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ABSTRACT 

 

Spectrum sensing is an essential component in cognitive radios. The machine learning 

(ML) approach is part of artificial intelligence which develops systems capable of learning 

and improving from experience. ML algorithms are promising techniques for spectrum 

sensing as a favored solution to tackle the limitations of conventional spectrum sensing 

techniques while improving detection performance. The supervised ML algorithms, 

support vector machine (SVM), k-nearest neighbor (kNN), decision tree (DT), and 

ensemble are applied to detect the existence of primary users (PUs) in the TV spectrum 

band. This is accomplished by building classifiers using the collected data for the TV 

spectrum over different locations in the city of Windsor, Ontario. Then, the dimensionality 

reduction technique named Principal Component Analysis (PCA) is incorporated to reduce 

the duration of training and testing of the model, as well as reduce the risk of overfitting. 

This is achieved by transforming the input data into a lower-dimensional representation, 

which is known as the principal components. The Ensemble classification-based approach 

is employed to enhance the classifier predictivity and performance. Furthermore, the 

performance of the Ensemble classification method is compared with SVM, kNN, and DT 

classifiers.  Simulation results have shown that the highest performance is achieved by 

combining multiple classifiers, i.e., the Ensemble, therefore, the detection performance has 

significantly improved. Simulation results have shown the impact of employing PCA on 

lowering the duration of training while maintaining the performance.  
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CHAPTER1 

Introduction 

 

The rapid transformation in communication from voice to digital media has led to a huge 

demand for higher bandwidth. Due to the constraints of the existing frequency spectrum 

assignment, it becomes evident that the current static frequency sharing schemes cannot 

fully meet the demands of a rising number of higher data-rate applications. Therefore, new 

approaches are required to introduce new ways to efficiently reutilize the usable spectrum. 

Cognitive radio (CR) is a promising resolution to the issue of frequency band 

underutilization by adopting the opportunistic use of parts of the spectrum not heavily 

occupied by licensed users. Spectrum sensing is one of the most essential elements in CR 

networks where each CR user must detect licensed users also known as primary users (PUs) 

if they are available and pinpoint the unusable spectrum when PUs is not present. 

Generally, it is fulfilled by sensing the RF environment [1,2].  

The most important task of spectrum sensing is to refrain CR users from interfering with 

PUs whether by switching to an available band or by confining their interference with PUs 

at an acceptable level. Additionally, CR users should efficiently pinpoint and utilize the 

spectrum holes (SH), for the desired throughput and quality of service (QoS). Thus, the 

detection performance in spectrum sensing is vital to both PU and CR network 

performance. The detection performance of a CR user is assessed by two performance 

metrics, i.e., the probability of false alarm and probability of detection. The probability of 

false alarm, (Pf), is the probability of a CR user claiming a PU to be present when the 

spectrum band is free, while the probability of detection, (Pd), implies the possibility of a 

CR user claiming a PU to be present when the spectrum band is occupied. The failure in 
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the detection will lead to interference with the PU and a false alarm will decrease the 

spectral efficiency [2]. 

Therefore, there is constantly a demand to improve the probability of detection and 

minimize the probability of false alarm through innovative approaches. In recent years, 

there has been a growing interest in adopting ML algorithms to CRs as a potential solution 

of sensing the spectrum to enhance the detection performance in low signal-to-noise ratio 

(SNR) scenarios. ML algorithms provide the CR the capability to learn when there is no 

prior knowledge of PU or noise with the help of the datasets collected from the RF 

environment. So, it will be prepared to assess the availability of the spectrum bands and be 

aware of the RF environment [3,4]. 

 

 

1.1 Motivation and Research Objectives 

It is well-known that the frequency spectrum is congested. Exploiting the unoccupied TV 

spectrums, so-called TV white spaces (TVWS), is a tempting choice to meet the urgent 

needs. Even though cognitive radio networks have been widely researched as 

a probable solution for the spectrum scarcity and increasing spectrum underutilization, 

there are still some issues that need to be addressed. To utilize the spectrum effectively 

with the lowest interference to PUs, the secondary user (SU) should sense the spectrum 

band efficiently.  

The detection performance of the conventional spectrum sensing techniques deteriorates 

when the signal-to-noise ratio (SNR) is low. Additionally, spectrum sensing techniques 

such as energy detector is very sensitive to noise uncertainty. Besides, some of the 

conventional spectrum sensing techniques require the prior knowledge of PU signal 

features which might not be available for CRs. For coping with this dilemma, ML 

algorithms can be regarded as efficient ways of sensing the spectrum without prior 

knowledge of the radio frequency (RF) environment. Furthermore, ML can periodically be 

https://www.thesaurus.com/browse/probable
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learned to adapt to the changing RF environment. Moreover, the existing datasets generated 

from monitoring and observing the RF spectrum can be utilized to develop a spectrum 

sensing model. 

The main objective of the research is to investigate the design of spectrum sensing models 

based on supervised ML techniques and dimensionality reduction techniques to assess the 

spectrum occupancy over the TV bands. 

 

1.2 Thesis Contribution   

The two main contributions of this thesis are: 

1.  A TV spectrum sensing model based on different supervised ML algorithms is 

proposed to accurately assess the spectrum occupancy over the TV channels and 

determine the identity of the user whether it is a PU or an SU. The proposed model is 

trained and tested using real data gathered over ten different locations across Essex 

County. 

2. The proposed TV spectrum sensing model is modified to employ the PCA 

technique to reduce the dimensions of the gathered datasets, limit the risk of overfitting, 

and reduce the processing time of training and testing. 

The performances of the two proposed models are evaluated and compared based on 

accuracy, F-measure, and Receiver Operating Characteristic (ROC).  

 

1.3 Outline of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 provides an overview and 

background of CR networks, highlights of TVWS, IEEE 802.22, and provides an overview 

of ML Algorithms. Also, it introduces the proposed classification methods: SVM, kNN, 



 

4 
 

DT, and Ensemble Classifications algorithms as well as a dimensionality reduction 

technique: PCA. 

Chapter 3 presents the detailed research methodology, system model, data collection, and 

the proposed algorithms. Simulation results are illustrated in Chapter 4 where the 

performance measures of the classifiers are illustrated and compared with the proposed 

Ensemble classifier in terms of accuracy, F-measure with and without using PCA. 

Moreover, the ROC curves for the four classifiers are presented. Conclusions and future 

work are discussed in Chapter 5. 
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CHAPTER 2  

Literature Overview   

  

2.1 Introduction  

With the rising usage of dynamic mobile applications, it is becoming decisive for wireless 

devices to learn from the surrounding environment. CR is described as radio devices able 

to learn and adapt to their environment. Spectrum sensing is a substantial component of 

CRs. In the last decade, several sensing techniques have been proposed based on matched 

filters, energy detection, pilot-sensing detection, cyclostationary detection, wavelet 

detection, and covariance detection. Moreover, cooperative spectrum sensing (CSS) was 

advocated as a means to improve sensing accuracy by tackling the inherent hidden 

terminal problems in wireless networks [5, 6].  

In recent years, there has been growing interest in the applications of ML algorithms to 

CRs.  A key element of any CR is the willingness to program themselves or to learn 

autonomously. As a result, CR is anticipated to be intelligent by nature. Learning is a 

substantial component of any intelligent system, which justifies it being designated as a 

fundamental requirement of CRs [7, 8].  

There are three main conditions for intelligence: 1) Perception, 2) Learning, and 3) 

Reasoning and Act. First, perception can be accomplished via the sensing measurements 

of the spectrum. This permits the CR to detect ongoing RF activities in its surrounding 
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environment. After acquiring the sensing observations, the CR attempts to learn from 

them to classify and organize the observations into suitable categories (knowledge). 

Finally, the reasoning ability allows the CR to use the knowledge acquired through 

learning to achieve its objectives. Therefore, CR must be equipped with the capability of 

learning from its experience by interacting with its RF environment by trying to make use 

of ML algorithms to coordinate the CR actions [9, 10].   

 

2.2 Main Functions of Cognitive Radios  

The spectrum management process in CR networks comprised of four key steps as 

presented in Fig. 2.1:  

           

  

Figure 2.1: Main functions of cognitive radios [11]. 
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• Spectrum sensing: CR users can only assign an unoccupied part of the spectrum. A 

CR user should then monitor the available spectrum bands, capture their information, 

and then identify the spectrum holes as depicted in Fig. 2.2.  

• Spectrum decision: CR users can assign a channel subject to the availability of the 

spectrum. Channel allocation not only relies on the availability of spectrum, but it is 

also dictated based on internal and potentially external policies.  

• Spectrum sharing: Since multiple CR users might be trying to access the spectrum, 

CR network access must be organized to avoid multiple users from colliding in 

overlapping segments of the spectrum.  

• Spectrum mobility: Users of the CR are regarded as spectrum visitors. Thus, if a PU 

needs the specific portion of the spectrum in use, the communication must be 

continued in another unoccupied portion of the spectrum [12].  

  

   

        

Figure 2.2: Demonstration of the spectrum hole [13]. 
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2.3 TV White Space (TVWS)  

TV spectrum portions that are not occupied by a PU at a given time and location are called 

TV white spectrum. The frequency bands allocated to TV bands change according to the 

geographical location. For example, in Europe, TVWS spans from 470 to 790 MHz while 

in the United States, it ranges from 54 to 698 MHz. The white space database (WSD) 

frequency bands in Canada are illustrated in Table 2.1. CR is being intensively researched 

as the enabling technology for the TVWS [14, 15].  

 

Table 2.1: Overview of authorized white space frequency bands in Canada [16]. 

  

Frequency Bands (MHz) TV Channels Personal/Portable WSD Fixed WSD 

54-60 2 Not permitted ✓ 

60-72 3-4 Not permitted Not permitted 

76-88 5-6 Not permitted ✓ 

174-216 7-13 Not permitted ✓ 

470-512 14-20 ✓ ✓ 

512-608 21-36 ✓ ✓ 

608-614 37 Not permitted Not permitted 

  

2.3.1 Advanced Television Systems Committee (ATSC)   

ATSC is a standard for digital TV (DTV) transmission which defines a system designed 

to distribute high-quality video and audio and ancillary signal within a 6 MHz digital TV 

channel. The 8 Vestigial sideband modulation (8VSB) used in ATSC (DTV) has a pilot 
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carrier, which serves as a DTV receiver reference. The pilot carrier is about 310 kHz 

above the lower edge of the band as shown in Fig. 2.3 [17].  

 

Figure 2.3: The spectrum of the ATSC signal [17]. 

2.4 IEEE 802.22  

The IEEE 802.22 is a standard for Wireless Regional Area Network (WRAN) using white 

spaces in the TV frequency spectrum. The development of the IEEE 802.22 WRAN 

standard is intended at using CR methods to allow the sharing, on a non-interfering basis 

of the geographically unoccupied spectrum assigned to the television broadcasting 

service. It is the world's first attempt to define a standardized air interface based on CR 

techniques for the opportunistic use of non-interfering TV bands. IEEE 802.22 WRANs 

are designed to operate in TV broadcast bands while ensuring that no harmful interference 

is caused to the incumbent operation: digital TV and analog TV broadcasting, and low-

power licensed devices such as wireless microphones [18].   

  

2.5 Machine Learning   

It is an artificial intelligence (AI) application that creates systems with the capacity to 

learn and improve automatically from experience without being explicitly programmed. 

ML focuses on computer programs being developed that can access data and use it to 
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learn for themselves. The learning process begins with observations or data, such as 

examples, direct experience, or instruction to look for data patterns and make better 

decisions in the future. The main objective is to allow computers to automatically learn 

without human intervention or aid and to adjust actions accordingly [19].  

  

    

  

Figure 2.4: Classification of machine learning. 

Various types of ML methods have been designed to solve problems in different fields. 

These ML techniques can be categorized into four types depending on the training method 

as depicted in Fig. 2.4. The supervised and supervised learning are discussed as the 

proposed ML algorithms fall under the two categories.  

2.6 Supervised Learning   

Supervised learning algorithms develop a mathematical model of a set of data comprising 

both the inputs and the needed outputs. The data is known as training data and contains 

training examples set. Every training example has one or more inputs and the required 

output. Each training example in the mathematical model is depicted by an array or vector, 

often named a feature vector and the training data is viewed as a matrix. Supervised 

learning algorithms learn a mapping function that can be used to predict the output 

correlated with new inputs. The mapping function will allow the algorithm to correctly 
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determine the output for inputs that were not part of the training data. An algorithm is 

said to have learned to perform that task when it improves the accuracy of its outputs or 

predictions over time. Supervised learning algorithms include classification and 

regression which are presented in Fig. 2.5.  SVM, kNN, DT, and Ensemble classifications 

are the most common supervised learning algorithms. If the CR has prior information 

about the RF environment, it might exploit this knowledge by using supervised learning 

techniques [20].  

Regression Classification 

 

Figure 2.5: Outline of supervised learning (classification vs. regression). 

2.6.1 Support Vector Machines (SVM)    

The SVM classifies data by finding the linear decision boundary (hyperplane) that 

separates all data points of one class from those of the other class. The best hyperplane 

for an SVM is the one with the largest margin between the two classes. If the data is not 

linearly separable, SVM applies a kernel function to transform nonlinearly separable data 

into higher dimensions where a linear decision boundary can be found as depicted in Fig. 

2.6 [21].   
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Figure 2.6: Basic idea of the kernel function in SVM. 

  

Advantages:  

• It is effective in high dimensional spaces (i.e. nonlinearly separable data).  

• It employs the kernel function to solve classification problems.  

• SVM models have generalization in practice.  

   

Disadvantages:  

• The performance is degrading when the data set has more noise (i.e. target classes are 

overlapping).  

• Choosing a kernel function is not easy.  

• Long training time for large datasets.  
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• It underperforms when the number of features for each data point exceeds the number 

of samples in the training data.  

  

SVM uses several types of kernel such as linear, polynomial, radial basis (gaussian) as 

presented in Fig. 2.7.  

            

                 Linear                                    2nd polynomial                       Radial basis 

 

Figure 2.7: Linear, 2nd polynomial, and radial basis kernels. 

 

  

2.6.2 k-Nearest-Neighbors (kNN)   

kNN is a non-parametric technique used for classification in pattern recognition [22]. It 

is based on the fact that a data point in the learning dataset is classified by a majority vote 

of its k neighbors and gives greater weights for close neighbors in the classification than 

neighbors which are far from the data point. Figure 2.8 demonstrates assigning a class to 

data point when k = 1 and 3. Distance metrics such as Euclidean, city block, cosine, and 

Chebychev are used to find the nearest neighbor [22].  
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Figure 2.8: kNN classification algorithm. 

Advantages:  

• Simple in implementation.  

• Robust and versatile.  

• Few parameters to tune distance metric and k.  

Disadvantages:  

• Lazy learner.   

• Slow if there are many training examples.   

• Sensitive to k value.  

  

k  = 3 

k = 1 

New data to classify Training data 

Class 1 

Class 2 

Class 3 
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2.6.3 Decision Tree (DT)   

It classifies instances by ranking them from the root to some leaf node down the tree that 

produces classification. Each node in the tree determines a test of some instance attribute, 

and each branch coming down from that node relates to one of the potential values for 

that attribute. An instance is classified by launching at the tree's root node, examining the 

attribute specified by that node, and then going down the tree branch corresponding to 

the attribute value. The main algorithm for building DT is called ID3 (Iterative 

Dichotomiser 3). It deploys a top-down, greedy lookup for possible branches without 

backtracking. ID3 develops a decision tree utilizing entropy and information gain to select 

the attribute that is most essential for classifying. [23,24].   

Advantages:  

• Less effort for data preparation during pre-processing.  

• Easy to use and interpret.  

• It can be combined with other decision techniques.  

Disadvantages:   

• Lots of layers, which makes it complex.  

• Overfitting issue.  

• The computational complexity of multiclass may increase.  
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2.6.4 Ensemble Classification  

Ensemble classification is the process of effectively generating and combining multiple 

classifiers to solve a specific ML problem as illustrated in Fig. 2.9. Ensemble learning is 

mainly used to improve the performance of a model in classification or prediction or to 

reduce the probability of a poor or unfortunate choice. Bagging and boosting are the most 

common methods used in Ensemble classification [25].  

• Bootstrap Aggregation (Bagging) 

Bagging is the most common type of Ensemble classification. It generally trains multiple 

independent classifiers, each trained by sampling with replacement percentage of 

instances from the training data. The diversity in the Ensemble is ensured by the variations 

in replicas on which each classifier is trained. The trained classifiers are then combined 

through a simple majority voting. It is best suited for problems with relatively small 

available training datasets [26].   

 

  

Figure 2.9: Basic outline of the Ensemble technique [31]. 

  

  

  

  

  

  

  

  

Testing  
Dataset   

Model 1   

Model 2   

Model N   

Voting (Combining  
Individual Prediction)  Prediction   

Training  
Dataset   



 

17 
 

• Boosting and AdaBoost:  

Boosting is an iterative method to produce a robust classifier that capable of arbitrarily 

attaining low training error from an Ensemble of weak classifiers. It also combines an 

Ensemble of weak classifiers using simple majority voting. The training dataset for each 

subsequent classifier is progressively focused on instances misclassified by the former 

classifiers [27].   

Advantages:  

• More accurate prediction results.  

• Stable and more robust model.  

Disadvantages:   

• Higher computation.  

• The selection of models for creating an Ensemble is not easy.  

 

2.7 Unsupervised Learning   

Unsupervised learning algorithms take a set of data that only comprises inputs, and try to 

find structure in the data, such as grouping or clustering data points. Thus, the algorithms 

learn from unlabeled data. Rather than reacting to feedback, unsupervised learning 

algorithms identify commonalities in the data and respond positively to each new piece 

of data based on the presence or absence of such commonalities. Clustering and PCA are 

two of the main techniques used in unsupervised learning. They are presented in Fig. 2.10 

and 2.11, respectively. Unsupervised learning is suitable for CRs operating in alien RF 

environments [28].   
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Figure 2.10: Outline of unsupervised learning (clustering). 

  

2.7.1 Principal Component Analysis    

PCA is by far the most common and popular unsupervised learning method for 

dimensionality reduction. It conducts dimensionality reduction by embedding the data 

into a linear subspace of lower dimensionality. A low-dimensional representation of the 

data is constructed by PCA that describes as much of the variance in the data as possible. 

It is attained by finding a linear basis of reduced dimensionality for the data in which the 

amount of variance in the data is maximal. Figure 2.11 illustrates finding two principal 

components that represent the new dimensions of the data points [29, 30].  

  

  

   

Cluster 1 

Cluster 3 
Cluster 2 
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Figure 2.11: Outline of principal component analysis [30]. 

  

Advantages:  

• Removes correlated features.  

• Speed up the ML algorithm.  

• Reduces overfitting.  

  

Disadvantages:  

• Principal components are not as readable and interpretable as original features.  

• Sensitive to scaling, so data standardization is a must before PCA.  

• Risk of missing information by selecting an improper number of principal 

components.  
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Unsupervised learning is mainly used in data analysis to find hidden patterns, groupings 

of data, and dimensionality reduction while supervised learning is best suited for labeled 

data. Since the datasets that will be used in creating the spectrum sensing models based 

on ML are already organized into groups and labeled. Hence, supervised learning 

classification methods are the appropriate approach. To take advantage of unsupervised 

learning, PCA is proposed to reduce the dimension of the datasets. The main reason for 

adopting the four classifiers is that the SVM model can be generalized, i.e., it doesn’t 

overfit. Also, kNN tuning is simple through k value and the distance metric. Additionally, 

DT requires less effort in data preprocessing while the Ensemble classification boosts the 

prediction results. On the other hand, PCA minimizes the risk of overfitting and 

accelerates the learning process.  

  

2.8 Summary  

The main functions of cognitive radios are spectrum sensing, spectrum decision, spectrum 

sharing, and spectrum mobility. TVWS refers to spectrum portions that are not occupied 

by a PU. The two major categories of ML are supervised and unsupervised learning. 

Supervised learning deals with labeled data. The most popular supervised learning 

algorithms are SVM, kNN, DT, and Ensemble classification techniques. On the other 

hand, unsupervised learning attempts to find a hidden pattern in data consists of only 

inputs and group it into clusters. PCA can be classified as unsupervised learning. 
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CHAPTER 3 

Research Methodology 

 

 

3.1 Introduction 

Preprocessing of the ATSC channels datasets is the preliminary phase of creating the ML 

models. It incorporates removing outliers such as spikes in the Fast Fourier transform (FFT) 

samples caused by artifact inherent to software-defined radio (SDR) employing homodyne 

receivers and features scaling using normalization. Combining a dimensionality reduction 

method, PCA with the four classifiers is explored as a second approach to accelerate the 

training and testing of the classifiers. The ML algorithms analyze the training data and 

create an inferred function which can be used for mapping new instances. An optimal 

scenario will allow for the algorithms to correctly determine the class labels of the testing 

data. Finally, the performance of the classifiers is evaluated using the performance metrics. 

 

3.2 ATSC Channels Datasets 

3.2.1 Collection Sites  

The collection of datasets was undertaken at ten different sites across Essex County, 

Ontario as illustrated in Fig. 3.1. The data collection script is based on a closed-loop GNU 

Radio flowgraph. It is a free and open-source software development toolkit that provides 

signal processing blocks to implement software radios. The Universal Serial Radio 
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Peripheral (USRP) hardware driver source provides outputs of values that are proportional 

to the in-phase and quadrature (IQ) components of the voltage seen at the USRP’s antenna 

terminal. Datasets comprise of FFT samples at given timesteps equal 171 microseconds 

and amplitude relative to the full scale of the USRP as presented in Figs.3.2-3.6. The 

datasets cover the TV channels band from 490 to 740 MHz, gathered at each site to be 

employed as training and testing data [31].  

 

 

Figure 3.1: Map of dataset collection Sites across Essex County, Ontario, Canada [31]. 
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3.2.2 ATSC Channels Classes 

The bandwidth of each channel at the collection site was manually examined to create 

labels for the datasets using the USRP and GQRX software as a spectrum analyzer. Five 

classes are identified and presented in Table 3.1 [31]. 

Table 3.1: ATSC channels classes 

ATSC channels classes Class (C) 

Unoccupied (PUs and SUs are inactive) 0 

ATSC Present, strong (PU active) 1 

ATSC Present, weak (PU active) 2 

Strong interference (SU active) 3 

Weak signal interference (SU active) 4 

 

1. Unoccupied channel (Class 0): it corresponds to a case where neither PU nor SU is 

found to exist in the channel. The channel in Fig. 3.2 is available for use by CR.  

2. ATSC present, strong (Class 1): it corresponds to the presence of a PU (i.e. a broadcast 

television station). The signal spectrum appears relatively uniform and flat across the 

bandwidth with a pilot tone located at the left edge of the channel as shown in Fig. 3.3. 

The channel is considered unavailable for use and the CR must not transmit in this band 

in this condition. 

3. ATSC present, weak (Class 2): This class corresponds to situations where an ATSC 

signal is found to be very faintly visible over the bandwidth. The channel in Fig. 3.4 

exhibits a pilot tone with a weaker amplitude.  

4. Interference, strong (Class 3): This class corresponds to the presence of other SUs or 

unknown signals whose amplitudes are sufficiently large over the channel bandwidth 

as exhibited in Fig. 3.5.  

5. Interference, weak (Class 4): the graph in Fig. 3.6 represents weak interference class 

corresponds to the presence of other SUs or unknown signals whose amplitudes are 

small over the channel bandwidth.  
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(a) 

 

 

 

(b) 

Figure 3.2: Unoccupied channel 51 at site 1 (a) FFT samples and (b) waterfall display 

of spectrum power in (dBFS). 
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(a) 

 

 

(b) 

Figure 3.3: ATSC signal present, strong in channel 41 at site 1 (a) FFT samples, and (b) 

waterfall display of spectrum power in (dBFS). 
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(a) 

 

 

(b) 

Figure 3.4: ATSC signal present, weak in channel 21 at site 1 (a) FFT samples, and (b) 

waterfall display of spectrum power in (dBFS). 
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(a) 

 

 

(b) 

Figure 3.5: Interference, strong in channel 44 at site 1 (a) FFT samples, and (b) 

waterfall display of spectrum power in (dBFS). 
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(a) 

 

 

 

(b) 

Figure 3.6: Interference, weak in channel 35 at site 1 (a) FFT samples, and (b) waterfall 

display of spectrum power in (dBFS). 
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3.2.3 Dataset Structure 

The datasets are composed of files in hierarchical data format (HDF5) that are designed to 

store and organize large and multidimensional datasets. Each file corresponds to a single 

scan of the 250 MHz bandwidth of interest at the sites. It split hierarchically among five-

channel groups (i.e. classes) as shown in Fig. 3.7 [31].  

 

 

Channel groups 

                                                                                 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Dataset Structure [31]. 
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The channel groups are then further divided into multidimensional arrays containing 

sequences of complex FFT points corresponding to the frequency spectrum of a single 6 

MHz ATSC channel at given timesteps. Each row in the array contains 1024 complex FFT 

points corresponding to snapshots of the spectrum at uniformly- spaced time steps. 

 

3.3 System Model and Assumptions 

The ATSC licensed users in the frequency band from 490 to 740 MHz are considered as 

PUs. The system consists of M channels occupied by PUs and unknown signals. The CR 

will be referred to as SU which will share channels with the PU if the PU or interference 

(other SUs) are not present. The channel m is available only for the CR network to exploit 

when there is no PU or SU in the active state in that channel. If A denotes channel 

availability: 

 

                    
1

1
A

+
= 

−
  

if  = 0 for all ,

otherwise

mC m
                                                  (3.1) 

 

where mC denotes the class of channel m and M is the number of channels. 

The main goal of the proposed ML models is to correctly assess the availability of channels. 

Since the suggested algorithms are supervised learning, FFT samples for each channel will 

be used with their labels to train the classifiers. This is equivalent to designing a classifier 

to correctly map the FFT samples to the class of the channels in the framework of ML. The 

ML model will be able to detect the presence of PU by observing the pilot signal.  
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Let Y  represents the set of energy samples for training dataset after normalization (i.e. the 

input):  

                             

          

11 1

1

N

T TN

y y

Y

y y

=

 
 
 
 
 

 ,                                                   (3.2) 

 

where N and T represent the number of FFT samples for each channel and the scanning 

duration for the channels, respectively. Let C  represent the class of the channels (i.e. the 

output) corresponding to Y :  

                                                  

1

T

c

C

c

 
 

=  
 
 

                                                               (3.3) 

Let Z is the output of the PCA that represent the transformation of  Y  into a lower 

dimension: 

11 1

1

n

T Tn

z z

Z

z z

 
 

=  
 
 

,                                                 (3.4) 

where n N . 

In Fig. 3.8, the framework of the proposed ML models is demonstrated, comprising of the 

data preprocessing, dimensionality reduction, classification training, and testing. The 

dotted blocks illustrate using PCA as a dimensionality reduction technique before the 

classification. 
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Figure 3.8:  ML-based spectrum sensing framework. 
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Once the classifier has been effectively trained, the samples in the testing data are ready 

for evaluation of the performance of the classifiers. Let Y  and Z   denote the FFT samples 

for testing and their new representations after applying dimensionality reduction, 

respectively. If Cdonates the corresponding channel classes for the testing samples and 

P  is the predicted class by the classifier. Hence, 

otherwise

C
P


= 


  
detection

misdetection
                                               (3.5) 

For instance, If the testing samples are for channel occupied by active PU and the model 

classifies the channels as unoccupied, it is misdetection. 

 

3.4 Performance Measurement 

A confusion matrix is a summary of prediction results on a classification problem. The 

number of correct and incorrect predictions are summarized with count values and broken 

down by each class as illustrated in Fig. 3.9. The confusion matrix shows how the 

classification model can distinguish between samples belonging to different classes when 

it makes predictions [32]. 
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Figure 3.9: Confusion matrix for multiclass classification [33].  
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In Fig. 3.9, TP is the outcome where the model correctly predicts samples belong to class 

2 while TN is an outcome where the model correctly predicts samples do not belong to 

class 2. FP is an outcome where the model incorrectly predicts samples of other classes as 

samples of class 2. FN is an outcome where the model incorrectly predicts samples of class 

2 as they belong to other classes.  

 

• Accuracy is the measure of all the correctly identified samples. It is mostly used when 

all the classes are equally important and is calculated by the formula: 

       
TP + TN

Accuracy = 
TP + TN + FP + FN

                                                                 (3.6) 

• The recall is the percentage of actual positives that are correctly identified. It is also 

called the true positive rate (TPR), the sensitivity, or the probability of detection and is 

calculated by the formula: 

TP TP
TPR

P TP + FN
= =                                                      (3.7) 

• Precision is defined as the number of true positives divided by the number of true 

positives plus the number of false positives. It shows the ability of a classification 

model to return only actual samples belong to the class.  

TP
= 

TP + FP
Precision                                                           (3.8) 

• The false-positive rate (FPR) is the proportion of negative samples incorrectly 

identified as positive samples in the testing data. It is also called the probability of false 

alarm. 

FP FP
FPR

N FP + TN
= =                                               (3.9) 

    

 

https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
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• F-measure (Also called F1 score) is the harmonic mean of precision and recall and 

gives a better measure of the incorrectly classified cases than the accuracy metric. It is 

calculated as: 

2 (Precision + Recall)
F-measure = 

Precision × Recall
                                     (3.10) 

                    
2TP

=
2TP + FP + FN

. 

• ROC curve is a graphical tool that illustrates the behavior of TPR with respect to the 

FRP which reflects the performance of a classification model at different classification 

thresholds.   

 

It is also notable that K-fold cross-validation is employed in performance evaluation since 

it usually leads to a less biased or less optimistic estimation of the model than other 

techniques. In this approach, the dataset is randomly divided into K groups or folds, then 

the model is trained using (K – 1) folds and the models are tested using the remaining Kth 

fold. the accuracy and F-measure for each fold were recorded as shown in Table 4.1. The 

process is repeated until every K-fold serves as the test set. The value of K is set to 5. Two 

approaches for spectrum sensing based on ML models are adopted as follows:   

 

Algorithm 3.1: Spectrum sensing Algorithm based on ML classification techniques 

 

 

1. Let Y  in (Eqn. 3.2) be the normalized values of the FFT samples collected by the 

USRP and C  in (Eqn.3.3) are the classes labeled for the scanned channels. 

2. Choose a classifier and initialize the parameters.  

3. Train the classifier model using Y  and C   in step 1. 

4. Cross validate and test the trained model using Y . 

https://www.thesaurus.com/browse/notable
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5. Predict the class of the testing data C  using the trained model. 

6. Compute F-measure and accuracy. 

 

Algorithm 3.2: Spectrum sensing Algorithm based on dimensionality reduction and 

 ML classification techniques 

 

1. Let Y  in (Eqn. 3.2) be the normalized values of the FFT samples collected by the 

USRP and C  in (Eqn. 3.3) are the classes labeled for the scanned channels. 

2. Select a suitable value n  for the number of principal components for PCA where 

n N . 

3. Compute Z  in (Eqn. 3.4) by finding the principal components of  Y  in (Eqn. 3.2) 

using PCA. 

4. Choose a classifier and initialize the parameters. 

5. Train the classifier model using C  and  Z  in steps 1 and 3, respectively. 

6. Cross validate and test the trained model using Y . 

7. Predict the class of the testing data C  using the trained model. 

8. Compute F-measure and accuracy.  

 

3.5 Summary  

The available are employed for training and testing purposes. Datasets consist of FFT 

samples that cover the TV channels band from 490 to 740 MHz. ML-based spectrum 

sensing framework has proposed. It includes data preprocessing, feature extraction, and it 

ends with predicting the class of testing data. Moreover, Accuracy, F-measure, and ROC 

curve will be used to evaluate the performance of the four classifiers. 
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CHAPTER 4 

Results and Discussions 

 

 

 

Based on real spectrum data collected over different locations in Essex County [31], the 

results of simulating the proposed spectrum sensing-based ML models using different 

classifiers are evaluated employing different performance metrics. The performance 

metrics are confusion matrix, accuracy, F-measure, and ROC provided in Chapter 3. Also, 

the collected datasets are examined and it is concluded that the results follow the same 

pattern without loss of generality. Moreover, the impact of employing PCA on the detection 

performance of the proposed model is discussed in this chapter. 

 

4.1 Simulation results of the classifiers 

In this section, the proposed Algorithm 3.1 in Chapter 3 is examined using the four 

classifiers, and performances are investigated. The parameters of four classifiers, i.e., type 

of kernel for SVM, the number of neighbors (k), and the type of distance measure for the 

kNN, are inspected. 
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Figure 4.1: Confusion matrix for SVM classifier without PCA at site 1. 

 

The accuracy and F-measure of fold 2 in Table 4.1 are obtained from the confusion matrix 

shown in Fig. 4.1 using Eqn. 3.6 and 3.10, respectively. It presents the TP, TN, FP, and FN 

of values of the five classes. 

 

 

Table 4.1: SVM classifier performance without PCA at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9333 0.8333 

fold2 0.9354 0.8385 

fold3 0.9297 0.8244 

fold4 0.9262 0.8154 

fold5 0.9308 0.8269 
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Figure 4.2: Confusion matrix for the kNN classifier without PCA at site 1. 

 

Similarly, the confusion matrix in Fig. 4.2 illustrates TP, FP, FN, and TN of the kNN 

classifier where the accuracy and F-measure of fold 2 presented in table 4.2 are obtained. 

It is obvious from Tables 4.1 and 4.2 that the accuracy and F-measure for the SVM model 

are greater than their counterparts in the kNN model. Therefore, the SVM exceeds kNN 

due to the fact when F-measure increases, the recall (i.e. probability of detection) increases 

as shown in Eqn. 3.10. Additionally, the ML model performs well when it achieves the 

maximum number of TP and TN and the minimum numbers of FP and FN. 

 

Table 4.2: kNN classifier performance without PCA at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.8887 0.7218 

fold2 0.8892 0.7231 

fold3 0.8846 0.7115 

fold4 0.8826 0.7064 

fold5 0.8846 0.7115 
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Figure 4.3: Confusion matrix for DT classifier without PCA at site 1. 

 

In the same manner, Fig. 4.3 presents the confusion matrix for the DT classifier among the 

five classes where the accuracy and F-measure of fold 2 shown in Table 4.3 are obtained. 

 

Table 4.3: DT classifier performance without PCA at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9144 0.7859 

fold2 0.9272 0.8179 

fold3 0.9164 0.7910 

fold4 0.9108 0.7769 

fold5 0.9149 0.7872 

 

https://www.thesaurus.com/browse/in%20the%20same%20manner
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Figure 4.4: Confusion matrix for Ensemble classifier without PCA at site 1. 

Figure 4.4 displays the confusion matrix of the Ensemble ML model using data collected 

from site 1. It is evident from Table 4.4 that the Ensemble classifier outperforms the SVM, 

kNN, and DT classifiers in terms of accuracy and F-measure as it achieves the maximum 

accuracy and F-measure, around 94 % and 86 %, respectively. Hence, it improves the 

probability of detection. 

 

Table 4.4: Ensemble classifier performance without PCA at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9446 0.8615 

fold2 0.9436 0.8590 

fold3 0.9374 0.8436 

fold4 0.9441 0.8603 

fold5 0.9533 0.8833 

 

In order to develop the ROC curves for the different classifiers. Algorithm 3.1 is 

implemented in Matlab and is executed for several attempts using different parameters and 

the two best results are shown in Figs. 4.5, 4.6, and 4.7. 

https://www.thesaurus.com/browse/evident
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Figure 4.5: ROC curves for SVM classifier using linear and polynomial kernels at 

site 1. 

Figure 4.5 illustrates the ROC curves for the SVM classifier for class 0 (i.e. unoccupied 

channel). Linear and polynomial (poly) kernels for the SVM classifier are investigated to 

assess the detection performance. The larger the area under the ROC curve, the better the 

SVM model is at distinguishing between samples of the unoccupied channels and the 

samples of channels occupied by PU or SU. Furthermore, at FPR (probability of false 

alarm) = 0.2, the TPR (probability of detection) for linear and poly kernels are 0.93 and 

0.75, respectively. Therefore, the linear kernel excels poly kernel in terms of TPR and FPR 

as shown in Fig. 4.5. 
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Figure 4.6: ROC curves for the kNN classifier among two distance metric and 

neighbor numbers at site 1. 

Similarly, two distance metrics have been inspected to assess the kNN classifier 

performance. It can be observed from Fig. 4.6 that using euclidean as distance metric 

enhances the performance of kNN classification in terms of ROC in comparison to City 

block. In Fig. 4.7, the performance of the DT algorithm is examined based on the ROC 

curve using two leaf sizes (LS). At TPR (probability of detection) = 0.9, the for FPR 

(probability of false alarm) for DT with LF = 10 and 7 are 0.14 and 0.4, respectively. Thus, 

DT with LS =10 has a lower probability of false alarm. 
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Figure 4.7: Comparison of ROC curve for DT classifier using various LS at site 1. 

 

 

Figure 4.8 exhibits the ROC curves of the four classifiers without employing PCA. By 

inspection, the Ensemble has the highest probability of detection (TPR) for a given false 

alarm rate (FPR). For this reason, the Ensemble outperforms the other techniques by 

combining multiple classifiers while SVM comes in the second rank by finding the 

hyperplane maximizing the margin between the classes. 
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Figure 4.8: Comparison of ROC curves for all used classifiers without PCA at site 1. 

 

 

 

 

4.2 Simulation results of the classifiers using the PCA 

technique 

The performances of the four classification methods are evaluated after employing PCA 

using Algorithm 3.2 and compared with the results in section 4.1. 
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Figure 4.9: Confusion matrix for the SVM classifier using the PCA technique at site 1. 

 

Figure 4.9 presents the confusion matrix of the SVM algorithm utilizing PCA where the 

accuracy and F-measure of fold 2 in table 4.5 are obtained. It can be seen from Tables 4.1 

and 4.5, respectively, that the accuracy and F-measure are slightly dropped from 0.93 and 

0.83 to 0.92 and 0.8, respectively as a result of losing information in the dataset after 

implementing PCA. 

 

Table 4.5: SVM Classifier performance using the PCA technique at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9215 0.8038 

fold2 0.9267 0.8167 

fold3 0.9205 0.8013 

fold4 0.9118 0.7795 

fold5 0.9108 0.7769 

 

 



 

47 
 

 

 

Figure 4.10: Confusion matrix for the kNN classifier using the PCA technique at site 1. 

 

Following the same procedure, the accuracy and F-measure of fold 2 in table 4.6 are 

calculated using the kNN confusion matrix in Fig 4.10. It can be perceived from tables 4.2 

and 4.6 that the accuracy and F-measure have increased from  0.88 and 0.72 to 0.92 and 

0.8, respectively due to fact that the kNN classifier operates better with a small number of 

features (i.e. lower dimension)  than a large number of features (i.e. higher dimension). 

 

Table 4.6: kNN classifier performance using the PCA technique at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9262 0.8154 

fold2 0.9164 0.7910 

fold3 0.9241 0.8103 

fold4 0.9103 0.7756 

fold5 0.9195 0.7987 
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Figure 4.11: Confusion matrix for DT Classifier using the PCA technique at site 1. 

 

Figure 4.11 displays the confusion matrix of the SVM algorithm using PCA where the 

accuracy and F-measure of fold 2 in table 4.7 are obtained. It can be shown from Tables 

4.3 and 4.7 that the averages of the accuracy and  F-measure nearly equal. Thus, PCA has 

reduced the number of features in the datasets while retaining the classification 

performance. 

 

 

Table 4.7: DT classifier performance using the PCA at site 1. 

 

5 K fold Accuracy F-measure 

fold1 0.9128 0.7821 

fold2 0.8990 0.7474 

fold3 0.8990 0.7474 

fold4 0.9103 0.7756 

fold5 0.9010 0.7526 
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Figure 4.12: Confusion matrix for Ensemble classifier using the PCA technique at site 

1. 

 

Furthermore, the accuracy and F-measure of fold 2 in Table 4.8 are calculated using the 

Ensemble confusion matrix in Fig 4.12. It can be noted from Tables 4.4 and 4.8 that the 

accuracy and F-measure have slightly decreased from 0.94 and 0.86 to 0.92 and 0.83, 

respectively, as a result of losing information in the dataset after applying PCA. 

 

Table 4.8: Ensemble classifier performance using the PCA technique at site 1. 

 

 

5 K fold Accuracy F-measure 

fold1 0.9282 0.8205 

fold2 0.9328 0.8321 

fold3 0.9256 0.8141 

fold4 0.9241 0.8103 

fold5 0.9354 0.8385 
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Figure 4.13: Comparison of ROC curves obtained by kNN and DT classifiers with and 

without using the PCA technique at site 1. 

 

In Fig.4.13, ROC curves of kNN and DT classifiers with and without using the PCA 

technique are exhibited. It can be observed for a given FPR, the TPR of the kNN classifier 

with PCA is higher than kNN without PCA. Consequently, the performance is enhanced 

after implementing PCA, since the kNN classifier works efficiently on datasets of lower 

features. Besides that, Applying the PCA technique maintains the performance of the DT 

classifier by extracting features relevant to the classification problem. Likewise, ROC 

curves of Ensemble and SVM classifiers with and without using the PCA technique are 

depicted in Fig. 4.14. The classification performance based on ROC after utilizing the PCA 

technique is insignificantly declined as for Ensemble and SVM classifiers as a result of 

information loss during reducing the dimension. 
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Figure 4.14: Comparison of ROC curves obtained by Ensemble and SVM classifiers with 

and without using the PCA technique at site 1. 

Furthermore, the duration of the training for the proposed classification algorithms is 

computed and compared with/without the PCA technique as reported in Table 4.9. It is 

clear that the DT and kNN classification algorithms have the lowest training duration. It is 

also shown the Ensemble algorithm has the greatest training duration seconded by the SVM 

algorithm due to the intensive computational complexity of both algorithms compared with 

the kNN and DT algorithms. 

Table 4.9: Comparison of training duration (in seconds) for the classifiers with and 

without using the PCA technique for 2000 training samples at site 1. 

 

Classification 

Methods 

Without PCA 

 

With PCA 

 

SVM 4.0480 2.3505 

kNN 0.8315 0.6561 

DT 2.8848 0.7673 

Ensemble 27.2410 4.8514 

https://www.thesaurus.com/browse/displayed
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4.3 Summary  

The simulation results of the four classifiers have been presented and demonstrated in terms 

of accuracy, F-measure, and ROC. The results have shown that the Ensemble classifier 

exceeds the other classifiers based on performance metrics followed by the SVM classifier. 

Nevertheless, the performance comes at the cost of greater computational complexity. Plus, 

the SVM classifier attempts to find the hyperplane that maximizes the margin between the 

classes which results in increasing the training duration compared with the kNN and the 

DT classifiers. Furthermore, the results have shown that employing a dimensionality 

reduction method such as the PCA technique before the classifier is critical to speed up the 

training process across the four classifiers by extracting the most essential features and 

removing redundancy in datasets. However, PCA should be carefully exercised to maintain 

classification performance. 
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CHAPTER 5 

Thesis Conclusions and Future works  

 

5.1 Conclusions 

Supervised ML algorithms have been investigated as an alternative route for sensing the 

spectrum to overcome limitations in the conventional spectrum sensing techniques. ML 

models based on the SVM, kNN, DT, and Ensemble classifiers are examined to detect the 

presence of PU and unknown users over the TV bands. The proposed models have been 

trained and validated using the available datasets collected at ten different sites across 

Essex County, Ontario. Unlike the single classifier approach, an Ensemble classification 

approach combines the outputs of multiple classifiers. Consequently, the overall 

classification performance of the Ensemble classifier excels single classification approach. 

Moreover, the datasets have been projected to a lower-dimensional space by applying the 

unsupervised learning PCA technique to remove redundancy in the data as well as speed 

up the learning process for the four classifiers and more importantly help in avoiding 

overfitting. 

The results have revealed that the Ensemble classifier surpasses the other classifiers based 

on the performance measurements via joining multiple classifiers. However, the 

performance comes at the cost of greater computational complexity. Moreover, the SVM 

classifier exceeds kNN and, DT classifiers in terms of accuracy, and F-measure. 

Furthermore, the results have shown that applying a dimensionality reduction method such 

as PCA before the classifier decreases the training duration by extracting features and 

removing redundancy in datasets. Though, the PCA technique should be carefully used to 

maintain classification performance. 
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5.2 Future works 

Recently, the application of ML algorithms in cognitive radios has evolved as an attractive 

and versatile research subject of interest to many researchers. For future works the 

following research areas are recommended: 

1. A multistage classification-based spectrum sensing approach may be further 

explored to boost accuracy and F-measure. 

2. The noise uncertainty and the radio conditions such as shadowing and multipath 

propagation fading has a detrimental effect on the sensing performance and result 

in a hidden terminal problem (HTP). Hence, the research can be extended to 

implement ML models for CSS to enhance the performance of the detection.  

3. During the training phase of the classifiers, the class of the channels is not always 

accessible. hence, supervised learning methods may not be applicable. Therefore, 

unsupervised ML algorithms may be a convenient method for spectrum sensing.  
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