23, 28, 30, 92, 129 and 145) belong to Proteobacteria. Nine out of 15 

highly abundant OTUs of LND were also abundant in the BC of P1-Co. In the BC of 

HND, 20 OTUs were abundant of which 12 (60%; OTUs 5, 7, 19, 30, 32, 55, 56, 66, 

85, 105, 121 and 452) belong to Proteobacteria. None of the abundant OTUs were 

common between P1-Co and HND, while OTU30 (phylum Proteobacteria) was the 

only highly abundant OTU shared between the LND and HND BCs. Taxonomic 

affiliations of highly abundant OTUs assigned to Proteobacteria were different in the 

HND from the Proteobacteria detected in the BC of P1-Co and LND (Figure 5.3). 



Nutrient stress drives adaptive changes in freshwater bacteria communities: Response to secondary stress mediated by horizontal gene flow with 
reduced community change 

107 

 

  

Figure 5.3. Hierarchical clustering heatmap of the abundant OTUs (OTU numbers are given in 

parenthesis) with their taxonomic information (phyla and family). Vertical clustering was based 

on the similarity in the abundance of OTUs. Horizontal clustering was based on the similarly in 

the relative abundance of OTUs for each sampling location and treatment. The color code indicates 

the relative abundance of each OTU. Although there were no significant differences between the 

community of two sampling locations at the whole community level – minor differences exist and 

that is why both locations are presented in the heat map. Taxonomic abbreviations: Acido; 

Acidiobacteria, Actin; Actinobacteria, Bacter; Bacteroidetes, Chloro; Chloroflexi, Cyano; 

Cyanobacteria, Gemm; Gemmatimonadetes, Plan; Planctomycetes, Proteo; Proteobacteria and 

Verru; Verrucomicrobia. 

LDA analysis of the highly abundant OTUs for the week 4 community in the 

adaptive (phase 1) experiment revealed substantial, and significant (p < 0.05), variation 

among the BCs of P1-Co and LND (8 OTUs), P1-Co and HND (17 OTUs) and LND 

and HND (16 OTUs). More specifically, the relative abundances of OTUs 5, 8, 23 and 
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92 (all assigned to Proteobacteria) were significantly higher (p < 0.05) in the BC of 

LND treatment compared to P1-Co (Appendix D; Figure S5.3). Additionally, the 

relative abundances of OTUs 5, 56, 65, 85 and 452 (all assigned to Proteobacteria) 

also were significantly higher in the BC of HND treatment compared to P1-Co. More 

interestingly, the relative abundance of the OTUs assigned to Actinobacteria were 

significantly higher in the BC of P1-Co compared to that of the LND treatment (OTUs 

22 and 81) and the HND treatment (OTUs 3, 22 and 81). Moreover, the relative 

abundance of the OTUs assigned to Planctomycetes were significantly higher in the 

BC of P1-Co compared to the BC of the LND (OTU 14) and HND (OTUs 14 and 40) 

treatments (Appendix D; Figure S5.3). The relative abundance of Cyanobacteria 

(OTU42; family Synechococcaceae, genus Synechococcus) was elevated relative to the 

BC of P1-Co (0.18%) 0.6% and 1.2% in the BC of LND and HND respectively (Figure 

5.3).  

5.3.2 Response of the adapted BCs to the challenge  

Response at the community level: The adapted BCs from the phase 1 experiments 

(LND and HND) were exposed to very high levels of nutrient stress (Table 5.1) to 

study how previous exposure of low and high nutrient levels (phase 1 experiments) 

could modify the response of the BC to very high level of nutrients in the challenge 

(phase 2) experiments. Additionally, we cultured the adapted communities; LND and 

HND, under ambient conditions at the time of sampling the two sites (control) using 

preserved water from the initial sampling events. We predicted that the BCs exposed to 

high levels of nutrient stress in the adaptive experimental conditions would show 

reduced community change (diversity and composition) than those exposed to low 

levels of nutrient stress. PRC analysis of the BC for each location (LP and SL) 

separately showed that the challenge with very high levels of nutrient stress had a 

significant effect on the BCs of LP (F=3.5, p=0.002) and SL (F=3.1, p=0.003) (Figure 

5.4). As there were no significant differences between the BC of two locations (LP and 

SL) in response to the challenge in the phase 2 experiments (df=1, F=1.08, p=0.1), we 

combined the data from the two locations for each treatment. PRC analysis of the 

combined data of week 4 of the phase 2 experiments (LP+SL) also showed that the 

challenge had a significant effect on the BCs (F=3.2, p=0.003) (Figure 6.4). Monte 
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Carlo permutation test indicated that only the effect size of the first PRC was 

significant which explained 52%, 48% and 44% all variance for LP, SL and polled 

(LP+SL) data. Second PRC only explained 10.1%, 8.2% and 8.9% of the variance for 

LP, SL and polled (LP+SL) data and the effect size of treatment was not significant 

(p>0.05). 

 

 

Figure 5.4. Principal response curves (PRC) resulting from the adapted BCs response to the very 

high levels of nutrients in the challenge phase, indicating the effects of nutrient additions as a 

stressor on the adapted BCs. The challenge of LND (C-LND) and HND (C-HND) along with their 

relaxed communities (R-LND and R-HND) were studied. The Y-axis indicates the difference from 

the control and X-axis indicates the time of sampling.  

We also found significant differences between the challenged (phase 2) BCs (C-

LND and C-HNT), the control BC (P2-Co) and the relaxed BCs (R-LND and R-HND) 

of week 4 by PERMANOVA (df=5, F=7.7; p=0.001). Pairwise PERMANOVA 

analysis of the communities showed that there was a significant difference among all 

treatments (Table 5.2).  
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Table 5.2. PERMANOVA analysis (pairwise) of the BC of different communities of week 4 

(phase 2). Bonferroni corrected p values are given in above the diagonal and F values are provided 

below the diagonal. 

 
P2-Co C-LND R-LND C-HND R-HND 

P2-Co 
 

0.002 0.032 0.006 0.004 

C-LND 3.8 
 

0.001 0.006 0.002 

R-LND 1.8 2.9 
 

0.01 0.008 

C-HND 3.2 2.3 3.3 
 

0.006 

R-HND 2.5 2.7 2.5 2.9 
 

 

Response at the taxonomic and OTU level: Due to no significant effect (p>0.05) 

of sampling site on diversity indices and the PCoAs, we combined their sequence data, 

re-calculate the values of Chao1, PCo1, PCo2 and PCo3 and compared the mean of the 

indexes among treatments using one-way ANOVA (treatment was the only effect). 

PCo1, PCo2 and PCo3 explained 33, 19.5 and 9% (cumulative variation=61.5%) of the 

total variation within the Bray-Curtis dissimilarity matrix for the BCs of week 4 in the 

phase 2 experiment The combined data of week 4 showed significant differences in the 

mean of Chao1 (df=4, F=161.2, p<0.00001), PCo1 (df=4, F=231, p<0.00001), PCo2 

(df=4, F=132, p<0.00001) and PCo3 (df=4, F=136, p<0.00001) among P2-Co, C-LND, 

C-HND, R-LND and R-HND (Appendix E; Figure S6.4). The mean of Chao1, PCo1 

and PCo3 were not significantly different (p>0.05) between the two challenged 

communities; however, the mean of Chao1, PCo1 and PCo3 were higher in the C-HND 

than the C-LND community. Meanwhile, the mean of PCo2 was significantly higher 

(p< 0.05) for C-HND compared to C-LND (Appendix D; Figure S5.4).  

In week 4 of the challenge response (phase 2) experiment, 20 OTUs were highly 

abundant in the BCs of P2-Co and they belonged to diverse taxa (6 different phyla), but 

mostly Proteobacteria (7 OTUs; 35%), Actinobacteria (4 OTUs; 20%) and 

Planctomycetes (4 OTUs; 20%) (Figure 6.5). Out of those 20 highly abundant OTUs, 

only 4, 5, 4 and 3 OTUs were also abundant in the BCs of C-LND, R-LND, C-HND 

and R-HND respectively. In the BC of C-LND, we identified 19 highly abundant 

OTUs (assigned to 7 different phyla) which mostly belonged to Proteobacteria (9 
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OTUs; ~50%) and Cyanobacteria (3 OTUs; 16%). Out of those 19 abundant OTUs in 

the BC of C-LND; 3, 9 and 3 OTUs were also abundant in the BCs of R-LND, C-HND 

and R-HND respectively. The BC of C-HND was dominated by 16 abundant OTUs 

(assigned to 7 different phyla) of which Proteobacteria (6 OTUs, 38%) and 

Bacteroides (3 OTUs; 20%) constituted the highest number of OTUs. Out of those 16 

abundant OTUs, only 3 were common and abundant with the BC of R-HND (Figure 

5.5). The BC of R-LND had 11 abundant OTUs (assigned to 7 different phyla) which 3 

and 5 of them also were abundant in the BCs C-LND and P2-Co respectively. The BC 

of R-HND had 12 abundant OTUs (assigned to 7 different phyla) which 3 of them were 

abundant in the BC of C-HND and another 3 OTUs were also abundant in the BC of 

P2-Co.  
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Figure 5.5. Hierarchical clustering heatmap of the abundant OTUs in the BC of control and 

treatments microcosms at week 4 of the challenge response (phase 2) experiment. Vertical 

clustering was based on the similarity in the abundance of OTUs. Horizontal clustering was based 

on the similarly in the relative abundance of OTUs for each sampling location and treatment. OTU 

numbers are given in parenthesis with their taxonomic assignment (phyla and family). Although 

there were no significant differences between the community of two sampling locations at the 

whole community level – minor differences exist and that is why both locations are presented in 

the heat map. The color code indicates the relative abundance of each OTU. The lines in the 

heatmap represent the relative abundance of each OTU across the BC of P2-Co, C-LND, C-HND, 

R-LND and R-HND of LP and SL. Taxa abbreviation: Acido; Acidiobacteria, Actin; 

Actinobacteria, Bacter; Bacteroidetes, Chlam; Chlamydiae, Chloro; Chloroflexi, Cyano; 

Cyanobacteria, Firm; Firmicutes, Plan; Planctomycetes, Proteo; Proteobacteria and Verru; 

Verrucomicrobia. 
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Exposure of the adapted BCs to very high levels of nutrients led to significant 

increases of the relative abundance of some taxa such as Actinobacteria (family C111; 

OTU1584) and Proteobacteria (families Sphingomonadaceae; OTU130 and 

Hyphomonadaceae; OTU23) in the challenge BCs of both C-LND and C-HND (Figure 

S5). The challenge of the BCs adapted to the low level of nutrients (LND), resulted in 

significant increases of the abundance of Cyanobacteria (OTUs 622 and 2000), a 

different family of Planctomycetes such as Gemmataceae (OTU2126), Isosphaeraceae 

(OTU59) and Planctomycetaceae (OTU 170) as well as specific families of 

Proteobacteria (such as Burkholderiales (OTU 1490), Chromatiaceae (OTU1488) and 

Sphingomonadaceae (OTUs 130 and 726) in the BC of C-LND, compared to the BC of 

C-HND. In contrast, the challenge of the BC adapted to the high levels of nutrients 

(HND) mostly resulted in a significant elevation in the abundance of unique families of 

Proteobacteria (such as Oxalobacteraceae (OTU 8) and Methylophilaceae (OTUs 417 

and 684), Firmicutes (OTU676) and Verrucomicrobia (OTU17)) in the BC of C-HND 

compared to C-LND (Appendix D; Figure S5.5). We noticed that the relative 

abundance of Proteobacteria was still significantly higher in the BCs of C-LND 

(OTUs 23, 130, 726, 1488 and 1490) and C-HND (OTUs 23, 130, 312 and 417) 

compared to their corresponding relaxed communities (Appendix D; Figure S5.5). The 

relative abundance of only a few taxa of Actinobacteria and Acidiobacteria was 

significantly higher in the BC of the relaxed treatment (R-LND and R-HND) compared 

to their corresponding challenge microcosms (Appendix D; Figure S5.5). Taxonomic 

composition (at the phyla level) of the BCs of the various microcosm treatments in 

phase 1 (adaptation phase) and phase 2 (challenge phase) experiments are presented in 

Figure S5.6 (Appendix D). 

5.3.3 Microbial network analysis and keystone taxa 

The microbial networks were constructed using all OTUs with a relative abundance 

of greater than 0.05% across all treatments of the challenge phase week 4 (Figure 5.6, 

Appendix D; Table S5.1). Using thresholds for keystone taxa definition i.e., (taxa with 

degree > 70, closeness > 0.3, and betweenness < 0.07), we identified 50, 41, 34, 26 and 

18 keystone taxa (OTUs) for the BCs of P2-Co, R-LND, C-HND, C-LND and R-HND 

at week 4 respectively. The keystone taxa (50 OTUs) in the BC of P2-Co belonged to 
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27 bacterial families of 7 different phyla which mostly classified as Proteobacteria (17 

OTUs; 34%), Planctomycetes (10 OTUs; 20%), Bacteroidetes (9 OTUs; 18%). 

Keystone taxa belonged to Actinobacteria, Actinobacteria, Chloroflexi and Firmicutes 

also were identified (Appendix D; Table S5.2). Keystone taxa (26 OTUs) of C-LND 

were affiliated to 17 bacterial families of 4 phyla mostly including Proteobacteria (20 

OTUs; 77%) and other phyla such as Actinobacteria, Bacteroidetes and Cyanobacteria 

(Appendix D; Table S5.2). Compare to C-LND, more keystone taxa (34 OTUs) were 

identified in the C-HND community which were affiliated to the 19 bacterial families 

of 6 phyla mostly including Proteobacteria (22 OTUs; 65%). Keystone taxa belonged 

to Actinobacteria, Bacteroidetes, Cyanobacteria and Planctomycetes also were 

identified in the BC of C-HND (Appendix D; Table S5.2).  

Some keystone taxa of the challenge communities (C-LND and C-HND) assigned to 

the same bacterial families (i.e. C111, Comamonadaceae, Cytophagaceae, 

Rhizobiaceae, Rhodobacteraceae, Synechococcaceae, Xanthomonadaceae), but only 

one keystone taxa (OTU42; Cyanobacteria, family Synechococcaceae) was common 

between two challenges BCs. Some bacterial families with their keystone taxa such as 

Saprospiraceae (OTU1517, Bacteroidetes) and Methylophilaceae (OTUs 417, 684, 

912; Proteobacteria) and BD7-3 (OTU312; Proteobacteria) were only detected in the 

C-HND community (Appendix D; Table S5.2). In contrast, some bacterial families of 

Proteobacteria with their keystone taxa such as Bdellovibrionaceae (OTUs 174 and 

317), Burkholderiales (OTU1490) and Erythrobacteraceae (OTUs 425 and 449) were 

only identified in the C-LND community (Appendix D; Table S5.2). Both relaxed 

communities had keystone taxa belong to Acidobacteria, Firmicutes Planctomycetes, 

and Proteobacteria. However, keystone taxa classified in Actinobacteria (5 OTUs) and 

Bacteroidetes (11 OTUs) and Verrucomicrobia (1 OTU) were only detected in the R-

LND community and keystone taxa belong to Cyanobacteria (1 OTU) and 

Gemmatimonadetes (2 OTUs) were only identified in the R-HND community. 
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Figure 5.6. Network analysis diagrams of the BC compositions (phyla level) for the different 

treatment and control microcosms in the challenge experiment (challenged communities; C-LND 

and C-HND, relaxed communities; R-LND and R-HND and control; P2-Co) at week 4 (end of the 

experiment). Circles (nodes) are the OTUs belongs to each phylum while triangles (nodes) show 

keystone OTUs in each phylum for different treatments. Pink and gray lines (edges) represent 

positive and negative correlations respectively.  
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5.3.4 Horizontal gene transfer rate in the challenge phase 

We measured gene transcription at two well-documented HGT markers (GTA 

terminase and Int1) at week 4 in the challenge (phase 2) experiments. The goal was to 

determine if the challenge triggered potentially adaptive elevated transcription levels of 

HGT-related genes. As there was no significant effect of sample site on gene 

transcription at either marker locus under any treatment in the response to challenge 

(phase 2) experiment (p=0.9), we combined the transcription data for the two sample 

sites within each treatment. Both makers showed similar patterns among the treatments 

in the experimental phase 2 (week 4). There was a significant difference in 

transcription of GTA terminase (df=4, F=123, p<0.00001) and Int1 (df=4, F=69, 

p<0.00001) among treatments. The transcription level of GTA terminase and Int1 

markers in the BCs of C-LND and C-HND were significantly higher (p < 0.05) than 

their transcription level for BCs of P2-Co, R-LND and R-HND (Figure 5.7). The 

transcription of GTA terminase (CT mean= 19.2±0.5) and Int1 (CT mean= 21.2±0.8) in 

C-HND were higher than the transcription of GTA terminase (CT mean= 20.1±0.6) and 

Int1 (CT mean= 22.4±0.5) for the C-LND however, Post-hoc test did not show 

significant differences in the transcription level of both marks under the C-LND and C-

HND treatments (Figure 5.7).  
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Figure 5.7. Box and whisker plot showing mean gene transcription (CT values) for HGT markers 

(GTA terminase and Int1) in different BCs of phase 2; P2-Co, C-LND, R-LND, C-HND and R-

HND (week 4). The thick bar is median, upper and lower quartiles represent 75% and 25% of the 

data respectively. Whiskers are used to indicate variability outside the upper and lower quartiles.  

5.4 Discussion 

Given that freshwater ecosystems are undergoing rapid and major environmental 

changes globally due to a variety of stressors, including eutrophication, obtaining a 

quantitative and process-level understanding of the mechanisms that affect BC 

response to such stressors is pivotal for predicting the responses of ecosystems to novel 

or changing selective forces. Although much research has been completed on the dose-

response of nutrient loading on microbial community composition (Gobler et al., 2016; 

Ratzke et al., 2020; Steffen et al., 2017), less is known about the potential for microbial 

community “evolution” or adaptive change that could mitigate future changes - the 

implications of such responses are critical at the local, regional and global scales. Here, 

we test the effect of different levels of nutrients as anthropogenic stressors as selection 
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pressures on freshwater BCs of lakes Erie and St. Clair in a two-phase study (phase 1; 

adaptation experiment; and phase 2; response to challenge experiment). Specifically, 

we evaluated nutrient stress (low and high levels of nutrient stress) effects on the 

adaptive capacity of freshwater BCs and showed how this adaption might help mitigate 

the effects of extreme nutrient stress in freshwater BCs (as well as on particular taxa 

and horizontal gene transfer capacity).  

In our adaptation phase experiments, we found the low level of nutrient stress (5 

times above ambient at the time of sampling) only resulted in slight changes (no 

significant effects at the community level) in the BC, while high levels of stress, 

induced significant community shifts in the BC. Our results also showed that 

increasing the level of the stressor (nutrients from low to high level) resulted in an 

elevated abundance of OTUs belong to Proteobacteria; a fast-growing and nutrient 

loving phylum of freshwater BC (Newton et al., 2011). However the same stressor 

resulted in a reduced abundance of Actinobacteria; the numerically dominant phylum 

in freshwater lakes (Newton et al., 2011; Shahraki et al., 2020), which prefer 

oligotrophic ecosystems (Haukka et al., 2006) and are sensitive to eutrophication as a 

stressor. Similar to that reported before (Lee et al., 2017), we found that eutrophication 

not only resulted in the dominance of Proteobacteria in the BC, but also a significant 

loss of diversity. Thus, nutrient overloading could result in some taxa, such as 

Proteobacteria, to dramatically alter the chemical microenvironment, driving further 

negative interactions among bacterial species. This process would eventually exclude 

bacterial species from the community, ultimately resulting in a permanent loss of 

biodiversity (Ratzke et al., 2020), as we observed. Such a loss of diversity would be 

expected to alter BC function as well (Banerjee et al., 2018). More interestingly, our 

work also showed an increase in the relative abundance of Cyanobacteria in response 

to both low and high levels of nutrient stress. Previous work on Lake Erie has shown 

that elevated nutrient levels are associated with increases in the relative abundance of 

Anabaena and Planktothrix (close to the mouth of the Maumee River), Microcystis (the 

western basin of Lake Erie) (Harke et al., 2016) and Planktothrix (Sandusky Bay) 

(Davis et al., 2015) within the Cyanobacteria community. However, in our adaptation 
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(phase 1) experiments, nutrient overloading increased the level of Synechococcus 

(OTU42), another taxon capable of producing cHABs (Berry et al., 2015).  

Although our phase 1 experiments produced interesting changes in the BC of our 

study sites, perhaps more interesting are the results of the challenge response (phase 2) 

experiments. For this study, we interpreted the reduced impact of the extreme challenge 

on key taxa abundance, which drives community function, as an adaptive response. 

Increases in the abundance of a single taxon may reflect elevated performance (and 

fitness) of that particular taxon in a stressful environment, however, increases in the 

abundance of different taxa (OTUs) belonged to higher taxa level such as phylum was 

interpreted as evidence of better adaptation at the community level in this study. The 

nutrient challenge experiments with extreme levels of nutrients led to significant shifts 

in the composition of the pre-adapted communities relative to the control microcosm 

BCs. Conversely, we found that under the nutrient stress relaxed conditions, the altered 

BCs from the phase 1 experiments did not return to the control community composition 

or diversity, indicating that re-culturing of the adapted communities under ambient 

conditions could not restore the altered BCs to their original state. We did not monitor 

the functionality of the BC in either the adaptive or challenge phases of our study; 

however, a significant shift in the BC composition, significant loss of diversity in the 

challenge phase and changes in keystone taxa profile make it likely that a significant 

shift in the BC function occurred as well - as reported in various natural ecosystems 

(Banerjee et al., 2018; Peter et al., 2011; Philippot et al., 2013; Schimel, 1995). 

Microbes must acclimate to immediate stress by altering their allocation of 

resources from growth to survival pathways; however, extreme stress may force them 

into dormancy (Suzina et al., 2004) or kill them. Death and dormancy both remove the 

microbial function from the ecosystem; however, whereas dormant organisms can 

regain activity when conditions improve; dead ones do not (Schimel et al., 2007). 

Extensive microbial death due to stressors may result in substantial time lags in 

recovery (or complete failure to recover) and, ultimately, breakdown of ecosystem 

function (Clein and Schimel, 1994). In our study, we monitored BC recovery and the 

potential resumption of dormant bacterial activity by re-culturing the adapted BCs 

under ambient conditions. We found that the BCs that were pre-adapted to the high 
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levels of nutrients (HND) exhibited reduced recovery under the relaxed conditions, 

relative to the BCs exposed to the low level of nutrients stress (LND). This was 

reflected in reduced recovery of diversity (Chao1, PCo1 and PCo2) in the adapted BC 

to the high level of nutrients in comparison to the adapted BC to the low level of 

nutrients (Appendix D; Figure S5.4). 

Significant increases in the abundance of some taxa belonging to Proteobacteria 

(i.e. Burkholderiales; OTU1490 and Chromatiaceae; OTU1488) in the challenge 

(phase 2) experiment using the BC adapted to the low level of nutrients (LND), 

coupled with the dominance of some taxa belonging to Proteobacteria (i.e. BD7-3; 

OTU312 and Methylophilaceae; OTU684) in BC adapted to the high level of nutrients 

(HND) demonstrated that different taxa within a single phylum (Proteobacteria) 

adapted differently and generated different responses to the extreme nutrient challenge 

in the phase 2 experiment. Such broad community responses are critical for BC 

function and highlight the complexity of BC. Some studies reported the correlation of 

stressors with some bacterial taxa due to better adaption of those taxa to stressors. For 

example, Liu et al, reported a positive significant correlation and better adaptation of 

Firmicutes and Bacteroidetes to total Hg content (Liu et al., 2018), however, our study 

for the first time demonstrate a substantial variation in the adaptive response of 

different bacterial taxa of phyla (i,e. Proteobacteria) of the “pre-adapted” communities 

against a very high level of the stressor. Our study shows that different taxa might 

exhibit different adaptive responses even if they are belonging to the same bacterial 

class or phylum.  

While the ecological importance of the dramatically responding taxa described 

above is not well known, Chromatiaceae (phototrophic purple sulfur bacteria) have a 

high capacity to use ammonia and adapt to heterotrophic growth under nutrient-

depleted (oligotrophic) conditions (Imhoff, 2014). Thus Chromatiaceae may be able to 

exploit even the extreme levels of nutrients we used as a challenge and achieve high-

population densities (Guyoneaud et al., 1996). Thus, the exposure of a natural BC to 

low levels of nutrient stress may increase the adaptive response of Chromatiaceae 

against our challenge (extreme levels of nutrients). On the other hand, it has been 

suggested that methanol (as one metabolic node) could be a major carbon source 
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produced by members of methanotrophs such as Methylophilaceae for community 

cross-talking and to support satellite communities (Krause et al., 2017). Adaptation to 

the high level of nutrients in the phase 1 experiments, followed by the challenge with 

extreme levels of nutrients in the phase 2 experiment resulted in elevated and high 

abundance of Methylophilaceae. Pre-stressing the freshwater BCs in this study with the 

high levels of nutrients in phase 1 appears to allow methanotrophs to become an 

important component of the freshwater BC, likely due to methanotrophs’ capacity for 

nitrogen fixation (Bowman, 2006). Such changes in abundance likely facilitated the 

challenged BCs to make connections between nitrogen fixation and the carbon cycle in 

our anthropogenically affected microcosm ecosystems. 

As expected, the BC of the control microcosm in the challenge (phase 2) experiment 

had the highest number of keystone taxa with the highest diversity at the phyla level (7 

different phyla). Our detailed analysis of the keystone taxa (identified by our network 

analyses) revealed that adaptation to the high level of nutrient (HND) versus the low 

level of nutrients (LND) allowed the BC to maintain a higher number of keystone taxa 

(34 OTUs affiliated to the 19 bacterial families of 6 phyla) with more diversity in the 

challenge phase. This indicates that the HND pre-adaptation treatment likely improved 

the functional response of the BC to the challenge. We identified diverse keystone taxa 

(26 OTUs identified to 17 bacterial families) belonging to 4 different phyla in the BCs 

adapted to low levels of nutrient (LND) after the challenge (phase 2) experiments. 

However, 77% (20 OTUs) of them were assigned to Proteobacteria, indicative of a 

poor adaptive response to the challenge as it resulted in the elimination of keystone 

taxa in other phyla (maladaptation). This finding revealed that higher levels of stress in 

the adaptation phase (nutrients in this study) provide better outcomes for the BC 

against very high levels of nutrient stress. 

Various taxa belonging to Proteobacteria (77 and 65% keystone taxa in C-LND and 

C-HND respectively) were the main part of keystone taxa in adapted BCs after 

challenge with a very high level of nutrients. Proteobacteria are a fast-growing and 

nutrient loving part of freshwater BCs (Newton et al., 2011); however, this study for 

the first time provides more details regarding the wide range of adaptive response of 

diverse freshwater Proteobacteria to different levels of stress (low versus high nutrient 
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doses in this study). Perhaps more importantly, we showed that “pre-adaption” 

exposure helps particular taxa in this phylum to deal with very high levels of nutrient 

stress. Some keystone taxa Planctomycetes (nitrogen fixation and autotrophic 

metabolism) (Delmont et al., 2018) and Verrucomicrobia (diverse metabolic strategies 

and association with the high-nutrient environment) (Lindström et al., 2004)) in the BC 

of microcosms adapted to high levels of nutrient stress (HND) responded to the 

challenge treatment with better performance and adaptation under a very high level of 

stress (nutrient overloading in this study). This was likely due to their ability to exploit 

the large nutrient resources available in the challenge phase.  

Interestingly, three OTUs affiliated with family C111 of Actinobacteria achieved 

keystone taxon status in the BC adapted to the high level of nutrient stress (HND), after 

the challenge phase, compared to only one family C111 OTU for the BC adapted to 

low levels of nutrients (LND). Actinobacteria is one of the main components of 

freshwaters BC (Newton et al., 2011) and is sensitive to nutrient overloading (Haukka 

et al., 2006). It is thus apparent that pre-treatment with high versus low level of 

nutrients resulted in an improvement in the role of family C111 taxa after exposure to 

high levels of nutrient stress in the challenge (phase 2) experiments. Generally, 

keystone taxa analysis revealed a noticeable reduction in the diversity of keystone taxa 

in the BCs adapted to the LND (4 phyla, mostly Proteobacteria; up to 77%) versus 

HND (6 phyla). As keystone taxa are, by definition, the drivers of microbiome 

structure and function (Banerjee et al., 2018), our analyses show that pre-treatment 

with high levels of the nutrient can facilitate the maintenance more diverse keystone 

taxa and thus likely better functionality relative to the LND pre-treatment, after 

exposure to very high levels of nutrient stress. 

Our study showed a substantial BC composition shift in the microcosms after the 

adaptive (phase 1) and the challenge (phase 2) experiments, primarily in those under 

high-stress treatments. While we detected a few significant changes in the LND BC in 

phase 1 experiments, we do not know if the BC was responding in other ways. While 

our experiments were not designed to test for genetic change within individual taxa, 

our measurement of transcription of the HGT marker genes allowed us to explore 

responses involving complex community-level genetic interactions. Indeed, some 



Nutrient stress drives adaptive changes in freshwater bacteria communities: Response to secondary stress mediated by horizontal gene flow with 
reduced community change 

123 

 

studies have suggested that HGT is one of the main mechanisms involved in the 

adaptive response in bacterial communities (Springael and Top, 2004), shaping 

microbial community structure in response to heavy metals as stressors (Hemme et al., 

2016) and microbial community response to antibiotic and heavy metals (Di Cesare et 

al., 2016a). We observed higher transcription of two HGT markers in the BC adapted 

to the high level of nutrients relative to the BC adapted to the low level of nutrients 

when they challenged with a very high level of nutrients (Figure 5.7). This finding 

shows that pre-adaptation of the BC to the high level of stress relative to the low level 

of stressor would increase the HGT rate and potentially help the entire community to 

better survive against a very high level of the stressor by higher-level of genetic 

exchanges. Our results presented in this study provide explicit evidence that HGT plays 

a crucial role in the adaptive response of freshwater BC against stressors such as 

eutrophication. 

5.5 Conclusion 

Our two-phase adaptation-challenge response study showed that different levels of 

stress pre-treatment have very different effects on the potential for adaptive responses 

in bacterial communities. High levels of stress pre-treatment provide a better adaptive 

response to secondary extreme stress by allowing the retention of diversity in the 

community, especially diversity in the keystone taxa. The HND pre-treatment also 

resulted in a higher rate of HGT than in the microcosms exposed to the LND pre-

treatment. Our results highlight the role of nutrient overloading as a stressor in driving 

a BC composition shift, diversity loss and potentially change the function of the BC by 

altering keystone taxa. On the other hand, different levels of nutrient stress can provide 

better adaptive responses (e.g., growth conditions) for taxa such as those in phylum 

Proteobacteria, while low levels of pre-treatment of nutrient stress exclude some 

critical members of the community (such as Planctomycetes and Verrucomicrobia) due 

to poor adaptive response. It is interesting to note that the elimination of stressors 

(relaxed nutrient stress) does not allow complete recovery of the BC to the original 

state under even ambient nutrient conditions. This study also revealed that BCs may 

employ HGT as one of the major adaptive mechanism for microbial populations 

against environmental stressors. This study provides a linkage between environmental 
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stressors with the BC composition and its response to the different levels of stressors 

which is critical in advancing our understanding of ecosystem ecology. 
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 RECREATIONAL WATER MONITORING: NANOFLUIDIC QRT‐PCR CHIP FOR 

ASSESSING BEACH WATER SAFETY ONTARIO 2 

6.1 Introduction 

Human fecal, and consequently pathogen, contamination is a serious environmental 

and public health problem that affects water bodies around the world. Fecal pollution 

has become more widespread due to population growth and climate change and this is 

correlated with increases in waterborne disease (Levy et al., 2016). Recreational water 

is the second most common source of waterborne disease outbreaks worldwide, after 

contaminated drinking water (McClung et al., 2017). Degradation of freshwater quality 

also significantly reduces human recreational opportunities and results in economic 

loss (e.g., decreased tourism, reduced fishing activity, etc.) (Vörösmarty et al., 2010). 

In the US, for example, epidemiologic data indicate the risk for developing acute 

gastrointestinal illness symptoms is as high as 15 cases per 1000 swimmers, with a 

total of 90 million recreational water use related illnesses nationwide, which translates 

into $2.2-$3.7 billion in losses annually (DeFlorio-Barker et al., 2018). Consequently, 

improving beach monitoring and regulation technologies, coupled with beach 

remediation efforts guided by appropriate source tracking methods, would improve 

public health, recreation opportunities and economic wellbeing. 

Culturing and counting fecal indicator bacteria (FIBs), such as Escherichia coli, 

remains the most common approach for monitoring pathogenic water pollution (Soller 

et al., 2016). Although coliform culture has been the standard for water safety 

monitoring, it has several important limitations, including; 1) it is time-consuming, 2) 

some FIBs can survive and grow in aquatic habitats (Ishii and Sadowsky, 2008), 3) 

there is generally a poor correlation between FIBs and the occurrence of pathogens 

(Jang et al., 2017) and 4) there is a lack of coliform host specificity (Pattis et al., 2017). 

Bacterial culturing is the gold standard for pathogen detection and has served us well 

for more than 150 years, but it is not applicable for routine water monitoring programs 

due to cost and time of culture method. Only well-equipped laboratories with approved 

 
2 This Chapter was published as a journal article: AH Shahraki, DD Heath, SR Chaganti 2019. Recreational water 

monitoring: Nanofluidic qRT‐PCR chip for assessing beach water safety. Environmental DNA. 1:305–315.  
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biosafety clearance are able to culture pathogenic bacteria complex samples compared 

to new molecular methods (Jacovides et al., 2012). Improved molecular technologies 

will be able to evaluate water quality and safety rapidly, more precisely and less 

expensively, particularly when more than one pathogen is targeted (Wolk and Hayden, 

2011).  

Quantitative real-time PCR (qRT-PCR or qPCR) is an emerging tool for water 

pathogen monitoring and has been recommended by the US Environmental Protection 

Agency (EPA) for detection and quantification of E. coli as a FIB (Chern et al., 2011). 

qPCR methods have been used to detect individual waterborne pathogens such as E. 

coli O157 (Wu et al., 2015) and Yersinia enterocolitica (Cheyne et al., 2010).  

Multiplex qPCR is widely applied to quantify groups of waterborne pathogens (Fan 

et al., 2008; Nhung et al., 2007). Some of those studies utilized microfluidic plates 

(Ishii et al., 2013; Ramalingam et al., 2010). However, most studies do not validate and 

assess probe sensitivity, nor do they generally include source tracking markers. The 

inclusion of Microbial Source Tracking (MST) to determine the specific fecal source 

(e.g. human, dog, cattle, wildlife, etc.) is critical as the source will influence human 

health risk (Harwood et al., 2014). However, the simultaneous detection and 

quantification of many water safety-related target loci is challenging due to the 

technical difficulties associated with multiplexed qPCR. High density, low volume 

qPCR (nanofluidic) platforms are becoming more readily available (Morrison et al., 

2006) and they allow multiple target detection with very high sensitivity (Friedrich et 

al., 2016).  

A robust, high-throughput quantitative tool that targets FIBs, MST and pathogen 

virulence markers is required for effective real-time monitoring of recreational water 

and subsequent risk management. Consequently, the objectives of this study were to 1) 

design and validate a rapid nanofluidic qRT-PCR (TaqMan® assays in the OpenArray® 

platform) assays to monitor FIBs, MST markers and waterborne pathogens 

simultaneously and 2) evaluate the application of the designed method for monitoring 

of FIBs, MST and waterborne pathogens in different environmental samples. We 

combine the OpenArray platform with robotic DNA extraction to dramatically improve 

our ability to detect, monitor and quantify key waterborne health risks in less than four 
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hours. We apply our assay to a variety of samples (sewage, fecal control samples, 

environmental water samples and beach sand samples) and show the wide utility of our 

approach for both regulatory and research applications. 

6.2 Materials and methods 

6.2.1 Target selection and designing of the primers 

Fifteen key waterborne pathogenic species (primary causes of bacterial waterborne 

disease (Ramírez-Castillo et al., 2015)) two FIBs including E. coli (two independent 

genes; 23S rRNA and uidA gene) and Enterococci spp., one general fecal pollution 

MST marker and six host-specific MST markers were selected for inclusion on our 

OpenArray® plate (Appendix E; Table S6.1). We used existing qPCR primers and 

probes for the detection and quantification of E. coli (targeting 23S rRNA) (Chern et 

al., 2011) as a FIB, along with new primers and probe for the uidA gene; another 

universal gene conserved among different strains of E. coli. To assess the occurrence of 

inhibition during qPCRs, we also used previously suggested marker (amplification of 

70 bp fragment of NH8B_3641 gene encoding NosZ-like protein of 

Pseudogulbenkiania spp. NH8B) as an internal positive control (Ishii et al., 2013).  

Single copy virulence genes, which are present in all pathogenic strains of each 

waterborne pathogen, were selected as targets for primers and probe design (Appendix 

E; Table S6.1). For MST of fecal pollution, 16S rRNA sequence from host-specific 

Bacteroides for Canada goose (Branta canadensis) (Vogt et al., 2018), dog (Canis 

lupus familiaris) and pig (Sus scrofa domesticus) (Okabe et al., 2007) and 16S rRNA 

sequence from Methanobrevibacter smithii (human MST marker) (Ufnar et al., 2006), 

Catellicoccus marimammalium (seagull MST marker) (Lee et al., 2013) and C40 

mitochondria gene (human MST marker) (Caldwell et al., 2011) were used to design 

specific primers for qPCR. A universal primer set targeting 16S rRNA gene of 

Bacteroides spp. was designed as a general MST marker. We used published sequence 

data of each target to design specific primers and probes targeting virulence genes 

using Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). 

We used the following parameters of Primer3Plus software to design the primers; no 
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CG clamp, max poly-X (score: 3), max self complementarity (score: 3), max 3' self 

complementarity (score: 0). Other parameters kept as default. 

6.2.2 Primer validation 

The specificity of the designed primers were checked in silico using the Basic Local 

Alignment Search Tool (BLAST) tool (Altschul et al., 1997) against the GenBank 

database. We used primer specificity stringency of at least 2 nucleotide mismatches to 

unintended targets, including at least 2 nucleotide mismatches within the last 5 

nucleotides at the 3' end of the primers as default parameters. 

Further, each designed primer set was tested in the laboratory against the host-

specific and pooled non-specific fecal matter DNA (Canada goose, dog, human, pig, 

seagull and sewage) and the DNA of target and non-target species of bacteria. For each 

marker (Appendix E; Table S6.1), PCR master mix was prepared as described 

previously and each target was amplified with 59 ˚C annealing temperature in 35 

cycles (Shahraki et al., 2019). The amplicon for each marker was visualized on an 

agarose gel and the amplicon size was estimated along with 50 bp DNA Ladder 

(Invitrogen™, USA). To test the sensitivity, we used purified PCR product - PCR 

product of each primer was purified using QIAquick PCR Purification Kit (QIAGEN) 

according to the manufacturer's instruction. The concentration of each PCR product 

was measured using Agilent 2100 Bioanalyzer with a High Sensitive DNA chip 

(Agilent Technologies, Mississauga, ON, Canada). The PCR product for each marker, 

with estimated copy numbers, were combined and then diluted (10-fold) to make seven 

known concentrations of all targets (2,000,000, 200,000, 20,000, 2,000, 200, 20, 2 and 

1 copies of each target/reaction) for SYBR green qPCR assays to determine the 

sensitivity of the designed primers. 

6.2.3 Sample preparation and DNA extraction 

We collected a variety of environmental samples, including beach water (6 X 250 

mL), beach pore water (6 X 250 mL) and sand (6 X 20 g) from six public beaches 

(Windsor-Essex County, Ontario, Canada). We also collected stream and pond water 

samples (3 X 250 mL, each) near the sampled beaches. We collected sewage samples 

(3 X 250 mL) and fecal samples (N = 5 from Canada goose, dog, pig and seagull as 



Recreational water monitoring: Nanofluidic qRT‐PCR chip for assessing beach water safety Ontario 

132 

 

well as two healthy human fecal samples) for use as control samples. The collected 

water and sewage samples were delivered to the laboratory on ice within four hours of 

collection. Water and sewage samples were filtered with 0.22-micron pore size, 47 mm 

diameter polycarbonate filters (IsoporeTM, Millipore, MA). After filtration, each filter 

was placed in a 2 mL sterile tube containing 0.5 g glass beads (0.1 mm diameter, Bio-

Spec Products, Bartesville, US). For sand samples, 20 g of sand from each location was 

added to a tube containing 250 mL distilled sterile water and the mixture was 

vigorously shaken for 2 min. The supernatant was transferred into a sterile bottle and 

the sample was filtered as described above. For fecal samples, 2 g of each sample was 

added to a 2 mL sterile tube with 0.5 g glass beads. 

For cell lysis, 400 µL of sucrose lysis buffer (400 mM NaCl, 750 mM, 20 mM 

ethylenediaminetetraacetic acid (EDTA), 50 mM Tris-HCl pH 9.0) was added to each 

tube. After bead beating (1 min, 3 times), each sample was treated with lysozyme 

(Sigma-Aldrich, USA); 10 mg/mL, 37 °C for 20 min and proteinase K (Thermo 

Scientific, USA); 0.2 mg/mL, 50 °C for 20 min. Proteinase K was deactivated in 95 °C 

for 5 min and then DNA was purified from the samples using the Solid Phase 

Reversible Immobilization (SPRI) paramagnetic bead-based method on an automated 

liquid handling platform (Tecan Freedom Evo150 Liquid Handling Platform, Perkin 

Elmer, USA) (Shahraki et al., 2019). The purity and concentration of the extracted 

DNA from samples were checked (ND-1000, Nanodrop, USA) (Shahraki et al., 2019). 

6.2.4 SYBR green qPCR assay 

We used SYBR green qPCR to test the efficiency of the primers before designing 

the OpenArray® plate. Furthermore, our validation of the SYBR green qPCR allows 

applications of our markers where the OpenArray® plate is not feasible due to lack of 

access to the OpenArray® equipment, or where single marker vs multiple markers are 

interested. We applied SYBR green qPCR to the control (fecal and sewage) and 

environmental samples and validated the assays using dilutions of positive controls. 

SYBR green qPCR reactions were carried out on environmental and fecal sample DNA 

and all known-concentration target template DNAs in 20 μL including 10 μL SYBR 

green master mix (Applied Biosystems™, USA), 1 μL primers (combined forward and 

reverse primers, final concentration 10 pmol for each), 1 μL/ reaction DNA and 8 μL 
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ddH2O. We also used SYBR green assays of two pathogen virulence genes (ctxA and 

manC) and NH8B_3641 gene (internal positive control) to evaluate the presence of 

PCR inhibitors over qPCR assays. Extracted DNA of water samples were negative in 

SYBR green qPCR assays for ctxA, manC and NH8B_3641 genes. For this experiment, 

extracted DNA from each water sample was inoculated with known-concentration of 

ctxA, manC and NH8B_3641 genes (2,000,000, 200,000, 20,000, 2,000, 200, 20, 2 and 

1 copies of each gene/µL) in fresh tubes and were subjected to SYBR green qPCR. No-

template control (NTC) reaction including SYBR green master mix, forward and 

reverse primers of each marker and ddH2O but not DNA template was run for each 

assay. Real time program consisted of 95 °C for 1 min followed by 40 cycles 95 °C for 

10 s, 60 °C for 60 s. All reactions were duplicated in MicroAmp Fast 96-well reaction 

plates and were run on QuantStudio 12K Flex Real-Time PCR System (Applied 

Biosystems, USA).  

6.2.5  Nanofluid OpenArray®  

The goal of this research was to develop a high-throughput panel of qPCR assays in 

33-nL reactions to monitor recreational water safety. We chose the nanofluidic 

TaqMan® assays in the OpenArray® platform (gene expression platform, Thermo 

Fisher Scientific, USA), as it is capable of performing duplicate qPCR assays for 25 

marker loci, including 3 FIB markers (two assays for E. coli; 23S rRNA and uidA gene, 

and one for Enterococcus spp.), 7 MST markers (one general MST marker, two 

human-specific and host-specific for Canada goose, dog, pig and seagull) and 15 

waterborne pathogen virulence gene markers simultaneously. The OpenArray® plate 

was preloaded with primers and probes labeled with carboxyfluorescein (FAM) at the 

5´-end and Black Hole Quencher® 1 (BHQ1) at the 3′-end. The efficiency of our 

TaqMan® assays in the OpenArray® platform was evaluated using DNA from our 

selected control (sewage and fecal) and environmental samples. The extracted DNA 

from each sample (2.5 μL) was mixed with 2.5 μL TaqMan® OpenArray® Real-Time 

PCR Master Mix (Applied Biosystems™) for loading on the OpenArray® instrument. 

Also, seven combined known concentrations (2,000,000, 200,000, 20,000, 2,000, 200, 

20, 2 and 1 copies of each target/hole (OpenArray® well) were loaded on the 

OpenArray® plate. The mixture was loaded using the QuantStudio 12K Flex Accufill 
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System (Applied Biosystems™, USA) and the OpenArray® plate was run on the 

QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems, USA). Two no 

template controls (NTCs) were run along with fecal and environmental samples. After 

the initial denaturation at 95 °C for 3 min, 40 cycles of the following program were 

used for amplification; denaturation at 95 °C for 10 s, annealing/extension at 60 °C for 

10 s.  

6.2.6 Data analysis 

The most common method of quantitation associated with qPCR assays is based on 

the measurement of the threshold cycle (CT) and is the CT (baseline threshold) method 

(Bustin et al., 2009). Relative threshold (Crt) is an alternative method that is more 

robust for analyzing data generated on the Applied Biosystems™ QuantStudio™ 12K 

Flex Real. As these two methodologies give comparable quantitation cycle (Cq) values 

and fold change (FC) values in large data sets (Applied Biosystems QuantStudio™ 

12K Flex Real-Time PCR System, Application Note), we used CT method to analyze 

our data. The assay was classified as a true positive when two replicates were positive. 

The standard curve for each marker was generated by linear regression analysis of the 

CT value versus the amounts of the template DNA for SYBR green (log copies/μL) and 

TaqMan® assays (log copies/hole) qPCR assays. The efficiency of each assay was 

calculated using a standard curve with the equation: Eff = 10(−1/slope) − 1, where 

slope corresponds to the slope of the standard curve (Bustin et al., 2009). If all target 

sequences double during each replication cycle of qPCR, amplification efficiency 

considered as 100% (Bustin et al., 2009). 

We estimated the template copy number of the target locus in environmental and 

fecal samples for each assay using the TaqMan® assays CT value based on the standard 

curve. The lowest concentration of each target which generated a CT value in all 

replicates was identified as the detection limit. We converted gene copies/250 mL 

water or gene copies/2 g of fecal matters, assuming that the cell recovery and DNA 

extraction efficiency were 100% in all samples and that only one gene copy was 

present per cell. Zero was given to non-detects assays for statistical analysis. Pearson’s 

correlation was used to correlate the concentration of Bacteroides spp. (general MST 

marker), E. coli and host-specific markers (Canada goose and seagull) individually, 
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with detected waterborne pathogens (combined as a single variable). Also, we 

correlated combined host-specific MST markers concentration as a single variable with 

combined waterborne pathogens as another variable in all environmental samples. 

Then we excluded the environmental samples which were negative for waterborne 

pathogens from the data and the correlation was repeated between individual MST 

markers, E. coli and the combined host-specific marker with combined waterborne 

pathogens as a single variable. Heatmaps were generated in R version 3.5.3 with 

ggplot2 on log10 transformed gene copies measured by the OpenArray® plate (Warnes 

et al., 2009). 

6.3 Results  

DNA extraction: All the samples had more than 50 ng/µL DNA concentration with 

the optimum ration of 260/280 (~1.8) and 260/230 (~2.0-2.2) (Lucena-Aguilar et al., 

2016) (Appendix E; Table S6.2).  

6.3.1 Assay validation 

All the designed amplicons had a length of 66-90 bp (Appendix E; Table S6.1) and 

melting temperature (Tm) of 59±2 °C. We used the Basic Local Alignment Search 

Tool (BLAST) tool to predict the specificity of the primers and possible non-specific 

amplification. All the designed probes and primers were specific for their intended 

targets with a few exceptions; the designed probe for Enterococcus spp. showed 

possible annealing with Sphingobacterium psychroaquaticum, however, due to the 

specificity of the forward and reverse primers for the Enterococcus genus, we used the 

designed probe in the OpenArray® plate. Also, the designed probe and primers for 

Bacteroides spp. as a general MST marker, showed possible annealing with Prevotella 

spp. As genus Bacteroides and Prevotella belongs to the same phyla (Bacteroidetes) 

and both have high sequence similarity of 16S rRNA and have fecal source (Bernhard 

and Field, 2000), the designed primer set was Bacteroides-Prevotella taxon-specific, 

however, in the manuscript we considered Bacteroides spp. (general MST marker). 

Also, as E. coli and Shigella spp. are sister species and consequently have high 

similarity in their genome sequence (Zuo et al., 2013) the designed probe and primers 
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for uidA gene of E. coli also showed possible annealing with Shigella spp. based on our 

“in silico” sequence-based analysis.  

In PCR trials, the virulence gene and FIBs primers amplified the appropriate target 

(Appendix E; Table S6.1) in the target bacterial species and no false positives or false 

negatives were detected by conventional PCR (Appendix E; Figure S6.1-S6.2). The 

virulence genes and FIBs also were amplified in sewage samples. FIBs amplicons were 

amplified in different fecal matters (Appendix E; Figure S6.1-S6.2). Some virulence 

genes were amplified by their corresponding specific primers in pooled fecal samples 

of different animals and humans. For example, both C. coli and C. jejuni were 

amplified in pooled fecal samples of Canada goose and seagull (Appendix E; Figure 

S6.2). General MST marker (Bacteroides spp.) was detected in all fecal and sewage 

samples (Appendix E; Figure S6.2). No PCR amplification was detected for any of the 

host-specific MST markers (i.e., no amplification of non-target host fecal sample 

DNA), while all host-specific MST assays detected their specified host fecal matter 

DNA (Appendix E; Figure S6.1-S6.2). As E. coli (different strains) and Shigella spp. 

are closely related, the detection of Shigella spp. by uidA and 23S rRNA genes, PCRs 

were considered as true positive.  

While the goal of this study was to develop a TaqMan® qPCR assays in the 

OpenArray® platform, we also tested SYBR green qPCR performance for applications 

where the OpenArray® plate is not feasible. The mean SYBR green qPCR CT values 

across all 25 marker loci with known template DNA concentrations of 2,000,000, 

200,000, 20,000, 2,000, 200 and 20 copies/reaction were 17.42 ± 0.36, 21.17 ± 0.45, 

24.12 ± 0.56, 27.4 ± 0.50, 30.6 ± 0.59 and 33.8 ± 0.57 qPCR (Appendix C; Table 

S4.3), a pattern of increasing CT consistent with the dilutions. Two copies/reaction 

were detected in 6 (24%) of the assays, but none of the assays generated a CT value for 

one copy/reaction (Appendix E; Table S6.3). Mean amplification efficiency (across all 

25 assays) was 93 – 115% for the SYBR green qPCR (Table 6.1). No CT value was 

detected for NTC for each SYBR green assay. Also, SYBR green qPCR assays of three 

genes (ctxA, manC and NH8B_364) with know concentration of each gene in water 

samples shown a linear relationship between the inoculated gene copies of each marker 

and the those quantified by qPCR assays (Appendix E; Figure S6.4).  
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The mean CT values across all assays for the known template DNA concentrations 

2,000,000, 200,000, 20,000, 2,000, 200, 20 and 2 copies/hole (OpenArray® well) were 

16.63 ± 0.5, 19.85 ± 0.64, 22.93 ± 0.66, 25.91 ± 0.69, 29.06 ± 0.5, 32.68 ± 0.77 and 

35.62 ± 0.79 respectively for the TaqMan® assays (Appendix E; Table S6.3). All 

assays generated CT values for 2 copies/hole; however, only 6 (24%) of the assays 

generated CT values for one copy/hole (Appendix E; Table S6.3). Mean amplification 

efficiency (across all 25 assays) was 92 - 115% for TaqMan® assays (Table 6.1). No CT 

value was detected for NTC for each TaqMan® assay.  

Table 6.1. Performance of the SYBR green qPCR and TaqMan® assays in the OpenArray® 

platform 

Species/Target Genes 

TaqMan® assays in the OpenArray® 

plate 
SYBR green qPCR 

Slope r2 Efficiency (%) Slope r2 Efficiency (%) 

Acinetobacter baumannii gltA -3.1687 0.98 106 -3.0267 0.99 114 

Aeromonas hydrophila lip -3.3741 0.99 97 -3.1509 0.99 107 

Bacterioides spp. 16S rRNA -3.0304 0.98 113 -3.182 0.99 106 

Bacterioides sp. clone CGOF52 

(Goose marker) 16S rRNA -3.1662 0.99 106 -3.1183 0.98 109 

Bacteriodes A3 (Dog marker) 16S rRNA -3.3384 0.99 99 -3.1981 0.99 105 

Bacteriodes Cluster 1, PigA4 (Pig 

marker) 16S rRNA -3.0957 0.99 110 -3.0081 0.98 115 

Campylobacter coli glyA -3.2852 0.99 101 -3.0625 0.99 112 

Campylobacter jejuni hipo -3.1499 0.99 107 -3.1499 0.99 107 

Catellicoccus marimammalium 

(Seagull marker) 16S rRNA -3.1158 0.99 109 -3.3625 0.99 98 

Enterococcus spp. 23S rRNA -3.5028 0.99 92 -3.3171 0.98 100 

Escherichia coli 23S rRNA -3.3234 0.99 99 -3.1791 0.99 106 

Escherichia coli uidA -3.0039 0.99 115 -3.4497 0.99 94 

Escherichia coil O157:H7 manC -3.0807 0.99 111 -3.2806 0.99 101 

Escherichia coli O111 manC -3.2033 0.99 105 -3.359 0.99 98 

Escherichia coli O26 manC -3.1909 0.99 105 -2.9999 0.98 115 

Human C40 mitochondria 

(Human marker) MT-ND2 -3.2345 0.99 103 -3.0903 0.99 110 

Klebsiella pneumoniae phoE -3.1186 0.99 109 -3.0449 0.99 113 

Legionella pneumophila mipA -3.1292 0.99 108 -3.4601 0.99 94 

Listeria monocytogenes Hly -3.3589 0.98 98 -3.4888 0.99 93 

Methanobrevibacter smithii 

(Human marker) nifH -3.1292 0.99 108 -3.4705 0.99 94 

Pseudomonas aeruginosa regA -3.1515 0.99 107 -3.0936 0.97 110 
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Salmonella typhimurium invA -3.2793 0.99 101 -3.3565 0.97 98 

Shigella spp. ipaH -3.1852 0.99 106 -3.1458 0.99 107 

Staphylococcus aureus gyrA -3.2261 0.99 104 -3.2081 0.98 104 

Vibrio cholerae ctxA -3.1595 0.99 107 -3.3796 0.99 97 

6.3.2 TaqMan® assays in the OpenArray® plate applications 

 Five different types of environmental samples (beach water, beach sand, beach pore 

water, stream water and pond water), sewage samples (known as contaminated 

environmental samples) and fecal samples from various sources (Canada goose, dog, 

human, pig and seagull) were used to evaluate the effectiveness of the designed 

OpenArray® plate. We successfully quantified FIBs and MST markers in all fecal 

samples and sewage samples (as known as contaminated environmental samples) using 

our newly developed TaqMan® assays. Virulence genes of waterborne pathogens were 

detected in sewage samples (Figure 6.1). FIBs and MST markers (except the pig 

marker), and the virulence genes of some waterborne pathogens, including A. 

baumannii, A. hydrophila, P. aeruginosa, K. pneumoniae and E. coli O26, were 

quantified in environmental samples (Figure 6.2).  
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Figure 6.1. Heatmap of qPCR amplification (based on log10 (CT)) using TaqMan® assays in the 

OpenArray® platform to detect targets in fecal samples. Seven MST, 2 FIBs and 15 waterborne 

pathogen markers are presented on the Y-axis. Non-detection is shown by gray color in the 

heatmap. 
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Figure 6.2. Heatmap of qPCR amplification (based on log10 (CT)) using TaqMan® assays to detect 

targets in the environmental samples. Seven MST, 2 FIBs and 15 waterborne pathogen markers 

are presented on the Y-axis. Environmental samples were collected from 6 public beaches 

PP=Point Pelee beach; SL=Seacliff beach; CI=Cedar Island beach; HB=Holiday beach; 

LP=Lakeview Park beach and SP=Sand Point beach. Non-detection is shown by gray color in the 

heatmap. 

E. coli as a FIB was detected in all sewage samples, the appropriate fecal samples 

and in the environmental samples. The estimated concentration of E. coli was high in 

our study using the 23S rRNA marker compared to the single-locus uidA gene marker 

due to the presence of multiple rRNA loci in E. coli cells (Brosius et al., 1981) and 

potentially low taxonomic specificity for environmental samples (Figure 6.1-6.2) 

(Chern et al., 2011). We thus focus on E. coli levels based on the single-copy uidA 
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gene as all virulence genes targeted in this study are single-copy genes. However, the 

inclusion of the 23S rRNA marker allows comparisons to other studies that use that 

marker. Based on uidA qPCR data among 24 environmental samples, 9 (37.5%) had E. 

coli levels >4 log copies/250 mL; including 2 beach water samples and 1 pond water 

sample and 6 pore water samples. The remaining 15 (62.5%) environmental samples 

had E. coli levels <4 log copies/250 mL level. Enterococcus spp., the other tested FIB, 

was present in most of the tested samples except four environmental samples (one sand 

and three stream samples) – despite E. coli being detected in those samples (Figure 

6.2). E. coli was not correlated with waterborne pathogens across all 24 environmental 

samples (R2=0.005, p=0.87), nor was it correlated in the samples which were positive 

for waterborne pathogens (15 samples, R2=0.07, p=0.33; Appendix D; Figure 6.3A). 

All seven MST markers were detected in sewage samples and their appropriate host 

fecal samples (Figure 6.1). Out of 24 environmental samples, two beach water samples 

(8%) were positive for human MST markers (C40 mitochondria and M. smithii). 

Canada goose and seagull MST markers were detected individually in 15 (62.5%) and 

14 (58%) of the environmental samples respectively. Canada goose and seagull MST 

markers amplified simultaneously in 12 (54%) of the environmental samples. The dog 

MST marker amplified in one environmental sample (stream), while the pig marker did 

not amplify in any of the environmental samples. The samples with E. coli levels >4 

log uidA copies/250 mL (6 pore water samples, 2 beach water samples and 1 pond 

water sample), were positive for one of the bird species (Canada goose and seagull) 

MST markers. Out of 15 environmental samples with E. coli levels <4 log uidA gene 

copies/250 mL); 11 samples (73%) were positive for general and host-specific MST 

markers (human and birds) and 4 (27%) samples showed none of the specific MST 

marker signatures but were positive for general MST marker (Bacteroides spp.).  

All 15 waterborne pathogens were detected in sewage samples (Figure 6.1). 

Interestingly, virulence genes of C. coli, C. jejuni, E. coli O26 and O111, S. 

typhimurium were detected in Canada goose and seagull fecal samples, while seagull 

samples additionally contained A. baumannii, A. hydrophila, K. pneumoniae, P. 

aeruginosa, and S. aureus (Figure 6.1). A. baumannii, A. hydrophila, P. aeruginosa, K. 

pneumoniae and E. coli O26 were detected in 29%, 25%, 16%, 8% and 4% among 24 
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environmental samples respectively. The A. baumannii virulence gene (gltA) was 

detected in 7 environmental samples (pond (2), pore (2), sand (2), stream (1); Figure 

6.2). Also, five environmental samples (beach (1), pore (1), sand (3)) were positive for 

the A. hydrophila virulence gene (lip). P. aeruginosa virulence gene (regA) was 

positive in 4 environmental samples (beach (2), sand (1) and stream (1)). Two beach 

water samples were positive for K. pneumoniae virulence gene (phoE) and one of those 

samples was also positive for E. coli O26 virulence gene (manC). Virulence genes of 

C. coli, C. jejuni, E. coil O157:H7, E. coli O111, L. pneumophila, L. monocytogenes, S. 

typhimurium, Shigella spp., S. aureus and V. cholerae were not detected in any of the 

collected environmental samples (Figure 6.2).  

Out of 24 tested environmental samples, 20 (83%) samples were positive for host-

specific MST markers (either of birds, human or dog markers) of which 13 (63%) were 

positive for 1-3 virulence genes of waterborne pathogens. Out of 24 samples, 2 (8%) 

samples with pathogens were negative for host-specific MST markers but were positive 

for general MST marker (Bacteroides spp.). Out of 24 samples, 2 samples were 

negative for host-specific MST markers and pathogens but one of them was positive 

for general MST marker. Among all 24 environmental samples, there was no 

significant correlation between any MST markers with waterborne pathogens in this 

study (Canada goose marker: R2=0.02, p=0.62; seagull marker: R2=0.008, p=0.72; 

general MST marker: R2=0.027, p=0.33). However, there was a better correlation 

(R2=0.159, p=0.05) between combined host-specific MST markers (Canada goose, 

dog, human and seagull) with waterborne pathogens (Figure 6.3B). 
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Figure 6.3. Correlations between combined gene concentrations (copies/250 mL) of host-specific 

MST markers (Canada goose, dog, human and seagull), E. coli and waterborne pathogens among 

the environmental samples measured by TaqMan® assays in the OpenArray® plate. A; correlation 

between waterborne pathogens (combined concentration of pathogens as a single variable) with E. 

coli (uidA gene) among 15 environmental samples positive for pathogens. B; the correlation 

between host-specific markers (combined concentration of markers as a single variable) with 

waterborne pathogens (combined concentration of detected pathogens as a single variable) among 

all 24 environmental samples. C; the correlation between host-specific markers (combined 

concentration of markers as a single variable) with waterborne pathogens (combined concentration 

of detected pathogens as a single variable) among 15 environmental samples positive for 

pathogens. 

Out of the 15 environmental samples positive for waterborne pathogens, 3 (20%) 

samples were pore water with the highest E. coli level (>4 log uidA copies/250 mL) but 

12 (80%) samples had E. coli levels <4 log uidA copies/250 mL. Out of 15 

environmental samples which were positive for waterborne virulence genes, 13 (87%) 

samples were positive for host-specific MST markers (10 positives for the two bird 

markers, 2 for the human marker and 1 for the dog marker) however, 2 (sand) samples 

were negative for all host-specific MST markers but still were positive for the general 

MST marker (Bacteroides spp.). For the environmental samples which were positive 
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for pathogens (15 samples), there was no significant correlation between any MST 

markers individually with waterborne pathogens (Canada goose marker: R2=0.009, 

p=0.56; seagull marker: R2=0.07, p=0.38; general MST marker: R2=0.049, p=0.47) but, 

there was a significant correlation (R2=0.37, p=0.01) between the combined host-

specific MST markers with waterborne pathogens (Figure 6.3C).  

6.4 Discussion 

In serially diluted positive controls, our TaqMan® assays in the OpenArray® 

platform were sensitive to the detection of 2 copies/hole (OpenArray® well) for all 

assays and to 1 copy/hole (OpenArray® well) for 24% of the assays. This compares 

well to SYBR green qPCR (positive in 24% of assays with 2 copies/reaction and 

negative in all 1 copies/reaction). However, due to the much larger input volume of 

DNA (~60 times) in SYBR green qPCR (1 µL) compared to TaqMan® assays (16.5 

nL), SYBR green qPCRs would be more efficient for detection. This sensitivity 

challenge for the TaqMan® assays in the OpenArray® platform was due to the small 

volume of input DNA could be overcome by increasing water sample volume 

combined by the concentration of the assay DNA using DNA precipitation protocols or 

commercially available filters (up to 100X concentration using Microcon® Centrifugal 

Filters; Millipore, MA) or by specific target amplification (Ishii et al., 2013) before 

loading the DNA on the OpenArray® plate. Courdray-Meunier et al., found SYBR 

green qPCR to be more sensitive than TaqMan® assays in the OpenArray® platform 

for quantifying human pathogenic viruses (Coudray-Meunier et al., 2016). We found 

that 2 copies/hole was the robust detection limit across all 25 of our target loci using 

TaqMan® assay qPCR. Detection limits ranging from 2.0 to 2.0×106 copies/μL were 

previously reported for microfluidic qPCR assays designed for FIBs and waterborne 

pathogens (Ishii et al., 2013). High sensitivity of assays reported by Ishii et al (2013), 

maybe a result of the pre-amplification step of input temples used for microfluidic 

qPCR assays (Ishii et al., 2013).  

Evaluation of the presence of PCR inhibitors in qPCR experiments is crucial 

(Schrader et al., 2012). High quality extracted DNA from the samples (Appendix E; 

Table S6.2) as well as the presence of a linear relationship between the inoculated 

know concentration of ctxA, manC and NH8B_3641 (internal control) to the DNA of 
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water samples in SYBR green qPCR assays (Appendix E; Figure S6.4) indirectly 

confirmed accurate quantification of genes in TaqMan assays.   

Pore water samples had the highest E. coli levels (4.9-5.8 log copies/250 mL), 

showing that the pore water may act as a reservoir and nonpoint source of E. coli for 

surface waters (Vogel et al., 2016). Generally, in our environmental samples, E. coli 

was not consistently associated with waterborne pathogens both across all 24 

environmental samples (R2=0.005, p=0.87) as well as in the 15 waterborne pathogen 

positive samples (R2=0.07, p=0.33, Figure 6.3A), potentially indicating that E. coli is a 

poor health risk indicator for recreational waters – a pattern previously reported (Jang 

et al., 2017; Odonkor and Ampofo, 2013). However, Thoe et al., reported that E. coli is 

a suitable FIB in their weekly study of 37 Hong Kong beaches over four years (Thoe et 

al., 2018). This highlights the fact that E. coli as a FIB should be evaluated in the 

context of local environmental conditions – our OpenArray® plate will facilitate the 

efficient local assessment of FIBs. 

Out of 24 environmental samples, 9 (37.5%) samples (6 pore water, 2 beach water 

and 1 pond water sample) with E. coli levels >4 log uidA gene copies/250 mL, showed 

positive bird MST marker signatures. On the other hand, out of 15 (62.5%) 

environmental samples with E. coli levels <4 log uidA gene copies/250 mL, 11 samples 

(73%) were positive for host-specific MST markers (birds, human and dog markers). 

Presence of host-specific MST markers in 73% of the samples with E. coli level <4 log 

uidA gene copies/250 mL, along with the presence of general MST marker 

(Bacteroides spp.) in 93% those samples, indicating the likely presence of other 

sources of fecal pollution (Rogers et al., 2018). Similar to our findings, inconsistent 

relationships between FIBs and MST markers have been reported previously 

(Bradshaw et al., 2016).  

The presence of pathogen virulence genes in sewage samples in our study and 

others (García‐Aljaro et al., 2018), indicates that sewage is potentially an important 

source of waterborne pathogens. Detection of C. coli, C. jejuni, E. coli O26 and O111, 

S. typhimurium in Canada goose fecal samples and the presence of those pathogens 

plus A. baumannii, A. hydrophila, K. pneumoniae, P. aeruginosa, and S. aureus (Figure 
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6.2) in seagull fecal samples highlights the potential role of birds as vectors for 

pathogenic bacteria at beaches (Vogt et al., 2018). 

The detection of our host-specific MST markers in 87% of the environmental 

samples which were positive for pathogen virulence genes shows that in our study 

host-specific MST markers are much better (R2=0.159, p=0.05) than FIBs for 

determining recreational water safety, while also defining the source of the pollution. 

This correlation of the MST markers with the pathogen markers was significant for 15 

environmental samples which were positive for waterborne pathogens (R2=0.37, 

p=0.01, Figure 6.3C), showing that combination of host-specific MST markers (in our 

setting; Canada goose, dog, human and seagull) are potentially better predictors of 

water safety. Replacing MST with FIBs would be an excellent solution based on our 

data. However, as FIBs are in practice for a long time instead of eliminating FIBs 

completely, incorporating MSTs along with FIBs will help in making more accurate 

decisions. Our data also showed that combining the multiple host-specific MST 

markers would be the best tool for monitoring recreational water quality and 

potentially could avoid false positive or false negatives. 

Prior to this study, several approaches have been proposed for monitoring 

recreational water safety. Li et al., developed a microarray chip to detect waterborne 

pathogens and MST (bovine, pig and human but not birds such as Canada goose and 

seagull markers) (Li et al., 2015); however, their microarray sensitivity and specificity 

is relatively low compared to our TaqMan® assays, as well as previously published 

qPCR assays (Ishii et al., 2013). Additionally, Ishii et al., and Ramalingam et al., 

developed TaqMan assays (microfluidic platform) that allowed the simultaneous 

detection of 14 and 4 waterborne pathogens respectively (Ishii et al., 2013; 

Ramalingam et al., 2010); however, neither incorporated MST markers. To the best of 

our knowledge, this is the first molecular genetic water safety tool that incorporates 

human and animal MST markers along with waterborne pathogens and FIBs in a high 

sensitivity parallel assay. While specificity and sensitivity are critical for recreational 

water safety monitoring, timelines are also important. We thus incorporated robotic 

DNA extraction (Shahraki et al., 2019) to minimize human error and assay run time. 

Using such a platform, we completed environmental sample preparation, DNA 
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extraction, TaqMan® assays (OpenArray® platform) analyses and data processing in 

less than four hours. 

We used the TaqMan probe assays in our OpenArray® plate to achieve higher 

specificity than possible with SYBR green qPCR method. Because only sequence-

specific amplification is measured in TaqMan assays, the detection of false positives is 

greatly reduced (Tajadini et al., 2014). Also, we ran duplicates for each sample and the 

results were highly consistent; however, false negatives are still possible due to the low 

concentration of pathogens expected in most environmental samples (Johnson et al., 

2013) coupled with stochastic sampling effects (Peccoud and Jacob, 1996). We 

detected few positive hits for waterborne pathogens in our environmental samples 

(Figure 6.2) potentially due to the low concentration of the pathogens in our collected 

samples. For actual risk assessment, increasing the volume of water sampled would 

increase the likelihood of waterborne pathogen detection.  

The running cost for TaqMan® assays in the OpenArray® platform (48 subarrays, 66 

wells) for 25 markers (duplicate run in each subarray) for this study was $11/sample 

and $0.44/marker, including the reagent costs for the assays and the plate but excluding 

costs for labor and equipment, which is comparable to conventional qPCR 

($0.45/assay/sample) previously estimated (Ishii et al., 2014). 

6.5 Conclusion 

Through rapid and simultaneous quantification of waterborne pathogens, MST 

markers and FIBs, our OpenArray® plate will contribute to determining the 

concentration of the target pathogens with significant health risks. In properly equipped 

laboratories, this OpenArray® plate would be able to quantify FIBs, MSTs to define the 

source of fecal pollution and waterborne pathogens in less than four hours, which 

would allow close to real-time monitoring of water safety and hence facilitate effective 

risk management. 
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 GENERAL CONCLUSION 

7.1 Summary 

Climate change, changes in precipitation and run-off patterns, eutrophication, 

physical alteration of habitats, pollutants and invasive species are global stressors that 

are threatening the health and biodiversity of all ecosystems. Microbial communities 

constitute the majority of the Earth’s biomass and catalyze many ecosystem processes 

and deliver ecosystem services in virtually all ecosystems. Microbial communities are 

thus essential for sustaining life. The Laurentian Great Lakes (LGLs) constitute an 

enormous freshwater ecosystem and as such regulate climate, support nutrient cycling, 

transport water and materials, maintain water quality, support fisheries and recreational 

water activities (Castello and Macedo, 2016). The LGL bacterial communities (BCs) 

have fundamental roles in all LGL ecosystem biological processes (Fisher et al., 2015; 

Singh and Walker, 2006) and consequently, have a critical influence on the LGL’s 

function. The recycling of organic material through bacteria and microzooplankton to 

higher trophic levels, known as the “microbial loop”, is an important process in aquatic 

ecosystems. Monitoring abundance, biomass and the functional activities (enzymatic 

hydrolysis, production and respiration) of aquatic prokaryotes could provide useful 

information on the impact of both natural and anthropogenic effects on the microbial 

loop in aquatic environments, and to assess the environmental status from a holistic 

point of view (Caruso et al., 2016). 

Due to the interaction of biotic and abiotic variables with the BC, and complex 

interactions among the BC taxa, multi-disciplinary research approaches that combine 

ecological, evolutionary, microbiological and genetic research fields are necessary to 

better understand how multiple stressors are likely to impact aquatic ecosystems and to 

provide decision-making tools to tackle the consequences of stress effects. This Ph.D. 

thesis consists of five research projects (chapters) and those projects were designed to 

focus on various key topics in freshwater BC ecology and human health-related issues. 

Throughout my doctoral research, I incorporated multidisciplinary and statistical 

approaches that allowed me to address critical knowledge gaps in freshwater microbial 

ecology, including; 1) tempo-spatial variation of freshwater BC composition and gene 
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transcription profile at various different scales, 2) quantitative monitoring of 

waterborne pathogens and indicators using a new method, 3) assessing virulence and 

other human-health related genes in the BC metatranscriptome, and lastly 4) 

characterizing the adaptive response of “pre-exposed” freshwater BCs to a very high 

level of nutrient stress.  

Chapter 2 was designed to test for fine-scale temporal variation in the freshwater 

BC composition. Significant bi-hourly and day/night variation in the composition of 

the freshwater BC was detected, with a significant elevation of bacterial diversity at 

night. We also noted fine-scale temporal variation of Escherichia coli (a fecal indicator 

bacteria, or FIB) with the lowest level between 10:00 – 16:00, and significant elevation 

at night versus day (Shahraki et al., 2020). Chapter 3 of this thesis focused on temporal 

(large-scale; monthly and seasonal) and spatial (six different sampling locations in 

Lake Erie and St. Clair) variation in BC composition. We identified substantial 

monthly and seasonal variation in the composition of the BCs; however, we only 

captured weak spatial variation. Interestingly, the BC from the samples taken in the 

two summers (2016 and 2017) not only were significantly different, but also the BC 

diversity in summer 2017 was significantly lower than in summer 2016. In chapter 4, 

strong temporal (seasonal) variation was detected in the transcription profile of 

physiologically and ecologically relevant genes of the freshwater BC; however, spatial 

variation was limited. We detected the highest transcriptional activity in summer 

versus the lowest level in winter. Chapter 5 was designed to explore the response of 

“pre-adapted” freshwater BCs (i.e., exposed to different levels of a nutrient stressor, 

specifically low and high doses) to very high levels of the nutrient stressor (the 

challenge). Pre-exposure of the BC to high doses of the stressor (nutrients) resulted in a 

more adaptive response of the BC to the challenge, characterized by reduced loss of 

taxonomic diversity and a higher rate of horizontal gene transfer. In chapter 6, a 

nanofluidic quantitative real-time PCR (qRT-PCR; TaqMan® OpenArray®) chip was 

designed and validated to monitor 2 FIBs, 7 Microbial Source Tracking (MST) markers 

and 15 bacterial waterborne pathogens simultaneously (Shahraki et al., 2019b) in 

recreational fresh water. The OpenArray chip was able to successfully detect the 

targeted genes in fecal and environmental samples with a high sensitivity (for all 
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markers; 2 copies of target/hole of OpenArray®) and specificity, all with a turn-around 

time of less than 4 hours.  

Three research chapters (chapters 2, 3 and 4) of my thesis focused on temporal and 

spatial variation of the freshwater BC composition and gene transcription profile at 

different scales. Adding to the tempo-spatial studies for microbial communities across 

different ecosystems will provide essential information about the expected scales of 

variability, allowing for better biological and ecological interpretations of deviations 

from normal ranges of variability. This is particularly important in the current century 

where all ecosystems are heavily impacted by human-introduced stressors (Fierro et al., 

2019; Halpern et al., 2008). To predict or manipulate microbially mediated processes, 

we also need to understand the temporal and spatial patterns of the BC and their 

diversity at multiple levels (Figure 7.1). Moreover, analysis of temporal and spatial 

variation at different scales (broad to fine scales) and different levels (individual taxa to 

the whole community) and the interaction effects of sampling time and location, have 

allowed us to detect patterns of microbial distribution and their associated ecological 

activities. Characterizing tempo-spatial changes in the composition and ecological 

activity of the freshwater BC can provide deeper insight into the processes and 

mechanisms operating in lake ecosystems (i.e., LGLs) and ultimately improve our 

basic knowledge and ability to predict BC dynamics and function.  
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Figure 7.1. Characterizing the temporal and spatial variability of microbial community 

composition and function at different scales using diverse tools to improve our ability to predict 

future changes in patterns of BC composition and activity. 

More specifically, temporal studies can identify taxa shared at different times, 

correlations with environmental conditions that affect the communities, and the relative 

contribution of different processes, including stochastic processes and priority effects, 

on the microbial community structure. Studies in different environments have shown 

that some communities exhibit cyclical temporal patterns (Gilbert et al., 2012), a 

monotonic trajectory (Koenig et al., 2011) or remain relatively stable over time 

(Sassoubre et al., 2015). In this thesis, three research chapters focused on temporal 

variation of the freshwater BC composition (chapter 2; fine-scale and chapter 3; broad-

scale) and freshwater BC transcriptome (chapter 4; large scale). We captured a fine-

scale (chapter 2) (Shahraki et al., 2020) and broad-scale (chapter 3) temporal variation 

in composition and gene transcription profile (chapter 4) of the freshwater BC.  

We found a fine-scale temporal variation (bi-hourly and day/night variation) of the 

freshwater BC (Shahraki et al., 2020). To the best of our knowledge, our report is the 

first study to address the temporal variation of freshwater BC at a bi-hourly level in the 

diel cycle. This study revealed that the freshwater BC composition is changing at a 
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very fine temporal scale and the nature of that change would lead us to expect fine-

scale variation at the metatranscriptome level. We found that some taxa such as 

Actinobacteria prefer daylight hours and some others such as Enterobacteriaceae 

prefer night hours (Shahraki et al., 2020). The presence of rhodopsins in Actinobacteria 

provides a potential mechanism for their supplemental energy generation through light-

harvesting, and coupled with their UV stress resistance and potentially better 

contribution in biogeochemical cycling over day hours (Newton et al., 2011) might 

explain this pattern of dominance in daylight hours (Shahraki et al., 2020). However, 

further study is needed to characterize the mechanisms behind our observed fine-scale 

temporal variation. We also found fine-scale temporal variation in levels of E. coli (a 

FIB marker) which not only provides more evidence regarding the fine-scale temporal 

variation of the BC but also shows that fine-scale variation in the abundance of an 

indicator species should be a serious concern for human health risk assessment 

(Shahraki et al., 2020). For example, in many recreational settings; FIB levels use a 

predictor of water quality and are measured only one time (a single grab sample) 

(Boehm, 2007), usually between 8:00 to 16:00. Such sampling could result in sampling 

the lowest E. coli levels, based on our data, and hence mislead evening beachgoers on 

the safety of the water. It is highly recommended to replace current monitoring 

protocols with multiple sampling at different times of the day to obtain a high-

resolution picture of water quality and human health risk (chapter 2; (Shahraki et al., 

2020). 

Our finding shows that changes in the composition over time (broad-scale; chapter 

3) are likely correlated with changes in the gene transcription profile of the BC (broad-

scale, chapter 4) and thus will influence BC activity and ecological services. More 

interestingly, we identified a composition shift from a community dominated by 

Actinobacteria (sensitive to nutrient overloading and low oxygen level) to one enriched 

by Proteobacteria (adapted to nutrient overloading) (Newton et al., 2011), 

Bacteroidetes (proficient in the degradation of complex biopolymers and dissolved 

organic matter) (Newton et al., 2011) and Firmicutes (diverse metabolic capabilities 

and resistant to oxygen limitation) (Martiny et al., 2006) over time (summer 2016- 

summer 2017). We also detected significant biodiversity loss over time, particularly 
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when we compared the BC of the two sampled summers (2016-2017) which did not 

show a cyclic pattern, as reported before (Gilbert et al., 2012; Ward et al., 2017). A 

recent microcosm study (Pradeep Ram et al., 2020), and our experimental study 

(chapter 5) have shown that nutrient overloading results in a loss of diversity in 

freshwater BCs. Thus, the dominance of OTUs belonging to Proteobacteria, 

Bacteroidetes and Firmicutes combined with a noticeable reduction in the abundance 

of Actinobacteria observed between the summers of 2016 and 2017 indicates that Lake 

Erie and Lake St. Clair likely received a higher load of nutrients in summer 2017 

compared to 2016. Thus chapter 3 showed that large-scale temporal composition shifts 

(noncyclic), which could be attributed to changes in the eutrophication of Lake Erie 

and Lake St. Clair. These composition changes very likely resulted in significant 

changes in the gene transcription profile (ecological activity variation) of the 

freshwater BC, and hence the ecological services provided by the BC (although we did 

not test for transcriptome variation in chapter 3). We found nitrogen level as one of the 

drivers of temporal (broad-scale) variation of the freshwater BC gene transcription 

profile (chapter 4), which shows that temporal variation of the BC composition 

(chapter 3) and temporal gene transcription profile of the BC (chapter 4) can be 

regulated by nutrient level. Further study is needed to explore the regulatory impact of 

environmental variables such as nutrient level and eutrophication temporal variation on 

freshwater BC composition and its ecological activities. Our large-scale temporal 

analysis of the freshwater BC at two levels (composition and gene transcription levels) 

and fine-scale temporal variation (composition) of the whole community and specific 

indicator taxa shows that monitoring of BC at different scales in the ecosystems is an 

effective bio-monitoring tool to access ecosystem health and its associated human 

health implications (Figure 7.2). 

Understanding how microbial communities vary at different spatial scales is 

important because diversity and ecological activity hotspots/deserts can be identified, 

correlations with environmental factors can be detected, and hypotheses about dispersal 

limitation or stochasticity of community assembly can be tested (Gonzalez et al., 

2012). Spatial pattern analysis of BCs improves our ability to predict microbial 

diversity and ecological activity, and hence predetermine where microbes and their 
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associated functions are likely to be abundant in a given habitat. Overall spatial 

patterns in the BCs include subdividing analyses by taxon (from species to phylum-

level) and can be used as inputs for niche modeling of the community (Gonzalez et al., 

2012). Perhaps the most contested hypothesis in microbial ecology suggests that 

“everything is everywhere, but the environment selects” (O'Malley, 2007); that is, local 

environmental conditions, or ‘filters’, select for community assemblages that can best 

exploit local resources and thus survive. In the current thesis, three research chapters 

focused on spatial variation of the freshwater BC composition (chapter 2 and chapter 3) 

and metatranscriptome profile (chapter 4). The level of spatial variation in both 

community composition and gene transcription was significant but limited. Even in 

chapter 5, where we adapted the freshwater BC to different doses of stressor and then 

exposed the adapted BCs to a very high level of stress, we found very low BC source 

(spatial) effects in the response of adapted freshwater BCs (the original freshwater BC 

collected from two different sampling locations in Lake Erie and St. Clair). Although 

land use, spatial distance, climatic conditions and ecosystem physico-chemical 

properties are all suggested as drivers of spatial sorting of microbial communities 

among locations (Bru et al., 2011), we did not observe strong location effects. This 

may be due, in part, to the connection of the two lakes by the Detroit River (~45 km 

long) (Burniston et al., 2018). The Detroit River is the only natural outlet of water from 

Lake St. Clair to Lake Erie and has a very high discharge rate ~ 5,270 m3/s (Madani et 

al., 2020). The eutrophication of Lake Erie (Watson et al., 2016) and St. Clair 

(Bocaniov et al., 2019) could have resulted in the formation of similar water column 

conditions, and consequently similar habitats which might have resulted in the spatial 

conservation of the composition of the BC of two lakes in our study. Moreover, the 

short distance among the sampling locations (maximum ~ 50 km), may not be enough 

to form distinct habitat with a different environmental conditions which ultimately 

resulted in the limited spatial variation of the freshwater BC composition (chapter 2 

and 5) and gene transcription profiles (chapter 4). We detected limited spatial variation 

at both the lake and sampling point scales (chapters 2, 3 and 4), as well as significant 

temporal and spatial interaction effects (chapters 3 and 4), while our study was not 

designed to explore Great-Lakes wide spatial variation. We did indeed capture spatial 
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effects despite strong temporal variation in our analysis. Also, as we only collected 

samples from nearshore at beaches in the western basin of Lake Erie and the western 

shores of St. Clair our study likely under-estimates the spatial effect on BC. 

Combining temporal and spatial data sets can reveal key features of dynamic 

ecosystems. As not all habitats change the same way over time, then combining 

temporal and spatial variation will provide a unique opportunity to explore the role of 

integration effects. Studies that track time series at multiple sites are essential for 

quantifying factors that affect BC dynamics, structure and ecological functions. We 

combined temporal and spatial analysis of the BC composition and metatranscriptome 

(chapter 2, 4 and 5). Describing different resolutions of BC spatial variability (from 

microns to continents), and temporal variability (from hours to decades) and ultimately 

the interaction effects in different ecosystems, will inform prediction of dynamics and 

responses to novel events particularly human introduced stressors. Although, studies 

highlighted temporal and spatial variation of bacterial community in aquatic 

ecosystems (Codling et al., 2018; Jones et al., 2012; Lear et al., 2014), however, to the 

best of our knowledge, the interaction effect of tempo-spatial variation on freshwater 

bacterial community in LGLs did not tested before.  
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Figure 7.2. Conceptual links between stressors and the freshwater BC. BC composition can be 

used as a biomonitoring tool to identify changes in aquatic ecosystems resulting from perhaps 

unknown stressors. Such BC changes are very sensitive to ecosystem stress and may thus respond 

before the stress affects the rest of the food web.  

Metabarcoding the 16S rRNA gene is a key tool for studies of the microbial 

community composition; however, it does not provide direct evidence of community 

functional capacity. Although advances in bioinformatics and computational 

approaches allow us to predict BC activity using 16S rRNA metabarcoding data 

(Langille et al., 2013), this only provides indirect evidence of the functional 

capabilities of the BC. Chapter 4 was designed to study the temporal and spatial 

variation of the gene transcription profile of the freshwater BC. Our metatranscriptome 

data showed, not surprisingly, that the freshwater BC is more ecologically active in 

summer and fall than winter. Butler et al, reported a high abundance of nitrogen-fixing 

bacteria involved in nitrification in the water column under ice-covered conditions 

(Butler et al., 2019). Out of our 52 selected physiologically and ecologically relevant 

genes, we identified some level of transcription of 60% of those genes in winter, 
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indicating that the BC is active even under low-temperature conditions. High 

transcription levels of cold-shock genes in winter highlights a potentially maladaptive 

shift in the metatranscriptome under low-temperature conditions (De Maayer et al., 

2014). We identify transcripts of genes involved in nutrient cycling in winter (ice-free 

conditions), but their transcription levels were low. It has been suggested that ice 

duration drives the accumulation of nutrients such as nitrate in north temperate lakes 

(Powers et al., 2017), which could explain low transcription of nutrient cycling genes 

in our study (no ice covering in sampling time).  

Environmental variables such as water temperature and daylight had a significant 

influence on a large-scale temporal variation on composition (chapter 3) and gene 

transcription profile (chapter 4) of the freshwater BC. On the other hand, we also found 

that water temperature did not affect the fine-scale temporal variation of BC 

composition (chapter 2) (Shahraki et al., 2020). These findings clearly show that 

environmental parameters (bottom-up variables; physical and chemical parameters) can 

have different effects on the composition and activity of the BC according to the scale 

of the study. Among the interacting forces structuring BCs, most attention has been on 

bottom-up effects, with lesser focus given to top-down (e.g., viral or protistan) effects 

on BC composition (Ram et al., 2016). We did not design our studies to test top-down 

effects on the BC composition, however, a recent microcosm study showed the 

maintenance of high diversity of freshwater BC in the presence of top-down factors 

(virus) and a loss of diversity of freshwater BC in the presence of bottom-up variables 

(nutrients) (Pradeep Ram et al., 2020). The relative importance of bottom-up versus 

top-down effects in aquatic ecosystems remains a longstanding and ongoing 

controversy due to the complexity of food web in the aquatic ecosystem and complex 

and critical interaction of microorganism (prokaryotic and eukaryotic) in their 

environment and aquatic food web. Our studies (chapters 2, 3 and 4) showed that 

environmental parameter effects (bottom-up variables) are dependent on the scale and 

study design, which could be true for top-down variables as well.  

The occurrence and abundance of indicator microorganisms can serve as proxies for 

water quality (i.e., easily measured quantities that are correlated to often unknown 

agents that directly mediate waterborne risks such as pathogens, biotoxins and 
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chemicals) (Tan et al., 2015). Advances in molecular methods and next-generation 

sequencing (NGS) of DNA (metabarcoding and sequencing of 16S rRNA) have 

ushered in new opportunities for water quality assessment. NGS data is generally 

clustered into operational taxonomic units (OTUs) by identity thresholds (e.g., 95–

99%) (Caporaso et al., 2010) or exact sequence variants (ESVs) by 100% sequence 

similarity (Porter and Hajibabaei, 2018). We were able to detect harmful bacteria in the 

metabarcoding data in chapters 2 and 3 (Enterobacteriaceae); however, we were not 

able to detect waterborne pathogens (at the species level) in either study. This was 

likely due to low resolution in OTU clustering resulting from a short 16S rRNA 

metabarcode sequence, coupled with a low abundance of waterborne pathogens. 

Although generating and analyzing metatranscriptome data still is challenging and 

expensive for water quality monitoring, we were able to detect 20 waterborne 

pathogens and 17 virulence genes associated with those pathogens in beach water 

(chapter 5). This elevated sensitivity is potentially due to high sequence read depth 

(~25 million reads/sample) combined with full gene transcript sequence. On the other 

hand, metatranscriptomic (RNA-based approach) only capture functional cells and their 

transcripts. These highlight the potential power of metatranscriptomic versus 

metabarcoding approaches for water quality assessment. Since metatranscriptomic is 

RNA-based approach, it. Our study, and a recent application of the study of the 

metatranscriptomic data analysis of beach sediment (VanMensel et al., 2020), provides 

more information regarding the high resolution of transcriptome analysis and its 

potential to capture pathogens and their associated health risks in aquatic ecosystems.  

Eutrophication of large freshwater lakes, such as the LGLs, due to anthropogenic 

activity is one of the most challenging environmental problems facing water resources 

today (Bhagowati and Ahamad, 2019). Although one study showed, using microcosms 

(8 bacterial species), that nutrient overloading can cause negative interactions among 

species of the BC and could cause diversity loss (Ratzke et al., 2020), no information is 

available regarding the impact of pre-exposure to stress on BC response to very high 

levels of the stressor. In chapter 5, the freshwater BC was pre-exposed (adaptive phase) 

to low and high doses of a stressor (nutrients) and then challenged with a very high 

dose of the same stressor (challenge phase). Proteobacteria became the most dominant 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/eutrophication
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taxa. More analysis showed a substantial difference in the adaptation response of 

different Proteobacteria and other taxa against challenge. This study showed that the 

high level of the stressor can provide better adaptation response against challenge by 

maintaining more diversity in taxa composition, keystone taxa and high horizontal 

gene transfer rate.  

Culturing and counting E. coli (FIBs), remains the most common approach for 

monitoring pathogenic water pollution (Soller et al., 2016); however, it has several 

important limitations (time-consuming, ability to grow of some FIBs from aquatic 

habitats, poor correlation with the occurrence of pathogens and lack of host specificity) 

(Ishii and Sadowsky, 2008; Jang et al., 2017; Pattis et al., 2017). We designed a 

nanofluidic qRT-PCR (TaqMan® OpenArray®) chip and validated it by monitoring 

FIBs, MST markers and bacterial waterborne pathogens simultaneously (chapter 4) 

(Shahraki et al., 2019b) in artificial and natural samples. Our OpenArray chip 

successfully detected targeted genes in fecal and environmental samples. Previously 

designed molecular genetic methods for monitoring waterborne pathogens and FIBs 

(Ishii et al., 2013; Li et al., 2015) were not able to determine the source (species) of the 

contamination. Our OpenArray qRT-PCR chip, on the other hand, allows the 

simultaneous detection of waterborne pathogens, FIBs and MST markers with a less 

than 4 hour turn-around time - this includes sample collection to results (Shahraki et 

al., 2019a). MST markers in the designed OpenArray chip revealed that Canada goose 

and seagull are the leading source contamination at beaches in Windsor-Essex County 

(Shahraki et al., 2019b). All these results show that the designed OpenArray chip has 

the potential to use in water quality monitoring in large-scale in a different setting.  

7.2 Significance 

The results of this thesis highlighted the strong temporal variation with limited 

spatial variation along with minor interaction effects (sampling time and sampling 

location) in freshwater BC composition and gene transcription profile. As BC is the 

main part of the Great Lake ecosystem with direct or indirect effects on many 

ecosystem-level processes, our tempo-spatial variation in the community composition 

and transcription profiles in the different scales shows that BC variation could be used 

to predict the dynamic and impact of stressors on different ecosystems. On the other 
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hand, monitoring the freshwater BC community composition and its activity allows us 

to measure the influence of human-introduced stressors and could be used as biological 

tools for remediation purposes. Within this thesis, a new tool was designed and 

optimized to the monitoring of freshwater quality which can be used in other settings. 

Detection of a relatively high number of taxa and their virulence genes associated with 

water quality degradation in our metatranscriptomic data highlighted that water quality 

monitoring still is a significant challenge. Our transcriptome analyses provide a general 

picture regarding the application of transcriptome analysis to infer taxonomic profiles 

and the activity of harmful microbes in different ecosystems. Lastly, for the first time, 

our experimental design showed that high levels of stressor can cause irreversible 

changes in the BC composition, but pre-adaptation could save taxonomic diversity 

relative to original community against very high stressor challenge.  

7.3 Future directions 

We recorded a fine-scale temporal variation in the BC composition; however, we 

found that environmental variables (bottom-up variables) did not have much influence 

on this variation however, the mechanism(s) of this rapid change is not clear. 

Theoretically, many factors such as migration of taxa elsewhere, possibility of patchy 

physicochemical properties at fine-scale, interactions among coexisting species at fine-

scale, water movement and turbulence in the water body, growth rate of different taxa 

(abundant and rare taxa) and etc. might have direct or indirect contribution in fine-scale 

temporal variation, however, more studies are needed to explore the mechanism(s) 

behind the fine-scale temporal variation of freshwater BC. Also, more studies are 

needed to understand the consequence of such fine-scale composition changes in the 

activity of the community. Although we found that E. coli levels are low in day hours 

relative to night, further study needs to evaluate the fine-scale temporal variation of 

harmful microbes including waterborne bacterial and viral agents to provide critical 

information for health risk assessment of recreational water. 

We recorded temporal variation in both the composition and function of the 

freshwater BC. Our work clearly showed that environmental parameters (bottom-up 

variables; physical and chemical parameters) likely have strong influences on the 

composition and activity of BC, according to the scale of the study. Among the 
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interacting forces structuring BCs, much attention has been focused on bottom-up 

effects, with less attention given to top-down (viral or protistan) effects on BC 

composition (Ram et al., 2016). The relative importance of bottom-up versus top-down 

effects in aquatic ecosystems remains a longstanding and ongoing controversy due to 

the complexity of food web in the aquatic ecosystem and complex and critical 

interaction of microorganism (prokaryotic and eukaryotic) in their environment and 

aquatic food web. Study of the bottom-up and top-down effect on microbial 

community composition in different temporal scale would provide novel insight into 

the mechanism which involve in the ecology, evolution, dynamic and function of a 

freshwater ecosystem.  

Sand Point (SP) beach is located in an urbanized area and is upstream (~1 km) of 

the entry point of the Little River Pollution Control Plant effluent to the Detroit River. 

We observed spatial variation in the transcriptome of SP beach relative to other 

beaches (chapter 4). As water flows from Lake St. Clair to Lake Erie and SP beach is 

located in upstream of the sewage effluent entry point, we believe that the detected 

spatial variation is probably related to urbanization rather than sewage effluent effects. 

This thesis was not designed to specifically study the sewage effluent effects on 

freshwater quality. More targeted studies are need address the sewage effluent effects 

on microbial community of fresh water and public beaches.  

We also recorded substantial seasonal variation of the BC metatranscriptome, with 

the highest transcriptional activity in the summer. Further large-scale temporal studies 

of the freshwater BC metatranscriptome (dry year versus a year with high precipitation 

or year with ice cover versus a year with no ice) could provide more information 

regarding how climate change could influence the microbial metatranscriptome profiles 

and the ecological services of the Great Lakes. Our study provides field monitoring of 

harmful microbes and their virulence genes by metatranscriptomic data, but further 

study is needed to optimize the application of metatranscriptomic data analysis for 

water quality assessment.  

We recorded the adapted BC response to the extreme challenge; however, we did 

not focus on functionality changes over adaptation and response phases. Further 

research is needed to understand how microbial taxa adapt to a different level of stress 
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by changing their gene expression profile and how they evolve genetically. 

Identification of the gene pools which are exchanging between BC under different 

stressor levels through horizontal gene transfer will provide further insight into 

microbial evolution under stressful environment. 

Our OpenArray chip could be useful for any water monitoring study; however, 

some minor modifications would increase the applicability and efficiency of the chip. It 

would be possible to use RNA as a target, instead of DNA, to distinguish dead or 

viable but dormant from live bacteria. Also incorporating waterborne viral pathogens 

(i.e. adenovirus, astrovirus, rotavirus) (Gall et al., 2015), cyanotoxin genes and 

modifying or adding more MST markers based on wildlife or domestic animals would 

increase the breadth of application of the chip. In our designed chip we only 

incorporated MST markers for a few animal sources, such as Canada goose, seagull, 

pig and dog markers; however, adding more MST markers such as cattle-specific 

markers and various wildlife animal markers could potentially increase the monitoring 

power of our OpenArray chip. Contaminants from domestic sewage could enter fresh 

water by both direct and indirect discharge, or by discharge of treated effluents from 

wastewater treatment plants. In recent years, various wastewater chemical markers, 

such as pharmaceutical care products and artificial sweeteners, have been proposed and 

utilized for identifying the wastewater contamination (Lim et al., 2017). The 

combination of our OpenArray chip with chemical tracers and stable isotopes could 

serve as promising tool for detecting sewage leakage to water bodies. 
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APPENDIX A; SUPPLEMENTARY INFORMATION OF CHAPTER 2 1 

Table S2.1. Mean water temperature, wind speed and solar radiation (bi-hourly data) for each 2 

sampled diel cycle by day versus night hours for the four sampled beaches and three sample 3 

months.  4 

Mean water temperature (˚C)  

 June July August 

 Day Night Day Night Day Night 

CH 23.5 (±1) 22.8 (±0.8) 27.6 (±0.8) 26.5 (±1.2) 24.9 (±0.9) 24.3 (±1.3) 

HB 24.2 (±1.3) 23.2 (±1.3) 28.2 (±0.8) 26.5 (±1) 25.2 (±1) 24.8 (±0.5) 

LP 26 (±0.4) 25.6 (±0.4) 26.5 (±0.7) 26.11 (±0.9) 24.5 (±0.6) 22.7 (±0.8) 

SP 25.5 (±0.5) 23.6 (±1) 26.5 (±0.5) 26 (±0.5) 27.8 (±0.4) 27.2 (±0.5) 

Wind speed (Km/h) 

CH 5(±3) 7 (±3) 5 (±3) 7 (±3) 11 (±3) 7 (±3) 

HB 5 (±3) 7 (±2) 6 (±1) 9 (±1) 6 (±2) 11 (±2) 

LP 23 (±3) 13 (±3) 14 (±4) 8 (±3) 22 (±5) 17 (±4) 

SP 16 (±3) 22 (±5) 14 (±3) 8 (±4) 22 (±2) 17 (±5) 

Solar radiation (W/m2) 

CH 112-674 0 150-680 0 70-760 0 

HB 112-674 0 150-680 0 70-760 0 

LP 80-578 0 110-650 0 110-600 0 

SP 80-578 0 110-650 0 110-600 0 

Table S2.2. Distance based Liner Model (DistLM) analysis of environmental variables on the 5 

BCC of each diel cycle. 6 

  

Variables 
SS 

(trace) 
Pseudo-F P value r2 

Proportion of 

explained 

variation 

C
H

 

Ju
n
e Water temperature 1684.1 2.4287 0.002 

0.12 

0.03353 

Solar radiation 1792.8 2.5912 0.001 0.0357 

Wind speed 854.16 1.2111 0.109 0.01701 

Ju
ly

 Water temperature 4386.3 3.9674 0.002 

0.13 

0.05364 

Solar radiation 7657.5 7.2317 0.001 0.09364 

Wind speed 4140.9 3.7335 0.001 0.05064 

A
u
g
u
st

 

Water temperature 5294.8 6.0895 0.001 

0.11 

0.08003 

Solar radiation 3132.6 3.4791 0.002 0.04735 

Wind speed 1931.6 2.1051 0.009 0.0292 
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H
B

 

Ju
n
e Water temperature 9821.8 8.9237 0.001 

0.17 

0.11307 

Solar radiation 6453.1 5.6174 0.001 0.07429 

Wind speed 4119.7 3.4851 0.001 0.04743 
Ju

ly
 Water temperature 3621.6 5.4827 0.001 

0.11 

0.07264 

Solar radiation 2924.8 4.3621 0.001 0.05866 

Wind speed 1245.2 1.793 0.037 0.02498 

A
u
g
u
st

 

Water temperature 6389.8 6.8301 0.001 

0.15 

0.0889 

Solar radiation 2715.1 2.748 0.003 0.03778 

Wind speed 1895 1.8954 0.016 0.02636 

L
P

 

Ju
n
e Water temperature 4613.6 3.8694 0.001 

0.11 

0.05238 

Solar radiation 3947.7 3.2847 0.001 0.04482 

Wind speed 4682.3 3.9303 0.001 0.05316 

Ju
ly

 Water temperature 10218 11.065 0.001 

0.21 

0.13649 

Solar radiation 6379.6 6.5211 0.001 0.08522 

Wind speed 4298.5 4.2642 0.001 0.05742 

A
u
g
u
st

 

Water temperature 6766.1 6.8409 0.001 

0.2 

0.08903 

Solar radiation 4643.6 4.5553 0.001 0.0611 

Wind speed 4197 4.9213 0.001 0.05653 

L
P

 

Ju
n
e Water temperature 1915 2.2529 0.011 

0.12 

0.03118 

Solar radiation 1721.8 2.019 0.013 0.02804 

Wind speed 1293.3 1.5058 0.04 0.02106 

Ju
ly

 Water temperature 2556.8 4.2149 0.001 

0.12 

0.05679 

Solar radiation 1927.4 3.1309 0.003 0.04281 

Wind speed 1004.2 1.597 0.04 0.02231 

A
u
g
u
st

 

Water temperature 5267.7 4.7987 0.001 

0.14 

0.06416 

Solar radiation 3064 2.7135 0.004 0.03732 

Wind speed 2291.5 2.0096 0.027 0.02791 

Table S2.3. Day/night variation of alpha diversity indexes  7 

 June July August 

 Chao1 Shannon Chao1 Shannon Chao1 Shannon 

CH 
F=41.87,  

p<0.0001 a 

F=51.07,  

p<0.0001 a 

F=124.18,  

p<0.0001 a  

F=17.34,  

p<0.0001 a 

F=117.45,  

p<0.0001 a 

F=53.23,  

p<0.0001 a 

HB 
F=54.23,  

p<0.0001 a 

F=0.19,  

p=0.65 

F=14.34,  

p=0.001 b 

F=46.24,  

p=0.008 b 

F=77.21,  

p<0.0001 a 

F=74.55,  

p<0.0001 a 

LP 
F=92.80,  

p<0.0001 a 

F=0.62,  

p=0.43 

F=80.33,  

p<0.0001 a 

F=84.76,  

p<0.0001 a 

F=99.39,  

p<0.0001 a 

F=62.19,  

p<0.0001 a 

SP F=14.78,  F=86.18,  F=2.1,  F=92.11,  F=97.11,  F=8.14,  
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p=0.001 a p=0.001 a p=0.12 p<0.0001 a p<0.0001 a p=0.008 b 

a; the mean value was significantly high in the night. b; the mean values were significantly high 8 

in the day. 9 

 10 
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Table S2.4. Detail taxa (family level) profile of selected OTUs (mean abundance >0.1% in all sampling hours of the BCCs) from top 11 

500 abundant OTUs of the BCC of diel cycles which showed a significant increase in their abundance either in the BCC of day or night 12 

by LDA. We also provided the taxa profile of OTUs which showed a significant increase in their abundance at day community of some 13 

diel cycles but showed a significant increase in their abundance at night community of other diel cycles. 14 

Day specific OTUs Night specific OTUs OTUs presents in Day and Night 

O
T

U
s 

L
o
c
a

ti
o

n
 

(t
im

e
) 

a
 

P
h

y
la

 b
 

C
la

ss
 c  

O
rd

er
 

F
a

m
il

y
 

O
T

U
s 

L
o
c
a

ti
o

n
 

(t
im

e
) 

P
h

y
la

 d
 

C
la

ss
 e  

O
rd

er
 

F
a

m
il

y
 

O
T

U
s 

D
a

y
/N

ig
h

t;
 

L
o
c
a

ti
o

n
 

(t
im

e
) 

f  

P
h

y
la

 g
 

C
la

ss
 h

 

O
rd

er
 

F
a

m
il

y
 

7 H (2) 

A
ct

 

A
ci

d
i 

Acidimicrobiales C111 

134 H (1), L (2) 

A
ct

 

A
ci

d
i 

Acidimicrobiales C111 
27 

D; C (1),  

N; S (2) 

A
ct

in
o
 A
ci

d
i 

Acidimicrobiales C111 

14 
H (3), S 

(1,2) 
135 C (3) 98 D; H (3), N; H (1) 

62 
C (2), H 

(1,2), S (1) 
1 H (2) 

A
ct

in
o
 

Actinomycetales 

ACK-M1 
32 D; H (1), N; L (1, 2) 

A
ct

in

o
 

Actinomycetales Microbacteriaceae 

68 C (3) 110 C (3), H (3) 4 
D; H (2),  

N; S (1) 

2 S (1) 

A
ct

in
o
 

Actinomycetales ACK-M1 

132 C (2), H (1) 

Microbacteriaceae 

5 
D; L (3), N; C (2), H 

(1, 2) 

B
ac

t 

C
y
to

p
h
 

Cytophagales Cyclobacteriaceae 18 C (2), H (2) 41 L (1) 37 
D; C (1), H (3), N; L 

(3) 

25 C (2) 49 H (2) 91 
D; H (1), 

N; C (3), S (2) 

58 H (1) 33 C (3) 
B

ac
 

F
la

v
o
 

Flavobacteriales Cryomorphaceae 

40 
D; C (3),  

N; H (1), L (1) 

F
la

v
o
 

Flavobacteriales Cryomorphaceae 13 S (2) 77 H (1) 50 
D; H (3),  

N; C (1, 2) 

102 C (3), L (1) 80 C (1) 15 
D; L (2),  

N; C (1) 

26 
C (3), L 

(1,3) 

B
ac

 

S
ap

ro
 

SaproSirales Citinophagaceae 

83 C (1) 9 
D; H (3),  

N; C (2) 

S
h

in
g
o
 

Shingobacteriales  39 L (3) 116 C (1,2) 57 
D; C (3), 

N; C (1), H (1) 

67 H (1), S (1) 153 C (2, 3) 86 
D; L (3),  

N; C (2, 3),  

H (2) 

127 H (1), S (1) 99 H (1) 19 
D; H (1),  

N; C (2, 3) 

P
la

n
 

P
la

n
ct

 

Pirellulales Pirellulaceae 131 C (3), L (3) 44 C (1), S (2) 

S
ap

ro
 

Saprosirales Citinophagaceae 

31 
D; H (1),  

N; L (3) 

147 H (2) 118 H (2), S (2) 76 
D; H (1),  

N; C (3), H (3) 

12 H (3) 

P
ro

 

A
lp

h
a 

Rhodobacterales Rhodobacteraceae 

150 C (2), S (2) 10 
D; C (1), H (1), S (1), 

N; C (2) 

P
ro

 

A
lp

h
a Caulobacterales Caulobacteraceae 

121 H (1) 43 C (1) C y a C l o r o
 

Stramenopiles 81 
D; H (1), 

N; C (3) 
Rhizobiales 
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59 H (3) Rickettsiales Pelagibacteraceae 89 
H (1,2), S 

(2) 
88 

D; H (2, 3),  

N; C (2) 
Rhodobacterales 

Hyphomonadaceae 

60 C (3) Shingomonadales Shingomonadaceae 103 
C (1), H (2), 

S (1) 
23 D; H (1) Rhodobacteraceae 

11 H (2), S (2) 

Shingomonadales 

161 
C (2), 

S (1, 3) 
8 

D; C (1), L (2), N; L 

(3) 

B
et

a 

Burkholderiales 

Comamonadaceae 52 H (2,3) 42 C (1), L (2) 45 
D; H (1),  

N; S (1) 

63 H (1) 72 L (2), S (1) 

P
ro

 

A
lp

h
a 

Rhizobiales Beijerinckiaceae 

65 
D; H (1), 

N; C (3) 

28 C (1) 

B
et

a 

Burkholderiales 
Comamonadaceae 53 H (3), L (2) 6 

D; H (3), L (3), N; S 

(2) 

Oxalobacteraceae 
47 H (2) Oxalobacteraceae 54 S (1) 24 D; H (1), N; S (2) 

21 
C (3), H (3),  

L (2, 3) 
Methylophilales Methylophilaceae 117 C (3), S (1) 46 

D; L (2),  

N; C (1,3),  

S (2) 

51 C (3) 

V
er

 

V
er

ru
 

Verrucomicrobiales Verrucomicrobiaceae 

22 C (1, 3) 95 
D; H (1),  

N; C (2, 3) 

G
am

m
a 

Aeromonadales Aeromonadaceae 

87 H (2) 73 S (2) 

B
et

a 

Burkholderiales Comamonadaceae 29 D; C (1), N; L (3) Xanthomonadales Xanthomonadaceae 

114 H (1) 

113 C (3) 

136 S (2) 

30 S (2) 

93 C (3) 

a: C; CH; H, L; L, S; SP, 1; June, 2; July, 3; August. b: Act; Actinobacteria, Bac, Bacteroidetes, Pro; Proteobacteria, Ver; Verrucomicrobia. c: Acidi; 15 

Acidimicrobiia, Actino; Actinobacteria, Sapro; Saprospirae, Alpha; Alphaproteobacteria, Beta; Betaproteobacteria, Verru; Verrucomicrobiae, d: Cya; 16 

Cyanobacteria. e: Flavo; Flavobacteriia, Cloro; Chloroplast. f: D; Day, N; Night. g: Plan; Planctomycetes., h: Cytoph; Cytophagia, Shingo; Sphingobacteriia, 17 

Planct; Planctomycetia.  18 

 19 
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Figure S2.1. Line plots of Chao1 index over all four locations (CH, HB, LP and SP beaches) in 20 

three different diel sampling events (June, July and August) based upon OTUs detected.  21 

 22 

 23 

  24 
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Figure S2.2. Line plots of Shannon index over all four locations (CH, HB, LP and SP beaches) in 25 

three different diel sampling events (June, July and August) based upon OTUs detected.  26 

 27 

Figure S2.3. Relative abundance of bacterial taxa at phyla/class level for each beach (CH, HB, LP 28 

and SP) over each diel cycle in June, July and August. X axis presenting sampling hours which 29 

started from 8:00 AM and finished next day at 6:00 AM with 2-hours intervals. Each plot divided 30 

into two-part, day hours (8:00 AM, 10:00 AM, 12:00 PM, 14:00 PM, 16:00 PM and 18:00 PM) 31 

and night hours (20:00 PM, 22:00 PM and 24:00 PM, 2:00 AM, 4:00 AM and 6:00 AM). The bars 32 

show phyla/class with at least 0.1% relative abundance in combined water samples over a diel 33 

cycle. The “others” category includes the sum of all phyla that occurred at less than 0.1% relative 34 

abundance. 35 



Appendix A; Supplementary Information of Chapter 2 

178 

 

 36 

Figure S2.4. Graphics of LDA effect size (LEfSe) for the day versus night community of each 37 

diel. Horizontal bars represent the effect size for each taxon (family). The length of the bar 38 

represents the log10 transformed LDA score, indicated by vertical dotted lines. The day community 39 

is indicated by red, and the night community by green. The family of bacteria with statistically 40 

significant change (p < 0.05) in the relative abundance is written alongside the horizontal lines. 41 
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APPENDIX B; SUPPLEMENTARY INFORMATION OF CHAPTER 3 43 

Table S3.1. Taxa which shown significant spatial variation (p<0.05) in the six sampling locations 44 

in Lakes Erie and St Clair. 45 

Phylum.Class Locations (Pairwise) LDA effect p value 
 CB-CH   

Firmicutes.Bacilli CH 3.43 0.002 

Gemmatimonadetes.Gemmatimonadetes CB 2.36 0.003 

Proteobacteria.Gammaproteobacteria CB 3.0 0.001 

Proteobacteria.Gammaproteobacteria CB 3.95 0.014 

Verrucomicrobia.Verrucomicrobiae CB 2.4 0.026 

 CB-HB   

Acidobacteria.Solibacteres CB 2.55 0.037 

Cyanobacteria.Chloroplast CB 2.54 0.047 

Cyanobacteria.Nostocophycideae CB 2.17 0.016 

Firmicutes.Bacilli HB 3.23 0.001 

Proteobacteria.Gammaproteobacteria CB 3.01 0.002 

 CB-LP   

Actinobacteria.Acidimicrobiia CB 3.77 0.023 

Actinobacteria.Thermoleophilia CB 3.42 0.029 

Bacteroidetes.Saprospirae CB 3.48 0.033 

Cyanobacteria.Chloroplast CB 3.2 0.011 

Firmicutes.Bacilli LP 3.11 0.001 

 CB-PP   

Cyanobacteria.Chloroplast CB 3.32 0.028 

Firmicutes.Bacilli PP 3.33 0.003 

 CB-SP   

Actinobacteria.Thermoleophilia CB 3.39 0.002 

Bacteroidetes.Flavobacteriia CB 3.05 0.012 

Bacteroidetes.Saprospirae CB 3.47 0.010 

Cyanobacteria.Chloroplast CB 2.52 0.024 

Firmicutes.Bacilli CB 2.43 0.001 

 CH-HB   

Cyanobacteria.Chloroplast CH 3.07 0.032 

 CH-LP   

Actinobacteria.Acidimicrobiia CH 3.85 0.006 

Planctomycetes.Planctomycetia LP 4.12 0.014 

Proteobacteria.Gammaproteobacteria LP 3.43 0.002 

Proteobacteria.Gammaproteobacteria LP 4.01 0.024 

 CH-SP   
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Actinobacteria.Acidimicrobiia CH 3.75 0.005 

Actinobacteria.Thermoleophilia CH 3.29 0.047 

Bacteroidetes.Flavobacteriia CH 3.37 0.008 

Cyanobacteria.Chloroplast CH 3.14 0.049 

Proteobacteria.Gammaproteobacteria SP 3.54 0.003 

 HB-LP   

Bacteroidetes.Sphingobacteriia LP 3.32 0.026 

Proteobacteria.Gammaproteobacteria LP 2.45 0.003 
 HB-SP   

Acidobacteria.Acidobacteria.6 HB 4.01 0.009 

Bacteroidetes.Flavobacteriia HB 3.57 0.004 

Gemmatimonadetes.Gemmatimonadetes HB 2.61 0.042 

Proteobacteria.Gammaproteobacteria SP 3.45 0.003 

Verrucomicrobia.Pedosphaerae HB 2.4 0.030 

 PP-LP   

Actinobacteria.Acidimicrobiia PP 4.0 0.020 

Proteobacteria.Gammaproteobacteria LP 2.43 0.002 
 PP-SP   

Acidobacteria.Acidobacteria.6 PP 3.87 0.025 

Actinobacteria.Acidimicrobiia PP 3.70 0.017 

Bacteroidetes.Flavobacteriia PP 3.66 0.006 

Proteobacteria.Gammaproteobacteria SP 2.22 0.004 

 LP-SP   

Bacteroidetes.Bacteroidia LP 2.13 0.015 

Bacteroidetes.Flavobacteriia LP 3.63 0.018 

Planctomycetes.Phycisphaerae LP 2.14 0.013 

Planctomycetes.Planctomycetia LP 3.04 0.011 

Verrucomicrobia.Verrucomicrobiae LP 2.26 0.037 

 46 

Table S3.2. SIMPER results (above the diagonal) and pairwise PERMANOVA probabilities 47 

(below the diagonal) of 5 broad clusters of the BCCs. p values were adjusted using a sequential 48 

Bonferroni correction for multiple comparisons. 49 

 Clusters 1 2 3 4 5 

1   54.12 55.75 49.61 47 

2 0.0001   50.21 57.74 48.12 

3 0.0001 0.0001   51.72 49.55 

4 0.0001 0.0001 0.0001   49.36 

5 0.0001 0.0001 0.0001 0.0001   
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Table S3.3. Pairwise comparison of diversity indexes between the BCCs of 5 clusters. 50 

Clusters Chao1 Shannon PCo1 PCo2 

1 

2 0.000 0.014 0.000 0.000 

3 0.000 0.000 0.000 0.000 

4 0.000 0.000 0.009 0.881 

5 0.000 0.000 0.000 0.776 

2 

1 0.000 0.014 0.000 0.000 

3 0.003 0.000 0.017 0.001 

4 0.995 0.092 0.4 0.000 

5 0.998 0.004 0.83 0.000 

3 

1 0.000 0.000 0.000 0.000 

2 0.003 0.000 0.017 0.001 

4 0.016 0.053 0.000 0.000 

5 0.000 0.239 0.156 0.000 

4 

1 0.000 0.000 0.009 0.881 

2 0.995 0.092 0.400 0.000 

3 0.016 0.053 0.000 0.000 

5 0.946 0.914 0.027 0.283 

5 

1 0.000 0.000 0.000 0.776 

2 0.998 0.004 0.833 0.000 

3 0.000 0.239 0.156 0.000 

4 0.946 0.914 0.027 0.283 

Table S3.4. Pairwise comparison of temporal variation of taxa (class level) between the BCCs of 51 

5 clusters. 52 

Phylum.Class Clusters LDA effect p value 

Cluster 1 versus Cluster-2 

Acidobacteria.Solibacteres 1 4.042 0.0025 

Actinobacteria.Acidimicrobiia 1 4.180 0.0022 

Actinobacteria.Actinobacteria 1 4.650 0.0026 

Actinobacteria.Thermoleophilia 1 3.763 0.002 

Bacteroidetes.Cytophagia 1 3.861 0.0028 

Bacteroidetes.Saprospirae 1 3.867 0.0024 

Cyanobacteria.Chloroplast 3 3.399 0.0021 

Cyanobacteria.Synechococcophycideae 3 3.583 0.0018 

Firmicutes. Bacilli 3 4.457 0.0023 
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Gemmatimonadetes.Gemmatimonadetes 1 3.641 0.0025 

Planctomycetes.Phycisphaerae 1 3.282 0.002 

Planctomycetes.Planctomycetia 1 3.148 0.0024 

Proteobacteria.Betaproteobacteria 3 4.088 0.0027 

Proteobacteria.Gammaproteobacteria 3 4.204 0.0024 

Verrucomicrobia.Pedosphaerae 1 3.201 0.0025 

Cluster 1 versus Cluster 3 

Acidobacteria.Acidobacteria_6 1 3.028 0.0018 

Acidobacteria.Solibacteres 1 3.704 0.0023 

Actinobacteria.Acidimicrobiia 1 4.072 0.0025 

Actinobacteria.Actinobacteria 1 4.674 0.002 

Actinobacteria.Thermoleophilia 1 3.740 0.0024 

Bacteroidetes.Cytophagia 1 3.856 0.0027 

Bacteroidetes.Saprospirae 1 3.822 0.0018 

Chloroflexi.Chloroflexi 1 2.895 0.0023 

Cyanobacteria.Chloroplast 4 2.829 0.0025 

Cyanobacteria.Nostocophycideae 1 3.313 0.0015 

Firmicutes.Bacilli 4 4.830 0.0025 

Gemmatimonadetes.Gemmatimonadetes 1 3.065 0.0095 

Planctomycetes.Phycisphaerae 1 2.845 0.007 

Proteobacteria.Gammaproteobacteria 4 4.138 0.006 

Verrucomicrobia.Pedosphaerae 1 2.928 0.008 

Verrucomicrobia.Verrucomicrobiae 1 2.575 0.002 

Cluster 1 versus Cluster 4 

Acidobacteria.Acidobacteria_6 1 2.869 0.0025 

Acidobacteria.Solibacteres 1 3.359 0.0022 

Actinobacteria.Actinobacteria 1 4.573 0.0026 

Actinobacteria.Thermoleophilia 1 3.534 0.002 

Bacteroidetes.Cytophagia 1 3.894 0.0028 

Bacteroidetes.Flavobacteriia 1 3.566 0.0024 

Bacteroidetes.Saprospirae 1 3.745 0.0018 

Bacteroidetes.Sphingobacteriia 1 2.889 0.0023 

Chloroflexi.Chloroflexi 1 2.665 0.0025 

Cyanobacteria.Nostocophycideae 1 3.066 0.002 

Cyanobacteria.Synechococcophycideae 5 2.784 0.0024 

Firmicutes.Bacilli 5 4.773 0.0027 

Firmicutes.Clostridia 1 3.914 0.0018 

Gemmatimonadetes.Gemmatimonadetes 1 2.742 0.0023 

Nitrospirae.Nitrospira 1 3.637 0.0025 

Planctomycetes.Phycisphaerae 1 3.008 0.0015 

Proteobacteria.Alphaproteobacteria 1 3.269 0.0025 
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Proteobacteria.Betaproteobacteria 1 4.056 0.0095 

Proteobacteria.Deltaproteobacteria 1 3.121 0.0018 

Thermi.Deinococci 1 2.216 0.0023 

Verrucomicrobia.Pedosphaerae 1 2.844 0.0046 

Verrucomicrobia.Verrucomicrobiae 1 2.494 0.0034 

Cluster 1 versus Cluster 5 

Actinobacteria.Acidimicrobiia 1 4.061 0.0025 

Actinobacteria.Actinobacteria 1 4.561 0.002 

Actinobacteria.Thermoleophilia 1 3.732 0.0024 

Bacteroidetes.Cytophagia 1 3.894 0.0027 

Bacteroidetes.Flavobacteriia 1 3.671 0.0018 

Bacteroidetes.Saprospirae 1 3.828 0.0023 

Bacteroidetes.Sphingobacteriia 1 4.077 0.0025 

Firmicutes.Bacilli 2 4.743 0.0052 

Planctomycetes.Phycisphaerae 1 3.674 0.0032 

Verrucomicrobia.Pedosphaerae 1 3.742 0.002 

Cluster 2 versus Cluster 3 

Acidobacteria.Solibacteres 3 3.229 0.004 

Chloroflexi.Chloroflexi 3 2.668 0.0094 

Cyanobacteria.Chloroplast 3 2.671 0.002 

Cyanobacteria.Nostocophycideae 3 3.041 0.0052 

Cyanobacteria.Synechococcophycideae 3 3.500 0.0032 

Firmicutes.Bacilli 4 4.615 0.002 

Planctomycetes.Phycisphaerae 3 2.771 0.005 

Proteobacteria 3 4.480 0.008 

Cluster 2 versus Cluster 4 

Acidobacteria.Acidobacteria 3 2.319 0.0085 

Acidobacteria.Solibacteres 3 2.438 0.0072 

Actinobacteria.Acidimicrobiia 5 3.992 0.008 

Actinobacteria.Thermoleophilia 5 3.128 0.007 

Bacteroidetes.Flavobacteriia 3 3.866 0.0028 

Bacteroidetes.Saprospirae 5 3.314 0.0024 

Bacteroidetes.Sphingobacteriia 3 3.494 0.0032 

Chloroflexi.Chloroflexi 3 2.565 0.0018 

Cyanobacteria.Chloroplast 3 2.936 0.0023 

Cyanobacteria.Nostocophycideae 3 3.102 0.0025 

Cyanobacteria.Synechococcophycideae 3 3.430 0.002 

Firmicutes.Bacilli 5 4.459 0.0024 

Firmicutes.Clostridia 3 2.612 0.0027 

Nitrospirae.Nitrospira 3 2.733 0.0024 

Planctomycetes.Planctomycetia 5 3.449 0.0025 
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Proteobacteria.Alphaproteobacteria 3 3.564 0.0022 

Proteobacteria.Betaproteobacteria 3 4.323 0.0026 

Proteobacteria.Deltaproteobacteria 3 4.078 0.002 

Cluster 2 versus Cluster 5 

Actinobacteria.Acidimicrobiia 2 3.778 0.0028 

Bacteroidetes.Flavobacteriia 3 3.891 0.0024 

Bacteroidetes.Saprospirae 2 3.565 0.0032 

Cyanobacteria.Nostocophycideae 2 4.261 0.0018 

Cyanobacteria.Synechococcophycideae 3 3.630 0.0023 

Firmicutes.Bacilli 2 4.517 0.0025 

Planctomycetes.Planctomycetia 2 3.425 0.002 

Proteobacteria.Betaproteobacteria 3 4.251 0.0024 

Verrucomicrobia.Pedosphaerae 2 3.795 0.0028 

Cluster 3 versus Cluster 4 

Actinobacteria.Acidimicrobiia 5 3.935 0.0034 

Actinobacteria.Actinobacteria 5 4.115 0.0024 

Actinobacteria.Thermoleophilia 5 3.473 0.009 

Bacteroidetes.Saprospirae 5 3.569 0.007 

Cyanobacteria.Chloroplast 4 3.842 0.0043 

Cyanobacteria.Synechococcophycideae 5 3.663 0.0053 

Planctomycetes.Planctomycetia 5 3.648 0.0097 

Cluster 3 versus Cluster 5 

Actinobacteria.Actinobacteria 2 4.208 0.0023 

Cyanobacteria.Nostocophycideae 2 4.016 0.0025 

Proteobacteria 4 4.087 0.002 

Verrucomicrobia.Pedosphaerae 2 3.612 0.0024 

Cluster 4 versus Cluster 5 

Actinobacteria.Acidimicrobiia 5 3.708 0.002 

Cyanobacteria.Nostocophycideae 2 2.522 0.0052 

Proteobacteria.Alphaproteobacteria 2 3.269 0.0032 

Proteobacteria.Betaproteobacteria 2 3.804 0.002 

Proteobacteria.Deltaproteobacteria 2 3.020 0.005 

Verrucomicrobia.Pedosphaerae 2 2.458 0.002 

  53 
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Table S3.5. Pairwise comparison of alpha diversity and Bray–Curtis dissimilarity PCo1 & 2 54 

indexes among 15 months of sampling across 6 different locations 55 

Months/years Chao1 Shannon PCo1 PCo2 

6
/1

6
 

7/16 1.000 1.000 1.000 1.000 

8/16 1.000 1.000 1.000 .886 

9/16 .163 .000 .022 .183 

10/16 .198 .000 .248 .992 

11/16 1.000 .275 .174 1.000 

12/16 1.000 .986 .859 1.000 

1/17 .008 .458 .057 .921 

2/17 .104 .006 .020 .981 

3/17 .000 .000 .001 1.000 

4/17 .000 .000 .075 1.000 

5/17 .000 .000 .000 1.000 

6/17 .011 .000 .152 1.000 

7/17 .554 .024 .431 .995 

8/17 .288 .030 .520 .977 

7
/1

6
 

6/16 1.000 1.000 1.000 1.000 

8/16 1.000 1.000 1.000 .999 

9/16 .094 .000 .014 .675 

10/16 .117 .000 .180 1.000 

11/16 .998 .052 .122 .998 

12/16 .998 .755 .777 .995 

1/17 .003 .115 .037 .439 

2/17 .057 .000 .012 .637 

3/17 .000 .000 .001 .997 

4/17 .000 .000 .050 1.000 

5/17 .000 .000 .000 1.000 

6/17 .005 .000 .105 1.000 

7/17 .399 .002 .334 1.000 

8/17 .180 .003 .415 1.000 

8
/1

6
 

6/16 1.000 1.000 1.000 .886 

7/16 1.000 1.000 1.000 .999 

9/16 .022 .000 .014 .997 

10/16 .029 .001 .179 1.000 

11/16 .954 .362 .122 .696 
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12/16 .947 .995 .777 .625 

1/17 .000 .562 .037 .047 

2/17 .012 .011 .012 .100 

3/17 .000 .000 .001 .682 

4/17 .000 .000 .050 .932 

5/17 .000 .000 .000 .965 

6/17 .001 .001 .105 .994 

7/17 .145 .038 .334 1.000 

8/17 .049 .047 .415 1.000 

9
/1

6
 

6/16 .163 .000 .022 .183 

7/16 .094 .000 .014 .675 

8/16 .022 .000 .014 .997 

10/16 1.000 1.000 1.000 .931 

11/16 .735 .339 1.000 .080 

12/16 .754 .007 .835 .061 

1/17 1.000 .188 1.000 .001 

2/17 1.000 .989 1.000 .003 

3/17 .858 1.000 1.000 .076 

4/17 .901 1.000 1.000 .239 

5/17 .019 .982 .904 .312 

6/17 1.000 1.000 1.000 .492 

7/17 1.000 .915 .994 .912 

8/17 1.000 .888 .986 .970 

1
0
/1

6
 

6/16 .198 .000 .248 .992 

7/16 .117 .000 .180 1.000 

8/16 .029 .001 .179 1.000 

9/16 1.000 1.000 1.000 .931 

11/16 .788 .779 1.000 .942 

12/16 .805 .058 1.000 .911 

1/17 .999 .583 1.000 .171 

2/17 1.000 1.000 1.000 .304 

3/17 .815 .982 .899 .937 

4/17 .866 1.000 1.000 .997 

5/17 .015 .753 .318 .999 

6/17 1.000 1.000 1.000 1.000 

7/17 1.000 .999 1.000 1.000 

8/17 1.000 .997 1.000 1.000 
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1
1
/1

6
 

6/16 1.000 .275 .174 1.000 

7/16 .998 .052 .122 .998 

8/16 .954 .362 .122 .696 

9/16 .735 .339 1.000 .080 

10/16 .788 .779 1.000 .942 

12/16 1.000 .989 .998 1.000 

1/17 .126 1.000 1.000 .987 

2/17 .610 .993 1.000 .999 

3/17 .009 .046 .951 1.000 

4/17 .012 .498 1.000 1.000 

5/17 .000 .006 .423 1.000 

6/17 .166 .802 1.000 1.000 

7/17 .982 1.000 1.000 .956 

8/17 .879 1.000 1.000 .884 

1
2
/1

6
 

6/16 1.000 .986 .859 1.000 

7/16 .998 .755 .777 .995 

8/16 .947 .995 .777 .625 

9/16 .754 .007 .835 .061 

10/16 .805 .058 1.000 .911 

11/16 1.000 .989 .998 1.000 

1/17 .136 .999 .956 .994 

2/17 .631 .339 .819 1.000 

3/17 .010 .000 .296 1.000 

4/17 .013 .017 .975 1.000 

5/17 .000 .000 .030 1.000 

6/17 .178 .066 .997 1.000 

7/17 .985 .609 1.000 .930 

8/17 .892 .661 1.000 .837 

1
/1

7
 

6/16 .008 .458 .057 .921 

7/16 .003 .115 .037 .439 

8/16 .000 .562 .037 .047 

9/16 1.000 .188 1.000 .001 

10/16 .999 .583 1.000 .171 

11/16 .126 1.000 1.000 .987 

12/16 .136 .999 .956 .994 

2/17 1.000 .960 1.000 1.000 

3/17 1.000 .019 .997 .989 
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4/17 1.000 .307 1.000 .872 

5/17 .295 .002 .732 .802 

6/17 1.000 .612 1.000 .621 

7/17 .941 .997 1.000 .194 

8/17 .995 .998 .999 .115 

2
/1

7
 

6/16 .104 .006 .020 .981 

7/16 .057 .000 .012 .637 

8/16 .012 .011 .012 .100 

9/16 1.000 .989 1.000 .003 

10/16 1.000 1.000 1.000 .304 

11/16 .610 .993 1.000 .999 

12/16 .631 .339 .819 1.000 

1/17 1.000 .960 1.000 1.000 

3/17 .929 .685 1.000 .999 

4/17 .956 .998 1.000 .962 

5/17 .034 .258 .915 .927 

6/17 1.000 1.000 1.000 .803 

7/17 1.000 1.000 .993 .338 

8/17 1.000 1.000 .983 .217 

3
/1

7
 

6/16 .000 .000 .001 1.000 

7/16 .000 .000 .001 .997 

8/16 .000 .000 .001 .682 

9/16 .858 1.000 1.000 .076 

10/16 .815 .982 .899 .937 

11/16 .009 .046 .951 1.000 

12/16 .010 .000 .296 1.000 

1/17 1.000 .019 .997 .989 

2/17 .929 .685 1.000 .999 

4/17 1.000 .999 .994 1.000 

5/17 .868 1.000 1.000 1.000 

6/17 1.000 .977 .963 1.000 

7/17 .422 .408 .736 .952 

8/17 .705 .360 .650 .875 

4
/1

7
 

6/16 .000 .000 .075 1.000 

7/16 .000 .000 .050 1.000 

8/16 .000 .000 .050 .932 

9/16 .901 1.000 1.000 .239 
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10/16 .866 1.000 1.000 .997 

11/16 .012 .498 1.000 1.000 

12/16 .013 .017 .975 1.000 

1/17 1.000 .307 1.000 .872 

2/17 .956 .998 1.000 .962 

3/17 1.000 .999 .994 1.000 

5/17 .818 .939 .662 1.000 

6/17 1.000 1.000 1.000 1.000 

7/17 .492 .972 1.000 .998 

8/17 .770 .959 1.000 .990 

5
/1

7
 

6/16 .000 .000 .000 1.000 

7/16 .000 .000 .000 1.000 

8/16 .000 .000 .000 .965 

9/16 .019 .982 .904 .312 

10/16 .015 .753 .318 .999 

11/16 .000 .006 .423 1.000 

12/16 .000 .000 .030 1.000 

1/17 .295 .002 .732 .802 

2/17 .034 .258 .915 .927 

3/17 .868 1.000 1.000 1.000 

4/17 .818 .939 .662 1.000 

6/17 .234 .727 .463 1.000 

7/17 .002 .104 .169 1.000 

8/17 .008 .086 .125 .996 

6
/1

7
 

6/16 .011 .000 .152 1.000 

7/16 .005 .000 .105 1.000 

8/16 .001 .001 .105 .994 

9/16 1.000 1.000 1.000 .492 

10/16 1.000 1.000 1.000 1.000 

11/16 .166 .802 1.000 1.000 

12/16 .178 .066 .997 1.000 

1/17 1.000 .612 1.000 .621 

2/17 1.000 1.000 1.000 .803 

3/17 1.000 .977 .963 1.000 

4/17 1.000 1.000 1.000 1.000 

5/17 .234 .727 .463 1.000 

7/17 .966 .999 1.000 1.000 
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8/17 .998 .998 1.000 1.000 
7
/1

7
 

6/16 .554 .024 .431 .995 

7/16 .399 .002 .334 1.000 

8/16 .145 .038 .334 1.000 

9/16 1.000 .915 .994 .912 

10/16 1.000 .999 1.000 1.000 

11/16 .982 1.000 1.000 .956 

12/16 .985 .609 1.000 .930 

1/17 .941 .997 1.000 .194 

2/17 1.000 1.000 .993 .338 

3/17 .422 .408 .736 .952 

4/17 .492 .972 1.000 .998 

5/17 .002 .104 .169 1.000 

6/17 .966 .999 1.000 1.000 

8/17 1.000 1.000 1.000 1.000 

8
/1

7
 

6/16 .288 .030 .520 .977 

7/16 .180 .003 .415 1.000 

8/16 .049 .047 .415 1.000 

9/16 1.000 .888 .986 .970 

10/16 1.000 .997 1.000 1.000 

11/16 .879 1.000 1.000 .884 

12/16 .892 .661 1.000 .837 

1/17 .995 .998 .999 .115 

2/17 1.000 1.000 .983 .217 

3/17 .705 .360 .650 .875 

4/17 .770 .959 1.000 .990 

5/17 .008 .086 .125 .996 

6/17 .998 .998 1.000 1.000 

7/17 1.000 1.000 1.000 1.000 
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 56 

Figure S3.1. Bi-weekly variation in the Shannon index for the 6 different sampling locations (CB, 57 

CH, HB, LP, PP and SP) over 15 months of sampling (June 2016 - August 2017). The X-axis 58 

shows the time of sampling (bi-weekly sampling).  59 

 60 
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 61 

 62 

Figure S3.2. Multivariant principle coordinate analysis (PCoA) plot of the Bray–Curtis similarity 63 

matrix of the BCCs of Lake Erie and Lake St. Clair (panel A) and six different locations (CB, CH, 64 

HB, LP, PP and SP) (panel B) across 15 months of sampling. 65 
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  66 

Figure S3.3. Taxa with significant spatial variation in their relative abundance among two lakes 67 

(Lake Erie and St. Clair). The relative abundance of all 5 classes were significantly higher (p<0.05) 68 

in Lake Eire relative to Lake St. Clair. 69 

 70 
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 71 

Figure S3.4. Line plots of monthly changes of Shannon (top panel) and Bray–Curtis dissimilarity 72 

components; PCo3-5 (bottom panel) of 6 different locations over 15 months of sampling. C1-5: 73 

Cluster 1-5 based on figure 4.  74 
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 75 

Figure S3.5. Phylogenetic affiliations of the top heterotrophic bacterial (panel a) and phototrophic 76 

(panel b) OTU groups from the 15 months of sampling in Lake Erie and St. Clair over 2016 and 77 

2017. Due to space constraints, only taxa which had relative abundance more than 1% in at least 78 

one sampling month are presented for heterotrophic bacterial (panel a). 79 



Appendix B; Supplementary Information of Chapter 3 

197 

 

 80 

Figure S3.6. Pattern of environmental parameter variation (water temperature, precipitation and 81 

daylight duration) for the 6 sampling locations over 15 months of the sampling. As air and water 82 

temperature both had same pattern spatially and temporally (no significant variation) we only 83 

plotted water temperature. For each month, 2 different weeks were sampled (week 1 and 2). 84 

Sampling was started June 2016 and ended August 2017. Error bars, showing the standard 85 

deviation of water temperature and precipitation among 6 sampling locations. 86 

 87 
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 88 

Figure S3.7. Distance based Redundancy Analysis (dbRDA) of freshwater microbiota. Relative 89 

position of water samples in the biplot is based on Bray Curtis similarity of square root transformed 90 

relative abundance at the OTU level. Vectors indicate the weight and direction of the 91 

environmental variables that were best predictors of the BCCs of different months as suggested by 92 

the results of the distance-based linear model (distLM). The dbRDA axes describe the percentage 93 

of the fitted or total variation explained by each axis while being constrained to account for group 94 

differences. Sample IDs indicate the sampling months.  95 
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APPENDIX C; SUPPLEMENTARY INFORMATION OF CHAPTER 4 

Table S4.1. Sequencing statistics of the metatranscriptomic profiles obtained from the Illumina 

HiSeq 4000 run for all samples are summarized in the  

Samples 

ID 

Number of 

reads 

Failed in 

QC (%) 

Processed high-

quality 

sequences 

High-quality sequences 

rRNA 

(%) 

% (reads) of 

high-quality 

transcripts with 

known function 

% high quality 

reads with 

unknown 

function 

CH1 29,798,479 83  5,056, 742 81  4.7 (237,666) 14.3 

CH1C 34,468,587 84  5,515,120 80 5.2 (286,786) 14.8 

CH18 30,489,974 83 5,183,290 79 4.2 (217,698) 16.8 

CH19 34,223,787 83  5,818,004 76 5.2 (302,536) 18.2 

CH21 32,577,928 81 6,189,806 76 6.5 (402,337) 17.5 

CH22 30,713,668 84 4,914,186 77 6 (294,851) 17 

SL1  30,180,206 85 4,527,030 78 5.3 (239,932) 16.7 

SL1C 31,185,883 85 4,667,882 80 4.7 (219,390) 15.3 

SL18 34,738,192 88 4,168,583 81 5.2 (216,766) 13.8 

SL19 33,112,182 86 4,635,705 81 4.5 (208,606) 14.5 

SL21 33,732,219 87 4,384,188 81 4.8 (210,441) 14.2 

SL22 34,534,774 82 6,216,259 81 4 (248,650) 15 

SP1 31,089,357 85 4,663,403 80 4.8 (223,843) 15.2 

SP1C 35,001,268 88 4,200,152 82 5.1 (214,207) 12.9 

SP18 32,132,331 84 5,141,172 81 4 (205,646) 15 

SP19 33,130,782  87 4,307,001 81 4.8 (206,736) 14.2 

SP21 32,252,781 84 5,160,444 79 9 (464,439) 12 

SP22 33,243,171 84 5,318,907 80 8.2 (436,143) 11.8 
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Table S4.2. Spatial variation of the transcripts of the biological/ecological relevant genes detected in the transcriptomic data of three 

sampling locations. We only presented the genes which had known function and were part of physiological and ecological pathways 

and expressed by at least two different species of bacteria. 

Pathways Function Gene(s) 
Sampling locations 

CH SL SP 

Aminoacyl-tRNA 

biosynthesis  
D-aminoacyl-tRNA deacylase dtd + + +a 

Fatty acid biosynthesis  
Malonyl CoA-acyl carrier protein transacylase fabD + + +a 

3-oxoacyl-[acyl-carrier-protein] synthase 2 fabF + + +a 

Glycolysis  
Pyruvate dehydrogenase pdhA + + +a 

Pyruvate kinase pyk + + +a 

Phototrophy 

Photosystem I psaA + + +a 

Photosystem II 

psbA, psbA1, 

psbA2, psbD1, 

psb27, psbO 

+ + +a 

Porphyrin metabolism  Uroporphyrinogen-III synthase hemD + + +a 

Purine metabolism  dITP/XTP pyrophosphatase rdgB + + + a 

RNA polymerase  DNA-directed RNA polymerase subunit beta rpoB + b + +  

Two-component system  
Transcriptional regulatory protein PhoP phoP +b + + 

Transcriptional regulatory protein RstA rstA +b + + 

‘+’ indicates occurrence in three sampling locations. Letters indicates significantly high transcript frequency in; SP versus CH 

and SL (a) and CH versus SP (b).  
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Table S4.3. Environmental variables measured in winter, summer and fall (2019) at three 

different locations.  

Environmental variables 
Winter Summer Fall 

CH SL SP CH SL SP CH SL SP 

Water temperature (°C) 1.2 1.5 1.3 23 23.5 24 12 12.5 13 

Daylight (hour) 9 9 9 15 15 15 12 12 12 

TN (NO3+NO2) (mg/L) 0.23 0.26 0.24 0.71 0.58 1.38 1.21 1.7 2.8 

TP (mg/L) 0.02 0.02 0.08 0.01 0.01 0.25 0.09 0.08 0.13 

 

Table S4.4. Distance-based Liner Model (DistLM) analysis of environmental variables 

effects on the metatranscriptomic data. 

Variable SS (trace) Pseudo-F P value 
Proportion of 

explained variation 

Day light 9906.9 11.465 0.001 0.41745 

Water temperature 11801 15.826 0.001 0.49727 

TN 6394.9 5.9018 0.004 0.26947 

TP 1911.3 1.4015 0.222 0.080539 

   r2=0.82311 
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Figure S4.1. Patterns of similarity among freshwater bacterial meta-transcripts at three 

locations over three seasons. Panel A: Principal coordinates analysis (PCoA) based on the 

Bray–Curtis dissimilarity matrix generated using metatranscriptomic data (transcript reads) 

of the samples collected from Lake Eire (2 locations) and Lake St. Clair (1 location) over 

winter (win), summer (sum) and fall (fall). Panel B: A box plot showing the mean and 

variation of PCo1, PCo2 and PCo3 over winter (win), summer (sum) and fall (fall). The 

letters on top of boxes indicate significant differences based on one-way ANOVA.  
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Figure S4.2. Out of the top 50 abundant KEGG pathways, the 40 most abundant KEGG 

pathways in the metatranscriptomic data of CH (blue), SL (green) and SP (red) are 

displayed. The pathways marked with the letters were highly expressed (p<0.05) at; SP 

versus CH and SL (a) and CH versus SP (b).  

  

Figure S4.3. Distance-based redundancy analysis (dbRDA) plot showing the influence of 

water temperature (Water Tm), daylight, total phosphate (TP) and total nitrogen (TN) on 

metatranscriptomic data of freshwater BC in winter, summer and fall (2019).  
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APPENDIX D; SUPPLEMENTARY INFORMATION OF CHAPTER 5 

Table S5.1. Networks characteristics of different treatment  

Characteristics P2-Co C-LND R-LND C-HND R-HND 

Clustering coefficient 0.45 0.49 0.5 0.48 0.39 

Network centralization 0.31 0.4 0.4 0.34 0.25 

Characteristic path length 2.3 2.2 2.2 2.33 2.5 

Average number of neighbors 42.5 29 49.7 27.5 17 

Number of nodes 253 181 222 199 127 

Table S5.2. Keystone taxa profile of each the BC of control (P2-Co), challenge 

communities (C-LND and C-HND) and relaxed communities (R-LND and R-HND). Data 

are presented at the phyla and family levels. 

Treatments Families Phyla OTUs 

P
2
-C

o
 

Solibacterales 

Acidobacteria 

250 

C111 370 

Microbacteriaceae 13 

ACK-M1 Actinobacteria 63,311, 367 

Cytophagaceae 

Bacteroidetes 

790 

Chitinophagaceae 1020 

Cryomorphaceae 639 

Sphingobacteriaceae 

5, 64, 131, 320, 396, 

1007 

Chloroflexi 
Chloroflexi 

1567 

Roseiflexales 94 

Bacillaceae 

Firmicutes 

342 

Staphylococcaceae 1159, 1241 

Planococcaceae 24, 840, 1073 

Phycisphaerales 

Planctomycetes 

125, 286 

Isosphaeraceae 59 

Gemmataceae 164, 454, 1178 

Pirellulaceae 20, 1136 

Planctomycetaceae 170, 297 

Sinobacteraceae 

Proteobacteria 

318, 460 

Acetobacteraceae 985 

Rhodospirillaceae 105, 523 
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Caulobacteraceae 27 

Comamonadaceae 9, 12, 83, 281, 421 

Ellin6067 156 

Hyphomonadaceae 56, 249 

Oxalobacteraceae 559 

Pseudomonadaceae 18 

Rhodocyclaceae 725 

C
-L

N
D

 

ACK-M1 
Actinobacteria 

357 

C111 116 

Cytophagaceae Bacteroidetes 31, 73 

Cyanobacteria 
Cyanobacteria 

77 

Synechococcaceae 42 

Pseudomonadaceae 

Proteobacteria 

189 

Alphaproteobacteria 401 

Comamonadaceae 2,4,9,26 

Erythrobacteraceae 425, 449 

Burkholderiales 1490 

Rhizobiaceae 134 

Acetobacteraceae 127, 284 

Bdellovibrionaceae 174, 317 

Sinobacteraceae 3843 

Xanthomonadaceae 1432 

Sphingomonadaceae 130, 726 

Rhodobacteraceae 182, 199 

C
-H

N
D

 

C111 Actinobacteria 124, 251,1584 

Saprospiraceae 

Bacteroidetes 

1517 

Cytophagaceae 73, 2131 

Sphingobacteriaceae 175 

Synechococcaceae Cyanobacteria 42 

WD2101 
Planctomycetes 

273 

Gemmataceae 2126, 2212 

Rhodobacteraceae 

Proteobacteria 

351, 442, 509, 806, 

1670 

Caulobacteraceae 16, 823, 836 

BD7-3 312 

Acetobacteraceae 560, 792 

Sphingomonadaceae 475, 580 

Xanthomonadaceae 138, 384 

Oxalobacteraceae 8 

Methylophilaceae 417, 684, 912, 

Rhizobiaceae 277 
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Comamonadaceae 21,115 

Chthoniobacteraceae Verrucomicrobia 17 
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PK29 Acidobacteria 45 

Actinomycetales 

Actinobacteria 

38 

Microbacteriaceae 13 

Gaiellales 207 

ACK-M1 63311 

Cytophagaceae 

Bacteroidetes 

76, 790 

Sphingobacteriaceae 5, 64, 131, 320, 396 

Chitinophagaceae 265, 477,1020 

Cryomorphaceae 639 

Bacillaceae Firmicutes 311 

Phycisphaerales 
Planctomycetes 

125 

Gemmataceae 164, 454 

Caulobacteraceae 

Proteobacteria 

11 

Comamonadaceae 400, 526,1347,1776 

Hyphomonadaceae 23 

Oxalobacteraceae 8, 86 

Erythrobacteraceae 28,118. 1098, 2987 

Alcaligenaceae 121 

Alphaproteobacteria 551 

Sphingomonadaceae 5,15,34,61,667 

Verrucomicrobia Verrucomicrobia 34 

R
-H

N
D

 

Microbacteriaceae 
Actinobacteria 

13 

ACK-M1 3, 334 

Synechococcaceae 
Cyanobacteria 

42 

Streptophyta 622 

Planococcaceae 

Firmicutes 

676 

Streptococcaceae 142 

Bacillaceae 228 

Longimicrobiaceae Gemmatimonadetes 322, 600 

Isosphaeraceae 
Planctomycetes 

59 

Pirellulaceae 20 

Methylophilaceae 

Proteobacteria 

684, 912 

Comamonadaceae 4,12,21 

Mycoplasmataceae 1794 
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Figure S5.1. PCoA analysis of Barry-Curtis dissimilarity matrix of the BCs (weeks 1-4) 

of phase 1 (panel A) and phase 2 (panel B) of two sampling sites; SL and LP.  

 

 

Figure S5.2. Box plots showing the variation of Chao1, PCo1, PCo2 and PCo3 of the 

adaptation (phase 1) experiment (week 4). Letters show significant differences between the 

BC of P1-Co and two adapted BCs; LND and HND. The thick bar is median, upper and 

lower quartiles represent 75% and 25% of the data respectively. Whiskers are used to 

indicate variability outside the upper and lower quartiles. 
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Figure S5.3. Graphic showing the LDA effect size (LEfSe) of highly abundant OTUs of 

the BCs of P1-Co, LND and HND. Horizontal bars represent the effect size for each taxon. 

The length of the bar represents the log10 transformed LDA score, indicated by vertical 

dotted lines. OTUs (numbers) and their taxa information with statistically significant 

change (p < 0.05) in the relative abundance is written alongside the horizontal lines. 

Taxonomic abbreviations: Actin; Actinobacteria, Bacter; Bacteroidetes, Chloro; 

Chloroflexi, Gemm; Gemmatimonadetes, Plan; Planctomycetes, Proteo; Proteobacteria 

and Verru; Verrucomicrobia. 
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Figure S5.4. Box plots showing the variation of Chao1, PCo1, PCo2 and PCo3 of the BCs 

in phase 2 (week 4). Significant variation was highlighted by letters between the BCs of 

P2-Co, C-LND, C-HND, R-LND and R-HND. The thick bar is median, upper and lower 

quartiles represent 75% and 25% of the data respectively. Whiskers are used to indicate 

variability outside the upper and lower quartiles. 
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Figure S5.5. Graphics of LDA effect size (LEfSe) for high abundant OTUs of the BCs 

among different treatments of challenge phase (week 4). Panel A; P2-Co, C-LND and R-

LND, panel B; P2-Co, C-HND and R-HND, panel C; challenge and relaxed communities’ 

comparison. Horizontal bars represent the effect size for each taxon. The length of the bar 

represents the log10 transformed LDA score, indicated by vertical dotted lines. OTUs 

(numbers) and their taxa information with statistically significant change (p < 0.05) in the 

relative abundance is written alongside the horizontal lines. Taxa abbreviation: Acido; 
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Acidiobacteria, Actin; Actinobacteria, Bacter; Bacteroidetes, Chlam; Chlamydiae, Chloro; 

Chloroflexi, Cyano; Cyanobacteria, Firm; Firmicutes, Gemm; Gemmatimonadetes, Plan; 

Planctomycetes, Proteo; Proteobacteria and Verru; Verrucomicrobia. 

 

Figure S5.6. Taxa composition (phyla level) of the BCs of different treatments at phase 1 

(adaptation phase) and 2 (challenge phase) over week 4. 
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APPENDIX E; SUPPLEMENTARY INFORMATION OF CHAPTER 6 

Table S6.1. List and the sequences of the primers and probes designed in this study for quantitative qPCR assays. Primers were designed 

for 2 FIBs, 7 MST markers and 15 waterborne pathogens 

G
ro

u
p

s 

T
a

rg
et

 

G
en

es
 

S
iz

e 
(b

p
) 

FAM probe sequence (5'-3') Forward Primer Sequence (5'-3') Reverse Primer Sequence (5'-3') 

A 1 23 rRNA 71 ACCGTAAACCGACACAGGTA GTGAGAAAACAACTGCCCGT CGCTCGCTCACCTTAGGATA 

A 2 UidA 70 ACCGATACCATCAGCGATCT GTAATGTTCTGCGACGCTCA AATAACGGTTCAGGCACAGC 

B 3 16S rRNA 90 TTGGAACTGAGACACGGTCCA TAGGGGTTCTGAGAGGAAGGTC CATTGACCAATATTCCTCACTGCT 

B 4 16S rRNA 91 AGATTAAAGAATTTCGGTA CGATGGTATCTTAAGCGCACATGCAATT CTAGGTGGGCCGTTACCCCGCCTACTAC 

B 5 16S rRNA 70 GACCTTCCCTTTACTCAGGGATAGCCT GTCAGCTTGCTGACTCTGATGGCGA GCAGGGAAACAAAGGCATCAGGTA 

B 6 16S rRNA 81 GTCGAATTAATGCCTGATGT CCGGGCTATTCCTGACCATGGGGAAGGT TTGTTCCACATCAGATGCCGTCCGTG 

B 7 16S rRNA 83 GGAAACAGGTGCTAATACCGC CATCAGAGGGGGACAACACT AAGCGCCTTTCAACAAAGAA 

B 8 MT-ND2 81 TTCAATGAATCTGAGGAGGCT TATCCGCCATCCCATACATT GTGTGAGGGTGGGACTGTCT 

B 9 NifH 90 TTGTGCGGTAGAAGAATCCC CGAAAGCTGATACAACACGTACA CCTCTTCACTGGGTTTTCTGTT 

C 10 GltA 90 AGGCGCATTATCTGCTTTCT TATGGCAATCATGGTTGGTG GTAATTTCGCGGTGGTTGAT 

C 11 Lip 73 ATGCTGGCTGGCTGTGGTGG TAATTTACGCCGCGGTTGTC GTGTCGCCTTTGTTATCGTCAC 

C 12 GlyA 89 CCCACAAAACCTTACGTGGT GGTGAGCATCCAAGTCCATT CATGATGATACCGCCTCTTGGACCAC 

C 13 HipO 83 CCTTTGCAAGAATGCACAAA TTCGTGCAGATATGGATGCT CGCAAGCATGCATTACATTT 

C 14 manC 76 TGACCAAGGTGAGCGATACA CATGGGGAAAATTTGATTCG CCCTCACCAGGTTTCACAAT 

C 15 manC 79 TAAGCCAAAAGGATTGCCAT GGCTGGAATGACGTGGGTTCTTGGTCA TTGAGCACATCCCCATGGCACACATTAC 

C 16 manC 66 CAGGGCGAACCTTTAGGTTT GCCAGGCGTGACCATTATGAACGTG CGGGTCGTGCACACAAAATGGAGTGG 

C 17 PhoE 78 GATTAACGACGACCTGACCG TCGGTATTAAAGGCGAAACG CGGTTTTGTTACCGCAGAAT 

C 18 MipA 72 TGAAAGACGTTCTTAACAAGTTTCA GGCTTTAACCGAACAGCAAA GCAGTACGTTTTGCCATCAA 

C 19 Hly 83 CAAGGATTGGATTACAATAAAAACAA ACGCGGATGAAATCGATAAG GTCACTGCATCTCCGTGGTA 

C 20 RegA 81 CGACGACGTGGACAAGCT ACTATCACGGCATTCCTTCG AACAGAAACTGCCGATGACC 

C 21 InvA 88 AAAGGTTCAGAACGTGTCGC TGTCACCGTGGTCCAGTTTA GGGCATACCATCCAGAGAAA 
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C 22 IpaH 64 AAGTAAATCTGCGGGCCGT CTGTTGTCCGTCACTCATGG ATTAACCTCTTCGCCGGACT 

C 23 gyrA) 67 TCCCTAACTTGTTAGCCAATGG GCCGTCAGTCTTACCTGCTC ACCTACCGCGATACCTGATG 

C 24 CtxA 77 GGAGCATAGAGCTTGGAGGG CAGCAGCAGATGGTTATGGA ATGATGAATCCACGGCTCTT 

A; FIBs markers, B; MST markers, C; waterborne pathogens. 1; Enterococcus spp., 2; Escherichia coli, 3; Bacteroides-Prevotella spp, 4; Bacteroides 

spp. (Dog marker), 5; Bacteroides spp. (Canada goose marker), 6; Bacteriodes spp. (Pig marker), 7; Catellicoccus marimammalium (Seagull), 8; C40 

mitochondria (Human marker), 9; Methanobrevibacter smithii (Human marker), 10; Acinetobacter baumannii, 11; Aeromonas hydrophila, 12; 

Campylobacter coli, 13; Campylobacter jejuni, 14; E. coil O157:H7, 15; E. coli O111, 16; E. coli O26; 17; Klebsiella pneumoniae, 18; Legionella 

pneumophila, 19; Listeria monocytogenes, 20; Pseudomonas aeruginosa, 21; Salmonella typhimurium, 22; Shigella spp., 23; Staphylococcus aureus, 

24; Vibrio cholerae 
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Table S6.2. Quality and concentration of DNA extracted for samples used in this study 

Samples and their source Sample’s IDs 260/280 ratio 260/230 ratio Concentration (ng/µL) 

E
n

v
ir

o
n

m
en

ta
l 

sa
m

p
le

s 

B
ea

ch
 w

at
er

 CI 1.99 2.17 66 

HB 1.84 2.1 58 

LP 1.88 1.98 88 

PP 1.91 1.99 56 

SL 1.78 2.15 59 

SP 1.93 2.2 76 

P
o
re

 w
at

er
 

CI 1.76 2.11 160 

HB 2.1 2.22 156 

LP 1.88 2.05 172 

PP 1.78 1.98 69 

SL 1.79 2.14 110 

SP 1.87 1.95 112 

S
an

d
  

CI 1.68 1.89 61 

HB 1.83 2.11 57 

LP 1.79 2.15 59 

PP 1.75 1.98 81 

SL 1.92 2.15 59 

SP 1.97 2.18 69 

S
tr

ea
m

 

w
at

er
 HB 1.83 2.08 88 

LP 1.77 2.05 109 

PP 1.89 2.02 132 

P
o
n
d
 

w
at

er
 1 2.05 2.11 122 

2 2.1 2.17 156 

3 1.93 2.15 101 

F
ec

a
l 

sa
m

p
le

s 

D
o
g
 

1 1.83 2.12 270 

2 1.78 2.05 130 

3 1.98 1.98 232 

4 1.81 1.88 178 

C
an

ad
a 

g
o
o
se

 1 1.89 1.91 249 

2 1.99 1.96 257 

3 2.1 2.05 290 

4 2.05 2.23 238 

P
ig

 

1 1.79 2.21 211 

2 1.88 2.11 189 

3 1.67 2.05 156 

4 1.69 1.99 197 

S
ea

g
u

ll
 1 1.87 1.95 234 

2 1.92 2.21 256 

3 1.89 2.07 279 
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4 1.69 2.11 266 

Human 
1 1.84 2.17 302 

2 1.87 2.06 319 

Sewage 

1 1.89 1.98 412 

2 1.88 1.95 456 

3 1.71 2.1 480 
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Table S6.3. Mean of CT values for all markers obtained by SYBR green qPCR (top) and TaqMan® OpenArray® plate (bottom) for a 

known concentration of each marker. 

Markers/species 
SYBR green qPCR Mean CT value (copies/reaction) 

2,000,000 200,000 20,000 2,000 200 20 2 1 

Acinetobacter baumannii 18.41 21.27 24.94 27.68 30.43 33.55 ND ND 

Aeromonas hydrophila 17.48 20.80 24.63 27.53 30.53 33.12 ND ND 

Bacteroides spp. (General marker) 17.54 20.98 24.54 27.55 30.14 33.71 ND ND 

Bacteroides spp. clone CGOF52 (Goose 

marker) 17.55 21.05 24.28 27.34 29.72 33.56 ND ND 

Bacteroides A3 (Dog marker) 17.16 20.72 24.52 27.69 30.11 33.28 ND ND 

Bacteriodes Cluster 1, PigA4 (Pig marker) 17.40 21.61 24.78 27.60 30.22 34.06 37.88 ND 

Campylobacter coli  16.56 21.96 24.81 27.49 30.03 33.26 37.87 ND 

Campylobacter jejuni  18.01 21.16 24.56 28.49 30.02 32.46 ND ND 

Catellicoccus marimammalium (Seagull 

marker) 17.42 21.12 24.04 27.33 30.55 34.64 ND ND 

Enterococcus spp. 17.17 21.06 23.67 27.97 30.22 34.03 ND ND 

Escherichia coli (23S rRNA) 17.42 20.62 23.74 27.25 30.24 33.74 37.18 ND 

Escherichia coli (uidA) 17.50 20.56 23.20 27.47 31.06 34.50 ND ND 

Escherichia coil O157:H7  18.09 21.14 24.27 27.23 31.54 34.23 ND ND 

Escherichia coli O111  17.40 20.52 24.04 27.81 31.05 33.84 ND ND 

Escherichia coli O26 17.74 21.98 23.55 26.07 30.90 33.11 37.87 ND 

Human C40 mitochondria (Human marker) 17.06 21.50 23.41 26.57 30.51 33.89 37.28 ND 

Klebsiella pneumoniae 17.58 21.63 24.05 27.60 30.44 32.89 ND ND 

Legionella pneumophila 17.29 20.62 23.37 27.82 31.24 34.25 ND ND 

Listeria monocytogenes  17.39 20.66 23.77 28.03 31.15 34.67 ND ND 

Methanobrevibacter smithii (Human marker) 17.39 20.66 24.77 27.53 31.35 34.72 ND ND 

Pseudomonas aeruginosa  17.08 21.50 24.05 27.07 30.20 33.95 37.60 ND 

Salmonella typhimurium 17.09 21.66 24.77 27.37 31.45 34.20 ND ND 

Shigella spp. 17.40 21.18 23.30 27.81 29.41 33.58 ND ND 
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Staphylococcus aureus 17.25 21.77 24.77 27.10 31.05 33.67 ND ND 

Vibrio cholerae 17.19 21.55 23.41 26.57 31.54 34.23 ND ND 

Markers/species 
TaqMan® OpenArray® plate Mean CT value (copies/hole) 

2,000,000 200,000 20,000 2,000 200 20 2 1 

Acinetobacter baumannii 17.81 20.28 23.40 27.16 29.94 33.94 36.10 ND 

Aeromonas hydrophila 16.91 21.42 23.75 26.17 29.10 33.17 36.58 37.11 

Bacteroides spp. (General marker) 16.91 21.42 23.75 26.17 29.10 33.17 35.58 ND 

Bacteroides spp. clone CGOF52 (Goose 

marker) 16.78 19.09 22.86 26.05 29.07 32.30 35.46 ND 

Bacteroides A3 (Dog marker) 16.17 20.73 24.29 27.01 29.11 33.39 37.28 ND 

Bacteriodes Cluster 1, PigA4 (Pig marker) 16.46 19.19 22.32 25.22 28.96 31.16 34.20 37.34 

Campylobacter coli  16.64 20.50 24.28 27.15 29.21 33.52 36.08 ND 

Campylobacter jejuni  17.60 19.72 23.80 27.10 29.14 33.44 36.07 ND 

Catellicoccus marimammalium (Seagull 

marker) 16.96 19.78 22.25 25.12 28.30 32.44 35.58 ND 

Enterococcus spp. 16.13 19.73 22.04 25.84 29.10 33.64 37.20 ND 

Escherichia coli (23S rRNA) 17.52 19.18 22.11 26.09 29.64 33.02 36.81 ND 

Escherichia coli (uidA) 16.65 19.61 22.21 25.16 28.63 31.59 34.55 36.23 

Escherichia coil O157:H7  17.21 20.44 23.12 26.11 29.65 32.92 35.47 ND 

Escherichia coli O111  16.03 19.82 22.95 26.11 29.20 32.95 35.09 ND 

Escherichia coli O26 16.19 19.79 22.62 25.13 28.11 31.01 34.79 ND 

Human C40 mitochondria (Human marker) 16.22 19.14 23.00 25.10 28.10 32.64 35.70 ND 

Klebsiella pneumoniae 16.78 19.09 22.86 26.05 29.07 32.30 35.46 ND 

Legionella pneumophila 16.25 19.54 23.60 26.12 29.21 32.47 34.21 37.18 

Listeria monocytogenes  16.20 19.89 22.81 26.12 29.10 33.90 36.11 ND 

Methanobrevibacter smithii (Human marker) 16.76 19.29 22.75 25.07 28.14 32.66 35.26 ND 

Pseudomonas aeruginosa  16.19 20.13 22.99 26.08 29.53 32.06 35.23 37.52 

Salmonella typhimurium 16.09 19.78 22.26 26.35 29.81 32.79 35.51 ND 

Shigella spp. 16.67 19.58 22.57 25.07 28.81 32.33 35.81 ND 

Staphylococcus aureus 16.29 19.68 22.56 25.16 29.55 32.17 35.16 37.88 
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Vibrio cholerae 16.42 19.64 22.24 25.29 29.15 32.06 35.32 ND 

ND; not determined         
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Acinetobacter baumannii                                                   

Aeromonas hydrophila                                                   

Bacteroides spp.                                                   

Canada goose bacteroides spp.                                                    

Campylobacter coli                                                    

Campylobacter jejuni                                                    

Catellicoccus marimammalium                                                   

Dog bacteroides A3                                                   

Enterococcus spp.                                                   

Escherichia coil O157:H7                                                    

Escherichia coli                                                    

Escherichia coli O111                                                    

Escherichia coli O26                                                   

Human C40 mitochondria                                                   

Klebsiella pneumoniae                                                   

Legionella pneumophila                                                   

Listeria monocytogenes                                                    

Methanobrevibacter smithii                                                   

Pig bacteroides Cluster 1                                                   

Pseudomonas aeruginosa                                                    

Salmonella typhimurium                                                   
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Shigella spp.                                                   

Staphylococcus aureus                                                   

Vibrio cholerae                                                   

 

Figure S6.1. Summary of the specificity of the designed primers for qPCR assays for targeted genes (X-axis) in this study was verified 

using conventional PCR for FIBs, MST markers and waterborne pathogens (Y-axis). To evaluate the specificity, genomic DNA from 

pure bacterial culture (FIBs and waterborne pathogens) and DNA extracted from host-specific fecal material (MST markers) were used. 

The detection of Shigella spp. by uidA-targeted qPCR (specific for E. coli) was considered as true positive. Filled boxes are negative 

and white boxes showing target-specific amplification. 
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Gel 1: 23 rRNA gene amplification of 

Enterococcus spp., P:  Enterococcus faecalis 

DSM 20478 

Gel 2: uidA gene amplification of Escherichia 

coli., P: E coli K-12, a: E. coli O157:H7 ATCC 

43895, b: E. coli O26:H11, c: E. coli O111, d: 

Shigella sonnei CCUG 68726 

 

Gel 3: 16S rRNA gene amplification of Bacteroides-Prevotella spp. a: sewage samples, b: 

human fecal samples, c: Canada goose fecal samples, d: seagull fecal samples, e: pig fecal 

samples and f: dog fecal samples 
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Gel 4: 16S rRNA gene amplification of 

Bacteroides A3; dog marker. D1-5: dog fecal 

samples 

Gel 5: 16S rRNA gene amplification of 

Bacteroides CGOF52; Canada goose marker. 

G1-5: Canada goose fecal samples 

  

Gel 6: 16S rRNA gene amplification of 

Bacteroides PigA4; pig marker. Pi1-5: pig 

fecal samples 

Gel 7: 16S rRNA gene amplification of 

Catellicoccus marimammalium; seagull 

marker. Se1-5: seagull fecal samples 

  

Gel 8: C40 mitochondria gene amplification; 

human marker. S1-3: sewage samples and H: 

human fecal samples 

Gel 9: nifH gene amplification of 

Methanobrevibacter smithii; human marker; 

S1-3: sewage samples and H: human fecal 

samples 
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Gel 10: gltA gene amplification of 

Acinetobacter baumannii; P: A. baumannii 

DSM 30007 

Gel 11: lip gene amplification of Aeromonas 

hydrophila; P: A. hydrophila DSM 30187 

  

Gel 12: glyA gene amplification of 

Campylobacter coli; P: C. coli DSM 4689 

Gel 13: hipO gene amplification of 

Campylobacter jejuni; P: C. jejuni DSM 4688 

  

Gel 14: manC gene amplification of E. coil 

O157:H7; P: E. coli O157:H7 ATCC 43895 

Gel 15: manC gene amplification of E. coil 

O111; P: E. coli O111 
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Gel 16: manC gene amplification of E. coil 

O26; P: E. coli O26:H11 

Gel 17: phoE gene amplification of Klebsiella 

pneumoniae; P: K. pneumoniae DSM16358 

  

Gel 18: mipA gene amplification of Legionella 

pneumophila; P: L. pneumophila DSM 7513  

Gel 19: hly gene amplification of Listeria 

monocytogenes; P: L. monocytogenes DSM 

20600 
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Gel 20: regA gene amplification of 

Pseudomonas aeruginosa; P: P. aeruginosa 

DSM 50071 

Gel 21: invA gene amplification of Salmonella 

typhimurium; P: S. typhimurium DSM 17085 

  

Gel 22: ipaH gene amplification of Shigella 

spp.; P: Shigella sonnei CCUG 68726 

Gel 23: gyrA gene amplification of 

Staphylococcus aureus; P: S. aureus DSM 

20231 

 

Gel 24: ctxA gene amplification of Vibrio 

cholerae; P: V. cholerae NCTC 8021 

Figure S6.2. Specificity assessment of 24 sets of designed primers in this study was examined by 

conventional PCR trials. The assessment was performed on the pure culture of different bacterial 

species as well as individual and pooled fecal samples. L; 50 bp Ladder, B; blank (negative 

control), P; positive control, PS; pooled sewage samples, PH; pooled human fecal samples; PD; 

pooled dog fecal samples, PC; pooled Canada goose fecal samples, PSe; pooled seagull fecal 

samples and PPi; pooled pig fecal samples. 
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Figure S6.3. Standard curves were obtained for each target by qPCR (black dotted line) and TaqMan® OpenArray® plate (red dashed 

line). The standard curves were generated for each targeted waterborne pathogen, FIBs and MST markers by linear regression analysis 

of CT mean values obtained by qPCR and TaqMan® OpenArray® vs. the amounts of known copy number of template DNA (log 

copies/reaction for SYBR green qPCR and log copies/hole for OpenArray® plate). The linear regression equations and goodness-of-fit 

(R2) values are also shown for each assay.  
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