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ABSTRACT 

Appointment Scheduling is an increasingly challenging problem for service-centers, 

healthcare, production and transportation sector. Challenges include meeting growing 

demand and high expectation of service level among the customers and ensuring an 

efficient service system which reduces the expenditure related to idle times and 

underutilization of the system. The problem becomes more complicated in the presence of 

processing time uncertainties. In this study, a Robust Appointment Scheduling model is 

developed using Min-max Optimization to provide appointment dates for a system with a 

single processor. The objective is to minimize the cost of the worst-case scenario under 

any realization of the processing time of the jobs. The proposed methodology requires less 

information regarding the uncertain parameters and can provide optimal solution while 

only considering the extreme bounds of the uncertain parameters. Therefore, it is applicable 

to any probability distribution of the uncertain parameters. The model is well suited for any 

general case appointment scheduling problem regardless of the application field. Since the 

problem is NP-hard, an Iterative Solution Procedure and a Dynamic Programming model 

are developed for solving larger instances of problem in polynomial time. In addition, 

propositions that support the robust model are provided along with theoretical proofs. 

Appointment scheduling of two case studies, a Dentist’s clinic and VIA Rail Canada are 

performed. Both case studies exhibit high performance of the proposed robust model in 

terms of cost savings and computational efforts. This work will contribute both to the 

literature related to uncertainty handling in decision making and to the industries, which 

aim to achieve an efficient service system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Appointment Scheduling is an increasingly challenging problem in many service areas 

(Ahmadi-Javid et al., 2017). Challenges include meeting increasing demand and 

expectation of high service level among the customers and ensuring an efficient service 

system which reduces the expenditure related to idle times and underutilization of the 

system, etc. The problem is intensified in the presence of processing time uncertainty 

varying from one customer to another.  In this regard, Appointment Scheduling can 

improve the system efficiency drastically and significant savings can be achieved. 

Specially, in developed countries where expenditures are huge for service centres, a good 

appointment schedule is crucial (Laan et al., 2018).  

Appointment scheduling is needed where appointment dates are to be determined in 

advance for the jobs, which will be processed sequentially in a highly utilized processor 

when the processing duration is uncertain and varies from one job to another. Jobs are not 

available prior to their appointment dates. In other words, a static-class of appointment 

scheduling approach is considered, in which a finite number of appointments are scheduled 

prior to the beginning of the actual service (Cayirli and Veral, 2009). Appointment 

schedule determines a time slot for each job specifying their appointment dates when the 

jobs, processor, and the associated resources become available. However, since the 

processing time is uncertain, some jobs take more time than assigned to it whereas some 

jobs finish earlier than the next jobs appointment time. When a job takes more time than 

assigned, the next jobs have to wait for its completion and will start later than their original 

appointment time. This results in waiting of the subsequent jobs and may result in overtime 

for the processor and the associated resources at the end of the schedule. On the other hand, 

if a job finishes earlier than the next jobs appointment date, the processor and the associated 

recourses remain idle until the next job’s appointment time. This results in underutilization 

of the system. Therefore, an optimal appointment schedule is required considering the 
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trade-off between the underutilization and the overtime of both the processor and the jobs. 

The objective is to minimize the worst cost of the appointment schedule by minimizing 

earliness and tardiness of both the jobs and the processor for any realization of the 

processing durations.         

Figure 1.1 describes an appointment schedule of three jobs whose processing durations are 

uncertain and need to be scheduled sequentially. Since the processing durations are 

uncertain, some job may finish earlier than its assigned time whereas some jobs may finish 

later than its assigned time. Let,  𝐴1, 𝐴2, 𝐴3 denote the given appointment time of job 1, job 

2 and job 3 respectively and 𝑃1, 𝑃2, 𝑃3 denote their actual processing time respectively. For 

job 1, processing time 𝑃1 is less than the next job’s appointment time 𝐴2. As a result, the 

processor and the associated resources face some idle time there causing earliness of the 

system. For job 2, since processing time 𝑃2  is greater than the next job’s appointment 

time 𝐴3 , the next job will start at a later time than the assigned appointment time 𝐴3 and 

make the next jobs to wait until the completion of the previous job.  

 

Figure 1: Appointment Schedule of 3 jobs under uncertainty 

 

1.2 Application Area 

The most impactful application area of appointment systems can be healthcare services 

such as doctor’s clinic, surgical scheduling, radiation therapy clinics for cancer patients, 

dentist’s clinic, physical therapy center, healthcare diagnostics operations (CAT Scans, 
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MRI, etc.) and so on. Besides these, the problem is also encountered while scheduling 

container, vessel and terminal operations at sea ports, gateway and runway scheduling of 

aircrafts in airports, automobile service centers, consulting professionals such as lawyer’s 

and accountant’s office and so on. Apart from service industries, appointment systems are 

also used in project management, production, manufacturing and transportation (Begen and 

Queyranne, 2011).  

For example, in a doctor’s clinic, patients are the jobs that need to be scheduled and the 

doctor and associated resources are the processor. Processing time of each patient are 

uncertain and varies from one patient to another patient. Some patients take more time than 

the assigned time causing overage time and waiting for the next patients. Whereas some 

patients take less time than the assigned time resulting in idle time of the processor and the 

resources and hence, underutilization of the system. Therefore, it is necessary to optimize 

the trade-off between underutilization and overtime for both the jobs and the processor.  

Similarly, for railway transportation system, stations are the jobs that need to be scheduled. 

The train and the resources are the processor. In this scenario, processing time means the 

time for a train to travel from one station to the next station, which is subject to uncertainty. 

For some stations, arrival of the train happens after the scheduled time causing overage 

time and waiting for the passengers of the later stations. Whereas, for some stations, arrival 

time of the train is less than the scheduled time causing idle time for the processor and 

underutilization of the system. Hence, it is required to optimize between underutilization 

and overtime for both the processor and the jobs. 

 

1.3 Thesis Statement 

In this study, uncertainty of processing time is considered for providing an appointment 

schedule that minimize the total underage and overage cost of both the jobs and the 

processor for the worst case under any realization of the processing durations. A Robust 

Appointment Scheduling model under processing time uncertainty has been developed 

using Min-max Optimization which will allow handling processing time uncertainty 
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without distributional information of the processing durations and provide a schedule that 

perform well for all possible realization of the scenarios and hedge against the worst-case 

scenario.  

This study aims to examine if Robust Appointment Scheduling model performs better 

while subject to uncertain processing time compared to the other modelling approaches in 

the literature. Through numerical computations it is proved that the proposed robust model 

performs better both in terms of minimizing the worst case performance and also 

computational efforts. 

 

1.4 Research Objectives 

The ultimate goal of this thesis is to incorporate processing time uncertainty while decision 

making regarding appointment scheduling. The objective is to develop a Robust 

Appointment Scheduling model for any probability distribution of the uncertain processing 

durations, which minimizes the total cost of the worst case scenario. It is also kept into 

consideration that the proposed appointment scheduling model should generally be 

applicable to many areas. This robust model can be used in software packages for the 

purpose of appointment scheduling. It is in fact applicable in Microsoft Excel for small 

instances. This work aims to contribute to the literature related to uncertainty handing in 

decision making in the absence of distributional information of the uncertain parameters. 

The overall objectives of this thesis are as follows: 

1. Developing a Nonlinear Robust Appointment Scheduling model that minimizes the 

total underage and overage cost of the worst-case scenario for any realization of the 

processing time. 

2. Developing a Mixed Integer Linear Programming model for Robust Appointment 

Scheduling that minimizes the total underage and overage cost of the worst-case 

scenario for any realization of the processing time. 

3. Providing theoretical proofs for the proposed propositions that supports the robust 

model. 



 

5 
 

4. Providing a solution approach using Iterative Search Procedure and Dynamic 

Programming for solving large instances of the appointment scheduling problem in 

polynomial time. 

5. Conducting two case studies, one for a Dentist’s Clinic and another for VIA Rail 

Canada. 

 

1.5 Outline of the Thesis 

In this thesis, there are seven chapters in total, which are organized as follows. In chapter 

1, we provide an overview of the appointment scheduling problem under processing time 

uncertainty, possible application areas of our appointment scheduling model and overall 

objective of the proposed work. Chapter 2 consists of literature review, analysis of the 

existing modelling approaches for appointment scheduling, and research gaps. Chapter 3 

explains Robust Optimization methodology, how data uncertainty is structured in Robust 

Optimization and the Min-max criteria in robust decision making. Chapter 4 contains the 

formulation of the proposed Nonlinear model and Mixed Integer Linear Programming 

model along with the theoretical proofs of the propositions. In addition, a Stochastic 

Programming version of the robust model is provided to compare with the proposed robust 

model. In the last, some special instances of the appointment scheduling problem have been 

discussed. Chapter 5 explains the Iterative Search Procedure and the Dynamic 

Programming Model which will allow to solve the larger instances of the Robust 

Appointment Scheduling model in polynomial time. Chapter 6 provides the case study 

results for VIA Rail Canada and for a local Dentist’s Clinic in Montreal, Canada. Finally, 

chapter 7 contains conclusions and a discussion about the future research scopes.    
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides the most relevant literature for appointment scheduling under 

processing time uncertainty. It emphasizes on the decision considerations, application 

areas, modelling approaches and solution approaches covered in the literature for 

appointment scheduling. This chapter is concluded by providing a research gap in the 

context of processing time uncertainty for solving appointment scheduling problem. 

 

2.1 Overview 

Appointment scheduling is a well-studied topic in literature. Although appointment system 

is applicable to a large number of settings where appointment times are scheduled for a set 

of customers and a service provider (for instance, patients and medical practitioner, doctors 

and operating room, clients and consulting professional - lawyer or accountant, automobile 

service centers, tractor trailers and receiving bay, legal cases and a court room, students 

and a professor, etc.), the literature mostly covers healthcare appointment systems for it 

being most challenging in terms of uncertainty, importance, high demand and expenditure 

compared to the other application areas (Ahmadi-Javid et al., 2017), (Robinson and Chen, 

2003).  However, some studies acknowledge the possible application of their scheduling 

models in other areas such as project management, production, manufacturing and 

transportation sector (Begen and Queyranne, 2011).  

Sabria and Daganzo, (1989) consider scheduling of arrival of container vessels at a seaport 

employing a single server queuing system. Bendavid and Golany, (2009) consider project 

scheduling with stochastic activity durations with the objective to minimize total expected 

cost. Elhafsi, (2002) studies a production system of multiple stages with stochastic lead 

times. The objective was to determine planned lead times so that the expected total cost 

related to inventory, tardiness, and earliness is minimized.   

Healthcare is one of the largest industries in the developed countries and the need to 

improve its efficiency is of utmost value considering the expenditure in healthcare sector 
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and increasing demand for healthcare services (Ahmadi-Javid et al., 2017). Appointment 

scheduling in healthcare sector has great importance on efficiency and service quality to 

the patients (Laan et al., 2018). Appointment scheduling in healthcare can improve both 

the medical outcome and patient satisfaction (Denton et al., 2007). In recent years, 

outpatient clinics have become more popular among people due to shorter hospital stays, 

preventive medical concerns and service (Ahmadi-Javid et al., 2017). Appointment 

systems are important components for efficient care delivery in outpatient clinics. 

There are many studies done in healthcare appointment scheduling considering various 

factors, however, this review focuses on studies that perform appointment scheduling 

considering service time uncertainty. Ahmadi-Javid et al., (2017) provides a 

comprehensive review of analytical and numerical optimization studies, modelling 

approach and solution methods for outpatient appointment system. They arrange the recent 

literature from strategic, tactical and operational decision levels and present future research 

scopes for outpatient appointment schedule. They find that the uncertainty in appointment 

systems is mostly handled by stochastic optimization and stochastic dynamic programming 

(Markov Decision Process). In a related paper, Cayirli and Veral, (2009) perform an 

extensive survey on healthcare appointment system. They study about problem formulation 

and modelling approaches for outpatient appointment scheduling in previous literature. 

They conclude that the existing literature mostly incorporate service time uncertainty in 

their models using Stochastic Programming, Queuing Theory or Markov Decision 

processes. 

 

2.2 Modelling Approaches  

In this section, a detailed discussion about the decision considerations, application areas, 

modelling approaches, and solution approaches is presented for appointment scheduling in 

the literature. 
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2.2.1 Stochastic Programming 

Appointment scheduling problem is largely modeled using stochastic programing approach 

for incorporating uncertainty of processing time. Begen and Queyranne, (2011) incorporate 

service time uncertainty using single stage stochastic model and apply joint discrete 

probability distribution for integer processing durations to obtain optimal integer 

appointment schedule in polynomial time. Berg et al., (2014) address both booking, 

scheduling and sequencing issue of a single stochastic server in outpatient procedure 

centers by formulating a two-stage stochastic programming model. Castaing et al., (2016) 

formulate a two stage stochastic integer program model for designing patient appointment 

schedule under uncertainty in chemotherapy infusion treatment time. Denton and Gupta, 

(2003) present a two stage stochastic programming model for scheduling patients under 

service time uncertainty and a given processing sequence considering independent and 

identically distributed continuous service time distribution. Robinson and Chen, (2003) 

model appointment scheduling problem in a doctor’s clinic for a given sequence using 

stochastic linear programming approach. They propose heuristics and use Monte Carlo 

simulation for solving large instances of the problem. Chen and Robinson, (2014) propose 

a stochastic linear programming model for patient appointment scheduling and sequencing 

considering random and heterogeneous service time. They use Benders Decomposition 

method for solving the problem. Choi and Banerjee, (2016) model outpatient appointment 

scheduling system using stochastic dynamic programming and propose a stochastic integer 

programming version of the problem. They use branch and bound and news vendor 

heuristics to solve the problem. Creemers et al., (2012) model operations room appointment 

scheduling using stochastic programming with the objective to minimize patient waiting 

time and use queuing theory to obtain expected patient waiting time to be used later in the 

stochastic programming model. For solving the model for large number of patients, they 

propose a heuristic approach. Erdogan et al., (2015) develop a two stage stochastic linear 

programming model for appointment scheduling problem under service time and demand 

uncertainty when they consider no shows. On the other hand, they develop a multistage 

stochastic linear programming model to consider dynamic appointment scheduling where 

the customers are scheduled one at a time as they request for appointment dates. They 
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incorporate a decomposition-based algorithms to solve the problem efficiently. Qu et al., 

(2013) model appointment scheduling problem using stochastic programming approach for 

random service duration for an eye clinic.  

Some studies use sample average approximation when distribution of the service time is 

not known and only sample data are available to handle service time uncertainty while 

performing appointment scheduling (Oh et al., 2013). Sample average approximation 

tackles data uncertainty by approximating the expected value of a stochastic program with 

random sample average obtained from Monte Carlo Simulation (Begen et al., 2012). Begen 

and Queyranne, (2011) use single stage stochastic programming approach for appointment 

scheduling problem with discrete random durations. They assume that the distribution of 

the service times are not known and use sample average approximation method to solve 

the appointment scheduling problem under service time uncertainty. Mancilla and Storer, 

(2012) formulate a stochastic integer programming model for appointment scheduling and 

sequencing problem using sample average approximation and develop a heuristic solution 

approach based on Bender’s decomposition to compare results with the exact models. 

 

2.2.2 Queuing Theory 

Another popular way to model the appointment scheduling problem under processing time 

uncertainty is through queuing theory. Outpatient clinics can be regarded as queuing 

systems and appointment system for that are designed using queuing theory (Cayirli and 

Veral, 2009). Zacharias and Yunes, (2018) develop queuing model for appointment 

scheduling in healthcare under stochastic environment to optimize between resource 

utilization and short waiting time. Hassin and Mendel, (2008) design appointment 

scheduling of healthcare clinics as queuing system with the objective to minimize expected 

waiting time and idle time for exponential service time distribution. Liu and Ziya, (2014) 

incorporate queuing theory to model appointment scheduling problem for outpatient 

clinics. Tang et al., (2014) propose a queuing model for appointment scheduling in 

healthcare clinics with no shows considering exponential distribution of the service time. 

Wang and Gupta, (2011) develop a queuing model to find appointment dates of jobs in a 
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single-server system to minimize expected customer delay and server completion time with 

identical jobs, identical costs, and exponentially distributed processing durations. In their 

numerical studies, the optimal allocated time for each job shows a “dome” structure; i.e., 

it increases first and then decreases. In a related paper, Kaandorp and Koole, (2007) study 

outpatient appointment scheduling with exponential processing durations and no-shows.  

 

2.2.3 Markov Decision Process 

Soltani et al., (2019) model appointment scheduling problem for stochastic service time 

and multiple provider system with identical providers in a service center (counseling 

center). They develop a discrete time Markov chain model and apply heuristic methods to 

achieve better solution than the existing models. Anderson et al., (2015) address 

appointment scheduling in an outpatient clinic considering stochastic service time using 

Monte Carlo simulation. Here, service time is considered to follow uniform distribution. 

Saremi et al., (2013) address the appointment scheduling problem of outpatient multistage 

operations room using simulation based Tabu Search method for stochastic service time 

and heterogeneous patients. They propose a mixed integer linear programming model for 

solving deterministic version of the problem and use it as an initial solution for the 

simulation model. Lin et al., (2011) develop a Markov Decision Process (MDP) model for 

sequential clinical scheduling that books patients to optimize the performance of the clinic 

operations. They consider overbooking to compensate no show situations and use Dynamic 

Programming to find schedules for larger problems.  

 

2.3 Summary and Research Gaps 

While performing appointment scheduling, service time is considered to be either 

deterministic or stochastic (Denton et al., 2007). Service time uncertainty in appointment 

scheduling is mostly handled using Stochastic Programming, Queuing Theory and Markov 

Decision Process (Ahmadi-Javid et al., 2017). Cayirli and Veral, (2009) state that majority 

of the studies assume patients or service types to be homogenous for scheduling purpose 
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and use independently and identically distributed (i.i.d) service time distribution. Whereas 

some studies acknowledge service type heterogeneity and use independently and distinctly 

distributed service time distribution (i.d.d). A variety of service time distribution can be 

found in the literature (Cayirli and Veral, 2009). However, it is found that most studies use 

exponential distribution to make their model tractable (Zeng et al., 2010). Chakraborty et 

al., (2010) perform appointment scheduling of patients using general service distribution 

and show that assumption of gamma distribution for service time can significantly reduce 

computational effort. In most of the studies, it is assumed that the distribution of the service 

time is known beforehand which may not always hold in practice (Turkcan et al., 2012), 

(Mancilla and Storer, 2012), (Begen and Queyranne, 2011). 

It is found that most stochastic programming models assume identical service time 

distribution for all patients in their appointment scheduling models (Cayirli and Veral, 

2009). However, for heterogeneous case patients, service time distribution will depend on 

the patient and the service type (Ahmadi-Javid et al., 2017). In such cases, assuming 

identical service distribution for heterogeneous patients or service types will lead to faulty 

assumption. For example, in healthcare services, in the cases of patient heterogeneity, 

where different patients have different health issues and hence, require different level of 

service and care, the assumption of an identical service time distribution will negatively 

affect a stochastic scheduling approach. Therefore, some recent studies used independent 

and distinctly distributed service time distribution (i.d.d) for considering patient 

heterogeneity. In this regard, the proposed Robust Appointment Scheduling model 

incorporates Min-max Optimization, which does not require to know the probability 

distribution of the uncertain parameters. Hence, the proposed Robust Appointment 

Scheduling model will be well suited for both homogenous and heterogeneous service 

types because it will eliminate the need to identify different service time distributions for 

heterogeneous service types to achieve an optimal schedule.  

Although the stochastic programming approach can handle service time uncertainty, 

stochastic models rapidly enlarge as a function of stages and scenarios. Since appointments 

are to be given beforehand, the scope for applying recourse is very limited when the actual 

processing time doesn’t match the assigned time slot. There is very limited opportunity to 



 

12 
 

adjust the schedule once it is provided to all the patients since the patients are usually not 

available before the given appointment dates. Moreover, it is sometimes necessary to know 

the uncertain service time distribution. One of the main problems regarding stochastic 

programming in handling data uncertainty is the fact that it requires to assign probability 

to various data instances. Fitting a probability distribution requires to have access to 

sufficient amount of data and is not a trivial exercise for decision makers (Kouvelis and 

Yu, 2013). Reliable estimation of event probabilities is also extremely difficult in many 

cases (Aissi et al., 2009). Similarly, for applying queuing theory to appointment systems, 

it is necessary to know the distribution of the uncertain parameters. Simulation approaches 

are used to solve complex models to obtain solutions that perform better although they 

don’t ensure optimality of the solution.  

It is common in literature to assume that probability distribution of the processing time is 

known to the decision maker. This is only true when enough data is available to fit a 

distribution. Due to a lack of data, finding the probability distribution of service time can 

be difficult (Denton et al., 2007). There are lack of studies in literature, which can handle 

service time uncertainty while appointment scheduling in the absence of distributional 

information. This gap is also reflected in other studies (Mak et al., 2015).  

Stochastic programming gives optimal solution for the expected or most likely scenario, 

however other realization of the scenarios are strongly neglected in stochastic 

programming approach. Most likely or expected scenarios are just subsets of the potentially 

realizable scenarios. Stochastic programming optimizes expected system performance over 

all potential scenarios or just performance of the most likely scenario but fails to hedge 

against the poor system performance for some other realization of the data scenarios (Aissi 

et al., 2009). Dealing with the expected value may not ensure enough protection against 

potentially high impact but low probable events. Therefore, stochastic decision-making 

approaches will fail to protect against high impact events that might have low probability. 

As a result, stochastic programming approaches do not consider the risk aversion nature of 

the decision maker properly and therefore has limited application to many areas for 

instance, handling high impact events with low probability. This approach is inappropriate 

for moderate and high risk decision making under uncertainty (Mulvey et al., 2016). 
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Data uncertainty is sometimes handled with sensitivity analysis. However, sensitivity 

analysis is a reactive approach towards data uncertainty. It doesn’t incorporate any 

mechanism to deal with uncertain parameters proactively. It fails to produce solutions that 

are insensitive to data uncertainty and to control the sensitive parameters (Mulvey et al., 

2016).   

Despite the plethora of literature available in appointment scheduling, there are lack of 

studies which handle service time uncertainty in the absence of distributional information. 

Also, the current literature fails to propose generally applicable guidelines for appointment 

scheduling because they focus only on situation specific problems or models complex 

environment considering intricacies of case specific factors (such as no show, fairness, 

overbooking, capacity and demand constraint, emergency arrival, service interruption, 

processor lateness, etc.). Such studies are only applicable to those situation specific 

problems and not for the general appointment scheduling problem in other application 

fields. Moreover, there is a lack of efficient and effective appointment scheduling methods 

that are easy to implement and do not require to assign probabilities to future uncertain 

instances. In this regard, the proposed robust model can provide optimal solution while 

considering only the extreme bounds of the uncertain processing times. As a result, the 

robust model eliminates the need of assigning probability to the uncertain parameters or 

the need to know the probability distribution of the uncertain parameters.     

 

2.4 Contribution of This Research 

In this thesis, a Robust Appointment Scheduling model for random service time is 

developed using Min-max Optimization. For incorporating processing time uncertainty, 

the model requires less information regarding uncertainty unlike other approaches based 

on probability. It is not necessary to know the distribution of the uncertain processing 

duration for applying the proposed Robust Appointment Scheduling model. To incorporate 

processing time uncertainty in the robust model, it is only required to know the extreme 

bounds of the uncertain parameter. As a result, the model will be well suited for both 

homogeneous and heterogeneous service types. The proposed model is also applicable to 
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any probability distribution of the processing time. The scenario realization and hence, the 

computational effort of the proposed model is significantly lower than that of stochastic 

programming approach. The model will be applicable and well suited for any general case 

appointment scheduling problem regardless of application field. It reduces scenario 

realization and hence is easy to implement. It can be used in software packages for 

appointment scheduling purpose. It is even applicable in Microsoft Excel for small 

instances. For solving the larger instances of Robust Appointment Scheduling problem in 

polynomial time, an Iterative Solution Procedure and a Dynamic Programming model is 

proposed. This work aims to contribute both to the literature related to uncertainty handling 

in decision making and to the industries which aim to achieve an efficient service system. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 
 

CHAPTER 3 

PRELIMINARY 

Decision making process becomes complicated in the presence of uncertainty of 

parameters in many dynamic problems in technology and business. For example, in 

scheduling, uncertainty of the processing time makes scheduling decisions complicated. 

The best way to deal with uncertainty is to incorporate it in the decision making process, 

understand it, and then structure it accordingly. 

There are many ways in the literature to handle uncertainty in decision making for a system 

including stochastic programming, robust optimization, sensitivity analysis, queuing 

models, discrete event simulation, etc. In this work, Robust Optimization is applied for 

incorporating processing time uncertainty while decision making regarding appointment 

scheduling.   

This chapter contains a detailed discussion about the Robust Optimization, its advantages 

over other decision making approaches and how data uncertainty can be expressed in this 

approach.  

 

3.1 Robust Optimization Overview 

Robust optimization is a comprehensive mathematical programming framework for robust 

decision making. It enables the decision maker to take into account uncertainty in order to 

produce decisions that will behave reasonable under any likely input data (Aissi et al., 

2009). Robust optimization allows decision making in the presence of inadequate 

knowledge of the uncertain parameter and provides a solution that minimizes the worst 

case performance for any realization of the uncertain parameter over the given set of 

realizable scenarios (Kouvelis and Yu, 2013). Applications of robust optimization include 

but is not limited to financial planning, appointment scheduling, power capacity expansion, 

structural design and so on. Robust optimization is suitable for various real world decision 

making situations including unique and non-repetitive decisions, decisions with 

precautions (like safety system) and for decisions to meet predefined goals. In the proposed 
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robust optimization framework, Min-max criterion is applied where the robust decision is 

to minimize the worst case performance for any possible realization of the input data. In 

the Min-max approach, the worst-case performance is recorded as the robustness indicator 

of the decision. 

Robust optimization has many advantages for handling data uncertainty compared to other 

modelling approaches based on probability. Advantages of Robust Optimization over other 

decision-making approaches are: 

• It acknowledges uncertainty of the variables and acts proactively to deal with any 

possible realization of the uncertain parameter, 

• It is applicable in the presence of uncertain, or incomplete, or noisy data 

• Robust optimization is more applicable than other decision making approaches for 

unique and non-repetitive decision-making, which is very much common in real 

world application. 

• It accounts for the risk aversion nature of the decision maker since it accounts for 

the high impact events that has low probabilities.  

• Robust optimization performs better than other decision making approaches in 

situations where dealing with worst case scenario is crucial.  

• It provides a solution that minimizes the worst-case performance for any realization 

of the uncertain parameter over the given set of realizable scenarios. 

• It is simple to use and requires less information regarding uncertainty unlike other 

approaches based on probability.  

• It allows handling data uncertainty with upper and lower bounds of the uncertain 

parameter instead of knowing its distribution.  

• It can significantly reduce scenario realization compared to other decision making 

approaches based on probability (Mulvey et al., 2016). 
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3.2 Robust Optimization Framework 

The proposed methodology initially identifies potentially realizable input data instances 

for the decision model that is appropriate for the decision situation, without attempting to 

assign probabilities to various instances, and then proceeds to find the decision that 

performs well even in the worst case of the identified input data instance, or in other words, 

it performs well for all realizable input data instances (Aissi et al., 2009).  

In this study, the Robust Optimization framework is structured into three important steps 

presented in Figure 2. These steps are: 

1. Structuring of data uncertainty with the use of scenarios. This constructs the input data 

instances. 

2. Incorporating robustness in decision making using the Min-Max criteria. Here, the 

objective is to minimize the maximum cost among all the input data instances.  

3. The formal development of the Decision model and providing output of the robust 

decisions.  

 

 

 

 

 

 

 

 

Figure 2: Robust Optimization Framework 

 

Structuring of data uncertainty with the use  

of scenarios (Input data scenarios) 

Formulation of Robust Optimization Model 

 Using Min-max criteria (Objective Function) 

Output of Robust Decisions 
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3.2.1 Structuring Data Uncertainty through Scenario Planning Approach 

One of the important tools for structuring data uncertainty in decision making is Scenario 

Planning. Scenarios will represent several contrasting features, which represent 

possibilities of the future and which are generated by using the decision maker’s own 

model of the system and its realities. In robust optimization, no probability is needed to be 

attached to the various outcomes. It would allow the decision maker to be prepared for any 

unconventional but still potentially realizable outcomes and will help to cope satisfactorily 

in all cases. Scenario planning requires to generate and evaluate all potential scenarios. It 

is the decision maker’s mental image of the current system’s decision situation and the 

future that will generate the scenarios, and subsequently the robust decision that can cope 

satisfactorily with all of them. As a result, scenarios should be structured based on sound 

analysis.  

In the scenario-based approach, each scenario corresponds to an assignment of values for 

the uncertain input parameter. There are two different ways to represent all scenarios for 

the uncertain parameters; discrete scenario case and interval scenario case.  

 

Discrete Scenario Case 

For a discrete scenario case, uncertainty of an input parameter is presented as a set of 

discrete value instances. In this approach, input data uncertainty is structured as a finite set 

Ω  of scenarios where each scenario, 𝜔 ∈ Ω  is presented as a vector, 𝐴𝜔 =

 (𝑎1
𝜔 , … , 𝑎𝑛

𝜔) where, 𝑎𝑖
𝜔 ∈ ℝ+, 𝑎𝑖

𝜔 ∈ 𝐴𝜔 ,  𝜔 ∈ Ω, 𝑖 = 1, 2, … , 𝑛.  

 

Interval Scenario Case  

In interval scenario case, uncertainty of a parameter is denoted as a range bounded by its 

extreme values and the parameter can have any value within that range. Input parameter 𝑎𝑖 

can have any value in the interval [𝑎𝑖, 𝑎𝑖], where, 𝑎𝑖 is the lowest value of that intval and 

𝑎𝑖 is the highest value of that range and 0 ≤ 𝑎𝑖 ≤ 𝑎𝑖. In this approach, the total scenario 
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set, Ω is the Cartesian product of all values within the intervals [𝑎𝑖, 𝑎𝑖], for 𝑖 = 1, 2, … , 𝑛. 

In interval case scenario, Ω is an infinite vector set. 

 

Extreme Scenario Case 

An extreme scenario case is the case where all the input parameters correspond to either of 

their extreme values,𝑎𝑖 =  𝑎𝑖 or 𝑎𝑖 for 𝑖 = 1, 2, … , 𝑛. In other words, input parameter, 𝑎𝑖 

can have either of the extreme value of the interval [𝑎𝑖, 𝑎𝑖]. The total scenario set, Ω is the 

Cartesian product of the extreme values of the intervals [𝑎𝑖, 𝑎𝑖] for 𝑖 = 1, 2, … , 𝑛. As a 

result, total scenario set, 𝛺 is a finite vector set having a total of 2𝑛 scenarios. 

 

3.2.2 Min-Max Approach 

In the Min-max approach, the worst case performance is the robustness indicator of the 

decision model. The objective is to minimize the maximum cost that can occur across all 

possible input data scenarios.  

Let, Ω denote the set of all potentially realizable input data scenarios. Let, 𝑌 be the set of 

our decision variables such that 𝑦1, 𝑦2, . . . . . ∈  𝑌  and 𝐴, be the set of our input data 

instances which is subjected to uncertainty, meaning,  𝐴𝜔 = (𝑎1
𝜔 , … , 𝑎𝑛

𝜔), 𝜔 ∈ Ω . The 

notation 𝐴𝜔 is used to represent the instance of the input data for scenario 𝜔 such that 𝜔 ∈

Ω. Let, 𝑓 (𝑌, 𝐴𝜔) denote the cost function that evaluates the quality of the decision variable 

vector set, 𝐴. It is to be noted that the cost function is dependent of both the decision 

variable vector, 𝑌  and the input data instance, 𝐴𝜔  which is subjected to uncertainty, 

i.e. 𝜔 ∈ Ω. Now, if 𝑍∗ denote the maximum cost among all the scenarios then we can write, 

𝑍∗ = max
𝜔∈Ω

 𝑓(𝑌, 𝐴𝜔)  (1) 

Robust optimization aims to minimize the worst cost among all possible scenarios. Hence, 

we write, 

𝑚𝑖𝑛 𝑍∗  ∀𝜔 ∈ 𝛺  (2) 
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Or, 

 𝑚𝑖𝑛
𝑦 ∈ 𝑌

𝑚𝑎𝑥
𝑎 ∈ 𝐴

 𝑓(𝑦, 𝑎𝜔) ∀𝜔 ∈ 𝛺  (3) 

In the next chapter, we formulate the Robust Appointment Scheduling model using the 

Min-mix criteria. 
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CHAPTER 4 

PROBLEM DESCRIPTION AND MODEL FORMULATION 

In this chapter, a formal definition of the appointment scheduling problem and how it is 

modeled using the Robust Optimization are explained. It also contains some properties of 

the problem. Then, a comparison of the robust model with its stochastic counterpart and an 

analysis of the results obtained from both the approaches are discussed.  

 

4.1 Problem Description 

We have (𝑛 + 1) jobs that need to be sequentially processed on a single processor. The 

processing sequence is given. When a job finishes earlier than the next job’s appointment 

date, the system experiences some cost due to under-utilization. This cost is referred as the 

underage cost. On the other hand, if a job finishes later than the next job’s appointment 

date, the system experiences overage cost due to the overtime of the current job and the 

waiting of the next jobs. All the cost coefficients and processing durations are assumed to 

be nonnegative, and job 1 starts on time; i.e., the start time for the first job is zero. The 

𝑛 + 1𝑠𝑡 job is a dummy job with processing duration equal to 0. The dummy job is used to 

compute the overage or underage cost of the 𝑛 −th job. The processing duration of job 𝑖 is 

denoted by  𝑝𝑖 . Let, 𝑙𝑖  and 𝑘𝑖  denote the minimum and maximum value of processing 

duration 𝑝𝑖, respectively. The underage cost rate, 𝑢𝑖 of job 𝑖 is the unit cost (per unit time) 

incurred when job 𝑖  is completed at a time 𝐶𝑖  before the appointment date of the next 

job 𝐴𝑖+1. The overage cost rate, 𝑜𝑖 of job 𝑖 is the unit cost incurred when job 𝑖 is completed 

at a date 𝐶𝑖 after the appointment date of the next job 𝐴𝑖+1. Thus the total cost due to job 𝑖 

completing at date 𝐶𝑖 is, 

𝑢𝑖(𝐴𝑖+1 − 𝐶𝑖)+ + 𝑜𝑖(𝐶𝑖 − 𝐴𝑖+1)+  (4) 

Where (𝑥)+ is the positive part of real number 𝑥. Our decision variables are {𝐴𝑖} and the 

objective is to minimize the cost defined above for the worst {𝑝𝑖} possible. Formally, we 

define our problems as:  
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𝑚𝑖𝑛{𝐴𝑖}𝑚𝑎𝑥{𝑙𝑖≤𝑝𝑖≤𝑘𝑖} ∑ [𝑢𝑖(𝐴𝑖+1 − 𝐶𝑖)+ + 𝑜𝑖(𝐶𝑖 − 𝐴𝑖+1)+]𝑛
𝑖=1   (5) 

 

4.1.1 Notations 

We use the following notations in our mathematical models: 

Parameters  

𝑢𝑖   Underage cost of job 𝑖 

𝑜𝑖   Overage cost of job 𝑖 

𝑝𝑖
𝜔   Processing time of job 𝑖 in scenario 𝜔; 𝑙𝑖 ≤ 𝑝𝑖

𝜔 ≤ 𝑘𝑖 

Index Sets 

𝑖  Job, 𝑖 = 1, 2, … , 𝑛 + 1. 

𝜔  Scenario, 𝜔 ∈ Ω. 

Variables 

𝐴𝑖 Appointment date of job 𝑖; 𝐴1 = 0. 

𝑥𝑖
𝜔 1, if job 𝑖  finishes after the next jobs appointment 

time in scenario 𝜔;         

0, otherwise 

𝐶𝑖
𝜔 Completion time of job 𝑖 in scenario 𝜔,  𝐶𝑖

𝜔 =  𝑚𝑎𝑥 (𝐴𝑖 , 𝐶𝑖−1
𝜔 ) +

 𝑝𝑖
𝜔 for 2 ≤ 𝑖 ≤ 𝑛 + 1, 𝐶𝑖

𝜔 = 𝑝𝑖
𝜔  for 𝑖 = 1. 

𝑑𝑖
−𝜔 Underutilization of the facility prior to the completion of job 𝑖 in 

scenario 𝜔;  

 𝑑𝑖
−𝜔 = 𝑚𝑎𝑥(0, 𝐴𝑖+1 − 𝐶𝑖

𝜔) = (𝐴𝑖+1 − 𝐶𝑖
𝜔)+ 

𝑑𝑖
+𝜔 Overtime of job 𝑖 in scenario𝜔; 

 𝑑𝑖
+𝜔 = 𝑚𝑎𝑥(0, 𝐶𝑖

𝜔 − 𝐴𝑖+1) = (𝐶𝑖
𝜔 − 𝐴𝑖+1)+  
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4.1.2 Assumptions 

There are few assumptions that define the context of the appointment scheduling problem 

considered in this study. They are stated here: 

 Appointment dates are to be given before any processing starts  

 Jobs are not available before their appointment dates.  

 There is a single processor, which processes job one at a time and is always 

available during the scheduling time.  

 Jobs arrive on time and walk-ins are not allowed. 

 There are no missing appointments or interruptions.  

 The sequence of the schedule is known. 

 

4.2 Mathematical Models 

Initially a Nonlinear Programming model is developed. Then the nonlinearity is removed 

by developing a Mixed Integer Linear Programming model, making it our second model.  

 

4.2.1 Model 1 (Nonlinear) 

𝑀𝑖𝑛 𝑍  (6) 

Subject to, 

𝑍 ≥ ∑ (𝑢𝑖𝑑𝑖
−𝜔 + 𝑜𝑖𝑑𝑖

+𝜔)𝑛
𝑖=1  ∀𝜔 ∈ Ω  (7) 

𝐶1
𝜔 = 𝑝1

𝜔 ∀𝜔 ∈ Ω (8) 

𝐶𝑖
𝜔 + 𝑑𝑖

−𝜔 − 𝑑𝑖
+𝜔 = 𝐴𝑖+1 ∀𝜔 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑛 (9) 

𝐶𝑖
𝜔 = 𝐶𝑖−1

𝜔 + 𝑑𝑖−1
−𝜔 + 𝑝𝑖

𝜔 ∀𝜔 ∈ Ω, 2 ≤ 𝑖 ≤ 𝑛 (10) 

𝑑𝑖
−𝜔𝑑𝑖

+𝜔 = 0 ∀𝜔 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑛 (11) 
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𝐶𝑖
𝜔, 𝑑𝑖

−𝜔, 𝑑𝑖
+𝜔, 𝐴𝑖+1 ≥ 0 ∀𝜔 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑛 (12) 

Detailing the structure of the model, the objective function 6, minimizes the maximum of 

total underage and overage cost across all the scenarios. Constraint 7 ensures that 𝑍 is the 

maximum underage and overage cost over all scenarios. Constraint 8 sets the completion 

time in a scenario equal to the processing time in that scenario. This holds true for the first 

job because the first job starts at time 0, i.e., 𝐴1 = 0.  Constraint 9 calculates the 

underutilization of the facility and overtime for each job in each scenario. Constraint 10 

calculates the completion time of the jobs other than the first job. Note that, 

𝐶𝑖
𝜔 = 𝑚𝑎𝑥(𝐶𝑖−1

𝜔 , 𝐴𝑖) + 𝑝𝑖
𝜔 = 𝐶𝑖−1

𝜔 + 𝑑𝑖−1
−𝜔 + 𝑝𝑖

𝜔 ∀𝜔 ∈ Ω, 2 ≤ 𝑖 ≤ 𝑛  (13) 

Constraint 11 ensures that when  𝑑𝑖
−𝜔 > 0 , 𝑑𝑖

+𝜔 = 0  and when  𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0 . It 

means that both underage time and overage time cannot happen at the same time for a job 

in a scenario. Constraint 12 is the non-negativity constraint. It is to be noted that the only 

nonlinear constraint is constraint 11.  

 

4.2.2 Model 2 (Mixed Integer Linear Programming) 

Next, the nonlinearity from constraint 11 of Model 1 is removed by developing a Mixed 

Integer Linear Programming model. For that, a binary variable is introduced and the 

nonlinear constraint is replaced with two linear constraints as follows:  

𝑀𝑖𝑛 𝑍  (14) 

Subject to, 

𝑍 ≥ ∑ (𝑢𝑖𝑑𝑖
−𝜔 + 𝑜𝑖𝑑𝑖

+𝜔)𝑛
𝑖=1  ∀𝜔 ∈ Ω (15) 

𝐶1
𝜔 = 𝑝1

𝜔 ∀𝜔 ∈ Ω (16) 

𝐶𝑖
𝜔 + 𝑑𝑖

−𝜔 − 𝑑𝑖
+𝜔 = 𝐴𝑖+1 ∀𝜔 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑛 (17) 

𝐶𝑖
𝜔 = 𝐶𝑖−1

𝜔 + 𝑑𝑖−1
−𝜔 + 𝑝𝑖

𝜔 ∀𝜔 ∈ 𝛺, 2 ≤ 𝑖 ≤ 𝑛 (18) 
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𝑑𝑖
+𝜔 ≤ 𝑥𝑖

𝜔 ∑ 𝑘𝑗
𝑛
𝑗=1  ∀𝜔 ∈ 𝛺, 1 ≤ 𝑖 ≤ 𝑛 (19) 

𝑑𝑖
−𝜔 ≤ (1 − 𝑥𝑖

𝜔) ∑ 𝑘𝑗
𝑛
𝑗=1  ∀ω ∈ Ω, 1 ≤ i ≤ n (20) 

𝐶𝑖
𝜔, 𝑑𝑖

−𝜔, 𝑑𝑖
+𝜔, 𝐴𝑖+1 ≥ 0 ∀𝜔 ∈ 𝛺, 1 ≤ 𝑖 ≤ 𝑛 (21) 

𝑥𝑖
𝜔 ∈ {0,1} ∀𝜔 ∈ 𝛺, 1 ≤ 𝑖 ≤ 𝑛  (22) 

Like Model 1, the objective function 14 minimizes 𝑍. Constraint 15 ensures that 𝑍 is the 

maximum underage and overage cost over all the scenarios. Constraint 16 sets the 

completion time in a scenario equal to the processing time in that scenario. This holds true 

for the first job because the first job starts at time 0; i.e., 𝐴1 = 0. Constraint 17 calculates 

the underutilization of the facility and overtime for each job in each scenario. Constraint 

18 calculates the completion time of the jobs other than the first job. Constraints 19 and 20 

replaces the nonlinear constraint 11 of Model 1 by binary variables and these two linear 

constraints. With these linear constraints, it is ensured that when 𝑑𝑖
−𝜔 > 0, 𝑑𝑖

+𝜔 = 0 and 

when 𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0. It means that both underage time and overage time do not happen 

at the same time for a job in a scenario. Constraint 21 is the non-negativity constraint. 

Constraint 22 defines the binary variables. 

 

4.3 Scenario Planning 

For structuring uncertainty of processing time in the model, at first interval scenario case 

for the processing time is considered, where processing time of a job can have any value 

within an interval range. It is considered because when jobs have a large number of 

processing time instances, it is more convenient to work with the range of the uncertain 

parameters rather than determining each instance individually. 

If processing time of job 𝑖 is 𝑝𝑖, we consider that the processing time instances of job 𝑖 fall 

within the range bounded by its extreme values, i.e. it’s lowest possible time, 𝑝𝑖 =  𝑙𝑖 and 

highest possible time, 𝑝𝑖 = 𝑘𝑖  or 𝑝𝑖  ∈  [𝑙𝑖, 𝑘𝑖]. Specifying processing time instances by 

their range implies an infinite set of total scenarios (the infinite set is denoted as Ω). As it 
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is mentioned earlier that for interval case scenario, the total scenario set Ω is the Cartesian 

product of all values within the intervals [𝑝𝑖, 𝑝𝑖], for 𝑖 = 1, 2, … , 𝑛, resulting in an infinite 

vector set Ω.  

 

4.3.1 Limiting to a Finite Scenario Set 

Even when processing times are specified as independent ranges for each job, attentions 

can be restricted to an appropriately selected, finite set of discrete scenarios to determine 

the worst-case scenario for any given schedule.  

Kouvelis and Yu, (2013) prove that for any sequence and given the makespan performance 

criteria, both for one machine flow shop and two machine flow shop problem with interval 

processing data, worst case scenario for robust scheduling belongs to the set of extreme 

point instances, i.e., the worst case scenario belongs to the set of extreme bounds of the 

uncertain processing times of each job. 

For the proposed Robust Appointment Scheduling model, it is proved that for interval 

processing time scenario, the worst case scenario belongs to the set of extreme points 

(proved in Proposition 3). Therefore, scenario realization is limited to the extreme points 

of the interval range without loss of optimality. As a result processing time instances for 

each job correspond to either of their extreme values only, i.e. lower and upper bounds, 

𝑝𝑖 = 𝑝𝑖  or 𝑝𝑖 = 𝑝𝑖 or  𝑝𝑖
𝜔∗

∈  {𝑙𝑖, 𝑘𝑖} . The total scenario set, Ω is the Cartesian product of 

only the extreme values of the intervals [ 𝑝𝑖, 𝑝𝑖 ] for 𝑖 = 1, 2, … , 𝑛. Therefore, for 𝑛 number 

of jobs each with two possible instances of processing time, there will be a total of 2𝑛 

number of scenarios. As a result, total scenario set 𝛺  is a finite vector set having 2𝑛 

scenarios. 
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4.3.2 Scenario Labelling 

An 𝑛 −digit binary number representation is used to label each scenario 𝜔 such that the 

𝑖 −th digit (from left) is 0 if processing time of job 𝑖 is equal to its lower limit, i.e. 𝑝𝑖
𝜔 = 𝑙𝑖 

and the 𝑖 −th digit (from left) is 1 if processing time of job 𝑖 is equal to its upper limit, i.e. 

𝑝𝑖
𝜔 = 𝑘𝑖, 𝑖 = 1, 2, … , 𝑛. 

For instance, for a 3-job scheduling problem, there is a total of 23 or 8 scenarios which is 

represented in Table 1 using the proposed binary representation approach.  

 

Table 1: Binary representation of scenarios for 3 jobs 

Scenarios Scenario label Job 1 Job 2 Job 3 

1 000 𝑝1
1  =  𝑙1 𝑝2

1  =  𝑙2 𝑝3
1  =  𝑙3 

2 001 𝑝1
2  =  𝑙1 𝑝2

2  =  𝑙2 𝑝3
2  =  𝑘3 

3 010 𝑝1
3  =  𝑙1 𝑝2

3  =  𝑘2 𝑝3
3  =  𝑙3 

4 011 𝑝1
4  =  𝑙1 𝑝2

4  =  𝑘2 𝑝3
4  =  𝑘3 

5 100 𝑝1
5  =  𝑘1 𝑝2

5  =  𝑙2 𝑝3
5  =  𝑙3 

6 101 𝑝1
6  =  𝑘1 𝑝2

6  =  𝑙2 𝑝3
6  =  𝑘3 

7 110 𝑝1
7  =  𝑘1 𝑝2

7  =  𝑘2 𝑝3
7  =  𝑙3 

8 111 𝑝1
8  =  𝑘1 𝑝2

8  =  𝑘2 𝑝3
8  =  𝑘3 

 

Here, scenario 7 or “110” corresponds to the following set of processing times: 

{𝑝1
7 = 𝑘1, 𝑝2

7 = 𝑘2, 𝑝3
7 = 𝑙3}. This means that in scenario 7 or “110”, processing time of 

job 1 is equal to its upper limit, 𝑘1, processing time of job 2 is equal to its upper limit, 𝑘2 

and processing time of job 3 is equal to its lower limit, 𝑙3 respectively. 

Figure 3 shows a tree representation of the scenarios for 3 jobs. For the 2 scenarios of job 

1, there are four corresponding scenarios for job 2 and 8 corresponding scenarios for job 

3.  
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Figure 3: Tree representation of scenarios for 3 jobs  

 

4.4 Illustrative Example 

In this section, two illustrative examples are provided to explain the implementation 

procedure, the scenario generation and the performance evaluation of the proposed robust 

model for appointment scheduling.   

Example 1: In Table 2, an illustrative example of Robust Appointment Scheduling 

problem for two jobs is presented. It contains the data of underage time, overage time, 

lower limit and upper time of the uncertain processing times for two jobs which need to be 

scheduled sequentially.  The processing times of the two jobs can have any value within 

its lower and upper limit given in the dataset. The objective is to provide an appointment 

schedule that will minimize the total underage and overage cost for the worst case scenario 

for any realization of the processing time instance.  
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Table 2: Data for Illustrative Example 1 

Job, 𝑖 Overage  

Cost,  

Underage  

Cost, 

Lower 

processing time, 

Upper 

processing time, 

 𝑜𝑖 𝑢𝑖 𝑙𝑖 𝑘𝑖 

1 1 2 5 7 

2 3 4 6 8 

 

Since there are 2 jobs to schedule, according to the scenario planning approach there is a 

total of 2𝑛or 22 or 4 scenarios (considering extreme scenario case) as shown in Table 3. 

 

Table 3: Total scenarios for 2 jobs in Example 1 

Scenarios Scenario label Job 1 Job 2 

1 00 𝑝1
1  =  𝑙1 = 5 𝑝2

1  =  𝑙2 = 6 

2 01 𝑝1
2  =  𝑙1 = 5 𝑝2

2  =  𝑘2 = 8 

3 10 𝑝1
3  =  𝑘1 = 7 𝑝2

3  =  𝑙2 = 6 

4 11 𝑝1
4  =  𝑘1=  7 𝑝2

4  =  𝑘2 = 8 

 

Xpress Optimizer 25.01.05, algebraic model language and optimizer (‘mmnl’ module) has 

been used to code the mathematical Model 2 (Mixed Integer Linear Programming) for 

solving the problem. The results found are presented in Table 4. 

 

Table 4: Results obtained for 2 jobs in Example 1 

Scenarios Job 1, Job 2, Cost Appointments, Objective, 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑐𝑖
𝜔 𝑑𝑖

−𝜔 𝑑𝑖
+𝜔 𝑐𝑖

𝜔  𝐴𝑖 𝑍 

1 1.33 0.00 5.00 0.00 0.67 12.33 6.10 𝐴1= 0, Z = 6.10 

2 0.86 0.00 5.00 0.19 0.00 14.33 6.10 𝐴2 = 6.33,  

3 1.33 0.00 7.00 0.00 0.67 13.00 1.43 𝐴3 = 13.19,  

4 0.00 1.14 7.00 0.00 1.81 15.00 6.10   

 

 

The optimal appointment dates are found to be 𝐴2 = 6.33, 𝐴3 = 13.19. The objective 

function value, 𝑍 = 6.1 means that the worst cost that may occur for any realization of the 
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processing time is 6.1. Figure 4 shows the cost for different scenarios. It can be seen that 

among the 4 scenarios, the worst cost is 6.1 as found from the objective function 𝑍. 

 

Figure 4: Total cost of different scenarios for 2 jobs 

 

Figure 5 and Figure 6 show the underage time and the overage time of job1 and job 2 

respectively for all 4 scenarios. It can be seen that both the underage time and the overage 

time do not occur at the same time for a job in a particular scenarios.    

 

 

Figure 5: Underage time and overage time of job 1 
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Figure 6: Underage time and overage time of job 2 

 

If the nonlinear constraint 11 is deleted from Model 1 or constraints 19 and 20 are deleted 

from Model 2, then the rest of the constraints do not ensure that when 𝑑𝑖
−𝜔 > 0, 𝑑𝑖

+𝜔 = 0 

and when 𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0. For proving that such deletion of constraints results in an 

incorrect solution with both 𝑑𝑖
+𝜔 > 0, and 𝑑𝑖

−𝜔 > 0 at the same time, Example 1 is solved 

again using Model 2 but this time deleting the constraints 19 and 20. The results obtained 

is shown in Table 5. 

 

Table 5: Results obtained for 2 jobs in Example 1 [without constraint (19) and (20)]  

Scenarios Job 1 Job 2 Cost Appointments Objective 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑐𝑖
𝜔 𝑑𝑖

−𝜔 𝑑𝑖
+𝜔 𝑐𝑖

𝜔  𝐴𝑖 𝑍 

1 2.33 1.00 5 0.00 0.00 12 5.67 𝐴1= 0, Z = 5.67 

2 1.33 0.00 5 0.00 1.00 14 5.67 𝐴2 = 6.33,  

3 0.00 0.67 7 0.33 0.00 13 2.00 𝐴3 = 13.33  

4 0.00 0.67 7 0.00 1.67 15 5.67   

 

 

Table 5 shows that when constraints 19 and 20 are deleted from Model 2, the rest of the 

model yield an incorrect optimal solution, 𝐴2 = 6.33,  𝐴3 = 13.33,  and 𝑍 = 5.67  with 

both  𝑑1
+𝜔 = 1 > 0 , and 𝑑1

−𝜔 = 2.33 > 0  for scenario 1, i.e. 𝜔: {𝑝1 = 5, 𝑝2 = 6} .This 

means that for job 1, both the underage time and the overage time happens at the same time 

in scenario 1, which cannot happen. Figure 7 explains this issue.  
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Figure 7: Underage time and overage time of job 1 in different scenarios 

 

However, as it has been shown previously in Table 4 and Figure 5 that, when constraints 

19 and 20 are used to ensure that when 𝑑𝑖
−𝜔 > 0, 𝑑𝑖

+𝜔 = 0 and when 𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0, 

Models 2 yield a correct optimal solution to Example 1, which is 𝐴2 = 6.33, 𝐴3 = 13.19, 

𝑍 = 6.10, and which gives 𝑑1
+𝜔 = 0, and 𝑑1

−𝜔 = 1.33 for scenario 1, i.e. 𝜔: {𝑝1 = 5, 𝑝2 =

6}. This proves that the underage time and the overage time do not occur at the same time 

for job 1 in scenario 1.  

Hence, it can be conclude that the nonlinear constraint 11 in Model 1 or the linear 

constraints 19 and 20 in Model 2 are required to be included to ensure correct solution. 

 

Example 2: In Table 6, we present another illustrative example of the Robust Appointment 

Scheduling problem. It contains the data of underage time, overage time, lower limit and 

upper time of the uncertain processing times for two jobs, which need to be scheduled 

sequentially.  The processing times of the two jobs can have any values within its lower 

and upper limit given in the dataset. The objective is to provide an appointment schedule 

that will minimize the total underage and overage cost for the worst case scenario for any 

realization of the processing time instance.  
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Table 6: Data for Illustrative Example 2 

Job, 𝑖 Overage  

cost  

Underage  

cost 

Lower 

processing time 

Upper 

processing time 

 𝑜𝑖 𝑢𝑖 𝑙𝑖 𝑘𝑖 

1 2 1 5 7 

2 3 4 6 8 

 

 

Since there are 2 jobs to schedule, according to the scenario planning approach there is a 

total of 2𝑛or 22 or 4 scenarios (considering extreme scenario case) as shown in Table 7. 

 

Table 7: Total scenarios for 2 jobs in Example 2 

Scenarios Scenario label Job 1 Job 2 

1 00 𝑝1
1  =  𝑙1 = 5 𝑝2

1  =  𝑙2 = 6 

2 01 𝑝1
2  =  𝑙1 = 5 𝑝2

2  =  𝑘2 = 8 

3 10 𝑝1
3  =  𝑘1 = 7 𝑝2

3  =  𝑙2 = 6 

4 11 𝑝1
4  =  𝑘 =  7 𝑝2

4  =  𝑘2 = 8 

 

 

Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) has 

been used to code the mathematical Model 2 (Mixed Integer Linear Programming) for 

solving the problem. The results found is presented in Table 8. 

 

Table 8: Results obtained for 2 jobs in Example 2 

Scenarios Job 1 Job 2 Cost Appointments Objective 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑐𝑖
𝜔 𝑑𝑖

−𝜔 𝑑𝑖
+𝜔 𝑐𝑖

𝜔  𝐴𝑖 𝑍 

1 1.67 0.00 5 0.00 0.33 12.67 5.10 𝐴1= 0, Z = 5.09 

2 0.86 0.00 5 0.52 0.00 14.67 5.10 𝐴2 = 6.67,  

3 1.67 0.00 7 0.00 0.33 13.00 2.76 𝐴3 = 13.52,  

4 0.00 1.14 7 0.00 1.48 15.00 5.10   

 

The optimal appointment dates are found to be 𝐴2 = 6.67, 𝐴3 = 13.52. The objective 

function value, 𝑍 = 5.09 means that the worst cost that may occur for any realization of 
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the processing time is 5.09. Figure 4.2 shows the cost for different scenarios. It is seen that 

among the 4 scenarios, the worst cost is 5.09 as found from the objective function 𝑍. 

 

 

Figure 8: Total cost of different scenarios for 2 jobs 

 

Figure 9 and Figure 10 show the underage time and the overage time of job1 and job 2 

respectively for all 4 scenarios. It can be seen that the underage time and the overage time 

do not occur at the same time for a job in a particular scenarios.    

 

 

Figure 9: Underage time and overage time of job1 in different scenarios 
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Figure 10: Underage time and overage time of job2 in different scenarios 

 

Now, for this example, it is shown that if the nonlinear constraint 11 is deleted from Model 

1 or constraints 19 and 20 are deleted from Model 2, then the rest of the constraints do not 

ensure that when 𝑑𝑖
−𝜔 > 0, 𝑑𝑖

+𝜔 = 0 and when 𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0. For proving that such 

deletion of constraints results in an incorrect solution with both 𝑑𝑖
+𝜔 > 0, and 𝑑𝑖

−𝜔 > 0 at 

the same time, Example 2 is solved again using Model 2 (Mixed Integer Linear 

Programming) but for this time, deleting the constraints 19 and 20. The results obtained is 

shown in Table 9. 

 

Table 9: Results obtained for 2 jobs in Example 2 [without constraint (19) and (20)]  

Scenarios Job 1 Job 2 Cost Appointments Objective 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑐𝑖
𝜔 𝑑𝑖

−𝜔 𝑑𝑖
+𝜔 𝑐𝑖

𝜔  𝐴𝑖 𝑍 

1 2.67 1.00 5.00 0.00 0.33 13.67 4.67 𝐴1= 0, Z = 4.67 

2 0.00 0.00 5.00 0.67 0.00 14.67 4.67 𝐴2 = 6.67,  

3 1.67 0.00 7.00 0.00 0.33 13.00 3.33 𝐴3 = 13.67  

4 0.00 1.00 7.00 0.00 1.33 15.00 4.67   

 

 

Table 9 shows that when constraints 19 and 20 are deleted from Model 2, the rest of the 

model yield an incorrect optimal solution, 𝐴2 = 6.67,  𝐴3 = 13.67,  and 𝑍 = 4.67  with 

both𝑑1
+𝜔 = 1 > 0, and 𝑑1

−𝜔 = 2.67 > 0 for scenario 1, i.e. 𝜔: {𝑝1 = 5, 𝑝2 = 6}. Meaning 
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that for job 1, both the underage time and the overage time happens at the same time in 

scenario 1. Figure 11 shows this result.  

 

 

Figure 11: Underage time and overage time of job 1 for different scenarios 

 

However, as shown in Table 8 and Figure 9, when constraints (19) and (20) are used to 

ensure that when 𝑑𝑖
−𝜔 > 0, 𝑑𝑖

+𝜔 = 0 and when 𝑑𝑖
+𝜔 > 0, 𝑑𝑖

−𝜔 = 0, Models 2 yields a 

correct optimal solution to Example 2, which is 𝐴2 = 6.67, 𝐴3 = 13.52, 𝑍 = 5.09, and 

which gives 𝑑1
+𝜔 = 0 , and 𝑑1

−𝜔 = 1.67  for scenario 1, i.e. 𝜔: {𝑝1 = 5, 𝑝2 = 6} . This 

proves that the underage time and the overage time do not occur at the same time for job 1 

in scenario 1.  

Hence it can be concluded that the nonlinear constraint 11 in Model 1 or the linear 

constraints 19 and 20 in Model 2 are required to be included to ensure correct solution. 

The illustrative example 1 and 2 contain different values of processing times for 

job 1 and jobs, however they reach to similar conclusion that the nonlinear constraint 11 in 

Model 1 or the linear constraints 19 and 20 in Model 2 are required to be included to ensure 

correct solution. Through these illustrative examples, the implementation procedure of the 

proposed robust model have been explained extensively.  
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4.5 Propositions 

In this section we provide propositions that support the Robust Appointment Scheduling 

model. 

Proposition 1: There exists an optimal solution {𝐴𝑗}, such that,   

𝐴𝑗 + 𝑙𝑗 ≤ 𝐴𝑗+1 ≤ 𝐴𝑗 + 𝑘𝑗 (23) 

Proof: Given an optimal solution {𝐴𝑗}, let 𝑗∗ be the first job that violates the condition.  

Case1: At first we will prove,  

𝐴𝑗 + 𝑙𝑗 ≤ 𝐴𝑗+1 (24) 

Let, 𝐴𝑗∗−1 + 𝑙𝑗∗−1 > 𝐴𝑗∗  and 𝐴′𝑗 = 𝐴𝑗∀𝑗 ≠ 𝑗∗ and 𝐴′𝑗∗ = 𝐴𝑗∗−1 + 𝑙𝑗∗−1. Also 𝐶𝑗
′ = 𝐶𝑗∀𝑗 <

𝑗∗ 

Now, 

𝐶𝑗∗
′ = 𝑚𝑎𝑥(𝐴𝑗∗

′ , 𝐶𝑗∗−1
′ ) + 𝑃𝑗∗ = 𝐶𝑗∗−1

′ + 𝑃𝑗∗  (∵ 𝐶𝑗∗−1
′ > 𝐴𝑗∗−1

′ + 𝑙𝑗∗−1 = 𝐴𝑗∗
′ ) (25) 

And, 

𝐶𝑗∗ = 𝑚𝑎𝑥(𝐴𝑗∗ , 𝐶𝑗∗−1) + 𝑃𝑗∗ = 𝐶𝑗∗−1 + 𝑃𝑗∗   

(∵ 𝐶𝑗∗−1 = 𝑚𝑎𝑥(𝐴𝑗∗−1, 𝐶𝑗∗−2) + 𝑃𝑗∗−1 ≥ 𝐴𝑗∗−1 + 𝑃𝑗∗−1 ≥ 𝐴𝑗∗−1 + 𝑙𝑗∗−1 ≥ 𝐴𝑗∗)  
(26) 

Now from (25) and (26), we can write, 

∴ 𝐶𝑗∗
′ = 𝐶𝑗∗ (27) 

All underage and overage costs are same in both the schedules except for job 𝑗∗ − 1.  

Overage cost of job 𝑗∗ − 1 in Schedule 𝐴 is (𝐶𝑗∗−1 − 𝐴𝑗∗)𝑜𝑗∗−1  

Overage cost of job 𝑗∗ − 1 in Schedule 𝐴′ is (𝐶𝑗∗−1
′ − 𝐴𝑗∗

′ )𝑜𝑗∗−1  

(𝐶𝑗∗−1 − 𝐴𝑗∗)𝑜𝑗∗−1 >  (𝐶𝑗∗−1
′ − 𝐴𝑗∗

′ )𝑜𝑗∗−1 (∵ 𝐴𝑗∗ <  𝐴𝑗∗
′  & 𝐶𝑗∗−1 = 𝐶𝑗∗−1

′ ) (28) 
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Overage cost of job 𝑗∗ − 1 is more in Schedule 𝐴 than in schedule 𝐴′ so the given schedule 

is not optimal. 

Case 2: Here we will prove, 

𝐴𝑗 + 𝑘𝑗 ≥ 𝐴𝑗+1 (29) 

Let, 𝐴𝑗∗−1 + 𝑘𝑗∗−1 < 𝐴𝑗∗ and 𝐴′𝑗 = 𝐴𝑗  ∀𝑗 < 𝑗∗ , 𝐴′𝑗∗ = 𝐴𝑗∗−1 + 𝑘𝑗∗  and 𝐴′𝑗∗+1 = 𝐴′𝑗∗ +

(𝐴𝑗∗+1 − 𝐴𝑗∗)∀𝑗 > 𝑗∗. Also, 𝐶𝑗
′ = 𝐶𝑗  ∀𝑗 < 𝑗∗. So, we can write, 

𝐶′𝑗∗ − 𝐴𝑗∗+1
′ = 𝐶𝑗∗ − 𝐴𝑗∗+1∀𝑗 ≥ 𝑗∗  (30) 

𝐴′𝑗∗ = 𝐴𝑗∗−1 + 𝑘𝑗∗ < 𝐴𝑗∗   (31) 

All underage and overage costs are same in both the schedules except for job 𝑗∗ − 1. 

Underage cost of job 𝑗∗ − 1 in Schedule 𝐴 is (𝐴𝑗∗ − 𝐶𝑗∗−1)𝑢𝑗∗−1 

Underage cost of job 𝑗∗ − 1 in Schedule 𝐴′ is (𝐴𝑗∗
′ − 𝐶𝑗∗−1

′ )𝑢𝑗∗−1 

Hence, 

(𝐴𝑗∗ − 𝐶𝑗∗−1)𝑢𝑗∗−1 > (𝐴𝑗∗
′ − 𝐶𝑗∗−1

′ )𝑢𝑗∗−1 (∵ 𝐶𝑗∗−1 = 𝐶𝑗∗−1
′  & 𝐴𝑗∗ > 𝐴𝑗∗

′ ) (32) 

Underage cost of job 𝑗∗ − 1  is more in Schedule 𝐴  than in schedule 𝐴′ so the given 

schedule is not optimal. 

 

Proposition 2: If 𝑛 = 1, an optimal solution is given by, 

𝐴2
∗ =

𝑢1𝑙1+𝑜1𝑘1

𝑢1+𝑜1
  (33) 

with, 

𝑍∗ =
𝑢1𝑜1

𝑢1+𝑜1
(𝑘1 − 𝑙1)  (34) 
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Proof: The underage and overage cost is given by the functions (𝐴2 − 𝑙1)𝑢1  and 

(𝑘1 − 𝐴2)𝑜1 respectively. Total cost is minimized if underage cost is equal to the overage 

cost. So,  

(𝐴2 − 𝑙1)𝑢1 = (𝑘1 − 𝐴2)𝑜1  (35) 

∴ 𝐴2
∗ =

𝑢1𝑙1+𝑜1𝑘1

𝑢1+𝑜1
  (36) 

Substituting optimal appointment time in underage or overage cost gives the total cost, 

𝑍∗ = (
𝑢1𝑙1+𝑜1𝑘1

𝑢1+𝑜1
− 𝑙1) 𝑢1 = (

𝑢1𝑙1+𝑜1𝑘1−𝑙1𝑢1−𝑙1𝑜1

𝑢1+𝑜1
) 𝑢1 =

𝑢1𝑜1

𝑢1+𝑜1
(𝑘1 − 𝑙1)  (37) 

 

Proposition 3: There exists an optimal solution{𝐴𝑗}, and a scenario 𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜔𝑓(𝜔) 

such that 𝑝𝑗
𝜔∗

∈ {𝑙𝑗 , 𝑘𝑗}∀𝑗 ≤ 𝑛. 

Proof: The case of 𝑛 = 1 is proven by Proposition 2. 

 Let 𝑛 ≥ 2. We shall show that there exists an optimal solution {𝐴𝑗} such that for any 

scenario 𝜔 such that 𝑙𝑗 ≤ 𝑝𝑗
𝜔 ≤ 𝑘𝑗, 

𝑓{𝐴𝑗} (𝜔)  ≤ 𝑚𝑎𝑥 {𝑓{𝐴𝑗} (𝜔∗|𝑝𝑗
𝜔∗

∈ {𝑙𝑗, 𝑘𝑗})} (38) 

If this is not true, consider a scenario 𝜔 such that 𝑙𝑗 < 𝑝𝑗
𝜔 < 𝑘𝑗 for at least one job 𝑗 and 

for this scenario𝜔, 

𝑓{𝐴𝑗} (𝜔) ≥ 𝑚𝑎𝑥 {𝑓{𝐴𝑗} (𝜔′| 𝑙𝑗 < 𝑝𝑗
𝜔 < 𝑘𝑗 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗𝑜𝑏 𝑗)} >

𝑚𝑎𝑥 {𝑓{𝐴𝑗} (𝜔∗|𝑝𝑗
𝜔∗

∈ {𝑙𝑗, 𝑘𝑗})}  

(39) 

Let job 𝑖 be the least indexed job with processing time neither minimum nor maximum. 

That is,  𝑖 = 𝑚𝑖𝑛{ 𝑗 | 𝑙𝑗 < 𝑝𝑗
𝜔 < 𝑘𝑗  } . If  𝑑𝑖

−𝜔 > 0 , then for 𝜔′  with 𝑝𝑗
𝜔′ = 𝑝𝑗

𝜔∀𝑗 ≠ 𝑖 

and 𝑝𝑖
𝜔′ = 𝑙𝑖, we get f{Aj} (𝜔) < f{Aj} (𝜔′). Therefore, 𝑑𝑖

−𝜔 = 0 and 𝑑𝑖
+𝜔 ≥ 0. 
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If 𝑑𝑗
−𝜔 = 0 and 𝑑𝑗

+𝜔 ≥ 0 ∀𝑗 > 𝑖, then for 𝜔′  with 𝑝𝑗
𝜔′ = 𝑝𝑗

𝜔∀𝑗 ≠ 𝑖  and  𝑝𝑖
𝜔′ = 𝑘𝑖 , we 

get f{Aj} (𝜔) < f{Aj} (𝜔′).  

Therefore, there exists a job 𝑖′ > 𝑖 such that 𝑑𝑖′
−𝜔 > 0, 𝑑𝑖′

+𝜔 = 0 and ∀𝑖 ≤ 𝑗 < 𝑖′, 𝑑𝑗
−𝜔 =

0 and 𝑑𝑗
+𝜔 ≥ 0. 

If ∑ 𝑜𝑗
𝑖′−1
𝑗=𝑖 > 𝑢𝑖′, the 𝜀 −perturbation gives a scenario 𝜔′ with 𝑝𝑗

𝜔′ = 𝑝𝑗
𝜔∀𝑗 ≠ 𝑖 and 𝑝𝑖

𝜔′ =

𝑝𝑖
𝜔 + 𝜀 for some small 𝜀 > 0 such that 𝑓{𝐴𝑗} (𝜔) < 𝑓{𝐴𝑗} (𝜔′). Therefore, ∑ 𝑜𝑗

𝑖′−1
𝑗=𝑖 < 𝑢𝑖 . 

Now consider scenario 𝜔′ with 𝑝𝑗
𝜔′ = 𝑝𝑗

𝜔∀𝑗 < 𝑖,  𝑝𝑗
𝜔′ = 𝑙𝑗 ∀𝑖 ≤ 𝑗 ≤ 𝑖′, and 𝑝𝑗

𝜔′ = 𝑝𝑗
𝜔∀𝑗 >

𝑖′. We have f{Aj} (𝜔) ≤ f{Aj} (𝜔′). Which is a contradiction of (39). 

 

4.6 Stochastic Programming Approach of the Robust Model 

It is possible to formulate the appointment scheduling problem using the stochastic 

programming approach. For that, it is assumed that the processing durations are discrete 

and stochastically independent for each job, which is followed similarly by Begen and 

Queyranne, (2011). This leads to a discrete time version of the appointment scheduling 

problem. In this study, they incorporate the joint discrete distribution of the processing 

time. They also assume that this joint distribution is known to the decision maker. The 

objective of the stochastic programming approach is to minimize the total expected cost of 

all the scenarios for a given processing sequence.  

 

4.6.1 Problem Formulation 

In this section, the appointment scheduling problem is formulated using the stochastic 

programming approach. There are 𝑛 jobs that need to be scheduled on a single processor. 

Let, { 1, 2, 3, … , 𝑛 + 1 }  denote the set of jobs. The 𝑛 + 1𝑠𝑡  job is a dummy job with 

processing duration equal to 0. The random processing duration of job 𝑖 is denoted by 𝑝𝑖𝑗 

where 𝑗 indicates the uncertain instance of job 𝑖.Hence, the random vector of processing 
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duration is, 𝒑 = (𝑝11, 𝑝12, . . . , 𝑝1𝑗, 𝑝21, 𝑝22, . . . . . , 𝑝2𝑗, . . . . , 𝑝𝑛𝑗 , 0). Let 𝑝𝑖𝑗  and 𝑝𝑖𝑗  denote 

the maximum and minimum possible value of processing duration of job 𝑖 respectively, 

over all the instances of job 𝑖. For stochastic programming, the total scenario set Ω will 

have 𝑚 𝑛  number of scenarios, where 𝑚  denotes the total number of the uncertain 

instances for a job and 𝑛 denotes the total number of jobs to schedule.  

Now, the objective is to minimize the total expected cost of all the scenarios. Therefore, 

the objective function is expressed as follows: 

∑ ∑ 𝐸𝑝 [𝑢𝑖𝑑𝑖
−𝜔 + 𝑜𝑖𝑑𝑖

+𝜔]𝑛
𝑖=1  𝜔∈𝛺   (40) 

Let, 𝐸𝑝 is the expected probability with respect to the random processing duration vector 𝒑. 

The rest of the constraints will be same as the Nonlinear model (Model 1) or the Mixed 

Integer Linear Programming model (Model 2). 

 

4.6.2 Comparison of Stochastic Programming model and Robust Model 

In Table 10, an illustrative example of the stochastic programming approach for the 

appointment scheduling problem is presented. It contains the data of underage time, 

overage time and the uncertain processing time instances for two jobs which need to be 

scheduled sequentially.  There are three processing time instances for each of the two jobs. 

Since there are two jobs to schedule so, 𝑛 = 2, and each job has three uncertain instances 

so, 𝑚 = 3. The random processing vector is, 𝐩 = (𝑝11, 𝑝12, 𝑝13, 𝑝21, 𝑝22, 𝑝23). Since each 

job has three uncertain instances, there is a total of 𝑚𝑛 scenarios, i.e. for this example, 

32 = 9 scenarios as presented in Table 11. Processing time of a job can have only the 

values given in the dataset. The objective is to provide an appointment schedule that will 

minimize the total expected underage and overage cost of all the scenarios for the given 

processing time instances.  

 

 



 

42 
 

Table 10: Dataset for an Illustrative example of Stochastic Programming approach 

Job, 𝑖 Overage cost, Underage cost, Processing time instances, 

 𝑜𝑖 𝑢𝑖 𝑗 =  1 𝑗 = 2 𝑗 = 3 

1 2 1 5 6 9 

2 3 4 7 8 11 

 

Now, by assuming that the three instances of each job are equally likely to happen, the joint 

probability distribution can be obtained as shown in Table 11. Some studies assume that 

this joint probability distribution is known to the decision makers. 

 

Table 11: Joint probability distribution of processing times for two jobs  

Scenarios Job 1 Job 2 Joint Probability Distribution 

1 𝑝11 = 5 𝑝21 = 7 1

3
 ∗  

1

3
 =  

1

9
  

2 𝑝11 = 5 𝑝22 =  8 1

3
 ∗  

1

3
 =  

1

9
  

3 𝑝11 = 5  𝑝23 = 11 1

3
 ∗  

1

3
 =  

1

9
  

4 𝑝12 = 6 𝑝21 = 7 1

3
 ∗  

1

3
 =  

1

9
  

5 𝑝12 = 6 𝑝22 = 8 1

3
 ∗  

1

3
 =  

1

9
  

6 𝑝12 = 6 𝑝23 = 11 1

3
 ∗  

1

3
 =  

1

9
  

7 𝑝13 = 9 𝑝21 = 7 1

3
 ∗  

1

3
 =  

1

9
  

8 𝑝13 = 9 𝑝22 = 8 1

3
 ∗  

1

3
 =  

1

9
  

9 𝑝13 = 9 𝑝23 = 11 1

3
 ∗  

1

3
 =  

1

9
  

  Total 1 

 

Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) has 

been used to code the stochastic programming approach of the appointment scheduling 

problem. The result found is presented in Table 12. 
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Table 12: Results obtained for Stochastic Programming approach  

Scenarios Job 1 Job 2 Expected Scenario Appointments Objective 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 Cost Cost 𝐴𝑖 𝑍 

1 1.00 0.00 1.00 0.00 0.66 6 𝐴1= 0, 

𝐴2 = 6, 

𝐴3 = 14, 

𝑍 = 6.6 

2 1.00 0.00 0.00 0.00 0.22 2 

3 1.00 0.00 1.00 0.00 0.66 6 

4 0.00 0.00 0.00 0.00 0 0 

5 0.00 0.00 1.00 0.00 0.44 4 

6 0.00 0.00 0.00 0.00 0 0 

7 0.00 3.00 0.00 2.00 0.99 9 

8 0.00 3.00 0.00 3.00 1.32 12 

9 0.00 3.00 0.00 6.00 2.31 21 

 

 

It is shown in Table 12 that the total scenario set Ω now have 9 scenarios. The objective 

value, 𝑍 = 6.6 indicates the minimum expected cost of all 9 scenarios.  

 

Next the proposed Mixed Integer Linear Programming model (Model 2) for performing 

Robust Appointment Scheduling is applied on the same dataset and then the obtained result 

is compared with the results found from the Stochastic Programming approach. Since for 

the proposed robust model only the extreme point instances of the processing times are 

considered for each job, the total scenario set Ω will contain a total of 2 𝑛 scenarios or 2 2 

or 4 scenarios as presented in Table 14. 

 

Table 13: Dataset for applying Robust Appointment Scheduling model 

Job, 𝑖 Overage cost Underage cost Processing time instances 

 𝑜𝑖 𝑢𝑖  𝑗 = 1 = 𝑙𝑖 𝑗 = 3 = 𝑘𝑖  

1 2 1 5 9 

2 3 4 7 11 

 

Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) has 

been used to code the robust model of the appointment scheduling problem. The result 

found is presented in Table 14. 

 



 

44 
 

Table 14: Results obtained for Robust Appointment Scheduling 

Scenarios Job 1 Job 2 Scenario Appointments Objective 

 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 𝑑𝑖
−𝜔 𝑑𝑖

+𝜔 Cost 𝐴𝑖 𝑍 

1 2.67 0.00 0.00 0.00 12.1905 𝐴1 = 0, 

𝐴2 = 7.67, 

𝐴3 = 16.38, 

𝑍 = 12.1905 

2 2.67 0.00 0.00 0.00 12.1905 

3 0.00 0.00 1.33 0.00 2.85714 

4 0.00 0.00 1.33 0.00 12.1905 

 

By comparing the results, it can be seen that for the stochastic model, the worst cost is for 

scenario 9 i.e. 𝜔 ∶  {𝑝1 = 9,  𝑝2 = 11} with 𝐴2 = 6, 𝐴3 = 14, 𝑍 = 6.6, and which, gives 

underage time for Job 1, 𝑑1
+𝜔 = 3, and overage time for Job 2, 𝑑2

+𝜔 = 6 and the worst cost 

is 21. Whereas for the robust model, the same scenario 9 i.e. 𝜔 ∶  {𝑝1 = 9, 𝑝2 =

11} constitutes the worst cost which is only 12.1905 with 𝐴2 = 7.67, 𝐴3 = 16.38, 𝑍 =

12.1905, and underage time for Job 1, 𝑑1
−𝜔 = 0,overage time for Job 2, 𝑑2

−𝜔 = 1.33. 

Although for the stochastic model the scenarios are assumed to be equally likely to happen, 

the worst cost is 21 whereas for robust model it is only 12.1905. Figure 4.9 shows the 

comparison of total costs in each scenario between robust model and stochastic 

programming model.  

From the comparison between the robust model and the stochastic programming model, 

conclusions can be drawn saying that for the robust model, the worst cost is much less than 

that of the stochastic programming model, although the expected cost can be less for 

stochastic programming model compared to the robust model. However, considering the 

better computations efforts, eliminating the negative impacts of the lack of information 

regarding uncertainty and ability to provide better results for low probable scenarios with 

high impacts, the proposed robust model provides greater merits than the stochastic 

programming model.  

 

 

 



 

45 
 

 

Figure 12: Comparison of cost between Robust Model and Stochastic Programming Model  

 

4.6.3 Summary of the Comparison 

From the above analysis, it can be summarized that for the stochastic programming 

approach, the greater the number of uncertain instances, the more is the number of total 

scenarios, i.e. Ω will have a total of 𝑚 
𝑛

 number of scenarios. Computational complexity 

also increases as the number of scenarios increase. On the other hand, for the robust model, 

the total number of scenario is 2 
𝑛

, considering that the optimal solution corresponds to the 

extreme case scenarios for appointment scheduling of jobs with a single processor. As a 

result computational complexity is much less for the robust model than the stochastic 

model.  

The worst cost for robust model is significantly lower than the worst cost found for 

stochastic model. Because the objective of robust model is to minimize the worst cost 

whereas the objective of stochastic model is to minimize the total expected cost of all the 

scenarios. 

It is more difficult to find the joint probability distribution for applying stochastic 

programming than to find the extreme two bounds of the uncertain processing duration for 

applying robust model. Moreover, some studies assume that this joint probability 
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distribution is known to the decision makers (Begen and Queyranne, 2011) which may not 

hold true in real practice.   

4.7 Special Cases  

In this section, special cases of the appointment scheduling problem that might arise while 

considering real world application are discussed. 

 

4.7.1 Underage Cost is Infinitely Greater than the Overage Cost 

There can be cases where the underage cost of each jobs tend to be infinity greater 

compared to the overage cost of the jobs. This situation can arise when the processor and 

the resources are more important than the customers. As a result the cost of the system is 

much higher than the customers’ time. In such a case, the optimal appointment dates will 

be equal to the sum of the lower bounds of the processing times. The cost of such a schedule 

will be zero for any realization of the processing times. This is because, since appointment 

dates are set to the lower limit of the processing times, there will be no job subjected to 

underage time and so no underage cost will incur. Also since the overage cost tends to zero, 

the total cost of the schedule will be zero.  If 𝑜𝑖 ≈  0 and 𝑢𝑖  ≈ ∞, then 𝐴𝑖 = ∑ 𝑙𝑖 
𝑛
𝑖 =1

. 

Table 15 shows an illustrative example of this case. Here, the overage cost of all the jobs 

are equal to 0 and the underage costs of all the jobs tend to infinity compared to the overage 

costs. Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) 

is used to code the mathematical Model 2 (Mixed Integer Linear Programming) for solving 

the problem.  

 

Table 15: Data for an illustrative example of the special case (underage cost tend to infinity)  

Job, 𝑖 Overage  

Cost,  

Underage  

Cost, 

Lower 

processing time, 

Upper 

processing time, 

 𝑜𝑖 𝑢𝑖 𝑙𝑖 𝑘𝑖 

1 0 999999 5 6 

2 0 999999 7 8 

3 0 999999 9 11 
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The result found is presented in Table16. The optimal appointment dates are found to 

be 𝐴2 = 5, 𝐴3 = 12, 𝐴4 = 21. These appointment dates are actually the sum of the lower 

bounds of the processing times. The objective function value, 𝑍 = 0, means that the worst 

cost that may occur for this schedule for any realization of the processing time is 0. It can 

be seen that for all the extreme scenarios, the cost is equal to 0 as found from the objective 

function 𝑍. 

 

Table 16: Results obtained for the special case (underage cost tend to infinity) 

Scenarios Job 1, Job 2, Job 3, Cost Appointment, Objective, 

 𝑝1
𝜔 𝑝2

𝜔 𝑝3
𝜔  𝐴𝑖 𝑍 

1 5 7 9 0 𝐴1= 0, 𝑍 = 0 

2 5 7 11 0 𝐴2 = 5,  

3 5 8 9 0 𝐴3 = 12,  

4 5 8 11 0 𝐴4 = 21  

5 6 7 9 0   

6 6 7 11 0   

7 6 8 9 0   

8 6 8 11 0   

 

 

4.7.2 Overage Cost is Infinitely Greater than the Underage Cost 

There can be cases where the overage cost of each jobs tend to be infinitely higher 

compared to the underage cost of the jobs. This situation can arise when the processor and 

the resources are less important than the customers. As a result, the cost of the customers’ 

time is much higher than the cost of the system. In such a case, the optimal appointment 

dates will be equal to the sum of the upper bounds of the processing times. The cost of such 

a schedule will be zero for any realization of the processing times. This is because, since 

appointment dates are set at the upper limits of the processing times, there will not be any 

job subjected to overage time and so no overage cost will incur. Also, since the underage 
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cost tend to zero, the total cost of the schedule will be zero for all scenarios.  If 𝑢𝑖 ≈

 0 and 𝑜𝑖  ≈ ∞, then 𝐴𝑖 = ∑ 𝑘𝑖  𝑛
𝑖 =1

. 

 

Table 17: Data for an illustrative example of the special case (overage cost tend to infinity) 

Job, 𝑖 Overage  

Cost,  

Underage  

Cost, 

Lower 

processing time, 

Upper 

processing time, 

 𝑜𝑖 𝑢𝑖 𝑙𝑖 𝑘𝑖 

1 999999 0 5 6 

2 999999 0 7 8 

3 999999 0 9 11 

 

Table 17 shows an illustrative example of this case. Here, the underage cost of all the jobs 

are equal to 0 and the overage costs of all the jobs tend to infinity compared to the underage 

costs. Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) 

is used to code the mathematical Model 2 (Mixed Integer Linear Programming) for solving 

the problem.  

 

Table 18: Results obtained for the special case (overage cost tend to infinity) 

Scenarios Job 1, Job 2, Job 3, Cost Appointment, Objective, 

 𝑝1
𝜔 𝑝2

𝜔 𝑝3
𝜔  𝐴𝑖 𝑍 

1 5 7 9 0 𝐴1= 0, 𝑍 = 0 

2 5 7 11 0 𝐴2 = 6,  

3 5 8 9 0 𝐴3 = 14,  

4 5 8 11 0 𝐴4 = 25  

5 6 7 9 0   

6 6 7 11 0   

7 6 8 9 0   

8 6 8 11 0   

 

The result found is presented in Table 18. The optimal appointment dates are found to 

be 𝐴2 = 6, 𝐴3 = 14, 𝐴4 = 25. These appointment dates are equal to the sum of the upper 

bounds of the processing times. The objective function value, 𝑍 = 0, means that the worst 

cost that may occur for any realization of the processing time is 0. It is seen that for all the 

extreme scenarios, the cost is equal to 0 as found from the objective function 𝑍. 
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CHAPTER 5 

SOLUTION PROCEDURE 

Scheduling problem is known to be NP-complete (Ullman, 1975). Since Model 1 

(Nonlinear Programming) and Model 2 (Mixed Integer Linear Programming) for the 

proposed Robust Appointment Scheduling increases in an order of 2 
𝑛

 (considering the 

extreme scenario cases), it results in an NP-hard problem. Therefore, a polynomial time 

solution procedure for solving the larger instances of the problem is proposed. An Iterative 

Search Procedure and a Dynamic Programming model are developed to solve the larger 

instances of the Robust Appointment Scheduling model.  

 

5.1 Iterative Search Procedure 

The objective of Min-max optimization is to minimize the maximum cost among all the 

potential realizable scenarios. Considering that, in Iterative Search Procedure, initially any 

random scenario is taken and it is added to the initial scenario set. Then the scenarios that 

constitute the worst case scenarios (the scenarios for which the cost is found to be 

maximum) are iteratively added to the total scenario set. Then the robust model is applied 

to optimize those scenarios in the scenario set. This iterative procedure is continued until 

an appointment schedule is obtained for which there are no more worst case scenario left 

to be added in the total scenario set. The steps for this Iterative Search Procedure are 

explained below: 

1. Consider any random scenario ω ∈ Ω. This can be done by generating 𝑛 random 

numbers 0 or 1; 𝑝𝑖
𝜔 = 𝑙𝑖, if the 𝑖 −th random number is 0 and 𝑝𝑖

𝜔 = 𝑘𝑖, if the 𝑖 −th 

random number is 1. Let Ω0 = {ω}. This is the initial scenario set. 

2. Let 𝐴1 = 0, 𝐴𝑗+1 = ∑ 𝑝𝑖
𝜔𝑗

𝑖=1 ∀ 𝑗 ≥ 1 

3. Find worst scenario  ω′ ∈ Ω  (using Dynamic Programming model explained in 

section 5.2). Replace Ω0 by Ω0 ∪ {ω} by adding this worst scenario to the scenario 

set. 
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4. Revise appointment schedule {𝐴𝑗} using Model 2 ∀ ω ∈ Ω0. 

5. Go to step 3 if termination condition is not met, else stop.  

 

Termination condition may be considered as a pre-specified maximum number of scenarios 

to be added in the scenario set. Termination can also be done considering convergence to 

an appointment schedule. For instance, the iterative search process can be terminated at an 

appointment schedule for which there are no worst case scenarios left to add to the scenario 

set. Which would mean that a solution is achieved that minimizes the maximum cost for 

all the scenarios. This indicates that for all the other scenarios, even the scenarios which 

have not been added in the scenario list, this current solution (found in this last iteration 

where the search process is terminated) gives lower cost and there is no worst case 

scenarios to add further to the scenario list.  

Figure 13 exhibits the flowchart for the Iterative Search Procedure. In the next section, a 

Dynamic Programming model is proposed to calculate the worst cost among all the 

scenarios given an appointment schedule. 
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Figure 13: Flowchart of the Iterative Search Procedure 

 

No 

Yes 

Termination 

Criteria 

Initial Scenario Set: Consider any random scenario 𝜔 ∈ 𝛺, which can be done 

by generating 𝑛 random numbers 0 or 1; 𝑝𝑖
𝜔 = 𝑙𝑖, if the 𝑖 −th random number 

is 0 and 𝑝𝑖
𝜔 = 𝑘𝑖, if the 𝑖 −th random number is 1. Let 𝛺0 = {𝜔}.  

Updated Appointment Schedule: Revise appointment schedule {𝐴𝑗} using 

Model 2 ∀ ω ∈ Ω0. 

 

Updated Scenario Set: Find worst scenario ω′ ∈ Ω  using the Dynamic 

Programming model. Replace Ω0 by Ω0 ∪ {ω}. 

 

Initial Appointment Schedule: Let 𝐴1 = 0, 𝐴𝑗+1 = ∑ 𝑝𝑖
𝜔𝑗

𝑖=1 ∀𝑗 ≥ 1  

 Start 

Start End 
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5.2 Finding the Worst Case Scenario Given an Appointment Schedule 

 

For applying Iterative Search Procedure, in step 3, it is required to find the worst case 

scenario for a particular appointment schedule among all the scenarios in the total scenario 

set. A worst case scenario is the scenario for which the cost is maximum among all the 

other potentially realizable scenarios. Given an appointment schedule, finding the worst 

case scenario follows an exponential time computation process. Therefore, a Dynamic 

programming model is proposed which would allow to find the worst case scenario in 

𝑂(𝑛2) time. 

 

5.2.1 Finding Worst Case Scenario in Exponential Time 

Given an appointment schedule {𝐴𝑗  | 𝑗 = 1,2, … , 𝑛 + 1, 𝐴1 = 0}  and given 

parameters  𝑜𝑗 , 𝑢𝑗 , 𝑙𝑗  and 𝑘𝑗  ∀𝑗 = 1,2, . . 𝑛 , it is possible to find the worst case scenario 

among the total scenarios. For that, at first the completion time of all the jobs in all the 

scenarios is calculated using the following equation,  

𝐶𝑖
𝜔 = 𝑝𝑖

𝜔 𝑓𝑜𝑟 𝑖 = 1 𝑎𝑛𝑑 𝐶𝑖
𝜔 =  𝑚𝑎𝑥(𝐶𝑖−1

𝜔 , 𝐴𝑖) + 𝑝𝑖
𝜔 ∀𝜔 ∈ 𝛺, 2 ≤ 𝑖 ≤ 𝑛 + 1  (41) 

Then for a given appointment schedule {𝐴𝑖  | 𝑖 = 1,2, … , 𝑛 + 1, 𝐴1 = 0}, the cost incurred 

for job 𝑖 is calculated using Equation 42 or Equation 43, 

𝑐𝑜𝑠𝑡𝑖
𝜔 = ( 𝐴𝑖+1  − 𝐶𝑖

𝜔) ∗  𝑢𝑖 ∀𝜔 ∈ 𝛺, ∀ 1 ≤ 𝑖 ≤ 𝑛 | 𝐴𝑖+1 > 𝐶𝑖
𝜔    (42) 

 
𝑐𝑜𝑠𝑡𝑖

𝜔 = ( 𝐶𝑖
𝜔 −  𝐴𝑖+1) ∗  𝑜𝑖  ∀𝜔 ∈ 𝛺, ∀ 1 ≤ 𝑖 ≤ 𝑛, | 𝐶𝑖

𝜔 > 𝐴𝑖+1  (43) 

Next, the total cost of a scenario is found by adding the costs incurred for all jobs in that 

scenario as shown in Equation 44, 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝜔 =  ∑ 𝑐𝑜𝑠𝑡𝑖
𝜔𝑛

𝑖=1   ∀𝜔 ∈ 𝛺, 1 ≤ 𝑖 ≤ 𝑛 (44) 

In this approach, it is required to calculate the cost of all the scenarios and then to choose 

the maximum cost among all the scenarios for finding the worst case scenario for a 
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particular schedule. Now, since there is a total number of 2𝑛 scenarios, cost is calculated 

for 2𝑛 scenarios resulting in an exponential time computation process. 

5.2.2 Dynamic Programming Model for Finding Worst Case Scenario 

The idea of the Dynamic programming is to solve a recursive problem where at each step 

the solution of the subproblem is computed and stored for future decision making process. 

By the time the last level is solved, the result of the total problem is achieved. 

The objective of the proposed Dynamic Programming model is to find the scenario that 

maximizes the total overage and underage cost for a given appointment schedule 

{𝐴𝑗  | 𝑗 = 1,2, … , 𝑛 + 1, 𝐴1 = 0}  and given parameters 𝑜𝑗 , 𝑢𝑗 , 𝑙𝑗 , and 𝑘𝑗  ∀𝑗 = 1,2, . . 𝑛.  

In this approach, the costs incurred for one job in all the different scenarios are calculated 

one at a time before moving on to the next job to repeat the process. Here, each level 

corresponds to each job and the calculation of a level only depends on its immediate 

previous level. For each job, the costs occurring for different scenarios are calculated along 

with the total cost incurred up to that level as the process continues to move further. By the 

time the calculation for the last job is completed, the solution of the total problem is also 

achieved. 

The dynamic program contains nodes and arcs to represent feasible scenarios. For each 

job 𝑖, there are nodes (𝑖, 1), (𝑖, 2), … , (𝑖, 𝑖). Node (𝑖, 1) represents the start time of job 𝑖 

at 𝐴𝑖.  Node (𝑖, 2) represents the start time of job 𝑖 at 𝐴𝑖−1 + 𝑘𝑖−1.  Node (𝑖, 3) represents 

the start time of job 𝑖  at 𝐴𝑖−2 + 𝑘𝑖−2 + 𝑘𝑖−1 . In general, node  (𝑖, 𝑟), where  1 < 𝑟 ≤ 𝑖 , 

represents the start time of job 𝑖 at 𝐴𝑖−𝑟+1 + 𝑘𝑖−𝑟+1 + 𝑘𝑖−𝑟+2 + ⋯ + 𝑘𝑖−1.  

Each node (𝑖, 𝑟) ∀ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑟 ≤ 𝑖  is connected to two nodes (𝑖 + 1,1)  and (𝑖 +

1, 𝑟 + 1) via two arcs [𝑖, 𝑟, 𝑖 + 1,1] and [𝑖, 𝑟, 𝑖 + 1, 𝑟 + 1]. 

The cost of arc [𝑖, 𝑟, 𝑖 + 1,1] is given by the cost of 𝑙𝑖 starting at time represented by node 

(𝑖, 𝑟) and it is computed as Equation 45, 

𝑐[𝑖, 𝑟, 𝑖 + 1,1] = 𝑑𝑖
−𝑢𝑖 = {

(𝐴𝑖+1 − 𝐴𝑖 − 𝑙𝑖)𝑢𝑖 

(𝐴𝑖+1 − 𝐴𝑖−𝑟+1 − 𝑘𝑖−𝑟+1 − ⋯ − 𝑘𝑖−1 − 𝑙𝑖)𝑢𝑖

𝑖𝑓 𝑟 =  1

𝑖𝑓 𝑟 >  1
 

(45) 



 

54 
 

The cost of arc [𝑖, 𝑟, 𝑖 + 1, 𝑟 + 1] is given by the cost of 𝑘𝑖 starting at time represented by 

node (𝑖, 𝑟) and it is computed as Equation 46, 

𝑐[𝑖, 𝑟, 𝑖 + 1, 𝑟 + 1] = 𝑑𝑖
+𝑜𝑖 = {

(𝐴𝑖 + 𝑘𝑖 − 𝐴𝑖+1)𝑜𝑖 

(𝐴𝑖−𝑟+1 + 𝑘𝑖−𝑟+1 + ⋯ + 𝑘𝑖 − 𝐴𝑖+1)𝑜𝑖

𝑖𝑓 𝑟 =  1

𝑖𝑓 𝑟 >  1
 

(46) 

 Initialize 𝐺(1,1) = 0. For each,  𝑖 = 2,3, … , (𝑛 + 1) we compute Equation 47 and 48, 

𝐺(𝑖, 1) = 𝑚𝑎𝑥{𝐺(𝑖 − 1, 𝑟) + 𝑐[𝑖 − 1, 𝑟, 𝑖, 1]|1 ≤ 𝑟 ≤ 𝑖 − 1}  (47) 

𝐺(𝑖, 𝑟) = 𝐺(𝑖 − 1, 𝑟 − 1) + 𝑐[𝑖 − 1, 𝑟 − 1, 𝑖, 𝑟]∀2 ≤ 𝑟 ≤ 𝑖  (48) 

The cost of the worst scenario is calculated using Equation 49, 

𝑚𝑎 𝑥{𝐺(𝑛 + 1, 𝑟)|1 ≤ 𝑟 ≤ 𝑛 + 1} (49) 

It is to be noted that if {𝐴𝑗} is optimal then, 

𝑚𝑎 𝑥{𝐺(𝑛 + 1, 𝑟)|1 ≤ 𝑟 ≤ 𝑛 + 1} = 𝐺 (𝑛 + 1,1) = 𝑚𝑎 𝑥{𝐺(𝑛 + 1, 𝑟)|2 ≤ 𝑟 ≤ 𝑛 + 1}.  (50) 

Once the cost of the worst scenario is obtained, the worst scenario can be found by 

backtracking. 

 

5.3 Illustrative Example of Iterative Search Procedure 

In this section, an illustrative example of the proposed Iterative Solution Procedure and 

Dynamic Programing model is provided. Table 19 contains the data of underage time, 

overage time, lower limit and upper time of the uncertain processing times for three jobs 

which need to be scheduled sequentially.   
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Table 19: Data for an Illustrative Example of the Iterative Solution Procedure 

Job, 𝑖 Overage 

Cost, 

Underage 

Cost, 

Lower 

processing time, 

Upper processing 

time, 

 𝑜𝑖 𝑢𝑖 𝑙𝑖 𝑘𝑖 

1 1 2 5 7 

2 3 4 6 8 

3 1 2 5 7 

 

For 3 jobs, there is a total number of 23or 8 scenarios. Table 20 shows the scenarios for 3 

jobs. 

 

Table 20: Binary representation of scenarios for 3 jobs 

Scenarios Scenario label Job 1 Job 2 Job 3 

1 000 𝑝1
1  =  𝑙1 = 5 𝑝2

1  =  𝑙2 = 6 𝑝3
1  =  𝑙3 = 5 

2 001 𝑝1
2  =  𝑙1 = 5 𝑝2

2  =  𝑙2 = 6 𝑝3
2  =  𝑘3 = 7 

3 010 𝑝1
3  =  𝑙1 = 5 𝑝2

3  =  𝑙2 = 8 𝑝3
3  =  𝑙3 = 5 

4 011 𝑝1
4  =  𝑙1 = 5 𝑝2

4  =  𝑙2 = 8 𝑝3
4  =  𝑘3 = 7 

5 100 𝑝1
5  =  𝑘1 = 7 𝑝2

5  =  𝑙2 = 6 𝑝3
5  =  𝑙3 = 5 

6 101 𝑝1
6  =  𝑘1 = 7 𝑝2

6  =  𝑙2 = 6 𝑝3
6  =  𝑘3 = 7 

7 110 𝑝1
7  =  𝑘1 = 7 𝑝2

7  =  𝑙2 = 8 𝑝3
7  =  𝑙3 = 5 

8 111 𝑝1
8  =  𝑘1 = 7 𝑝2

8  =  𝑙2 = 8 𝑝3
8  =  𝑘3 = 7 

 

At first, the problem is solved using the proposed Robust Appointment Scheduling model 

(Mixed Integer Linear Programming). Xpress Optimizer 25.01.05, algebraic model 

language and optimizer (mmnl module) has been used to code the mathematical Model 2 

(Mixed Integer Linear Programming) for solving the problem. The result found is presented 

in Table 21. 
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Table 21: Results obtained from Xpress for Mixed Integer Linear Programming model  

Scenarios Scenario Cost Appointment, Objective, 

  𝐴𝑖 𝑍 

1 8.1905 𝐴1= 0, Z = 8.1905 

2 8.1905 𝐴2 = 6.4286,  

3 6.1905 𝐴3 = 13.4286,  

4 8.1905 𝐴4 = 19.0952,  

5 3.6191   

6 3.6191   

7 6.1905   

8 8.1905   

 

The optimal appointment dates are found to be  𝐴2 = 6.4286,  𝐴3 = 13.4286, 𝐴4 =

19.0952. The objective function value, 𝑍 = 8.1905 means that the worst cost that may 

occur for any realization of the processing time is 8.1905. 

Then the same dataset is solved using the proposed Iterative Search Procedure. The results 

obtained from the Iterative Search Procedure for solving the dataset is presented in Table 

22. The iterative procedure converges quickly; it requires only 3 iterations and proceeds as 

Table 22 when started with scenario 2 or “001”. 

 

Table 22: Results obtained for the Iterative Solution Procedure 

Iteration Scenario added LP solution LP cost DP cost DP worst 

scenario 

1 2 or “001” 

𝑝1
2 = 5, 𝑝2

2 = 6, 𝑝3
2 = 7 

𝐴2 = 5,  
𝐴3 = 11, 
𝐴4 = 18 

𝑍 = 0 𝐺(4,4)
= 18 

8  

2 8 or “111” 

𝑝1
8 = 7, 𝑝2

8 = 8, 𝑝3
8 = 7 

𝐴2 = 7,  
𝐴3 = 13.5, 
𝐴4 = 20.5 

𝑍 = 6 𝐺(4,1)
= 𝐺(4,3)
= 10 

1 and 4 

3 1 or “000” and 4 or “011” 

𝑝1
1 = 5, 𝑝2

1 = 6, 𝑝3
1 = 5 

𝑝1
4 = 5, 𝑝2

4 = 8, 𝑝3
4 = 7 

𝐴2 = 6.4286,  
𝐴3 = 13.4286,  
𝐴4 = 19.0952 

𝑍 = 8.1905 𝐺(4,1)
= 𝐺(4,2)
= 𝐺(4,3)
= 𝐺(4,4)
= 8.1905 

 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙) 

1, 4, 2, 

and 8 
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Although for 3 jobs, there are 8 scenarios in the total scenario set, the Iterative Search 

Procedure converges within only three iterations and reaches to the optimal solution which 

is found from Xpress using Mixed Integer Linear Programming model (Model2) as 

presented in Table 21. Figure 14 shows the convergence of the solution method.  

 

Figure 14: Convergence of the Iterative Search Procedure 

 

Figure 15 shows the result obtained from the Dynamic Programming model for iteration 3 

of the Iterative Solution Procedure. 
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Figure 15: Result obtained from the Dynamic Programming model  
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CHAPTER 6 

COMPUTATIONAL EXPERIENCE 

The proposed methodologies have been applied to conduct two case studies; one is for 

scheduling VIA Rail Canada stations and another is for scheduling appointment dates in a 

Dentist’s clinic. 

 

6.1 Case Study 1: VIA Rail Canada 

VIA Rail is Canada’s national rail service providing ways to travel across Canada for 4.74 

million passengers covering 12,500 kilometers of rail network. In this case study, the 

Robust Appointment Scheduling model is implemented for scheduling VIA Rail Canada 

stations to evaluate the performance of the robust model when applied to real world 

scheduling problem. The data for this case study is collected from VIA Rail Canada website 

(https://www.viarail.ca/en) where they provide the information regarding travelling routes, 

connecting stations, scheduled time table, actual train arrival time and actual train departure 

time for each stations.    

 

6.1.1 Data Collection 

 

In this case study, the travelling route of Train 60 which travels from Toronto (Union 

Station), Ontario to Montreal (Central Station), Quebec is considered. This route has nine 

connecting stations and so there are 8 travelling routes as mentioned in Table 23. 

Processing time here means the travelling time for a train from one station to next station 

which is uncertain and varies from time to time. Robust Appointment Scheduling model is 

applied to provide appointment dates for each of these stations. The objective is to 

minimize the total underage and overage cost for the worst case scenario under any 

realization of the travelling time of the train.  

 

 

 

 

https://www.viarail.ca/en
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Table 23: Travelling route for Train 60 of VIA Rail Canada 

Train No 60 

Starting Station Toronto Union Station, ON 

End Station Montreal Central Station, QC 

No of total stations 9 

No of travelling routes 8 

Scheduled start time 

for the starting station 

6:40 AM 

 

The scheduled start time for Toronto (Union Station) is always 6:40 AM. The different 

actual travelling times of Train 60 for the month of January 2020 is collected from VIA 

Rail Canada website, from which the lower limit and upper limit of the travelling time for 

each station are calculated as shown in Table 24. To apply the robust model only these 

extreme point values are considered.  

In this problem, underage cost is incurred when the train arrives a station before its 

scheduled appointment time. In this case, the system experiences idle time and the 

associated losses. The cost parameters are set from the perspective and knowledge of the 

decision maker. However, for this case study, the underage cost is considered to be equal 

to the opportunity cost that the system could have achieved in the absence of the idle time. 

The underage cost for a station is calculated using Equation 51, 

𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑑𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 ∗ 𝑡𝑖𝑐𝑘𝑒𝑡 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 ∗

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠   

(51) 

On the other hand, overage cost is incurred when the train arrives a station later than its 

appointment time. In that case, the passengers at that station have to wait until the train 

arrives. As a result, the passengers face idle time and the associated losses. The overage 

cost is considered to be equal to the opportunity cost for the passengers in the absence of 

the idle time incurred . The overage cost is calculated using Equation 52,   

𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = 𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 ∗ 𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑝𝑒𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 ∗

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠  

(52) 
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6.1.2 Application of Mixed Integer Linear Programming model (Model 2) 

Mixed Integer Linear Programming model (Model 2) is applied for scheduling the stations. 

Since there are eight stations to schedule, according to the scenario planning approach, 

there is a total of 2𝑛or 28 or 256 scenarios (considering extreme scenario case). 

Xpress Optimizer 25.01.05, algebraic model language and optimizer (mmnl module) is 

used to code the mathematical Model 2 (Mixed Integer Linear Programming) for solving 

the problem. The result found is presented in Table 24. 

 

Table 24: Appointment dates for VIA Rail from Mixed Integer Linear Programming model  

Stations Lower processing 

time (sec), 

Upper processing 

time (sec), 

Appointments, Objective, 

 𝑙𝑖 𝑢𝑖 𝐴𝑖 𝑍 

Toronto 900 1380 𝐴1= 6.40 AM, Z = 716.315 

Guildwood 1080 1860 𝐴2 = 7.03 AM,  

Oshawa 1980 2820 𝐴3 = 7.33 AM,  

Cobourg 1980 3660 𝐴4 = 8.20 AM,  

Belleville 2220 5700 𝐴5 = 9.20 AM,  

Kingston 5340 7680 𝐴6 = 10.51 AM,  

Cornwall 2700 3480 𝐴7 = 12.56 PM,  

Dorval 1320 1920 𝐴8 = 1.52 PM,  

Montreal - - 𝐴9 = 2.22 PM,  

 

The optimal appointment dates are found to be  𝐴1 = 6.40 𝐴𝑀, 𝐴2 = 7.03 𝐴𝑀,  𝐴3 =

7.33 𝐴𝑀,  𝐴4 = 8.20 𝐴𝑀,  𝐴5 = 9.20 𝐴𝑀, 𝐴6 = 10.51 𝐴𝑀, 𝐴7 = 12.56 𝐴𝑀, 𝐴8 =

1.52 𝑃𝑀, 𝐴9 = 2.22 𝑃𝑀, . The objective function value, 𝑍 = 716.315  means that the 

worst cost that may occur for any realization of the processing time is 716.315 CAD.  
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6.1.3 Application of the Iterative Search Procedure 

 

In this section, the proposed Iterative Search Procedure is applied for solving the VIA Rail 

scheduling problem and the obtained result is presented in Table 25. The objective value 

found from Iterative Search Procedure is 716.373.  

 

Table 25: Appointment dates for VIA Rail from the Iterative Search Procedure 

Stations Appointments, Objective, 

 𝐴𝑖 𝑍 

Toronto 𝐴1= 6.40 AM, Z = 716.373 

Guildwood 𝐴2 = 7.03 AM,  

Oshawa 𝐴3 = 7.33 AM,  

Cobourg 𝐴4 = 8.20 AM,  

Belleville 𝐴5 = 9.20 AM,  

Kingston 𝐴6 = 10.51 AM,  

Cornwall 𝐴7 = 12.56 PM,  

Dorval 𝐴8 = 1.52 PM,  

Montreal 𝐴9 = 2.22 PM,  

 

The Iterative Search Procedure converges very quickly, after 9 iterations as shown in 

Figure 16. This means that by selectively considering only 9 scenarios using the Dynamic 

Programming model, Iterative Search Procedure achieves the optimal solution instead of 

considering all the 256 scenarios used while implementing Model 2 (Mixed Integer Linear 

Programming) in Xpress Optimizer.  
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Figure 16: Convergence of the Iterative Solution Procedure 

 

Table 26 shows the comparison of the Mixed Integer Linear Programming model and the 

Iterative Solution Procedure for VIA Rail case study.  

  

Table 26: Performance Evaluation of the Iterative Solution Procedure  

  Mixed Integer Linear 

Programming (Xpress) 

Iterative Solution 

Procedure 

VIA Rail 

Canada 

Objective function value 716.315 716.373 

Optimality gap (%) - .008 

No of scenarios 256 9 

CPU time (seconds) 14862 3.1 

 

 

6.1.4 Comparison of Cost Incurred for Robust Appointment Schedule and 

Via Rail Schedule Considering Actual Scenarios 

This section provides a comparison of the cost incurred for Robust Appointment Schedule 

to that of VIA Rail Schedule for actual case scenarios for the month of January and 

February, 2020. The actual arriving time for Train 60 for different days of January and 
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February, 2020 has been collected from VIA Rail Canada website 

(https://www.viarail.ca/en). 

Figure 17 shows that the cost incurred for VIA Rail schedule is much higher than that of 

Robust Appointment Schedule for almost all the days. This means that idle time is more 

for VIA Rail schedule. On the other hand, Robust Appointment schedule not only reduces 

cost, it also reduces the variation of cost among different days. The worst cost among these 

days incurred for VIA Rail schedule is 5913.6 CAD for 1.31.2020 while for the same day 

Robust Appointment Schedule would incur only 523.1184 CAD. Among these days, the 

worst cost found for Robust Appointment Schedule is 632.352 CAD for 1.1.2020 which is 

less than the worst cost found from the objective function value of the robust model which 

716.315 CAD (both for the Mixed Integer Linear Programming model and the Iterative 

Solution Procedure) as shown in Table 26. This shows that the worst cost that is incurred 

for applying Robust Appointment Schedule is 716.315 CAD for any realization of the 

travelling time scenarios.     

 

 

 

Figure 17: Comparison of VIA Rail schedule cost and Robust Appointment Schedule cost 
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6.2 Case Study 2: A Dentist’s Clinic 

In this case study, the Robust Appointment Scheduling model is implemented to provide 

appointment dates for a local Dentist’s clinic in Montreal, Canada. The clinic provides 

different oral health services for the patients and the processing times of these services are 

uncertain, varying from one patient to another. The objective is to provide appointment 

dates for each patients that minimize the total underage and overage cost of both the 

processor and the patients for the worst case scenario under any realization of the 

processing time of the services.  

 

6.2.1 Data Collection 

 

Three months of data containing different processing durations for each of the oral 

treatments is collected from the clinic from November, 2019 to January 2020. From these 

data, the lower limit and upper limit of the processing durations for each oral treatments is 

calculated as shown in Table 27. These extreme point values is used to apply in the robust 

model. 

In this problem, underage cost is incurred when the dentist finishes providing service to a 

patient before the appointment date of the next patient. As a result the dentist and the 

associated resources have to remain idle and face the associated cost until the next patients’ 

appointment date. The underage cost is taken as equivalent to unit time worth of the system.    

On the other hand, overage cost is incurred when completion time of a patient is more than 

the appointment date of the next patient. In this case, the next patients have to wait until 

the completion time of the previous patient and are subjected to idle time and associated 

costs. The overage cost is taken as equivalent to unit time worth of a patient.  
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6.2.2 Application of the Iterative Solution Procedure  

 

The proposed Iterative Solution Procedure is applied for scheduling the patients of the 

clinic for 5 different days. For each day, there are 15 patients to schedule. Table 27 shows 

the name of the 15 oral health treatments provided for Day 1. Since there are 15 patients to 

schedule, according to the scenario planning approach, there are total 2𝑛 or 215 or 32,728 

scenarios (considering extreme scenario case). The result obtained from Iterative Search 

Procedure is presented in Table 27. 

The optimal appointment dates for Day 1 are found to be  𝐴1 = 10: 00 𝐴𝑀, 𝐴2 =

10.30 𝐴𝑀,  𝐴3 = 10.55 𝐴𝑀,  𝐴4 = 11.17 𝐴𝑀,  𝐴5 = 11.39 𝐴𝑀, 𝐴6 = 11.58 𝐴𝑀, 𝐴7 =

12.27 𝐴𝑀, 𝐴8 = 1.20 𝑃𝑀, 𝐴9 = 2.12 𝑃𝑀, 𝐴10 = 2.59 𝑃𝑀, 𝐴11 = 3.15 𝑃𝑀, 𝐴12 =

3.37 𝑃𝑀, 𝐴13 = 4.51 𝑃𝑀, 𝐴14 = 5.40 𝑃𝑀, 𝐴15 = 6.48 𝑃𝑀, 𝐴16 = 7.13. 

The objective function value, 𝑍 = 1039.84 means that the worst cost that may occur for 

this schedule for any realization of the processing time is 1039.84 CAD.  

 

Table 27: Results obtained for Day 1 from the Iterative Search Procedure 

Serial 

no. 

Process Name Lower 

processing 

time (sec), 

𝑙𝑖 

Upper 

processing 

time (sec), 

𝑢𝑖 

Robust Appointment Schedule 

(Iterative Solution Procedure) 

Appointment, 

𝐴𝑖 

Objective, 

𝑍 

1 Braces 1500.00 2100.00 𝐴1= 10.00 AM 1039.84 

2 Crowns and Caps 1200.00 1800.00 𝐴2 = 10.30 AM 

3 Extractions 900.00 1800.00 𝐴3 = 10.55 AM 

4 Oral Cancer examination 900.00 1800.00 𝐴4 = 11.17 AM 

5 Sealants 600.00 1800.00 𝐴5 = 11.39 AM 

6 Braces 1500.00 2100.00 𝐴6 = 11.58 AM 

7 Teeth bonding 1800.00 5400.00 𝐴7 = 12.27 PM 

8 Bridges and Implants 1800.00 5400.00 𝐴8 = 1.20 PM 

9 Fillings, Repairs/ Canals 2400.00 3600.00 𝐴9 = 2.12 PM 

10 Sealants 600.00 1800.00 𝐴10= 2.59 PM 

11 Crowns and Caps 1200.00 1800.00 𝐴11 = 3.15 PM 

12 Teeth Whitening 3600.00 7200.00 𝐴12 = 3.37 PM 

13 Teeth Veneers 2700.00 4200.00 𝐴13 = 4.51 PM 

14 Root Canals 3600.00 7200.00 𝐴14 = 5.40 PM 

15 Braces 1500.00 2100.00 𝐴15 = 6.48 PM 

- - - - 𝐴16 = 7.13 PM 
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The Iterative Search Procedure converges very quickly, after 16 iterations as shown in 

figure 18.  

 

 

Figure 18: Convergence of the Iterative Solution Procedure (Day 1)  

 

 

Similar to Day 1, the Robust Appointment Schedule model is implemented to provide 

appointment dates for another 4 days for the dentist’s clinic. Table 28 shows the 

performance of Robust Appointment Schedule compared to the dentist’s appointment 

schedule considering actual scenarios of the 5 days considered. Figure 19 shows the 

comparison of costs between the Robust Appointment Schedule and the dentist’s 

appointment schedule considering actual processing time scenarios of 5 days. It is to be 

noted that for each instance of Table 28, the worst cost found for the Robust Appointment 

Schedule model (objective value) is less than the actual scenario cost of that day.  

 

 

 

 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
o

st
 (

C
A

D
)

Iterations

Day 1

MILP Cost DP cost



 

67 
 

Table 28: Performance of Robust Appointment Schedule for the Dentist’s clinic  

 Robust Appointment Schedule 

(Iterative Solution Procedure) 

Dentist’s Appointment 

Schedule 

Savings 

by 

Robust 

Model 

(%) 

Objective 

Value, 𝑍 

CPU 

time 

(sec) 

Cost incurred for 

actual scenario 

(CAD) 

Cost incurred for 

actual scenario  

(CAD) 

Day 1 1039.84 5.1 232.2552 3752.8 93.81 

Day 2 1094.988 7.1 323.9167 1741.7 81.40 

Day 3 964.37 4.4 478.7 697.40 31.36 

Day 4 1351.48 6.3 637.4756 1447.8 55.97 

Day 5 1288.5 6.9 392.5581 508.22 22.76 

 

 

 

Figure 19: Comparison of the Robust Appointment Schedule cost and the Dentist’s schedule cost 

 

In chapter 6, the Robust Appointment Scheduling model is implemented for two 

case studies; one for VIA Rail Canada and the other for a Dentist’s clinic. The case of VIA 
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a total of eight jobs, i.e. stations to schedule. Therefore, the problem is solved implementing 

both the Mixed Integer Linear Programming model and the proposed Iterative Search 

Procedure. A comparison of results obtained from both the approaches indicates that the 

Iterative Solution Procedure not only converges very quickly but also provides a solution 

that is equal to the optimal solution obtained from the Mixed Integer Linear Programming 

0

500

1000

1500

2000

2500

3000

3500

4000

Day 1 Day 2 Day 3 Day 4 Day 5

C
o

st
 (

C
A

D
)

Dates

Robust Appointment Schedule Cost Dentist's Schedule Cost



 

68 
 

model. On the other hand, the case of the Dentist’s clinic represents a larger instance of the 

appointment scheduling problem having a total of fifteen jobs, i.e. patients to schedule. As 

a result, this larger instance of the problem is solved implementing the proposed Iterative 

Search Procedure.   
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH SCOPES 

 

In this research, uncertainty of processing time in appointment scheduling is considered.  

The existing modelling approaches for appointment systems do not provide protection 

against low probable yet high impact events. While applying stochastic programming 

approach, some studies assume identical service time distribution, which might lead to a 

faulty assumption for heterogeneous service types. On the other hand, some studies assume 

that the service time distribution is known to the decision maker, which may not be the real 

case. There is a lack of studies that help handling uncertainty in decision making without 

assigning probabilities to the future uncertain parameters. The proposed Robust 

Appointment Scheduling model helps dealing with uncertainty without assigning 

probabilities to uncertain parameters and achieves a solution that perform well for all 

possible realization of the scenarios and hedges against the worst-case scenario. In 

addition, the proposed robust model is applicable for any distribution of the uncertain 

processing time.  

To begin with, a nonlinear robust appointment scheduling model is developed that 

minimizes the total underage and overage cost of the worst-case scenario for any realization 

of the processing time. To remove the nonlinearity, a Mixed Integer Linear Programming 

model is proposed. Proposition that states that the worst case scenario for robust scheduling 

belongs to the set of extreme point instances of the processing times of each job is provided 

along with theoretical proof (see Proposition 3). As a result, scenario realization and 

computational effort for the robust appointment scheduling model have reduced to a great 

extent without loss of optimality compared to other modelling approaches. Furthermore, 

some illustrative examples are provided, where it is shown that worst case scenario belongs 

to the extreme point scenarios of the processing times. A Stochastic Programming version 

of the Robust Model is provided to compare both the approaches. Robust Appointment 

Scheduling model not only reduces the computational effort, it also reduces the worst cost 

compared to the stochastic programming approach. 
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Since the proposed Robust Appointment Scheduling model is NP- hard, an Iterative Search 

Procedure is provided for solving the lager instances of the problem in polynomial time. 

The objective of the Iterative Search Procedure is to selectively choose the scenarios that 

incur worst cost and then optimizing among those scenarios to provide an appointment 

schedule that will work well for all other scenarios. For finding the worst case scenario, 

i.e. the scenario that incurs the worst cost, a Dynamic Programming model is proposed 

which allows to find the worst case scenario among all the scenarios in 𝑂(𝑛2) time. 

Through an illustrative example it is shown that the Iterative Search Procedure converges 

very quickly.  

Two case studies are conducted using the proposed methodologies; one is for scheduling 

the VIA Rail Canada stations and another is for a Dentist’s clinic. For both the case studies, 

Robust Appointment Schedule exhibits high performance in terms of computational efforts 

and cost reduction.  

This study will contribute both to the literature related to uncertainty handling in decision 

making and to the industries which aim to achieve an efficient service system. 

The robust model has some limitations. Since the objective of the robust model is to 

minimize the worst case performance, it addresses the risk aversion nature of the decision 

maker with certainty, however, the robust model does not consider the expected scenario 

like the Stochastic Programming Approach. As a result, robust model can protect against 

very high impact event with low probability unlike the stochastic programming approach. 

Although the appointment schedule that minimizing the worst case performance might not 

always be profitable considering the expected case scenarios for the long term. For future 

work, research can be carried out for Robust Appointment Scheduling considering few of 

the assumption taken for appointment scheduling such as sequencing problem, no shows, 

fairness, overbooking, emergency arrival, service interruption, processor lateness, 

uncertainty of demand and capacity, etc. In addition, research can be carried out regarding 

uncertainty handling using Robust Optimization for decision support systems.  
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