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Abstract

In this paper, we consider a task which has a completion time T (if not inter-

rupted), which is a random variable with probability density function (pdf) fptq,
t ¡ 0. Before it is complete, the task may be interrupted by a Poisson process

with rate λ. If that happens, then the task must begin again, with the same com-

pletion time random variable T , but with a potentially di�erent realization. These

interruptions can reoccur, until eventually the task is �nished, with a total time

of W . In this paper, we will �nd the Laplace Transform of W in several special

cases.
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CHAPTER 1

Introduction

1.1. Motivation of Research

The purpose of this major paper is to provide an extension of the applications

that the Laplace transform brings to the discipline of probability and statistics,

particularly in applications of queueing theory (i.e., waiting times, busy periods,

etc.). Over the last 70-80 years, researchers have provided us with �ndings in

regards to the intersection of probability theory and the Laplace transform.

The following is taken from Yan (2013).

"Van Dantzig (1949) introduced catastrophes and used probabilities as a method

for �nding Laplace transforms. Runnenberg (1965) revived and popularized the

method, and gave numerous applications. Rade (1972) continued the use of the

method with applications in queueing. Kleinrock's (1975) classic book discussed

the method and extended its popularity. Roy (1997) used the method to give a

probabilistic interpretation of the expression for the Laplace transforms of the busy

period of an M/G/1 queue, and Horn (1999) used the probabilistic interpretation

to �nd distributions of order statistics of Erlang random variables".

This paper will give reason to utilize the Laplace transform to solve for the

total completion time for a task that is facing an interruption that is interrupted

by a Poisson process using a variety of univariate distributions, and to determine

notable properties within each case.
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1.2. Probability Functions of Random Variables

Definition 1.1. LetX be distributed as a gamma random variable (Gamma �
pα, βq) with parameter α ¡ 0, β ¡ 0. Then, the probability density function (pdf)

of X is de�ned by:

fpxq �

$''&
''%

1
Γpαqβαx

α�1e
�x
β if x ¡ 0

0 otherwise

Definition 1.2. Let X be distributed as an exponential random variable with

parameter λ ¡ 0. Then, the probability density function (pdf) of X is de�ned by:

fpxq �

$''&
''%
λe�λx if x ¡ 0

0 otherwise

Note that the exponential distribution is a special case of the Gamma distri-

bution where α � 1 and β � 1
λ
. The exponential distribution plays a signi�cant

role in the applications of queueing theory and is important in providing a prob-

abilistic interpretation of the Laplace transform, which will be illustrated later in

this chapter.

The corresponding cumulative distribution function (cdf) for an exponentially

distributed random variable is

F pxq � 1 � e�λx, x ¥ 0, λ ¥ 0

The following is taken from Roy (1997).

�Another important property of the exponential distribution is that it is �mem-

oryless�. An interpretation of the memoryless property is that the distribution of

2



the time until the next event from a memoryless process is the same regardless of

the time that an observer has already waited for the event to occur�.

Property 1.3. If Y is an exponential random variable, it is memoryless if

P pY ¡ s� t|Y ¡ sq � P pY ¡ tq

Proof. Using the de�nition of conditional probability, we get

P pY ¡ s� t|Y ¡ sq � P pY ¡ s� tq
P pY ¡ sq

� eλps�tq

eλs

� e�λt

� P pY ¡ tq

�

Definition 1.4. Let X be distributed as a Poisson random variable with

parameter λ ¡ 0. Then, the probability mass function (pmf) of X is de�ned by:

fpxq �

$''&
''%

λxe�λ

x!
if x ¡ 0

0 otherwise

Using the above pdf's and pmf's, we can note an important result regarding

the relationship between the Poisson process and exponential distributions.

Property 1.5. The time between events is T � exppλq for a Poisson Process

- that is Nptq � Poissonpλtq on the interval p0, tq
3



Proof.

FT ptq � P pT ¤ tq

� 1 � P pT ¥ tq

� 1 � P pNptq � 0q

� 1 � pλtq0e�λt
0!

� 1 � e�λt

Using De�nition 1.2, note that this is the corresponding cumulative distribution

function of an exponential random variable. Therefore, T � exppλq. �

1.3. The Laplace Transform

This section de�nes the Laplace transforms, and their link to probability theory,

particularly in queueing models. In addition, some important results derived from

the probabilistic interpretation of the Laplace transform will be discussed.

The following description of Laplace transforms is taken from Roy (1997).

�The Laplace transform is an often-used integral transform that is employed

in many diverse �elds of mathematics. It is particularly well known for its use

in solving linear di�erential equations with constants coe�cients. The study of

stochastic processes also utilizes Laplace transform in areas such as risk theory,

renewal theory and queueing theory�.

Definition 1.6. Let fpxq be the pdf of a continuous random variable with

positive support. Then, the Laplace Transform is de�ned by

Lxpsq �
» 8

0

e�sxfpxqdx
4



where s ¡ 0.

It is important to note that the pdf must have positive support as the Laplace

transform will always converge with these conditions. Otherwise, the Laplace

transform may diverge and give us no probabilistic interpretations for a given

random variable.

From inspection, the integral for the Laplace transform as de�ned in De�nition

1.5 is just the continuous case of a moment generating function, evaluated at

t � �s.

Property 1.7. Let X be a random variable with positive support. Further,

assume that the �rst two moments of X exist. Then,

EpXq � �L1p0q

EpX2q � L2p0q

The proof of this follows the fact that Lpsq �Mxp�tq as described above.

Many of the important results derived from the Laplace transform take place

when investigating the properties of two random variables, X and Y , and when one

(or both) of these variables are distributed exponentially. First, we should recall

the probability of two random variables in the continuous and discrete cases.

Theorem 1.3.1. The following theorem is taken from Roy (1997). Let X be a

random variable. Further, let Y be exponentially distributed with rate s, where X

and Y independent random variables. Let fpxq and gpyq be the probability density

functions of X and Y respectively with positive support. Then,

P pX   Y q � Lxpsq
5



Proof.

Lxpsq �
» 8

0

fpxqe�sxdx

�
» 8

0

» 8
x

fpxqse�sydydx

�
» 8

0

» 8
x

fpxqgpyqdydx

� P pX   Y q

�

The fact above is a milestone in queuing applications, particularly in waiting

time, for two random variables X and Y .

The following is taken from Jahan (2008).

�The exponential random variable Y is called the catastrophe. The Laplace

transform of a random variable X is the probability that X occurs before the

catastrophe. More precisely, the Laplace transform of a probability density func-

tion fpxq of a random variable X can be interpreted as the probability that X

precedes a catastrophe where the time to the catastrophe is an exponentially dis-

tributed random variable Y with rate s, independent of X. Another way of de-

scribing the process is in terms of a race. The Laplace transform of a random

variable X is the probability that X wins a race against an exponential oppo-

nent (i.e., catastrophe) Y .� It is worth noting that since the time until the next

catastrophe is exponential, the catastrophe process is Poisson and memoryless.

The following two properties are well known.

6



Property 1.8. If X � exppλq and Y � exppsq, and X and Y are independent

random variables, then:

Lxpsq � P pX   Y q � P pXoccursfirstq � λ

λ� s

Proof.

P pX   Y q �
» 8

0

» 8
x

λe�λxse�sydydx

�
» 8

0

�λe�pλ�sqxdx

� λ

λ� s

�

Property 1.9. If X � exppλ1q and Y � exppλ2q, where X and Y are inde-

pendent, then Z � minpX, Y q � exppλ1 � λ2q.

Proof.

Fzpzq � P pZ ¤ zq

� P pminpX, Y q ¤ zq

� 1 � P pminpX, Y q ¡ zq

� 1 � P pX ¡ z, Y ¡ zq

� 1 � P pX ¡ zqP pY ¡ zq

� 1 � e�λ1ze�λ2z

� 1 � e�pλ1�λ2qz

7



The above result is the corresponding cumulative distribution function for an

exponential random variable Z with the rate λ1�λ2. Therefore, the desired result

is trivial.

�

8



CHAPTER 2

Statement of Problem

2.1. Statement of Problem

In this paper, we consider a task which has a completion time T (if not inter-

rupted), which is a random variable with probability density function (pdf) fptq,
t ¡ 0. Before it is complete, the task may be interrupted by a Poisson process

with rate λ. If that happens, then the task must begin again, with the same com-

pletion time random variable T , but with a potentially di�erent realization. These

interruptions can reoccur, until eventually the task is �nished, with a total time

of W . In this paper, we will �nd the Laplace Transform of W in general and in

several special cases.

In practical terms, let us consider a pedestrian attempting to cross a road, with

tra�c coming at some rate. If there is no tra�c, then the pedestrian will walk

uninterrupted and will complete crossing the road after some time. If tra�c is

present, then the task can only be completed if the pedestrian crosses walks in a

su�ciently large gap in the tra�c. Of course, in reality, the pedestrian will not

cross if the gap is too short as the pedestrian would be hit. We could pretend

that if the pedestrian gets hit by the tra�c, the pedestrian bounces up and jumps

back to the side of the road. For our purposes, we assume that the task must start

over by the pedestrian starting back on the one side of the road. Further, in order

to derive our result, we assume there is also some catastrophe at rate s which

prevents the task from ever being completed. In this case, an example might be if

the road is permanently closed and it is impossible for the road to be crossed.

9



Another example assumes a diver wants to reach a certain depth in the ocean.

However, there is a phone that rings randomly above sea level and the diver must

surface and pick it up every time it rings. Then, the diver would have to start

over to achieve the goal of reaching a certain depth in the ocean. The catastrophe

in this case could mean that an emergency occurs and if that happens before the

completion of the task, the diver never completes the task.

Another example is a person adding a list of numbers mentally. If interrupted,

the person must begin the addition all over again. We are interested in the distri-

bution of the total time to complete the task.

In all cases, there is two possible scenarios that may occur during the task. The

task can either be interrupted, or not interrupted. In the case that the task is not

interrupted, then any interruption (or catastrophe) will occur after the time it takes

to complete the task. In the case that an interruption occurs, then that implies

that the interruption (or catastrophe) occurred before the task was completed.

However, in order for the task to eventually be completed, the interruption must

come before the catastrophe. Then, given the above scenarios, we assume that the

task must start over. By combining these two cases, the problem of �nding the total

time until task completion will be studied in this paper, and we will derive explicit

formulas for task completion times assuming various statistical distributions.

2.2. General Theorem

Suppose we want to complete a task where a Poisson process may cause an

interruption in the task's progression, and then the task must start over. Then,

using Property 1.5, we can assume that the time until an interruption occurs is

exponentially distributed with rate λ.

10



Let T be the time to complete the task without interruption. LetW be the total

time to complete the task including interruptions. Formally, we have a sequence

of independent Ti, i � 1, 2, . . . . Let Ui be a sequence of independent times until

the next interruption. Let Vi � mintTi, Uiu. Then W � °N
i�1 Vi where N is a

geometric random variable with probability of success equal to P pT   Uq. The goal
is to �nd an explicit formula for the Laplace Transform for the random variableW ,

with the corresponding probability density function gpwq. The following theorem

is new.

Theorem 2.2.1. Let fptq be a probability density function for some continu-

ous random variable T , which is the time to complete the task uninterrupted, with

positive support on ra, bs, for 0 ¤ a ¤ b.. Further, assume an interruption Poisson

process of rate λ. Let W be the total time to complete the task, including interrup-

tions. Then, the Laplace Transform for any the total completion time W is given

by

Lwpsq �
³b
a
e�pλ�sqtfptqdt

1 � λ
λ�s

³b
a
p1 � e�pλ�sqtqfptqdt

where 0 ¤ a ¤ b ¤ 8.

Proof. Assume that there exists a catastrophe random variable Y , which is

an exponential random variable with rate s. Then, using Property 1.9, the rate of

the Poisson process interruption coupled with the catastrophe will occur at a total

rate of λ�s, assuming these events occur independently. Intuitively, we start with

the following:

LW psq �
³b
a
fptq P(Poisson and catastrophe are later than t)dt+³b

a
fptq P(Poisson and catastrophe are early)P(Poisson beats catastrophe)LW psqdt

11



If the task beats the Poisson process interruption and the catastrophe, then

we only need the �rst integrand. The probability of this event is e�pλ�sqt, which

is found using Property 1.9. However, we also have the possibility of either the

Poisson interruption or the catastrophe coming before the task completes, which

has a probability 1�e�pλ�sqt, and the Poisson process interruption occurs before the
catastrophe, which has a probability of λ

λ�s also found using Property 1.9. Then,

we must multiply this integrand by the Laplace Transform, LW psq, as we must

restart the task over again when an interruption occurs based on the memoryless

property of exponential random variables.

Solving for LW psq, we get:

LW psq �
» b
a

e�pλ�sqtfptqdt�
» b
a

p1 � e�pλ�sqtq λ

λ� s
fptqLwpsqdt

� LW psq �
» b
a

p1 � e�pλ�sqtq λ

λ� s
fptqLwpsqdt �

» b
a

e�pλ�sqtfptqdt

� LW psqp1 �
» b
a

p1 � e�pλ�sqtq λ

λ� s
fptqdtq �

» b
a

e�pλ�sqtfptqdt

� LW psq �
³b
a
e�pλ�sqtfptqdt

1 � λ
λ�s

³b
a
p1 � e�pλ�sqtqfptqdt

And the result is as desired. �

This theorem will be relevant to all univariate continuous distributions with

positive support throughout this major paper. Using this theorem allows for easier

computation for the Laplace Transform.

The preceding theorem is a foundation for determining properties in various

applications of tasks with interruption. For example, consider our example of

crossing the road at some rate. The Laplace Transform, as derived above, can give

us features such as the expected total time to cross the road, the variability in

total time, and the probability of crossing the road uninterrupted.

12



CHAPTER 3

The Uniform pa, bq Case

3.1. The Laplace Transform for the a � b Case

This section will consider a model with an uninterrupted task completion time

T uniformly distributed on some interval pa, bq where a and b are distinct and a   b.

The following theorem is new. Let W be the total completion time, including all

interruption times.

Theorem 3.1.1. Let T � Uniformpa, bq, a   b be the uninterrupted task time.

Then the Laplace Transform for the total task W time (including interruptions)

with a Poisson process interruption at rate λ is given by

LW psq �
��e�pλ�sqa � e�pλ�sqb

� pλ� sq
λ p�e�pλ�sqa � e�pλ�sqbq � s pλ� sq pa� bq

Proof. Recall that the probability density function for a uniform random

variable T is fptq � 1
b�a for 0   a   b   8. Using Theorem 2.1.1, the Laplace

Transform can be found. In the Uniform case where a � b, a   b, the expression

would simplify to

LW psq �
³b
a
e�pλ�sqt 1

b�adt

1 � λ
λ�s

³b
a
p1 � e�pλ�sqtq 1

b�adt

� e�pλ�sqt

p�b� aq pλ� sq
�

1 � λ

pb� aq pλ� sq
�
t� e�pλ�sqt

�λ� s



�1

� �e�pλ�sqa � e�pλ�sqb

p�b� aq pλ� sq

�
1 � λ

��aλ� as� bλ� bs� e�bpλ�sq � e�apλ�sq
�

pλ� sq2 p�b� aq

��1

13



� �
�
e�pλ�sqa � e�pλ�sqb

� pλ� sq2
p�e�apλ�sqλ� e�bpλ�sqλ� s pλ� sq p�b� aqq pλ� sq

�
��e�pλ�sqa � e�pλ�sqb

� pλ� sq
λ p�e�pλ�sqa � e�pλ�sqbq � s pλ� sq pa� bq

which completes the proof. �

Although this formula is lengthy for the uniform case, the Laplace Transform

simpli�es for numerical values of a and b. Using Theorem 3.1.1, we can �nd

important properties in relation to a uniformly distributed task that is facing a

Poisson process interruption, and analyze the e�ects of the Poisson process of rate

λ, and how this impedes the completion of a task at hand.

For an example of a numerical computation, assume that T � Uniformp0, 1q,
and assume a Poisson process interruption occurring with a rate of 3 per minute.

Then the Laplace Transform simpli�es to

LW psq � � p�1 � e�3�sq p3 � sq
s2 � 3 s� 3 e�3�s � 3

.

Recall that we can interpret s as the rate of a catastrophe. Then the probability

that the [total] time of the task will complete before a catastrophe is given by

LW psq. Plugging in various rates for the catastrophe (that is Y � exppsq) will
give the corresponding probabilities that the task will beat the catastrophe. Note

that an increase in the rate of catastrophe will decrease the probability of the task

beating the catastrophe. i.e. LW psq is a decreasing function of s.

3.2. Mean and Variance of the Uniform a � b Case

The Laplace Transform in the uniform case is twice di�erentiable, and the �rst

two moments of the uniform distribution exist. Therefore, it would be bene�cial

to apply Property 1.7 to determine the expected time to complete a uniformly

14



distributed task and its variance. Notice that utilizing the Laplace Transform

provides us with much more simplistic calculations as opposed to the traditional

method of using integration techniques to solve for the moments of the random

variable, and the summary statistics of the task.

Taking the �rst two derivatives of the Laplace Transform in Theorem 3.1.1,

we get expressions that may seem cumbersome due to the number of parameters

involved.

L1W psq �
A�B � C

p�λ e�pλ�sqa � λ e�pλ�sqb � s pλ� sq p�b� aqq2

where:

A � �2 e�pλ�sqpa�bqλ� pλ� sq2 psa� 1q p�b� aq e�pλ�sqa

B � �pλ� sq2 psb� 1q p�b� aq e�pλ�sqb

C � λpe�2pλ�sqa � e�2pλ�sqbq

Let us assume the random variable is T � Uniformp0, 1q. Evaluating these

expressions at s � 0 will give us the two moments of the Laplace Transform,

namely:

L1W p0q �
�2λ e�λ � λ2 � λ2e�λ � λ

�
1 � e�2λ

�
p�λ � λ e�λq2

and

L2W p0q �
8λ2e�λ � λ p2λ2 � 4λq e�2λ � 2λ3 � 4λ2

p�λ e�λ � λq3

15



Now assume that the interruption occurs at a rate of 5 per minute (i.e., λ � 5),

then the total expected time to complete the task for T is

EpW q � �L1W p0q � �p�0.8067836550q � 0.8067

Therefore, the expected time to complete the task is 0.8067 minutes (approxi-

mately 48.4 seconds).

V arpW q � EpW 2q � pEpW qq2

� L2W p0q � pEpW qq2 � 1.235459077 � p0.8067q2 � 0.5847.

So the variance of the task completion is 0.5847 and standard deviation is .7647

(approximately 45.9 seconds). These computational results follow directly from

Property 1.7 and Theorem 3.1.1.

Increasing the rate of the Poisson process interruption, we can infer that the

expected time to complete a task should increase, as there is more of a chance that

the task at hand may face an interruption. If we increase λ, for example, λ � 10

per minute, we get

EpW q � �p�0.9000q � 0.9000

and

V arpW q � 1.60025 � p0.9000q2 � 0.7903

If we let λ be su�ciently large, then we should receive the maximum waiting

time for T . If we let λ � 100 per minute, then
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EpT q � �p�0.999q � 0.999

and

V arpT q � 1.996 � p0.999q2 � 0.998

.

We notice that as λ gets larger, then the expected time, and the variance,

approach 1. This happens to be the upper bound of the uniform random variable

(recall that T � Uniformp0, 1q). Taking the limit of the Laplace Transform, we

get

limλÑ8�L1wp0q � 1 when T � Uniformp0, 1q.
This corresponds with our previous calculations. This interesting result poses

questions on whether or not there is a general result for a task that is uniformly

distributed and whether there is a maximal waiting time on a speci�ed interval.

Corollary 3.1. Let T � Uniformp0, bq, b ¡ 0. The maximum total comple-

tion time for a task interrupted by a Poisson process is b.

The proof follows from our expression from limλÑ 8L1W psq when a � 0 and

s � 0. It is curious that there should be an upper bound at all.

3.3. The a � b Case

If a � b, then the pdf of the Uniform distribution turns into fptq � 1
a�a , which

is in�nite. Therefore, direct integration is not an appropriate method to determine

an explicit formula for the Laplace Transform for this particular case. Fortunately,

we can approximate the integrals used to determine the Laplace Transform using

Riemann sums.
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Definition 3.2. The Riemann sum, denoted as S for fpxq with (a,b) parti-

tioned n times is found using

S �
ņ

i�1

fpxiq∆xi

For the purposes of simplicity, we are going to take only one 'sub-interval', so

we are not going to partition the function into more than one piece. Therefore,

n � 1 and we do not need the summation sign. To �nd

limbÑa

³b
a
e�pλ�sqtfptqdt, we will use a geometric interpretation to �nd the area

underneath fptq by multiplying the base by the height.

fpxq � 1

b� a
and the base would be ∆x � b � a, since we are measuring the

distance from the endpoints. So the integrals needed for the Laplace transform

calculations exist and

lim
bÑa

» b
a

e�pλ�sqtfptqdt � 1

b� a
pb� aqe�pλ�sqa � e�pλ�sqa

and

lim
bÑa

1

b� a

» a
a

p1 � e�pλ�sqtqfptqdt � 1

b� a
pb� aqp1 � e�pλ�sqaq � 1 � e�pλ�sqa

By applying Theorem 2.1.1 and 3.1.1, we have:

LW psq � e�pλ�sqa

1 � λ
λ�sp1 � e�pλ�sqaq

� e�pλ�sqapλ� sq
e�pλ�sqaλ� s

To compute the mean and variance of the a � b case, it is very similar to the

a � b case above. Using MAPLE,
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L1W psq � �e�apλ�sq
�
aλ s� as2 � e�apλ�sqλ� λ

�
pe�apλ�sqλ� sq2

L2W psq �
p�λppa2s�2aqλ�a2s2�4sa�2qe�apλ�sq�pa2s2�2sa�2qλ�a2s3qe�apλ�sq

pe�apλ�sqλ�sq3

so

EW q � �L1wp0q � ��e�λa � 1

e�λaλ
� eλa � 1

λ

V arpW q � L2W p0q � pL1W p0qq2

� 4 pλ a� 1q2 e2λa � p�8λ a� 8q e3λa � λ3eλa � λ3 � 4 e4λa

λ4

Note that if you substitute all of the b values into the mean and variance expressions

in Section 3.1 with a, then you will receive the same desired mean and variance

expressions that are seen above. The expression for EpW q matches the well known

result for the expected time to safely cross a one-way highway when vehicles arrive

according to a Poisson process.

3.4. Graphical Interpretation of the Uniformp0, 1q Distribution, a � b

The Laplace Transform should be a strictly decreasing function on the interval

p0,8q.
As it is shown, the probability decreases exponentially, and converges to zero

when s is relatively large. Information about the moments is obtained for small

values of s (close to zero).

For convenience, this graph is for the case where λ � 5.
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Figure 3.1. Laplace Transform for the Uniform(0,1) Distribution
for λ � 5

Another feature of the Laplace Transform graphs is that you can approximate

the mean and variance, since both quantities are directly related to the derivatives

(i.e., the rate of change) of Lwpsq. The following approximation technique was

used by Huang (2016).

EpXq � �Lp0.01q � Lp0q
0.01 � 0

V arpXq � ∆Lp0.02q � ∆Lp0.01q
0.02 � 0.01

� µ2

where ∆Lp0.02q � Lp0.02q � Lp0.01q and ∆Lp0.01q � Lp0.01q � Lp0q.
20



In this case,

EpXq � �0.9919934729 � 1

0.01 � 0
� 0.8007

V arpXq � �0.0078857349 � p� � 0.0080065271q
0.02 � 0.01

� 1.208 � p0.8007q2 � 0.5669

.

These results have a minor marginal error compared to the true values of the

mean and variance seen in Section 3.2.
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CHAPTER 4

The Exponential(k) Case

4.1. The Laplace Transform for T � Exppkq

This section will consider an uninterrupted exponentially distributed task time,

with the conditions of the interruptions as in previous chapters(Poisson process

- i.e., exponentially distributed). The fact that the tasks and interruptions come

from the same class of distributions provides us with some very interesting results.

We will be using the pdf as described in De�nition 1.2. The following theorem is

new.

Method 1

Theorem 4.1.1. Let T � Exppkq, k ¡ 0 be the uninterrupted completion time

random variable. Assume a Poisson process interruption with rate λ. Let W be

the total completion time. Then the corresponding Laplace Transform for W is

given by

Lwpsq � k

s� k

.

Proof. From Theorem 2.2.1,

LW psq �
³8
0

e�pλ�sqtke�kt dt

1 � ³8
0

λ p1�e�pλ�sqtqke�kt

λ�s dt

� limtÑ8�kpe�kt�λ t�st�1q
k�λ�s

1 � limtÑ8
pe�λ t�ste�ktk�ke�kt�λ e�kt�se�kt�λ�sqλ

pk�λ�sqpλ�sq
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Using properties of the exponential function, we know that limxÑ8 e�kx � 0

for k ¡ 0 and limxÑ8Ce�kx � 0 for any collection of constants C.

Therefore, the above expression simpli�es to

LW psq � � k p0 � 1q
k � λ� s

�
1 � 0 � 0 � 0 � 0 � λpλ� sq

pk � λ� sqpλ� sq

�1

� p k

k � λ� s
qp s� k

λ� s� k
q�1 � p k

λ� s� k
qpλ� s� k

s� k
q

� k

s� k

This completes the proof. �

This result is very surprising for many reasons. First and foremost, the Laplace

Transform is a function of k and s only. This implies that the time to complete

the task does not depend on λ, the interruption rate. Intuitively, if λ Ñ 0, then

the completion time should only depend on k. However, if λ is large enough, then

the probability that the task will face an interruption should increase, and thus

increase the overall expected total time to complete the task. This poses questions

on the authenticity of the result. In order to help validate this Laplace transform,

we consider a case when λ is not zero.

Suppose λ � 1 and k � 1. If our Laplace transform is correct, then the expected

time to complete the task is 1
k
� 1. (this result will be derived in the next section).

However, we have two possible next event - a completion or an interruption, each

at rate 1. So the rate of the minimum of the two events is 1 � 1 � 2. So, the

expected time for either of these events to occur is 1
λ�k � 1

2
. The probability that

�rst obtain the k event (i.e, no interruption) is 1
2
. If not, we must restart. Now,

we again have expected time 1
2
left until for the next event with probability 1

2
of

being the k event. And, the conditional probability for this speci�c scenario (given
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that the �rst event is an interruption) would also be 1
2
. So, the probability for this

scenario (interruption, completion) is p1
2
q2 � 1

4
. We can obtain the expected total

time to completion by summing all possible cases to get :

P ptotalq � p1
2
qp1

2
q � p1

2
q2p1q � p1

2
q3p3

2
q � p1

2
q4p2q � ...� p1

2
qnpn

2
q � . . .

�
�8̧

n�1

n

2n�1

We recognize this as the expected value of a geometric random varaible or, by

Wolfram-Alpha, it is determined that

�8̧

n�1

n

2n�1
� 1

This is consistent with our earlier result, so this suggests that our Laplace

Transform is correct.

Method 2

To simplify integral calculations needed for the derivation, we can use the tails

of the exponential calculations for simplicity.

» 8
0

e�pλ�sqtke�ktdt � k

» 8
0

e�pλ�s�kqtdt � k
λ� s� k

λ� s� k

» 8
0

e�pλ�s�kqtdt.

Notice that pλ� s� kq ³8
0
e�pλ�s�kqt is the probability density function for the

exponential distribution for T � Exppλ� s� kq, therefore:

pλ� s� kq
» 8

0

e�pλ�s�kqtdt � 1
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Therefore, » 8
0

e�pλ�sqtke�ktdt � k

λ� s� k

Further,

» 8
0

ke�ktp1 � e�pλ�sqtqdt �
» 8

0

ke�ktdt�
» 8

0

ke�kte�pλ�sqtdt

The �rst integrand is just simply the density function of T � Exppkq, and the

second integrand is the same integrand above that is T � Exppλ� s� kq. So, we
get

» 8
0

ke�ktp1 � e�pλ�sqtqdt � 1 � k

λ� s� k
� λ� s

λ� s� k

Plugging these evaluated integrals into Theorem 2.1.1 gives the same result in

Method 1, that

LW psq � k

s� k

.

4.2. Mean and Variance the Exponential Case

We could simply observe that the Laplace transform tells us immediately that

the total completion time is exponentially distributed, with mean 1{k. Or using

similar procedures as for he Uniform case, taking the �rst two derivatives of the

Laplace Transform will give us results for the mean and variance of total time to

complete the task. Using Lwpsq from Theorem 4.1.1, then:

L1wpsq �
�k

ps� kq2

L2wpsq �
2k

ps� kq3
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Substituting s � 0 and rearranging the formulae in Property 1.7, we get

EpW q � �p�1

k
q � 1

k

and

V arpT q � EpT 2q � p1

k
q2 � L2wp0q �

1

k2
� 2

k2
� 1

k2
� 1

k2
.

If one studies the monotonicity of the mean and variance functions, both of

them are decreasing in k on the interval p0,8q, which is sensible since increasing

k should increase the task rate, and consequently decrease the expected time to

complete the task, as hypothesized.

Property 4.1. As k Ñ 8, for �xed s, the Laplace transform tends to 1, so

the probability that the task completes before encountering a catastrophe with

rate s is one.

Proof.

lim
kÑ8

P pW   Y q � lim
kÑ8

k

s� k

� lim
kÑ8

1
s
k
� 1

� 1

0 � 1

� 1

�

Property 4.2. As k Ñ 8, for �xed s the expected value of total completion

time approaches zero with a variance of zero.
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Proof.

lim
kÑ8

EpT q � lim
kÑ8

1

k
� 0

lim
kÑ8

V arpT q � lim
kÑ8

1

k2
� 0

�

4.3. Graphical Interpretation of the Exponential Distribution

Figure 4.1. Laplace Transform for the Exp(1) Distribution for λ � 5

The graphical properties for the Laplace transform are similar to those of the

Uniform case, with the exception that the graph decreases quicker than in the

Uniform case. For future chapters, the graphs of the Laplace transform will be
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omitted due to similarity of the Laplace transform graphs. The numerical approx-

imation of determining the mean and variance of the total waiting time of a task

can also be found using the same methods as described in section 3.4.
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CHAPTER 5

The Gamma(α, β) Case

5.1. The Laplace Transform for T � Gammap2, 1q

This section will consider a model where a task, T , is distributed asGammap2, 1q.
Using De�nition 1.1, the probability density function in this case is fptq � te�t.

This is structurally similar to the exponential case seen in Chapter 4, with a linear

t term being multiplied by the exponential term, but the results end up changing

drastically. These results will be shown in this chapter. The following theorem is

new.

Theorem 5.1.1. Let T � Gammap2, 1q be the time to complete a task without

interruption. LetW be the total time to complete the task, which can be interrupted

by a Poisson process at rate λ. Then the Laplace Transform for W is given by

LW psq � 1

s2 � pλ� 2qs� 1
.

Proof. Using Theorem 2.1.1, the Laplace Transform will be:

LW psq �
» 8

0

e�pλ�sqtte�tdt�
» 8

0

p1 � e�pλ�sqtq λ

λ� s
te�tLwpsqdt

�
³8
0
e�pλ�sqtte�tdt

1 � λ
λ�s

³8
0
p1 � e�pλ�sqtqte�tdt

� pNq
pDq

Now,
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pNq �
» 8

0

e�pλ�sqtte�tdt

�
» 8

0

te�pλ�s�1qtdt

� lim
tÑ8

1 � p�1 � t p�1 � λ� sqq e�tp1�λ�sq

p1 � λ� sq2

Similar to Chapter 4, we know by L'Hopital's Rule that limxÑ8 xe�x � 0. This

fact, with the other properties of exponential limits in the last chapter, implies that

lim
xÑ8

p�1 � tp�1 � λ� sqe�tp1�λ�sqq � 0

Therefore,

pNq � 1

p1 � λ� sq2

Next,

pDq � 1 � lim
tÑ8

λ
�p�tλ� ts� t� 1q e�tpλ�s�1q � pλ� s� 1q2 pt� 1q e�t � p�q�

pλ� s� 1q2 pλ� sq

� 1 � λpλ� sqpλ� s� 2q
pλ� sqpλ� s� 1q2

� s2 � pλ� 2qs� 1

pλ� s� 1q2

with

p�q � pλ� s� 2qpλ� sq

Finally,

pNq
pDq � Lwpsq � 1

s2 � pλ� 2qs� 1

This completes the proof. �
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Clearly, the denominator is quadratic in s. Because the denominator is factor-

izable into two real roots, we can write the Laplace Transform as a product. This

will be discussed further in the chapter.

5.2. The Erlang Case

Definition 5.1. A Gamma pα, βq random variable X is said to be Erlang

pn, λq if α � n is a positive integer, and λ � 1{β.

The following property is well known.

Property 5.2. If X1, X2, ..Xn are i.i.d. exponentially distributed with com-

mon rate λ then X � °n
i�1Xi is Erlang pn, λq.

Definition 5.3. If X1, X2, ..Xn are independent and exponentially distributed

with rates λi for i � 1, 2, . . . , n then we say that X � °n
i�1Xi is generalized Erlang

and write

X �
ņ

i�1

Xi � genErpλ1λ2...λnq

If λ1 � � � � � λn � λ, then genErpλ1λ2...λnq reduces to Erlang pn, λq
In previous chapters, we have been using the fact we want to predict the proba-

bility that the task will be completed before a catastrophe. The following property

is taken from Roy (1997)

Property 5.4. If X � genErpλ1λ2...λnq, then:

LXpsq �
n¹
i�1

λi
λi � s
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Proof.

LXpsq � P pX   Y q

� P pX1 �X2�, ...,�Xn   Y q

� P pX1   Y qP pX2   Y q...P pXn   Y q pMemorylessq

�
n¹
i�1

P pXi   Y q

�
n¹
i�1

λi
λi � s

�

Corollary 5.5. If X � Erpn, λq, then:

LXpsq � p λ

λ� s
qn

This corollary follows from the proof of Property 5.4, with using the fact that

all of the rates are identical independently distributed (iid).

In words, Property 5.4 implies that the product of the Laplace transforms for

independent exponential random variables is the Laplace transform of the sum of

the sum of the exponential random variables. This property will be particularly

useful for the Gammap2, 1q Laplace transform seen in Section 5.1.

Recall that the Laplace Transform for the Gammap2, 1q random variable is

LW psq � 1

s2 � pλ� 2qs� 1
.
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We can factor the denominator to split the Laplace transform into a product of two

Laplace transforms, each representing exponentially distributed random variables

at di�erent rates.

The following result may be useful.

Property 5.6. Descartes' Law of Signs states that the number of positive real

zeroes in a polynomial function fpxq is the same or less than by an even numbers as

the number of changes in the sign of the coe�cients. The number of negative real

zeroes of the fpxq is the same as the number of changes in sign of the coe�cients

of the terms of fp�xq or less than this by an even number.

By using Descartes' Law of Signs, our denominator will have no positive roots.

Alos, since the discriminant b2 � 4ac is nonnegative, then there are two real roots

(perhaps equal), so they are both negative.

The denominator can be expressed as ps � aqps � bq, where a and b are the

solutions to the equation

0 � s2 � pλ� 2qs� 1

.

So,

a, b � �pλ� 2q �apλ� 2q2 � 4p1qp1q
2p1q

Therefore, using the form above,

a � �λ� 2 �?
λ2 � 4λ

2

and
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b � �λ� 2 �?
λ2 � 4λ

2

Let's consider the special case where λ � 1
2
. Then, using all of the facts above,

we know this case satis�es the equations above. We can then split the Laplace

transform as such:

Lwpsq � 1

s2 � p5
2
qs� 1

�
1
2

s� 1
2

2

s� 2

Using Theorem 4.1.1, we can see that the two products are of the form of the

exponential Laplace transform, with the �rst product being of Expp1
2
q and the

second product being Expp2q. Using De�nition 5.3 coupled with Property 5.4, we

can conclude that the r.v. W is distributed as generalized Erlang with rates 2, 0.5.

5.3. The Gammap3, 1q Case

The following theorem is new.

Theorem 5.3.1. Let T � Gammap3, 1q be the task time for an uninterrupted

task. Let W be the total task time for a task with potential interruptions from a

Poisson process with rate λ. Then the corresponding Laplace Transform for W is

LW psq � 1

pλ2 � p2 s� 2qλ� s2 � 2 s� 2q p2 � λ� sq .

The proof is procedurally the same as the Gammap2, 1q case. The previous

result was found using Maple software. After expanding the denominator, it is

clearly cubic in s for this particular case, whereas in the Gammap2, 1q case the

denominator is quadratic in s. Recall that it was possible to write the Laplace

transform as the product of two exponential random variables, which implies that

the W is a sum of two exponential random variables.
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It is determined using basic algebra that the denominator only has one real

root when s � �λ� 2. However, from the Descartes' Law of Signs, the quadratic

part seen in the Laplace transform will have zero real roots. Due to this, there

will be complex roots in the cubic. Therefore, it is not possible to write W as a

sum of three exponential random variables.

To determine the mean and variance of the Laplace transform, the same tech-

niques as seen in the Gammap2, 1q case should be utilized. The calculations are

not presented to avoid redundancy.

When comparing the Gammap2, 1q and Gammap3, 1q cases, there are questions
that arise that should be considered for future research. For example, the pdf of

the Gammap3, 1q case has a quadratic t term, whereas the Gammap2, 1q case has
a linear t term. When calculating the values of each Laplace transform under the

same conditions (i.e., rates of interruptions), the Gammap3, 1q values are numeri-

cally less than the Gammap2, 1q case. Further, recall that the Gammap2, 1q case
has numerically lower values than the Exppkq case, which did not have a t term.

So, the question on which parameters in�uence the rate of interruption less fre-

quently could be addressed. Further, the degree of the Laplace transform is cubic

when α � 3 and quadratic when α � 2. The question remains as to whether the

degree of the denominator is n when α � n.
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CHAPTER 6

The Weibull(λ,k) Case

Definition 6.1. A random variable X is said to be Weibullpλ, kq if the pdf is

fpxq � k

λ
px
λ
qk�1e�p

x
λ
qk , x ¡ 0.

A Weibull random variable is a generalization of an exponential random vari-

able. This section will consider a model where an uninterrupted task, T , is dis-

tributed as Weibullp2, 1q. Results are presented in this chapter. The following

theorem is new.

Theorem 6.0.1. Let T � Weibullp2, 1q be the completion time of an uninter-

rupted task. Let W be the total time to complete the task, which can be interrupted

by a Poisson process at rate λ. Then the corresponding Laplace Transform for W

is

Lwpsq �
?
πe

pλ�sq2

4 pλ� sq erf
�
λ
2
� s

2

�� 2 �?
πe

pλ�sq2

4 pλ� sq
?
πerf

�
λ
2
� s

2

�
e
pλ�sq2

4 λ�?
πe

pλ�sq2

4 λ� 2

with

erfpxq � 2?
π

» x
0

e�x
2

dx

Proof. The pdf of the T � Weibullp2, 1q distribution is fptq � 2te�t
2
. We use

Theorem 2.1.1 and write LW psq � pNq
pDq as we did with the Gammap2, 1q example.

Using Maple software:

pNq �
» 8

0

2e�pλ�sqtte�t
2

dt
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�
?
π pλ� sq

2
e
pλ�sq2

4 erf

�
λ

2
� s

2



� 1 �

?
π pλ� sq

2
e
pλ�sq2

4

pDq � 1 � λ

λ� s

» 8
0

p1 � e�pλ�sqtq2te�t2dt

� 1 �
?
πλ

2
e
pλ�sq2

4 erf

�
λ

2
� s

2



�
?
πλ

2
e
pλ�sq2

4

And �nally,

Lwpsq � pNq
pDq �

?
πe

pλ�sq2

4 pλ� sq erf
�
λ
2
� s

2

�� 2 �?
πe

pλ�sq2

4 pλ� sq
?
πerf

�
λ
2
� s

2

�
e
pλ�sq2

4 λ�?
πe

pλ�sq2

4 λ� 2

This completes the proof. �

There are some limitations for this Laplace transform due to the inclusion of

the error function that is in the expression. If s becomes too large, then we have

issues with the Laplace result. This is because as x Ñ 8, erfpxq Ñ 1 since³x
0
e�t

2
dt �

?
π

2
for reasonably large values of x. In our case, the error function is

a function of λ and s.
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A graphical version of LW psq is shown here:

Figure 6.1. Laplace Transform for the Weibull Distribution for λ � 5

The mean and variance of the expected total time to complete the task is done

similarly to the uniform, exponential and gamma cases. However, we need the

derivative of the erf() function. This can be found using the Fundamental Theorem

of Calculus. Beyond, that, there is nothing di�erent about the computations so

they are not included to avoid redundancy.
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CHAPTER 7

Laplace Inversion

The following theorem from Spiegel (1965) is referenced in Huang (2016).

Theorem 7.0.1. Given the Laplace transform Lpsq, the function value fptq
can be recovered from the contour integral

fptq � 1

2πi

» b�8
b�8

estLpsq ds

where b is a real number to right of all singularities of Lpsq, and the contour integral
yields the value 0 for t   0.

The following integral is commonly referred to as the Bromwich inversion inte-

gral. This theorem is the stepping stone to invert a Laplace transform to �nd the

probability density function. It is very di�cult by hand to utilize the Bromwich

inversion integral, or other known techniques to solve for the inverse Laplace trans-

form. However, Maple software can be used to solve for the inverted Laplace

transform, which will consequently give us the pdf's for the Laplace transform. To

use Maple to �nd the inverse Laplace transform, one must use the with(inttrans):

command coupled with the invtrans(LT ,s,t) command.

The advantage of using the inverse Laplace transform is that it gives us the

density function of the random variable W , which is the expected total time to

complete the task. For the Uniform and Weibull distributions, there is no explicit
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inverse Laplace transform, so the pdf's of these Laplace transform can not be de-

termined from MAPLE. However, explicit solutions were found for the Exponential

and Gamma case.

For the exponential case, the pdf from the Laplace transform, by using Maple,

is

fpwq � ke�kw

. This result is interesting because this pdf is simply just the exponential distri-

bution with parameter k.

For the Gammap2, 1q case, the pdf from the Laplace transform, by using Maple,

is

fpwq �
2 e

�1
2
pλ�2qw sinh

�
1
2
w
a
λ p4 � λq

	
a
λ p4 � λq

.

This pdf is clearly more complex than that of the exponential case. Further,

the pdf does not align with any of the common univariate distributions that are

normally used in statistical inference. This pdf also is possibly not ideal as the

hyperbolic sine function includes supported with s   0, which is not consistent

with our version of Laplace transforms of pdfs with positive support. However, it

will be shown that we can write this pdf in a much simpler form.

The graph of the inverse Laplace transform for the exponential case is trivial,

as it is just the standard exponential function pdf. The pdf of W resulting from

T � gamma is shown when λ � 5.
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Figure 7.1. PDF of Total Task Completion for Gamma(2,1)
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As one can see, the probability density function increases rapidly and maxi-

mizes its value at w � 1, and then decreases rapidly until the density function

converges to zero.

For the Gammap2, 1q case, we can consider the case where λ � 1
2
. Clearly,

the inverted Laplace transform above for this distribution does not provide us

with much information in this form. If we split the original Laplace transform into

partial fractions, we can simplify the pdf ofW (i.e., the inverse Laplace transform)

into something recognizable.

So,

LW psq � 1

s2 � p5
2
qs� 1

� A

s� 1
2

� B

s� 2

Solving for A and B, we get A � 2
3
and B � �2

3
. And then,

LW psq �
2
3

s� 1
2

�
�2
3

s� 2

Inverting the Laplace transform, we have:

fpwq � 2

3
L�1p 1

s� 1
2

q � 2

3
L�1p 1

s� 2
q

� 4

3
L�1p

1
2

s� 1
2

q � 1

3
L�1p 2

s� 2
q

� 4

3
� 1

2
e�

1
2
w � 1

3
� 2e�2w

� 2

3
e�

1
2
w � 2

3
e�2w

This is the more useful pdf for W in the Gammap2, 1q distribution. But it

looks quite di�erent from the version given by MAPLE. If one subtracts the pdf

found using Maple when λ � 1
2
from the pdf found above, the result is zero. This

means the pdf yields the same values for various values of s for any values of λ,
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implying that the density functions are equivalent! However, in the above case, an

interesting result is that the pdf is consistent with the forms that we normally see

in the generalized Erlang distribution. So, the pdf of the total expected waiting

time for a task distributed as Gammap2, 1q is generalized Erlang at some particular

rate.

The Gammap3, 1q case is not factorable in its denominator, so unfortunately

we cannot write the pdf of W in partial fractions. Further, technology does not

give us an explicit form for the inverse Laplace transform. So, the pdf of the total

time to complete the task still remains unknown for this case.

It is worth mentioning that there exist excellent Laplace transform inversion

approximations and these approximations can be obtained using R or Wolfram

Alpha.
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