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ABSTRACT 

 

Fabric and textile materials are widely used in many industrial applications, especially in 

automotive, aviation and consumer goods. Currently, there is no semi-automatic or 

automatic solution for rapid, effective, and reconfigurable pick and place activities for 

limp, air permeable flexible components in industry. The production of these light-weight 

flexible textile or composite fiber products highly rely on manual operations, which lead 

to high production costs, workplace safety issues, and process bottlenecks. As a 

bio-inspired novel technology, soft robotic grippers provide new opportunities for the 

automation of fabric handling tasks. In this research, the characteristics of fabric pick and 

place tasks using the clamping grippers are quantitatively investigated. Experiments on a 

carbon fiber fabric are performed with a collaborative robot to explore the damage, 

slippage, draping, and wrinkling during basic pick and place operations. Based on the 

experimental results, multiple soft robotic gripper configurations are developed, 

including a compliant glove set that can improve the performance of traditional rigid 

grippers, an elastomer-based soft gripper, and a linkage-based underactuated gripper. The 

gripper designs are analyzed and refined based on finite element simulation. Prototypes 

of the grippers are fabricated using a rapid tooling solution for an overmolding strategy to 

verify their functionality. Through the research, it is proven feasible to reliably perform 

flexible fabric handling operations using soft grippers with appropriate toolpath planning. 

Finite element simulation and additive manufacturing have shown to be useful tools 

during the gripper design and development procedure, and the methodologies developed 

and applied in this work should be expanded for more flexible material handling 

challenges. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Fabric Materials in Industrial Applications 

 

Fabric and textile materials are widely used in many industrial applications, especially in 

automotive, aviation and consumer goods. The automotive industry, which represents the 

most significant global market for technical textiles, has a large demand for advanced 

fabric structures with better performance properties and improved design. The 

applications of technical textiles and fiber composite components in the automotive 

industry cover a wide range, including upholstery and seating, floor and door covering, 

trunk liners, pre-assembled interior components, safety devices, filters and engine 

compartment items, etc. [1,2] Figure 1.1 demonstrates the typical supply chain of fabric 

materials in the automotive industry.  

 

 
Figure 1.1 Supply chain of fabric materials in the automotive industry (taken from [1]) 

 

Introducing light-weighting material solutions to reduce vehicle mass is driving 

innovative materials research activities as polymer composites offer high specific 

stiffness, strength, and other advantages compared to contemporary engineering materials. 

Due to the light-weighting potentials, a higher consumption of carbon fiber will be used 
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within the next 20 years [3]. The aeronautical industry also requires a weight reduction of 

30% and a cost reduction of 40% compared to the metallic light-weight structures [4]. 

The optimization and automation of novel composite components manufacturing are 

essential to these requirements. 

 

There is a wide variety of technologies applied for fiber-reinforcement composites 

manufacturing, such as filament winding, pultrusion, hand lay-up, wet lay-up etc. The 

manufacturing processes start with semi-finished fiber or fabric materials. These 

materials are transferred to the mold, preformed, and processed into the final products. 

Though accomplished in different ways, all composites manufacturing processes involve 

four basic steps: impregnation, lay-up, consolidation, and solidification [5,6]. During 

impregnation, fibers and resins are mixed together to form a lamina in order to make sure 

that the resin flows entirely around all fibers. In the lay-up step, composite laminates are 

formed by placing prepregs at desired locations and angles, where the desired composite 

thickness and shapes are achieved by the number of layers and the structure of molds. 

Then, the consolidation step creates intimate contact between each layer to ensure the 

removement of entrapped air between layers. The final step is solidification, which may 

take less than a minute or up to two hours depending on the curing method. Figure 1.2 

shows the main stages of composites manufacturing. 

 

 
Figure 1.2 Stages of composites manufacturing 

 

The potential of significant mass reduction strategies that can be presented using 

composite fiber solutions are offset by the high labor intensity and long manufacturing 

cycle times. Improvements to the resin transfer molding (and similar injection / 

compression processes) can reduce molding cycle times. However, at this time, there is 
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no semi-automatic or automatic solution for rapid, effective, and reconfigurable pick and 

place activities for limp, air permeable flexible components in the automotive domain 

(i.e., textile mats used for the seat manufacturing foam injection process) that can be 

transferred into the composite fiber manufacturing domain. Traditional principles applied 

for fabric material handling include needle, clamping, vacuum, adhesion, etc. Though 

efficient under some circumstances, all these methods have their own limitations [7]. 

 

1.2 Problem Statement 

 

Presently, most of the pick and place operations for flexible components such as fiber 

mats are still done manually in the industry, which influences the throughput and 

production costs. Due to the basic characteristics of manual tasks, this also leads to 

workplace safety issues, as well as introducing variable process bottlenecks. Lower back 

disorders are related to manual material handling tasks and lifting tasks [22], as shown in 

Table 1.1, where the most problematic activities are highlighted. These repetitive tasks 

are highly probable to lead to work related issues and diseases in the long term. From an 

investigation done by the Association of Workers' Compensation Boards of Canada, 

241,508 lost time claims were made in Canada [8]. It is clear that new solutions are 

required to reduce work related injuries and improve production efficiency. 

 

Table 1.1 Evidence for causal relationship between risk factors and musculoskeletal 

disorders 

Risk Factor 
Strong 

Evidence 

Fair 

Evidence 

Insufficient 

Evidence 

Evidence of 

No Effect 

Lifting movement ●    

Awkward posture  ◑   

Heavy physical work  ◑   

Whole body vibration ●    

Static work posture   ○  

 

The automation of material handling of flexible textile/fiber components is a process 

bottleneck. Robotic/automated solutions for textile/composite fiber material handling has 
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significant growth potential, which will be an essential component for ongoing light 

weighting developments, and leadership in the specialty automation fields.  

 

Typically, it is difficult to utilize serial six-axis industrial robots with hard grippers for 

handling textiles without damaging the strands or introducing folds and tears. The 

compliance of soft robots introduces a new dimension for gripper designs for fabric 

material handling, where the biggest issues and challenges are related to firm picking, 

stable and fast transferring, precise placement and de-wrinkling, their sensitivity to 

process noise, and the durability of the solution. 

 

There is also a lack of systematic studies with respect or the behavior of fabric materials 

during picking, transferring, and placing operations, especially quantitative studies. This 

lack of data in both the experimental and simulation domains makes it more difficult to 

carry out practical applications in industry. Therefore, academic studies expanding the 

knowledge base related to the fabric material behaviors during pick and place tasks 

would be a key breakthrough for the current technological bottleneck. 

 

The vision of this research is to explore the possibility of developing a sophisticated 

solution for fabric material handling, applying a soft robotics-based technology. Although 

the project scope is limited, the outcomes of this project will establish a solid foundation 

for new automation opportunities to several manufacturing sectors. It would help 

employers understand the manual workloads as well as introduce new automation 

solutions that will benefit both robotics research and practical applications. 

 

1.3 Research Objectives 

 

The goal of this research was to determine ideal mechanical structures and to design a 

soft robotic gripper prototype that is capable of fast and effective pick and place activities. 

This solution should readily support quick reconfigurations. The outcome includes the 

theoretical concepts, CAD designs, simulation, prototyping, and testing of the soft robotic 

gripping solution. 
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The design criteria of the gripper include: 

 Grasping only one ply at a time 

 No slippage while in motion 

 Fast transfer motions 

 Minimization of wrinkling and distortion after dropping 

 Avoidance of any damage to the fabric 

 Compatible with different scenarios 

 Cost effective 

 

The specific research objectives include: 

 Obtaining the characteristics of the fabric material during selected pick and place 

tasks 

 Developing a general method for evaluating the performance of fabric handling 

 Developing a soft gripper that meets the criteria mentioned above 

 

1.4 Thesis Outline 

 

Chapter 2 presents a literature review regarding the characteristics of fabric materials, the 

typical fabric handling solutions that are contemporarily applied, and some necessary 

knowledge about soft robotic grippers. 

 

Chapter 3 covers the methodology applied in this research. A classification system of 

fabric materials is proposed as a foundation for relevant research. The collaborative robot 

is introduced. Some important designing and prototyping tools are described. Two 

material models that are critical for the simulation are developed. 

 

Chapter 4 presents the investigation of pick and place tasks with clamping grippers. A 

perpendicular test is performed to study the slippage and wrinkling during pick and place 

operations. A comprehensive experiment is performed to study the placement accuracy 

and wrinkling avoidance. A simple gripper design is developed in this chapter. 

 

Chapter 5 presents the design and development of two soft robotic grippers. The first one 
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is an elastomer-based gripper. The second one is a linkage-based gripper. The gripper 

designs are evaluated through both simulation and prototyping. 

 

Chapter 6 is the conclusion of this thesis, including the limitations and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Characteristics of Fabric Materials 

 

Fabrics or textiles are flexible materials constructed by a network of yarns, which are 

produced by interlocking raw fiber materials. When considering mechanical properties 

and structures, fibers and yarns are usually treated as one-dimensional in form, while 

fabrics are considered two-dimensional. In the industry, fabrics are frequently made into 

garments, which are considered three dimensional in form. [9] 

 

There is a wide variety of fiber materials, including glass fibers, carbon fibers, aramid 

fibers, polyethylene fibers, ceramic fibers, basalt fibers, metal fibers, natural fibers, etc. 

The mechanical characteristics of some common fibers are summarized in Table 2.1 [10]. 

 

Table 2.1 Different fiber materials specifications 

 
Density 

(g/cm3) 

Young’s 

Modulus (GPa) 

Tensile Strength 

(MPa) 

Elongation at 

Break (%) 

Glass Fibers 2.45-2.90 56-115 2000-4900 1.5-5.4 

Carbon Fibers 1.73-2.15 200-900 1750-7000 0.35-2.40 

Aramid Fibers 1.39-1.47 58-18 2760-3620 1.9-4.4 

Polyethylene 

Fibers 
0.90-1.41 0.5-170 455-3100 2.7-22 

Ceramic 

Fibers 
2.35-4.1 150-420 1500-3600 0.4-1.1 

Basalt Fibers 2.75 89 2000-4840 3.15 

Metal Fibers 2.8-7.9 72-210 200-2500 1.0-2.0 

Natural Fibers 1.3-1.5 9.4-100 568-1100 2.0-3.0 

 

Most fabric materials can be regarded as flat sheets that are flexible and deformable. 

There are various types of fabric structures. In other words, fabrics can be built up from 
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textile fibers in many ways. Most fabrics are made from yarns and there are four main 

types of structures: woven fabrics, knitted fabrics, braided fabrics, and lace and net 

fabrics, as demonstrated in Figure 2.1.  

 

 
Figure 2.1 Fibric structures 

 

Woven and knitted are the two most common structures, each contains several subclasses 

[11]. Figure 2.2 shows some commonly found weaving styles. Figure 2.3 shows some 

commonly found knitting styles. Different types of fabric structures have different 

properties in terms of stability, drape, porosity, smoothness, balance, symmetry, and 

crimp. For example, the Leno weave is more stable than that of the Satin weave, while 

the draping characteristic, porosity and smoothness of the Leno weave is poor in 

comparison to the Satin weave. There are also laminae not made of interlaced yarns but 

show similar properties as fabrics, such as leather, paper, plastic films, rubber sheets, etc. 

These sheets may also be included in the research of fabric handling. 

 

 
Figure 2.2 Different common weave styles (taken from [10]) 

a. Plain  b. Twill  c. Satin  d. Basket  e. Leno  f. Mock leno 
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Figure 2.3 Different common knitted styles (taken from [12]) 

a. Plain  b. Lacoste  c. Interlock  d. Double pique 

 

In industry, the shapes of the fabrics can be very complex, with internal slits and cut-outs 

as shown in Figure 2.4. Many processes require to attach these geometrically complex 

fabric mats onto three-dimensional mold surfaces, which makes the pick and place tasks 

more complicated. Figure 2.5 shows a tool shop consisting of master models and 

laminated molds, which are relatively complex and require manual operations. 

 

 
Figure 2.4 Fiber mats with complex geometrical shapes 
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Figure 2.5 Master models and laminated molds (taken from [5]) 

 

There are various categories of properties that can be used to describe the performance of 

fabric materials. For bulk properties, there are uniaxial tension and compression, biaxial 

tension, compression and shear, bending behavior, torsional response, behavior under a 

stress concentration, dimensional stability and fatigue resistance, etc. For surface 

properties, there are contact behavior, roughness, attrition resistance, friction and 

resistance to stress concentrations, etc. For transfer properties, there are air permeability, 

water permeability, filtration efficiency, penetration resistance and heat transfer, etc. 

While performing pick and place tasks using robotic grippers, the most important 

properties include fabric structure, roughness, area weight, and stiffness. Aside from 

material properties, geometric properties of the fabric pieces such as size, thickness, 

shape are also important variables. 

 

Much research has been done on obtaining the surface roughness of fabric materials, such 

as the Kawabata Evaluation System (KES-F), the Ring Method, the Optical Method, etc. 

[13,14]. In order to make quantitative comparisons, the KES-F appear to be the most 

qualified since it can give an accurate coefficient of friction. In the standard test, the 



11 
 

sample is pulled tight by applying a tension load of 20 gf/cm and a detector of 10 parallel 

piano wires is pressed against the fabric with a force of 50 gf (1 piano wire with 10 gf 

when measuring roughness). The output includes the coefficient of friction, geometric 

roughness, and the standard deviation of the friction coefficient [15]. There is also a 

simplified method to gain the coefficient of friction for the fabrics. The fabric is attached 

on an inclined plane with an object placed on it, where θ is the angle of repose at which 

an object just starts to slide down the inclined plane. Therefore, the coefficient can simply 

be calculated by 

 

 𝐹௙ = 𝜇𝑁 (2-1) 

 

where 

Ff – frictional force (N), 

μ – frictional coefficient, 

N – normal force between surfaces (N). 

 

For an object pulled or pushed horizontally, the force is simply the gravity force or 

weight. Therefore, 

 

 𝐹௙ = 𝜇𝑚𝑔 (2-2) 

 

 

Figure 2.6 Friction Test 
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This method is frequently adopted by the industry [16]. 

 

The stiffness of fabrics is another important property for handling tasks. It indicates the 

capability of fabrics to resist bending without support. A traditional measure of fabric 

stiffness is the bending length, which can be measured by Peirce’s cantilever method [17]. 

In this method, the fabric is made to deform on its own weight as a centilever. A strip of 

fabric of specific size is place on a platform and moved forward until the centerline from 

the edge of the platform to the leading edge of fabric makes an angle θ to the horizontal, 

as shown in Figure 2.7. Then, the bending length c can be calculated by the centilever 

length l and the angle θ as 

 

 𝑐 = 𝑙 ቆ
𝑐𝑜𝑠(𝜃/2)

8 𝑡𝑎𝑛 𝜃
ቇ

ଵ/ଷ

 (2-3) 

 

The angle θ is traditionally set to 41.5°for the ease of calculation. 

 

Also, the bending rigidity B can be calculated by the bending length c and the fabric mass 

per unit w as follows 

 

 𝐵 = 𝑤𝑐ଷ (2-4) 

 

 

Figure 2.7 Peirce’s cantilever method 

 

Another parameter used to express fabric stiffness is the drape coefficient, which is the 

ratio of the projected area of the fabric sample to its undraped area, in which the area of 

the supporting disk is deduced. It is usually measured by the Cusick drape test. Much 
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research has been done on applying this coefficient using digital image analysis. [18,19] 

 

2.2 Contemporary Fabric Material Handling Solutions 

 

There are various approaches for fabric material handling in manufacturing industries, 

where different methods for gripping, handling, and automation are being applied. Early 

research focusing on gripping technologies for flexible materials started at the end of last 

century, and several experimental gripping systems have been developed during the 

1990s, many of which applied mechanical principles with elementary control. Since the 

middle of the 1990s, researchers began to explore new methods for fabric handling, 

considering various characteristics of the fabric materials. In 1990, P. Taylor et al. [20] 

investigated automated fabric handling techniques and the problems researchers were 

facing. In 1995, Taylor [21] concluded some common gripping systems for flexible 

materials at the time. G. Monkman [96] did a study on robotic grippers for use with 

fibrous materials, especially carbon fiber composites. By compiling previous research, P. 

Koustoumpardis and N. Aspragathos [7] derived a classification system based on the 

gripping principles and handling techniques.  

 

Since handling techniques and the gripping principle are correspondent to each other, 

traditional principles applied for gripping and handling can be classified together into 

four main categories: needle, clamping, vacuum, and adhesion. There are also few other 

methods such as air-flow or electrostatic, which are usually restrained for materials with 

special properties. Table 2.2 summarizes common methods traditionally applied for fabric 

handling and relevant references. 
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Table 2.2 Classification of conventional fabric handling methods 

Principle Sketch Reference 

Needle 

 

[23][24][25][26][28][28] 

Clamping 

Vertical 

picking 
  

[29][30][31][32][33][34] 

Side picking 

 

[35][36][32][37][38] 

Vacuum 

 

[39][40][26][41][42][43] 

Adhesion 

 

[26][23][44][45][43] 

Others 

Air-flow 
 

[46][47] 

Electrostatic 
 

[48][49][50] 

 

The needle is the most commonly applied method in the industry. The typical design uses 

two or more tilted needles to penetrate the fabrics, then adds tension to hold the fabrics 

firmly. Another type of needle gripper, which was originally designed at Durham, places 

needles around a cylinder that rotates onto the fabrics to be attached [27]. A needle-based 

gripper can grip most types of fabric stably and move quickly, but it causes inevitable 

damage to the fabrics when puncturing, hence it cannot be applied for delicate fabrics.  

 

The clamping method uses a pair of rigid jaws to grip the fabrics. Based on the picking 

style, these grippers can be subclassified as vertical picking (pinching) and side picking. 
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For vertical picking, the jaws are moved perpendicularly until the tips touch the surface 

of the fabrics, and then are brought together to pinch the fabrics. This type of gripper is 

very effective and reliable during picking and handling, but usually introduces folds or 

wrinkles when placing. The mechanism and controls of the rigid clamping grippers are 

very simple; hence the application is limited by the lack of adjustable movements.  

 

The side picking method is mainly useful for picking up a fabric panel that is already 

placed on a plane where the edges of the fabric are approachable. Compared to vertical 

picking, side picking efficiently prevents the occurrence of folds or wrinkles, but the 

flexibility is further limited. The commercially available Walton Picker [34] is a very 

simple clamping gripper specially designed for simple tasks. More recent research on 

clamping grippers seeks to mimic the movement of human hand. The research team of 

Ono et al. [30,31] has presented a gripper that combines vertical picking and side picking 

approaches and operates as a human hand. This gripper has a highly complex mechanism 

equipped with a touch sensor and a force sensor. 

 

Using a vacuum is also a well-studied method. Vacuum grippers cause minimal harm or 

distortion to the fabric materials. Kolluru et al. [40] have developed a vacuum gripper 

that has a flat bottom surface constituting a matrix of holes for suction purposes. A 

variety of modified configurations have been developed based on it, with intelligent 

control integrated [41,43]. More recent studies have developed various types of 

reconfigurable suction systems that are capable of adjusting to different and complex 

geometry shapes [39]. The biggest limitation for a vacuum gripper is due to the air 

permeability of fabric materials since a vacuum can only pick up dense materials. Using a 

vacuum is also expensive, complex, and its gripping force is weak and cannot move fast 

compared to mechanical grippers. 

 

Adhesion grippers also apply surface attraction to grip and hold fabrics. These grippers 

are able to pick up most types of materials, as well as consistently acquire a single piece 

at a time, but they require an extra mechanism to release the material. Usually, adhesion 

grippers are constituted of a set of movable mechanism such as rollers or stripes covered 

with the adhesive agent. The most common adhesive is glue, and researchers are also 

investigating using Cryo Freeze as the adhesive agent [45]. Adhesives remaining on the 
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fabric may cause an undesired impact, especially during composite manufacturing, so the 

adhesion grippers are mainly applied in the clothing industry [23]. 

 

Table 2.3 summarizes the characteristics of the four main types of conventional fabric 

handling methods. 

 

Table 2.3 Characteristics of conventional fabric handling methods 

Method 
Holding 

Force 

Damage 

Avoidance 

Ease of 

Release 

Ply 

Separation 

Stack 

Picking 

Energy 

Efficiency 

Needle ● ○ ◑ ◑ ◕ ◕ 

Clamping ● ◑ ◕ ◕ ◑ ◕ 

Vacuum ◔ ◑ ● ● ◑ ○ 

Adhesion ● ◑ ◑ ● ◔ ◑ 

 

New types of grippers have been developed (sensor based Coanda gripper [51]) 

independently or based on existing grippers modified, e.g., by the integration of sensors 

to increase the material handling efficiency [52]. There are some cases where a hybrid 

approach is taken, i.e., combining different picking strategies. T. Le, M Jilich, et al. [38] 

developed a specialized gripper that can accomplish garment handling with low 

requirements for avoiding distortion.  

 

Though not common, soft robotic grippers and underactuated hands have been studied in 

some specific cases. Z. Doulgeri and N. Fahantidis [29] developed a rigid robotic gripper 

with soft-tipped fingers to pick up fabric material pieces. P. Koustoumpardis, K. Nastos, 

and N. Aspragathos [53] performed a research on an underactuated robotic gripper that 

can successfully grasp, transfer, and de-wrinkle for simple fabric materials. K. Murakami 

and T. Hasegawa [54] have presented a gripper with a human-like fingertip and a quite 

complex mechanism. Their research also investigated the detection of contact conditions 

using a hard nail structure attached to the soft skin. A long-standing research project 

carried out in Japan by E. Ono et al. [30,31] has developed a clamping gripper with 

complex mechanism that can separate fabric plies. They managed to avoid introducing 

bending to the fabric by side picking strategies and studied the interaction between fabric 

plies when the upper layer was picked up. 
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In addition to a single gripper, researchers have developed gripper frames that combine 

multiple gripping units to accomplish more complex tasks. S. Costo, et al. [55] have 

developed a gripper frame with three vacuum end effectors, each can be repositioned 

with two DOF. S. Ragunathan and L. Karunamoorthy [56] have done a similar design 

with four end effectors. P. Zimmer [57] has invented a rectangular frame that can stretch 

the fabric to hold it firmly. Research done by S. Flixeder, T. Glück, and A. Kugi [58] has 

integrated a de-wrinkling roller on a Coanda-effect gripper frame. M. Tarsha Kordi, M. 

Hüsing, and B. Corves [59] have developed a more complex configuration with eight 

movable vacuum end effectors arrange on a flexible frame. 

 

Most contemporary handling solutions can be applied utilizing a 6-axis robot. The 

biggest advantage of 6-axis robots is that they can be highly automated by proper 

programming. Also, they can be easily customized, and they occupy relatively a small 

area while reaching a large workspace. Traditionally, there are some non-robotic solutions, 

but they are less applied in the modern industry compared to 6-axis robotic solutions. 

Most of these non-robotic solutions apply gantry systems, which are simple but lack 

flexibility. Some special purpose machines have also been designed. These devices are 

often highly efficient but not expandable. 

 

2.3 Soft Robotic Grippers 

 

Soft robots are bio-inspired machines that are more flexible than traditional rigid-bodied 

robotic machines, making them available for more complex tasks. Conventional, 

rigid-bodied robots are commonly applied in manufacturing and are specifically 

programmed to perform a single task efficiently, but usually with limited adaptability. In 

comparison, soft robots have bodies made of intrinsically soft and/or extensible materials. 

These robots have a continuously deformable structure with muscle-like actuation system 

that emulates biological systems and have a relatively large number of degrees of 

freedom. Hence, they are able to perform more complex and flexible tasks. Since many 

soft robots have deformable surfaces and are under-actuated, they are also capable of 

handling and manipulating fragile or highly deformable objects. [60-63] 
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Currently, most of the fabric handling operations in industry are performed manually. 

However, there are only a limited variety of human hand motions are used during these 

operations, such as rubbing, pinching, and gipping. Since soft robotic grippers are 

bio-inspired grippers that can mimic human hands movements, they have great potentials 

to accomplish typical fabric picking tasks by mimicking manual operations. Though not 

common, there are some cases where grasping and clamping operations performed by 

soft robotic grippers are applied for fabric handling solutions. Some of the techniques 

mentioned in the previous section contain features of soft robotics [30-53].  

 

The application of soft robotic grippers in fabric handling tasks has two important 

advantages. Since soft robotic grippers are mostly underactuated, they can automatically 

adjust to the geometry of the objects to be picked. Therefore, the complexity of the 

geometric shapes of fabric materials would not be a challenge during picking. An 

underactuated gripper has the potential to pick up deformable fabric materials from 

curved or inclined surfaces and perform certain processing with relatively complex 

gestures. Secondly, those grippers usually have contact surfaces made from soft and 

deformable materials such as rubbers or soft plastic, which can provide a firm gripping 

condition while not damaging the fabric material. 

 

In the research domain, there are many different types of soft robotic grippers being 

developed, applying different configurations and actuation methods.  

Soft robotic technology and underactuated grippers have been widely studied during past 

decades. L. Birglen, et al. [64] have presented a comprehensive review on underactuated 

gripper hands in 2008. S. Kim, C. Laschi, and B. Tripmer [62] did a similar review upon 

bio-inspired soft robotics in 2013. In 2018, J. Shintake, et al [65] have carried out a 

through introduction of soft robotic technology that covered most of the temporary soft 

robotic grippers. These papers have also discussed the fabrication and control strategies 

for soft robotic grippers. Table 2.4 and Table 2.5 shows some relevant soft robotic 

grippers and their characteristics. 
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Table 2.4 Soft robotic grippers and their characteristics (part 1) 

 Features  Comment  Picture  

[53]  Linkage-based 

fingers  

 Soft tips 

 Cable actuation 

A gripper for fabric handling 

inspired by human hands. It is 

capable of grasping, 

transferring, and de-wrinkling 

for simple fabric materials.  

[66]  Gapped 

elastomer fingers 

 Cable actuation 

A simple gripper inspired by 

the structure of human hands. 

 

[67]  Linkage-based 

fingers 

 Soft skin 

 Cable and 

pneumatic 

actuation 

A gripper inspired by the 

structure of human hands. 

Different fingers are actuated 

separately and hence are 

capable of complex gestures. 

 

[68]  Elastomer 

fingers 

 Cable actuation 

The structure is simple. Easy 

to manufacture and assemble 

but cannot complete complex 

movements. 

 

 

 

 



20 
 

Table 2.5 Soft robotic grippers and their characteristics (part 2) 

 Features  Comment  Picture  

[69]  Fluidic elastomer 

actuator 

 Pneumatic 

A gripper based on fluidic 

elastomer that is adaptive to 

different shapes and provides 

good surface contact. 

 
[70]  Fluidic elastomer 

actuator 

 Pneumatic 

A pneumatic soft robotic 

gripper that provides high 

force and large curvature. 

The maximum 

payload-to-weight ratio of is 

1805%.  

[71]  Fluidic elastomer 

fingers 

 Pneumatic 

A pneumatic soft robotic 

gripper that is capable of 

grasping various types of 

object. 

 
 

The most common soft robotic gripper configuration is based on compliant structures 

being deformed by external or integrated actuators. Objects can hence be gripped through 

impactive prehension. There are various ways of actuation that have been studied by 

researchers.  

 

As traditional rigid grippers can be driven by rotary of linear motions, one efficient way 

to achieve actuation force for soft gripers is to drive passive structures by external motors. 

Based on the location of the actuation, the working principles can be distinguished as 

contact-driving deformation and tendon actuation. For contact-driving deformation 

grippers, the actuator only drives the finger to linearly enclose such as rigid grippers, and 
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the gripper material adjusts to the target object by passive deformation. The 

tendon-driven grippers have driving cables embedded inside the gripper structure to 

transmit the actuation force. These grippers are mostly made by articulate elastomer 

fingers connected to a rigid palm. The fingers can also be hinge-connected linkages 

confined by elastomer skin or other elastic components. Figure 2.8 illustrates the working 

principles of such types of soft grippers. 

 

 

Figure 2.8 Mechanically actuated soft grippers (taken from [65]) 

a. Compliant structure  b. Cable actuation  c. Linkage-based cable actuation 

 

In Table 2.4, there is a typical tendon-driven gripper molded by silicone rubber [66]. 

There is also a linkage-based gripper confined by elastic springs and driven by an 

electromagnetic motor [53]. Due to the simplicity of the mechanical structures and the 

fast reaction speed, these types of soft grippers are popular in industrial applications. 

They can be designed for a wide range of purposes. 
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Another popular design of actuation is to apply pneumatic or hydraulic power. Fluidic 

elastomer actuators, also known as soft pneumatic actuators, are one of the oldest designs 

for soft robotics, yet they are still widely applied in both academic studies and industrial 

applications. The actuation is achieved by feeding gaseous or liquid fluid into a chamber 

made of highly elastic materials. The inflation of the chamber then bends the gripping 

structure, which is usually asymmetrical or uses anisotropic materials. Some gripper 

configurations in table 2.5 are all based on fluidic elastomer actuators [69-71]. These 

grippers usually have a large bending capacity. The actuation time may vary drastically 

based on the details of the designs. As a simplified configuration, the pneumatic power 

can be directly led to a hollowed elastomer finger to create bending or elongation. Figure 

2.9 shows the working principles of typical pressure-based soft grippers. It is also 

possible to combine pneumatic power and cable actuation [67]. 

 

 

Figure 2.9 Pneumatic or hydraulic actuation (taken from [65]) 

a. Fluidic elastomer actuation  b. Air tube actuation 

 

Some characteristics of these mentioned configurations are summarized and compared in 

Table 2.6. 
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Table 2.6 Characteristics of typical actuation strategies 

Style Complexity Actuation speed Gripping force 
Compliant 
structure 

◔ ● ◑ 

Tendon 
actuation 

◑ ● ◕ 

Pneumatic 
actuation 

● ◕ ● 

 

To actuate passive structures, there are many other novel approaches as well, including 

dielectric elastomer actuators, ionic polymer-metal composites, shape memory materials, 

etc. Aside from actuating passive structures, soft and adjustable gripping can also be 

achieved by varying the stiffness of the gripping structure, as shown in Figure 2.10 [72]. 

 

 

Figure 2.10 Gripping by changing stiffness (taken from [72]) 

 

Currently, most of existing soft robotic systems are applying conventional, rigid 

electronic sensors for automation. These sensing devices include visual sensors, contact 

sensors, pressure sensors, distance sensors, optimal sensors, etc. The sensors can either be 

attached to the frame of the robots or be inserted inside the structure of soft gripper. For 

the latter case, the electronic devices are usual micro and highly sensitive. Their missions 

are typically related to contact or force sensing, which appear to be essential in fabric 

handling tasks. Aside from conventional sensors, there are also much research recently 

being done on flexible and stretchable electronic devices [73-75]. These new 

technological achievements may enable new sensing and controlling strategies that are 

more accurate and effective. 
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2.4 State of the Art 

As reviewed in previous sections, the literature related to this research is summarized in 

Table 2.7. 

 

Table 2.7 Relevant literature 
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[58] ●  ●   ●  ● ● ●   

[55] ●  ●   ●  ●     

[42] ●  ●        ● ● 

[56] ●  ●   ●  ●     

[59] ●  ●   ●  ●  ●   

[76] ●  ●   ●  ● ● ●  ● 

[30] ● ●   ●   ●  ● ● ● 

[31] ● ●   ●   ●  ● ● ● 

[29] ● ●     ●   ● ● ● 

[38] ● ●        ● ●  

[53] ● ●  ● ●  ● ●  ●   

[104] ●       ● ● ● ●  

[66]  ●   ●  ●      

[68]  ●   ●  ● ●     

[77] ● ●     ●  ●  ● ● 

This 

research 
● ●  ● ●  ● ● ● ● ● ● 
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It can be observed that most of the recent research on fabric handling tasks explored the 

integrated frames that use vacuum grippers as end effectors. As discussed in the previous 

sections, this approach is proved effective but is limited to a relatively small range of 

material types.  

 

There is research that applied the clamping strategy. Some of the gripper designs in these 

studies contain features of soft robotic, such as soft gripper tip or skin. However, only 

one had developed a strictly defined soft robotic gripper that has an underactuated 

mechanism, and its investigation on the gripper structure is very simple. There is also a 

lack of quantitative study on the interaction between the gripper and the fabrics. This 

makes the avoidance of wrinkling and gripping reliability an unexplored problem when it 

comes to clamping grippers. Aside from fabric picking, there are some studies on soft 

robotic grippers for other tasks that can provide insights for this research. 

 

Therefore, it is necessary to fill the research gaps on clamping grippers for fabric 

handling. Preliminary results of this research showed the factors that affect the gripper 

performance quantitatively [77]. More detailed investigation following those results is 

presented in this thesis. This research also covers the design and analysis of soft robotic 

grippers for fabric handling, as mentioned in the research objectives. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Classification of Fabric Materials 

 

Different types of fabric materials show drastically different behaviors during the picking, 

transferring, and placing operations. In order to standardize the setup of experiments and 

analyze them respectively, it is necessary to have a classification system considering the 

important properties of the fabrics. The classification system should be consistent, 

complete, and compatible with existing databases. These properties should also be 

summarized in a searchable manner so that the classification system can be easily applied 

during experiments and analysis. 

 

The OPITZ classification code system, shown in Figure 3.1, is a typical example of 

searchable classification systems in group technology in the manufacturing domain [78]. 

It uses a 9-digit code to characterize a manufacturing strategy. The first five digits 

describe the geometrical for of the part to be manufactured, including whether the part is 

rotational or not, external shape, internal shape, machining requirements, and auxiliary 

features. Then, there are four secondary digits that summarize the dimensions, work 

material, the original shape of raw material, and accuracy requirements. 
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Figure 3.1 OPITZ classification code (taken from [78]) 

 

By using a similar strategy, a digit-based classification code system for fabric materials is 

developed. While performing pick and place tasks using robotic grippers, the most 

important properties include fabric structure, roughness, area weight, and stiffness. Each 

of these properties can be characterized by a digit number, hence the first four digits 

would summarize the relevant material properties of the fabrics. Additionally, the 

behaviors of a fabric piece are also determined by its geometrical characteristics, 

including the size, thickness, external shape, and internal shape of the fabric piece. 

Finally, the mold surface on which the fabric pieces are to be placed is also a critical 

condition. Therefore, by using a 10-digit code, the important characteristics of fabrics 

during handling operations can be effective summarized in a standard and searchable 

manner. Table 3.1 to 3.3 show the digital-expressed fabric structure, material properties, 

and geometric and mold properties respectively for the classification system. 
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Table 3.1 Fabric structure 

Fabric structure 

1. woven 2. knitted 3. braided 
4. lace 

and net 
5. others 

1. plain 1. plane   1. paper 

2. twill 2. lacoste   2. leather 

3. satin 3. interlock   3. foam 

4. basket 4. double pique   4. plastic 

5. leno 5. others    

6. mock leno     

7. others     

 

Table 3.2 Material properties 

Material properties 

Roughness (coefficient 

of friction) 

Area weight 

(g/m2) 

Stiffness (bending 

length, mm) 

1. <0.3 1. <50 1. <5 

2. 0.3-0.4 2. 50-100 2. 5-10 

3. 0.4-0.5 3. 100-150 3. 10-15 

4. 0.5-0.6 4. 150-200 4. 15-20 

5. 0.6-0.7 5. 200-250 5. 20-25 

6. 0.7-0.8 6. >250 6. >25 

7. >0.8   
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Table 3.3 Geometric and mold properties 

Geometric properties 

Mold surface 
Size (m2) 

Thickness 

(mm) 
External shape Internal shape 

1. <0.2 1. <0.2 1. rectangular 1. continuous 1. flat 

2. 0.2-0.5 2. 0.2-0.4 2. round 2. few small holes 2. lightly wavy 

3. 0.5-1.0 3. 0.4-0.6 3. polygonal 3. many small 

holes 

3. heavily wavy 

4. 1.0-1.5 4. 0.6-0.8 4. irregular 4. large circular 

holes 

4. irregular with 

mild bulges or 

hollows 

5. 1.5-2.0 5. 0.8-1.0 5. extremely 

irregular 

5. large 

non-circular holes 

5. irregular with 

large bulges or 

hollows 

6. >2.0 6. >1.0    

 

For the ease of application, the whole classification code can be separated into four 

sections, connected by dashes. Therefore, the characteristics of a specific piece of fabric 

can be expressed using a 10-digit code “x.x-xxx-xxxx-x”. The first section represents the 

fabric structure, where the first digit is the upper class and the second digit after dot is the 

subclass. The subclass digit may be neglected when there is no necessity for this 

information. The second section represents the material properties of the fabric. The third 

section represents the geometric properties of the fabric. The last section, which contains 

only one digit, represents the mold shape. Under circumstances where the mold shape is 

uncertain, the last section can be neglected.  

 

3.2 Pick and Place Tasks Based on Collaborative Robots 

 

Cobots, or collaborative robots, are robots intended to interact with humans in a shared 

space and to collaborate safely in close distances. A collaborative robot provides 

advanced automation platform designed to interact with personnel [79]. Compared to 

traditional industrial robots which are designed to work autonomously with safety insured 
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by isolating human contact, the typical working range associated with industrial robotic 

solutions is altered to allow human-machine engagement in the working range [80,81]. 

These traits are usually achieved through accurate sensing, fast responce, light weight, 

round-edged structures, etc. Existing cobots share a highly identical architecture design, 

generally with a six or seven axis with one arm configuration or dual arm configuration. 

Their payload ranges from 1 kg to 5 kg. This architecture displays the highest level of 

dexterity available today with the maximum of simplicity. This type of arm can position 

and orient the griper through a combination of a complete cylindrical and spherical 

workspace with an infinite range of arm poses. 

 

Because of the lack of automation for fabric material handling, human-robot interaction 

and tool path design would be critical for relevant research. The advantages of cobots, 

including close human-robot interaction and their potentiality for complex movements, 

would be greatly beneficial for carrying out various experiments. 

 

In this research, the YUMI ABB 14000 dual arm robot shown in Figure 3.2 was applied 

for pick and place experiments. It is a dual arm collaborative robot with seven DOFs for 

each arm. This robot has a vision system, controllable dexterous grippers (speed and 

gripper position), sensitive force control feedback, flexible software and built-in safety 

features that collectively allow for programming through teaching rather than coding. The 

design and performance characteristics are summarized in Table 3.4. 

 

 

Figure 3.2 YUMI dual arm collaborative robot 



31 
 

Table 3.4 Characteristics of YUMI dual arm collaborative robot 

Feature Value 

Degrees of freedom 7 (rotational joints) per side 

Working rage 559 mm 

Linear speed of gripping operation 0.25 mm/s 

Max force 20 N 

Max payload 500 g 

Max TCP velocity 1.5 m/s 

Width, length, height 399*497*571 

Weight 38 kg 

 

The robot has a compact frame and fourteen axes, seven for each arm. The structure 

representations and the DH parameters of both arms are presented in Figures 3.3 [77]. 

 

 
Figure 3.3 YUMI DH configurations and DH parameters 

a. Left arm  b. Right arm 
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3.3 Gripper Design 

 

There are three important characteristics to consider for fabric handling operations: the 

fabric’s light weight, high deformability, and complex geometry. Compared to other 

objects manipulated in industry (i.e. rigid metal components), common fabric materials 

such as carbon fiber fabric or glass fiber fabric have a much lighter density, making them 

easier to carry. Hence, the demand for the gripping force is necessary but not very high. 

Fabric materials are highly deformable, causing draping and shifting during the pick and 

place operations. Deformability also causes many types of fabrics vulnerable to hard 

contact, making grasping more challenging. The geometrical complexity is related to 

various mold shapes mentioned in the previous chapter. During application, the gripper 

might need to pick or place fabric plies with respect to curved or cornered surfaces. 

Deformation of the fabrics also increases the geometrical complexity. Aside from these 

three characteristics, efficiency and motion speed are also required as for any other pick 

and place operations. 

 

Though traditional grippers might be able to perform fabric picking operations for simple 

scenarios as past literature suggests, they can hardly remain feasible to deal with the 

increasing complexity in many applications. In order to perform more complex pick and 

place movements rather than linear motion, a soft robotic gripper is designed, simulated, 

and tested. Multiple gripper design strategies are investigated for this project to derive a 

broad solution set. 

 

Soft robotic grippers are the product of bio-inspired engineering. In order to develop a 

soft gripper adjustable to various scenarios, it is wise to observe the motion of human 

hands. When manually picking up a ply of fabric, the index finger and thumb are 

typically applied. As shown in Figure 3.4, at the beginning of the picking movement, the 

index finger and the thumb would open wide so that the finger pulps become parallel the 

fabric surface. Then, the finger pulps are pushed toward the fabric to create a firm contact 

condition. While picking up, the hand would lift upward whiling pinching the fabric up 

through friction force. After the movement is finished, the fabric would be firmly 

clamped between the two fingers. 
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Figure 3.4 Manual picking 

 

According to the literature review, finger-based gripper designs with cable actuation 

appeared be the most suitable configuration for fabric handling tasks because of their 

high actuation speed, steady and reliable gripping force, and structural simplicity. They 

are capable of rapid movements, providing firm gripping condition, and complex gestures 

for various operations. This type of gripper is also compatible with novel grasping, 

smoothing, and hybrid lifting strategies, which would be investigated under specific 

situations. Fluidic elastomer actuator is another competitive candidate, as they also 

provide high gripping capability, but are not favored due to their mechanical complexity 

and relatively lower actuation speed. 

 

For the purposes of this research, it is required that the gripper should have a large and 

controllable opening magnitude. It should be able to adjust itself to the working surface 

when picking or placing while providing enough gripping force. When fully enclosed, 
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there should be enough contact area between the fabric and the gripper tip to prevent 

slippage. That means the gripping fingers should be able to bend in double directions and 

the bending magnitude being controlled by a simple input, which is the pulling force for 

cable actuation. A typical cable actuated gripper configuration is based on elastomer 

fingers with gaps on the bending sides and driving tendons inserted through the gaps. To 

achieve controllable double-direction bending, there should be gaps on both sides of the 

finger. Figure 3.5 illustrates a conceptual version of such design. 

 

 
Figure 3.5 Cable actuated gripper configuration 

 

As shown in the drawing, multiple triangular gaps are distributed on the bending side of 

the finger, separating the elastomer bar into multiple sections. Two slots are present at the 

gapped edge for the driving tendons to go through. At the top section, there are U-shaped 

slots strengthened by a stiffer material to hold the tendons. These underactuated fingers 

would be attached to a rigid ‘palm’ structure. When the driving force pulls the tendons 

from the bottom, the gripper would open or enclose due to the pulled sides. When 

touching the working surface while enclosing, the gesture of the fingers would be 

confined by its elasticity behavior, hence adjusting itself to the target geometry. Figure 

3.6. illustrates the resting, opening, and gripping positions of a conceptual gripper 
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configuration. The potentiality of complex gestures also allows flexible touching areas 

for various gripping and smoothening requirements. 

 

 
Figure 3.6 Postures of a conceptual gripper configuration 

 

The elastomer could include one-side bending or two-side bending depending on the 

applications. There could be multiple gaps on each side of such a finger. The distribution 

of gaps and other geometrical characteristics both affect the behavior of the gripper. 

Aside from elastomer fingers made of a single material, it is also possible to apply other 

actuating principles, such as linkage-based grippers with an elastomer skin, as mentioned 

in the previous chapter. Detailed design variations are investigated and presented in later 

chapters. This also includes combinations of a traditional gripper with a soft robotic glove 

to achieve efficient performance in simpler pick and place tasks. After a feasible design is 

achieved, driving and controlling components are taken into consideration during the 

prototyping stage. 

 

3.4 Prototyping 

 

Selected additive manufacturing (AM) and other related processes are utilized for 

prototyping. 

 

Additive manufacturing includes various processes that create three-dimensional objects 
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by joining materials directly from a digital model. The materials are added together as 

melted powder grains or fused molecules. The processes are typically done layer by layer. 

One of the most important advantages of additive manufacturing is the capability to 

create complex geometries directly from computer-aided design (CAD) models in a fast, 

convenient, and low-cost manner. This property makes it a favored method for rapid 

prototyping while the design is in engineering development. 

 

A great amount of progress related to the fabrication of soft robotic grippers has been 

enabled by the recent development of AM techniques and other related design and 

manufacturing tools. Researchers have created complex soft robotic grippers and systems 

by taking advantage of rapid and adaptable manufacturing technology [82], such as 

multi-material 3D printing [83], shape deposition manufacturing (SDM) [84], soft 

lithography [85], etc.  

 

For the soft gripper related parts in this research, the most important AM technology is 

the fused deposition modeling (FDM) process. FDM is an AM technique in which a 

physical object is created directly from a CAD model using layer-by-layer deposition of a 

feedstock plastic filament material extruded through a nozzle. During printing, the nozzle 

travels back and forth based on the design described in a STL format file, adding 

materials layer by layer until the whole 3D structure is completed. With an FDM 

processes being utilized, rigid components such as linkage skeleton with reconfigurable 

feature tubing or cable channels can be quickly fabricated. Other components such as 

mold sets and gripper bases can also be fabricated this way. 

 

The STL file is a file format that describes the geometry of three-dimensional objects 

using triangulated surfaces, and can be directly converted from a 3D model by any 

popular CAD software. In this research, the selected CAD software is SolidWorks for 

most of the modelling work. Technically, STL is a suboptimal file format because it is not 

possible to perfectly represent curved surfaces using triangles, especially for extremely 

complicated geometry. However, the components included in this research are relatively 

simple, so this drawback can be neglected when printing the parts. For the same reason, 

tool path design challenges for the FDM process are not too difficult, either. 
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The FDM machine used in this research is a Fortus 400mc 3D printer. It is a 3-axis AM 

machine that accommodates a wide range of production-grade thermoplastics and is able 

to provide accurate, repeatable builds. This device has a vacuum stage to fix the building 

sheet and an enclosed oven to provide steady building temperature. 

 

Two different types of building materials, ULT9085 and PC30, are used to make relevant 

components. Because the forces withstand by rigid components in this research are 

significantly smaller than the capacity of these two types of materials, the differences in 

their physical behaviors can be ignored. UTL_S and PC_S were used as support materials 

respectively to support parts with complex geometries or overhang angles that exceed the 

threshold (approximately 45° depending on material types and extrusion characteristics). 

 

Another important prototyping technique is the overmolding process. Overmolding is a 

molding technique where two or more different materials are combined together to create 

a single part. Typically, during overmolding, the substrate materials are partially or fully 

covered by subsequent materials referred as overmold materials. The substrate materials 

are usually much more rigid than the raw subsequent materials before curing. These 

processes include plastic over metal molding, rubber over plastic molding, rubber over 

metal molding, rubber over plastic molding, etc. Overmolding processes can be used to 

fabricate complex structures with multiple materials included. In other research, specialty, 

multi-stage low volume overmolding solutions have been developed for cables slots [86], 

and to emulate a human thorax for thoracentesis training mannequin [87]. These rapid, 

low cost pattern and tooling methodologies are leveraged for the soft gripper 

manufacturing processes. 

 

Taking the elastomer finger in Figure 3.5 as an example (three-gap version), the part can 

be overmolded using a mold set with movable components. The plastic U-shape tube is 

the substrate material, and silicone rubber is the subsequent material. As illustrated in 

Figure 3.7 (only half of the mold set is shown here), the basic geometry of the gapped 

elastomer finger can be directly created from the mold shape, and two removable tubes 

are inserted into the cavity to create the cable slot. The U-shape tube is held by the 

extractable tubes. After the subsequent material cures, the extractable tubes would be 

removed, leaving the U-shape tube inside the elastomer structure as part of the finger. 
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Figure 3.7 Overmolding illustration 

 

The elastomer material used in this research is Mold Star 15 SLOW silicone rubber, a 

mediate hard, strong rubber material that is tear resistant and exhibits very low long-term 

shrinkage. The raw materials should be mixed 1A:1B by volume when molding. The 

curing time is four hours at room temperature and can be accelerated by heating up. Table 

3.5 shows some technical data of Mold Star 15 SLOW. 

 

Table 3.5 Technical data of Mold Star 15 SLOW 

A:B Mix Ratio 1:1 

Mixed Viscosity (ASTM D-2393) 12,500 cps 

Specific Gravity (g/cc) (ASTM D-1475) 1.18 

Specific Volume (cu. in./lb.) (ASTM D-1475) 23.5 

Pot Life (ASTM D-2471) 50 min 

Shore A Hardness (ASTM D-2240) 15A 

Tensile Strength (ASTM D-412) 400 psi 

100% Modulus (ASTM D-412) 55 psi 

Elongation at Break % (ASTM D-412) 440% 

Die B Tear Strength (ASTM D-624) 88 pli 
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The U-shape tubes are made by heat-shrink plastic tubes. Other components include 

cotton strings, nylon strings, plastic, and metal components. 

 

3.5 Simulation 

 

Compared to the computational analysis of traditional rigid body systems, design and 

simulation tools are limited for soft materials, including fabrics and elastomer materials 

that are essential to soft robot grippers. While the position and movement of rigid objects 

can be sufficiently described by six degrees of freedom (three transitional coordinates and 

three rotational coordinates), soft bodies cannot be confined to simple and discrete planar 

motions. Soft materials are elastic (sometimes elastoplastic), and can be highly bent, 

twisted, stretched, compressed wrinkled, etc. Therefore, the analysis and simulation for 

soft bodies are much more complicated than rigid bodies.  

 

In order to analyze the performance of soft grippers and fabrics, special analysis 

approaches such as Finite Element Analysis (FEA) are applied. Various studies have 

applied FEA simulation among those subjects. The simulation challenges also require 

sophisticated modelling of the structural and dynamic configurations of the system. 

Abaqus is used to perform the simulation. This allows the model-based design of the 

gripper configurations. 

 

3.5.1 Simulation of the Underactuated Mechanism 

 

The most critical part regarding the simulation of soft robotic grippers is the modelling of 

the elastomer fingers and similar structures. For this task, hyperelastic material models 

are necessary to capture the nonlinear material properties of the rubber-like materials. 

 

For rubber-like materials such as elastomers or bio tissues, a large strain occurs when a 

small stress is applied. Traditional linear theories of elasticity represented by Hooke’s law 

fail to adequately predict their mechanical behaviors. During the past decades, 

researchers represented by Mooney and Rivlin have introduced a nonlinear theory of 

elasticity that leads to hyperelastic material models using strain-energy functions to 
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describe the mechanical properties of rubber-like materials [88-91]. There are also 

various researches that applied hyperelastic theories and models in mechanical and 

biomechanical domains [92,93]. Specifically, hyperelastic models are ideal for 

characterizing silicone rubber materials in industrial applications [94,95]. 

 

In the hyperelastic theory, the materials are assumed to be isotropic and incompressible. 

This is generally valid for rubber-like materials, especially when they are not strictly 

confined. A hyperelastic material model relies on the strain-energy function Ψ, which is 

obtained from symmetry, thermodynamic and energetic considerations. 

 

If the material is isotropic, the strain-energy function depends on the strain invariants. 

That is 

 

 𝛹௜௦௢௧௥௢௣௜௖ = 𝛹(𝐼ଵ, 𝐼ଶ, 𝐼ଷ) (3-1) 

 

where the strain invariants 

 

 𝐼ଵ = ෍ 𝜆௜
ଶ

ଷ

௜ୀଵ

 (3-2) 

 

 𝐼ଶ = ෍ 𝜆௜
ଶ𝜆௝

ଶ

ଷ

௜,௝ୀଵ

, 𝑖 ≠ 𝑗 (3-3) 

 

 𝐼ଷ = ෑ 𝜆௜
ଶ

ଷ

௜ୀଵ

 (3-4) 

 

𝜆ଵ, 𝜆ଶ, and 𝜆ଷ are the principle stretches [95]. 

 

If given the assumption that the material is incompressible (𝐼ଷ = 1), Equation 3-1 

becomes 

 

 𝛹ூ = 𝛹(𝐼ଵ, 𝐼ଶ) (3-5) 
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Since the strain invariants directly depend on the principal stretches as mentioned in 

Equations 3-2 to 3-4, the strain-energy functions can also be expressed as a function of 

the principle stretches: 

 

 𝛹ூ = 𝛹(𝜆ଵ, 𝜆ଶ, 𝜆ଷ) (3-6) 

 

In the more complicated cases such as biomechanics where anisotropic characteristics are 

present, an anisotropic contribution can be added to compensate for the anisotropic nature 

of those materials. Hence, the full expression of 𝛹 becomes 

 

 𝛹 = 𝛹௜௦௢௧௥௢௣௜௖ + 𝛹௔௡௜௦௢௧௥௢௣௜௖ (3-7) 

 

An example of such cases is the Martins material model. There are some cases where this 

expression is applied [90,91]. However, such complicated cases are not within the 

domain of this project. 

 

Multiple models have been established by researchers, such as the Neo-Hookean material 

model, the Mooney–Rivlin material model, the Yeoh material model, the Ogden material 

model, etc. The majority of these models are based on one or more quantities among the 

principle stretches 𝜆ଵ, 𝜆ଶ, 𝜆ଷ and the Cauchy–Green tensor invariants 𝐼ଵ, 𝐼ଶ, 𝐼ଷ. The 

four mentioned models are all available in the Abaqus software. 

 

The Neo-Hookean material model is the simplest hyperelastic model and one of the most 

popular models. It was first established by the study of vulcanized rubber using statistical 

theory [91]. In this approach, the rubber material is considered as a three-dimensional 

network of long chain molecules connected by few points. One coefficient is needed to 

establish the strain-energy function: 

 

 𝛹 = 𝑐ଵ(𝐼ଵ − 3) (3-8) 

 

Another famous and commonly applied hyperelastic model is the Mooney-Rivlin 

material model. It is one of the earliest developed hyperelastic models and is well known 
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for its high accuracy in describing the mechanical behaviors of isotropic rubber-like 

materials. The strain-energy is expressed as 

 

 𝛹 = 𝑐ଵ(𝐼ଵ − 3) − 𝑐ଶ(𝐼ଶ − 3) (3-9) 

 

The Yeoh material model, first presented in 1990, for incompressible materials 

established the strain-energy function using three coefficient and only the first strain 

invariant 𝐼ଵ: 

 

 𝛹 = ෍ 𝑐௜(𝐼ଵ − 3)௜

ଷ

௜ୀଵ

 (3-10) 

 

Another example, the Ogden material model is based on Ogden’s phenomenological 

theory of elasticity [90]. Its strain-energy function has a complex general form 

 

 𝛹 = ෍
𝑐ଶ௜ିଵ

𝑐ଶ௜
൫𝜆ଵ

௖మ೔ + 𝜆ଶ
௖మ೔ + 𝜆ଷ

௖మ೔ − 3൯

ே

௜ୀଵ

 (3-11) 

 

For technical applications, including the settings in Abaqus, the number 𝑁 is typically 

set to 3 to achieve optimal convergence between theoretical and experimental results. 

That makes the function dependent on six coefficients. 

 

Relevant studies have shown that in cases where the deformations are moderate (<100%), 

simple models like the Neo-Hookean model would suffice. The Mooney Rivlin model 

potentially remains accurate until the deformations reach approximately 200%. The Yeoh 

model and the Ogden model can provide accurate results under large deformations, but 

the complexity of these models leads to high computational costs. [94,104] 

 

In the study of soft robotic grippers, the deformations of the elastomer materials are 

significantly smaller than the capacities of the simpler models mentioned above. 

Therefore, by balancing the accuracy and computational efficiency, the Mooney-Rivlin 

was initially selected as the hyperelastic model for elastomer materials in the research. 
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For the prototyping material, Mold Star 15 SLOW silicone rubber, there were no data 

regarding hyperelastic models available on the internet. Thus, a tension experiment was 

designed and performed to obtain the Mooney-Rivlin coefficients. 

 

For the case of incompressible Mooney–Rivlin materials under uniaxial elongation,  

 

 𝜆ଵ = 𝜆 (3-12) 

 

 𝜆ଶ = 𝜆ଷ =
1

√𝜆
 (3-13) 

 

The strain-stress equation can be written as 

 

 𝜎ଵଵ = ൬2𝑐ଵ +
2𝑐ଶ

𝜆
൰ ൬𝜆ଶ −

1

𝜆
൰ (3-14) 

 

where 

𝜎ଵଵ – the true stress (Cauchy stress) (MPa) 

𝜆 – the principal stretch 

 

With the Cauchy stress and stretch data collected, the coefficients can be calculated using 

a least square fit procedure [104]. Given n measured stress-strain pairs, the best set of 

constants is the one that minimizes the error 

 

 𝐸 = ෍ ቆ1 −
𝑆௜

௧௛

𝑆௜
௧௘௦௧ቇ

ଶ௡

௜ୀଵ

 (3-15) 

 

where 

𝑆௜
௧௛ – theoretical stress calculated from the stress-strain equation 

𝑆௜
௧௘௦௧ – experimental stress 

 

The goodness of the fitting can be evaluated by the sum of squared errors (SSE), the 

coefficient of determination (denoted by R-squared), adjusted R-squared, and the root 
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mean squared error (RMSE). SSE is the sum of the squared differences between each 

observation and its group's mean. R-squared is the proportion of the variance in the 

dependent variable that is predictable from the independent variable. The adjusted 

R-squared compares the descriptive power of regression models—two or more 

variables—that include a diverse number of independent variables—known as a predictor. 

RMSE is the standard deviation of the residuals, which measure how far from the 

regression line data points are. These methods are available in the MATLAB curve fitting 

toolbox. 

 

The uniaxial tensile test followed the ISO 572-2 standard. A dumbbell-shape sample was 

designed as shown in Figure 3.8.  

 

 
Figure 3.8 Dumbbell-shape sample 

 

During the test, the sample underwent an increasing uniaxial load until the deformation 

reached 100%. The test was performed with unfixed tension gauge, so the deviation was 

high. In order to ensure the validity, the test was performed multiple times. After the data 

was collected. The coefficients 𝑐ଵ and 𝑐ଶ were obtained using the curve fitting toolbox 

in MATLAB. The results were 𝑐ଵ = 0.08412 and 𝑐ଶ = −0.04687. Figure 3.9 shows 

the fitting result compared with the experimental data. 
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Figure 3.9 Fitting result 

 

The SSE was 0.005717. The R-squared was 0.9878. The adjusted R-squared was 0.9874. 

The RMSE was 0.01429. According to the figure, there was good fit between the material 

model and the experimental data. However, when the stretched a certain level in the 

compression region, this model predicted unrealistic behaviors. This could lead to 

convergence problems during simulations. 

 

A suggested way to solve this problem is to force 𝑐ଶ to be positive [97]. With this extra 

constraint introduced, the result became 𝑐ଵ = 0.05773 and 𝑐ଶ = 0. The material model 

hence became identical to a Neo-Hookean model. Figure 3.10 shows the adjusted fitting 

result. 

 

 
Figure 3.10 Modified fitting result 
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The SSE is 0.01141. The R-squared is 0.9757. The adjusted R-squared is 0.9749. The 

RMSE is 0.02019. Though the fitting goodness is slightly lower than the first model, this 

model remained accurate. 

 

Based on these results, a finite element (FE) model of the test sample is established in 

Abaqus, as shown in Figure 3.11. The quality of an FE model can be evaluated by the 

correlation coefficients (CC) between experimental and simulation data, which can be 

given by: 

 

 𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) =
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦ത)

ඥ∑(𝑥 − 𝑥̅)ଶ(𝑦 − 𝑦ത)ଶ
 (3-16) 

 

where X and Y are the experimental and simulation data respectively. 𝑥̅ and 𝑦ത are the 

average of corresponding data. 

 

 
Figure 3.11 FE model of the sample 

a. Meshed model  b. Simulation result 

 

Figure 3.12 shows the comparison between FEA result and the test data that validated the 

material model. The CC of this model was 0.9896, proving its validity. 
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Figure 3.12 Comparison between FEA result and the test data 

 

3.5.2 Simulation of Fabric Materials 

 

The simulation of fabric materials under large deformation is a challenging problem in 

relevant research. In Abaqus, the “lamina” type of elasticity is available for describing the 

orthotropic behaviors of fabric materials. This elastic model is characterized by six 

parameters: Young’s modulus E1 and E2, Poisson’s ratio ν12, and shear modulus G12, 

G13, G23. Researchers have also developed algorithms and subroutines to accurately 

capture the anisotropic behaviors of fabric by modelling the microscopic interaction 

between each yarn that constitutes the fabric ply [98-100]. Figure 3.13 illustrates an 

example of the microscopic modelling strategy. 

 

 
Figure 3.13 Microscopic modelling of fabrics (taken from [98]) 
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Though proved reliable to simulate the deformation of fabric materials with high 

accuracy, these methods are not favored in this research because of the high 

computational expense and the difficulty to calibrate the parameters. In this research, the 

purpose of fabric simulation is to verify the capability of the gripper design to pick up 

fabric materials. The accurate stress and strain distributions of the fabrics are not needed. 

Therefore, it would be possible to model the fabric as an isotropic ply, where only two 

parameters (Young’s modulus E and Poisson’s ratio ν) are needed. Researchers have 

applied such simplified approach for simulating the wrinkling and draping behaviors of 

flexible fabric plies and other laminae [101,102]. 

 

As mentioned in section 2.1, the most important properties of fabric materials during 

gripping motions are roughness and stiffness. While roughness can be simply 

characterized by the coefficient of friction, stiffness should be calibrated based on 

experimental draping behavior. The fabric sample used in this research is plain woven 

carbon fiber fabric. The thickness of the fabric ply is 0.2 mm. The density is 1.15×10-3 

g/mm3. 

 

A cantilever experiment is performed following the method described in section 2.1 and 

3.1. As demonstrated in Figure 2.7, a 5 cm wide strip of the fabric is placed on a platform 

and moved forward until the centerline from the edge of the platform to the leading edge 

of fabric makes a 41.5° angle to the horizontal plane. The bending length 𝑐 is measured 

to be 4.28 cm. The length 𝑙 of the hanged section of the fabric strip before bending is 

8.40 cm. 

 

In order to ensure the validity of the isotopic FE model, an equivalent pair of parameters 

should be found so that the model would result in the same bending length. A 50 mm by 

84 mm rectangular shell part is modelled in Abaqus and meshed using S4R elements. A 

9800 N/ton gravity field is applied. The encastre boundary condition is applied to one 

short edge of the ply to simulate its bending under self-weight as the end section of a long 

flat strip. It is found that with the equivalent parameters E set to 240 MPa and ν set to 0.1, 

the simulation result (shown in Figure 3.14) shows the same draping behavior as the 

experiment. 
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Figure 3.14 Draping result of the simplified fabric model 
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CHAPTER 4 

INVESTIGATION OF PICK AND PLACE TASKS WITH CLAMPING GRIPPERS 

 

Because of the complexity of fabric and mold geometry, there are various picking and 

handling strategies in industrial applications, making it an unsolved problem for the 

industry. All these pick a place are based on a most simplified scenario, which is picking 

a rectangular fabric ply from a plain surface and placing it to another plain surface. This 

research would focus on such simple conditions to build a firm base for fabric picking 

research. 

 

There are multiple approaches to pick up a fabric ply. If the workpiece is square or nearly 

square, i.e., the width of the workpiece is close to the length of the workpiece, there are 

typically three pick positions: center picking, side picking, and corner picking. If a corner 

of the fabric ply is folded upward, side picking and corner picking could be used to 

unfold the ply. Figures 4.1 and 4.2 illustrate these scenarios.  

 

 

Figure 4.1 Picking locations on a square ply 

a. Center picking  b. Side picking  c. Corner picking  d. Side picking for unfolding 

e. Corner picking for unfolding 
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For workpieces with a larger size or higher length-width ratio, multiple picking position 

may be needed. As shown in Figure 4.2, side picking and midline picking approaches can 

be applied with doubled picking locations. Even when side-picking strategies are not 

applied, the distances from the picking positions to the edges may also matter. 

 

 

Figure 4.2 Picking locations on a rectangular ply 

a. Midline picking  b. Midline picking (closer to edges)  c. Side picking 

 

This chapter focuses on some basic pick and place tasks and presents the achieved 

quantitative results to characterize the behaviors of fabric materials during these tasks. 

The investigated characteristics include slippage, draping, wrinkling/folding, and placing 

accuracy. The experiments are applied using the YUMI robot mentioned in section 3.2. 

The purpose is to prove the feasibility of accomplishing fabric pick and place tasks using 

clamping approaches and to quantitively demonstrate the potentiality of novel gripper 

designs. This would also set up a firm foundation for further studies. 

 

4.1 Simple Pick and Place Tasks with One Gripper 

 

For pick and place tasks with a clamping method approach, the slippage between the 

gripper and fabrics is one of the biggest concerns. Low slippage during gripping, lifting, 
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and moving leads to a firm gripping condition, making it possible to perform rapid 

transportation. Low slippage increases the controllability and reliability of the gripper 

performance. The slippage during picking and handling reduces location accuracy and 

increases the wrinkling after dropping, which are not desired. If the slippage is too large, 

the fabric may even drop off while moving. In this section, factors that affect the slippage 

condition were investigated using one robot gripper. Some of the preliminary research 

results for this project have been published [77]. 

 

4.1.1 Experimental Setup 

 

For this experiment set, one arm of the YuMi robot was used. The fabric workpiece that 

was employed are plain weave carbon fiber mats, with a 10 mm wide fiber skein. A plain 

surface made of hard plastic served as both the workplace where the fabric is picked from 

and the target area where the fabric would be placed on. This type of carbon fiber fabric 

is one of the most commonly applied fabric materials in industrial applications. Its 

draping and friction characteristics make this material challenging. Therefore, it would 

serve as a representative specimen for relevant researches. By the classification code 

mentioned in section 3.1, the code of this fabric workpiece would be “1.1-251-2211-1”. 

 

In order to observe and measure the slippage condition, a painter correction pen was used 

to mark readable orthogonal reference lines onto the material. The fabric workpiece was 

marked by two perpendicular lines at four fabric sides, each containing a horizontal and 

vertical distance of 15 cm from the edges of the fabric for measuring slippage while 

gripping and moving. Four different sides were chosen due to concerns related to 

potential fabric damage introduced by the pick and place operations, which may 

adversely affect the repeatability and validity of the experiments. 

 

Since the fabric piece was placed on a plastic working surface that is planar and parallel 

to the ground, the coefficient of friction for the materials can be determined as a 

controlled variable. Interior and edge region tests were performed with standard and 

modified grippers. The force, velocity, slippage, and wrinkling data were collected. 

 

For fabric pick and place tasks, the most severe slippage occurs during vertical 
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movements due to the weight of the fabric aligning up with the inertia. The faster the 

lifting speed, the worse slippage situation there will be. Therefore, this experiment 

specifically focused on vertical pick and place tasks. These tasks can be characterized by 

three basic motions: 

Pick: the gripper touches the fabric and grips it by friction force. 

Move: the gripper moves perpendicularly with a high speed. 

Place: the gripper steadily lowers down to a certain height and drapes the material onto 

the given surface. 

 

The robot was programmed so that each test includes three linear pick and place motions 

to determine how the material shifted during these movements. Based on the targeted 

movements, three reference locations of the tool center point (TCP) were programed as 

follow: 

Gripping position: the position where the TCP touched the marked picking point. 

Home position: the position where the TCP stayed before the motion started, which is 18 

cm above the gripping position. 

Middle position: 9 cm above the gripping position. 

Placing position: 1.5 cm above the gripping position. 

 

At the start of program, the tip of the gripper would move downward from the home 

position until it touches the fabric (shown in Figure 4.3). The gripper would close and 

pick the fabric up to the home position, and then move to the middle position. The robot 

would then repeat that motion to go to the home position and once again return to the 

middle position. Here, the gripper would be fixed at this position for 20 seconds so that 

the slippage result can be measured. Finally, the TCP would travel to the placing position, 

release the fabric, and head back to the home position to prepare for the next round. The 

entire moving sequence is illustrated in Figure 4.4. 
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Figure 4.3 Gripping position and home position 

 

 

Figure 4.4 Moving sequence for the one arm testing 

 

As shown in the picture, the original gripper attached on the YuMi robot is made of hard 

plastic and is only capable of simple clapping movement. Primary research had shown 

that the fabric material would be significantly damaged by the hard gripper even under 

the low velocity, low force configuration, which is the mildest case. This disqualified the 

hard-plastic grippers from any applications regarding similar materials. Figure 4.5 shows 

the damaged fabric workpiece. In order to solve the problem, a novel glove set that would 

act as a soft skin, a feature of soft robotics, was designed and fabricated to improve the 

performance of the gripper. 
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Figure 4.5 Damaged fabric 

 

By reverse-engineering he gripper finger of the YuMi cobot, the soft glove that can be 

attach to the hard gripper was designed in SolidWorks, as shown in Figure 4.6. 

 

 

Figure 4.6 CAD design of the soft glove 

 

Based on the CAD model, a multi-component specialty mold set was designed and 

fabricated through FDM process. Therefore, pairs of elastomer gloves can be quickly and 

repeated fabricated by silicone molding. The material used to make the gloves is Mold 
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Star 15 SLOW silicone rubber, as mentioned in section 3.4. The mold set is shown in 

Figure 4.7. The gloves are shown in Figure 4.8. 

 

 

Figure 4.7 Mold set 

 

 

Figure 4.8 Silicone glove 

 

With the silicone gloves attached, the gripper would be able to provide firmer gripping 

condition while cause less negative impact to the fabric materials. The soft skin serves as 

a compliant structure as introduced in section 2.3. When applying load onto the fabric ply, 

the elastic nature of elastomer would cause the surface of the gripper to deform, hence 

adjusting to the structure of the fabric to prevent any damage. 

 

As revealed by these initial tests, with the application of the silicon glove, the gripping 

condition was significantly improved. There was no material fiber damage for any force 

or velocity settings. The observed wrinkling condition was also improved. Following the 

pursuit for firm gripping, a modified configuration of the silicone gloves was also 

designed. Figure 4.9 shows the conceptual model of the second-generation gripper design. 
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It was hypothesized that by introducing a curved gripping surface, the contact condition 

can be improved, hence providing better performance than the first-generation design. 

 

 

Figure 4.9 CAD model of the second-generation Silicone gloves 

 

The second-generation gripper was designed and fabricated using the same procedure as 

the first-generation configuration. Figure 4.10 shows the mold set and the prototyping 

products. 

 

 

Figure 4.10 Second generation Silicone gloves 

 

As a controlled variable, the coefficient of friction between the fabric and relevant 

materials were measured using the method in section 2.1. As shown in Figure 4.11, a 
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silicone block that has its base material used for gripper’s tip was placed at an inclined 

surface covered by one layer of the tested fabric. The angle θ was measured and the 

coefficient of friction μ was calculated by Equation 2-1. It was found that the coefficient 

of friction between Mold Star 15 SLOW silicon rubber and the fabric is 0.7. 

 

 
Figure 4.11 Friction test 

 

Likewise, the coefficient of friction between the carbon fiber fabric and the working 

surface was determined. The angle of repose (inclination) is measured to be θ=17°. 

Therefore, μ = tan17° = 0.3. For this experiment, the frictional force between carbon 

fabric and work surface is: 

 

 𝐹௙ = 𝜇𝑚𝑔 = 0.3 × 0.087 × 9.81 = 0.26𝑁 (4-1) 

 

The material of the original gripper is hard plastic and was assumed to have similar 

characteristics to the plastic working surface. Therefore, the frictional force between the 

carbon fiber fabric and the original gripper can be calculated as follow: 

Low level gripping force: 𝐹௙ = 𝜇𝑁 = 0.3 × 10 = 3 N 

High level gripping force: 𝐹௙ = 𝜇𝑁 = 0.3 × 20 = 6 N 

 

Similarly, the frictional force between carbon fabric and silicon gripper is: 

Low level gripping force: 𝐹௙ = 𝜇𝑁 = 0.7 × 10 = 7 N 
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High level gripping force: 𝐹௙ = 𝜇𝑁 = 0.7 × 20 = 14 N 

 

4.1.2 Results and Discussion 

 

The sequence of events for the baseline gripper tests is shown in Figure 4.12. Figure 4.13 

shows a working gripper equipped with the second-generation silicone gloves. 

 

 

Figure 4.12 Sequence of the experiment 
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Figure 4.13 Gripper equipped with the silicone gloves 

 

As expected, while the original gripper showed poor performance during these basic pick 

and place tasks, the introduction of the two types of silicone gloves to create soft-skin 

grippers improved the results significantly. As previously mentioned, while using the 

original gripper, the material was damaged at the mildest scenario. There was no damage 

observed with either the first-generation or the second-generation soft-skin silicone 

grippers. Figure 4.14 shows the slippage results of the three gripper configurations. 

Figure 4.15 shows the wrinkling results. 

 

 

Figure 4.14 Slippage results 
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Figure 4.15 Wrinkling results 

 

As revealed in Figure 4.14, with the original gripper, the workpiece slipped severely (3 

cm) at the high velocity, low gripping force configuration. All other observed slippage 

values for the baseline gripper indicated a 1 cm result for the balance of the 

velocity-force sets. The slippage was significantly decreased when the first-generation 

silicone gloves were used for each scenario. With the second-generation silicone gloves, 

there is no slippage at all under most of the scenarios. A slight slippage less than 0.25 cm 

occurred under the most critical scenario. It was also shown that higher gripping force 

(causing high friction force between the gripper surface and the workpiece) and lower 

handling velocity lead to less slippage regardless of the gripper type. 

 

Interesting results were revealed with respect to the fabric wrinkling assessments. It was 

observed from Figure 4.15 that the gripper configuration influenced the observed 

wrinkling results only under some scenarios. When the gripping force was low, the 

original hard gripper caused longer wrinkling lines compared to the silicone grippers, and 

the situation was slightly worse for high velocity than low velocity. When the gripping 

force was high, the wrinkling results became nearly identical regardless of the velocity 

and the gripper configurations. There was no noticeable difference between the 

first-generation and the second-generation silicone grippers and the wrinkling magnitude 
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remained almost constant under all scenarios. 

 

This could be caused by the severe inability of the original gripper to provide reliable 

gripping conditions. When the gripping force was low, the gripping condition was least 

reliable, causing uncontrollable shift during the movement that led to larger wrinkling 

after placing. The shift became worse as the velocity increased. However, when the 

gripping condition was improved to a certain level, no matter by gripping force or by 

compliant structure, the wrinkling pattern became constant and can no longer be changed 

by further improving the gripping condition. 

 

By comparing these results, it can be concluded that it is difficult to utilize industrial 

robots with hard grippers for handling textiles without damaging the strands or 

introducing large slippage and wrinkling. The situation can be highly improved by the 

introduction of a simple feature of soft robotic gripper, which was compliant structure in 

this case. This proved the potentiality of soft robotic technology in fabric pick and place 

operations. The compliance of soft robots introduced a new dimension for gripper design. 

 

The gripping force and the transfer velocity are both crucial factors that influence the 

behavior of fabric materials during pick and place tasks. Specifically, the wrinkling 

results suggested that there is a limit for improving wrinkling conditions by optimizing 

gripper design alone. In order to further improve the wrinkling behaviors, picking 

strategies and toolpath need to be taken into consideration. This is investigated and 

presented in the next section. 

 

The experiments also showed that novel design and fabrication technology, including 

CAD, AM processes, and overmolding techniques, would play an important role among 

gripper development in relevant domains, revealing a new perspective regarding fabric 

picking research. These ideas would be further pursued in chapter 5. 

 

4.2 Pick and Place Tasks Using Multiple Grippers 

 

In the previous section, it was shown that clamping grippers with soft skin can provide 
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reliable gripping conditions, i.e. avoiding slippage and outputting constant wrinkling 

results under certain movements. However, picking strategies and toolpath design 

remained necessary to explore if applicable placing results with minimal wrinkling and 

folding are expected. In this section, picking, transferring, and placing operations with 

multiple grippers are investigated. The purpose was to further prove the capability of 

clamping grippers to perform reliable and accurate handling and placing for general pick 

and place tasks. 

 

4.2.1 Measurement of Displacement and Wrinkling 

 

As the damage to workpieces and slippage during high velocity can be solved by the use 

of soft-skin grippers, the two most important criteria remaining to be studied for the pick 

and place tasks are the placement accuracy and the wrinkling condition as the fabric ply 

is being placed at the target location. For an ideal situation, the workpiece should be 

placed on exactly where it was designed to be, and no wrinkling or folding should occur. 

The measurement of these two indicators would be crucial for evaluating the performance 

of a pick and place strategy. 

 

To measure the placement accuracy, four vertices of the rectangular fabric were used as 

reference points to determine the location of the fabric ply. As marked by green points in 

Figure 4.16, the target area can also be defined by those reference points, which should 

coincide with the fabric ply under the ideal situation. The location of a reference point 

can be expressed as a set of cartesian coordinates. After the placement was finished for 

each operation, new coordinates of the fabric vertices would be recorded. Hence, the 

displacement of each reference point (red solid lines in Figure 4.16) can be calculated by 

 

 𝑑 = ට൫𝑥ଶ − 𝑥௥௘௙
ଶ൯ + ൫𝑦ଶ − 𝑦௥௘௙

ଶ൯ (4-2) 

 

where 

𝑥, 𝑦 – coordinates of the reference points on the fabric ply 

𝑥௥௘௙ , 𝑦௥௘௙ – coordinates of the reference points of the target area 
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Therefore, the average displacement of all reference points (four in case of rectangular 

fabric ply) can be used as an indicator value of placement accuracy. 

 

In case a corner of the fabric was folded, an imaginary point can be obtained from two 

extension lines along the edges of the corner where the folding occurred (red dashed lines 

in Figure 4.16). Such an imaginary point would serve as the reference point instead of the 

folded vertex. 

 

 
Figure 4.16 Displacement Measurement 

 

As for the wrinkling condition, the projected area of the fabric ply on the working plane 

can be a useful indicator. As illustrated in Figure 4.17, when the fabric ply was placed on 

the working surface with wrinkling or folding, the projection of the workpiece on the 

working surface would form a polygon. Worse wrinkling conditions would cause a larger 

portion of the fabric stacking on itself, making the area of the projected polygon smaller. 

Therefore, the ratio of the projected area with respect to the flattened area can effectively 

reflect the wrinkling condition. 
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Figure 4.17 Winkling measurement 

 

To measure the projected area of an irregularly wrinkled fabric ply, every two 

consecutive points of the folded fabric that made up a straight line should be considered. 

A hanging vertex should be vertically projected onto the working surface. Therefore, 

every vertex of the projected polygon on the working surface can be expressed by a set of 

cartesian coordinates. The projected area can then be easily calculated from the 

coordinates of the vertices. 

 

4.2.2 Experimental Setup 

 

The tests in this section would apply both arms of the YUMI robot equipped with the 

second-generation silicone grippers, as shown in Figure 4.18. The working surface was 

planar and marked with a coordinate grid so that all reference points can be easily 

measured. The fabric workpiece was the same type of carbon fiber fabric as previous 

experiments, but the shape was changed to a rectangle approximately 55 cm by 29 cm. 

The accurate projection area when flattened was 1576.1 cm2. The friction between the 

fabric and the working surface remain the same as previous tests. 
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Figure 4.18 Experiment setup 

 

A rectangular zone was defined by four reference points, identical to the shape of the 

flattened workpiece. This zone would serve as both the workplace where the fabric is 

picked from and the target area where the fabric would be placed on. The transferring 

operations were performed with back and forth movements. Every test would be repeated 

three times to get an averaged value. 

 

The experiments began with midline picking strategy shown in Figure 4.2. The grippers 

would pick the fabric on the midline at two points close to the shorter edges of the 

rectangular workpiece. The distance was determined from trial tests. A one-arm picking 

strategy from the center point of the fabric would also be performed as comparison. Both 

the average displacement and the projection area ratio would be recorded generally. 

However, if the projection area ratio was too small (less than 60% in this case), the 

displacement became meaningless due to too much folding and would not be measured. 

 

During initial tests, it was discovered that severe draping would occur along the midline 

as shown in Figure 4.19, causing unacceptable results. 
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Figure 4.19 Draping along the midline 

 

The situation can be improved by introducing a pre-folding at the centerline of the fabric 

ply before picking up, as shown in Figure 4.20. 

 

 

Figure 4.20 Pre-folded picking strategy 

 

This phenomenon was explained that the pre-folded area introduced mild draping in the 
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center area among the folding direction, resisting the original draping that was 

perpendicular to it. Following this concept, an auto-jamming toolpath is designed. As 

illustrated in Figure 4.21, the grippers jammed toward each other after picking up the 

fabric, creating a draping area in the center automatically. After the movement was 

finished, the gripper moved away from each other to flatten the fabric before releasing. 

 

 
Figure 4.21 Toolpath of the auto-jamming strategy 

 

Both the pre-folding strategy and the auto-jamming strategy are tested under different 

magnitudes for comparison. For the ease of discussion, both methods would be referred 

to as the center-folding strategy. The variable would hence be referred to as 

center-folding magnitude. 

 

After the optimal strategy for midline picking was determined, spatial transferring would 

be introduced in the tests. Any handling operations can be characterized by a combination 

of multiple translational movements and rotational movements. Therefore, the special 

movements applied in these tests included a 10 cm linear translation and a 90° rotation, 

both were back and forth movements.  

 

Finally, an extra test would perform the same movements using a side-picking strategy, as 

shown in Figure 4.22. The result would be compared with midline picking strategies. 
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Figure 4.22 Side picking test 

 

4.2.3 Results and Discussion 

 

Figure 4.23 shows the wrinkling results (the projection area ratio) with plain picking 

strategies, in which the variable is the center-folding magnitude. Figure 4.24 shows the 

displacement results. The result of one-arm picking scenario was also included as the 

“extra” result. 

 

 
Figure 4.23 Wrinkling results 
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Figure 4.24 Displacement results 

 

As is shown in the figure, the fabric is severely folded for the single arm scenario, 

proving its inability to provide a good solution. The displacement of this scenario was 

therefore not measured. When two grippers were applied, the situation was highly 

improved, but both the wrinkling result and the displacement result remained undesirable. 

Multiple folded corners had been observed during the tests. 

 

The pre-folding and auto jamming strategies improved the situation. According to the 

results, the performance of the auto-jamming solution remained constant and were 

slightly better than the pre-folding solution regardless of the jamming magnitude. The 

projection area ratio of the pre-folding solution stayed close to correspondent 

auto-jamming results when the folding magnitude was low, but began to deteriorate when 

the folding magnitude reached 3 cm. The same trend occurred more clearly for 

displacement results. This phenomenon could be explained by the fact that the 

pre-folding solution lacked the ability to remove the center folding after placement. Aside 

from the superiority in performance, the auto-jamming solution also exceeded in the ease 

of automation, making it a more desirable strategy. 

 

With the preferred strategy for midline picking, the scenarios with spatial transferring 

movements were tested. Figure 4.25 shows the wrinkling results and displacement results, 
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where the compared scenarios included: 

A. midline picking with small jamming magnitude (2 cm) 

B. midline picking with large jamming magnitude (10 cm) 

C. side-picking 

 

 
Figure 4.25 Comparison of different picking strategies 

a. Wrinkling results  b. Displacement results 

 

Comparing scenario A from the previous results, it can be concluded that spatial 

transferring movements, no matter whether they are translational or rotational, would not 

affect the performance of a pick and place strategy. Scenario B suggested that a large 

center-folding magnitude would slightly worsen the performance of the auto-jamming 

solution. However, it should be noticed that large center-folding can save space 

occupation and increase transferring efficiency. Thus, this drawback might be balanced 

depending on actual applications. 

 

Side picking appeared to be a superior strategy. The wrinkling and displacement were 

almost entirely eliminated. To visually demonstrate this advantage, examples of typical 

placing results from previous tests are shown in Figure 4.26. 
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Figure 4.26 Fabric after placing by different strategies 

a. One-arm picking  b. Plain midline picking  c. Auto jammed midline picking 

d. Side picking 

 

So far, it had been fully proved that fabric pick and place operations can be reliably 

performed by clamping approaches with soft-skin grippers. By appropriate toolpath 

planning, wrinkling and displacement caused by material deformation can be sufficiently 

prevented. The side picking approach showed excellent performance, while the insight of 

the midline picking solution can be easily expanded to more general situations. 

Collaborative robots appeared to be a useful tool in fabric picking research for its 
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flexibility and ease of training. More sophisticated toolpath design and simulation would 

play a critical role to deal with more complicated fabric geometry in future research. 

 

It was noticeable that the 1-DOF gripper equipped with compliant structure can only 

perform picking on a flat surface. It also lacked the flexibility to perform de-wrinkling 

movements. A more flexible soft robotic gripper was still needed. This is discussed in 

next chapter. 
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CHAPTER 5 

DEVELOPMENT OF AN UNDERACTUATED GRIPPER 

 

During the previous experiments, it was proven that clamping grippers are capable of 

performing standard pick and place tasks efficiently for fabric materials. Soft surfaces 

made of silicone can provide firm gripping condition as well as prevent damaging the 

fabrics. By introducing multiple grippers and adjusting picking positions, folding and 

wrinkling can be avoided. However, the simple gripper used in the previous experiments 

can only perform linear in-and-out movements. Hence, it is only applicable for simple 

tasks on plain surfaces. The size, shape, and rigidity of the fabrics are also limited to a 

small variety. In order to deal with more complicated scenarios, an underactuated gripper 

that can automatically adjust to the working environment would be necessary.  

 

In this chapter, two types of underactuated soft gripper configurations are studied, 

designed, and tested. The first model is a tendon-driven soft gripper based on silicone 

elastomer fingers. The second one is an underactuated gripper with silicone rubber skin 

and with a rigid skeleton. 

 

5.1 An Elastomer-Based Gripper 

 

As described in Chapter 3, an elastomer-based finger actuated by pre-inserted tendons 

can efficiently mimic the motion of human fingers. By attaching two underactuated 

elastomer fingers onto a rigid palm, the manual picking movement can be reproduced by 

such a soft gripper. In this section, the mechanical structure of the elastomer finger and 

the gripper design would be explored. 

 

The curved gripping surface that proved its advantage in the previous chapter is not taken 

into consideration in this chapter. This feature would remain compatible with the gripper 

designs presented in this chapter. It can be applied in any applications when needed, and 

can be explored in the subsequent research. 
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5.1.1 Development of the Gripper Configuration 

 

The basic structure of a tendon-driven elastomer finger is a silicone rubber bar with gaps 

on the side to create bending. The bar is hence separated by the gaps into multiple 

sections. As illustrated in Figure 5.1, slots are pre-built within the gaped edge for the 

driving tendon, which is a string, to go through. A U-shaped tube on the top section 

constrains the driving string. As the string is pulled downward from the bottom of the 

finger, the gaps enclose and bend the whole elastomer bar. The magnitude of bending is 

correlated to the driving force. Hence, a simple linear force can be converted to 

self-adjusted bending movement. This design was to follow up with the configuration 

mentioned in Figure 3.6, completing the engineering details. 

 

 

Figure 5.1 Conceptual design of an elastomer finger 

 

The elastomer finger can be one-sided or two-sided depending on the locations of the 

gaps and driving slots. For fabric picking tasks, bending on both directions are needed, so 

this finger is designed to be two-sided. The angle of each gap is 60 degrees and the depth 

of the gap is 6 mm. A 1 mm fillet was designed at the inner vertex of the gap to prevent 
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stress concentration. The distance between two adjacent gaps is 15 mm. The width of the 

finger w is 25 mm. Other features and their effects on the mechanical behaviour need to 

be analyzed using FEA simulation. The finger is molded using Mold Star 15 SLOW 

silicone rubber, so the material model developed in Chapter 3 is applied. 

 

First, the relationship between the gaps and the bending magnitude of the top section 

need to be studied. Ideally, if the finger is made of rigid parts that are connected by 

hinges and have 60-degree gaps at the edges to limit its motion, then the maximal 

bending magnitude at the top section can be easily given by 

 

 𝜑 = 𝑛𝜃 (5-1) 

 

where  

𝜑 – the angle between the centerline of the top section and the vertical line 

𝑛 – the number of gaps 

𝜃 – the opening angle of each gap. Here, 𝜃 = 60°. 

 

 

Figure 5.2 Bending magnitude and gap size 

 

Figure 5.2 illustrated such an ideal scenario. However, for the elastomer finger, due to the 

thickness and the hyperelastic nature of silicone rubber, the actual maximal bending 

magnitude would be smaller than the hinge-based simplification. When the size of each 
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gap is determined, the maximal bending magnitude would be influenced by the finger 

thickness h shown in Figure 5.1. 

 

Since the structure of the elastomer finger contains a linear pattern, the mechanical 

behavior of the whole finger is based on that of each section. An FE model is established 

to simulate the behavior of a single section, as shown in Figure 5.3.  

 

 
Figure 5.3 FE model of a unit section 

 

Because the structure is symmetrical, only half of the section need to be modeled. 

Symmetrical boundary conditions for the Z-axis is applied to the corresponding surface. 

A contact relationship is established between the slot and the string surfaces. Self-contact 

is established on the gaped surface. This simulation is a static simulation, for this 

simulation focused on the mechanical behavior under relative static conditions rather than 

its dynamic responses. Due to the same reason, the friction between the contact pairs can 

be neglected. 

 

An encastre boundary condition is applied to the bottom surface of the finger to fix it to 

the ground. The top surface is coupling constrained to the same control point as the upper 

tip of the driving string. Therefore, when the string is pulled downward, the entire top 

surface would rotate as a plain surface, which is the same as the behaviour of a section 

when the whole finger bent. The bending magnitude of one section 𝜑௜ equals to the 

angle between the top surface and the horizontal plane.  
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The hyperelastic material model developed in section 3.5 is applied for the rubber, while 

the string was modelled using elastic material. The model is segmented and meshed using 

C3D8RH elements. The string is meshed using C3D8R elements. A 4.8 mm displacement 

was applied to the bottom tip of the string. The driving force, which is the reaction force 

at the bottom tip of the string, is recorded as well. The simulation is run with different 

finger thickness. 

 

Two typical results are shown in Figure 5.4 as examples. When the 4.8 mm displacement 

was accomplished, the gap became fully enclosed, and the top surface rotated to a certain 

degree. After the result was obtained, the model was re-meshed denser to test its validity. 

As the mesh was refined, the change of result was less than 5%, proving the 

appropriateness of the FE model. 

 

 
Figure 5.4 Sample results 

 

Figure 5.5 shows the relationship between the maximal bending magnitude and the finger 

thickness. Figure5.6 shows the relationship between the maximal driving force and the 

finger thickness. 
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Figure 5.5 Maximal bending magnitude of different thickness 

 

 
Figure 5.6 Maximal driving force for different thickness 

 

According to the results, as the thickness of finger increases, the maximal bending 

magnitude decreases, and the driving force increases. Usually, larger bending magnitude 

and smaller driving force are preferred. However, when the thickness is too small, the 

stiffness of the finger would become too small, hence make it less controllable and 

unreliable. The actual thickness should be decided based on the size of the gripper. In this 

research, the thickness was chosen to be 20 mm, where the maximal bending magnitude 
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was close to 30 degrees. 

 

When the maximal bending magnitude of a single section 𝜑௜ is known, the maximal 

bending magnitude of the whole finger can be given by 

 

 𝜑 = ෍ 𝜑௜

௡

ଵ
 (5-2) 

 

where n is the number of gaps on the corresponding side. 

 

For this project, the inner side of the finger, which is the gripping side, should be parallel 

or nearly parallel to the fabric surface when the gripper is fully opened. That means the 

maximal bending magnitude of the outer side of the finger should reach approximately 90 

degrees. Therefore, the number of gaps on the outer side should be at least three. 

 

A full FE model of the finger was developed to investigate the effect of the number of 

gaps. The model is shown in Figure 5.7a.  

 

 
Figure 5.7 FE model of the elastomer finger 

a. Assembly  b. Meshed model 
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Like the one-section model, this model was symmetrical along the Z-axis. Contact pairs 

was established. The coupling constraint was applied to the inner surface of the U-shaped 

tube to connect the finger and the string. The coupling constraints limited all six degrees 

of freedom, causing the relative position of every node on the constrained surface to 

remain constant to the control point. Compared to the physical finger where the U-tube 

may slightly deform, this simplification is not 100% realistic. However, the detailed 

stress and deformation on the U-tube, which is much more rigid the silicone rubber, were 

not of concern. Therefore, such simplification would be acceptable. 

 

The finger model was sectioned and meshed mainly with C3D8RH hexahedral elements. 

Due to the geometrical complexity, C3D4H tetrahedral elements were used at the regions 

where the U-shape tubes were present. Being a linear element, C3D4H does not have 

high integrity during analysis, but this problem can be neglected for the detailed 

behaviors in those regions were not of concern. The mesh around the regions where 

contact or large deformation would happen were created denser. The string was still 

meshed using C3D8R elements. Figure 5.7b shows the meshing strategy. 

 

By changing the number of the gaps on the outer side or the inner side, there could be 

several variations of the finger model. A certain combination of outer and inner gaps can 

be represented by an abbreviation code OxIy, where a number x stood for the number of 

gaps on the outer side and a number y stood for the number of gaps on the inner sides. As 

an example, the configuration in Figure 5.7 can be noted by O3I3. Here, the simulated 

configurations included O2I2, O3I1, O3I2, O3I3, and O4I4. For each configuration, a 4 N 

force was applied downward on the bottom tip of the string. The displacement of the 

bottom tip of the string and the driving force were recorded. Figure 5.8 shows the 

bending results. Figure 5.9 shows the displacement-force relationships for different 

configurations. 
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Figure 5.8 Deformation results of different configurations 

 

 

Figure 5.9 Displacement-force results of different configurations 
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The actuation did not reach its full capacity for some cases due to convergence difficulty, 

but the trend was available. It could be observed that when the gap distribution was 

symmetrical, more gaps/sections led to lower stiffness. That is, less force was required 

for the finger to bend to a certain magnitude. When the number of gaps remained 

constant on the outer side, decreasing the number of gaps on the inner side would 

increase the stiffness. 

 

If the stiffness was too high, not only too much actuation force would be required, but the 

maximal bending magnitude would not be able to reach 90°, as in the cases of O2I2 and 

O3I1. Extremely low stiffness was not desired, either. The finger would become less 

controllable and highly sensitive to environmental disturbances. A typical example is the 

draping under gravity. When the gripper was aligned parallel to the ground, the maximal 

vertical displacement at the tip caused by self-weight was 5.97 mm for the O3I3 

configuration and 14.14 mm for the O4I4 configuration. 

 

As for the gripping movements, a similar model can be created as shown in Figure 5.10. 

An analytical rigid plane was fixed at the midplane of the gripper where the gripping 

would happen. The finger and the string were constrained and meshed using the same 

strategy. A 6 N driving force was applied. 

 

 
Figure 5.10 FE model for gripping simulation 
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It was discovered that when there were too many gaps on the inner side, the gripper 

tended to bend around multiple gaps, causing the tip to roll against the gripping plane, as 

shown in Figure 5.11a. The bending continued as the upper gaps enclosed and the bottom 

gap opened up. This rolling grip phenomenon would cause poor contact condition and 

was not desired. The problem can be solved by limiting the number of gaps on the inner 

side. As for the O3I2 configuration shown in Figure 5.11b, the rolling grip was stopped as 

the upper gap fully enclosed. The elastic nature of the elastomer material would then 

create firm gripping that can adjust to the object to be gripped.  

 

 

Figure 5.11 Different gripping conditions 

a. Rolling grip  b. Firm grip 

 

It was discovered that the distance from the midplane to the fingertip did not affect the 

gripping efficiency, which is the proportion of the gripping force to the driving force. 

Meanwhile, it was found that by adding an inclined surface at the fingertip as shown in 

Figure 5.12, the gripping efficiency can be increased. 
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Figure 5.12 Inclined fingertip 

 

Different fingertip angles were simulated and compared. Figure 5.13 shows the relation 

between gripping force and driving force for multiple scenarios. 

 

 

Figure 5.13 Gripping force of different fingertip angles 

 

At the beginning of actuation, the gripping force remained zero until the fingertip touched 

the midplane. The gripping force then started to increase proportionally with the driving 

force. A larger tip angle had higher gripping efficiency, but this advantage became less 
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significant as the tip angle increased. A larger tip angle would also increase the size of the 

gripper and make it more sensitive to gravity. The actual parameter should be decided 

based on the application. 

 

After balancing all previously mentioned variables, the final design was determined to be 

an O3I2 configuration with 20 mm finger thickness and a 15° fingertip. Figure 5.14 

shows the CAD design of the gripper assembly. 

 

 

Figure 5.14 CAD model of the gripper 

 

Based on the geometrical symmetry of the gripper design, the behavior of the full gripper 

can be obtained from the half-finger FE model (force multiplied by four). Because the 

TCP would shift as the fingers bend, the deformation of the fingers during the opening 

movement would be important reference data for controlling strategy. As shown in Figure 

5.15, a reference point was created from the extension lines of the geometrical boundaries 

of the fingertip to monitor the tip displacement during the opening process. 
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Figure 5.15 Fingertip reference point 

 

The relationship between the string tip displacement and the driving force is shown in 

Figure 5.16. Figure 5.17 shows the relationship between the fingertip displacement on 

vertical direction and the driving force. Figure 5.18 shows the trajectory of the tip 

reference point for one finger (using the initial position as the origin). 

 

 

Figure 5.16 String tip displacement 
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Figure 5.17 Fingertip displacement in vertical direction 

 

 

Figure 5.18 Fingertip trajectory 
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5.1.2 Gripping Simulation 

 

A dynamic explicit simulation is established to verify the functionality of the gripper 

design. The property model of the fabric developed in section 3.5.2 is applied. The FE 

model configuration is shown in Figure 5.19. Two fingers are located symmetrically in 

respect of the Y-Z plane. An analytical rigid plane that serves as the working surface is 

placed underneath. The fabric workpiece is modelled to be a 300 mm by 100 mm 

rectangle and is place on the rigid plane. Due to the geometrical symmetry, the model 

includes only half of the physical scenario. A symmetrical boundary condition among 

Z-axis is applied to the corresponding side of the fingers and the fabric ply. 

 

 

Figure 5.19 FE model for gripping simulation 

 

The complexity of this model is much higher than the simulation of a single finger. 

Multiple simplification strategies are applied to save the computational expense. Since 

the accurate force-deformation relation of the elastomer finger is no longer of concern, 

the models of the actuation cables and slots are removed. Instead, the actuation is 

achieved by applying forces onto certain reference points that are coupling constrained 

with certain geometry on the finger models. The forces are adjusted so that the finger 

deforms in a nearly identical way as the realistic model previously studied. 

 

The simulation includes three steps: opening, gripping, and lifting. The bottom surfaces 

of the two fingers are fixed at all time. Meanwhile, the rigid plane moves steadily to 

relatively simulate the lifting and lowering movements of the gripper during the picking 
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operation. According to experimental data, the friction coefficient between the fabric and 

the working surface is set to 0.3. The friction coefficient between the fabric and the 

fingertip is set to 0.7. Other contact pairs are simplified as frictionless. A 9800 N/ton 

gravity field is applied. At the opening stage, the rigid plane moves upward for 35 mm as 

the fingers bend to open the gripper. At the gripping stage, the rigid plane steadily moves 

back to its original position, and the modified loading condition causes the gripper to 

enclose and grip the fabric. Finally, the rigid plane moves downward, causing the fabric 

to be picked away from the working surface. 

 

Figure 5.20 shows the whole picking process of the simulation result. The visualization 

of the result is mirrored in respect to the X-Y plane. It is thus verified that the gripper can 

successfully pick up the fabric ply and hold it firmly, as the design criteria requires. 

 

 

Figure 5.20 Gripping simulation 
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Similarly, a modified FE model shows that the gripper can also pick up the fabric ply 

from a curved surface, as shown in Figure 5.21. 

 

 

Figure 5.21 Gripping simulation on a curved surface 

 

5.1.3 Prototyping and Experiments 

 

A prototype was fabricated using the methods mentioned in section 3.4. Based on the 

CAD model, a mold set was created through FDM process. The mold set is shown in 

Figure 5.22a. 

 

 

Figure 5.22 Mold set 
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Figure 5.22b shows the assemble strategy for overmolding. The heat-shrink plastic tube 

was soft when heated so it can be deformed to create the U-shape permanent tube. The 

rigidity of the tubes became much higher after fully shrank and cooled down. Two 

extractable tubes, on which the U-shape tube was attached, were inserted through 

pre-built holes on the mold. After the silicone cured, the sticks were removed, and the 

U-shape tube remained inside the finger. The driving string would then go through the 

U-shaper tube and the slot in the finger that was formed by the extractable tubes. 

 

The gripper base can also be directly printed though FDM process. Figure 5.23 shows an 

assembled gripper prototype (without driving mechanism). 

 

 

Figure 5.23 Gripper prototype 

 

It took 2 hours and 35 minutes to print the mold set and approximately 3 hours to remove 

the support material. The material used to make the mold set is ULT9085. The time and 

effort spent on removing support material may be reduced if the AM material is 

polycarbonate or ABS, whose support material can be removed more easily and 

thoroughly. With the mold set prepared, it would only take about an hour to mold one 

silicone finger. The gripper base was directly printed, which took an hours and 26 
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minutes to print and approximately 30 minutes to remove the support material. The time 

consumption is summarized in Table 5.1. 

 

Table 5.1 Fabrication time 

Reusable 
Printing the mold set 2h35m 

Removing support material 3h 

Molding silicone fingers 1h * 2 

Printing the gripper base 1h26m 

Removing support material 30m 

Total 9h31m (first time) / 3h56m 

 

As so calculated, it would take approximately 3 hours and 56 minutes to make one 

gripper prototype with the mold set available, which was quite efficient. 

 

The weight of one finger was 51 g. the weight of an assembled gripper was 127.5 g. The 

geometrical parameters for opened and closed gestures were measured, as illustrated in 

Figure 5.24. A bluing test was performed to observe the contact condition. Table 5.2 

summarizes these geometrical data of the gripper prototype. 

 

 

Figure 5.24 Geometry measurement 
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Table 5.2 Geometrical data 

Size (mm) 
Normal Maximum open 

93 * 55 * 47 66 *135 * 47 

Weight (g) 
Gripper One finger 

127.5 41 

Maximum open angle (°) 180 

Maximum open length (mm) 135 

Maximum bending radius (mm) 14.4 

Maximum contact area (mm2) 375 

 

Because the access to change the robot gripper was not obtained during the research 

period due to COVID-19, a manual test was performed to verify the capability of the 

gripper. The tests included picking up a single fabric ply, separating one ply from a stack, 

and the de-wrinkling process. It should be noticed that the human operations during the 

tests only included pulling the actuation tendons and pressing the gripper base linearly, so 

the processes can be easily programmed with a robot.  

 

The opening magnitude of the gripper can be controlled by the actuation force, so is the 

bending angle of both fingers. The gripping interaction is a result of the friction between 

the fingertip and the fabric ply, which can be achieved by applying a pressure 

perpendicular to the working surface. With the large variety of opening gestures, the 

gripper can obtain a firm gripping from inclined or curved surfaces. It was also shown 

possible to separate one fabric ply from a stack of fabric mats. By applying a moderate 

pressure perpendicular to the fabric surface while gripping, the gripper successfully 

picked up a single ply without causing any disturbance to the fabric underneath. Finally, 

the gripper can also be used for de-wrinkling by reversing the gripping motion. These 

processes are shown in Figure 5.25. 

 



95 
 

 

Figure 5.25 Manual tests 

a. Picking up a single ply  b. Separating a ply from a stack  c. De-wrinkling 

 

The force response during the actuation procedures were measured using a force gauge. 

Figure 5.26 shows the relation between the displacement of the string tip the driving 

force. the data was compared with the simulation data previously obtained to validate the 

FE model. It was also measured that it required approximately 31.36 N driving force to 

fully enclose the gripper. 

 

 

Figure 5.26 Comparison between experimental data and simulation data 
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The CC of the experimental data and the simulation data was calculated to be 0.9882. The 

simulation successfully predicted the overall behaviour of the gripper. It can be observed 

that there was relatively larger error at the initial stage, where the experimental data 

showed an accelerating trend that the simulation did not capture. This could be caused by 

imperfection of the hyperelastic material model used in the simulation. Other factors may 

also accumulate to the error, such as the shift between the U-shape tube and the inner 

surface of the elastomer, the elastic behavior of the string, the measurement error, etc. 

 

With the data collected, a driving mechanism was designed as shown in Figure 5.27. The 

actuation power was achieved through a disc connected to a servo motor. Driving tendons 

were led through a separator and connected to the disc. The opening and gripping tendons 

were driven by different rotary directions respectively. The gripper base was connected to 

the motor box through a connector, so different gripper configurations can be fit to the 

same motor box. 

 

 

Figure 5.27 CAD design of the driving mechanism 
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The components were fabricated through FDM processes. A MG996R servo motor was 

selected for this prototype. Figure 5.28 shows the assembled prototype. Different gestures 

are shown in the following figures. 

 

 
Figure 5.28 Gripper prototype with driving mechanism 

a. Rest gesture  b. Opening  c. Gripping 

 

5.2 A Linkage-Based Gripper 

 

The elastomer-based gripper proved it capability for the objective operations of this 

project. One possible limitation of the gripper is that the elastomer fingers were relatively 

sensitive to environmental disturbances. This would be more obvious if the gripper 

configuration needs to be enlarged. The simulation for the elastomer structures was 

relatively complex due to the number of variables. In this section, a linkage-based 

underactuated gripper configuration is designed and assessed based on the insights 

previously obtained. 

 

5.2.1 Gripper Configuration and Simulation 

 

The working principle of a linkage-based underactuated gripper is mostly the same as the 

elastomer-based gripper. As mention in section 3.3, multiple hinge-connected linkages 
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that can freely rotate among each other were confined by an elastomer glove. An 

important property of the linkage-based gripper is that the motion would be based on the 

rotation of the rigid linkages, rather than the continuous deformation as for the elastomer 

finger. Because of the hinge connection, the motion of the linkages would also be 

confined onto a plane, making it more resistant to environmental disturbances. Since the 

magnitude of the rotary motions depends on the deformation of the elastomer material, 

the gripper would still be flexible and adjustable. 

 

The configuration of the underactuated gripper is based on the elastomer gripper 

previously developed. Figure 5.29 shows the CAD model of an assembled finger, where 

the transparent component is the elastomer glove and the solid portion is the skeleton 

made of rigid linkages. 

 

 

Figure 5.29 CAD model of the linkage-based finger 

 

To simulate the behavior of the finger, a FE model was established as shown in Figure 

5.30a. The elastomer component and the string were modelled the same way as in the 

previous section. Hinge connectors are used to build the rigid skeleton. Self-contact is 



99 
 

established on the external surface of the elastomer glove. Only half of the finger is 

modelled because of the geometrical symmetry. 

 

 
Figure 5.30 FE model of the linkage-based finger 

a. Assembly  b. Contact pair  c. Coupling constraint 

 

One problem during the simulation is that the contact between the string and the rigid 

structures led to convergence problems. To solve the problem, the models of the linkages 

are treated only as display bodies and geometrical references. The contact between the 

string and the linkages are simulated by analytical rigid parts, as shown in Figure 5.30b. 

The rigid parts are coupling constrained to specific reference points so they would 

perform the same motion as the linkages. The cross-section of the string was changed to a 

square to simplify the model. The sliding between the inner surface of the glove and the 

linkages is very small due to its elasticity, so the contact among those regions is also 

simplified as coupling constraint to certain reference points (Figure 5.30c). The contact 

between the glove and the string is neglected. 

 

A 7 mm displacement was applied at the bottom tip of the string. A reference point is 

created to record the motion of the fingertip. The model was run, and obtained 

deformation results are shown in Figure 5.31. 
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Figure 5.31 Deformation result 

 

The force-displacement relation is obtained for both the string tip and the fingertip. 

Figure 5.32 shows the relation between the driving force and the displacement of the 

fingertip (force multiplied by four). Figure 5.33 shows the relationship between the 

driving force and the fingertip displacement on vertical direction. Figure 5.34 shows the 

trajectory of the fingertip. 
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Figure 5.32 String tip displacement 

 

 
Figure 5.33 Fingertip displacement 
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Figure 5.34 Fingertip trajectory 

 

A similar model is built to simulate the gripping movement. It was found that the 

linkage-based gripper had different gripping behavior than the elastomer gripper 

previously investigated. Because the top section of the finger is supported by rigid 

structure, the rolling grip occurred with this two-gap configuration, as shown in Figure 

5.35a.  

 

One solution to solve this problem is to extend the top of the elastomer glove to make it 

compliant. This approach had been validated in the previous section and would not be 

further explored here. The other way to solve the problem is to introduce asymmetry of 

the finger assemble. If the top linkage of one finger was forbidden to rotate and the other 

finger is left free, the rolling grip can be avoided as the tip of the confined finger kept 

approximating the rolling tip during gripping. Simulation proves the feasibility of this 

solution, as shown in Figure 5.35b.  
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Figure 5.35 Gripping simulation 

a. Rolling grip  b. Firm grip achieved by asymmetrical configuration 

 

For the actual design, the prohibition of the rotation toward a certain direction can be 

achieved by the linkage geometry, as shown in Figure 5.36. 

 

 

Figure 5.36 Structure to limit the rotary motion on certain direction 

 

Because the working principle of this gripper is the same as the elastomer gripper 

previously developed, the gripping simulation and automation will not be redundantly 
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performed. The capability of this gripper is verified through prototyping and manual 

tests. 

 

5.2.2 Prototyping and Experiments 

 

A prototyping is fabricated using the similar methods as previously mentioned. The 

elastomer gloved is molded from a 3D printed mold set shown in Figure 5.37. The rigid 

linkages that form the skeleton can also be directly printed from CAD models. The 

linkages are connected by screw bolts. 

 

 

 

Figure 5.37 Mold set 

 

After assembling, the final gripper is shown in Figure 5.38a. The following figures show 

the opening and gripping gestures respectively. 
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Figure 5.38 Gripper prototype 

a. Rest gesture  b. opening  c. gripping 

 

It took 4 hours and 26 minutes to print the mold set using ULT9085 and approximately an 

hour to remove the support material. Similarly, the time and effort spent on removing 

support material can be reduced with different materials. With the mold set prepared, it 

takes about an hour to mold one silicone glove. The rigid linkages and the gripper base 

together take 4 hours and 30 minutes to print and approximately 2 hours to remove the 

support material. The time consumption is summarized in Table 5.3. With the mold set 

prepared, it takes approximately 6 hours and 30 minutes to make one gripper prototype. 

 

Table 5.3 Fabrication time 

Reusable 
Printing the mold set 4h26m 

Removing support material 1h 

Molding silicone gloves 1h * 2 

Printing the rigid components 1h15m * 2 

Removing support material 2h 

Total 11h56m (first time) / 6h30m 

 

The weight of the assembled gripper is 120 g. The size of this linkage-based gripper is 

shorter but wider than the elastomer-based gripper. The maximum contact area is 

measured to be approximately 500 mm2, much larger the elastomer-based gripper. Some 

important geometrical parameters are summarized in Table 5.4.  
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Table 5.4 Geometrical data 

Size (mm) 
Normal Maximum open 

80 * 86 * 58 65 *126 * 56 

Weight (g) 120 

Maximum open angle (°) 180 

Maximum open length (mm) 126 

Maximum contact area (mm2) 500 

 

Likewise, this gripper prototype is tested using a force gauge. It requires approximately 

31.36 N driving force to fully enclose the gripper. Figure 5.39 shows the relation between 

the displacement of the string tip and the driving force, comparing with the simulation 

data previously obtained from the FE model. 

 

 

Figure 5.39 Comparison between experimental data and simulation data 

 

The CC of the experimental data and the simulation data was calculated to be 0.9956. 

Though the FE model successfully simulated the motion pattern of the gripper, the force 

reaction is not as ideal as that of the elastomer-based gripper. The force response 

calculated from the simulation was larger than the experimental data, especially for 

higher deformation zone. This phenomenon could be caused by the multiple 

simplification strategies applied in the FE model.  
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As a conclusive discussion, this linkage-based underactuated gripper was proved to be a 

feasible solution for required tasks. The stiffness of this gripper was higher than the 

elastomer-based gripper, making it more resilient toward environmental disturbances. 

The FE model developed in this section can capture the motion patterns of this gripper 

configuration and can provide important insights for its structural design. However, more 

sophisticated modelling would be needed if detailed static or dynamic responses are 

desired. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 

In this research, some characteristics of fabric handling operations using the clamping 

approach are quantitatively investigated. Three types of soft robotic grippers are designed, 

analyzed, and tested. 

 

Experiments for fabric pick and place operations are performed with the YUMI ABB 

14000 dual arm collaborative robot. The plain-woven carbon fiber fabric is selected as 

the specimen because of its wide range of applications in industry and its challenging 

properties regarding pick and place tasks.  

 

The original rigid gripper showed its inability to reliably pick up the fabric mats. By 

reverse engineering the original gripper connected to the YUMI robot, a set of soft gloves 

made of silicone rubber are designed. When attached to the rigid gripper, the silicone 

gloves would serve as a compliant structure that can increase friction and prevent damage 

to the fabric ply. Experiments show that the silicone gloves can significantly improve the 

performance of the gripper by avoiding damage and reducing slippage. Furthermore, a 

second-generation silicone glove with a curved gripping tip is designed and tested. The 

curved gripping tip can increase the contact and provide a better result than the 

first-generation glove design.  

 

Having been proved feasible, the grippers were applied in a more realistic pick and place 

experiment, which is using two grippers to pick up a rectangular fabric ply from a plain 

working surface and place it to a target area. The experiment characterizes general pick 

and place operation by the combination of the lifting, translating, rotating, and dropping 

movements. The performance of a picking strategy is evaluated by two criteria: the 

average displacement of multiple reference points on the fabric ply and the projected area 

after placement. 
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Through these experiments, it is shown that traditional rigid grippers with hard plastic 

surface cannot be used to pick up the workpiece without introducing large slippage or 

damaging the fabric. However, with the application of soft robotic grippers, it is proved 

feasible to reliably perform pick and place operation for fabric materials through a 

clamping approach. Therefore, this solution approach has practical implications. 

 

It is discovered that various factors can affect the performance of a fabric handling 

solution, including gripping force, moving velocity, and toolpath planning. Lower 

gripping force and higher velocity lead to worse slippage and wrinkling results. While the 

slippage can be avoided by a firm gripping condition, the wrinkling magnitude after 

placement becomes more predictable but cannot be eliminated as the gripping condition 

is improved. Through appropriate picking positions and toolpath planning, accurate 

placement and the avoidance of wrinkling can be achieved. More research is required to 

explore this further. 

 

As the experiments proved it feasible to perform basic fabric handling tasks using a 

simple 1-DOF gripper equipped with compliant structure, advanced movements such as 

picking up a fabric from a curved surface require a more flexible gripper configuration.  

 

By mimicking the movements of the human hand when manually picking up fabric plies, 

two types of underactuated soft robotic grippers are developed. The first gripper design is 

based on elastomer fingers with gaps distributed on both sides of each finger. The 

elastomer finger is actuated by driving tendons inserted in pre-built slots that go through 

the gaps. When the tendons are pulled, the fingers bend toward the corresponding 

direction to either open or close the gripper. A driving mechanism is designed to actuate 

the tendons by a disc connected to a servo motor. The second gripper design is based on 

the principle of the elastomer-based gripper, but the finger is made of hinge-connected 

rigid linkages that are covered by an elastomer glove. The existence of the rigid skeleton 

can increase the stiffness of the linkage-based gripper and make it more resilient toward 

environmental disturbances. Both gripper configurations are simulated and prototyped. 

 

The new technologies used here show great potentiality for relevant research. FEA 
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simulation is a crucial tool for the design of the soft robotic grippers. In this research, the 

simulation is performed in Abaqus. The most important parts are the simulation of the 

underactuated structure and the fabrics. The behavior of the underactuated structure, 

which is silicone rubber in this case, can be simulated using the hyperelastic material 

model. The simulation results can provide detailed insights regarding the 

force-deformation relationship and the influence of the gripper geometry, which can be 

used to develop or innovate the gripper configurations. The simulation of fabric material 

is also a challenging problem in relevant research. For the gripper design purpose, a 

simplified isotropic fabric model can be used to verify the functionality of a certain 

gripper configuration. 

 

For both the prototyping and experiments, AM and overmolding processes are both 

important technologies. Through the FDM process, rigid components and molds can be 

directly printed from CAD models. With the mold set prepared, elastomer parts can be 

repeatedly fabricated by molding or overmolding. 

 

To conclude, soft robotic grippers are proved to be a useful technology for the automation 

of fabric handling tasks. Sophisticated toolpath planning can ensure the performance of 

pick and place operations using the clamping approach. Advanced design and simulation 

tools, rapid prototyping technology, and collaborative robots provide new opportunities in 

relevant research. 

 

6.2 Limitations and Future Work 

 

There are several limitations and unfinished tasks in this research that should be further 

investigated in the future. 

 

In this research, the study on the fabric behavior during pick and place operations only 

covers fundamental scenarios, and the methodology is limited to experimental research. 

Since the evaluation criteria developed in Chapter 4 has built a foundation for further 

studies, it is reasonable to expand the research domain to more complicated scenarios, i.e. 

fabric workpiece with complex geometry or challenging properties. Advanced tools such 
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as simulation and neural network or other machine learning approaches can be applied 

for sophisticated toolpath planning. 

 

As for the soft robotic grippers, most of the FE models developed in this research are 

simplified in order to save computational costs. In some cases, the simplification 

strategies caused errors between the simulation results and experimental results. The most 

severe case is the force-deformation relationship of the linkage-based gripper, as 

described in Chapter 5. More accurate FE modelling strategies should be explored in the 

future. With the simulation model improved, the structure of the gripper can be further 

optimized. This will also provide insights for other similar research. 

 

Finally, the automation and control of the gripper and the robot motions should be 

improved in the future. The control strategies developed in this research are open-looped. 

More intelligent control can be achieved by introducing contact sensors and proximity 

sensors. The improvement on automation will also make it available to perform 

experiments with the soft robotic gripper attached on the collaborative robot, which can 

provide helpful feedback for relevant research. 
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APPENDICES 

 

Appendix A: Engineering Drawing of the YUMI Robot Arm 

 

 

Figure A.1 Engineering drawing of the YUMI robot arm 
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Appendix B: Experimental Data for Pick and Place Tests 

 

The original test data is the coordinates of reference points after every placement. The 

displacement and projection area are calculated from the coordinates. 

 

Table B.1 Data for plain picking 

 

 
  

X Y X Y X Y
point 1 32.2 33.4 17.4 26.2 19.4 32.0
point 2 61.6 35.4 34.2 30.2 35.8 32.0
point 3 67.8 27.8 39.0 25.6 41.4 26.8
point 4 36.8 3.4 52.4 32.2 50.5 28.8
point 5 16.7 23.2 62.0 26.8 60.2 23.4
point 6 35.4 3.0 47.8 7.2
point 7 25.8 4.0

760.5
point 1 11.3 33.8 10.4 34.2 12.8 30.8
point 2 65.8 35.0 64.6 36.4 15.4 32.2
point 3 64.2 19.7 66.2 20.6 44.8 34.2
point 4 47.4 12.0 19.6 7.8 64.7 25.2
point 5 19.8 7.4 13.0 12.2 67.2 9.1
point 6 30.6 11.6 14.5 7.2
point 7 12.8 8.4

1127.0
point 1 BR 64.2 19.7 66.2 20.6 67.2 9.1
point 2 BL 14.2 6.2 13.6 5.8 12.8 7.0
point 3 TR 65.8 35.0 64.6 36.4 64.7 25.2
point 4 TL 11.3 33.8 10.4 34.2 12.8 32.0
point 1
point 2
point 3
point 4
average 4.4

coordinates of the 
projected polygon

projection area 895.0 619.0 767.5

One arm

coordinates of the 
location reference 

points

displacements of the 
location reference 

points

average
test 1 test 2 test 3

1.0

Dual arm plain

coordinates of the 
projected polygon

projection area

4.2

961.0

3.1
4.3

1.2
4.6

1170.8 1249.1

1.3
10.4

13.2
2.2
0.5

13.8
1.6
1.7

2.3
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Table B.2 Data for pre folded picking 

 

 
  

X Y X Y X Y
point 1 11.8 33.6 11.4 33.6 11.8 34.8
point 2 65.5 34.6 65.2 34.8 65.8 34.6
point 3 66.6 8.2 65.6 8.4 65.5 8.0
point 4 14.8 7.2 23.0 7.0 34.0 7.2
point 5 12.2 9.4 12.2 12.0 11.8 11.2

1416.3
point 1 BR 66.6 8.2 65.6 8.4 65.5 8.0
point 2 BL 12.4 7.0 12.4 5.8 11.8 11.2
point 3 TR 65.5 34.6 65.2 34.8 65.8 34.6
point 4 TL 11.8 33.6 11.4 33.6 11.8 34.8
point 1
point 2
point 3
point 4
average 1.5
point 1 12.4 34.2 12.0 33.4 11.6 33.5
point 2 65.8 34.5 65.4 34.4 65.5 34.4
point 3 66.8 8.6 65.8 7.8 65.8 7.8
point 4 12.6 7.0 12.4 7.2 12.0 7.5

1418.5
point 1 BR 66.8 8.6 65.8 7.8 65.8 7.8
point 2 BL 12.6 7.0 12.4 7.2 12.0 7.5
point 3 TR 65.8 34.5 65.4 34.4 65.5 34.4
point 4 TL 12.4 34.2 12.0 33.4 11.6 33.5
point 1
point 2
point 3
point 4
average 1.4
point 1 13.0 33.5 13.0 33.5 13.0 33.4
point 2 64.8 34.2 65.2 35.0 65.6 35.0
point 3 65.4 7.3 65.8 8.0 65.7 7.8
point 4 13.0 7.8 13.5 8.0 13.0 7.8

1377.4
point 1 BR 65.4 7.3 65.8 8.0 65.7 7.8
point 2 BL 13.0 7.8 13.5 8.0 13.0 7.8
point 3 TR 64.8 34.2 65.2 35.0 65.6 35.0
point 4 TL 13.0 33.5 13.0 33.5 13.0 33.4
point 1
point 2
point 3
point 4
average 1.81.9 1.8 1.6

test 1 test 2 test 3 average

1.4 1.4

3 mm pre-
folding

coordinates of the 
projected 
polygon

projection area 1370.3 1372.0 1389.9

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.7 1.7 1.6
2.1 2.5 2.1
1.8 0.9 0.6
2.1 2.1 2.1

2.1

2 mm pre-
folding

coordinates of the 
projected 
polygon

projection area 1429.0 1410.1 1416.5

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.8 1.6 1.6
1.2 1.3 1.5
1.0 1.3 1.2
1.2 1.5 1.3
1.3

1 mm pre-
folding

coordinates of the 
projected 
polygon

projection area 1425.6 1399.7 1423.7

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.5 2.1 1.9
1.1 0.4 5.2
1.0 1.1 0.9
1.3 1.2 0.4
1.2 1.2
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Table B.3 Data for auto-jammed picking 

 
 
  

X Y X Y X Y
point 1 10.8 34.4 11.8 34.0 11.8 34.0
point 2 65.4 34.6 65.6 34.2 65.8 34.5
point 3 67.2 8.2 67.6 7.7 68.2 8.2
point 4 12.0 7.4 12.4 7.4 12.4 7.0

1459.4
point 1 BR 67.2 8.2 67.6 7.7 68.2 8.2
point 2 BL 12.0 7.4 12.4 7.4 12.4 7.0
point 3 TR 65.4 34.6 65.6 34.2 65.8 34.5
point 4 TL 10.8 34.4 11.8 34.0 11.8 34.0
point 1
point 2
point 3
point 4
average 1.2
point 1 11.6 34.0 11.6 34.0 11.4 34.0
point 2 65.8 34.4 65.8 34.4 65.6 34.4
point 3 67.0 8.0 66.2 8.0 66.4 8.4
point 4 12.6 7.2 11.8 7.3 12.2 7.4

1437.6
point 1 BR 67.0 8.0 66.2 8.0 66.4 8.4
point 2 BL 12.6 7.2 11.8 7.3 12.2 7.4
point 3 TR 65.8 34.4 65.8 34.4 65.6 34.4
point 4 TL 11.6 34.0 11.6 34.0 11.4 34.0
point 1
point 2
point 3
point 4
average 1.2
point 1 11.6 34.0 11.4 34.0 11.4 33.8
point 2 65.6 34.8 65.5 34.5 65.8 34.4
point 3 66.2 8.4 66.5 8.6 66.5 8.4
point 4 11.9 7.4 11.8 7.2 11.8 7.5

1432.1
point 1 BR 66.2 8.4 66.5 8.6 66.5 8.4
point 2 BL 11.9 7.4 11.8 7.2 11.8 7.5
point 3 TR 65.6 34.8 65.5 34.5 65.8 34.4
point 4 TL 11.6 34.0 11.4 34.0 11.4 33.8
point 1
point 2
point 3
point 4
average 1.3

3 mm 
auto-

jamming

coordinates of the 
projected 
polygon

projection area 1435.4 1434.1 1426.9

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.8 1.9 1.7

projection area 1445.0 1441.8 1426.0

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.2 1.4 1.7

test 1 test 2 test 3 average

1 mm 
auto-

jamming

coordinates of the 
projected 
polygon

projection area 1466.6 1447.3 1464.4

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

1.4 1.1 1.8

2 mm 
auto-

jamming

coordinates of the 
projected 
polygon

1.4 1.2 1.5
0.8 1.1 1.1
0.8 0.8 1.0
1.2 1.3 1.3

1.3 1.3 1.4
1.1 1.1 1.2
0.8 0.8 0.8
1.1 1.2 1.3

1.4 1.5 1.1
1.1 1.4 1.0
0.7 0.9 0.9
1.2 1.2 1.2
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Table B.4 Data for pick and place operations with spatial transferring 

 
  

X Y X Y X Y
point 1 10.8 33.5 11.6 33.4 12.0 34.0
point 2 65.2 34.2 65.6 34.0 43.0 34.5
point 3 66.6 9.0 67.1 8.5 65.8 30.4
point 4 12.4 7.2 12.9 7.0 67.0 8.0
point 5 12.5 6.8

1405.6
point 1 BR 66.6 9.0 67.1 8.5 67.0 8.0
point 2 BL 12.4 7.2 12.9 7.0 12.5 6.8
point 3 TR 65.2 34.2 65.6 34.0 65.8 30.4
point 4 TL 10.8 33.5 11.6 33.4 12.0 34.0
point 1
point 2
point 3
point 4
average 1.7
point 1 11.2 33.0 11.4 34.0 12.0 33.2
point 2 65.5 34.0 66.2 34.2 65.8 33.8
point 3 67.5 8.5 66.2 8.2 67.5 9.4
point 4 13.0 7.2 39.0 7.0 13.2 7.6
point 5 12.5 14.2

1368.4
point 1 BR 67.5 8.5 66.2 8.2 67.5 9.4
point 2 BL 13.0 7.2 12.5 14.2 13.2 7.6
point 3 TR 65.5 34.0 66.2 34.2 65.8 33.8
point 4 TL 11.2 33.0 11.4 34.0 12.0 33.2
point 1
point 2
point 3
point 4
average 2.2
point 1 12.4 34.4 11.8 34.4 12.0 34.4
point 2 65.4 34.7 65.8 35.0 66.0 35.5
point 3 67.0 6.3 66.8 6.4 67.0 6.8
point 4 12.4 6.0 12.4 6.0 12.6 5.8

1542.3
point 1 BR 67.0 6.3 66.8 6.4 67.0 6.8
point 2 BL 12.4 6.0 12.4 6.0 12.6 5.8
point 3 TR 65.4 34.7 65.8 35.0 66.0 35.5
point 4 TL 12.4 34.4 11.8 34.4 12.0 34.4
point 1
point 2
point 3
point 4
average 0.5

Side 
picking

coordinates of the 
projected 
polygon

projection area 1528.2 1545.1 1553.7

coordinates of the 
location reference 

points

displacements of 
the location 

reference points
0.7 0.5 0.3

10 mm 
auto-

jamming

projection area 1397.5 1354.6 1353.0

coordinates of the 
location reference 

points

displacements of 
the location 

reference points
1.7 3.0 2.0

1.1 0.6 0.7

test 1 test 2 test 3 average

coordinates of the 
projected 
polygon

0.8 1.7

0.5 0.4 0.0
0.4 0.4 0.6
1.0 0.5 0.0

2.1

coordinates of the 
projected 
polygon

1.8 1.6 2.6
1.6 8.2 2.0
1.6 1.3 1.7
1.8

2 mm 
auto-

jamming

projection area 1400.1 1405.4 1411.2

coordinates of the 
location reference 

points

displacements of 
the location 

reference points

2.2 1.7 1.2
1.3 1.3 0.9
1.5 1.6 5.1
1.4 1.4 1.0
1.6 1.5
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