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ABSTRACT

Chromatin immunoprecipitation (ChIP–Seq) has emerged as a superior alternative

to microarray technology as it provides higher resolution, less noise, greater coverage

and wider dynamic range. While ChIP-Seq enables probing of DNA-protein inter-

action over the entire genome, it requires the use of sophisticated tools to recognize

hidden patterns and extract meaningful data. Over the years, various attempts have

resulted in several algorithms making use of different heuristics to accurately deter-

mine individual peaks corresponding to unique DNA-protein binding sites. However,

finding all the binding sites with high accuracy in a reasonable time is still a challenge.

In this work, we propose the use of Multi-level thresholding algorithm, which we

call LinMLTBS, used to identify the enriched regions on ChIP-Seq data. Although

various suboptimal heuristics have been proposed for multi-level thresholding, we em-

phasize on the use of an algorithm capable of obtaining an optimal solution, while

maintaining linear-time complexity. Testing various algorithm on various ENCODE

project datasets shows that our approach attains higher accuracy relative to previ-

ously proposed peak finders while retaining a reasonable processing speed.
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CHAPTER 1

Introduction

1.1 Introduction to Molecular Biology

Modern molecular biology is built upon the understanding of the structure and func-

tion of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and the enzymes

and proteins that interact with these structures. The structure of DNA, shown in

Figure 1.1.1 [31], is the foundation upon which the Central Dogma of modern molec-

ular biology is based. It contains the information necessary to code for the RNA and

proteins used by a cell. RNA has a similar structure to DNA, but consists of only one

strand and does not form a helix structure like DNA. It also has nucleotides which

consist of a sugar, phosphate, and a base. The sugar, however, is a ribose instead

of deoxyribose and hence the name RNA. Also, DNA base Thymine (T) is replaced

with Uracil (U) in RNA. The structure of DNA is depicted in Figure 1.1.1 [31]

Fig. 1.1.1: Structure of DNA.
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1. INTRODUCTION

With the help of specific proteins and enzymes, a copy of the DNA is made through

a process known as DNA replication. This provides the genetic information necessary

for the future generation. Through the process of transcription, DNA is transcribed

into RNA. The messenger RNA (mRNA) molecules contain the code for necessary

for building of proteins. The process of creation of proteins by reading the RNA

sequence is known as translation. Combining all of these roles together Figure 1.1.2

[31] depicts the Central Dogma of modern molecular biology [15, 2].

Fig. 1.1.2: Central Dogma of modern molecular biology.
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1. INTRODUCTION

1.2 Gene Expression

A gene, physically, is a sequence of DNA that codes for an RNA (mRNA, tRNA, or

rRNA) and the mRNA codes for a protein. Proteins dictate cell functions. Therefore,

the thousands of genes expressed in a particular cell determine what that cell can do.

It is worth noting that protein production starts at transcription (DNA to RNA) and

continues with translation (RNA to protein). Thus, control of these processes plays a

critical role in determining which proteins are present in a cell and in which amounts.

In addition, the way in which a cell processes its RNA transcripts and newly made

proteins also greatly influences protein levels.

To control the expression of genes, a larger number of regulatory proteins are

involved. These proteins interact with specify binding sites on the DNA sequence and

depending on the nature of the protein, they may inhibit or assist the expression of

the gene. The regulatory binding sites may be located quite far from protein binding

sites. Thus, to understand many biological processes and disease states, study of the

DNA-Protein interactions is a very crucial step. Studies of gene expression employ

a wide variety of molecular biology techniques and experimental methods. Gene

expression analysis studies can be broadly divided into four areas: RNA expression,

promoter analysis, protein expression, and post-translational modification.

1.3 Next Generation Sequencing & ChIP-Seq

Over the past few decades, DNA sequencing methodology has evolved rapidly. Sanger

dideoxy synthesis [30] and Maxam-Gilbert chemical cleavage [23] are founding meth-

ods in DNA sequencing. Latest Sanger sequencing instruments, making use of capillary-

based automated electrophoresis, can analyze 8–96 sequencing reactions simultane-

ously. On the other hand, modern-day Next Generation Sequencing (NGS), intro-

duced in the past decade [22], allow parallel sequencing reactions on a much larger

scale. These systems have the capability of analyzing millions or even billions of

sequencing reactions in parallel at the same time. Out of all NGS technologies,

3



1. INTRODUCTION

ChIP-Seq is by far the most popular.

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-

Seq) is a gene expression analysis tool that can be categorized under the promoter

analysis method [18]. It works on the principle of chromatin immunoprecipitation

(ChIP), where the protein of interest is targeted using a specific antibody. This an-

tibody is special in the sense that it attaches only to the protein of interest. In this

method, the DNA sequences are first treated with antibody specific to the protein of

interest. After this the DNA is fragmented, usually by sonication. Then a precipita-

tion agent is introduced. This results in the precipitation of the DNA fragments to

which the protein of interest binds. All other fragments, not containing the protein of

interest, are filtered out. These fragments undergo a final step of reverse cross-linking

before reading of the sequences. The basic concept of ChIP, first introduced in 1980’s

[17], has been around for a long time and has been used by many other genomic

analysis method, such as ChIP-Pet [16], ChIP-chip [11], and ChIP-exo [28], just to

name a few. Table 1.3.1 shows a comparison between previous ChIP technologies and

ChIP-Seq [27].

Table 1.3.1: Comparison of ChIP-Seq with other technologies.

Features ChIP-Seq Other ChIP technologies

Resolution 1 bp 30-100 bp

Coverage Whole genome limited by sequence on array

Cost $500-1000 per lane $400-800 per array

Required amount of ChIP DNA Low (few nano grams) High (few micro grams)

Dynamic range Not Limited Lower detection limit

Multiplexing Possible Not Possible

Out of all the existing methods for ChIP data analysis, ChIP-Seq has proven to

be to one of the best [27]. It has several advantages such as high resolution, wide cov-

erage of the genome, high signal-to-noise ratio, and large number of localized peaks,

4



1. INTRODUCTION

among many others. Through ChIP-Seq, projects such as ENCODE (ENCyclope-

dia Of DNA Elements) [13], a public research consortium aimed at identifying all

functional elements in the human genome, have been made possible. ChIP-Seq can

take advantage of the next generation sequencing machines such as Illumina NovaSeq

6000 [25], to accurately read millions of short reads generated by the ChIP process.

Once the sequences are read, they are then mapped to the original genome. There

are many tools available for this task such as Tophat2 [32] and STAR [14]. After the

reads are aligned over the reference genome, the data can now be analyzed through

process known as peak calling. Peak calling can help determine the locations on the

DNA sequence at which the protein of interest interacts with. Once these regions of

interest are detected, further analysis can be performed such as finding binding sites,

visualization, motif discovery, and others.

Fig. 1.3.1: Workflow of ChIP-Seq data analysis.
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1. INTRODUCTION

1.4 Problem Statement

ChIP-Seq experiments generate millions of short read, which are then aligned over

the reference genome. As the human genome is around 3 billion bp in length, puta-

tive identification of the protein binding sites is truly a bioinformatic challenge that

requires considerable computational resources [4]. To solve this problem, a computa-

tional technique known as “peak calling” is used. The basic idea behind peak calling

is to read the entire genome with the fragments aligned over it and then identify

regions over which a large number of reads overlap. The overlapping of the reads can

be visualized as peaks, as depicted in Figure 2.1.1. These peaks indicate that a large

number of fragments align over a particular region on the genome and are an evidence

of the presence of a binding site. Over the years, numerous peak finding algorithms

have been developed in order to satisfy the ever growing popularity of ChIP-Seq.

But yet, identification of binding sites (peaks) of varying size with accuracy and in

respectable time is still a challenge.

The problem can be informally stated as follows. Design and implement a peak

calling algorithm that can correctly identify binding sites (peaks) of varying size,

ideally, as quickly as possible. Given that existing methods either trade accuracy

for speed or speed for accuracy, the schemes used to solve this problem should be

maintain a balance between both.

1.5 Motivation

As previously stated, studying the interactions of proteins with DNA to regulate gene

expression is a crucial step towards the understanding of many biological processes.

This correlation between proteins and gene expression can help in identification of

many diseases and even assist in finding a cure for them. Next generation sequenc-

ing, more specifically ChIP-Seq, is an essential tool to achieve this goal as it offers

high resolution, less noise, and great coverage of the genome in comparison with its

counterparts. As ChIP-Seq has been growing in popularity, there is a need to develop

6



1. INTRODUCTION

a peak calling algorithm, one that can maintain a balance between speed and accu-

racy. This tool also needs to be easy to use and understand. Existing methods are

very complicated and require the user to “tweak” the parameters of the algorithm for

optimal results.

In this work, we propose the use of an ultrafast multi-level thresholding algorithm

to find peaks in a histogram, which in turn would find unique binding sites. To achieve

the previously stated goal of speed and accuracy, it is very important that the multi-

level thresholding algorithm used finds nothing but optimal thresholds, in linear-

time complexity. We show that when a linear-time optimal multi-level thresholding

algorithm is coupled with a model that can find the optimal number of peaks while

taking advantage of modern-day multi-core CPU architecture, can outperform the

existing methods for peak calling.

1.6 Multi-level Thresholding

Multi-level thresholding is one of the most widely-used techniques that has many

applications in signal and image processing, including segmentation, classification

and object discrimination. Given the frequencies or probabilities for each bin of a

histogram, the objective of multi-level thresholding is to divide the histogram into a

number of groups (or classes) of continuous bins such that a given criteria is optimized.

This division of the histograms is done by placing thresholds, namely positions, which

determine whether the criteria is optimized or not.

1.6.1 The Thresholding Problem

To understand the thresholding problem, let us consider a histogram H, an ordered

set {1, 2, ..., n − 1, n} and F = {f1, f2, ..., fn} be the frequencies of the histogram.

Here, n is the number if bins in the histogram and the ith value corresponds to the ith

bin having a probability, pi associated with it. The probabilities of H are give by the

set P = {p1, p2, ..., pn}, where pi ≥ 0,
∑n

i=1 pi = 1, and pi = fi/N with N =
∑n

i=1 fi.

Also consider, a threshold set T defined as an ordered set T = {t0, t1, ..., tk, tk+1},

7



1. INTRODUCTION

where 0 = t0 < t1 < ... < tk < tk+1 = n and ti ∈ {0} ∪H.

Thresholding Problem: The problem of multi-level thresholding consists of

finding a threshold set T , in such a way that a function f : Hk × [0, 1]n → IR+

is maximized/minimized. Using this threshold set, H is divided into k + 1 classes:

ζ1 = {1, 2, ..., t1}, ζ2 = {t1 + 1, t1 + 2, ..., t2}, ..., ζk = {tk−1 + 1, tk−1 + 2, ..., tk}, ζk+1 =

{tk + 1, tk + 2, ..., n}.

1.6.2 Thresholding Criteria

Various parametric and non-parametric thresholding criteria have been proposed over

the years, the three most important criteria being as follows [29]:

• Between class variance [26]:

ΨBC(T ) =
k+1∑
j=1

ωjµ
2
j , (1)

where ωj =
tj∑

i=tj−1+1

pi, µj = 1
ωj

tj∑
i=tj−1+1

ipi.

• Entropy-based [19]:

ΨH(T ) =
k+1∑
j=1

Hj, (2)

where Hj = −
tj∑

i=tj−1+1

pi
ωj

log pi
ωj

.

• Minimum error [20]:

ΨME(T ) = 1 + 2
k+1∑
j=1

ωj(log σj + logωj), (3)

where σ2
j =

tj∑
i=tj−1+1

pi(i−µj)2
ωj

.
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1. INTRODUCTION

The selection of the thresholds is based on optimization of the chosen criterion.

Optimal thresholds are the ones that either maximize or minimize the selected cri-

terion. The most straight forward method to ensure that the criteria is optimized is

to carry out an exhaustive search of all subsets of possible threshold positions. This

brute-force approach is usually good for only a few thresholds, say, 4 or 5. However,

as the number of thresholds grow, the computational complexity grows exponentially

with the number of thresholds, stated as O(nk), where n is the number of bins in the

histogram and k is the number of thresholds.

1.6.3 Polynomial-time Algorithm

A dynamic programming algorithm for optimal multi-level thresholding that runs in

quadratic polynomial time, has been proposed earlier and extended to large, sparse

histograms in a subsequent work [29]. Here, the criterion is represented by a function

Φ, which can be decomposed as a sum of terms given by a second function ψ. The

function is defined as follows:

Ψ(T0,m) = Ψ({t0, t1, ..., tm}) ,
m∑
j=1

ψtj−1+1,tj , (4)

where 1 ≤ m ≤ k + 1 and the function ψl,r, where l ≤ r, is a real, positive function

of pl, pl+1, ..., pr, ψl,r : H2 × [0, 1]l−r+1 → IR+ ∪ {0}

Which means that if the optimal solution, Ψ∗(T0,j−1), for T0,j−1 = {t0, t1, ..., tj−1},

is known. Then, the optimal solution, Ψ∗(T0,j), for T0,j, is computed as follows:

Ψ∗(T0,j) =

0 if j = 0

maxmin{tj−1}≥tj−1≥max{tj−1}Ψ∗(T0,j−1) + ψtj−1+1,tj if 1 ≤ j ≤ k + 1

(5)

where

min{tj} =

j if 0 ≤ j ≤ k

n if j = k + 1,

(6)

9



1. INTRODUCTION

Algorithm 1.6.1 Polynomial-time Multi-level Thresholding

Input: Probabilities, P = {p1, p2, ..., pn}, Number of thresholds k
Output: A threshold set, T = {t0, t1, p2, ..., tk, tk+1}
minTj, maxTj ← findThresholdsRanges(k)
Fill columns 1 ro k + 1
C(0, 0)← 0;D(0, 0)← 0
for j ← 1 to k + 1 do

for tj ← minTj(j) to maxTj(j) do
C(tj, j)← 0; psi← ψj,tj
for i← minTj(j − 1) to min{maxTj(j − 1), tj − 1} do

if C(i, j − 1)+psi C(tj, j) then
C(tj, j)← C(i, j − 1) + psi
D(tj, j)← i

end if
psi ← Compute ψi+2,tj from psi, i+ 1 and pi+1

end for
end for

end for
return findThresholds(D)
procedure findThresholdRanges(k: integer)
for j ← 0 to k + 1 do

if j = k + 1 then
minTj(j)← n

else
minTj(j)← j

end if
if j = 0 then

maxTj(j)← 0
else

maxTj(j)← n− k + j − 1
end if

end for
return minTj, maxTj
end procedure
procedure findThresholds(D : table)
T (k + 1)← n
for j ← k downto 0 do
T (j)← D(T (j + 1), j + 1)

end for
return T
end procedure

10



1. INTRODUCTION

and

max{tj} =

0 if j = 0

n− k + j − 1 if 1 ≤ j ≤ k + 1,

(7)

The polynomial-time thresholding algorithm is described in Algorithm 1.6.1. The

algorithm uses tables C & D, whose number of rows is equal to the number of

bins in the histogram, and number of columns is equal to k + 2, where k is the

number of thresholds. The table C(tj, j) contains the optimal solution for T0,j =

{t0, t1, ..., tj},Ψ∗(T0,j), which is found from mintj ≤ tj ≤ maxtj. While the table

D(tj, j), contains the value of tj1 for which Ψ∗(T0, j) is optimal. The algorithm runs

in O(kn2), where n is the number of bins in the histogram and k is the number

of thresholds. This means that the computational cost increases quadratically with

the increase in the length of the histogram. This algorithm is good for medium to

large-sized histograms, but extremely large sized histogram are still a problem. Over

the years various metaheuristic algorithms have been proposed as a solution to the

problem, including those published in [8, 6, 3, 9, 5, 21, 7], just to mention a few,

though they all lead to sub-optimal solutions.

1.7 More Efficient Algorithms

In the previous section, we have mentioend that by making use of dynamic pro-

gramming, it is possible to optimize the thresholding criterion and find the optimal

thresholds with quadratic time complexity, O(kn2). This is not suitable for extremely

large histograms, 3 billion bins incase of human genome [10], as the time needed to

find the optimal thresholds increases quadratically with the number of bins in the

histogram. However, it possible to further reduce the complexity of the thresholding

algorithm by making use of some special properties. Unlike the dynamic program-

ming solution, which is applicable for many criteria, the method introduced here can

only be used if the criterion used satisfy certain properties.
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Table 1.6.1: An example table C,D for an histogram with n bins and k = 4 thresholds.

C,D :
i, j 0 1 2 3 4 5

0 0 x x x x x

1 x x x x x

2 x x x x

3 x x x

4 x x

: x x

: x x

: x x

n-4 x x

n-3 x x x

n-2 x x x x

n-1 x x x x x

n x x x x x

From Table 1.6.1, a few observations can be made. The number of rows corre-

sponds to the number of bins, n, in the histogram and the number of columns depends

on the number of thresholds, k. Each cell, represents the partial sum of the function,

described in Equation (4), up to that particular point on the histogram for given

value of j. At any given value of j, the histogram is divided into j + 1 classes. Also,

at any given value of j, the task of filling in the column is equivalent to the problem

of finding the maxima of each row of a lower-triangular matrix, M . The definition

of this matrix, hereby known as the search matrix, can be derived from Equation (4)

and (5) as follows:

M(r, c) =

−∞ if c > r,

Ψ∗j−1(c+ j − 2) + ψ(c+ j − 2, r + j − 1) if c ≤ r,

(8)

where j denotes the stage in the trellis, r the row index and c the column index.

For a normal matrix with no special properties, finding the row-wise maxima in

the lower-triangular region will require calculation of all the elements in that region,

which is exactly the same as filling up one column in the table C of the dynamic

programming algorithm.

12
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However, depending on the criterion used, the resulting matrix can satisfy certain

properties that makes it possible to find the row-wise maxima without calculating all

elements, which as a result, reduces the overall time complexity of the algorithm.

Let us assume that for a certain criterion, the resulting function ψl,r, satisfies the

following property:

ψa,u + ψb,v ≥ ψa,v + ψb,u, (9)

where 1 ≤ a < b < u < b ≤ n

This property is known as convex quadrangle inequality. If the criterion used

satisfies this property and we take four elements from the lower region of the resulting

matrix M such that 1 ≤ r1 < r2 ≤ n− k + 1 and 1 ≤ c1 < c2 ≤ r1, here r and c are

the rows and columns respectively. From Equation (8) and (9) it can be seen that:

M(r1, c1) +M(r2, c2) ≥M(r1, c2) +M(r2, c1) . (10)

This would indicate thatM lower triangular inverse Monge matrix. Monge matries

have certain properties that can be exploited to solve optimization problems [12].

The property that we are interested and can take advantage of is the fact that inverse

Monge matrix are always totally monotone.

In the following subsections, two algorithms that take advantage of the inverse

Monge matrix are discussed briefly. The first algorithm exploits the monotonicity of

the matrix. This algorithm has not been used in this work as the other algorithm

exhibits a better performance. The second algorithm requires a totally monotone

matrix and can achieve linear-time complexity. When working with both algorithms,

it is not necessary to explicitly define the matrix and work with a matrix that is

implicitly defined. This means that the matrix entries are not calculated until accessed

by the algorithm. In fact, if the matrix was pre-calculated, it would be no different

from the dynamic programming approach and would end up with the same quadratic-

time complexity.
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1.7.1 Divide-and-Conquer

The row maxima in a monotone matrix build a staircase like structure, where the

maxima of the current row can appear only in the columns appearing after the column

containing the row maixma of the previous row. By exploiting this fact, the algorithm

maxima of the middle row of the matrix, recursively repeating itself on two sub-

matrices, stopping when there is only one row remaining. This algorithm achieves a

time complexity of O(n logm), where n is the number of rows and m is the number of

columns of the given matrix. The pseudocode of this algorithm is given in Algorithm

1.7.1.

Algorithm 1.7.1 DIVCONQ(M)

[m,n] ← size of M {rows, columns}
j ← position of leftmost maxima in row [m

2
] of M

store the postion of the maxima
if m = 1 then

return
else

if [m
2
6= 1] then

A← submatrix with rows 1 to [m
2

]-1 and columns 1 to j of M
DIVCONQ(A)

end if
B ← submatrix with rows [m

2
]+1 to m and columns j to n of M

DIVCONQ(B)
end if

1.7.2 SMAWK

The SMAWK algorithm [1] was named after its inventors Shor, Moran, Aggarwal,

Wilbe and Klawe. The SMAWK algorithm requires that the search matrix be a

totally monotone matrix and will not work if the matrix is only monotone. Just like

Divide-and-Conquer, it is also a recursive algorithm, but is capable of finding the row-

wise minima or maxima of an m× n matrix in O(n) time, as opposed to O(n logm)

time required by the divide-and-conquer algorithm. A more detailed explanation is

available in [1].
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The pseudocode of the SMAWK algorithm is presented in Chapter 2. For the

sake of clarity, furhter discussions and an example are included in this section. The

algorithm is composed of three functions, viz SMAWK, REDUCE, and MFILL. It

starts with the call of the SMAWK function. The REDUCE function is the central

part of the algorithm as it reduces an m×n matrix to an m×m matrix by removing

n−m columns that do not contain row maxima. This can be done in O(n) time.

4 8 5 6 7 4 6
4 5 𝟔 𝟕 8 4 7
5 7 9 13 17 18 22

4 𝟖 𝟓 6 7 4 6
4 5 6 7 8 4 7
5 7 9 13 17 18 22

𝟒 𝟖 5 6 7 4 6
4 5 6 7 8 4 7
5 7 9 13 17 18 22

4 𝟖 5 6 𝟕 4 6
4 5 6 7 8 4 7
5 7 9 13 17 18 22

4 8 5 6 7 4 6
4 5 6 7 8 4 7
5 7 9 13 17 18 22

4 8 5 6 7 4 6
4 5 6 𝟕 𝟖 4 7
5 7 9 13 17 18 22

4 𝟖 5 𝟔 7 4 6
4 5 6 7 8 4 7
5 7 9 13 17 18 22

4 8 5 6 7 4 6
4 5 6 7 8 4 7
5 7 9 13 17 𝟏𝟖 𝟐𝟐

4 8 5 6 7 4 6
4 5 6 7 𝟖 𝟒 7
5 7 9 13 17 18 22

Fig. 1.7.1: An example of the REDUCE function in action.

An example of the REDUCE process is shown in Figure 1.7.1. The REDUCE

function compares the elements which are highlighted in bold face. Only when the

algorithm compares the elements, these elements are calculated, while the other ele-

ments are never calculated. Positions that are determined to not yield a maximum

are depicted in a gray background. In the example depicted in Figure 1.7.1, we start

with at the first row comparing the first two elements, ’4’ and ’8’. Since ’4’ is smaller

than ’8’, we delete the column of ’4’ as it is guaranteed to not contain the row max-

imum of any of the three rows. When comparing the next two elements, ’8’ and ’5’,

since ’8’ is greater than ’5’, we do not delete the column of ’8’ as it may contain a

row maximum. Then, we move to the next row comparing elements ’6’ and ’7’, and
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since ’6’ is the smallest of the two, we delete its column, as it will not contain any

row maximum. Afterwards, the previously found maximum of the previous row, ’8’,

is compared with the next available element, ’7’. This makes sure that the maximum

of the previous row still remains. The same process is repeated until we reach the

element at the last row and last column of the matrix. This results in the deletion

of four columns of a 3 × 7 matrix, while preserving the row maximum containing

columns.

After the REDUCE function is called, even-numbered rows of the reduced matrix

are selected and the SMAWK function recursively calls itself until the REDUCE

function returns a 1 × 1 matrix containing a row maxima. The MFILL function

finds the maxima in the odd-numbered rows very efficiently, since the position of the

maxima in even-numbered rows is already known. The optimal thresholds can be

found in O(n) by combining the dynamic programming approach and the SMAWK

algorithm. The use of the SMAWK algorithm to achieve linear-time optimal multi-

level thresholding is further explained in Chapter 2.

1.8 Proposed Method

This thesis proposes a new method for detection of binding sites in ChIP-Seq ex-

periments. The proposed method makes use of the concept of optimal multi-level

thresholding to effectively achieve optimal one-dimensional clustering of histograms.

As the data resulting from ChIP-Seq experiments can generate extremely large his-

tograms, in the magnitude of 3 billion bins (base pairs), the use of a quadratic-time

algorithm is not convenient. For this reason the emphasis is on the use of a linear-time

algorithm.

The combination of dynamic programming and the SMAWK algorithm results in

a method linear in the length of the histogram as well as the number of thresholds.

Thus, making fast and optimal thresholding of large histograms a possibility. The use

of cluster validity indices makes sure that not only the positioning of the thresholds

is optimal, but also that the number of thresholds is also optimal. Finally, all of
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these concepts are harmoniously implemented into a self-contained unit, which we

call a sliding-window. The use of multiple concurrent sliding-windows, independent

of each other, results in a framework capable of utilizing modern-day multi-core CPU

architecture to its fullest potential. The performance of this approach is examined us-

ing multiple ChIP-Seq datasets targeting the well-known histone modification protein

H3K27ac. Details of this approach is described in Chapter 2.

Fig. 1.8.1: A block diagram of the proposed method.
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1.8.1 Contributions

The contributions of this thesis can be summarized as follows:

• Proposed a very fast method for the detection of binding sites in data generated

by ChIP-Seq experiments.

• Provided a mechanism to find optimal location as well as optimal number of

thresholds in large histograms in linear-time complexity.

• Envisioned and implemented a mechanism to take advantage of modern-day

multi-core CPU architecture.

• Developed a Python package for the proposed method [24].

• Provided a framework for optimal and fast one-dimensional clustering of discrete

points, which can be extended to real-numbered points in one dimension and

applied to other fields beyond image segmentation and bioinformatics.
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CHAPTER 2

Finding Binding Sites in

ChIP-Seq Data via a Linear-time

Multi-level Thresholding

Algorithm

2.1 Introduction

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq),

first described in 2007 by Johnson et al. [13], is a technique that maps genome-wide

protein-DNA interactions. Determining how the protein-DNA interactions regulate

gene expression, is a crucial step in understanding many biological processes. Using

ChIP-Seq, it is possible to identify unique regions on the genome with which a target

protein interacts with [5].

ChIP-Seq data is extracted by first cross-linking the Chromatin with the target

protein, followed by its fragmentation, usually by sonication. Immunoprecipitation

is then performed on the fragments using an antibody-specific to the target protein,

after which the fragments are filtered such that only the immunoprecipitated frag-

ments are left behind. These fragments, after reverse cross-linking, are sequenced

and aligned to the reference genome. A signal or histogram can be created using

these aligned fragments, where the x-axis represents the genome coordinate and the

y-axis represents the number of unique reads at each genome coordinate. Figure
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2.1.1 shows the process of creating a histogram by aligning the immunoprecipitated

fragments over the reference genome. Each point on the x-axis corresponds to a

nucleotide. Fragments that align over the same region in the reference genome are

stacked over each other. The count of unique matches at each point on the x-axis is

represented by the y-axis.

Fig. 2.1.1: Alignment of the immunoprecipitated fragments over the reference genome
resulting in a continuous signal where the x-axis represents the genome coordinate
and the y-axis corresponds to the number of reads at each coordinate. A small section
is zoomed-in to help visualize the aligned fragments.

From the millions of short reads aligned over the reference genome, putative iden-

tification of the protein binding sites (peaks) is truly a bioinformatic challenge that

requires considerable computational resources [3]. A computational technique known

as Peak Calling is used to solve the aforementioned problem. Numerous peak finding

algorithms have been developed in order to satisfy the ever growing popularity of

ChIP-Seq, though identifying peaks of varying size with accuracy and in respectable

time is still a challenge.
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One such widely used peak finding method is Model-based analysis of ChIP-Seq

(MACS), which analyzes data generated by short read sequencers [36]. Over the

years MACS has become a standard for detection of binding sites in next generation

sequencing. Although MACS can produce results in a respectable time, it is not

guaranteed to find all the peaks in one run, and may require the user to search over

a large set of parameters to obtain optimal results. MACS models the length of the

sequenced ChIP fragments and uses it to improve the spatial resolution of predicted

binding sites. It utilizes a local Poisson model that calculates a λlocal parameter at

each local genomic position. A few other methods that work on a similar principle

are SICER [35], MOSAiCS [18], ZINBA [25], and BCP [33].

In [12], Hocking et al. have proposed the use of a supervised machine learning

algorithm to analyze the ChIP-Seq data and identify the peaks. The main idea is

to have a data set labeled by experts, learn a model thought it and then make peak

predictions on the rest of the genome. The success of this approach heavily relies on

the quality of the labeled data. Manually labeling data is no doubt a labour intensive

task and even the experts may not agree whether a given peak is significant or not and

also on small details such as where a peak starts and ends. Some of the more recent

works make use of machine learning concepts such as recurrent neural networks [32],

adversarial networks [19], and convolutional neural networks [23], though they are

very slow and need extra data to identify relevant peaks, where such data may not

be available. A constrained multi-level thresholding (CMT) is a method that makes

use of multi-level thresholding algorithm to find relevant peaks, proposed in [26, 27].

Here, the problem of peak finding is converted into a problem of finding ”valleys” in a

continuous signal generated by the alignment of fragments over the reference genome.

It makes use of Otsu’s method along with dynamic programming in order to find the

optimal thresholds.

On the other hand, multi-level thresholding is a field that has emerged in the

past decades and has been applied to image segmentation, primarily, among other

domains. Multi-level thresholding is essentially a one-dimensional clustering problem

where the objective, as in any other clustering problem, is to produce clusters in such
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a way that the within-cluster scatter is minimized and the between-cluster distance

is maximized. In multi-level thresholding, a cluster is define as the region between

two thresholds. When the results are visualized, it can be seen that the thresholds

are placed in such a way that they lie at an optimal position in the valleys between

the clusters. The earliest works, such as Otsu et al. [24], Kapur et al. [14], and

Kittler et al. [17], proposed algorithms to find bi-level thresholds. However, for opti-

mal multi-level thresholds, exhaustive search is required which results in exponential

increase of computational complexity with the increase in the number of thresholds.

In [30], an algorithm was proposed for large histograms, which makes use of dynamic

programming to achieve polynomial-time complexity. Large histograms are still a

problem as the computational time increases quadratically with the increase in the

length of the histogram. Over the years various metaheuristic algorithms have been

proposed as a solution to the problem, including those published in [8, 6, 2, 9, 4, 20,

7], just to mention a few, though they all lead to sub-optimal solutions. In [22, 21],

making use of the SMAWK algorithm, a fast, linear-time multi-level approach was

proposed; the SMAWK algorithm was originally proposed by [1]. The result is an

algorithm that runs in linear time in both, the number of thresholds and the length of

the histogram. Multi-level thresholding has also been successfully used in biomedical

fields, including segmentation of biofilm images, obtaining very good results due to

the nature of those images, which are obtained from confocal microscopy [29, 28], and

also in automating the process of gridding microarray images [31].

In this work, we introduce a method based on the SMAWK algorithm, which we

call LinMLTBS, used to identify binding sites in ChIP-Seq experiments. Since existing

methods require the user to finesse with a number of parameters of the method in

order to obtain optimal results, minimizing the number of adjustable parameters while

retaining high accuracy is one of the goals achieved by the proposed method. The

proposed method has been shown to outperformed previous approaches when testing

on six different cell-lines for the H3K27ac histone modification protein. The rest of

the chapter is organized as follows. Section 2.2 discusses the main concepts used for

the proposed method. Section 2.3 includes the datasets used, data pre-processing
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required, procedures followed for testing and comparison, and results obtained.

2.2 Methods

The main goal is to find relevant peaks corresponding to regions of binding sites

for the targeted protein, and, ideally, rank these peaks by relevance. As previously

mentioned, thresholding can be seen as one-dimensional clustering where the peaks are

clusters separated by thresholds placed at optimal positions in the valleys separating

the clusters.

To achieve this objective the SMAWK algorithm is used, which optimizes the

Otsu’s between-class variance criteria. To take advantage of modern-day multi-core

processors, the input data is divided into equally-sized chunks and worked on simul-

taneously by all of the available cores. As Multi-level thresholding is essentially an

unsupervised approach where the optimal number of thresholds or clusters are not

known, the concept of cluster validity indices is used to determine the best number of

thresholds. Each of the aforementioned concepts is further discussed in the following

subsections.

2.2.1 Multi-level Thresholding

Multi-level thresholding is a process originally proposed for segmentation of images.

This method proceeds by setting thresholds such that all pixels of an image, depending

on their intensity value are separated into k + 1 classes, where k is the number

of thresholds. To further understand the underlying concepts, let us consider the

following definitions.

Definition 1 (Histogram): A histogram H is an ordered set {1, 2, ..., n − 1, n},

where the ith value corresponds to the ith bin and has a probability, pi.

Definition 2 (Probabilities): Let F = {f1, f2, ...fn} be the frequencies of the

histogram H. The probabilities of H are given by the set P = {p1, p2, ..., pn} , where

pi ≥ 0,
∑n

i=1 pi = 1, and pi = fi/N with N =
∑n

i=1 fi
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Definition 3 (Threshold set): A threshold set T is defined as an ordered set

T = {t0, t1, ..., tk, tk+1}, where 0 = t0 < t1 < ... < tk < tk+1 = n and ti ∈ {0} ∪H.

For an ordered subset of T , the following notation is used: Ti,j = {ti, ti+1, ..., tj},

where i, j = 0, 1, ..., k, k + 1, i < j, and T = T0,k+1.

Thresholding Problem: The problem of multilevel thresholding consists of

finding a threshold set T , in such a way that a function f : Hk × [0, 1]n → IR+

is maximized/minimized. Using this threshold set, H is divided into k + 1 classes:

ζ1 = {1, 2, ..., t1}, ζ2 = {t1 + 1, t1 + 2, ..., t2}, ..., ζk = {tk−1 + 1, tk−1 + 2, ..., tk}, ζk+1 =

{tk + 1, tk + 2, ..., n}.

The between-class variance criterion aims to maximize the sum of the between-

class variances for each class, as follows:

ΨBC(T ) =
k+1∑
j=1

ωjµ
2
j , (1)

where ωj =
tj∑

i=tj−1+1

pi, µj = 1
ωj

tj∑
i=tj−1+1

ipi.

The selection of the thresholds is based on optimizing the objective function.

Optimal thresholds are the ones that either maximize or minimize the said objective

function. The most straightforward approach is to evaluate the objective function for

every possible combination of thresholds, which is essentially an exhaustive search

with a time complexity that is exponential in the number of thresholds O(nk), where

n is the number of bins in the histogram and k is the number of thresholds.

Using dynamic programming, it is possible to reduce the time complexity to O(n2).

If the objective function meets certain criterion, it is possible to combine dynamic

programming with divide-and-conquer to achieve a time complexity of O(n log n), or

even O(n) when dynamic programming is combined with the SMAWK algorithm.

For the sake of brevity, only SMAWK algorithm and related concepts are further

discussed. A more detailed explanation of the former approaches can be found in [30,

22, 21].

Definition 4 (function Ψ): Let T = {t0, t1, ..., tk, tk+1} be a threshold set, where

k ≥ 1. The function Ψ is defined for all m, where 1 ≤ m ≤ k + 1, as a function
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Ψ : Hm × [0, 1]n → IR+ ∪ {0} as follows:

Ψ(T0,m) = Ψ({t0, t1, ..., tm}) ,
m∑
j=1

ψtj−1+1,tj , (2)

where 1 ≤ m ≤ k + 1, and ψtj−1+1,tj is the class cost of the class ζk.

The optimal solution for multi-level thresholding can be defined as optimal solu-

tions to smaller sub-problems. This can be observed in the decomposition of Ψ(T ) as

the sum of independent terms.

Ψ(T0,m) = Ψ({t0, t1, ..., tm}) + ψtm−1+1,tm (3)

Which means that if the optimal solution for T0,j−1 = {t0, t1, ..., tj−1}, Ψ∗(T0,j−1),

is known. Then, the optimal solution for T0,j,Ψ
∗(T0,j), is computed as follows:

Ψ∗(T0,j) = 
0 if j = 0

maxmin{tj−1}≥tj−1≥max{tj−1}

Ψ∗(T0,j−1) + ψtj−1+1,tj if 1 ≤ j ≤ k + 1

(4)

where

min{tj} =

j if 0 ≤ j ≤ k

n if j = k + 1

(5)

and

max{tj} =

0 if j = 0

n− k + j − 1 if 1 ≤ j ≤ k + 1

(6)

The trellis structure, shown in Figure 2.2.1, helps better understand the task of

finding the thresholds and how the algorithm is implemented. The x-axis represents

the bin number, i, where i = 0, ..., n, while the current stage of the algorithm, m,
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1 2 3 4 5 6 7 8

1

2

3

4

stage, m

start

end

bin number, i

Ψ∗
1(1)Ψ∗

1(2)Ψ∗
1(3)Ψ∗

1(4)Ψ∗
1(5)

Ψ∗
2(2)Ψ∗

2(3)Ψ∗
2(4)Ψ∗

2(5)Ψ∗
2(6)

Ψ∗
3(3)Ψ∗

3(4)Ψ∗
3(5)Ψ∗

3(6)Ψ∗
3(7)

Ψ∗
4(8)

Fig. 2.2.1: An example of a trellis structure corresponding to the steps to identify the
optimal thresholds.

is represented by the y-axis. At stage m, m thresholds divide the interval [1, i] into

m+ 1 classes. At each node, two critical pieces of information are stored, the optimal

partial sum up to that node, and a pointer that points back to the best node to come

from. When the algorithm reaches the end node, the optimal solution is found by

backtracking to the start node.

The problem of finding the optimal paths to all the nodes in one stage of the trellis,

is equivalent to the problem of finding the row-wise maxima of a lower-triangular

matrix [21]. The definition of this matrix, hereby known as the search matrix, can be

derived from Equation (4) as follows:

M(r, c) =


−∞ if c > r,

Ψ∗j−1(c+ j − 2)

+ψ(c+ j − 2, r + j − 1) if c ≤ r

(7)

where j denotes the stage in the trellis, r the row index and c the column index.
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2.2.2 SMAWK Algorithm using Otsu’s Criterion

The SMAWK algorithm [1] is a recursive algorithm capable of finding the row-wise

maxima of an m × n matrix in O(n) time. This is possible only when the matrix

is a totally monotone. The search matrix will be totally monotone if the objective

function satisfies the convex quadrangle inequality, which can be explained as follows.

Assuming that for some objective function, Ψ, the class cost function ψ is of the form:

ψp,q = ωp,q × f(

∑
p<i≤q p(i).γ(i)

ωp,q
) , (8)

where ωp,q is the weight (probability) of the class, f(x) is a convex function in the

interval [γ(1), γ(N)], and function γ(x) is either monotonically increasing or decreas-

ing in the interval [1, N ], then, the class cost function ψ fulfills the convex quadrangle

inequality. The resulting matrix (7) is a totally monotone matrix. The proof of the

above argument can be found in [21].

It has been shown that Otsu’s between-class variance criterion (1), is of the form

given in equation (10). Therefore, it fulfills the quadrangle inequality, which means

that the resulting search matrix is totally monotone and the row-wise minima or

maxima can be found in O(n) using the SMAWK algorithm.

The pseudocode of the SMAWK algorithm is shown in Algorithm 1. The algo-

rithm is composed of three functions, viz SMAWK, REDUCE, and MFILL. It starts

with the call of the SMAWK function. The REDUCE function is the central part of

the algorithm as it reduces an m× n matrix to an m×m matrix by removing n−m

columns that do not contain row maxima. This can be done in O(n) time. The time

complexity of the SMAWK algorithm has been derived in [1]. After the reduction,

even-numbered rows of the reduced matrix are selected and the SMAWK function

recursively calls itself until the REDUCE function returns a 1× 1 matrix containing

a row maxima. The MFILL function finds the maxima in the odd-numbered rows

very efficiently, since the position of the maxima in even-numbered rows is already

known. The optimal thresholds can be found in O(n) by combining the dynamic

programming approach and the SMAWK algorithm.
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Algorithm 2.2.1 SMAWK (M)

A← REDUCE(M)
if size of A is 1× 1 then
A is a maximum in the initial matrix, store position
return

end if
B ← matrix with only even-numbered rows of (A)
SMAWK(B) {recursive call}
MFILL(A,B) {find the maxima in odd rows ofA}
REDUCE(M):
[m,n] ← size of M {rows, columns}
k ← 1
while M has more columns than rows do

if M(k, k) ≥ M(k, k + 1) and k < m then
m← m+ 1

else if M(k, k) ≥ M(k, k + 1) and k = m then
Delete column k + 1 of M

else if M(k, k) < M(k, k + 1) then
Delete column k of M
if k > 1 then
k ← k − 1

end if
end if

end while
MFILL(A,B):
[m,n] ← size of A {rows, columns}
MPOS [2, 4, ..., 2[m/2]] ← position of maxima in even-numbered rows of A
MPOS [0] ← 1; MPOS [m+ 1] ← n
for i← 1 to [m/2] do
r ← 2i− 1
max← −∞
for c = MPOS[r − 1] to MPOS[r + 1] do

if A(r, c) > max then
max← A(r, c)
MPOS[r] = c

end if
end for

end for
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2.2.3 Cluster Validity Indices

The process of multi-level thresholding cannot be fully automated until there is a

way to find the best number of thresholds without any input from the user. Multi-

level thresholding is essentially equivalent to one-dimensional unsupervised clustering

and it too suffers from the same problem faced by many other methods in the same

category. In this context, the problem is to determine the best number of clusters such

that the natural partitions of the clusters in a dataset are represented appropriately.

Clustering algorithms generally require that the number of clusters be determined

before clustering; in this sense, multi-level thresholding is no different.

The solution to this problem is to execute the clustering algorithm several times

with different numbers of clusters, and based on a pre-defined criterion function select

the number of clusters that gives the best results. Cluster Validity Indices are methods

used to determine the goodness of the clustering. They are usually based on an

analysis of variance, where the intra and inter-cluster variability are compared. A

good clustering is expected to possess a small intra-cluster variance and a large inter-

cluster separation at the same time.

In the proposed method, the α(k) index, which is a combination of a simple index,

A(k) and the well-known I(k) index, is used and defined as follows:

α(k) =
√
k
I(k)

A(k)
=

(E1

Ek
×DK)2

√
k
∑k

i=1 p(ti)
, (9)

where Ek =
∑k

i=1

∑ni

k=1 pk‖k− zi‖, Dk =
k

max︸︷︷︸
i,j=1

‖Zi−Zj‖, n is the total number of bins

in the window, k is the number of clusters, Zk is the center of the kth cluster, tI is the

ith threshold found by multi-level thresholding and p(ti) is the corresponding number

of reads in the histogram.

For maximizing I(k) and minimizing A(k), the value of α(k) must be maximized.

Thus, the best number of thresholds k∗ based on the α index is given by:

k∗ = argmax
1≤k≤δ

α(k) = argmax
1≤k≤δ

(E1

Ek
×Dk)

2

√
k
∑k

i=1 p(ti)
, (10)
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where δ is the maximum number of clusters. This parameter needs to be determined

depending on the application. When finding peaks in ChIP-Seq data, δ is determined

based on the number of binding sites, which is specific to the type of protein being

detected.

To find the optimal number of clusters (thresholds), we compute and compare

values of α(k) over all possible numbers of clusters (thresholds) from 2 to
√
n/2,

where n is the size of window. The one with the maximum value of α(k) corresponds

to the best number of clusters (thresholds).

2.2.4 Concurrent Multi-window Approach

The proposed method makes use of a sliding window approach, where a window of

a predetermined size is slid over the entire histogram. The window can be seen as a

self-contained unit, which when applied to a region of the histogram, finds not only

the optimal thresholds but also the optimal number of thresholds for that region

of the histogram. The window is initially set to the start of the histogram, always

maintaining the predetermined size. For the window at each position multi-level

thresholding is applied, using the SMAWK algorithm for maximizing the objective

function Ψ defined in Equation (1) to find a set of thresholds Tk, where k is the number

of thresholds. To find the best number of thresholds, the concept of cluster validity

index is used, by optimizing the formula of Equation (9). Once the optimal thresholds

are determined, the peaks along with other relevant information are recorded. The

window then slides forward in such a way that its start coincides with the position of

the optimal threshold learned in the previous window. The entire process is repeated

until the entire histogram has been scanned.

The proposed method also takes advantage of the modern-day multicore CPU

architectures by deploying multiple windows that simultaneously and independently

process different parts of the histogram. This is made possible by assigning each

window a dedicated core from the CPU. Depending on the number of CPU cores

available, the entire histogram is divided into equal length fragments, and each frag-

ment is processed by a sliding window. A dataset containing the aligned fragments
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from the ChIP-Seq experiment, organized as a set of 23 chromosomes, along with the

window-size is given as input. The detected peaks are the output. The pseudocode

of the entire process is shown in Algorithm 2.

2.3 Results and Discussion

For the evaluation and comparison of the proposed method, tests were run on six dif-

ferent datasets obtained from ChIP-Seq experiments. The datasets used are publicly

available on ENCODE portal, maintained by ENCODE Project Consortium [11] and

can be downloaded as discussed in the following subsection. The results obtained by

LinMLTBS are compared against MACS2 and CMT. Comparison is made in terms

of speed with which the results are obtained, number of unique binding-sites found,

and the biological significance of the discovered binding sites.

In Section 2.3.1, we describe the dataset used, reason for choosing this dataset,

where and how the dataset can be obtained so that the results shown can be repli-

cated, and pre-processing done on the dataset. Section 2.3.2 describes the testing

environment, parameters used, the output obtained and the process used for biolog-

ical validation. Finally, the results obtained by different methods are described and

compared in Section 2.3.3.

2.3.1 Datasets

Histones are proteins with long chains of DNA molecules tightly wrapped around

them, in order to contain approximately 1.8 metres of DNA in the nucleus of each

cell in our bodies. These basic proteins (H2A, H2B, H3, and H4) not only provide

structural support, but also play an important role in controlling the activities of

the genes. Modifications to these proteins, a process also known as histone modifi-

cation, can impact the gene expression by altering chromatin structure or recruiting

histone modifiers, thus, the need to study them and predict the correlation between

histone modification and gene expression. From the many known histone modifica-

tions, H3K27ac is one of the most studied case of histone modification. It is the
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Algorithm 2.2.2 Concurrent Multi-window

Input: Dataset, windowSize Output: Detected Peaks

for Chr ∈ DATASET do
H ← createHistogram(Chr) {Chr is a chromosome}
Nc ← no. of available CPUs
L← length of Chr
FL← L/Nc {Fragment Length}
HF = {H1, ..., HNc} ← DIV H into Nc equal fragments of length FL
W ← windowSize
for all fragments ∈ HF do in parallel

while start of window < end of fragment do
if slidingWindow not yet created then
start← start of fragment

else
start← location of last threshold

end if
end← start+W
slidingWindow ← makeWindow(start, end)
kbest ← 0 {best number of thresholds}
valScorebest ← 0 {cluster validity score of best k}
Tbest ←= {} {best thresholds found so far}
for k ← 2 to

√
FL/2 do

Tk ← multilevelThresholding(k,W )
valScorek ← clusterValidity(Tk, k)
{assign validity score using Eq. 9}
if valScorek > valScorebest then
valScorebest ← valScorek
kbest ← k; Tbest ← Tk

end if
end for
Peaks← Tbest, peakLen(Tbest), peakV ol(Tbest)
{Store peak position, length & volume}

end while
end for

end for
procedure multilevelThresholding(k,W : integer)
trellis← empty trellis {with k stages and W bins}
M ← empty W ×W matrix
for stage : i← 1 to k do
M ← fill search matrix according to objective func. Ψ
{Ψ defined in Eq. 1, M defined in Eq. 7}
rowMAX ← SMAWK(M)
trellis← fill stage i with rowMAX

end for
T ← backTrack(trellis); return T
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modification of the H3 histone protein, more specifically, the acetylation of the H3

histone at the 27th lysine residue. This specific modification is associated with gene

activation.

ChIP-Seq has proven to be a robust and comprehensive technique for genome-

wide studies of histone modification. For testing the proposed method, datasets of

ChIP-Seq experiments performed on six different cell lines using antibody target-

ing the H3K27ac protein have been used. The cell lines and their respective ac-

cession number are depicted in 2.3.1. These datasets can be downloaded from the

ENCODE Portal [15]. For the purpose of peak annotation, the Bioconductor package

TxDb.Hsapiens.UCSC.hg19.knowngene version 3.2.2 [10], which contains the genomic

features of the entire human genome, generated from the UCSC database [16], has

been used.

Cell line ENCODE Accession no. GEO Accession no.

GM12878 ENCSR000AKC GEO:GSM733771

HSMM ENCSR000ANF GEO:GSM733755

HUVEC ENCSR000ALB GEO:GSM733691

K562 ENCSR000AKP GEO:GSM733656

NHEK ENCSR000ALK GEO:GSM733674

NHLF ENCSR000AMR GEO:GSM733646

Table 2.3.1: Accession no. & cell line for ChIP-Seq experiments targeting the
H3K27ac histone modification.

2.3.2 Testing and Biological Validation

Tests were run on all three methods, LinMLTBS, CMT and MACS2, using the same

procedure and datasets on a system that includes a Xenon 12 core processor and 32

Gigabytes of RAM. For all methods, default parameters were used throughout the

test. For LinMLTBS, the only adjustable parameter is the size of the sliding window;

the default size of the window is 10,000 bp. The number of CPU cores available
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are automatically detected and the maximum number of cores are used by default.

However, the user may choose to limit the number of cores used.

The output from all three methods is in the form of a list containing the detected

peaks, the genomic coordinates of the peaks, and a score for each peak, based on

some criteria to rank the peaks. LinMLTBS, along with the genomic coordinates of

the detected peaks, provides the volume of each peak. The peaks were ranked based

on volume.

The detected peaks are biologically validated by a process known as peak annota-

tion. For this ChIPseeker [34], an R/Bioconductor package for ChIP peak annotation,

comparison and visualization, has been used. Based on the distance from the peak to

the Transcriptional Start Site (TSS) of the nearest known gene, ChIPseeker assigns a

genomic annotation such as Promoter, 5’ UTR, 3’ UTR, Exon, Intron, Downstream,

or Intergenic to the peak.

2.3.3 Comparison with Other Methods

Since both LinMLTBS and CMT work using the same underlying principle, optimal

multi-level thresholding, they produce similar results in terms of the of the peaks

detected. However, they differ in the speed with which they produce the results.

This is due to the difference in time complexity of the thresholding algorithms used.

CMT uses a dynamic programming approach for its thresholding algorithm, which

results in a time complexity of O(n2), where n is the number of bins in the histogram

(or the number of base pairs in the genome). This means that the execution time

increases quadratically with the increase in the length of the histogram. This is not a

big problem for thresholding of images, where the total number of pixels is usually in

the range of 10-20 million. However, with a count of 3 billion base pairs in the case of

the human genome, the use of a quadratic-time algorithm becomes very inconvenient.

LinMLTBS on the other hand, due to the combination of dynamic programming and

the SMAWK algorithm, is able to achieve linear time complexity, namely O(n), for

its thresholding algorithm. Even though the difference in time complexities says it

all, to further contextualize the difference in performance, both the methods were run
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on the same dataset using the same computational environment. CMT took about

120 minutes to produce its results, whereas LinMLTBS took only 20 minutes. Figure

2.3.1 shows yet another experiment performed to visualize the performance difference

between quadratic and linear-time algorithms. Here, the log-log plots depict the

execution time for both methods over a range of the input sizes. The times account

of processing a single window. The trend in the plots show that LinMLTBS is able

to process a window in a fraction of a second, while finding the optimal number of

seconds. In contrast, the quadratic time algorithm takes thousands of seconds for a

similar window size. As observed in the plot the different will grow asymptotical with

the size of the window.
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Fig. 2.3.1: Log-log graph of window size vs CPU time for quadratic and linear time
algorithms.

Comparing LinMLTBS and MACS2, Table 2.3.2 shows the number of peaks de-

tected by each method for each of the six ChIP-Seq datasets used. It can be seen that

LinMLTBS detects significantly higher number of peaks compared to MACS2. Even

when only the top 1% of the peaks (ranked by volume) detected by LinMLTBS are

taken into consideration, in 4 of 6 cases, LinMLTBS still has higher number of peaks.
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Owing to the large disparity in the number of peaks detected, it was decided that a

similar number of peaks from both methods should be considered for further testing.

After weighing a few options, it was determined that, the number of ranked peaks

taken from LinMLTBS should be equal to 1.5 times the number of peaks detected by

MACS2. This makes it a fair comparison against MACS2 while not forgetting the

fact that LinMLTBS detected a larger number of peaks.

Table 3 shows the results of the annotation of all the peaks detected by MACS2

and the top ranked peaks detected by LinMLTBS, where the number of peaks selected

from LinMLTBS is 1.5 times the number of peaks detected by MACS2. For annotation

of the peaks, ChIPseeker with default parameters was used [34]. It can be seen that

LinMLTBS exhibits better performance in all but a few cases. From the annotation

results, it can be further derived that LinMLTBS not only detects a higher percentage

of biologically significant regions such as Promoters, 5’ UTR, 3’ UTR, and Exons, but

also manages to capture a lesser percentage of Introns and Intergenic regions, which

have little to no biological significance. Out of the regions detected by LinMLTBS an

average of 11% of them are promoters, 0.7% 5’ UTR, 2.3% 3’ UTR, and 6.5% exons.

In contrast, in case of MACS2, 9% are promoters, 0.09% 5’ UTR, 1.2% 3’ UTR, and

1.6% are exons.

Table 2.3.2: Number of peaks detected by LinMLBTS and MACS2.

Cell line MACS2 LinMLTBS LinMLTBS Top1% LinMLTBS 1.5X LinMLTBS 2X

GM12878 40,100 10,867,950 108,679 60,150 80,200

HSMM 60,650 8,226,860 82,268 90,975 121,300

HUVEC 57,453 4,164,444 41,644 86,179 114,906

K562 35,123 6,479,268 64,792 52,684 70,246

NHEK 61,878 4,323,250 43,232 92,817 123,756

NHLF 40,821 4,210,062 42,100 61,231 81,642
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[29] Daŕıo Rojas et al. “Biofilm Image Segmentation Using Optimal Multi-level

Thresholding”. In: International Conference on Bioinformatics and Biomedicine

(Nov. 2009). doi: 10.1109/bibm.2009.69.

[30] Luis Rueda. “An Efficient Algorithm for Optimal Multilevel Thresholding of

Irregularly Sampled Histograms”. In: Proceedings of the 2008 Joint IAPR In-

ternational Workshop on Structural, Syntactic, and Statistical Pattern Recog-

nition. SSPR amp; SPR ’08. Orlando, Florida: Springer-Verlag, 2008, pp. 602–

611. isbn: 9783540896883. doi: 10.1007/978- 3- 540- 89689- 0_64. url:

https://doi.org/10.1007/978-3-540-89689-0_64.

[31] Luis Rueda et al. “A fully automatic gridding method for cDNA microarray

images”. In: BMC Bioinformatics 12 (Apr. 2011). doi: 10.1186/1471-2105-

12-113.

[32] Zhen Shen et al. “Recurrent Neural Network for Predicting Transcription Factor

Binding Sites”. In: Scientific Reports 8 (Oct. 2018). doi: 10.1038/s41598-018-

33321-1.

[33] Haipeng Xing et al. “Genome-Wide Localization of Protein-DNA Binding and

Histone Modification by a Bayesian Change-Point Method with ChIP-seq Data”.

In: PLoS Computational Biology 8 (July 2012). Ed. by Ilya Ioshikhes, e1002613.

doi: 10.1371/journal.pcbi.1002613.

[34] Guangchuang Yu et al. “ChIPseeker: an R/Bioconductor package for ChIP peak

annotation, comparison and visualization”. In: Bioinformatics 31 (Mar. 2015),

pp. 2382–2383. doi: 10.1093/bioinformatics/btv145.

45



2. BINDING-SITES IN CHIP-SEQ VIA LINMLTBS

[35] Chongzhi Zang et al. “A clustering approach for identification of enriched do-

mains from histone modification ChIP-Seq data”. In: Bioinformatics 25 (June

2009), pp. 1952–1958. doi: 10.1093/bioinformatics/btp340.

[36] Yong Zhang et al. “Model-based Analysis of ChIP-Seq (MACS)”. In: Genome

Biology 9 (2008), R137. doi: 10.1186/gb-2008-9-9-r137.

46



CHAPTER 3

Conclusion and Future Work

3.1 Conclusion

We have proposed a method that introduces the use of a linear-time multi-level thresh-

olding algorithm to identify relevant peaks corresponding to binding sites in ChIP-Seq

data. The SMAWK algorithm paired with the use of indices of validity for clustering

ensure that not only the thresholds obtained are optimal in the between-class sense,

but also that the number of thresholds is also optimized. The use of the concurrent

multi-window approach makes sure that a modern-day multi-core CPU architecture

is used to it fullest potential.

When compared to CMT, the proposed method promises similar results in one

sixth of the execution time. The proposed framework has been applied on a dataset

of the well-known histone modification protein H3K27ac. Running tests on six

randomly-chosen cell types shows that LinMLTBS outperforms MACS2. LinMLTBS

has detected more regions of promoters, 5’ UTR, 3’ UTR and exons, while detecting

less introns and intergenic regions.

3.1.1 Contributions

The contributions of this thesis can be summarized as follows:

• Proposed a very fast method for the detection of binding sites in data generated

by ChIP-Seq experiments.

• Provided a mechanism to find optimal location as well as optimal number of
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thresholds in large histograms in linear-time complexity.

• Envisioned and implemented a mechanism to take advantage of modern-day

multi-core CPU architecture.

• Developed a Python package for the proposed method [3].

• Provided a framework for optimal and fast one-dimensional clustering of discrete

points, which can be extended to real-numbered points in one dimension and

applied to other fields beyond image segmentation and bioinformatics.

3.2 Future Work

This work can be further extended as follows:

• Improving the performance of the proposed method through the use of a differ-

ent objective function. As the objective function is at the core of the proposed

method, a more efficient objective function may improve the performance. A

number of different objective functions can be studied to find the most cost

efficient function. In [2], it is suggested that the use of Kittler’s criterion [1]

may have certain advantages.

• The proposed method relies upon the use of cluster validity indices for optimal

number of thresholds. A more efficient clustering validity index that does not

require the testing of all possibilities, is yet another avenue for improvement.

• This method can also be extended to the use of other next generation sequencing

(NGS) and high throughput sequencing (HTS) technologies, such as RNA-Seq

to identify transcriptomic features, Ribo-seq to determine which mRNA tran-

scripts are actively being translated, among many others.
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