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ABSTRACT 

Although multi-axis bead deposition-based additive manufacturing processes have 

been investigated in many aspects in the literature, a general process planning approach to 

address collision detection and prevention still needs to be developed to fabricate complex 

thin-wall geometries in a supportless fashion. In this research, an algorithm is presented that 

partitions the surfaces of the part and finds the appropriate tool orientation for each partition 

to avoid collisions. This algorithm is applied to segment the surface of a thin-wall 

hemisphere dome and fabricate it without the need of support structures. Two main 

fabrication strategies are developed: wedge-shaped partitioning, and a rotary toolpath. A 

five-axis toolpath and a 2+1+1-axis toolpath is introduced to fabricate the partitioned build 

scenarios. A rotary (1+3-axis) toolpath is also developed. It is concluded that planar slicing 

brings limitations to reduce the number of partitions that can be modified by a constant step 

over toolpath.  

On one hand, the partitioning strategy provides an opportunity to fabricate 

geometries in a supportless fashion by direct energy deposition additive manufacturing, on 

the other hand, it introduces physical properties challenges such as surface roughness and 

hardness variations. Process planning, data collection, and experimental/numerical 

procedures are implemented to investigate the surface roughness variations (Ra 

measurement) of fabricated domes. Hence, two solutions are developed using Matlab 

programming. A mount solution uses the magnified pictures of the exposed surface edges 

of mount samples as input data. The other solution uses a 3D point cloud of the surface. 

The innovation of the 3D point cloud solution is the distance factor that is applied in the 

calculations. The results of this solution are compared to the mount solution. Since the input 

data of the mount solution is more accurate, the results are more reliable than the 3D point 

cloud method. The Ra variation diagrams show lower Ra values for the 5-axis sample and 

the highest values for the rotary sample. Large surface irregularities are noticed at the 

transition points between partitions, which escalates the roughness values drastically in the 

region. The sudden alteration of the tool orientation between partitions causes these surface 

irregularities. 

Additionally, process planning, data collection, and experimental/numerical 

analyses are developed to explore hardness variations of the fabricated domes along the 
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slicing direction. The hardness diagram of the 2+1+1-axis sample shows a recognizable 

pattern for partitions 2-4. The hardness is around 200 (HV) within the partitions but drops 

to 150 (HV) at the transition points between partitions. Partitions 5-8 show a less 

recognizable pattern. Although the rotary sample is fabricated in 3 intermittent fabrication 

sections, it does not show any significant pattern related to the sectioning. The statistical 

analysis of the hardness shows the highest standard deviation for the 5-axis sample and the 

least for the rotary one.  

Finite element analysis of the hardness and residual stress are performed by the ESI 

Sysweld software for 144 beads of the 2+1+1-axis sample. To reduce the calculation time 

(a factor of 15 times), a variable mesh size of the beads and substrate are introduced. This 

means that the element size of the beads grows for the regions farther from the measurement 

region. The resultant hardness diagram predicts the peak and valley of the experimental 

diagram for the partitions 1-4, but it misses some patterns for partitions 5-8. Fast Fourier 

transformation analyses of the surface roughness and experimental/numerical hardness data 

show a repetitive pattern by the wavelength of the partition length. The preparation time 

and accuracy of the finite element analysis results reveal that an experimental fabrication 

and measurement test is preferred at this time, or a new method of numerical analysis is 

required. 

This research clearly illustrates the challenges associated with building a complex 

component and understanding its characteristics. On one hand, splitting the part geometry 

by different partitioning shapes facilitates the fabrication of the geometries in a supportless 

fashion. However, this fabrication strategy introduces inconsistency in the mechanical 

properties. Hardness variations generated by a partitioning strategy needs to be dealt with 

(possibly by a post-heat treatment). Surface quality at the transient points needs to be 

investigated more. This foundational research highlights the process planning challenges 

associated with metal bead based deposition processes, and highlights relevant challenges 

for similar process families.  
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1 CHAPTER 1 

INTRODUCTION  

During the 1980s a new manufacturing method was developed which enabled the 

fabrication of patterns, or prototypes of parts and assemblies from plastics directly from a 

computer aided design (CAD) file. It was called rapid prototyping (RP) as the product was 

suitable just for visually investigating the shape and assembly feasibility of the real part. 

This technology builds 3D objects by adding material layer-upon-layer [2][3]. Figure 1-1 

shows schematic processes for producing a prototype by RP. The process respectively 

includes computer aided design (CAD) preparation (Figure 1-1 (a)), slicing the geometry 

(Figure 1-1(b)), and building the layers (Figure 1-1 (c), (d)). The benefits of RP were 

appropriate for low volume production as there is no need to fabricate a mold or any other 

tool. Moreover, the time between the product design to the first actual product was much 

shorter than when using traditional manufacturing techniques such as casting and injection 

molding. On the other hand, it was not cost-efficient for higher production rates. Also, the 

product did not have the strength of one made by injection molding using the same material.  

 

Figure 1-1. Processes of building a part by RP 

Later, the name of the process changed from rapid prototyping to rapid 

manufacturing (RM) because its technology advanced from just making plastic prototypes 

to metal functional products. Recently, the RM name has been modified to be called 

additive manufacturing (AM). ASTM defines AM as “a process of joining materials to 

make objects from 3D model data, usually layer upon layer, as opposed to subtractive 
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manufacturing methodologies. Synonyms for this process are: additive fabrication, additive 

processes, additive techniques, additive layer manufacturing, layer manufacturing, and free 

form fabrication” [4].  

Nowadays there are many different AM technologies used in industry. Various 

physical phenomena, materials, and mechanisms are utilized to make a product. Table 1-1 

categorizes some of the most common AM processes. Based on the physical state of the 

used material, there are 3 types of AM processes: (i) liquid based, (ii) solid based and (iii) 

powder based. Metal additive manufacturing technologies mainly use metal powder to build 

a part. This research focuses on direct energy deposition (DED), which is a powder fed AM 

system.  

Table 1-1. Additive Manufacturing Processes [4] [5] 

AM Type Technology Process Name 

Liquid Based 
Vat photo polymerization 

Stereolithography (SLA) [5] 

Digital Light Processing (DLP) [6] 

Material Jetting Multi-jet fusion (MJF) [7] 

Solid Based 
Sheet Lamination 

Laminated Object Manufacturing (LOM) [8] 

Ultrasonic Consolidation (UC) [9] 

Material Extrusion Fused Deposition Modeling (FDM) [10] 

Powder Based 

Powder bed 

fusion 

 

Laser heat 

Electron Beam Melting (EBM) [11] 

Selective Laser Sintering (SLS) [12] 

Direct Metal Laser Sintering (DMLS) [13] 

Binder 

Jetting 
3D Inkjet printing [14] 

Powder feed Direct Energy Deposition (DED) [15] 

 

Additive manufacturing processes allow the fabrication of parts directly from a 

computer-aided design (CAD) file. The CAD-file describes the geometry and size of the 

parts to be built. For the first step, the geometry should be saved in the needed build format. 

Most of the AM processes require a stereolithography (STL) file format as the input file. 

An STL file tessellates the surface of the part into triangles and saves facets of all triangles. 

The information of all these triangles forms the surface of the designed 3D structure. Then 

the *.stl file is opened in the appropriate software to be sliced into layers with the user 
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selected thickness and component build orientation. For solid parts, each layer can be filled 

by a peripheral contour and filled with beads deposited in a raster pattern. A single or 

parallel fill travel path is used for each layer of a thin-walled part. Finally, the toolpath file 

is uploaded to the AM machine in order to fabricate the product.  

As shown in Table 1.1, there are two main powder-based AM processes: (i) powder 

bed fusion and (ii) powder fed systems. The number of required axes and mechanisms for 

providing the powder to the printing zone are the main differences between these 

technologies. For many technologies, the build chamber is encased. For the DLMS and SLS 

processes, the chamber is filled with a neutral gas; whereas, powder fed AM has the option 

to provide shielding gas from the nozzle locally just above the melt pool. Polymer, ceramics 

and metal powders can be used in these processes [16].  

In most of the AM processes, there is a necessity to create two different structures, 

the main structure for the component, and support structures. Support structures provide a 

‘platform’ for overhang features. The main CAD geometry represents the desired object, 

and a support structure is an auxiliary that needs to be removed. Because of the inherent 

nature of AM processes, support structures are required to support overhanging features 

while building a part in most of the AM techniques such as SLM, DMLS, and FDM. 

Material extrusion additive manufacturing is a technology that melts plastic 

filaments to make the parts. Most of these machines are provided with at least 2 nozzles, 

one for making the model and the other for making the support structure. Two methods are 

available to remove support structures, and are material dependent; solving it in a solution 

and mechanically removing. If the support structure material is compatible with a provided 

solution, the fabricated part is left in a solution to dissolve the support structure. If not, the 

support structure should be removed manually [17]. Figure 1-2 (a) shows a part fabricated 

with black material that has a support structure fabricated with a white material. The top 

part of the black part has a horizontal platform that would collapse without a support 

structure. After the part is fabricated, the white support structure needs to be removed.   
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Figure 1-2. The printed part (a) With support structure (b) Support structure removed (Image 

courtesy of PADT, Inc.) [18] 

Table 1-2 introduces some advanced support structure solutions found in the 

literature. In this table, applicable AM processes for each support structure type are 

mentioned. These support structures have differences that are appropriate for their 

mentioned application. Some like “Gyroid and Diamond lattice structures” contain 

overhang features that cannot be produced by the FDM or DED process. These structures 

are applicable for powder bed processes. Although the tree shape structures are mentioned 

to be applicable for 3 axis material extrusion, it seems it can be developed for powder fed 

AM processes as well.  

Table 1-2. Some advanced support structures 

Name of the support structure Applicable process 

Gyroid and diamond lattice structures [19] Powder bed 

Solid truncated octahedron support [20] Powder bed 

Cellular support structures [21] Powder bed 

Tree-like structure support [22] Material extrusion 

Branching support [23] Material extrusion 

Y shape support [24] Powder bed 

Grain support structure [25] Material extrusion 

 

All research solutions represented in Table 1-2 are trying to minimize the material usage 

for support structures, as building support structures are costly and time-consuming. 

Support structure removal adds extra costs and time to the total build process. Therefore, 

removing the necessity for support structures is very beneficial.  
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A technical explanation of the key AM terms for this research, such as slicing and 

overhang angles, will be explained in more detail. Surface roughness and hardness are 

mechanical properties that are explored and are introduced.  

 Metal Additive Manufacturing Background 

In the background section, a brief explanation of the differences between the powder 

bed and powder fed AM technologies is covered. Since direct energy deposition (DED) is 

specifically used in this research to build metal AM products, it will be explained in more 

detail. The capability of a DED machine in building complex parts is highly dependent on 

the number of axes. Hence, later in this chapter, a brief explanation of multi-axis controllers 

is covered.  

1.1.1 Powder Bed Fusion AM  

For powder bed fusion AM processes, the powder is provided on the platform layer 

after layer. Figure 1-3 shows a schematic of a powder bed system. In this system, a powder 

roller carries powder evenly from the powder feed tank to the build tank. After each layer 

is built the powder feed tank lifts a little and the substrate of the build tank goes down as 

high as one slice height to make space for powder for the next layer. After the roller 

distributes the powder on the build tank by the height of one layer, powder particles should 

be bound together in the needed areas within the layer. 

For a binder jetting based process, an inkjet print head deposits droplets of a liquid 

binding agent selectively onto the powder layer and make a solid layer. Then the build tank 

lowers and the roller spreads powder again. When the powder is spread evenly onto the 

build platform, the inkjet print head deposits binder droplets on the needed areas to solidify 

the layer [26]. Polymer, ceramic, plaster and metal powder can be used here. 

For powder bed techniques that are specialized for producing metal parts, a 

concentrated heating source is used to sinter or melt the particles and bind them together. 

Electron Beam Melting (EBM), Selective Laser Sintering (SLS), Selective Heat Sintering 

(SHS) and Direct Metal Laser Sintering (DMLS) have similar powder spreading systems 

but instead of using an inkjet printhead, a laser or electron beam scans the powder and fuses 

or melts it to form the needed shape in each layer. The powder distribution technology is 

the same as the binder jet’s system. This process repeats for the next layers until the object 
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is formed. The main difference between EBM and other laser-based powder bed methods 

is that the EBM happens in a vacuum chamber instead of neutral gas chamber. 

 

Figure 1-3. Powder bed additive manufacturing process [27] 

Support structures are necessary for laser-based powder-bed AM to fix the part to 

the substrate and to conduct heat away from the part. This reduces the thermal distortion 

and the residual stresses [28]. However, the removing process of the support structure 

introduces safety concerns. The product needs to be removed from the build tank and 

cleaned as it is covered with metal powder. Since most support structure designs are hollow, 

they can trap the powder. And the powder particles are small enough to be absorbed by 

inhalation. Therefore, during support structure removing operations, the health of the 

operator is at risk [29]. 
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1.1.2 Powder Fed AM  

For a powder fed system, the powder is distributed from a nozzle where required. 

ASTM defines direct energy deposition (DED) as “an additive manufacturing process in 

which focused thermal energy is used to fuse materials by melting as they are being 

deposited. Focused thermal energy means that an energy source (e.g., laser, electron beam, 

or plasma, etc) is focused to melt the materials being deposited” [30].  

Powder-fed AM system uses DED technology to deliver energy to melt pool. It is 

also known as laser cladding, direct metal deposition (DMD), laser metal deposition (LMD) 

[31], direct laser metal deposition (DLMD) [32][33] and powder feed laser additive 

manufacturing (PFLAM) [34]. This process has a nozzle that delivers the powder and inert 

gas from the ducts around the laser nozzle (Figure 1-4). The laser beam heats the melt pool 

on the substrate, and at the same time, the powder is delivered into the melt pool. The nozzle 

follows the toolpath on the substrate to deposit the first layer. Then it follows the toolpath 

of the second layer to deposit the material onto the first layer. This process continues until 

the product is built [35][36].  

DED can be used for various applications such as fabricating a new part, repairing 

a damaged part, and surface coating a part with another material to modify the surface 

characteristics. This research focuses on fabricating new parts. It is common to utilize this 

system to repair mold tool surfaces, turbine blades or coating the surface of oil and gas 

drilling components. Shaft repair using laser cladding technology is also very common in 

the industry. The softer substrate metal can be coated by a hard one, or coating metal part 

with the materials which resist high temperatures or chemicals. [37] [38][39].  
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Figure 1-4. Powder feed additive manufacturing process [40] 

DED components can be mounted on a multi-axis CNC system to increase its 

capability to produce more complex products. The AM processes mentioned in Table 1-1 

have integrated pre-set operating parameters and limited user interactions. In contrast, DED 

AM does not have a standard interface or process parameter set to minimize the user’s 

interactions for process planning. Much research is needed to automate this process. 

  Process Planning of DED AM 

A manufacturing process plan is a set of sequential processes in order to achieve 

some targets and to meet the required domain constraints [41]. Figure 1-5 shows a 

hierarchical process planning steps that need to be followed to produce an object by the 

DED AM process.  

As with any manufacturing process, process planning starts with the new product 

and its application. Being manufacturable is an essential factor to consider when a product 

is being designed. Design for manufacturability (DFM) is the methodology to guarantee at 

the concept stage that the fabrication of a product is reproducible, consistent, reliable and 

cost-effective [42]. By implementing DFM in AM products, with a minor change in 

geometry of the product, AM fabrication can be easier and less costly. A ‘design for AM 

(DFAM)’ example is shown in Fig. 1-6. Producing circular conformal cooling channels by 

DED AM is a challenge because, at the top segment of the cooling channel, the overhang 

angle exceeds the maximum allowed (Figure 1-6 (a)). By changing the top section form of 
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the cooling hole into a triangular shape, the part can be built by either DED AM or powder 

bed AM process without the need for support structures (Figure 1-6 (b)).  

After finalizing the CAD file, it should be converted into an *.stl file or any format 

that is compatible with the available toolpath generation software. In this research, 

Solidworks and Mastercam programs are used to create and modify the CAD files. 

Since additive manufacturing is based on layer-upon-layer production, the CAD 

geometry needs to be sliced to be usable for this fabrication process. The three main 

parameters for slicing a component are: (i) the slice type, (ii) the component build 

orientation and (iii) the slice height. Slicing has a significant role in AM processes, as it 

affects the surface quality, the support structure volume, the mechanical quality, and the 

build time. Slicing methods can be categorized into planar slicing, radial slicing, curvilinear 

slicing, and constant step over. 
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Figure 1-5. Hierarchical process planning steps of DED AM [43] 
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Figure 1-6. Modifying the geometry of cooling channel to make it buildable by DED AM. a) 

Before modification. b) Modified cooling holes 

Planar slicing- Planar slicing is the most common method of slicing to prepare the 

geometry for an AM process. Figure 1-7 shows how the geometry is sliced by this method. 

The planar slicing can be categorized into 3 methods:  

(i) In 2+1-Axis planar slicing (also called 2.5-Axis), there is just one slicing direction 

which is perpendicular to the build platform in conventional AM processes like 

FDM and SLA. This build strategy is simple and does not introduce collision issues. 

However, support structures are required for overhanging features. This type of 

slicing is used in all AM systems such as powder-bed AM, traditional FDM, and 

SLA machines (Figure 1-7 (a)).  

(ii) (ii) In adaptive slicing, slice height is variable (Figure 1-7 (b)). It can be used to 

build overhang features by introducing smaller slice height  [44].  

(iii) (iii) As 2+multi-axis planar slicing is shown in Figure 1-7 (c), each section of the 

part can be made by 2+1-axis planar slicing then the table rotates to build the next 

section by changing the slice direction. In this case, a surface of the first section 

works as the substrate to build the next section. Although by this method, overhang 

features may be fabricated without the need for support structure, it can cause 

collisions.  

Radial slicing- In some cases, a feature is needed to be added onto a round 

workpiece. In this case, planar slicing is not suitable because it creates intermittent tool 
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paths at both sides of the substrate (Figure 1-8 (a)). It is better to slice the part by radial 

surfaces that are co-axial with the substrate. (Figure 1-8 (b)).  

 

Figure 1-7. Planar slicing (a) 2+1-Axis slicing (b) adaptive slicing (c) 2+multi-axis slicing 

 

Figure 1-8. (a) Planar slicing. (b) Cylindrical slicing 

Curvilinear surface slicing- Similar to radial slicing, if the substrate has a 

curvilinear surface, slices with the same shape of the substrate can help build a part with 

better quality (Figure 1-9). Radial or curvilinear are not just limited to similar substrate 
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shape. Even for some part geometries, applying radial or curvilinear surface slicing on a 

flat substrate can be beneficial in reducing the support structure.  

 

Figure 1-9. Curvilinear surface slicing 

Constant Step Over- Figure 1-10 illustrates an example geometry for a thin wall 

surface that needs to be built by DED AM. The surface bends in the middle and it causes 

the overhang angle to increase drastically. Figure 1-10 (a) indicates how the real layer 

height varies when the geometry is sliced by a planar slicing method. The layer height is 

larger for the areas that have a larger overhang angle. On the other hand, Figure 1-10 (b) 

demonstrates another slicing method called constant step over. In this method, a driving 

curve needs to be created at the lower edge of the surface. This curve will be offset along 

the surface such that the distances between curves stay constant. As a result, the real heights 

of the layers stay constant. 

 

Figure 1-10. Comparison of planar slicing and constant step over for slicing a thin wall geometry 
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As shown in Figure 1-5 for the process planning for the DED AM process, when 

the slicing type is determined, the slice direction and the height needs to be decided. These 

two parameters should be selected based on the machine parameters and machine 

capabilities. Also, choosing a proper slice direction can minimize overhanging features and 

consequently decreases the complexity of the production. 

  Multi Axis Configurations 

For parts that have overhang features, a four or more axis machine is needed to 

fabricate the product in a supportless manner. Here in this research, a 5-axis machine is 

applied to build samples. Figure 1-11 illustrates a schematic of the 5-axis machine and its 

available movements. Using all 5 axes to build a part introduces some DED specific 

challenges as shown in Figure 1-12. In this figure, a sharp corner of a part that is built by 

DED AM is shown. The machine response time to traverse the interior corner caused 

material sublimation. The solution for this issue is to introduce a fanning movement for the 

nozzle to gradually change the orientation when it traverses from the first edge to the 

second. Linking the machine kinematics, dynamics, and motion controls is an on-going area 

of research for machine tool companies and researchers and is outside the scope of this 

work; however, if a process can be developed to apply less simultaneous axis motion, it 

decreases the process complexity. As Figure 1-13 indicates, axis configurations can be 

optimized to use less axes working simultaneously. This will be explored in this research 

to study the feasibility of making a complex part by less than 5 axes being active 

simultaneously. 

 

Figure 1-11. Translational and rotary movements of a sample 5-axis machine 
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Figure 1-12. Material sublimation at the corner (made by DED AM) [45] 

 

Figure 1-13. Mostly common axis configurations for DED AM 

In order to make the part in a 5-axis mode, the tilt and lead/lag angle play an 

important role.  

1.3.1  Tilt and Lead/Lag Angles 

As Figure 1-14 shows, the lead and lag angles refer to the angle that the nozzle 

inclines either forward or backward as it travels. When it leans forward it is called a lead 

angle and when it leans backward it is a lag angle [46]. Here, F is the direction that the 

nozzle travels to deposit the material, N is the slice direction and C is the cross product of 

F and N. Lead and lag angles are formed when the nozzle rotates around the melt pool point 

while the nozzle axis lies on the F-N plane [1]. 

•2 axes make the travel path in the layer and 1 axis is between-
layer movement

2+1 Axis

•2 axes make the travel path in the layer and 1 axis is between-
layer movement. 1 axis alters between features

2+1+1 Axis

•All 3 axes are involved at the same time3 Axis

•2 axes make the travel path in the layer and 2 axes between-
layer movement.

2+2 Axis

•All 4 axes are involved at the same time4 Axis

•4 axes for deposition toolpath and 1 axis for altering between
layers

4+1 Axis

•All 5 axies are needed to work at the same time5 Axis
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Figure 1-14. Lead/ lag angle 

The other angle that is widely used in 5-axis DED is the tilt angle. As Figure 1-15 

illustrates, this angle is formed when the nozzle tilts to the side. In this case, the nozzle 

rotates in the C-N plane. In this picture, N can be either the slicing direction used in 

traditional slicing or the surface tangency vector when using a constant step over when the 

product has thin-wall geometry. The tilt angle cannot be larger than a certain value due to 

process instability issues. 

 

Figure 1-15. Tilt angle 

1.3.2 Support Structure Elimination by Multi Axis System 

Support structures are needed for areas where an overhang angle exceeds the 

maximum allowed value. Figure 1-16 indicates that the overhang angle is the angle between 

the slicing direction and the tangent line of the surface. Based on the DED machine type, 

material, and process parameters, there is a maximum allowable overhang angle. If the 
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overhang angle exceeds this value, the material collapses as shown in Figure 1-17. In this 

picture, a thin-walled part is shown where the overhang angle increases as the height 

increases. The area highlighted as region 1 has a buildable overhang angle but the angle in 

region 2 exceeds the process limits. The collapsed material is apparent in region 2 for the 

experimental part.  

There are 2 possible solutions to eliminate the material collapsing problem, adding 

a material stock below the regions that have a high overhang angle or using an appropriate 

tilt angle to reduce the real overhang angle. The former solution is not practical as it adds 

post-processing costs to machine the stock away, and furthermore, may cause chatter and 

part deflection (for thin walled parts) which complicates the process [47]. However, for 

other AM processes a simple support structure can be helpful (Figure 1-18) In this picture, 

there is a gap between the bottom of the part and the substrate, so the green surface in 

Figure 1-18 (b) can be added to act as a support structure. This surface can be removed after 

fabrication by a simple machining process. 

 

 

Figure 1-16. Schematic explanation of a) Overhang angle b) Support structure 

As shown in Figure 1-16, the overhang angle is the angle between the slice direction 

and the surface tangent line. If the overhang angle is more than a maximum allowable value, 

support structures are needed. But, as Figure 1-19 shows, by utilizing a 5 axis machine and 

an appropriate tilt angle, the real overhang angle can be reduced (In order to simplify the 

pictures, it is assumed that the part is fixed while the nozzle is moving and rotating but in 
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reality, the nozzle is in vertical orientation and the part rotates to provide the required 

orientations between the part and the nozzle). By rotating the table, the angle between the 

nozzle axis and its tangent line (α in Figure 1-19 (a)) will be zero (ideal situation). Here, α 

is the angle between the tangent line and the nozzle axis and it is called the “tilted overhang 

angle”; β is the angle between the slice direction and the nozzle axis and it is called the “tilt 

angle”; and α+β is the angle between the slice direction and the tangent line so it is the 

“overhang angle” (Figure 1-19 (a)). In a 3-axis system, the nozzle axis is the same as the 

slice direction (β=0), so there is the angle α between the tangent line and the slice direction. 

In a 5-axis system, if the tilt angle increases to the point of reaching the overhang angle 

(Figure 1-19 (b)), the tilted overhang angle will be zero. In this condition, material will not 

collapse, since the next layer will be supported by the previous one. 

 

Figure 1-17. Material collapse for the regions that have high overhang angle [48] 

 

Figure 1-18. Simple support structure for AM processes 



19 

 

 

Figure 1-19. a) Applying tilt angle to reduce overhang angle b) When nozzle is tangent to surface 

real overhang angle is zero 

After all these parameters are defined, the toolpaths are created. The toolpath defines 

both the path that the nozzle needs to travel to deposit the material and its orientation at 

every point. In this research, the APLUS software is used to generate toolpaths. This 

software can create 5-axis toolpaths based on planar slicing, radial slicing and constant step 

over slicing for surfaces. Also, APLUS has parameters for the variable tilt angle capability 

that allows the nozzle to stay tangent to the surface.  

 Toolpath Verification 

When the toolpath is created, it is important to verify the travel paths for any 

possible collisions. As Figure 1-20 shows, collisions can occur between the nozzle and 

previously deposited layers (Figure 1-20 (a)) or between the nozzle and the substrate 

(Figure 1-20 (b)). A solution to avoid a collision is to tilt the nozzle to the appropriate side 

to prevent interference (Figure 1-21). Another solution is partitioning the surfaces into 

buildable segments and introducing an appropriate nozzle orientation to avoid collisions. 

The latter approach to resolve the collision problem will be explored in more detail in the 

methodology chapter.  



20 

 

 

Figure 1-20. Collision (a) Between nozzle and previously deposited layers. (b) Nozzle and the 

table 

 

 

Figure 1-21. Avoiding the (a) collision by (b) Tilting the nozzle 

 Pre-build Setup, Fabrication and Post Processing 

After a toolpath is finalized, machine parameters such as laser power, laser diameter, 

powder feed rate, etc., need to be set. Finding the appropriate values of these parameters is 

based on experience, and available literature from previous studies [49][50][51]. Studying 

the process parameters to bead geometry relationships is beyond the scope of this research. 

The last AM process planning step is creating the NC-code and importing it to the 

DED machine. The NC-code contains all the machine parameters, the toolpath, and the tool 

orientation. Then the machine fabricates the part. After the part is built, post-processing is 

required. Some post-processing operations include sandblasting to remove residual stresses, 

and/or finishing machining of the product to achieve the tolerances.  
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 Surface roughness measurement 

The surface texture consists of two main irregularities: surface roughness and 

waviness. These irregularities usually have a pattern and have a dominant direction 

(Figure 1-22). To measure the surface roughness other larger-scale noises like waviness and 

nominal geometry profile should be eliminated.  

 

Figure 1-22. Illustration of surface roughness terminology 

Here some of surface roughness terminologies are explained [52]: 

Roughness- finer irregularities of the surface that are resulted from the production 

process. The tool chatter or traverse feed marks are the main reasons for roughness in 

machining whereas being layer-based and material collapse are the main reasons in AM. 

Waviness- the form error of the surface originated from inaccurate geometry of the 

production tool. The roughness is superimposed in the waviness of the surface. 

Lay- the direction of the predominant surface pattern, mainly caused by the 

production process. The direction of the staircase effect in AM is the lay of the surface.  

Surface texture- the deviations of the surface from the nominal shape.   

Surface roughness measurements for AM built parts have been a challenge since the 

AM technology was introduced. AM built parts have rough surfaces as the fabrication 

process is layer-based. Some developing material extrusion AM technologies such as big 

area AM (BAAM) and large scale AM (LSAM) have very large beads (i.e., 20 mm wide 
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and 5 mm thick). Therefore, surface roughness measurement for these products can be more 

challenging [53].Figure 1-23 compares the approximate surface roughness (Ra) of DED 

AM with other AM processes and some traditional manufacturing processes. The Ra values 

of the DED processes are between 15 to more than 100 μm; whereas, milling and electro 

discharge machining (EDM) processes have surfaces that are less than 10 μm. Therefore, 

many of surface roughness measurement systems that are designed for traditional 

manufacturing techniques are not applicable for DED products.  

DED AM built products usually contain curved surfaces. This also makes it difficult 

to measure their surface roughness by conventional measuring techniques such as contact 

based systems (i.e., profilometer). Contact based systems are mostly specified for flat 

surface measurements.  

 

Figure 1-23. Surface roughness comparison of different manufacturing processes (LPBF: Laser 

powder bed fusion) [54] 

 Research Motivation and Objectives 

Since the DED process is a relatively new manufacturing technology, there are 

many research opportunities with this technology. As explained in greater detail in Chapter 

2, many researchers have explored DED AM from different aspects. Previous process 

planning studies for multi-axis DED AM of complex parts focused more on dividing the 

geometries into recognized design features (simple extrusions and sweeps). They divided 

the part geometry into the available recognized features to avoid collisions. However, a 

general algorithm to split the geometry into segments that are not dependent on individual 

features is needed. Experimental studies and simulations for single bead or simple multiple 
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bead scenarios have been investigated. However, experimental and numerical analysis 

investigations for a more complex component have not been considered.  

To build a complex part by a DED process, there can be geometrical boundaries of 

the product that makes it hard or even impossible to build in a supportless fashion. Complex 

geometries that include high overhang angles can cause collisions of machine/head 

components such as the nozzle to either the machine table or previously deposited layers. 

The first part of this research investigates the collisions caused by the product geometry 

(Figure 1-24). This leads to the machine head interference with previously deposited layers. 

Regardless of the slicing direction, for some parts collision can occur if it is required to be 

built without support structures. The proposed solution is based on partitioning the surfaces 

that cause collisions and applying different slicing directions and tool orientations for each 

partition to eliminate the interference problem. This solution will be explained in more 

detail in Section 3.1 of the methodology chapter. 

 

Figure 1-24. A simple half tube that results in collision with previous deposited layers 

The second part of this research realizes solutions to measure the surface roughness 

for DED AM built parts. Two solutions are proposed and developed, including roughness 

measurements from a mounted sample and from a 3D scanned point cloud. Variations of 

roughness (Ra) along the slice direction of a circular surface are investigated. More 

explanations for the Ra calculation as well as the Matlab code that evaluates Ra of the case 

study samples are explained in more detail in Section 3.5 of the methodology chapter. 
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Since AM parts are built in layers and the heat distribution is not uniform during 

fabrication, mechanical properties such as hardness vary. Knowing the distribution of 

mechanical properties such as the hardness and the residual stress distribution helps to 

ensure that the product has the proper quality characteristics for its application. In this 

research, the Vickers microhardness of a thin wall sample is measured experimentally. The 

general hardness pattern for the thin-walled parts is evaluated. The experimental hardness 

results are used to verify the implemented finite element analysis (FEA) model. 

Predicting the mechanical properties of a product prior to fabrication is a crucial 

requirement to design and build functional components. Traditional manufacturing 

technologies such as casting, machining, and injection molding have specialized software 

programs that have been developed to predict the quality for those products built by these 

processes. On the other hand, there are many parameters involved in AM processes which 

makes the prediction challenging. FEA analysis is a useful tool to simulate the coupled 

thermal-metallurgical-mechanical analysis for DED AM. The focus of the analysis here is 

to measure the hardness and residual stresses within the sample part at specific points. The 

main drawback of FEA analysis is it is very time-consuming. As analyzing the deposition 

of a single bead may take hours, it is anticipated to take days to analyze a simple multi-

layer part. The analysis time for a 144-layer thin wall part is reduced in this research. The 

results are compared with experimental hardness results.  

The objective of this research is to develop a process planning solution for 

supportless fabrication of complex thin-wall geometries using a multi-axis material 

deposition system. The proposed solution is based on partitioning the geometry surfaces in 

such a way that collisions are avoided. This research also explores surface roughness 

variations for round surfaces, and experimental and FEA prediction of hardness and other 

mechanical properties. In the FEA prediction model, a solution is provided to decrease the 

simulation time for a relatively large model. 

 Research Constraints 

In this research 410 stainless steel is used for the experimental fabrication. The 

geometry is limited to thin-wall parts. It means the surface geometries have a constant 

thickness and the thickness value is negligible compared to geometry size. Explorations 

about metallurgical properties of the product, post heat treatment, distortion and microscale 
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investigations such as the microstructure are outside the scope of this research. This 

research investigates the properties of the whole product rather than the properties at the 

bead-scale. Other DED challenges such as process planning for thin-wall junctions, thin-

wall thick-wall junctions are not investigated here and is considered for future work.  

Machine kinematics of the multi-axis machines to solve the nozzle travel 

inconsistencies (in addition to the dwell time that cause the material to sublimate at the 

corners) are not investigated here. A fabrication constraint that relates to the utilized DED 

machine is that the B-axis rotation is limited to 0 °-90°. The fabrication process of the case 

study samples is planned appropriately to overcome this (explained more in detail in 

Chapter 4).  

Developing a surface roughness measurement technique that is applicable for any 

geometry is considered as future work. Also, it needs to be mentioned that the product 

properties (surface roughness and hardness) are measured and interpreted here whereas 

modifying them can be implemented in another research project. 

The FEA simulation is a time-consuming process and it may take days or even 

weeks to implement a simulation for a realistic product. Although a method is used here to 

reduce the simulation drastically, analyzing a geometry that includes many beads takes a 

long time. Therefore, there is a limitation in the number of beads utilized in this analysis. 

 Dissertation Outline 

This dissertation is divided into eight chapters, which are summarized as follows. 

In Chapter 2, the previous literature that is related to the research objectives is reviewed. 

There are two motivations for this review: (i) to get theoretical and methodological insights 

from previous similar research to help this current research, and (ii) to find gaps in the 

available research. This chapter covers literature related to process planning of multi-axis 

DED AM, collision detection and avoidance, supportless production of complex 

geometries, surface roughness for curvilinear surfaces, and finally experimental and 

numerical studies related to hardness for the DED process.  

In Chapter 3, the methodology and theories for this study are explained. The 

collision detection and prevention algorithm is explained in detail, as well as the hardness 

test and surface roughness measurement strategies. The applied theories and procedures for 

the FEA analysis are in the last section of this chapter.  
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The results are presented in four chapters. In Chapter 4, the results for the 

partitioning case studies are presented. In Chapter 5, the results of surface roughness 

measurement by two methods of mount-based 2D and 3D point cloud are covered. In 

Chapter 6, the experimental results for microhardness for the three case study samples are 

presented. 

  In Chapter 7, the results of the FEA analysis of the case study sample are presented. 

The hardness and residual stresses for the case studies are presented and discussed. In 

Chapter 8, a summary and conclusion for the research, as well as future work, is covered. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 Process Planning for Collision Detection and Avoidance 

Process planning for additive manufacturing generally consists of CAD model 

design, CAD-to-STL conversion, slicing, toolpath planning for each slice, fabrication, and 

final finishing [55][56]. If each of these steps is considered in more detail, they may differ 

slightly for different AM technologies. Likewise, bead deposition AM processes follow a 

specific process plan from product design to manufacturing. Although many papers focus 

on different perspectives of process planning of bead deposition based AM such as reducing 

material consumption, managing and reducing voids, etc. [57][58], other issues such as 

process planning for collision detection and avoidance need more investigation. 

Since AM processes have appeared, product designers felt less restrained, because 

buildable geometries are not bound by traditional manufacturing constraints. What 

distinguishes AM from conventional manufacturing technologies is that complex parts can 

be produced without the need for fixtures, tooling, or other facilities. Although it is mostly 

believed that AM can fabricate any arbitrary complex geometry, it still has limits [59]. 

Consequently, an AM designer should consider manufacturability and geometry constraints 

of the particular AM process being used. DED as an AM technology has its constraints 

which need to be considered in the product design. Vayre et al. identified two main 

constraints for DED AM, the collision between the nozzle and the part and the effect of the 

nozzle acceleration and deceleration on the bead height [60]. This paper applied a design 

for additive manufacturing (DFAM) approach. Also, topology optimization solutions were 

applied to optimize the geometry of a loaded bracket.  

 In topology optimization, the shape of the product is optimized to use the least 

material without affecting the strength of the product significantly whereas 

manufacturability needs to be considered as well. Optimized geometry is usually too 

complex to be built by conventional manufacturing techniques such as die casting and 

machining. Many researchers have considered fabricating topology optimized parts using 

an AM process [61]. Usually, topology optimized geometries have complex shapes that 

cause an inherent geometrical collision if it is being built by the DED process. Therefore, 

more research is needed in this field. 
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Five-axis manufacturing, regardless of being additive or subtractive (machining), 

may cause a collision of the tool to the workpiece or machine table. There have been many 

studies to predict the collision during toolpath generation. Since multi-axis machining is 

relatively older than multi-axis AM, there have been more studies on process planning to 

avoid the collision in subtractive manufacturing. Also, there is a main difference between 

the types of collisions in these two technologies. In the subtractive process, the main 

collision probability is between the tool and machined geometries, whereas it is between 

the nozzle and continuously creating beads in AM. And contrary to machining, more 

potential collision areas (previous toolpaths) are being created in DED AM, as more layers 

are deposited. Also, there are differences between machining and additive process planning: 

for instance in AM the toolpath cannot cross itself, material piles up at a constant start-stop 

point, environment temperature and atmosphere influence the product quality, bead 

geometry varies by overlapping conditions [43]. 

Regardless of focusing on subtractive or additive processes, the literature that 

considered process planning for collision detection and prevention is reviewed. Schumann 

[62] offered a hull-concept based collision prevention mechanism for all axes without using 

any sensors on the machine. Hull-concept considers a safe stopping distance for the moving 

axes. This system detects potential collision possibilities throughout the working process 

and can prevent operator faults. Likewise, Yau et al. [63] proposed an online collision 

detection function that foresees the toolpath in real-time and stops the process before a 

collision occurs at a safety distance. The safety distance is defined by minimum distance 

that the machine can stop at the maximum feed rate. However, the type of collision that 

they studied is different from what is being explored in this research. What they explored 

is applicable to avoid collision caused by operator fault or machine error. These types of 

interferences occur during the fabrication process whereas, the inherent collision that results 

from the geometrical complexity of the product should be considered before the fabrication 

starts. To solve the former issue, the machine dynamics should be considered, but for the 

latter, process planning and part geometry need to be optimized.  

Zhiwei et al. [64] presented a tool orientation collision-free area for free-form 

surface machining. It is claimed that this solution considers both efficiency and precision 

for finding a collision in 5-axis finishing machining. However, the research focus is 
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adapting tool orientation to avoid collision, whereas geometry segmentation is needed in 

most of the AM collision cases. 

Tang and Bohez [65] proposed a collision detection and prevention algorithm which 

is based on a bonding volume and a sweep plane approach. Initially, the bounding sphere 

algorithm investigates the possibility of collision, and if a collision is anticipated, it will be 

explored more by the sweep plane algorithm. Sweep planes are bodies of machine and 

workpiece geometries that are sliced by parallel planes. For collision avoidance, if it occurs 

in G00 mode (rapid movement) the proper axis moves toward predicted direction to avoid 

it. For G01 (machining travel speed), an appropriate lead/lag or tilt angle is applied. This 

paper brings a suitable method that can prevent collision by machine movements but did 

not investigate interferences that can be prevented by segmentation.  

Wang et al. [66] presented a collision detection solution besides the tool orientation 

adjustment method to avoid collision in the multi-axis milling system. Three main types of 

collisions are defined here based on the colliding section of the tool: the bottom of the 

cutting tool (rear interference), cutter flutes (local interference) and cutter shank (global 

interference).  

Chen et al. [67] proposed a collision detection methodology for filleted-end milling 

tools. They categorized the surfaces into convex and non-convex regions. There is no 

interference for convex regions but for non-convex regions, they detected and prevented 

local gouging. Likewise, Xu et al. [68] proposed an algorithm to create a collision-free 

toolpath for direct ball-end milling tools. This method creates a surface from a point cloud.  

Plakhotnik et al. considered altering the tool orientation (tilt and lead/lag) to avoid 

collisions in DED. They prefer a lead/lag solution rather than a tilting orientation as it does 

not change the width of the spot size on the bead [69]. This finding can be transferred to the 

collision avoidance algorithm by giving a priority to the lead/lag angle rather than tilt angle.  

Table 2-1 lists available literature regarding collision detection for both additive and 

subtractive manufacturing processes. There are limited multi-axis DED collision detection 

strategies. The needed methodology for the DED process is different from the machining 

process because the material is being removed in subtractive processes but it is continuously 

added in the DED process. Also, the tool can stop at a position to change the orientation in 
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machining but it creates material sublimation in AM (Section 1.3). Furthermore, the DED 

nozzle is usually bigger and more complex than the geometry of the milling tools. 

Table 2-1. Literature review of process planning for collision detection and avoidance 
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√ √   
  

Yau [63] S 
 

√ √   
 

√ 

Zhiwei [64] S  √     √ 

Tang [65] S  √  √   √ 

Wang [66] S  √  √   √ 

Chen [67] S  √  √   √ 

Xu [68] S  √  √   √ 

Lauwers [70] S  √  √   √ 

Chen [71] S  √  √   √ 

Plakhotnik [69] A √ √  √  √  

This research A √ √  √ √ √  

  Supportless Fabrication of Complex Geometries Leveraging Geometrical 

Partitioning 

On one hand, introducing multi-axis DED machines improved its potentiality to 

fabricate complex geometries, on the other hand, this brought complexity to the process 

planning especially when the geometry intricacy increases. The challenge is in toolpath, 

tool orientation, and appropriate process parameters to fabricate the part without the need 

for a support structure. This section reviews the papers that focus on fabricating complex 

3D objects utilizing the DED process. The main solution to build points with complex 

geometries that cause a collision is to split them into their constitutive features and build 

them sequentially. Some papers that developed this technique will be discussed here.   
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Boisselier et al. [72] investigated methods in the optimization of material deposition 

toolpaths to build freeform metal parts. They studied the challenge of keeping deposition 

velocity as constant as possible. Panchagnula et al. [73] investigated rotary thin-wall 

geometries by keeping the tool tangent to the surface. None of them investigated the 

collision elimination strategy. Both pieces of research fabricated a geometry that needed 

simple partitioning. The product is made up of a main rotary body with some extruded 

features attached to the side. 

Shi et al. [74] applied a hollow-laser beam with internal powder feeding (HLB-IPF) 

head to make overhang angle structures. They applied the 6-axis robot to keep tangent to 

the surface when making a rotary vase-shaped part. This paper explores how to apply multi-

axis DED to keep tangent to the surface but does not provide a sectioning algorithm for 

complex parts. Ding et al. [75] used an 8-axis robotized laser-based direct metal deposition 

system. They coupled a 6-axis robot arm with a table-table rotary system. They built a 4-

blade propeller by sectioning it into 5 parts, the rotary core and 4 extruded blades. This 

approach works for components where some features are added to a revolved base part. It 

is not a general solution but illustrates the potential of a partitioning solution. Dwivedi et 

al. [76] worked on an approach to fabricate slender structures using laser-based direct metal 

deposition (LBDMD). The nozzle starts from a point and rises as it is continuously 

depositing material like continuous casting. The nozzle tilts to make slender overhang 

features, and two slender parts were built in this research. However, this paper is more about 

controlling machine parameters than a process plan for making complex parts. 

Sundaram and Choi [77] developed a direct slicing procedure for process planning 

of the 5-axis laser aided direct metal deposition. They developed a 5-axis algorithm to slice 

the part. But the studied parts are solid geometries consisting of some basic extruded 

features. Also, they did not make any product experimentally. The mentioned solutions split 

the geometry to discrete features that are easy to be separated. Kapil et al. [44] proposed 

different slicing methods to eliminate support structures. Planar adaptive planar slicing and 

non-planar slicing (radial slicing) are used to build on overhang impeller. Non-planar 

slicing resulted in the best quality. This paper did not consider a collision avoidance 

strategy.  



32 

 

Murtezaoghlu et al. [78] explored a strategy to split the geometry into discrete 

sections using infinite planes. They considered decomposition of the solid model, build 

direction, sequencing build order, and slicing. A decomposition algorithm is applied to 

segment free-form features. This paper does not consider the collision detection but it finds 

the best sectioning plane to make the geometry buildable with less sections. The applied 

decomposition algorithm can be used for this research. 

Table 2-2. Literature review of collision detection and prevention 
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Boisselier [72] A √    √  √ 

Panchagnula [73] A √      √ 

Shi [74] A √      √ 

Ding [75] A √ √   √  √ 

Kapil [44] A √ √     √ 

Dwivedi [76] A     √  √ 

Sundaram [77] A  √     √ 

Murtezaoghlu [78] A √ √  √   √ 

Ren [79] A √ √   √ √ √ 

Newman [80] S & A  √   √   

Lee [81] A √ √   √ √ √ 

Ruan [82] A  √ √  √ √ √ 

 Current research A √ √ √ √  √ √ 

 

The overhang features can be fabricated supportless by adaptive slicing if their 

violation angle is not significant. For the geometries that consist of a base and attached 

features, the feature based partitioning works, but the connection geometries between 

features may be problematic (Fig. 1 in [78]). More complex geometries require surface 



33 

 

partitioning. Table 2-2 summarizes the reviewed literature to compare the problems of DED 

AM they are solving. Although few of them focus on detecting collisions or partitioning the 

geometry, their approach is different from the current research or generality of their solution 

is not comparable. The current research focuses on the process planning of complex-

geometry, thin-wall parts to find any collision and proposes an algorithm to partition the 

surfaces of the geometry to solve this problem.  

  Surface Roughness of DED Built Components 

Surface roughness is one of the drawbacks of AM products if it is compared to 

machined products. This motivated researchers to investigate how to improve surface 

roughness quality. In much of the available literature, the surface quality is improved by 

changing process parameters or adaptive slicing.  

As AM products may contain curved and rough surfaces, measuring their surface 

roughness is a challenge [83]. In this case, the nominal curved profile must be removed 

before the roughness equation is applied [84]. Furthermore, other macro irregularities like 

waviness need to be removed as well. A skidded tactile roughness tester filters most of the 

macro surface textures mechanically but the remained noise that affects roughness values 

needs to be filtered mathematically. 

Collecting the needed primary data of the surface textures is another crucial task 

that affects the calculated result. There are different methods to convert the surface texture 

into numerical data such as contact-based, focus variation, and confocal laser scanning 

microscope systems [85]. Many of these technologies like 3D scanning can provide point 

coordinates of the surface [86]. The point cloud has all the position data of the surface that 

can be used to measure surface properties. Using these point coordinates for measuring 

surface roughness has been explored by many researchers. Fadzil et al. [83] measured 

human skin surface roughness to study the skin scaliness for psoriasis. They measured the 

3D surface roughness with standard clustering techniques. A digital image analysis method 

was developed to measure the surface roughness. Drbul et al. [84] developed a strategy to 

filter the surface profile from roughness measurements. They filtered the nominal profile 

and waviness by Fast Fourier Transformation (FFT).  

Wu et al. [87] developed a machine learning algorithm to calculate the surface 

roughness of FDM products. A sensor collects the surface roughness in real time while 
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producing the part. They optimized these parameters and verified by experimental results. 

Prasad et al. [88] used speckle metrology system by means of special optical fibers to 

measure surface roughness of AM products. They calibrated their measured values by a 

contact based surface tester machine. Here, they used a flat surface as specimen. They did 

not mention the mathematical model they used to extract the roughness value from created 

images.  

Urbanic and DiCecco [53] investigated and compared the impact of different bead 

shapes on surface roughness by virtual simulation for material extrusion processes. They 

measured the roughness for different boundary models such as rectangular, obround, and 

elliptical bead shapes. Lalehpour and Barari [89] found a theoretical formula for surface 

roughness of additive manufactured products. They considered that the mean centerline 

assumed in prior research had been wrong; instead they proposed that the centerline passes 

through the midpoint of cusp edges. These two papers focused on mathematically 

formulating the roughness and bead shape whereas this research explores the solutions to 

measure the fabricated products. The roughness of produced parts may be different from 

what is mathematically derived because other parameters such as material collapse, 

overheated beads, and bead deformation can affect the surface roughness. 

Surface roughness measurement is applicable to explore the irregularities of the 

terrain. In this case, a point cloud is generated by other techniques like terrestrial laser 

scanner (TLS).  Mills and Fotopoulos [90] used a terrestrial light detection and TLS to scan 

ground surfaces and extract surface roughness value for geological purposes. They verified 

their results by comparing the surface roughness values of a known test sample that is 

measured by TLS system with the numerical simulation results. Their measurement was 

applicable for a 2D flat surface. Tonietto et al. [91] calculated a best fit plane through the 

point cloud to represent the nominal surface, which signifies that this process is only 

specified for flat surfaces. They split the surface into squares and used a gray-scale color 

code to show the roughness value. Vijayarangan [92] presented a technique that uses 3D 

laser scanning to measure the surface roughness of metal castings. This technique uses a 

method that changes a point cloud into an orthogonal coordinate system. They measured 

RMS (root mean square) of the cast surfaces. This test shows that the measurement error is 

reduced for rougher surfaces.  
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Prezestacki et al. [93] investigated the surface quality of laser cladded parts and used 

an infinite focus measurement (IFM) machine to extract surface texture. They measured the 

surface roughness for round surface of a laser cladded cylinder. They prepared a Matlab 

based program called Topography analysis and simulation (TAS) to analyze the topography 

of the surface texture [94]. Sachdeva et al. [95] studied the effect of SLS process parameters 

such as laser power, scan spacing, substrate temperature, and hatch length on the surface 

roughness. 

Table 2-3. . Literature review summery of surface roughness measurement 
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Fadzil [83]   √ √  

Drbul [84]   √   

Wu [87] √     

Urbanic [53] √     

Lalehpour [89] √   √  

Mills [90]  √  √  

Tonietto  [91]  √  √  

Vijayarangan [92]    √  

Prezestacki. [93] √  √ √  

Bliss [94]   √ √  

Sachdeva [95] √     

Current research √ √ √ √ √ 

 

Based on the reviewed literature, prior to calculating the roughness, the noise of the 

waviness and surface profile should be eliminated. A beneficial mathematical tool for this 

is FFT analysis. Also, the accuracy of the 3D scanner should be appropriate based on the 

roughness of the surface. Table 2-3 presents a summary of reviewed literature that 

considered surface roughness measurement by different methods. As the surface texture 

size of the ground is much larger than the accuracy of the applied scanners, 3D point cloud 
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data is suitable in the geology field to measure the roughness of the ground. Also, in the 

literature, mostly the roughness of flat surfaces is measured. Therefore, a solution that 

measures surface roughness of produced AM built parts which are mostly rough and curved 

shape is missing. Furthermore, the 3D point cloud has limited accuracy for fine surfaces 

which introduces error into the calculations. The mounted samples exhibit a polished and 

sharp cross-sections of the surfaces. These edges contain detailed surface textures which 

can be seen under magnification. A major benefit of this method over the other methods is 

that the textures that either stylus or the light cannot reach is included in the roughness 

measurement value. 

  Experimental and Numerical Studies of the Hardness of DED Built Parts 

There are many parameters affecting the quality, microstructure and mechanical 

properties of DED-built products. The laser power, powder feed rate, substrate temperature, 

and many other process parameters influence the quality of the product. Many researchers 

explored the impact of these parameters on hardness, residual stress, and deflection 

experimentally and/or numerically [96]. Numerical results are mostly verified by 

experimental or previous research.  

During bead deposition in DED, parts are built by depositing each layer on top of 

the previous one. Since the introduced heat of the depositing layer transfers into previous 

layers, the material in each layer experiences thermal cycles. These repetitive thermal cycles 

lead to changes in microstructure and mechanical properties of the deposited layers [97]. 

This makes the mechanical properties vary from point to point. In order to control the 

deposition process and predict the quality of products, research has been conducted to 

implement FEA analysis of the DED process. In this section literatures that are focused on 

the simulation of single bead deposition, overlapping cladding, and multi-bead thin-wall 

deposition of the DED process are reviewed.  

Baek et al. [98] studied the effect of preheating temperature of an AISI D2 substrate 

in DED deposition of tool steel M4 deposition. This showed that hardness increases slightly 

for higher preheating temperatures. Since the size of carbides increases for lower cooling 

rates. Chew et al. [99] developed a 3D FEA model to analyze the residual stresses of AISI 

4340 steel. They simulated substrate heating without powder being fed, single bead 

deposition, and deposition of two overlapping beads. The hardness results for a single bead 
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showed a higher value in the clad and heat affected zone (HAZ) region than the unaffected 

region. Then, these models were used to simulate 10 overlapping beads. Caiazzo et al. [100] 

experimentally found the geometry of the bead to simulate the temperature history of the 

multi-track and multi-layer deposition. Gao et al. [101] applied FEA using a birth and death 

element technique to implement a thermal simulation of the single bead deposition.  Zhang 

et al. [97] and Long et al. [102] developed a numerical simulation model to investigate the 

effect of substrate preheating on temperature history, stress and thermal behavior. Also, 

they experimentally studied the effect of substrate preheating on surface quality, hardness 

and some other characteristics of thin wall parts. Their case study sample was a 4 bead 

thick, 3 bead high sample on a plate. A 10-layer thin-wall part was fabricated to 

experimentally investigate the effect of preheating on hardness. It showed that hardness 

increases as the preheating temperature rises.  

Li et al. [103] explored the temperature history of thin-wall parts by an analytical 

computation model. Heigel et al. [104] developed a thermo-mechanical model of DED 

considering the gas flow during the deposition. The heat convection from the surface that 

is generated from the deposition process is measured and applied in the model. 

Javidani et al. [105] made a 30-layer thin wall part by DED process to study how 

microhardness and microstructure change along the deposition direction. They used 

AlSi10Mg powder material to build the part. Their results showed that at the bottom layers 

hardness decreases to some point, then it is stable along the wall and then decreases again.  

Wang et al. [106] showed mechanical anisotropy properties of the parts that are 

produced by DED process. This includes constituent phases, microhardness, and 

microstructure in addition to strength and elongation characteristics. Their sample was a 

block made up of 3 different alloys of steel deposited on top of each other. It is mentioned 

that for the same samples, microhardness increases as the measurement point is farther from 

the substrate.  

Shim et al. [107] investigated microhardness, location of the melting pool, and 

microstructures in addition to geometric accuracy of the DED built part. The dependency 

of single-layer height to two machine parameters, specific energy density and powder feed 

density was investigated. Hardness results show the highest values at top layers. Micro-
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hardness fluctuates in the horizontal direction when the part is made by feedback real-time 

control method.  

Huang et al. [108] developed a model to predict bead dimensions, wetting angle, 

heating and cooling rate for single-bead and multi-bead deposition as well as multi-layer 

walls. They considered powder feeding in their simulation model. Their results show that 

the most sensitive factor to change the bead height is powder feed rate and specific heat has 

the least effect. It means by a minor change of powder feed rate, bead height varies a lot. In 

another paper, Huang et al. [109] established a relation between process parameters of 

powder fed AM and temperature, cooling rate and solidification rate which are called 

transient thermal characteristics. They studied a one-bead deposition case.  

Ansari et al. [110] studied DED bead deposition of water-atomized iron powder. 

They experimentally studied the effect of different parameters on the microstructure and 

geometry of single bead deposition such as bead height. A surface response methodology 

(RSM) was performed to optimize the parameters. Nazemi et al. [111] used Sysweld 

software as FEA tool to simulate the temperature history, microhardness and residual 

stresses for laser cladding of P420 stainless steel on AISI 1018 low/medium carbon steel 

plate. They implemented the FEA analysis and verification experiments on both single bead 

and 3 side-by-side beads. Alam et al. [112] accomplished the same experiment for the single 

bead mostly focusing on residual stress, microhardness, and microstructure.  

Urbanic et al. [56] developed a process planning for hybrid manufacturing. As a 

case study, they built the upper section of a T-section by DED process and machined to size 

finishing. They simulated the longitudinal and transverse laser cladding bead to cover the 

whole surface of a plate by FEA analysis. Hardness, transverse residual stress, and 

distortion were measured.  

Table 2-4 summarizes the mentioned papers as well as some other related literature 

that focus on the experimental and numerical exploration for multi-bead deposition of DED 

AM. These papers are categorized into the papers that investigate one bead, overlapping 

multi-track beads, and thin wall deposition.  Some papers focus on simulation of the single 

bead to predict its geometry or mechanical properties such as hardness, residual stress, 

microstructure, etc. Some other researchers studied the deposition for several beads. This 

includes a couple of side-by-side beads or thin walls made up of up to 10 to 20 beads. The  
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Table 2-4. Literature review summary of hardness measurement and FEA simulation 
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Chew [99], √  √    
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main barrier to simulate more beads is that the simulation run time rises radically for more 

beads. Therefore, FEA simulation is almost an impractical solution to predict the properties 

and problems of AM built part. Also, these studies did not experimentally investigate the 

mechanical properties of a real geometrically complex part. FEA analysis can be applicable 

for industrial usage if it can analyze the bead-deposition based products with reasonable run 

time.  

Here, the mechanical properties of a fully built product will be investigated both by 

FEA analysis and experimentally. The hardness variation of a complex thin-wall part that 

is produced in several intermittent partitions will be explored. The focus is to find a 

variation pattern of hardness in the built case study sample. Furthermore, it includes a FEA 

simulation of the whole complex thin-wall part. An innovative solution is applied here to 

decrease the simulation run time of actual complex parts.  

Since powder fed AM is a relatively new process, researchers are investigating 

many different aspect, but a major not addressed is addressing process planning fabrication 

for complex geometries using 5 axis tool paths without introducing collisions when multi-

axis tool paths are being used. A solution that has been explored is dividing the geometry 

into sections, and building them sequentially. Most researchers do not introduce a general 

solution for surface geometries. They split the geometry to a main body and available 

attached design features (typically extrusions). A general process planning algorithm to 

partition the geometry surfaces and determine nozzle orientation is needed for DED 

systems. This partitioning needs to be independent of the constituent features.  

Additionally, a solution for surface roughness measurements for large bead AM 

processes is missing in the literature. Processes such as BAAM and LSAM are made of 

very large beads. Conventional measurement systems are not applicable. Furthermore, an 

algorithm to measure the surface finish curved surfaces is required since AM built parts 

usually have curved surfaces. The surface roughness of a sample flat surface cannot 

represent the curved surfaces because of the staircase effect and material collapse problems.  

Furthermore, FEA analysis of mechanical properties of a whole thin-wall geometry 

component that has more than 100 beads in a reasonable run time is missing in the papers. 

The methodology to achieve these results will be covered in the next chapter. 
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3 CHAPTER 3 

METHODOLOGY 

This chapter discusses the methodology, techniques, and theories that were applied 

to achieve the objectives of research. The first section explores the process planning 

algorithm that proposes how to detect the collisions and also how to partition the geometry 

appropriately to avoid collisions to create a supportless fabrication solution. Following the 

proposed 2D and 3D solution approaches for the surface roughness measurement, 

techniques, and standards regarding the microhardness measurement are explained. Lastly, 

the theories and the algorithm for an FEA model of the mechanical properties and thermal 

history are investigated for the multi-bead thin-wall component case studies. The process 

flow illustrating the research methodology is shown in Figure 3-1. 

 Process Planning of Collision Detection and Prevention 

In bead deposition based AM processes, the material is provided from the machine 

head, along with relative movement between the nozzle and the substrate to deposit beads 

at determined paths and form the geometry of the product. Movement varies from a simple 

2+1 axes in Fortus 400mc FDM processes to more than 6 axes in robotized DED machines 

[122]. Although multi-axis bead deposition is capable of making more complex parts, it 

introduces some issues such as complicated controllers, cost, and the possibility of collision. 

Collisions between the machine head and previously deposited layers are as problematic as 

collisions between the machine head and the machine table.  

Fabricating thin-wall parts that contain more overhang features increases the 

possibility of collision. An algorithm is developed that finds and eliminates possible 

collisions as well as supports. Here, a partitioning strategy segments the surfaces of the 

thin-wall geometry to eliminate the interferences. As an example, Figure 3-2 (a) shows a 

thin wall geometry containing an overhanging surface, a set of junctions, and curved 

surfaces. If the goal is to keep the nozzle tangent to the surface (tilted overhang angle to be 

zero (Section 1.3)), previously deposited layers will cause an interference condition. 

Figure 3-2 (b) shows how a tilted workpiece collides with the nozzle.  
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Figure 3-1. The process flow illustrating the research methodology 

 

Figure 3-2 (a) A thin-wall surface sample with inclined surfaces (b) Collision of the nozzle to 

previously deposited layers 

Figure 3-3 illustrates the algorithm for partitioning the part. This tool will partition 

the thin wall surface geometries appropriately in order to detect and prevent collisions. The 
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algorithm boxes that are filled with grey requires the user to manually enter data. In this 

research, an algorithm has been developed. Further research and development to program 

the tools are considered for future study.  

Freeform surface geometries are utilized here because this partitioning method is 

applicable for thin-wall models. The maximum allowed overhang angle needs to be inserted 

as input data as this varies based on the material, system, and operating parameters [44] 

[73]. There are two reasons that the maximum overhang angle needs to be inserted. The 

first reason is to find out whether the part can be built by 3 axis toolpaths without exceeding 

the maximum overhang angle or if 5-axis toolpaths are needed. The second reason is to 

limit the maximum tilt angle during the tool orientation calculations. The maximum allowed 

tilted overhang angle determines the maximum angle that the nozzle axis and surface 

tangent line can have without material collapsing.  

To make the geometry buildable through the thin-wall production process, the 

geometry needs to be cleaned up such as removing small fillets. These features are hard to 

achieve in the thin-wall DED AM process. Also, the surface geometry of the part needs to 

be extracted. The user selects three initial orientations. As Figure 3-4 shows, the 3 standard 

X, Y, and Z Cartesian plane orientations are selected for this example. 
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Figure 3-3. Collision detection and prevention algorithm 

The software picks the first selected orientation to investigate in more detail for any 

collision and evaluates how to solve it. Based on the first selected orientation, all surfaces 

of the geometry are planar sliced.  

 

Figure 3-4. Three main slicing directions X, Y, Z 
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After the geometry is sliced in a planar style for the first slicing orientation, all 

surfaces are checked whether their overhang angle exceeds the maximum allowed value. If 

not, the whole part can be built by 2+1-axis toolpaths at this slicing direction. In other 

words, applying a 3-axis toolpath simplifies the process effectively so that the nozzle does 

not need to rotate to build inclined surfaces. This process eliminates the necessity of later 

collision detection and partitioning steps, but if the geometry includes surfaces that 

overhang more than allowed, the algorithm proceeds to the next steps.  

The surfaces that need 3-axis and 5-axis to be built need to be distinguished. In order 

to determine this, a plane is created perpendicular to the toolpath. The normal vector and a 

reference vector on the plane are also generated. As Figure 3-5 (a) shows, if the angle 

between the nozzle axis and these two vectors remains constant, the surface is 2+1-axis. If 

just the angle between the nozzle axis and reference vector changes, 4 axes are needed 

(Figure 3-5 (b)) and if both angles between the nozzle axis and reference vector/ normal 

vector change, the surface needs all 5 axes (Figure 3-5 (c)). 

Figure 3-6 (a) illustrates 3-axis and 5-axis surfaces in purple and blue, respectively. 

Planar slicing is not applicable for 5-axis toolpaths because the real distance between layers 

will not be the same as the planar slicing height. So the driving curves (yellow) need to be 

found to make toolpaths on 5-axis surfaces.  

 

Figure 3-5. Three-axis and 5-axis determination 
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Figure 3-6. (a) Surfaces that need 3 axis toolpath in purple and 5 axis ones in blue. (b) Driving 

curve that are needed to make 5 axis toolpath 

After the toolpaths of all surfaces are merged (Figure 3-7 (a)), simulations are 

performed to verify the results (Mastercam backplot tool). For this research, the geometry 

of the nozzle is modeled and simplified. If the distance between any point on the toolpath 

and the machine head geometry is less than a preset value, a collision is detected. As shown 

in Figure 3-7 (b), a collision occurs when virtually fabricating the top 5-axis surface. In this 

example, the nozzle hits the layers that are already deposited for the 3-axis vertical wall.  

 

Figure 3-7. (a) Merged toolpath. (b) Collision between nozzle and deposited layers 

When a collision is detected, the surfaces with which the nozzle collides, and the 

surfaces that cause the collision should be determined. In this example, as shown in 

Figure 3-8, the surfaces that cause a collision when they are being built are shown in yellow. 

On the other hand, surfaces with which the nozzle collides are shown in red. Partitioning 

should be applied to these surfaces. 
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Figure 3-8. Collided surfaces in red, colliding surfaces in yellow and other ones in grey 

The surface partitioning algorithm splits surfaces and finds the best tool orientation 

to eliminate interference conditions. The partitioned surfaces are shown in yellow and green 

colors in Figure 3-9 (a). The proper tool orientation for each surface is shown in Figure 3-10. 

The toolpaths of two partitions are shown in green and brown. Further study and 

explorations in detail about the partitioning technique will be considered as future work as 

heat cycling issues also need to be considered for a complete solution. 

 

Figure 3-9. (a) Partitioned surfaces in yellow and green. (b) Toolpath and tool orientation of split 

surfaces 
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Figure 3-10. Tool orientation of product surfaces from 2 views 

 Partitioning the Case Study Sample 

The case study is a thin-wall hemisphere dome with a nominal diameter of 45 mm 

and a wall thickness of 2 mm. This geometry is chosen because it includes a continuously 

variable overhang angle in two directions. Also, fabricating a part that contains surface 

dome by a bead deposition based AM process brings manufacturability challenges. If a 

process planning for building a surface dome without supports is developed, this geometry 

can be used in actual product designs and even topology optimized geometries. Multi-axis 

DED introduces collisions when the support structure is eliminated. Here, the partitioning 

algorithm is manually being applied to split the surface of this case study part. Developing 

a program to perform this automatically is future work. 

If the surface dome needs to be made by a 3-axis bead deposition system, regardless 

of slicing direction, it needs support structure in some regions. Considering a maximum 

allowed overhang angle of 20°, Figure 3-11 shows the regions where support structures are 

needed (pictures are prepared using Insight® software version 12.2). For all 3 slicing 

directions, much support material is needed. Therefore, a 3-axis toolpath is not capable of 

building a thin wall dome in a supportless mode.  



50 

 

 

Figure 3-11. Regions of a dome that violate maximum allowed overhang angle and relevant 

support structure based on (a), (b), (c) 3 main slicing directions  

All 3 orientations shown in Figure 3-11 cause a collision at some point during layer 

deposition when using 5-axis motion. For instance, based on the slice direction shown in 

Figure 3-11 (a), at higher layers, the nozzle collides with the previously deposited layers. 

This is shown in Figure 3-12. As Figure 3-12 (a), (b) illustrate, the nozzle deposits material 

in the lower layers without any collisions. But in higher layers, the nozzle axis is almost 

perpendicular to the slice direction. The first possible solution is to tilt the nozzle 

(Figure 1-21). However, for this case study, although the nozzle is tilted upward 

(Figure 3-12 (d)) it still causes a collision with the higher layers. Based on the collision 

prevention partitioning strategy presented in this research, the collision caused by this 

slicing orientation cannot be solved by partitioning the part geometry. So, this orientation 

is not explored further. 
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Figure 3-12. (a), (b) Bead deposition for lower layers. (c) Crash occurred at top layers (d) Crash 

even when nozzle tilted upward 

However, the orientations shown in Figure 3-11 (b), (c) can be sectioned properly 

to become DED manufacturable. These partitioning solutions can be applied to fabricate 

products that contain a dome in their geometries. The first partitioning solution that is 

developed based on Figure 3-11 (b) is called wedge shape partitioning. The toolpath 

developed from the slicing orientation of Figure 3-11 (c) is called a rotary toolpath.  

3.2.1 Wedge-Shaped Partitioning 

 The build direction that is shown in Figure 3-11 (b) leads to a collision between the 

nozzle and trunnion table when the nozzle is depositing the bottom layers (Figure 3-13). In 

this case, if the deposition starts at a distance away from the trunnion table, collisions can 

be avoided. Hence, a substrate is machined from a round bar to make a distance between 

the table and where the dome is being built. As Figure 3-14 displays the shape and 

dimensions of the substrate, its one end is rounded to install into the chuck and the other 

end is flat to perform as the deposition substrate.  
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Figure 3-13. Collision of the nozzle to trunnion table (slice direction from (Figure 3-11 (b)) 

Collisions and the maximum allowed overhang angle are considered for partitioning 

the geometry. The solution for the former one is to partition the geometry into wedge-

shaped surfaces as half of its edge is protruded from the substrate (Figure 3-14). In this way, 

the collision probability is eliminated. The number of wedge shape partitions depends on 

two parameters: the planar slicing limitation for major variation of overhang angle, and the 

maximum allowed overhang angle. 

 

Figure 3-14. Partitioned geometry of the dome on the substrate 

The limitation for planar slicing is that the distances between layers (i.e., the stair 

case effect) vary when the overhang angle changes. As Figure 3-15 (a) shows for slicing of 

the half dome, the real layer height changes from bottom layers to top ones. Figure 3-15 

(b), (c) show that the layer height is equal to the slice height when the overhang angle is 

zero but it increases as the overhang angle increases. The effect of a small change in slice 
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height is negligible in the quality of the product but if the slice height change is extreme, 

the final quality can be affected [123]. It is very important to mention that this is an issue 

for thin-wall parts, not for solid parts. The departed layer is supported by the previous solid 

layer in solid parts, but it makes a real gap between layers in thin wall parts. 

 

Figure 3-15. (a) Real layer height change when overhang angle changes drastically. (b) Layer 

height at zero overhang angle (c) Layer height increase (d) the relation between slice height and 

layer height 

The relation between the actual layer height, slice height, and overhang angle is 

shown in Figure 3-15 (d). As Equation (1) calculates, increasing overhang angle causes a 

greater difference between the slice height and the real layer height.  

 
𝑅𝑒𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑆𝑙𝑖𝑐𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

sin(90° − 𝑜𝑣𝑒𝑟ℎ𝑎𝑛𝑔 𝑎𝑛𝑔𝑙𝑒)
 

(1) 

The number of wedge shape segments depends on the number of machine axes, the 

maximum allowed overhang angle, and the slicing method. The number of required 

segmentations is less if a 5-axis machine is employed than if a 3-axis machine is utilized 

because the component can rotate and keep tangent to the nozzle (Error! Reference source 

ot found.). Additionally, if the machine provides a higher maximum allowed overhang 
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angle, the dome can be fabricated with fewer partitions. If a modified slicing method like 

constant stepover is applied, it modifies the number of partitions. Considering the 

mentioned parameters, three toolpath methods are explored for the wedge-shape 

partitioning method, 5-axis, 2+1+1-axis, and constant step over.  

Dome fabricated by a 5-axis toolpath- If a dome is split into two partitions, the 

issue explained in Figure 3-15 occurs. Thus, the number of partitions is increased to 4 to 

keep the difference between the real layer height and the slice height lower. As a result, the 

partition angle and overhang angle at the highest layer of each partition is 45°. The slice 

height for the wedge-shaped partition samples is 0.5 mm. Thus, based on Equation (1) and 

the highest overhang angle in each partition, the real layer height at the top layer of each 

partition is 40 percent larger than the slice height (Figure 3-16). This means that the layer 

height varies from 0.5 mm to 0.7 mm within each partition in the 5-axis sample. 

 

Figure 3-16. Slicing direction and nozzle tangency in 5-axis solution 

 

Figure 3-17. Schematic of the fabrication of 4 partitions using a 5-axis system 
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Dome fabricated by a 2+1+1-axis toolpath- Using a toolpath that requires fewer 

machine axes brings many benefits to the process. A less expensive machine is needed for 

the process, the complexity of the process, and the possibilities of a collision are lower. The 

wedge-shaped partitioning method is modified to fabricate the hemisphere dome in 2+1+1-

axis. The main difference between the new approach and the 5-axis method is that the 

surface of the workpiece should keep the same orientation during each partition fabrication 

and cannot maintain the tangency to the nozzle. Hence, not violating the maximum 

overhang angle is the main issue here. It was advised by the DED machine manufacturer 

that the maximum allowed overhang angle is 20° but it is better it does not exceed 10°. 

Therefore, 10° is the target maximum overhang angle. If the overhang angle exceeds 10°, 

there is a possibility of collisions, but if it is higher than 20° the quality of product is affected 

since there will be significant material collapse.  

As Figure 3-18 shows, the slicing direction is kept perpendicular to the bisector 

plane of each partition. Thus, in each partition, the beads below the angle bisector plane 

have a negative overhang and the beads above that have a positive one. By maintaining the 

maximum overhang angle below 10° both below and above the bisector plane, partitions of 

20° can be achieved (Equation (2)). As a result, the number of partitions is 9 (Equations (2), 

(3)). Although the overhang angle becomes 11.25°, the number of partitions is kept at 8. 

The reason is that if the dome is divided into 9 partitions, the angle range of the 5th partition 

is 80-100°. Fabrication of this last partition would be problematic based on the machine 

controller. 

 𝜃

2
= 10° →  𝜃 = 20° 

(2) 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 =  

180°

20°
= 9 

(3) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑘𝑒𝑝𝑡 𝑎𝑡 8 → 𝑀𝑎𝑥. 𝑜𝑣𝑒𝑟ℎ𝑎𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 =
180°

8 × 2
= 11.25° 
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Figure 3-18. Partitioning strategy of 2+1+1 axis 

Here, two translational X, Y axes are needed to build each layer. Then, Z-axis 

increases one slice thickness to start depositing the next layer. After a partition is built, the 

B-axis rotates 22.5° to reorient the nozzle appropriately for the next partition. Therefore, 

this process can be called 2+1+1-axis because just 2 axes (X, Y) are involved in depositing 

each bead and Z-axis is used to shift into the next bead. The B-axis relocates the nozzle 

from one partition to the next. 

3.2.2 Dome Fabricated by a Rotary 1+3-Axis Toolpath 

This solution is based on the slicing orientation that is depicted in Figure 3-11 (c). 

This method introduces collisions if it is being built the way it is shown in Figure 3-19.  

 

Figure 3-19. Collision made from initial rotary axis strategy 

The solution is building the dome at the end of a round bar (Figure 3-20 (a)). First, 

some beads are needed to be deposited at the end of the bar (3-axis planar slicing) as 

illustrated in Figure 3-19 (b). This creates the base for building the dome (Figure 3-19 (c)). 
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When the part is built at the end of the bar, collisions between the nozzle and the substrate 

are eliminated.  

 

Figure 3-20. (a) Rotary toolpath to build the dome at the end of a round bar. (b) Base layers at the 

end of the bar. (c) Rotary toolpath to build dome on top of the base 

Rotary toolpath with planar slicing- Here, the nominal diameter of the dome is 

60 mm with a thickness of 2 mm. The bottom of the dome starts from the end of the round 

bar which is 20 mm in diameter. The applied slice height is 0.3 mm. The dome is built in 

three segments from the bottom to the top. The first section is 4 mm high, and the second 

and third segments are 15 mm and 10 mm, respectively. This sectioning was implemented 

to investigate the part visually during manufacturing and to investigate the effect of 

intermittent deposition heat on the hardness of the part.  

 

Figure 3-21. Three segments of rotary toolpath dome. First and last layers are magnified to 

illustrate the changes of real layer height. 

 Figure 3-21 shows a magnified view of the first and last layers. The real height of 

the highest layer is h1=0.3 mm (the same as slice height) because surface tangency is the 

same as slice direction. Since the first layer has an overhang angle of about 70°, the real 
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layer height is about h2=0.85 mm for the first layer. The impact of layer height variation on 

surface roughness and hardness is presented in Chapter 5.  

 Experimental Procedure 

The experimental process flow to build the dome from the partitioned geometry to 

the fabricated product is shown in Figure 3-22. When the model is split into several sections 

and the tool orientations are found, AM toolpaths are generated using APLUS. This 

software is specialized for creating AM toolpaths and is an add-on to the Mastercam 

software.  

 

Figure 3-22. Experimental flow to build the case study samples 

The fabrication material is stainless steel-grade 410 (UNS S41000). Its mechanical 

properties are presented in Table 3-1. The material of the substrate is AISI 1018. 

There are many process parameters in DED AM that affect the quality of the final 

product (Table 3-2). These parameters should be set appropriately to produce a product with 

acceptable quality. Based on experience, the laser power starts with 900 Watts for the first 

layer and decreases to 700 Watts for the rest when building the different case study samples. 

The high power of the first layer ensures a better bond of the first layer to the substrate. 

Since the substrate is at room temperature (20°C) at the beginning of the process, its large 

volume dissipates the laser power. Consequently, higher laser power is needed at the 

beginning to melt the surface of the substrate. Then, power can be decreased for subsequent 

layers because the deposition area is heated enough. Developing control strategies for AM 

processes is an ongoing area of research, and new rules are being developed continuously.  

 

Partition the 
geometry

AM toolpath 
generation

Set machine 
parameters

Build the part
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Table 3-1. Mechanical properties of stainless steel-grade 410 [124] 
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410 SS 

Fe- Cr (12.5)- Mn (1)- Si 

(1)- C (0.15)- Ni (0.75)-P 

(0.04)-S (0.03) 

7800 
275-

825 
450-825 95 217 53-150 4260 

Low 

carbon 

1018 

Fe- Mn (0.6)- P (0.04)- C 

(0.15)- S (0.05) 
7870 370 440 71 131 N/A N/A 

 

Table 3-2. Process parameters of direct energy deposition additive manufacturing (*) for 0.3 mm 

slice height (**) for 0.5 mm slice height 

Input Parameter Value Explanation 

Power (W) 900-700 The material, size and shape of the powder 

Travel speed (mm/min) 500 The relative speed between nozzle and table 

Powder feed rate (g/min)  15 *-20 ** The volumetric feed rate of the powder 

Contact tip to work piece 

distance 
12mm 

The distance between powder converge point 

and the substrate surface 

Surface normal to laser angle 90 degrees The angle between laser beam and substrate 

Shielding gas type Argon The shielding gas is an inert gas 

Shielding gas flow (liter/min) 19 The volumetric feed rate of inert gas 

Laser spot shape, heat profile 
Circle, 

Gaussian 
 

Laser spot size (mm) 2 
This determines the energy concentration in melt 

pool 

Focal length (mm) 400 The length form nozzle tip that laser converges 
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The samples were manufactured by the Lincoln Laser Solutions Company, utilizing 

a 5-axis direct energy deposition machine. The mentioned machine has one translational 

movement (Z-axis) provided from the head in addition to 2 translational (X, Y axes) and 2 

rotational movements (A, B axes) provided by the table (Figure 3-23). In this machine, the 

substrate is installed on a chuck mounted on the A-axis. For this reason, a substrate is 

designed and machined that has a round bar at one end and a flat surface at the other 

(Figure 3-24). The round side will be clamped in the chuck while the domes are fabricated 

onto the flat section.  

 

Figure 3-23. Utilized DED machine to manufacture samples (1) nozzle (2) chuck (3) installed 

substrate 

 

Figure 3-24. Round substrate (all dimensions in mm) 
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 Microhardness Measurements 

In order to investigate the mechanical properties of the samples, their microhardness 

is measured experimentally. Other mechanical properties such as ultimate strength can be 

calculated from the hardness values [125], [126] and this data is used to verify the outcome 

of the numerical analysis. 

In this research, the Vickers hardness (HV) technique is used to measure the 

hardness. The HV is obtained by applying a force on a Vickers indenter onto the surface of 

the specimen. The HV indenter is a square-based pyramidal-shaped diamond with face 

angles of 136°. After the indenter is loaded onto the workpiece surface, it produces a 

diamond shape track on the surface (Figure 3-25). The load range that machines usually 

provide is from 1 to 1000 gram force (gf). The load should be exerted on the surface for a 

specific time which is set to 12 seconds here. The indentation diagonals are measured with 

a light microscope after the load is removed. All measurements of the current research are 

performed based on the ASTM E384-17 standard. The HV number is calculated by dividing 

the load by the surface area of the permanent impression made by the indenter.  

 

Figure 3-25. Vickers hardness indentation and minimum allowed distance between two 

indentations 

 The surface area can be calculated based on the mean of two diagonals. The 

resultant formula is: 

 
𝐻𝐾 = 1854.4 × (

𝐹

𝑑𝑎𝑣𝑒
2) 

(4) 

 

 
𝑑𝑎𝑣𝑒 =

𝑑1 + 𝑑2

2
 

(5) 

F = load in gram force (gf) 
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dave = mean of two diagonals d1, d2 

Some notes are from the ASTM E384-17 standard test for micro indentation 

hardness [127]: 

 The distance between two indentations should be at least 2.5 times the mean 

diagonal of indentation. If the distance is smaller, the second indentation changes 

the dimensions of the first one.  

 For forces larger than 25 gf, the Vickers micro-hardness numbers 

statistically match the Vickers macro-hardness numbers. 

 Since etching changes the mechanical properties of the surface, the specimen 

surface should not be etched before making the indentation.  

The required sequence of operations to measure the microhardness is shown in 

Figure 3-26. It starts with the sample preparation. In this regard, if the inside body of the 

sample is required to be measured, the sample should be cut.  

 

Figure 3-26. Process flow of micro hardness measurement 

Hardness measurement

Micro-indentation Indentation size Hardness calculation

Noise check

Micro-indentation Indentation size Hardness calculation

Machine setup

load determination

Sample preparation

Sample cut up Mounting Surface preparation
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3.4.1 Sample Preparation 

The cut line should be near the inspection location. Any technique that can cut the 

metal is applicable such as electro-discharge machining (EDM) wire cut, band saw, cutting 

wheel, etc. The cutting heat needs to be minimized because the generated heat affects the 

hardness and mechanical properties. The heat-affected zone is trivial in EDM wire cut, it 

can be removed by a fine grinding operation.  

Mounting the cut part makes it easier to hold it during grinding and hardness 

measurement. Sufficient grinding and polishing removes the cutting HAZ as well as it 

makes a mirror surface finish and consequently more accurate indentation measurement. 

Grinding papers MetLab P400, P800, P1200, P1500, P4000 as well as an alumina polishing 

suspension (size 3 and 1 μm) are used to achieve a mirror-like surface finish. 

Figure 3-27 shows the cut line of the 5-axis sample on the model (Figure 3-27 (a)) 

and on the fabricated sample (Figure 3-27 (b)). The cut line is perpendicular to all slicing 

planes and passes through the middle of the dome. The partitions 1 and 2 are dismissed but 

partitions 3 and 4 are mounted for further surface roughness and hardness investigations 

(Figure 3-28). 

 

Figure 3-27. Wire EDM cut line and indentation direction for 5-axis sample 
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Figure 3-28.  Mounted specimen of partitions 3 and 4 

Figure 3-29 shows the cut line of 2+1+1-axis sample. The cut line is perpendicular 

to all slicing planes and passes through the middle of the dome.  

 

Figure 3-29. Cut line for 2+1+1 axis sample 

 Since the diameter of mount is limited to 37 mm and cannot encase all partitions 

into one, two mounted samples are prepared for this case.  
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Figure 3-30. Two mounts of 2+1+1 axis specimen 

To measure hardness of the rotary sample, the part is cut through the cut-line as 

shown in Figure 3-31. Hardness measurements are not performed on the round bar section. 

Since the whole cut part cannot be mounted as a single specimen, it was cut into three 

smaller sections (Figure 3-31 (b)). Specimen 1 is mounted for further hardness 

measurements (Figure 3-32)  

 

Figure 3-31. (a) Cut line (b) The specimen is cut into three smaller specimens 
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Figure 3-32. Hardness indentations on of rotary sample mount 

3.4.2 Proper Load Determination 

Micro-hardness measurement machines provide a variety of loads: 10, 25, 50, 100, 

200, 300, 500, and 1000 gf. The proper load needs to be selected to have the most accurate 

HV results. Two methods are applied in this research to find the proper load: 

 Hardness sensitivity to diagonal variation of the indentations.  

 Image quality and the maximum magnification of the microscope.  

Hardness sensitivity test can be performed by making a set of indentations by using 

all loads that are provided with a micro-hardness test machine. Figure 3-33 shows an 

experiment in which 3 sets of indentations are made by all the provided loads. This 

experiment is implemented for partition 5 of the 2+1+1-sample. Three indentations for 

every available load was made on a small region of the sample. This is assumed that the 

material hardness in this region is uniform. The mean diagonals of these indentations are 

measured. As there are 3 indentations for each load, the average of these mean diagonals 

was measured (Table 3-3). For example, the average mean diagonal of three indentations 

of 10 gf is 7.6 μm. 
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Figure 3-33. Three indentations of all available load options (The same load indentations are 

encased with the same color circle). 

Table 3-3. Average of mean diagonal of 3 indentations for each load 

Load (gf) 
Mean diagonal 

values (μm) 

Mean diagonal 

average (μm) 

10 7.3, 8.8, 6.5 7.6 

25 10, 9.7, 10 9.9 

50 21, 21.5, 18.3 20.3 

100 27.5, 26, 25 26.2 

200 34.5, 36.3, 40 37.3 

300 45.3, 46.5, 47.3 46.3 

500 71.3, 68.5, 72.2 70.7 

1000 99, 95.5, 94 96.2 

 

Based on measured mean diagonal and applied load, there is a standard set of graphs 

to help find the proper load [127]. These graphs are drawn from Equation (4). Each curve 

represents the equation for a load. These graphs (Figure 3-34) demonstrate the relationship 

between HV numbers and the mean diagonal values for different loads. The average mean 
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diagonals from Table 3-3 are represented by vertical lines and their junctions to respective 

load are shown by a star. For smaller loads, the junction point is at the high slope section of 

the curve. In this case, by a small mismeasurement of the diagonal length, the calculated 

hardness changes a lot. Therefore, it is better to use the loads that resultant diagonal lengths 

position at a low slope of the curves. As it is apparent from the figure, at higher loads, the 

measured HV values have less sensitivity from mismeasurements of the diagonal.  

 

 

Figure 3-34. Calculated graphs showing relationship between diagonal and load [127]. The test 

values are also showed by vertical lines 

Additionally, another issue makes HV readings from smaller loads more inaccurate. 

The issue is that indentation sizes of lower loads are very small. This needs a very powerful 

microscope to capture sharp pictures of indentations. It is crucial in measuring their 

diagonal lengths because if the pictures are not of good quality the measurements are not 

accurate. Magnification of 750 works well for larger loads whereas the indentation picture 

is very small for loads of 10 and 25 gf. As a result, a magnification of 1500 is tested for 

pictures of small loads. The result was a dim picture that made it even worse to measure the 

diagonals accurately. So loads less than 100 gf were excluded. Figure 3-35 compares a 25 

gf indentation measured at 1500 magnification (Figure 3-35 (a)) and 750 magnification 

(Figure 3-35 (b)) besides a 500 gf indentation at 750 magnification (Figure 3-35(c)). 
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Figure 3-35. Comparison of indentations made by (a) 25 gf at 1500 magnification (b) 25 gf at 750 

magnification (c)500 gf at 750 magnification 

Based on what is mentioned in reference [127], the residual deformation from 

mechanical polishing must be removed especially if the indentation load is less than 200 gf. 

This makes the preparation of samples very critical. This was another important reason to 

avoid the forces less than 200 gf.  

Moreover, small values of load are suitable for hardness measurement cases such as 

very small workpieces which would be destroyed by application of a large load, 

measurement of thin samples like foils or wires, the hardness of a surface coating and 

hardness inside a phase such as pearlite or ferrite phases [128]. However, samples of this 

research are not categorized in any of these cases; accordingly, they do not need small loads. 

In this research, microhardness indentation is accomplished by means of Buehler Micromet 

II machine at 300 and 1000 gf load. The ImageJ-FIJI software was applied to measure 

indentation diagonals that were prepared by microscope Omax A3580U.  

 Surface Roughness Measurement 

Two characteristics of the fabricated domes questioned the applicability of ordinary 

roughness measurement techniques first, the geometry of the surface geometry is curved 

and second, the surface roughness is higher than the measurement limitations for ordinary 

systems. Although some common techniques were tried for these samples, they were not 

helpful in providing a reliable roughness value. Therefore, two innovative techniques are 

developed to extract roughness values of the domes from mount samples and from 3D point 

cloud. 
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3.5.1 Standard Measurement Techniques 

Two available standard techniques, tactile-based roughness tester and 

interferometric microscope, were attempted to measure the roughness of the samples. 

Despite having two common roughness measurement systems available, they were not 

applicable because of their limitations.The tactile-based system could not measure the dome 

samples properly because the stylus did not penetrate the deep valleys of the surface. The 

reason is that target surfaces are rougher than the length of the stylus. Furthermore, the logic 

of these systems is based on measuring a flat surface.  

Measuring the roughness utilizing an interferometric microscope was also 

attempted. Interferometry works based on interference fringe generation followed by 

amplitude division and recombination of light from the same light source [129]. The 

measurement results for the domes are too dim to be able to extract any surface roughness 

value. The domes are rougher than the maximum detectable roughness of this system.  

Finding a specific solution to measure the roughness of curved surfaces fabricated 

by AM is another motivation for developing new solutions. Since the exposed edges of 

samples in the mounts shows all the surface texture details under the microscope, the 

magnified picture of the edges can be used to calculate the roughness. Also, the 3D scanning 

can provide the surface point cloud that is used in surface roughness measurement. 

3.5.2 Roughness Calculation from Points on Mounted Sample 

After the sample is mounted, ground and polished, its detailed surface 

characteristics are clearly exposed (Figure 3-36). Even very tiny details of the edge 

roughness are visible under a microscope. A magnified picture of the surface edge contains 

sufficient information to extract all surface textures of the exposed edges. To measure the 

roughness of the surface in several locations, the mount sample can be prepared 

accordingly. 



71 

 

 

Figure 3-36. Roughness measurement edges in mount 

The measurement process starts with taking pictures of the surface edge using a 750 

magnification. As Figure 3-37 shows, since the observation area of the microscope does not 

cover the whole surface of the sample in one frame, photos of small sections of the sample 

edge need to be merged to create a single picture to represent the whole edge. The picture 

is scaled properly within CAD software (Solidworks) to make the dimensions equivalent to 

the real part. The scaling is based on matching the distance of two specific points in the 

CAD software with what is measured experimentally on the real surface. As Figure 3-38 

shows, the distance between the two corners of the sample is matched.  

 

Figure 3-37. Merged pictures of the edge of the sample 

The flow chart for the Matlab program is shown in Figure 3-39. The significant 

technique in this program is that roughness is calculated from projected points onto polar 

lines. The flow chart is divided into major steps that are explained here.  
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Figure 3-38. Scale of the edge pictures plus the sketch points. 

The first step is manually creating sketch points on the surface edge. However, these 

points in the Solidworks file should be converted to a *.txt file that contains point 

coordinates. The file is applied in the prepared Matlab program to calculate the Ra. Another 

txt file is needed that contains 3 points, two at both ends and one in the middle of the mount 

edge. 
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Figure 3-39. Flow chart used in Matlab program which measures surface roughness from a set of 

points at the edge of mount sample 

The program starts by asking to upload these two txt files. After the txt files are 

loaded, an arc is best-fit on the points. Then the center of the arc translates and rotates to 

the origin to make further calculations easier (Figure 3-40). 
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Figure 3-40. (a) Initial points and the center of constructed arc. (b) Translated points. (c) Rotation 

The point coordinates convert to the polar system in which the center of the polar 

coordinate system is the origin. In the next step, the number of projection lines is entered 

as an input. Then, all points project on projection lines. The logic is projecting each point 

to the respective nearest line.  

Several points are projected on each projection line that needs to be substituted with 

just one point. The location of the mean point is calculated from Equation (6). Therefore, 

the program finds the mean of projected points on each line (Figure 3-41). After this step, 

there is maximum one point on each projection line.  

 

𝑅 =
1

𝑛𝑝
∑𝑅𝑝

𝑛𝑝

1

 (6) 

The distances from the origin to the mean point and projected points are R and Rp, 

respectively. The np represents the number of points on a projection line. 
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Figure 3-41. Polar projection lines and mean points  

In this research, it is needed to measure the roughness for a small section of the 

sample in order to study how it changes in different locations. To reach this goal, the starting 

point and length of the region that needs to be measured needs to be entered (Figure 3-42). 

After the mean points for the measurement region are isolated, a new arc is best-fit 

through them. The reason for this operation is eliminating macro noise such as waviness. 

Figure 3-42 illustrates why this stage is needed. As the figure shows, the general fitted arc 

is not appropriate for the measurement region which has a lifted texture. If the same center 

of the general fitted arc is used for regional roughness measurement, the result would be 

incorrect.  
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Figure 3-42. Best-fitting a new arc through points of measurement region 

Now, everything is ready to flatten the points and to perform the roughness 

calculation. Figure 3-43 shows the flattening method. 

‘α' (radian) is the angle between projection lines, ‘Rm’ is the radius of the arc that is 

fitted through measurement region points, ‘R’ represents the distances of mean points to 

origin, ‘L1’ is the length of best-fitted arc between two adjacent projection lines, ‘L’ is the 

length of the measurement region, and ‘nn’ is the number of projection lines in the 

measurement region. 

 𝐿1 = 𝑅𝑚 × 𝛼 (7) 

 𝐿 = 𝐿1 × 𝑛𝑛 (8) 

 

Figure 3-43. Flattening of points for further roughness calculations 
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 The flattened points can be applied to the Ra calculation formula for the flat 

surfaces. The surface roughness equation (Ra) is: 

 
𝑚 =

1

𝐿
∫ 𝑅 𝑑𝑥

𝐿

0

 
(9) 

 
𝑅𝑎 =

1

𝐿
∫ |𝑅 − 𝑚|𝑑𝑥

𝐿

0

 
(10) 

‘R’ is the variable in Equation (9) because it is the height of points from the 

reference line. In this case, the reference line is the X-axis. In Equation (10), the ‘m’ value 

determines the height of the mean line from the reference line. The area between the surface 

profile and the mean line above the line is equal to that below it [130]. The mean line besides 

the area between the surface profile and the mean line are shown in Figure 3-44. 

 

Figure 3-44. Illustration of area between mean line and surface profile 

The initial experiments that were performed by the contact measurement technique 

(explained in Section 3.5.1) provided an Excel graph of the surface texture besides the Ra 

value. This data set is applied to validate the program in the results chapter. 

3.5.3 Surface Roughness Measurement from 3D Point Cloud  

Because the surface is curved, a technique is needed to generate initial data from the 

surface textures. The 3D scanning technology provides a huge number of points from the 

surface of the part. The main issue is converting the point cloud to a roughness value for 

any arbitrary region of the surface. In this section, the proposed solution of roughness 

evaluation from the provided 3D point cloud is explained.  

Here, a Matlab program is developed to extract directional Ra from the 3D point 

cloud. Two txt files are needed as input data, point-cloud txt file, and the txt file of reference 

points. In the point cloud txt file, each line contains 3 components of 3D point coordinates 
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separated by a Tab character. The reference-points file contains coordinates of 3 reference 

points. Reference points define the location of the reference plane. The Matlab program 

measures the roughness at the intersection of the reference plane and the measurement 

surface. As Figure 3-45 shows, after the point cloud file is opened in a CAD software (here 

Solidworks), based on the location and direction of the measurement region, the reference 

plane is created. One of the reference points needs to be at one end of the point cloud to be 

a reference for rotation of the point cloud (rotation reference point) at later stages. The 

second point is approximately at the middle of the arc and the third point is at the end of the 

arc (Figure 3-45 (b)). 

The point cloud needs to be filtered before being used in the Matlab program. Since 

this technique measures the surface roughness at an intersection, the farther points from the 

intersection need to be deleted. Although the current program can extract the roughness 

value correctly without filtering, removing the points far from the measurement line 

enhances the run time of the program. Two planes on both sides of the reference plane 

determine the filtering boundary. The distance between two boundary planes is ‘f ’ which 

can be set by the user. So, as Figure 3-45 (b) shows, all points beyond these 2 planes will 

be deleted manually. The text file contains just the points between boundary planes. The 

dependency of roughness results with the distance of 2 boundary planes will be inspected 

in the result chapter.  

Figure 3-46 shows the process flow of the prepared Matlab program. The flow chart 

is divided into seven steps. The starred steps (*) are the same as mount solution steps. The 

main difference between this solution and the mount one is how projected points on 

projection lines are substituted by one point. 

First, the program asks the user to import the point cloud and reference-points txt 

files. It calculates the equation of the reference plane. A plane is defined by a point and 

normal vector, so, the reference plane is defined by a rotation reference point (Figure 3-45 

(b)) and the normal vector of the plane.  
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Figure 3-45. Removing points that are far from measurement line. Reference points on reference 

plane 

The reference plane can be positioned anywhere in the 3D space. Hence, as 

Figure 3-47 shows, the filtered 3D point cloud is located in the 3D space. To make the next 

calculations easier, it is better to rotate and overlay the point cloud on the XY plane. The 

vectors from the rotation reference point to second and third reference points are named V1 

and V2, respectively. The reference plane is defined by a point on the surface (rotation 

reference point) and normal vector (N). N is the cross product of V1 and V2 (Equation 

(11)). 

 𝑁 = 𝑉1⃗⃗⃗⃗  ⃗ × 𝑉2⃗⃗⃗⃗  ⃗ (11) 

The normal vector, N, and V1 are used to define the unit coordinate system 

components on the reference plane (Xr,Yr,Zr). Zr and Yr axes are the unit vectors of N and 

V1, respectively. Also, Xr is the cross product of Yr and Zr.  

 
𝑍𝑟⃗⃗⃗⃗ =

𝑁⃗⃗ 

|𝑁⃗⃗ |
 (12) 

 
𝑌𝑟⃗⃗⃗⃗ =

𝑉1⃗⃗⃗⃗  ⃗

|𝑉1⃗⃗⃗⃗  ⃗|
 (13) 

 𝑋𝑟⃗⃗ ⃗⃗ = 𝑌𝑟⃗⃗⃗⃗ × 𝑍𝑟⃗⃗⃗⃗  (14) 
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Figure 3-46. Flow chart used in Matlab program which measures surface roughness from 3D point 

cloud. (*) same operations with mount solution 
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Figure 3-47. Rotation of point cloud to XY plane 

The rotation of the point cloud to the XY plane is done using Equation (15). Px, Py, 

and Pz are the components of point coordinates before they are rotated, and i , j, and k are 

unit vectors of X, Y, Z axes, respectively. Rotated point coordinates are Px’, Py’, and Pz’. 

 

[

𝑃𝑥′

𝑃𝑦′

𝑃𝑧′

] = [

𝑖. 𝑋𝑟 𝑗. 𝑋𝑟 𝑘. 𝑋𝑟
𝑖. 𝑌𝑟 𝑗. 𝑌𝑟 𝑘. 𝑌𝑟
𝑖. 𝑍𝑟 𝑗. 𝑍𝑟 𝑘. 𝑍𝑟

] [

𝑃𝑥

𝑃𝑦

𝑃𝑧

] (15) 

As Figure 3-48 shows the rotated points have a distance “d” from the XY plane. 

This value is very important for later steps so, points will be projected on the XY plane after 

this value is saved.  

 

Figure 3-48. Rotated point cloud and its projection on XY plane 
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The arc preparation and projection processes that are marked with (*) in Figure 4-8 

are similar to the same steps in the mount solution. Therefore, it is referred to as the same 

steps in mount method (Section 3.5.2). 

After the point cloud is projected onto projection lines, they need to be replaced 

with one representative point on each line. In the mount solution, the mean point represented 

the projected points. However, in the 3D point cloud solution, it is not practical because 

each data point does not have an equal impact on the representative point’s positioning.  

As the input points are scattered in 3D space, they are not located exactly on the 

reference plane. Projecting close points can resolve the sparse data issue. Points near the 

reference plane can be used to increase the input data. If the points are very close to the 

reference plane, there is more probability they have the same height as the intersection curve 

(Figure 3-49). 

 

Figure 3-49. The intersection curve and nearby 3D points  

A parameter is defined for each point called point weight “M” for measuring the 

arithmetic mean of the points on the projection line. The point weight is larger for the points 

that are nearer to the reference plane. Equation (16) calculates the weights of the points. 

The weight is the reciprocal of the distance of the point to the reference plane “d” to the 

power of “n”. This “d” is the same as what is shown in Figure 3-48. Therefore, as 

Figure 3-50 illustrates, when there are some points on a projection line, the mean point 

approaches to the point that has the least distance to the reference plane. 

 
𝑀𝑖 = (

1

𝑑𝑖
)
𝑛

 
(16) 
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 𝐻 × ∑𝑀𝑖 = ∑𝑀𝑖ℎ𝑖 
(17) 

 

Figure 3-50. Illustration of finding the mean point based on the weight of the points 

‘Mi’ is the point weight, ‘n’ is the distance coefficient, ‘di’ represents the distance 

of 3D points to the reference plane, ‘hi’ is the distance of projected points on lines from the 

origin, and ‘H’ is the distance from the mean point to the origin. 

The role of the distance coefficient “n” is to give the user control over the intensity 

of the point weight. As the value of ‘n’ increases the effect of farther points diminishes. The 

effect of changing ‘n’ in roughness result is studied in the results chapter. Figure 3-51 shows 

the process of projecting point cloud on projection lines and finding the representative point 

on each line for a test sample. After the representative points are found, the measurement 

localization and Ra measurement processes (marked with (*) in Figure 3-46) are the same 

as the last two operations for the mount based evaluation (Figure 3-39).  
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It is explained more in detail that these results are verified using the results for the 

mount solution for the same samples. 

 

Figure 3-51. Projection of points to projection lines and finding the mean point on each line. 

 FEA Simulation for the Hardness for 2+1+1-Axis Sample 

In order to simulate the hardness and other mechanical properties of the DED-built 

components, a finite element based numerical analysis is conducted. This simulation 

investigates the temperature history, hardness and residual stresses. Some physical 

principles play a role in the mechanical properties of the part, such as the heat absorption 

from the laser beam to deposited powder and substrate, the heat conduction in the substrate 

and the deposited bead, the molten pool dynamics, the solidification of the molten pool and 

heat convection/radiation from the surface of the part. Moreover, the geometry of the part, 

substrate, and deposited beads, as well as machine parameters during deposition, affect the 

mechanical properties of the part [131].  

The assumptions of this analysis are: 

(I) The powder deposition aspects are not considered. The powder particles traveling 

from the nozzle to the melt pool are not considered. It is assumed that the material is 

provided directly at the melt pool continuously [111].  

(II) Although in this method all beads are preplaced and meshed initially, elements of the 

melt pool and deposited beads activate as the laser travels along the toolpath. This 

means all elements are present from the beginning, but the bead elements are 

deactivated initially. As the laser trajectory passes along the bead, it activates them. 
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So the heat delivery from the laser to the bead, as well as the heat transfer from the 

melt pool to the bead, happens just to the elements that already deposited. This makes 

the simulation and the results closer to what really happens experimentally. This 

method is called a transient analysis with a moving heat source (MHS) approach.  

(III) The bead geometry is important in the modeling of the thin wall bead deposition. In 

this case, the bead geometry is ascertained from experience and experimental results 

[48], i.e.,  the effect of machine parameters on the bead geometry is known. To ensure 

that the bead geometry assumption is correct, it is verified by the experimental data 

from built samples. 

(IV) The cross section of the beads are assumed to be rectangular. Thus, the geometry of 

the bead is defined by bead width and bead height. 

(V) The laser parameters such as the laser reflection and the laser attenuation are 

simplified to the laser efficiency parameter, which is represenative of the amount of 

laser power loss. 

3.6.1 Calculation Theories 

In this research, a thermal-metallurgical analysis of thin wall bead depositions is 

accomplished using ESI Sysweld software (version 2019.0). The thermal and metallurgical 

history of a part can be predicted at all points that are affected by heat. The hardness of a 

part depends on chemical composition, structure after quench or temper operation, cooling 

rate and grain size [132].  

The equation used for thermo-metallurgical analysis is a modified heat conduction 

(Equation (18)). 

 

(∑𝑃𝑢(𝜌𝐶)𝑢

𝑢

)
𝜕𝑇

𝜕𝑡
− ∇((∑𝑃𝑢𝜆𝑢

𝑢

)∇𝑇) + ∑ 𝐿𝑢𝑣(𝑇). 𝐴𝑢𝑣

𝑢<𝑣

= 𝑄 (18) 

Here, ‘P’ is phase proportion, ‘u, v’ are phase indices, ‘Q’ represents the heat source, 

‘Luv(T)’ is the latent heat of u to v transformation, and ‘Auv’ is the proportion of transformed 

phase from u to v in a time unit. 

The temperature gradient is calculated based on Equation (19). 

 𝜕𝑇

𝜕𝑡
=

𝜆

𝐶 × 𝜌
(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) = 𝑎∇2𝑇 (19) 
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‘T’ is the temperature in Kelvin, ‘t’ time in second, ‘x, y, z’ are the point coordinates, 

‘α’ represents the thermal diffusivity coefficient, ‘λ’ is conductivity coefficient, ‘C’ is 

specific heat, and ‘ρ’ is the mass density. 

Another important input of this simulation is the heat source definition. There are 

several mathematical models to represent welding heat sources for the analysis calculations. 

The two-dimensional Gaussian surface, Goldak double-elliptical, and the three-dimensional 

Gaussian conical heat source models are the three main mathematical models. The first one 

is best suited for surface treatment processes, while the second one performs well for melt-

in welding, and the third one models processes with high power density such as laser and 

electron beam welding [132]. As direct energy deposition additive manufacturing utilizes a 

laser beam to melt the material, the three-dimensional Gaussian conical heat source is used 

in this analysis. 

The shape of the 3D Gaussian conical heat source model is shown in Figure 3-52. 

The power intensity increases exponentially as the distance from the center of the laser 

beam decreases and the radius of the laser beam shrinks as it goes deeper. The shape of the 

intensity curve stays the same, but the maximum power decreases as the laser penetrates 

into the part. The maximum depth that laser can melt the part is called the penetration depth.  

 

Figure 3-52. 3D Gaussian conical heat source model 

 
𝑞(𝑥, 𝑦, 𝑧) = 𝑞0𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

𝑟0
2(𝑧)

) [20] 
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 𝑟0
2(𝑧) = 𝑟𝑒 +

𝑟𝑖 − 𝑟𝑒
𝑧𝑖 − 𝑧𝑒

(𝑧 − 𝑧𝑒) [21] 

‘q0’ is the heat flux density, ‘re’ is beam radius at exposure surface, ‘ri’ is the beam 

radius at penetration depth ‘ze’ is the height of exposure surface, and ‘zi’ represents the 

height of the penetration depth. 

The initial boundary conditions for the simulation are shown in Figure 3-53. More 

quantitative boundary conditions are presented in Chapter 7. 

 

Figure 3-53. Initial boundary conditions for the FEA simulation 

3.6.2 Applied FEA Algorithm 

Two methods are applied in this research; constant laser efficiency and constant 

melt pool size. In the constant laser efficiency method, laser efficiency is assumed to be 

constant for all beads. This causes the melt pool size variation in different layers. The 

sensitivity analyses are applied for simulation parameters such as laser efficiency, laser 

penetration, and laser diameter at the bottom of laser penetration. The results are compared 

to the experimental data to find the appropriate parameters.  

The constant melt pool method [133] is the modified one. The applied algorithm for 

this method is shown in Figure 3-54. This algorithm starts with preparing the CAD models 

of both the substrate and the product. Slicing the part model into separate beads helps to 

mesh beads easier at later preparation stages. The models of the substrate and the beads are 

meshed with Altair-Hypermesh. Using hexagonal meshes and variable element sizes for 

different regions reduces the overall number of elements and consequently the run time. 

Figure 3-55 shows the applied method for the model of the dome to reduce the run time of 
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the bead deposition analysis. The measurement area is shown in red ellipses. This is the 

area that the mechanical properties need to be measured. The mesh size in these regions and 

regions near them is constant and fine, but for farther regions in the bead, the mesh gradually 

becomes coarser. The dependency of the results on the mesh size and mesh variation in the 

beads is presented in the results chapter.  

After the mesh file is imported from Hypermesh into Sysweld Visual-Mesh, it needs 

to be checked for any coincident nodes, and ‘elements besides element’ quality check needs 

to be implemented. If there is any coincidence in nodes or elements, they should be fused 

together. The Jacobian, skewness, and maximum aspect ratios need to be examined and 

improved if these values violate the limitations. After the elements are enhanced, mesh file 

exports into Sysweld Visual-Weld for the next steps of analysis.  

The melt pool travel path, in addition to the laser beam orientation, needs to be 

defined in Visual-mesh. The travel paths of 3 beads are created in this step. The process 

parameters such as nozzle travel speed, laser top diameter (re), bottom diameter (ri), 

penetration depth (based on dimensions in Figure 3-52), energy per unit length, and laser 

efficiency are defined. These parameters specify the amount and shape of the input heat 

source into the system. The laser top diameter and energy per unit are machine parameters 

that are set on the machine prior to building the sample. However, the laser bottom diameter 

and penetration depth as well as laser efficiency and surrounding temperature need to be 

measured experimentally or estimated from the available literature. The penetration depth 

is defined as the depth that heat flux penetrates in the solid substrate. 

A shell element mesh needs to be created to encase the overall model as a skin for 

heat transfer calculations. The method for defining the clamps affects the resultant 

distortion of the workpiece and substrate. However, this research is not investigating the 

distortions. Thermo-metallurgical analysis plus mechanical calculations are available to 

analyze the temperature gradient history, phase proportions, displacements, residual 

stresses, and yielding point. Moreover, the software can analyze the hardness separately. 

Hardness depends on the material chemical composition, structure after a quench and 

temper operation, the cooling rate, and the grain size [132]. As hardness and yield strength 

have linear correlation [134], the analysis is performed for yield strength. Then, by a linear 

ratio, it is converted into the hardness results. The results are verified by experimental 
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hardness measurements. More detailed explanations of the simulation process, as well as 

the results, are covered in Chapter 7. 
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Figure 3-54. Flow chart of numerical analysis applied in this research 
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Figure 3-55. Variable mesh size for beads 

A mesh dependency (mesh sensitivity) check is performed to ensure the validity of 

the results. For this, the analysis should be performed for the same geometry and process 

parameters using finer mesh elements. The whole model is meshed using finer elements 

(eight-time finer mesh). As mentioned before, the analysis of 4 beads is performed. The 

hardness variation diagram for the predetermined region in these different analyses are 

compared. If the mesh is too coarse, the hardness results vary significantly when changing 

the mesh size. But gradually by refining the elements, the dependency of the hardness 

results to mesh size will become insignificant. Although the finer mesh provides more 

accurate results, it increases the analysis runtime. Therefore, a decision needs to be made 

for practical element size that brings accurate results and reasonable runtime.  

The case study sample in this research has unique challenges, as it is split into 

partitions and this introduces time discontinuities. Therefore, a structured analysis approach 

is used. To prevent a long analysis of all 144 beads, the analysis is performed for each 2 

partitions and 7 beads of the next partition.  

To identify the simulation parameters, initially the thermo-metallurgical analysis is 

executed for the first 4 beads of partition 1 to find the appropriate parameters to meet the 
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melt pool temperature between 1500 °C and 2000 °C as well as the size of melt pool to 

include the last 2 beads. The initial sensitivity analyses showed that constant laser efficiency 

for all layers of a partition causes the melt pool size to increase for higher layers of each 

partition and the melt pool temperature increases very much. Hence, the laser parameter is 

set to decrease for higher layers of each partition. This maintains the melt pool size and 

temperature for beads of the partitions. When the parameters are identified the mechanical 

analysis is executed for all partitions. Sysweld Visual-view provides the yield strength, 

temperature history, and the residual stresses. The yield strength variation plot is used to 

extract the hardness data, and compared to the experimental hardness data.  

To summarize, in this chapter the techniques, and theories that are applied to the 

process set up and fabrication, geometry partitioning, surface roughness measurements, 

micro-hardness measurements, and FEA analysis is presented. In the following chapter, the 

fabrication processes, geometry, and dimensions of the built domes are compared to 

nominal values.  
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4 CHAPTER 4 

PROCESS PLANNING FOR COLLISION AVOIDANCE RESULTS 

In this chapter, the fabrication challenges, product geometry, and visual 

investigation of the domes is presented. The diameter and thickness of the fabricated domes 

is measured and a visual estimation of the surface finish is covered. One sample per each 

partitioning strategy is fabricated and tested. Prior research has shown that the process is 

repeatable [48], [135]. 

 Dome Fabricated by Wedge Shape Partitioning 

Two domes are fabricated leveraging the wedge-shaped partitioning algorithm for 

the 5-axis and 2+1+1-axis scenarios. The partitions for both parts are fabricated with an 

interval of approximately 10 minutes between operations for visual inspection. Therefore, 

the previous partition cools down before the next one starts. 

4.1.1 Dome Fabricated by 5-Axis Toolpath 

Keeping the nozzle tangent to the surface of the dome requires all 5-axes to be 

continuously involved. Figure 4-1 demonstrates the fabrication procedure of the partitions. 

 

Figure 4-1. All 5 axes involvement in making the hemisphere dome 

Controller based fabrication issues occurred. A travel speed variation was observed 

while producing partitions 1, 2, and 4 in 5-axis mode. The fluctuation of material deposition 

and heat input rate affected the surface roughness and hardness of the mentioned partitions. 

However, the travel speed for the 3rd partition was constant. Therefore, the hardness and 

surface roughness tests are applied just for the 3rd partition as no additional process related 

noise is introduced. Machine tool companies are developing specialty AM controllers. This 

research revealed an issue for a 5-axis deposition process that is used successfully for 

fabricating other less complex geometries.  
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Fabrication of a hemisphere by this method needs a B-axis rotation of 180°. A 

machine constraint that appeared during the fabrication process was that the trunnion table 

of the B-axis can tilt just 0-90°. Therefore the 3rd and 4th partitions could not be made as 

planned. The solution is to build half of the hemisphere in the first setup then rotate the A-

axis 180°, zero the A-axis, and then build the second half. The toolpath is modified for this 

strategy as Figure 4-2 shows.  

 

Figure 4-2. Building the dome in two sections by 180 degree rotation 

As shown in Figure 4-3 (a), the B-axis is zeroed at the beginning of the build. This 

means the substrate platform is at a horizontal position. The deposition of the first two 

partitions continues until the first half of the dome is built. At this point, the B-axis is at 90° 

(Figure 4-3 (b)). If it continues to build the second half, it exceeds the B-axis limitation 

(Figure 4-3 (c)). The solution is to rotate the A-axis 180° after partition 2 is built. Then, the 

new position of the A-axis is set to zero. Afterward, it starts to build the second half from 

the new orientation (Figure 4-3 (d), (e)). Figure 4-5 shows the fabricated partition. 
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Figure 4-3. (a) Substrate at its horizontal position. (b) Building the first half of the dome (c) 

Rotation of A-axis 180° (d) Building the second half 

 

Figure 4-4. Production stages of the dome in 5-axis. (a) to (d) Produced partitions 1 to 4 

respectively 

Figure 4-5 shows the completed dome made by a 5-axis planar-slicing toolpath. It 

is apparent that the surface roughness of the 3rd partition is better than other ones. 

 

Figure 4-5. Completed 4 sections of 5-axis dome 

A sphere is best-fitted to the point cloud data of the dome using Solidworks- 

ScanTo3D module and Powerinspect software. The inner and outer diameters are calculated 

as 42.4 mm and 47.8, respectively.   
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4.1.2 Dome Fabricated by 2+1+1-Axis Toolpath 

The same machine and process parameters for the 5-axis process are applied to 

produce 2+1+1-axis dome. Since this process requires just 2 axes for the bead trajectory, it 

does not experience the inconsistent movement that the 5-axis process had. Therefore, all 

partitions are valid for further investigations of the surface roughness and hardness tests. 

But the fabrication process suffers from constraints on the B-axis, similar to the 5-axis 

process. As a result, the first four partitions are made as the B-axis goes from 0° to 90°, 

then the A-axis rotates 180°, and the B-axis travels back to 0° to build the last 4 partitions. 

This is the reason why the part is built in 8 partitions instead of 9 (Section 3.2.1). If it was 

built in 9 sections, the angle of the 5th partition would be 80°-100°, which could not be built 

continuously. 

Figure 4-7 shows the process of manufacturing the first 4 partitions of 2+1+1-axis 

dome. Figure 4-8 shows the process of fabricating the partitions. Figure 4-8 shows the 

fabricated part including the partition numbers. 

 

Figure 4-6. 2+1+1-Axis deposition of dome (a) First partition (b) 5th-partition 
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Figure 4-7. 2+1+1-Axis manufacturing of dome (a) to (d) Partitions 1 to 4 

 

Figure 4-8. Completed 2+1+1 axis dome. Partitions 1-8 

The same process as for the 5-axis sample is followed to measure the diameters of 

2+1+1 sample (Figure 4-9). The results show the inner and outer diameters of 42.6 mm and 

48.1 mm, respectively. 
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Figure 4-9. Diameter measurement from point cloud 

 Dome Fabricated by Rotary 1+3-Axis Toolpath 

In this case, the deposition toolpath requires just the rotation of the A-axis. When a 

layer is deposited, three simultaneous movements relocate the nozzle to the next layer. The 

mentioned 3 movements are rotations about the Z-axis, B-axis, and Y-axis. Figure 4-10 (a) 

shows the rotary bead deposition. Figure 4-10 (b), (c) show the procedure of fabricating the 

dome.   

 

Figure 4-10. (a) Rotary deposition toolpath (b) Initial layers (c) Half fabricated dome 

Figure 4-11 shows the produced sample by rotary toolpath strategy. The base 3-axis 

beads are shown as well.  
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Figure 4-11. Sample made by rotary toolpath strategy 

Figure 4-12 compares the inner and outer diameters of three different partitioned 

domes. For both inner and outer diameters, the 2+1+1-axis dome shows the highest 

variations whereas the rotary sample has the lowest variations.  

 

Figure 4-12. Comparison of inner and outer diameters 

The thicknesses of the samples are measured in 10 random locations. The measured 

values, as well as the standard deviation (Std. Dev.) of 10 measurements, are displayed in 

Figure 4-13. The average diameter of the 2+1+1-axis sample is closest to nominal but has 

a high standard deviation. On the other hand, the 5-axis sample has the lowest standard 

deviation. 



100 

 

 

Figure 4-13. Thickness comparison 

The process planning results, geometry measurement of fabricated domes and visual 

investigation of the domes are presented in this chapter. The average diameters and their 

variations indicate that the 2+1+1-axis is the worst case as the outer diameter is expanded 

2.3 % and the inner diameter is shrunk 0.9 %. The reason is the surface inflations at the 

transition points between partitions that increase the outer diameter. Figure 4-13 supports 

this as the standard deviation of the thickness has the highest value whereas it has the lowest 

thickness. It means the thickness within partitions is the lowest but the existence of the 

bumps increases the standard deviation and the total outer diameter. On the contrary, the 

rotary dome has the best condition as its diameters are near the nominal value. 

A 3D scanner with an accuracy of ±0.044 mm is used to collect the point cloud data. 

Hence the diameter values have a tolerance of ±0.044 mm. Although the CMM has better 

accuracy, it is not adequate to collect the point cloud data because the number of provided 

points are much less. In addition to this, the probe diameter prevents the measurement of 

the surface texture valleys. The Vernier caliper cannot provide sufficient diameter data as 

it provides a dimensional measurement, not a geometrical one. 

Further experiments are implemented to compare the properties of the domes from 

different aspects. The exploration of surface roughness and hardness variations are 

presented in Chapters 5 and 6.  
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5 CHAPTER 5 

SURFACE ROUGHNESS TESTS RESULTS 

The surface roughness results are presented in this chapter for the dome samples to 

study the Ra variations perpendicular to the slice direction. Based on the surface roughness 

measurement algorithms, two Matlab programs are developed. The first measurement 

program is based on the 2D edge points of mount samples, and the second program extracts 

surface roughness values from a 3D point cloud. 

  Surface Roughness Measurement from Mount Samples 

Before the program is applied to inspect the domes, an assessment is performed to 

verify the validity of the results. A sensitivity study of the two parameters affecting the 

results when using the 3D point as input (the number of projection lines and length of 

measurement) is also realized.  

5.1.1 Verification Test of the Mount Program 

As mentioned in the methodology chapter, a trial experiment was performed to 

measure the surface roughness utilizing a skidded contact-based device. Although the 

results were not reliable to be used to measure the real roughness of the parts, the collected 

data are employed to verify the results of the Matlab program.  

The collected data is provided in two forms: the surface texture profile and their 

associated point coordinates. When the stylus is traveling along the surface, it records 

numerous point coordinates of the surface texture. Then, it draws the surface profile as 

shown in Figure 5-1. The traveling length is set by the user. A sensitivity analysis is 

performed to find the optimum measurement length. In this case, 3333 and 6000 point 

coordinates were created for the measurement lengths of 5 mm, 3 mm respectively.   
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Figure 5-1. A sample surface texture profile is used to verify the Matlab program 

Table 5-1 shows some example points of the surface profile related to Figure 5-1. A 

sample surface texture profile is used to verify the Matlab program. Five point-coordinate 

files (txt file) of different surface profile samples are utilized.  

Table 5-1. Point coordinate sample made by a contact-based surface roughness facility 

Point number X position (mm) Texture height (μm) 

1 0.00150 -56.65 

2 0.00300 -57.14 

3 0.00450 -57.73 

… … … 

3331 4.99650 -27.55 

3332 4.99800 -27.92 

3333 4.99950 -28.04 

 

As Table 5-2 indicates, the calculated Ra values from the Matlab program match 

the contact-based measurement with an average standard deviation of 0.07 (μm). This 

experiment proves that results evaluations performed by the Matlab program are valid and 

accurate enough to perform further analyses for the dome samples. 

It is expected that as the number of projection lines increases, the Ra value will 

become more accurate. Also, the measurement length depends on the roughness of the 

surface. If the surface is very rough, the measurement length should be longer to include 
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more surface textures. Since the slice height is 0.5 mm for partitioned domes, an effective 

measurement length is needed to be established.   

Table 5-2. Verification of results made by prepared Matlab program with results of contact-based 

measurement 

Experiment 

number 

Measured by contact- 

based facility (μm) 

Calculated by prepared 

Matlab program (μm) 

Variation (%) 

1 14.61 14.7 0.64 

2 38.15 38.3 0.39 

3 25.9 25.9 0.02 

4 25.16 25 0.6 

5 33.07 33 0.05 

5.1.2 Sensitivity Study of the Mount Program 

The number of projection lines- Two types of sample tests are used for this test: 

high point density samples and low point density samples. High-density samples are the 

point coordinate files that were used in section 5.1.1. These files contain 3333 and 6000 

points for 5 mm and 3 mm measurement length, respectively, which means average 

distances between points are 1.5 μm and 0.5 μm, respectively. Low-density samples are 

associated with the point coordinate files of the mount samples. Five samples are used here 

that have between 127 to 204 points in 4 mm measurement lengths. The average distance 

between points for these samples is approximately 25 μm. 

For the high-density samples, the Matlab program was run by different numbers of 

projection lines; 6000, 3000, …, 100, 50, 25, 10. As Figure 5-2 (a) indicates, the calculated 

roughness (Ra) is independent of the number of projection lines if the number of projection 

lines is more than 100. If the projection lines are less than 100, the observed Ra value drops 

severely. The test for low-density samples supports this as well. For projection lines more 

than 100, the curves are horizontal. Therefore, for later applications of the program, the 

projection lines should be at least 100 for each measurement length of 4 mm.  
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Figure 5-2. Dependency of surface roughness result made by Matlab program to number of 

projection lines 

The measurement length- The txt file related to the inner edge of 2+1+1-axis 

partitions 1-4 sample is used in this experiment to determine the proper measurement 

length. Figure 5-3 shows different regions on the inner edge based on their surface quality. 

The layers within partitions are finer than the joints between partitions. There is a surface 

inconsistency at the joints that causes an Ra value escalation.  
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Figure 5-3. Regions of mount samples with different surface quality 

The program is applied for a set of measurement lengths of 1, 2, 3, 4, 5, and 8 mm. 

As Figure 5-4 (a) shows measurement lengths of 1 and 2 mm are very noisy and display no 

pattern. The reason is the measurement length is just too small compared to the slice height. 

Also, the transition points between partitions are not detectable.  

On the other hand, a pattern is noticeable for the measurement lengths of 3, 4 

(Figure 5-4 (b)). Moreover, it shows the Ra variation of the layers inside each partition. 

This figure shows an Ra convergence within partitions for measurement lengths of 3, 4 mm 

but they differ for the transition points between layers. Figure 5-5 indicates the reason. For 

regions within partitions, both methods measure a smooth surface whereas, on transition 

points, it depends on the length of the region that is covered by the bulge.  

Considering measurement lengths of 5, and 8 mm, the sections related to layers 

inside partitions are too small or even it is not detectable for 8 mm (Figure 5-4 (c)). 

Although it is advised to perform surface roughness of the samples having Ra = 50 μm 

(which is the same order as the Ra of the domes) by measurement length of 8 mm [54], it 

is not applicable here to study the variation of Ra. Also, as Figure 5-3 shows the arc lengths 

of partitions are around 8 mm in the mount samples. Thus, all measurements are affected 

by bulges of transition points whereas measurements within the partitions should be free of 

such noises. It means it does not show the variation of surface roughness within partitions. 

This conclusion is true for the 5 mm measurement length too. Therefore, lengths of 1, 2, 5, 

and 8 mm are excluded. On the other hand, the measurement lengths of 3, 4 are applicable. 

Since a 4 mm measurement includes more layers (theoretically 8 layers), it is chosen for 

the assessment for the dome experiments.  



106 

 

 

Figure 5-4. Sensitivity analysis for determination of measurement length 
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In the next sections of this chapter, the variation of the surface roughness along the 

edges of mount samples is investigated. The purpose of this study is to understand how the 

partitioning strategies (5-axis, 2+1+1-axis, rotary toolpath), overhang angle, and layer 

height variations affect the surface roughness. Furthermore, the roughness of the transition 

points between partitions are considered. 

 

Figure 5-5. Comparison of measurements of transition points with layers inside partitions 

To do this, Ra variations along the surface edges of the mount specimens are studied. 

However, the edge lengths of the case study specimens vary between 14 mm for the 5-axis 

sample to 35 mm for 2+1+1-axis samples. Therefore, if the specimen edges are divided into 

sequential 4 mm-length sections, 5 to 9 measurement regions will be available for the 5-

axis and 2+1+1-axis samples (Figure 5-6) respectively. Consequently, based on what is 

shown in Figure 5-8, an increment of 0.5 mm is considered between start points of 

measurement regions. Although this causes a 3.5 mm overlap between measurement fields, 

it increases the number of resultant Ra data, which makes later interpretations more 

accurate.  

 

Figure 5-6. Measurement regions for sequential regions 
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5.1.3 Roughness Variations for the 5-Axis Sample 

As mentioned before, the effect of two parameters: layer height variations and the 

tilted overhang angle on Ra are investigated. The layer height variation is associated with 

the build geometry, as illustrated in Figure 5-7. As the planar slice strategy is used for the 

dome fabrication, the real layer height increases when the overhang angle increases. The 

relation between the real layer height and the length of the mount edge arc is calculated by 

Equation (22).  

 
𝑅𝑒𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑆𝑙𝑖𝑐𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

cos (
𝐿𝑝

𝑅 )

 (22) 

R is the dome radius (21.5 mm for inner arc and 23.5 mm for outer arc) and Lp is 

the arc length of the partitions from the bottom layer (Shown in Figure 5-7 and the X-axis 

in Figure 5-9). The real layer height equals the slice height at the bottom layer of each 

partition but it increases gradually up to 25 percent larger than slice height at the top layer 

of the partitions for the 5-axis dome. It means the layer height is 0.5 mm in bottom layers 

and 0.7 mm in the top layer of the partition. 

 

Figure 5-7. Layer height increase 

To investigate the effect of the layer height increase on the Ra more accurately, 

another experiment can be done. In this future work study, the virtual model of the dome, 

which includes the ideal bead geometries can be modeled in a CAD software. It should be 

noticed that the shape of the beads change for each layer as they elongate in higher layers 
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(Figure 5-7). After a cross-section picture (from the same section that mounts are cut) is 

prepared, its Ra variation can be measured by the developed Matlab program. The achieved 

ideal Ra variation diagrams can then be compared with experimental ones. Modeling the 

part with variable bead height should be considered in a future study, as feedback systems 

related to controlling the layer heights are being developed. 

Figure 5-8 depicts the 3rd partition of the 5-axis sample. The measurement direction 

starts from the bottom layers to the top layers of the partition.  

 

Figure 5-8. Direction of surface roughness measurement in 5-axis sample. 

The measured Ra variations are shown in Figure 5-9. The horizontal axis is the 

center point location of the measurement region. For example, the Ra value of the first 

measurement region that starts from zero to 4 mm is represented by its center point which 

is 2 mm. This figure shows that the Ra of the inner surface of the 3rd partition varies between 

25-47 μm whereas the outer ranges from 15-35 μm.  

Apparently, the pattern for the Ra variation is similar in both surfaces. The Ra 

increases from the bottom of the partition and reaches its maximum at around Lp= 5 mm 

for the inner surface and Lp= 6 mm for the outer surface then decreases. For the inner 

surface, it keeps its initial value without any significant change after Lp= 7 mm. But, the Ra 

continuously falls to 15 μm in the outer surface.  

However, Ra is lower for the outer surface. A closer look at Figure 5-8 and the 

surface pictures of Figure 5-9 visually supports these patterns, as the inner edge has more 

severe textures than the outer edges. Also in the higher layers, the layer surfaces are 

smoother which leads to lower Ra values. In the lower layers, there are several tiny 

collapsed material regions, which lead to a higher Ra value. Therefore, it can be inferred 
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that real layer height increase can cause lower Ra, which aligns with the adaptive slicing 

strategies being proposed.  

 

Figure 5-9. Inner edge of 5 axis sample 
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The tilted overhang angle is indicated in the figure and as the nozzle is always 

tangent to the surface, the tilted overhang angle is zero for all layers in 5-axis dome. Hence, 

it does not affect the surface roughness variations.  

To assess whether patterns can be extracted, fast Fourier transformations (FFTs) are 

performed. FFT is a mathematical tool that converts numerical information from time (or 

here distance) to the frequency domain and vice versa [47]. It is applied here to find the 

length of repetitive patterns. Figure 5-10 shows the FFT of the 3rd partition for the 5-axis 

dome. Apparently there is no dominant frequency. The reason is that the analysis is 

performed for one partition so it does not contain the repetition of the partitions. 

 

Figure 5-10. FFT diagram and frequency study of the 3rd partition for 5-axis dome 

5.1.4 Roughness Variation for 2+1+1-Sample 

Partitions 1-4- The 2+1+1-axis dome contains 8 partitions, the first four are in 

mount 1 and second four are in mount 2. In the first mount, the measurement starts from 

the bottom layer and measures the surface roughness up to the end of partition 4. The 

locations of the partition joints are shown in Figure 5-11. It can be detected that within the 

partitions, roughness variation is smooth whereas there is a small bulge at partition 

connection points. 

Figure 5-12 depicts the Ra results for the partition 1-4 set. Although the Ra is almost 

constant within partitions, it gradually decreases from 40 μm in partition 1 to approximately 
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20 μm at the end of partition 3 for both sides. However, it increases in partition 4 to have 

the same value as the first partition. The Ra rises suddenly at transition points between 

partitions. This sudden growth is much higher at the connection point of partitions 3-4 in 

the outer surface. The severe growth is because of the noticeable bump shape texture in 

Figure 5-11. 

A lag for the location of Ra peaks of the outer edge compared to the inner edge is 

detected in Figure 5-12. It means the peaks of the outer surface are shifted compared to the 

same peak of the inner surface. Also, this occurs for the diagrams of other samples as well. 

The X-axis of the diagrams is the length of the arc from the bottom of the partition and the 

length of the outer arc is larger than the inner. Thus, the textures appear with a lag for the 

outer edge. Here, the X-axis values are the length of the medium arc of the dome which has 

a diameter of 45 mm. 

 

Figure 5-11. 2+1+1 axis specimen that contains partitions 1-4 

The reason for the sudden increase in roughness at the connection points is because 

of the sudden change in nozzle orientation. Figure 5-13 indicates nozzle orientation in the 

first 3 partitions. During the deposition of a partition, the nozzle orientation keeps constant, 

but its orientation changes 22.5° (based on Figure 3-18). This severe alteration of deposition 

angle is more than the maximum recommended overhang angle which caused a little 

material collapse. Since the orientation of the nozzle at the connection points is in a manner 
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that material collapses toward the outer surface, the outer surfaces have small inflation 

regions whereas the inner surfaces have small dints. 

 

Figure 5-12. Surface roughness variation of 2+1+1-axis sample for partitions 1-4 

The percentage of the layer height increase is 2.5 percent in each partition which is 

negligible. However, the overhang angle is zero for the middle layer within a partition and 
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11.25° at the bottom and top layers of each partition. The surface roughness variation can 

be affected by both overhang angle and heating/ cooling of partitions during dome 

fabrication. 

 

Figure 5-13. Material collapse because of sudden nozzle orientation change in 2+1+1 axis sample 

Partitions 5-8- As Figure 5-14 shows, there are inconsistencies at the points 

between partitions 5-8 as well. Visually it can be recognized from the picture that the 6th 

partition has a better surface finish than other partitions. The Ra diagram shown in 

Figure 5-15 supports this as the Ra of inner and outer surfaces are 20 μm and 30 μm 

respectively for partition 6. Except for the Ra value associated with the top of the outer 

surface of partition 8, which has a sudden rise of Ra = 130 μm, the rest of transient points 

are less severe than the partitions 1-4. The transient point between partitions 7 to 8 is hardly 

noticeable.  

 

Figure 5-14. 2+1+1 axis specimen that contains partitions 5-8 
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There is no obvious dependency between the layer height increase /tilted overhang 

angle and surface roughness.  

 

Figure 5-15.Surface roughness variation of 2+1+1 sample for partitions 5-8 
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The FFT analysis of the 2+1+1-dome (Figure 5-16) shows a dominant frequency of 

0.1102 (amplitude of 3 and 5.5 μm). If the frequency is converted to wavelength, it results 

in a value of 9.07 mm. this value is near the partition lengths (8.83 mm); there is a 9% 

difference. The length of the partition is one-eighth of the periphery of a half-circle. The 

main reason for the difference between the FFT result and the real length is the frequency 

is a discrete value within an FFT analysis. 

 

Figure 5-16. FFT diagram and frequency study of the 2+1+1-axis dome 

Here the equation between the frequency and wavelength is: 

 
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑡ℎ =  

1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 (23) 

The frequency is the number of waves in 1 mm length and wavelength is the length 

of the repetitive wave. 

5.1.5 Roughness Variation for Rotary Sample 

The slice height of the rotary toolpath is 0.3 mm so it is expected to have a better 

surface finish than the wedge shape partitioning. However, as Figure 5-17 shows, the 

bottom layers are rougher and there are two texture defects (shown in red circles) that 

increase the Ra at the 23 mm point for the outer surface and the 27 mm point for the inner 

surface. The inner dent is located at the connection point between Sections 2 and 3. An 
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interesting finding is that Ra drops at the connection points between Sections 2 and 3 for 

the outer surface. 

The real layer height for bottom layers is approximately 2.8 times the slice height. 

This means that the layer height is about 0.85 mm for the lower layers (Section 3.2.2). 

However, the tilted overhang angle is zero because the nozzle is always tangent to the 

surface. Excluding the increase in Ra where the surface defects are located, the observed 

Ra variations for the outer surface tend to follow the curve of layer height increase 

(Figure 5-18). The FFT study of the rotary sample shows no dominant frequencies 

(Figure 5-19), as expected.  

 

Figure 5-17. Rotary toolpath mount sample  
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Figure 5-18. Ra variation of rotary toolpath sample- inner surface 
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Figure 5-19. FFT diagram and frequency study of the rotary sample 

5.1.6 Statistical Analysis of the Mount Solution 

Table 5-3 shows the outcomes when performing statistical analyses for the mount solution 

results. Based on the observed average values, the 2+1+1-axis outer surface has the worst 

values, and the 5-axis outer surface shows the most satisfactory results. In addition to this, 

the 5-axis outer surface has the least variation of Ra (Max-Min=20.44) 

Table 5-3. Table of primary statistical analysis of Ra for the mount solution 

 Best Worst 

5-Axis 

Inner 

5-Axis 

Outer 

2+1+1 

Inner 

2+1+1 

Outer 

Rotary 

Inner Rotary Outer 

Average 34.65 24.18 36.52 41.11 35.31 33.87 

Median 32.10 23.40 35.25 36.82 35.55 35.13 

Min 25.15 14.60 3.08 18.95 22.30 17.71 

Max 46.49 35.04 68.35 135.28 51.05 43.51 

Max-Min 21.34 20.44 65.35 116.33 28.75 25.8 

Average - 

Median 2.54 0.78 1.27 4.29 -0.23 -1.26 

 

A distribution analysis based on the probability density of the results is implemented 

to extract more accurate results. In order to find the proper distribution technique that fits 

the data better, the p-values of four distributions, Weibull, Gamma, Burr, and Chi-squared, 

are compared. As Table 5-4 shows, the Burr distribution fits the data with the highest p-

values for the Kolmogorov-Smirnov test (confidence interval=0.05).  
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Table 5-4. P-values of different distributions 

rejected best Weibull Gamma Burr 
Chi-

squared 

5-Axis inner 0.23 0.28 0.88 0.21 

5-Axis outer 0.86 0.95 0.76 0.84 

2+1+1-Axis inner 0.0035 0.19 0.46 0.57 

2+1+1-Axis outer 0.0004 0.0012 0.77 0.0001 

Rotary-inner 0.36 0.41 0.32 0.55 

Rotary-outer 0.9 0.32 0.96 0.016 

Sum 2.3539 2.1512 4.15 2.1861 

 

The histograms and Burr distributions for the Ra samples are shown in Figure 5-20. 

To interpret the results, the statistical values extracted from Burr distribution are shown in 

Table 5-5. 

Based on the mode values shown in Figure 5-21, the 5-axis outer surface has the 

finest surface finish and the rotary outer has the roughest surface. Also, 2+1+1-axis outer 

has the most varied Ra. Altogether, the 5-axis sample has the best surface roughness. The 

reason is that just one partition is studied and the Ra peaks associated with the transition 

points do not increase the Ra. This study shows that partitioning introduces unique 

challenges, and control strategies for a region within a partition, and the transient region, 

may need to be different.   

Kurtosis is the relative peakedness or flatness of the distribution. A positive value 

means a peaked distribution, whereas a negative value indicates the distribution is flatter. 

Skewness describes the asymmetricity of a distribution around its mean value. A positive 

value shows the distribution is asymmetric toward positive values and negative shows it is 

tilted toward negative values. Zero skew means that the distribution is symmetric. Both the 

5-axis inner and 2+1+1-axis outer values are skewed to larger Ra values. It means they 

contain radical rough textures such as the bumps. Therefore, it can be concluded that visual 

controls for one surface may provide insufficient knowledge about the build quality. 
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Figure 5-20. Burr distribution of the mount solution results. 

Table 5-5. Data extracted from Burr distribution 

  

Mode 

Ra 

Probability 

density 

Standard 

deviation 
Skewness Kurtosis 

2+1+1-Inner 34 0.28 10.78 0.98 3.49 

2+1+1-Outer 32.5 0.5 20.5 11.18  >>100 

5-Axis inner 31 0.2 7.8 3.24 28.95 

5-Axis outer 25 0.13 6.4 -0.11 -0.19 

Rotary inner 37 0.15 7.6 -0.277 -0.06 

Rotary outer 35.5 0.19 5.58 -0.47 0.21 

 



122 

 

 

Figure 5-21. Mode and standard deviation (mount solution) 

 

Figure 5-22. Skewness and Kurtosis- mount solution 

 Surface Roughness Measurements from the 3D Point Cloud Data 

To measure the roughness from a 3D point cloud, a txt file containing point 

coordinates is used. This file contains all surface points that are generated by the laser 
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scanning process which needs to be pre-processed. As an example, Figure 5-23 depicts the 

point cloud pre-processing of the partition 5-8 specimen for the 2+1+1-axis sample.  

 

Figure 5-23. Example of point cloud filtration of partitions 5-8 of 2+1+1 sample 

The results of this method need to be verified by another accepted method. Since 

the mount solution has accepted results, it can be used to validate the 3D point cloud 

solution. As Figure 5-23 (a) shows the Ra is measured for surface edges in mount solution. 

Therefore, if Ra is measured for the same region by the 3D point cloud method, its results 

can be verified by comparing them to the mount results. The following Ra result diagrams 

are measured for the same regions that mount method experiment was performed.  

The accuracy of the 3D scanner is a crucial parameter in the validity of the results. 

The 3D scanner that is utilized to collect the point cloud data has an accuracy of ±0.044 

mm. Hence, the Ra values presented in the diagrams have the ±0.044 mm of error. In the 

Matlab program, the distance between two boundary planes is set to f = 0.4 mm, and the 

distance coefficient set to n = 5 for all measurements. 

5.2.1 Roughness Variations for the 5-Axis Sample from the 3D Point Cloud Data 

Figure 5-24 compares the Ra results achieved by 3D point cloud program with the 

mount solution results. The diagrams show that there are similar trends for the two methods. 

The Ra values are usually smaller for 3D point cloud method when compared to the mount 

solution, and the curves have less oscillations. Also it shows that Ra for the inner surface is 
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comparably less than for the outer. As expected, the FFT results for the 3D point cloud 

results are similar to those for the mount solution. There is no dominant frequency for the 

5-axis sample (Figure 5-25). 

 

Figure 5-24. Comparison of Ra between 3D point cloud and mount solutions for 5 axis-partition 3 

(a) Inner surface (b) Outer surface 
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Figure 5-25. FFT diagram and frequency study of the 5-axis by 3D point cloud (a) Inner surface 

(b) Outer surface 

5.2.2 Roughness Variations for the 2+1+1-Axis Sample from the 3D Point Cloud Data 

In Figure 5-26 and Figure 5-27, the point cloud results for partitions 1-4 and 

partitions 5-8 for the 2+1+1-axis sample are shown. The measurement regions are indicated 

by the red curves on the point cloud. The measurement edges are the same ones that were 

measured for the mount program. The average point density is approximately 110, 70 

points/mm2 for specimens for partitions 1-4 and partitions 5-8, respectively.  
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Figure 5-26.Point cloud of partitions 1-4 of 2+1+1 sample 

 

 

Figure 5-27. Point cloud of partitions 5-8 of 2+1+1 sample  

The surface roughness results for partitions 1-4 are presented in Figure 5-28 for the 

inner and outer edges. The curve patterns match the result curves for the mount sample. As 

with the previous example, the curves from the 3D point cloud solution tend to have smaller 

values. The dimensional inaccuracy of the input data (±0.044) explains the shift between 

the mount and the 3D point cloud data illustrated in the diagrams. 
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Figure 5-28. Comparison of Ra between 3D point cloud and mount solutions for 2+1+1 axis- 

partitions 1-4 (a) Inner surface (b) Outer surface 

Figure 5-29 compares results of specimen containing partitions 5-8 of 2+1+1-axis 

sample with results of the same sample measured by mount solution. Unlike the results of 

partitions 1-4, here, the 3D point cloud does not show any recognizable pattern.  
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Figure 5-29. Comparison of Ra between 3D point cloud and mount solutions for 2+1+1 axis- 

partitions 5-8 (a) Inner surface (b) Outer surface 

The FFT analysis of the inner surface shows two dominant frequencies of 0.0625 

and 0.125 for the inner surface with an amplitude of 2 μm. The associated wavelengths are 

16 and 8 mm (Figure 5-30 (a)). The outer surface has a frequency of 0.11 with an amplitude 

of 4.3 μm. The related wavelength is 9.1 mm which is comparable with the partition length 

(8.83 mm) and matches the results from the 2D data assessment. 
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Figure 5-30. FFT diagram and frequency study of the 2+1+1-axis by 3D point cloud (a) Inner 

surface (b) Outer surface 

5.2.3 Roughness Variations for the Rotary Toolpath Sample 

Figure 5-31 shows the variation of Ra along the slicing direction for both the mount 

and 3D point cloud solutions. The values and patterns are similar. The Ra of the 3D point 

cloud data exceeds the Ra measured by mount solution in some regions. 
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Figure 5-31. Roughness variation of rotary toolpath sample 

5.2.4 Sensitivity Study for the 3D Point Cloud Program 

Three parameters may affect the validity of the resultant Ra of 3D point cloud 

program: the point cloud density, the distance between boundary layers, and the distance 

coefficient. When the Ra diagrams of partitions 1-4 are compared with partitions 5-8, it is 

concluded that point cloud density affects the validity of results, indicating that a higher 

point density results in a more accurate Ra. Also, the applied 3D scanner should have a 

suitable accuracy compared to the roughness of the surface. Further investigations for non-

contact surface roughness measurements should be conducted. 
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Distance coefficient (n) and distance between boundary planes- To explore the 

sensitivity of the distance between the boundary layers and the distance coefficient, four 

experiments are conducted using the 3D point cloud data for the 2+1+1-axis inner surface. 

The input parameters of the sensitivity test are presented in Table 5-6. As the Ra diagrams 

show in Figure 5-32, these parameters do not significantly affect the Ra results.  

Table 5-6. Input parameters of sensitivity experiments 

 Distance between 

boundary layers 

Distance 

coefficient 

Experiment 1 0.3 1 

Experiment 2 0.3 10 

Experiment 3 0.6 1 

Experiment 4 0.6 10 

 

 

Figure 5-32. Sensitivity test of distance between boundary planes and distance coefficient 

A statistical analysis was implemented in the previous section for the mount 

solution. For the 3D point cloud results, the statistical analysis is applied to the 2+1+1-axis 

partitions 1-4 sample as it shows similar patterns compared to the mount results. 



132 

 

5.2.5 Statistical analysis of the 3D point cloud solution 

Table 5-7 shows the p-values of four distributions. The Burr distribution is chosen 

for statistical analysis.  

Table 5-7. P-values of different distributions of 3D-point cloud solution 

  Weibull Gamma Burr Chi-squared 

2+1+1-Axis inner- Partitions 1-4 0.3 0.7 0.86 0.027 

2+1+1-Axis outer- Partitions 1-4 0.27 0.35 0.27 0 

Sum 0.57 1.05 1.13 0.027 

 

As Figure 5-33 shows, all the values for the Average, Min, and Max are smaller 

with the 3D point cloud solution.  

 

Figure 5-33. Initial statistical analysis of 3D point cloud solution 
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Figure 5-34. Histograms and Burr distributions of 2+1+1-Axis partitions 1-4 by 3D point cloud 

The mode values are also larger for mount solution. The skewness value of the outer 

surface in mount solution shows a very large value whereas this value is much smaller for 

the 3D point cloud data set. The reason that these values are greater for the mount solution 

is that the input data to mount solution is more accurate as the data is directly extracted 

from the 2D boundary curves. The 3D point cloud data set is created by a scanner that 

cannot detect the deep valleys of the surface. Furthermore, the scanner cannot detect very 

tiny textures of the surface. Therefore, the Ra results of mount solution are generally larger. 
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Figure 5-35. Comparison of statistical analysis between mount solution and 3D point cloud 

Altogether, the mount solution results in a better measurement than the 3D point 

cloud as its input data is more accurate. The accuracy of the 3D point cloud results is highly 

dependent on the point cloud density and the accuracy of the 3D scanner. The shift between 

the mount solution and 3D solution diagrams that is indicated in Figure 5-28 is because of 

the low accuracy of the 3D scanner whereas the other point cloud result diagrams that do 

not show the observed Ra variations are because of the low point cloud density.  
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 Therefore, this 3D point cloud solution is better used for the AM processes that 

deposit larger beads such as LSAM and BAAM or the accuracy of the applied 3D scanner 

should be better for smaller bead samples (about 10 times more accurate than the Ra values). 

The following chapter explores the hardness variations of the 3 fabricated domes. 
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6 CHAPTER 6 

MICROHARDNESS RESULTS 

In this chapter, the exploration of the Vickers microhardness is investigated. First, 

a noise detection test is implemented for each sample to find the appropriate indentation 

load that varies the least across the surface. Then the variation of hardness in the middle arc 

of the surface stripe is explored. Finally, a statistical analysis of the results is presented.  

6.1 Microhardness Results for the 5-Axis Toolpath Sample 

As shown in Figure 6-1, 18 test points along the surface of partition 3 of the sample 

are established. The distance between each hardness test point is 1 mm. As the magnified 

view shows, four indentations are made at each hardness test point. There are two 

indentation types: two made by a 1000 gf and two others made by a 300 gf.  

 

Figure 6-1. Microhardness indentations on partition 3. Four indentations for each test point are 

made. 

Based on the information presented in Section 3.4 the distance between two 

indentations is more than 2.5 times the diagonal of the larger indentation. Although it is 

ideal to make indentations exactly at the middle line of the narrow surface, indentations at 

each test point are separated. This may bring noise into the results if the hardness varies in 

the surface width direction. Consequently, this was measured and evaluated as well.  
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6.1.1 Hardness variation test across surface of the 5-axis sample 

A hardness variation test across the surface is implemented to investigate the noise. 

As Figure 6-2 indicates, two sets of indentations in two random locations are measured. 

Two indentations columns of 1000 gf and 300 gf for each set are created. Each set is made 

up of 6 rows of indentations across the surface stripe. Two graphical arcs are drawn on the 

surface to determine the off-centricity of the indentations. Care was taken to include all test 

indentations between these 2 arcs. Except for the last test point indentations, all others are 

between these 2 arcs. Furthermore, it can be seen in this picture that the inner arc passes 

between the 2nd and 3rd indication rows of both sets whereas the outer arc is between the 4th 

and 5th indication rows. 

 

Figure 6-2. Hardness test across the surface 

The hardness variations across the 5-axis specimen surface is presented in 

Figure 6-3. Diagrams are provided both for the average 300 gf (the hardness average 

associated to the indentations of each 300 gf rows of set 1 and set 2), the average 1000 gf, 

and the total average (total hardness average of 4 indentations at each row of two sets). The 

two arcs are presented by vertical lines in Figure 6-3. The hardness variation is 80 HV 

between inner and outer arcs for 300 gf. It varies between 185 to 215 HV (variation is 30 

HV) for the total average. Therefore, hardness measurements by 300 gf are less reliable. On 

the other hand, the 1000 gf chart shows the variation of 200 to 210 HV (variation is 10 HV) 

between two arcs. This indicates that 1000 gf measurements are more stable across the 

surface.  

The standard deviation analysis of the hardness results for Set 1 and Set 2 made by 

loads 300 gf, 1000 gf and average (300, 1000) is shown in Figure 6-4. The average of 
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standard deviations for 1000 gf has the least value. This supports the previous result that 

1000 gf has the least noise if the indentation is off from the arc centreline. Therefore all 

analyses are applied for indentations made by 1000 gf. 

 

Figure 6-3. Hardness variation across the surface of 5 axis specimen (a) For 300 gf indentation 

(b) For 1000 gf indentation 

 

Figure 6-4. Standard deviation of hardness across the surface of 5-axis sample. 

6.1.2 Hardness variation for 5-axis sample 

Figure 6-5 shows the hardness variation along the middle of the specimen surface 

for partition 3. Hardness increases initially from 170 HV to 260 HV and then diminishes to 

155 HV in higher layers. The FFT analysis shows a dominant frequency of 0.5 (1/mm). The 
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related wavelength is 2 mm that can be noticed in Figure 6-5. This indicates that there may 

be a low frequency aspect in the system [136] 

 

Figure 6-5. Hardness variation along 5-Axis sample by 1000 gf indentation 

 

Figure 6-6. FFT analysis for 5-Axis sample 

6.2 Microhardness Results for the 2+1+1-Axis Toolpath Sample 

A detailed picture of the mounted 2+1+1-axis specimen showing the hardness 

indentations is presented in Figure 6-7. Table 6-1 distinguishes the test point numbers based 

on the partition where they are located. Again, each test point consists of four indentations. 

Two indentations made are by 1000 gf and two others by 300 gf.  

The first mount specimen has 1st to 4th partitions and 36 hardness test points whereas 

the second mount contains 5th to 8th partitions with 37 points. The increment between test 

points is 1 mm. 
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Figure 6-7. Hardness indentations on 2 mounts of 2+1+1 axis samples 

Table 6-1. Partitions and their indentation test numbers 

Partition Number 1 2 3 4 5 6 7 8 

Test point Number 1-10 10-19 19-28 28-36 36-44 44-53 53-62 62-72 
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6.2.1 Hardness variation test across the surface of the 2+1+1-sample 

As with the 5-axis sample, a test is performed to investigate hardness variations 

across 2+1+1-axis sample surface. To do so, 8 sets of indentations across the surface are 

made, 4 on each mount sample. Each set of indentations includes two rows of 1000 gf and 

300 gf. The locations of these sets along the surface are randomly chosen. Also, two arcs 

are drawn to show the indentations are in the middle of the surface. The inner arc passes 

through the 2nd and 3rd test points of the sets whereas the outer arc passes between the 4th 

and 5th indentation rows in the sets. (Figure 6-8).  

 

Figure 6-8. Hardness test across the surface and test rows 

Hardness variations across the surface are shown separately for the two mounts in 

Figure 6-9. Each figure depicts the average for the 300 gf and the average of 1000 gf 

measurements as well as the total average. These diagrams indicate that the hardness 

variations of 1000 gf measurements are more stable across the surface compared to the 300 

gf measurement set. It shows a very minor pattern of increasing the hardness from the 1st 

row to the 6th. The curves of 1000 gf show the variations of 15 HV and 20 HV for the 1st 

mount and 2nd mount, respectively. It is observed that the 300 gf based variation chart shows 

much more variation of 12 HV and 22 HV for the 1st mount and 2nd mount, respectively.  
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Figure 6-9. Hardness variation across the surface of 2+1+1 axis sample- mount 1 

Additionally, a standard deviation test is performed to check the hardness variation 

across the surface (Figure 6-10). The average standard deviation of hardness measured by 

300 gf is 29.5 HV, which is much larger than 1000 gf values (20.6 HV) and the average 

value (19.5 HV). Since the standard deviation of 1000 gf and 300 gf are close, the 1000 gf 

is chosen to be consistent with the 5-axis sample. 
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Figure 6-10. Standard deviation of hardness across the surface of 2+1+1-sample 

6.2.2 Hardness Variations for the 2+1+1-Axis Sample 

There are 2 indentations for each of the 72 test points. The averaged hardness values 

for these 2 indentations is the representative of hardness for each test point. The hardness 

diagram for all partitions 1-8 is presented in Figure 6-11. The first 4 partitions have a similar 

pattern as the hardness drops to about 150 HV at the connection points. The bottom of the 

first partition is different as the hardness is at its highest value at the bottom of the 1st 

partition. The reason is that the large volume of the substrate absorbs the deposition heat 

very quickly (this is also why the first layer has a 1000 W power level). Fast cooling 

generates smaller grains which leads to larger hardness values.  For partitions 5-8, there is 

no noticeable pattern as the hardness variation alters several times within each partition. 

The hardness has generally a low value in the first layers of each partition. The 

reason is that the deposition heat of the first several beads of each partition keeps the first 

layers of the current partition and the last layers of previous partition warm. So, the cooling 

rate is low for these layers. As the heat penetration is limited, it can just heat the nearest 

layers, so the middle layers of partition stay unchanged. A more detailed explanation will 

be covered in the next chapter. Further exploration to explain hardness variation from 

microstructure is considered as future work. 
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Figure 6-11. Micro hardness chart for 2+1+1 axis sample divided based on the partitions 

The FFT analysis shows a dominant frequency of 0.124. This frequency leads to a 

wavelength of 8.06 mm which is near the partition length (8.8 mm). This also correlates 

with the hardness pattern shown in Figure 6-11. 
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Figure 6-12. FFT diagram of microhardness for 2+1+1-axis sample 

6.3 Microhardness Results for the Rotary Toolpath Sample 

Since the 300 gf load resulted with cross surface noise for the previous samples, 

indentations are created with 1000 gf only for the rotary sample. Since it is found that 

hardness does not change noticeably across the thin wall surface for the 1000 gf 

indentations, a hardness investigation across the surface is not performed for this case. Also, 

the distance between indentations in a test point is negligible compared to the width of the 

surface stripe. As a result, since the hardness variation is negligible across the surface, it 

can be assumed that it does not vary within the test points. Therefore, instead of making 4 

indentations at each test point, one indentation is made at each test point (Figure 6-13). 

However, the distance between test points is reduced to 0.5 mm. 

 

Figure 6-13. Micro indentations on rotary specimen 
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The hardness variations for the rotary toolpath specimen is represented in 

Figure 6-14. Three fabrication sections are shown. The diagram shows no special pattern 

by a visual investigation. However, the hardness decreases at transition points, similar to 

the 2+1+1-axis sample. 

 

Figure 6-14. Hardness variation for rotary sample 

Further exploration by FFT analysis shows a dominant frequency of 0.281 (1/mm). 

It results in a wavelength of 3.56 mm. This means a repetitive pattern is concealed in the 

diagram that has a wavelength of 3.56 mm. 

 

Figure 6-15. FFT diagram of micro-hardness for rotary sample 

6.4 Statistical Analysis for the Microhardness Results 

A Kolmogorov-Smirnov (K-S test) test is performed to find an appropriate 

distribution technique for the hardness results. The P-values of the four distributions are 

compared.  The results summarized in Table 6-2 show that the Burr distribution has the 

highest P-values, which means the results fit better for this distribution. 
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Table 6-2. Comparison of P-values of four distributions 

  Weibull  Gamma Burr Chi-squared 

5-Axis 0.98 0.94 0.99 0.96 

2+1+1-Axis 0.96 0.58 0.98 0.49 

Rotary 0.78 0.93 0.92 0.72 

 

As Figure 6-16 shows, the average hardness values of three samples are the same (198 HV). 

The rotary sample has the lowest hardness variations (Max-Min=93.7 HV). 

 

Figure 6-16. Average, Average-Median, and Max-Min for hardness results 

Figure 6-17 shows the histograms and Burr distributions of the hardness results. The 

extracted values of mode and standard deviation are shown in Figure 6-18. The 2+1+1-axis 

sample has a mode hardness value of 202.1 HV whereas the 5-axis sample has the lowest 

of mode value (195.6 HV). The standard deviations are almost the same.  

Based on Figure 6-19, the hardness results of the 5-axis sample are more skewed to 

the higher hardness values. The measured data shows some points have drastically high 

hardness values, which skews the distribution curve to the positive direction. 
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Figure 6-17. Histograms and Burr distributions of hardness results 
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Figure 6-18. Modes and standard deviations of hardness results 

 

Figure 6-19. Skewness and Kurtosis of hardness results 

The hardness of three fabricated domes were measured in this chapter. The 

measurements are implemented along the slice direction in the middle of the domes. To 

minimize the noise of the hardness value across the surface stripe, the 1000 gf load was 

selected to create indentations. For the wedge-shaped partition samples, the hardness is at 

the lowest value at the bottom and top of each partition. A simple variation pattern is 

noticeable for the partitions 2-4 whereas it is more complex for the rest of partitions. In the 

next chapter, the FEA analysis of hardness will be explored. The FEA results will be 

verified by the experimental ones that were presented in this chapter.  

  



150 

 

7 CHAPTER 7 

SIMULATION OF MECHANICAL PROPERTIES 

Hardness, temperature history, and residual stress simulations of the 2+1+1-axis 

sample by FEA analysis are presented in this chapter. Hardness simulation will be verified 

by experimental results. The residual stresses of partitions 1-4 will be presented as well. 

7.1  Hardness Simulation 

In order to implement a hardness simulation, the geometries of all beads need to be 

meshed. Here, the geometry of the dome is divided into the substrate and 8 partitions. 

Figure 7-1 (b) shows the bead models within the first partition. There are 18 beads inside 

each partition. Also, it is indicated in Figure 7-1 (c) that beads are parallel to the bisector 

plane of each partition; as mentioned in Section 3.2.1. 

 

Figure 7-1. Modeling the partitions and beads for FEA analysis 

The meshes of both the beads and substrate consist of hexagonal elements and have 

variable element sizes. As Figure 7-2 shows, the bead near the measurement region has a 

fine mesh but the mesh size becomes coarser for more distant places. The beads are 6-

element wide/2-element thick in the measurement region whereas it is 3-element wide/one-
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element thick at the end of beads. This kind of variable bead meshing assumes that the 

impact of laser heat delivery at distant locations on temperature rise in the measurement 

region is negligible in comparison to the heat that is delivered at the measurement region. 

Also, it is assumed that the heat conduction from distant points of the bead to the 

measurement region is not changing by coarsening the mesh. It means, regardless of the 

mesh size in distant locations, it is assumed that the same heat is deliverd to the 

measurement area. This will be tested indirectly by the mesh dependency test. This can be 

true for residual stresses as well. But the distortion analysis cannot be implemented by this 

kind of variable meshing because the distortion of distant locations affects the distortion of 

the measurement region. This means that if the coarse mesh results in wrong distortion 

values, it changes the overall shape of the product regardless of where the coarse mesh is. 

These are hypotheses that can be explored more in future work. 

 

Figure 7-2. Variable mesh structure of beads and substrate 

7.1.1 Mesh Dependency Test (Convergence Test) 

In this test, the beads and the substrate are meshed with finer meshes to see whether 

the mesh size affects the hardness results. To decrease the calculation time, three beads are 
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simulated. As the part geometry is symmetric, Figure 7-3 shows half of the part. The 

measurement location is in the middle of the beads.  

 

Figure 7-3. Three beads are simulated for mesh dependency check 

Three mesh sizes are tested here (Figure 7-4). The ‘mesh 1’ that is shown in 

Figure 7-4 (a) is used in the simulations. Mesh 2 is the 8 time-finer mesh within mesh 1. 

Here each hexagonal element of mesh 1 is divided into 8 hexagonal elements. These 2 mesh 

types have a variable mesh size in the beads. This means that the mesh size of the bead 

grows for the regions away from the measurement region. Mesh 3 contains a constant mesh 

size within the beads, and have the mesh size of 6 element-wide/2 element thick. Table 7-1 

compares some of the mesh size parameters.  

The yielding strength variations of the mentioned mesh sizes are shown in 

Figure 7-5. The curves of the different meshes match satisfactorily. It can be seen that the 

results of the coarse mesh (Mesh 1) have the same values as those predicted by the finer 

meshes (Mesh 2, 3). Therefore the analysis of the whole dome is carried out with Mesh 1. 

Also, Mesh 1 shows a drastic decrease in calculation time (approximately 15 times) 

compared to the two other meshes.  
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Figure 7-4. Models with finer mesh to do the dependency check. 

 

Table 7-1. Mesh dependency check (convergence test) 
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Mesh 3 6-2 6-2 122404 15 

 



154 

 

 

Figure 7-5. Yield strength variation of mesh types 

There are two types of input parameters for this analysis; process setup parameters 

and parameters that need to be determined by simulation tests. The setup parameters are set 

to the machine before the fabrication. The laser energy, heat source velocity, laser diameter, 

and surrounding air temperature are the setup parameters (Table 7-2).  

Table 7-2. Setup parameters 

Energy/unit length 

(Joule/mm) 

Heat source 

velocity (mm/s) 

Laser diameter 

(mm) 

Air temperature 

(°C) 

Substrate 

temperature (°C) 

105- 95- 85 8.4 2 20 20 

 

The laser efficiency, penetration depth, and the laser diameter at the penetration 

depth are the parameters that need to be identified. Some sensitivity analyses are performed 

to find the appropriate values. Two approaches are considered in hardness analysis: analysis 

based on a constant laser efficiency and analysis based on a constant melt pool size. 

When partition 5 is being fabricated, its heat conducts into partition 4. This changes 

the mechanical properties within partition 4. Therefore, as Figure 7-6 shows, 7 beads of 

partition 5 are added to the simulation. Since the following partition is fabricated on the 

previous cooled-down one, the first layer of each partition is fabricated by a greater laser 

power to create a better bond between partitions. Hence, the energy per unit length for the 
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first two layers of each partition are 105, 95 J/mm. The following layers are fabricated by 

90 J/mm. 

 

Figure 7-6. Partitions used for parameters-finding simulations 

After the parameters are identified, the simulation is executed for all partitions. In 

order to decrease the analysis preparation time and to use several computers at the same 

time to calculate, each 2 partitions are simulated separately (Figure 7-7). Each simulation 

consists of 2 partitions and 7 beads of the next partition. Since there are no other partitions 

after partition 8, simulation 4 (Figure 7-7 (d)) has just the beads of the last two partitions.  
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Figure 7-7. The simulation of the dome is divided into 4 sections 

 

7.1.2 Analysis Based on Constant Laser Efficiency 

The focus here is changing the parameters as much as the hardness simulation 

results matches better to experimental ones. The maximum temperature in the melt pool is 

checked as well to dismiss the parameter sets that result in very high temperature. The laser 

efficiency is set to 0.5 to get appropriate results. The other parameters are presented in 

Table 7-3.  

The temperature histories of 3 points indicated in Figure 7-8 (a) are investigated. 

The temperature history of point 1 is shown in Figure 7-8 (b). Point 1 is located in the first 

bead of the partition 1. The initial temperature of the substrate is 20°. Therefore, when the 

first bead is deposited most of the heat is absorbed by the substrate. But there is enough 

heat to melt the depositing bead. The peak temperature of this bead is about 1800°.  
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Figure 7-8. (a) Temperature history points are investigated. (b) Temperature history of point 1 

Figure 7-9 (a) shows the temperature history of points 2 and 3. Point 3 is located in 

the last bead (bead 18) of the first partition and point 2 is located in the bead 17. Before the 

bead 18 is deposited, the heat of 17 previous beads are accumulated in partition 1. 

Therefore, the temperature of point 3 reaches to about 2800°. This temperature is 

maintained for a very short time and reduces very quickly.  

As Figure 7-9 (b) shows, when bead 17 (where point 2 is located) is depositing 

temperature reaches to 2500°. Since the time between deposition of bead 17 and bead 18 is 

enough for bead 17 to cool down to about 1000°, the temperature of bead 18 reaches to 

2800°. The last bead of each partition experiences the highest deposition temperature. 
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Table 7-3. Achieved simulation parameters 

Laser efficiency 

(J/mm) 

Penetration depth 

(mm) 

Laser diameter at the 

bottom (mm) 

0.5 1 1.5 

 

 

Figure 7-9. (a) Temperature history of points 2, 3 (b) A closer look at temperature histories of 

points 2, 3 at deposition time 

 

As mentioned in the methodology chapter, the hardness and yield stress have a linear 

relationship [134]. The linear equation that matches simulation results (yield stress (MPa)) 

to the experimental ones (Hardness (Vickers)) is presented in Equation (24). 
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 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = 0.5 × (𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠) − 410 (25) 

 

The hardness results for all partitions are shown in Figure 7-10. It shows a 

reasonable match between the experimental data and simulation results for partitions 1-4. 

The hardness pattern of these regions is simple as they have one peak value. The results for 

partitions 5-7 predict some of the peak values correctly but it misses some others. The 

experimental hardness variation of these partitions does not show a recognizable pattern. 

Some sensitivity analyses are performed to study the dependency of the hardness results in 

the simulation parameters. Some of the parameter setups for simulation 1, 2 are presented 

in Table 7-4 and Table 7-5. The resultant hardness variation diagrams show that parameter 

changes do not change the pattern significantly but it mostly causes shifts in the locations 

of the peak points. However, the simulation results do not show any variation for partition 

8. The main simulation-based difference between partition 8 and other ones is that the 

simulation 4 (partitions 7, 8) does not have the 7 beads of the following partition. Sensitivity 

analysis is done to investigate whether different FEA parameters cause a hardness variation 

for partition 8 (Table 7-6). The results show the variations are insignificant with all 

parameter configurations (Figure 7-14 and Figure 7-15) 

Figure 7-11 presents the contour plot of the simulation results for hardness. Except 

for a few points where the hardness is higher at the outer edges, the results support the 

assumption that the hardness is constant across the surface stripe. However, the hardness 

variation diagram of Figure 6-9 showed a little variation across the surface the same as the 

contour plot in Figure 7-11 illustrates. The simulation curve of the first partition shows a 

similar pattern to the experimental data with exaggerated intensity. The hardness is at its 

peak value for the first layers because of the rapid cooling. Since the last partition does not 

show any hardness variation, it shows that most of the hardness variations are made by the 

heat that is conducted after the next partition deposited on the previous one. The boundary 

conditions of the last partition can be the reason that the hardness variation is zero for 

partition 8. 

The bead geometry of this analysis is supposed to be constant for all layers but as 

discussed before, the real layer height varies because of the applied planar slicing. This can 

be a reason for the difference between simulation and experimental results.  
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Figure 7-10. Comparison of experimental to simulation results of the hardness 

 

Figure 7-11. Hardness variation results of the simulation 
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Table 7-4. Some of the studied parameters for sensitivity analysis for simulation 1 (partitions 1, 

2). The value in parentheses is applied for the rest of the beads of each partition 

 
Energy/unit (j/mm) Efficiency 

Penetration 

(mm) 

Bottom diameter 

(mm) 

S1,2-1 50, 50, 45, 45, (35) 1 1 1.8 

S1,2-2 105, 100, (90) 0.45 1.25 1.8 

S1,2-3 105, 95, (90) 0.5 1.2 1.8 

S1,2-4 65, (60) 0.7 1.2 1.5 

 

 

Figure 7-12. Effect of FEA parameters on hardness variation in simulation 1 (partitions 1, 2) 

 

Table 7-5. Some of the studied parameters for sensitivity analysis simulation 2 (partitions 3, 4). 

The value in parentheses is applied for the rest of the beads of each partition 

 Energy/unit 

(j/mm) 
Efficiency 

Penetration 

(mm) 

Bottom diameter 

(mm) 

S3,4-1 105, 95, (90) 0.75 1 1.8 

S3,4-2 105, 95, (90) 0.75 1.5 1.5 

S3,4-3 105, 95, (90) 0.55 1.5 1.5 

S3,4-4 105, 95, (90) 0.7 1.2 1.5 
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Figure 7-13. Effect of FEA parameters on hardness variation simulation 2 (partitions 3, 4) 

 

Table 7-6. Studied parameters for sensitivity analysis in partition 8. (*) substrate temperature 100 

°C. The value in parentheses is applied for the rest of the beads of each partition 

 Energy/unit 

(j/mm) 
Efficiency 

Penetration 

(mm) 

Bottom diameter 

(mm) 

S8-1 105, 95, (90)  0.4 0.15 1.8 

S8-2 105, 95, (90) * 0.45 1.2 1.5 

S8-3 105, 95, (90) 0.5 0.2 1.5 

S8-4 100, 95, (90) * 0.5 1.5 1.5 

S8-5 105, 95, (90) 0.7 1.2 1.8 

S8-6 105, 95, (90) 0.44 1 1.5 

S8-7 105, 95, (90) 0.46 1.2 1.5 
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Figure 7-14. Effect of FEA parameters on hardness variation in partition 8 

 

 

Figure 7-15. Magnified charts of Figure 7-14 

 

7.1.3 Analysis Based on Constant Melt Pool Size 

In this approach, the depth of the melt pool is maintained to include maximum 2 

beads (the depositing bead and the previous one) [133] and the temperature of the melt pool 

is to be between 1500 °C- 2000 °C (melting temperature 1510 °C [124]). The laser powers 

for the first two beads of each partition are deliberately set to a higher value to make a better 
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bond to the substrate, therefore the maximum 2 bead depth of the melt pool is not considered 

for them. The values of the penetration depth and the laser diameter at the penetration depth 

are the same as Table 7-3. The laser penetration varies in a way that it decreases in the 

higher layers of a partition. The variations of the laser efficiency are shown in Figure 7-16. 

Also, Figure 7-17 shows the melt pool size of some of the beads of partitions 7, 8, and their 

temperature gradient. 

 

Figure 7-16. Laser efficiency of the beads within partitions 

 

Figure 7-17. Melt pool sizes of some beads 

The hardness variation of the constant melt pool size is shown in Figure 7-18. The 

patterns are almost the same for partitions 1- 7. The hardness increases drastically at the 
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higher layers of each partition. The partition 8 does not show significant hardness variation 

the same as the constant laser efficiency method (Figure 7-10). 

 

Figure 7-18. Hardness variation of the constant melt pool approach 

7.1.4 Discussion 

Figure 7-19 explains the reason that hardness does not change in the simulation 

results of partition 8. Figure 7-19 (a) shows some points within partition 8. The temperature 

histories of these points are shown in Figure 7-19 (b). The temperature of these points after 

deposition is kept between the tempering temperatures (605 °C) and austenitizing 

temperature (1010 °C) [137]. Therefore, during the deposition, the microstructure of the 

partition 8 is austenite. When the deposition of partition 8 is finished all of the beads cool 

down at the same rate.  
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Figure 7-19. (a) Constant temperature along the partition 8 during cooling (b) The temperature 

history of some points along partition 8 

As Figure 7-20 (a) illustrates, the heat conduction along the dome is faster than the 

amount of heat that dissipates from the dome by radiation and convection along the partition 

8. As a result the deposition energy keeps the partition above the tempering temperature 

until the partition is fabricated. After the deposition is done the heat dissipates by radiation 

and convection at the same rate along the dome. This causes the phase distribution in 

partition 8 to become uniform (Figure 7-20 (b)). Also, another thermos-metallurgical 

analysis is done for partition 3 without including partition 4 in the simulation (Figure 7-20 

(c)). The same uniform phase distribution happens. This shows the hardness variation of 

the simulation is mostly created from the heat effect of the succeeding partition to the 

previous one. Mechanical analysis is done for partition 2 which its hardness diagram is 

shown in Figure 7-21. This diagram also supports that the hardness variation is not 

significant if just one partition is simulated. It is possible to make a hardness variation for 

partition 8 by virtually adding partition 9 after that.  

This shows that the heat dissipation rate caused by bead deposition of a thin wall on 

another thin wall substrate is not happening the same as what is happening during the 

experimental procedure. As it is clear for both simulation methods the results for partition 

1, 2 is satisfactory. The reason can be that it is being built on a solid substrate and the shape 

of the deposited part is similar to a vertical wall. Also, the surrounding temperature is room 

temperature during fabrication. For higher partitions, the simulation assumptions such as 

melt pool size, surrounding temperature, laser penetration needs to be checked 

experimentally. This can be because the assumption of the melt pool size or the boundary 
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conditions need to be revised by increasing process information during fabrication. This 

can be done by adding some facilities during the process to measure the surrounding 

temperature during fabrication. The complex geometry of the dome may cause the hot air 

being trapped at its inner surface that causes the surrounding temperature variation during 

fabrication. Also, some experiments need to be developed to measure the melt pool size 

during the process by an infrared camera or by depositing a single layer at various locations 

of a dome and measure the melt pool indirectly by measuring the heat-affected zone. Also, 

the calculation techniques of Sysweld software needs to be explored more to find any 

parameter that is missing in calculations (this may cause the missing hardness variation of 

the partition 8) and develop this if needed.  

 

 

Figure 7-20. (a) Heat dissipation from the thin wall (b) Austenite percentage of the partition 8 (c) 

Martensite percentage of the partition 8 

 

Figure 7-21. Hardness variation of partition 2 
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Figure 7-22 compares the results of two applied simulation methods with the 

experimental results. It shows that the results of the constant melt pool method are shifted 

about 2 mm toward the higher distance values. The simulation parameters of the constant 

melt pool method are more reasonable by physical phenomena but the results of the first 

simulation method seem to better match the experimental data. Higher efficiency that is 

applied to the successive partitions in constant laser efficiency method shifts the hardness 

peak point more the center of the partitions. Here, by unrealistically increasing the laser 

energy (this causes melt pool temperatures higher than boiling temperature), the hardness 

variation becomes more similar to experimental results. As a future, work the boundary and 

initial conditions of the model can be improved with experimental measurement. Also, 

another simulation with tetra mesh may improve the results as the number of calculation 

nodes increases.  

 

Figure 7-22. Comparison between the results of two applied simulation methods with the 

experimental result 

Figure 7-23 and Table 7-7 compare the FFT analysis of the experimental results to 

the simulation results. The simulation pattern matches the partition length with a variation 

of 1.1 % whereas the length of the repetitive pattern of the experimental results has 9.6 %. 
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Figure 7-23. FFT diagram of simulation data of the hardness for 2+1+1-axis sample 

 

Table 7-7. Comparison of the simulation and experimental FFT results 

 Frequency 

(1/mm) 

Wavelength 

mm 

Partition length 

mm 

Variation (%) 

Simulation 0.112 8.93 
8.84 

1.1 

Experimental 0.124 8.06 9.6 

 

7.2 Residual Stress Variation  

Since the hardness variation diagram of partitions 1-4 matches the experimental 

results better than the results of partitions 5-8, the residual stress contour is presented for 

partitions 1-4 in Figure 7-24. Verification of the simulation results with experimental data 

is considered as future work.  



170 

 

 

Figure 7-24. Residual stresses of partitions 1-4 

The residual stress is at the highest value for the bottom of the partition 1. The 

substrate has a large volume and absorbs the heat of the first layers. This leads to rapid 

cooling of the first beads after they are deposited. Therefore, the residual stress is high in 

the bottom layers of partition 1.  

The first partition works as the substrate for the deposition of the second partition. 

As the first partition is a thin wall, its temperature elevates quickly when the second 

partition material is being deposited. After the deposition of the second partition is finished, 

both partitions cool down at the same rate which leads to less residual stress trapped in the 

second partition. This occurs for the next partitions as well. As a result, the residual stress 

is lower for partitions 2-4.  

In this chapter, the results of the numerical analyses for hardness, temperature 

history, and residual stress of the 2+1+1-axis sample was covered. The simulation was 

implemented for 144 beads with a drastically reduced run time. The simulation results of 

the hardness were verified by experimental data, and overall the results correlate well. There 

are challenges with addressing the variable observed bead sizes, differing heat inputs and 

dwell times (as discussed in the methodology section), and the scope of the simulation. The 

summary, conclusion, and future work are presented in the next chapter.   
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8 CHAPTER 8 

SUMMARY, CONCLUSION AND FUTURE WORK 

8.1 Summary 

Appropriate process planning solutions need to be developed for fabricating 

complex geometries by multi-axis DED systems in a supportless manner. This introduces 

several collision issues; however, it is essential to detect and avoid collisions. The 

developed algorithm in this research uses tool orientations and geometry segmentation to 

avoid collisions. Based on this algorithm, two strategies are developed to fabricate a 

hemisphere dome: they are wedge-shaped partitioning, and an offset rotary toolpath. A 5-

axis toolpath and a 2+1+1-axis toolpath are used to implement the wedge-shaped 

partitioning approach. The wedge-shaped partition domes are built at the end of a flat 

substrate to eliminate collisions, whereas the rotary sample is fabricated at the end of a 

round bar. 

As metal AM built products have a rough surface in addition to usually having a 

curved surface, standard methods for surface roughness measurement have limitations to 

measure these parts. Process planning, data collection, and experimental/numerical 

procedures are implemented to investigate the surface roughness variations of three 

fabricated domes along the slice direction. The developed Matlab program associated with 

the mount solution uses the exposed edges of the specimen in the mount. Since the exposed 

surface is polished, it reveals detailed surface textures under the microscope. The results 

are verified by comparing the Ra from a set of edge points where the associated Ra is 

known. 

A Matlab program for the Ra measurement for round surfaces from 3D point cloud 

data was developed as well. A distance factor was introduced into the calculations that 

signifies the points that are nearer to the measurement region. The results of this solution 

are compared to the mount solution. For assessing the surface roughness, the mount solution 

needs much pre-processing and is labour intensive, but this process is more accurate. The 

3D-point cloud can be used to measure the surface roughness of bead-deposition based AM 

technologies using 3D scanner with a 10 times more accurate resolution than a predicted 

Ra value. Tools need to be used to predict the Ra [53]. It can be used for online monitoring 

as it is a quick and non-contact method, but the measured roughness of the inner surface of 
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the dome is different from the outer surface. The reason can be the orientation of the nozzle 

which is not tangent to the surface in 2+1+1-axis sample. 

The Ra variation diagrams show lower Ra values for the 5-axis sample and the 

highest values for the rotary sample. The reason that the 5-axis shows the best results is 

likely because the layers within one partition are explored and it does not reveal the surface 

irregularities at the points between the partitions. The 2+1+1-axis sample shows bumps at 

the transition points between partitions. The reason is a sudden alteration of nozzle 

orientation which exceeds the maximum allowed overhang angle.  

Additionally, a procedure for data collection, experimental, and numerical 

measurements for the hardness of the fabricated products is developed. The hardness is 

measured along the slicing direction. A data collection strategy is developed to eliminate 

the noise from the inconsistency of the hardness across the surface stripe of the mount 

sample. This led to utilizing an indentation load of 1000 gf to minimize this noise. The 

experimental hardness diagram of the 2+1+1-axis sample shows a recognizable pattern for 

partitions 2-4. However, there is no simple recognizable pattern for the next partitions.  

The hardness for partition 3 of the 5-axis sample shows the same pattern. Although 

the rotary sample is fabricated in 3 intermittent sections, it does not show any significant 

pattern related to the sectioning. The statistical analysis of the hardness shows the highest 

standard deviation for the 5-axis sample and the least for the rotary one. Also, the hardness 

modes of the 3 samples are almost equal.  

The results of this research showed the pros and cons of fabricating a part in 

partition-based mode that need to be addressed when a functional part is being produced. 

On one hand, the complex geometries become manufacturable, on the other hand, it results 

instability in mechanical properties. The hardness drops significantly at transition regions 

between partitions.  

An FEA analysis for the hardness is performed using ESI Sysweld software for 144 

beads for the 2+1+1-axis dome. Two methods are applied; constant laser efficiency and 

constant melt pool size. The hardness variation in partition 8 is not significant which is 

because of the resultant uniform phase. The heat dissipation from the surface results in a 

uniform phase along partition 8. The FFT analyses of experimental and numerical data show 
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the whole 2+1+1-axis dome show that the length of the repetitive pattern is the same as 

partition length.  

8.2 Conclusion  

Similar to the machining process that decades of exploration solved most of its 

obstacles to control the process parameters and collision problem, much research needs to 

be conducted for multi-axis AM deposition processes as well.  

For the case study sample that was investigated in this research, the fabrication 

sequence of the partitions cannot be changed as each one is the base for the next one. But 

for other geometries, the sequence of the fabrication may be needed to be determined. In 

this case, more experimental research needs to be accomplished to control the effect of the 

heating and cooling cycles (introduced from partitioned fabrication) on the mechanical 

properties of the product.  

Advanced automation methods like machine learning and artificial intelligence can 

be applied in the partitioning algorithm. It makes the decision making of how to partition 

the very complex geometries faster and with less interaction with the user. Also, by teaching 

it with simpler geometries it can gradually learn to partition other geometries.  

The availability of the manufacturing DED machine should be considered in the 

algorithm (i.e. 3-axis machine, 5- axis machine, or a robotized DED). If the geometry can 

be partitioned in a way that is buildable by less axes, it reduces the complexity of the 

fabrication. 

The transition regions between partitions cause drastic alteration of mechanical 

properties and surface roughness changes that may cause failure. Therefore a post-heat 

treatment and machining may be needed to blend it.  

The reason that the rotary sample has the highest Ra value can be the tiny splashes 

of molten powder attached to the surface. The nozzle travels the periphery of the dome to 

deposit each layer. It takes time to pass the same point of the previous layer which is cooled 

down. Therefore, some powder particles that are not molten splash out of the melt pool and 

attach to the side of the dome wall. This increases the roughness value. This is a hypothesis 

and needs more investigation as future work. 

Before FEA analysis of the mechanical properties of a product, the decision needs 

to be made to choose between experimental fabrication of a dedicated sample or doing an 
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FEA analysis. In some cases it is more efficient based on the time, labor cost, and the 

precision of the results to fabricate an initial sample and measure the mechanical properties 

rather than going through the long process of mesh creation, parameter determination, and 

finally less accurate results. If the FEA analysis is needed for complex geometries, 

measurement of some of the simulation parameters such as the melt pool size as well as 

measuring the surrounding temperature can narrow down the number of iterations to 

achieve these parameters and create a more precise FEA analysis.  

Microstructure analysis of the product can help to find how much the hardness 

variation is caused by the phase variation along the partitions. Other possible fabrication 

inconsistencies (that need to be explored and determined) may cause minor changes in the 

hardness that are not included in the simulation.  

The preprocessing time of the FEA model including mesh preparation and 

parameter identification reveals that a better and faster numerical analysis technique should 

be developed to lead to faster and more accurate results. Artificial intelligent techniques 

such as a neural network can be applied for this purpose. Also, new developing additive 

manufacturing modules of some commercial software can be explored. 

8.3 Future Work 

This research can be developed to explore many different aspects of DED-AM in 

much more detail. Besides the outcomes, this research brought many new questions that 

can be answered by more experiments, analyses, and programming. Some possible future 

work expanding this research is listed: 

 The collision detection and prevention algorithm can be explored in more detail 

for surface tool paths, components with complex junctions, and then automated. 

 The constant stepover toolpath that was introduced to build the domes should be 

fabricated. Their hardness and roughness variations should be compared to the 

domes that were fabricated by planar slicing. 

 A CAD model of the dome that includes the detailed geometry of the beads with 

variable layer height should be prepared. This CAD model can be used to extract 

the required txt file of the surface edge points. These points are the input data for 

surface roughness measurement program. The outcome is the ideal Ra variation. 

Then, the results can be compared with hardness variation of fabricated domes. 
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 The surface roughness methodology should be modified to measure all curved 

surfaces. 

 Microstructure analyses should be performed to understand and interpret the 

hardness variations. 

 The FEA analysis is implemented by using a moving heat source (MHS) method. 

The same simulations can be executed by using an imposed thermal cycle (ITC) 

method to decrease the calculation time. The results can be compared with the 

results of this research. 

 The residual stresses can be measured experimentally to compare with the 

simulation results. 

 More investigation is needed to realize why the FEA results do not match 

satisfactorily to the experimental results for partitionss 5-8 and especially for 

partition 8. For example the sample geometry can be analyzed again by another 

mesh type like tetra mesh to double check the results. 
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A) APPENDICES 

A. Appendix A 

Surface Roughness Data 

Table A-1. Surface roughness values 

L 

(partition 

length) 

5-axis 2+1+1-axis Rotary 

Inner Outer Inner Outer Inner Outer 

2 30.4 23.6 39.5 39.1 44.1 37.2 

2.5 30.4 23.4 39.8 33.6 39.5 38.1 

3 32.4 24.9 40.2 27.8 43.8 36.0 

3.5 41.7 26.3 40.9 41.2 43.9 34.4 

4 46.5 29.0 38.0 40.0 41.1 31.6 

4.5 44.9 30.0 35.2 35.2 42.4 39.4 

5 46.3 33.7 34.5 38.3 40.4 38.4 

5.5 45.4 33.9 33.6 43.2 37.2 35.5 

6 37.1 34.2 34.7 39.3 35.5 37.4 

6.5 38.4 35.0 37.0 41.3 50.1 42.1 

7 31.8 26.2 40.6 38.2 42.6 39.1 

7.5 29.5 21.9 35.6 36.6 42.0 43.5 

8 25.1 21.6 43.3 40.4 43.6 40.6 

8.5 29.9 22.9 46.0 37.9 45.1 36.9 

9 29.9 23.4 60.8 36.3 43.2 40.9 

9.5 30.8 22.0 59.5 43.2 44.5 38.9 

10 26.3 20.6 65.2 45.4 41.8 37.7 

10.5 33.2 18.9 66.3 44.1 40.6 35.1 

11 31.5 15.8 68.4 48.4 37.9 35.7 

11.5 31.8 14.6 58.5 53.8 38.6 33.9 

12 33.1 15.1 46.1 39.0 38.2 33.2 

12.5 35.9 15.0 35.1 31.9 34.4 31.8 

13   40.5 27.4 30.5 28.9 

13.5   34.6 25.3 28.5 30.8 

14   31.6 26.0 28.6 30.8 

14.5   35.3 29.2 27.2 27.9 

15   34.8 30.9 27.3 31.9 

15.5   34.0 28.4 28.7 32.9 

16   33.1 29.7 26.6 32.2 

16.5   32.7 29.2 26.6 35.1 

17   31.3 33.6 28.5 38.4 

17.5   39.3 32.7 27.3 32.8 

18   42.1 31.9 25.2 36.4 

18.5   43.3 29.7 24.5 41.1 

19   50.5 43.4 29.7 29.6 
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19.5   42.7 47.9 29.2 29.0 

20   43.0 42.2 32.1 33.2 

20.5   36.6 54.6 30.9 36.4 

21   39.7 60.0 29.2 34.6 

21.5   29.1 45.6 29.7 42.0 

22   28.3 40.4 28.5 39.8 

22.5   29.1 34.9 22.3 41.6 

23   28.6 26.9 23.2 43.4 

23.5   30.0 22.9 22.7 43.1 

24   25.3 26.8 22.8 27.5 

24.5   24.9 29.1 37.6 26.1 

25   20.2 25.8 40.6 24.5 

25.5   30.6 27.0 44.8 24.1 

26   32.8 31.8 49.1 23.2 

26.5   18.9 29.4 51.0 17.7 

27   61.0 25.7 38.9 18.5 

27.5   58.4 39.7 46.4 23.2 

28   50.3 42.0 35.0 27.1 

28.5   41.6 46.1 32.3 24.6 

29   34.1 84.8 35.6 29.7 

29.5   40.2 105.7 36.6 34.9 

30   38.2 100.8 36.5 35.2 

30.5   31.5 118.0 36.9 35.3 

31   28.8 99.3 28.7 29.8 

31.5   29.3 91.0 37.3 31.2 

32   31.2 40.5 35.3 35.4 

32.5   35.8 55.0 27.6 36.3 

33   34.7 40.9  37.8 

33.5   23.9 42.6  37.5 

34   22.1 41.4  32.0 

34.5   30.1 35.8  37.5 

35   33.3 34.6  31.1 

35.5   29.8 33.4   

36   35.3 32.8   

36.5   40.9 40.6   

37   42.3 33.4   

37.5   39.7 41.6   

38   37.8 44.5   

38.5   47.0 36.2   

39   43.3 37.0   

39.5   41.0 37.7   

40   40.1 37.9   

40.5   30.7 39.8   

41   31.4 34.4   

41.5   28.1 32.6   
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42   26.6 39.7   

42.5   30.3 32.2   

43   29.4 61.6   

43.5   24.8 62.8   

44   32.7 55.7   

44.5   43.2 63.0   

45   43.3 68.1   

45.5   56.1 48.0   

46   60.1 43.9   

46.5   56.0 34.1   

47   41.5 28.0   

47.5   39.6 27.5  

P
ar

ti
ti

o
n

s 
1

-4
 

48   37.8 26.0  

48.5   34.4 21.1  

49   35.4 21.8  

49.5   34.6 22.2  

50   32.8 18.9  

50.5   28.7 19.3  

P
ar

ti
ti

o
n

s 
5

-8
 

51   35.1 21.2  

51.5   41.3 26.6  

52   35.9 34.3  

52.5   36.5 37.1  

53   35.9 51.8  

53.5   35.6 55.5   

54   37.9 46.3   

54.5   48.8 43.8   

55   50.7 44.5   

55.5   40.8 35.3   

56   31.8 34.3   

56.5   30.5 30.7   

57   24.7 29.0   

57.5   23.7 27.7   

58   25.8 31.7   

58.5   25.9 33.5   

59   25.7 28.3   

59.5   23.4 25.5   

60   25.3 27.4   

60.5   25.5 26.9   

61   21.7 41.5   

61.5   23.1 36.2   

62   23.2 38.2   

62.5   21.8 44.2   

63   17.5 42.1   

63.5   3.1 31.1   
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64    30.9   

64.5    26.0   

65    30.6   

65.5    33.5   

66    41.7   

66.5    38.5   

67    36.3   

67.5    32.7   

68    28.5   

68.5    34.1   

69    21.2   

69.5    35.0   

70    50.9   

70.5    135.3   

71    117.8   

71.5    74.5   
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B. Appendix B 

Hardness data 

Table B-1. All Hardness data 
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1 229 217 219 238 228 223 226 

2 211 196 205 207 206 204 205 

3 198 223 193 197 195 211 203 

4 191 185 189 203 196 188 192 

5 163 163 199 187 193 163 178 

6 217 181 183 211 197 199 198 

7 186 190 181 238 209 188 199 

8 264 179 216 195 206 222 214 

9 201 189 170 178 174 195 185 

10 215 222 151 147 149 219 184 

11 206 152 167 212 190 179 184 

12 150 195 235 169 202 172 187 

13 238 149 226 182 204 193 199 

14 255 186 212 207 209 221 215 

15 281 144 230 204 217 212 215 

16 217 272 212 216 214 244 229 

17 177 197 199 216 208 187 197 

18 182 172 169 170 170 177 173 

19 151 163 151 155 153 157 155 

20 173 188 163 193 178 180 179 

21 190 213 190 244 217 202 209 

22 273 222 208 177 192 248 220 

23 237 275 217 189 203 256 229 

24 260 203 208 209 208 231 220 

25 285 217 243 209 226 251 239 

26 185 203 185 170 178 194 186 

27 147 192 150 168 159 169 164 

28 173 168 167 143 155 171 163 

29 137 187 163 182 173 162 167 

30 216 281 155 238 197 248 223 
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31 239 225 220 239 230 232 231 

32 188 268 195 226 210 228 219 

33 248 225 177 193 185 236 211 

34 187 165 176 167 171 176 174 

35 171 219 175 179 177 195 186 

36 185 189 156 173 164 187 176 

37 195 196 189 186 188 195 192 

38 182 202 198 226 212 192 202 

39 207 202 157 207 182 205 193 

40 266 193 192 191 191 229 210 

41 222 226 221 233 227 224 226 

42 204 219 233 186 210 212 211 

43 245 197 185 200 193 221 207 

44 154 196 202 202 202 175 188 

45 194 208 185 217 201 201 201 

46 202 251 207 255 231 227 229 

47 191 167 214 176 195 179 187 

48 239 185 212 198 205 212 208 

49 216 199 236 150 193 208 200 

50 200 169 243 253 248 185 216 

51 270 199 214 200 207 234 221 

52 165 164 179 210 195 165 180 

53 163 189 196 187 191 176 184 

54 303 212 227 196 212 257 234 

55 188 183 209 219 214 185 200 

56 289 167 229 193 211 228 219 

57 174 221 215 195 205 197 201 

58 173 301 166 183 175 237 206 

59 182 159 187 215 201 171 186 

60 196 197 180 204 192 196 194 

61 239 188 209 199 204 214 209 

62 275 189 199 257 228 232 230 

63 165 257 218 212 215 211 213 

64 203 237 207 188 197 220 209 

65 161 178 238 239 238 170 204 

66 189 238 198 246 222 214 218 

67 208 153 241 231 236 181 208 

68 200 230 215 186 200 215 207 

69 255 222 235 202 218 239 229 
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71 256 154 165 161 163 205 184 

72 216 156 153 206 180 186 183 
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7 224 246 222 236 229 235 232 

8 182 230 254 258 256 206 231 

9 254 232 225 186 206 243 224 

10 176 279 205 218 211 227 219 

11 227 251 208 190 199 239 219 

12 192 263 200 208 204 227 216 

13 235 168 173 203 188 201 195 

14 224 165 200 188 194 194 194 

15 174 182 170 189 180 178 179 

16 196 184 174 173 173 190 182 

17 172 171 159 154 156 172 164 

18 164 163 181 195 188 163 176 
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Figure B-1. Hardness Diagrams of 5-axis sample 
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Figure B-2. Hardness Diagrams of 2+1+1-axis sample 
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