
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-7-2020

Generating Chordal Graphs with few Fill-in Edges: An Generating Chordal Graphs with few Fill-in Edges: An

Experimental Study Experimental Study

Aayushi Srivastava
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Srivastava, Aayushi, "Generating Chordal Graphs with few Fill-in Edges: An Experimental Study" (2020).
Electronic Theses and Dissertations. 8401.
https://scholar.uwindsor.ca/etd/8401

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/344950221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8401?utm_source=scholar.uwindsor.ca%2Fetd%2F8401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Generating Chordal Graphs with few Fill-in Edges: An Experimental Study

by

Aayushi Srivastava

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2020

©2020, Aayushi Srivastava

Generating Chordal Graphs with few Fill-in Edges: An Experimental Study

by

Aayushi Srivastava

APPROVED BY:

Y. Aneja

Odette School of Business

D. Wu

School of Computer Science

A. Mukhopadhyay, Advisor

School of Computer Science

May 20, 2020

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas,

techniques, quotations, or any other material from the work of other people

included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to

my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iii

ABSTRACT

Graph Generation aids in analysis of graphs and their properties while

insinuating conjectures via counterexamples and even generating test instances

for other algorithms. In certain cases, a list of graphs will deliver numerical

information for enumerative problems devoid of theoretical solutions, or even

supply a source from which specimen graphs may be adopted.

Any given graph can be embedded in a chordal graph by adding edges, and the

resulting chordal graph is called a triangulation of the input graph i.e., contains

no induced chordless cycle on four or more vertices. Tringulation is classified into

Minimal and Minimum, where both the approach seems to minimize the number

of edges added. A comparison has been drawn amongst LB-Triangulation,

Lex-M and Minimum Degree Vertex (MDV) approaches to achieve triangulation

with as few edges as possible along with respective run times. While LB-Triang

and Lex-M algorithms provide minimal triangulation, MDV is an approximation

for minimum triangulation.

Determining the minimum number of edges that must be added to a bipartite

graph to make it a chain graph is NP-complete. We exploit this reduction to

propose the a heuristic for obtaining a chain graph from a bipartite graph via

chordal graph using MDV. Dirac’s method of generating chordal graphs by union

is modified with the help of MDV. Nearly Chordal Graphs are generated using a

novel heuristic from complete graphs. Recognition algorithm for nearly chordal

graphs is introduced and the relationship between weakly chordal, nearly chordal

and chordal graphs is established.

iv

DEDICATION

To my benevolent parents Mr. Amar Prakash Srivastava and Mrs. Sarla

Srivastava, my mighty bolsters cum elder siblings Vaibhav Srivastava and Pallavi

Srivastava, and my entire family whose belief in me served as a guiding light in

this journey.

v

ACKNOWLEDGMENTS

This thesis stands a chance to thank many people for their timely help, support

and inspiration. Firstly, I would like to express my sincere appreciation and

gratitude towards Dr. Asish Mukopadhyay, my mentor and supervisor. His

guidance, invaluable feedbacks and inspiring suggestions, have been the

mightiest pillar in the development of the thesis and research.

I offer my sincere appreciation to the committee members, Dr.Dan Wu and Dr.

Yash Aneja for their valuable comments and suggestions in writing this thesis.

In addition, the entire Computer Science Faculty Members, Graduate Secretary

and Technical Support Staff deserves special mention for all the support they

provided throughout my graduation.

I am grateful to all my friends and research partners Zamilur, Sudiksha, Lokesh,

Saurav, Anjali and Madhuri for their presence and support throughout. Finally,

my deepest gratitude goes to my adorable family for their love, encouragement,

belief and support. If not for them, I could have never imagined to come so far

and strive harder. My mother always says, ”Well begun is half done”, and that

is one quote which taught me to respect every opportunity. My brother Vaibhav

has been my role model and always motivates me to aspire high. Thank you all

for being there for me and let me live a dreamy yet responsible life.

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGMENTS vi

LIST OF FIGURES xii

LIST OF TABLES xiii

1 Introduction 1

1.1 The Triangulation problem . 1

1.2 Problem Statement . 2

1.3 Motivation . 3

1.4 Thesis Organization . 4

1.5 Preliminaries . 4

1.5.1 Graph Terminologies . 5

1.5.2 What are chordal graphs? 5

1.5.3 Properties of Chordal Graphs 6

1.5.3.1 Minimal Vertex Separators 6

1.5.3.2 Perfect Elimination Ordering 7

1.5.3.3 Maximum Cardinality Search 8

vii

2 Minimal and Minimum Triangulations: A Comparitive Study 9

2.1 Study of LB-Triangulation . 10

2.1.1 Example of LB-Triangulation 11

2.1.2 Output of LB-Triangulation 11

2.1.3 Complexity of LB-Triang . 12

2.2 LEX-M . 12

2.2.1 Example of Lex-M . 14

2.2.2 Output of Lex-M . 15

2.2.3 Complexity of Lex-M . 16

2.3 Minimum Degree Vertex . 16

2.3.1 Example of MDV . 18

2.3.2 Output of Minimum Degree Vertex 19

2.3.3 Complexity of MDV . 19

2.4 Comparison between Triangulation Algorithms 20

2.4.1 Comparison between LB- triang and MDV 20

2.4.2 Comparison amongst MDV,LB-Triang and Lex-M 21

2.4.3 Output Comparison of MDV, LBT and Lex-M 24

3 Generation of Chordal Graphs by taking Union 25

3.1 Definition of the Dirac’s Theorem 25

3.1.1 Example for the Dirac’s Theorem 25

3.1.2 Counter Example of Dirac’s Theorem 26

3.2 Generation of K-chromatic Chordal Graphs 27

3.2.1 Finding mutually independent vertices 27

3.2.2 Applying Minimum Degree Vertex 28

3.2.3 Minimum Vertex Coloring Algorithm - Welsch Powell 29

3.2.4 Example of K-Chromatic Chordal Graph 30

3.2.5 Output of K-Chromatic Chordal Graph 32

viii

4 Conversion from Bipartite Graphs 33

4.0.1 Bipartite Graphs . 33

4.0.2 Chain Graphs . 33

4.1 Bipartite to Chain Graph via Chordal Graph using MDV 34

4.1.1 Step 1: Consider a Bipartite Graph 35

4.1.2 Step 2: Making P and Q as cliques 35

4.1.3 Step 3: Applying MDV . 36

4.1.4 Step 4: Obtain Chain Graph 36

4.2 Conversion of Bipartite to Chordal Graph-Reduction 37

4.2.1 Bipartite to Chain Graph Conversion 37

4.2.2 Example of Bipartite to Chain Graph Conversion 38

4.2.2.1 Conversion of Chain Graph to Chordal Graph . . . 39

4.2.3 Example of Chain Graph to Chordal Graph Conversion . . . 40

4.2.4 Output of Bipartite to Chordal graph conversion using Re-

duction . 41

4.3 Conversion of Bipartite to Chordal Graph by Minimum Degree Vertex 42

4.3.1 Example of Bipartite to Chordal Graph MDV 43

4.3.2 Output of Bipartite to Chordal graph MDV 44

4.4 Comparison between Reduction and MDV 45

4.4.1 Output of Comparison of Reduction and MDV 45

5 Nearly Chordal Graphs 47

5.1 Our Approach of Generation of Nearly Chordal 47

5.1.1 Methodology . 48

5.1.1.1 Example . 49

5.1.2 Output of Generation of Nearly Chordal Graph 52

5.2 Recognition Algorithm for Nearly Chordal 52

5.3 Relationship amongst Chordal, Nearly Chordal and Weakly Chordal

Graphs . 53

ix

6 Conclusions 56

6.1 Future Works . 57

BIBLIOGRAPHY 59

VITA AUCTORIS 62

x

LIST OF FIGURES

1.1 Minimal and Minimum Triangulation 2

1.2 Motivation behind Triangulation Problem 3

1.3 Graph[4] . 5

1.4 Chordal Graph . 6

1.5 Minimal d− c separator /b, e/ is not a minimal separator of G . . . 7

1.6 a, b, c, d, e, f is PEO . 7

1.7 b, c, d, e, g, f, a is computed by MCS. a, f, g, e, d, c, b is PEO 8

2.1 Example of LB-Triang [1] . 11

2.2 Output of LB-Triangulation Algorithm 12

2.3 Example of Lex-M . 14

2.4 Output of Lex-M . 16

2.5 Example of MDV . 18

2.6 Output of Minimum Degree Vertex 19

2.7 Output Comparison of LB-Triang and MDV 21

2.8 Output Comparison of MDV,LBT and Lex-M 24

3.1 Example of Dirac’s theorem . 26

3.2 Counter Example of Dirac’s theorem 26

3.3 Example of K-Chromatic Chordal Graph 30

3.4 Output of K-Chromatic Chordal Graph with MDV 32

4.1 Example of Bipartite Graph . 33

4.2 Conversion of Bipartite Graph to Chain Graph 34

xi

4.3 P and Q as cliques . 35

4.4 P and Q as cliques . 35

4.5 Applying MDV(dashed lines) . 36

4.6 Chain Graph . 36

4.7 Conversion of Bipartite Graph to Chain Graph 38

4.8 Example of Chain Graph conversion to Chordal graph 40

4.9 Conversion from Bipartite to Chain and then Chordal Graph on (3,

4) nodes and 8 edges . 41

4.10 Bipartite Chordal Graph Output 43

4.11 Output of Bipartite to Chordal graph using MDV 44

4.12 Output Comparison for Reduction and MDV 46

5.1 Nearly Chordal Graph . 47

5.2 Flow Diagram for Nearly Chordal Graph Generation 48

5.3 Nearly Chordal Graph Example . 51

5.4 Complete Graph to Nearly Chordal Graph 52

5.5 Chordal, Nearly and Weakly Chordal 53

5.6 Only Weakly Chordal Graph . 54

5.7 Only Nearly Chordal Graph . 54

5.8 Nearly Chordal Graph but not weakly Chordal 54

5.9 Nearly and Weakly Chordal Graph but not Chordal 55

5.10 Relationship between Nearly Chordal, Weakly chordal and Chordal

Graphs . 55

xii

LIST OF TABLES

2.1 Lex-M Example Summary . 15

2.2 Comparison of LB-Triang and MDV 20

2.3 Comparison of MDV, LB-Triang and Lex-M 23

4.1 Comparison of Reduction and MDV 45

xiii

Chapter 1

Introduction

Graph theory is the study of graphs, which are mathematical structures used to

model pairwise relation between objects based on the given distances between

the pair of points. Graph generation techniques are widely studied and aims to

give general ideas about graphs and their properties. [22]A list of graphs will

provide numerical details for enumerative problems in the absence of theoretical

solutions and gives a source from which specimen graphs can be taken in real-life

problems. A graph is chordal if it contains no induced chordless cycle of four or

more vertices.

1.1 The Triangulation problem

Any given graph can be embedded in a chordal graph by addition of edges, and

the resulting chordal graph is a triangulation of the input graph. The

triangulation is categorized into Minimal triangulation and Minimal

triangulation.In Minimal triangulation, the inclusion-minimal set of edges are

added whereas in minimum triangulation, fewest number of edges are added.

The problem lies in finding such minimum number of edges while making the

graph chordal. The graph {G = (V,E)} is an arbitrary graph and the edges in

red are added to make it chordal. The figure on the right represents Minimal

triangulation and adds two edges which are minimal to that set of edges to make

1

it chordal. While the graph on the left depicts minimum triangulation and is

made chordal just by addition of one edge. The minimum triangulation is the

minimum of all the minimal triangulations.

Minimum Triangulation Minimal Triangulation

a b

cd

e

a b

cd

e

Figure 1.1: Minimal and Minimum Triangulation

1.2 Problem Statement

Triangulation problem is narrowed down towards achieving minimum

triangulation which is NP-Complete [28]. The arbitrary input graph is

transformed into chordal graph by addition of as few edges as possible. A graph

is chordal if every cycle of length greater than three has a chord. A chord is an

edge joining two non-consecutive vertices on a cycle. Several important and

widely studied problems on graphs are related to computing an embedding of an

arbitrary graph into a chordal graph with various properties.Any given graph

can be transformed into chordal graph by addition of edges to the input graph

known as triangulation. Various triangulations exists for a given graph. There

are two types of triangulations discussed namely Minimal triangulation and

Minimum triangulation. It is focused on generating chordal graphs with

minimum number of insertions, generating nearly chordal graphs and then

transforming it into chordal graphs. A comparative study is done between the

algorithm for generating minimal triangulation namely LB-Triangulation and the

heuristic for minimum triangulation namely Minimum Degree vertex. We

modified Dirac’s method for generating chordal graphs by adding fewest possible

edges. The minimum fill-in problem is shown to be NP-Complete by reduction

2

from the problem of finding a minimum number of edges to be added to a

bipartite graph to turn it into a chain graph via chordal graph using Minimum

Degree Vertex heuristic. We applied Minimum Degree Vertex heuristic to

bipartite graphs and compared the number of edges added using it and the one

via chain graph-chordal method.We also generated nearly chordal graph using a

novel heuristic from complete graphs.

1.3 Motivation

The motivation of the problem comes from the fact that any arbitrary graph can

be converted into chordal graph by addition of edges. The addition can be done

by choosing a vertex v1 in any order {v1, v2, ..., vn} of the vertex set of graph and

then making neighbors of v1 a clique, removing v1 and then continue with the

next vertex in that order.

a

b

cd

e

a

b

cd

e
b

cd

e

e

d c

a

b

cd

e

InitialGraph

FinalGraph

Figure 1.2: Motivation behind Triangulation Problem

The figure above explains adding the edges to an arbitrary graph by making the

neighbours of vertices a simplicial, and then removing the vertex. As per the

figure above, this technique could transform any arbitrary graph to chordal. Our

focus narrowed down to the scenarios where we could put a check on the number

of edges added in the process. The need of adding fewer edges could be fulfilled

either by minimal or minimum triangulation. This encouraged us to study and

compare various triangulation algorithms.

3

1.4 Thesis Organization

The list below presents the organization of the chapters which makes up this

thesis. Also given is a brief description of the topics each chapter deals with.

• Chapter 1 gives a clear background knowledge on the Chordal Graphs,

Minimal triangulation, Minimum triangulation.

• Chapter 2 A comparative study is done amongst three chordal graph

generation techniques namely, LB - Triangulation, Lex - M and Minimum

Degree Vertex.

• Chapter 3 Modified Dirac’s method of Chordal Graph Generation by union

of chordal graphs using Minimum Degree Vertex heuristic.

• Chapter 4 Reduction to propose the heuristic for obtaining a chain graph

from a bipartite graph via chordal graph using MDV. Generating Chordal

graphs from Bipartite Graphs using reduction method and MDV, then

comparing the results of both.

• Chapter 5 Generation of Nearly Chordal Graphs, Recognition algorithm

for chordal graphs and explored the relationship amongst chordal, weakly

chordal and nearly chordal graphs.

• Chapter 6 Concludes the work done in this thesis and suggests some

possible future research directions.

• Bibliography declares a detailed list of references from which facts and

numbers have been used as a guide for this thesis.

1.5 Preliminaries

The following section gives a background details of graph terminologies,chordal

graphs and its properties and followed by different algorithmic approaches to

solve the triangulation problem.

4

1.5.1 Graph Terminologies

A graph is an ordered pair G = (V,E) comprising a set of vertices or nodes and

a collection of of pairs of vertices from V called edges of the graph.

6

5

1

4

3

2

Figure 1.3: Graph[4]

V = {1, 2, 3, 4, 5, 6}

E = (1, 4), (1, 6), (2, 6), (4, 5), (5, 6) [4] We let G = (V,E) denote an undirected

graph with vertex set V and edge set E. The number of vertices is denoted by

n = |V | and the number of edges by e = |E|. For any vertex set S ⊆ V , consider

the edge set E(S) ⊆ E given by

E(S) := {(u, v) ∈ E|u, v ∈ E}

We let G(S) denote the subgraph of G induced by S, namely the subgraph of

(S,E(S)). The graph obtained by removing a set of vertices S ⊆ V from the

graph is denoted by G/S.

G/S = G(V − S)

Two vertices u, v ∈ V are said to be adjacent if (u, v) ∈ E. The set of vertices

adjacent to v in G is denoted by adjG(v). Similarly the set of vertices adjacent to

S ⊆ V in G is given by:

adjG(S) := {v ∈ V |v /∈ Sand (u, v) ∈ E for some vertex u ∈ S}

1.5.2 What are chordal graphs?

An undirected graph G = (V,E) is chordal(triangulated or rigid circuit) if every

cycle of length greater than three has a chord. A chord is an edge connecting

two non-consecutive vertices of the cycle. cycle.[4]

• Consider simple and connected input graph, G = (V,E), with |V | = n and

5

|E| = m. For a set A ⊆ V , G(A) denotes the subgraph of G induced by

vertices in A. Vertex set A is called a clique if G(A) is complete.

• The process of adding edges to G between the vertices of A so that A

becomes a clique in the resulting graph is called saturating A. The

neighborhood of vertex v in G is NG(v) = {u|uv ∈ E}, and the closed

neighborhood of v is NG[v] = NG(v) ∪ {v}.

• A vertex v is called simplicial in G if NG(v) is a clique. A vertex v is called

universal in G if NG(v) = V \ {v}.

• A vertex set S ⊂ V is a separator if G(V \ s) is disconnected. Given two

vertices u and v, S is a u− v separator if u and v belong to different

connected components of G(V \ S), S is then said to separate u and v. A

u− v separator S is minimal if no proper subset of S separates u and v.

• An elimination ordering α of G is minimal if there exists no ordering β

such that G+
β is a proper subgraph of G+

α . [15]

a

b

cd

e

Figure 1.4: Chordal Graph

1.5.3 Properties of Chordal Graphs

The properties of Chordal Graphs which were relevant in the thesis are discussed

as below:

1.5.3.1 Minimal Vertex Separators

A graph G is chordal if and only if every minimal vertex separator of G is

complete in G.[8]

6

A subset S @ V is called a u− v separator of G if in G− S, the vertices u and v

are in two different connected components. A u− v separator is minimal if no

proper subset of it is a u− v separator.

a
b

c

f
e

g

d

Figure 1.5: Minimal d− c separator /b, e/ is not a minimal separator of G

In the figure 2.3, the set S = {b, e} is a minimal d− c separator; nevertheless, S

is not a minimal separator of G.

1.5.3.2 Perfect Elimination Ordering

Theorem 1.5.1. An undirected graph G is chordal if and only if it has perfect

elimination ordering.[9, 13]

A perfect elimination ordering (PEO) in a graph is an ordering of the vertices of

the graph such that, for every vertex v, v and the neighbors of v that occur after

v in the order form a clique.

c
e f

db
a

Figure 1.6: a, b, c, d, e, f is PEO

A vertex v is simplicial if adj(v) induces a complete subgraph of G. The ordering

α is a perfect elimination ordering (PEO) if for 1 ≤ i ≤ n, the vertex vi is

simplicial in the graph G.

7

1.5.3.3 Maximum Cardinality Search

Theorem 1.5.2. Every maximum cardinality search ordering of a chordal graph

G is a perfect elimination ordering.[26, 25]

PEO can be computed by using Maximum Cardinality Search (MCS). The MCS

algorithm orders the vertices in reverse order beginning with an arbitrary vertex

v ∈ V for which it sets α(v) = n. At each step the algorithm selects as the next

vertex to label an unlabelled vertex adjacent to the largest number of labelled

vertices, with ties broken arbitrarily. Perfect Elimination Ordering is the reverse

of the ordering computed by Maximum Cardinality Search.

a
b d f

e

g

c

Figure 1.7: b, c, d, e, g, f, a is computed by MCS. a, f, g, e, d, c, b is PEO

L8 = φ, L7 = {b}, L6 = {b, c}, L5 = {b, c, d}, L4 = {b, c, d, e} L3 = {b, c, d, e, g},

L2 = {b, c, d, e, g, f}, L1 = {b, c, d, e, g, f, a}

8

Chapter 2

Minimal and Minimum

Triangulations: A Comparitive

Study

Tringulation(or Fill-in) is classified into Minimal and Minimum, where both the

approaches aims to minimize the number of edges added. In minimal

triangulation, the edges added are inclusion minimal set of edges while,

minimum triangulation requires the set of edges added to be of the smallest

size.A triangulation H is minimal if and only if the removal of any single fill edge

from H results in a non-chordal graph.[23] The number of edges in minimal

triangulation can be far from minimum and the computing of minimum

triangulations is NP-Hard. Computing a triangulation with fewer edges is is

relevant in solving sparse systems of linear equations[15]. Computing Minimal

triangulation and minimum triangulation is studied by comparing

LB-Triangulation, Lex-M and Minimum Degree Vertex techniques. While,

Lex-M and LB-Triangulation provides minimal fill-in, Minimum Degree Vertex is

an approximation algorithm of minimum fill-in.

9

2.1 Study of LB-Triangulation

Berry [1] introduced this algorithm that provides minimal triangulation in

O(nm) time, and that can furthermore create any minimal triangulations of an

arbitrary graph in any order of vertices. LB- Triangulation is an efficient

algorithm to compute minimal triangulation using an arbitrary ordering on the

vertices.[1] In this algorithm, any ordering α on the vertices,produces minimal

triangulation by adding only the necessary edges at each step, instead of making

the current vertex simplicial.

• G = (V,E) as an input graph with |V | = n and |E| = m

• H = (V,E + F) as a transitory graph which is updated at each step of

algorithm with |E + F | = m′.

Algorithm 1: LB-Triang Algorithm

Input: An Arbitrary Graph G = (V,E)

Output: A minimal fill-in F of G, A minimal triangulation

H = (V,E + F) of G

1 Choose an arbitrary order α of V for each vertex x in V taken in order α

of V do

2 Compute N [x] if N [x] 6= V then

3 Compute the set of connected components CG(NH [x])

4 for each connected component C in CG(NH [x]) do

5 Create complete subgraph on NG(C)

10

2.1.1 Example of LB-Triangulation

a

b

f g

d

h i

c

e

a

b

f g

d

h i

c

e

Figure 2.1: Example of LB-Triang [1]

Figure shows the minimal triangulation obtained by considering vertices in the

order (a, b, c, d, e, f, g, h, i) on input graph G represented by solid edges and the

graph including dashed edges is the minimal triangulated graph H.

• NH [a] = {a, b, c, d, e}, CG(NH [a]) = {{f, g}, {h, i}}, NG({f, g}) = {b, c};

fill-in edge bc is added; NG({h, i}) = {b, d, e}; fill-in edge bd, beandde are

added.

• NH [b] = {a, b, c, d, e, f, h}, CG(NH [b]) = {{g}, {i}}, NG({g}) = {c, f}; fill-in

edge cf is added;NG({i}) = {e, h} ; fill-in edge eh is added.

2.1.2 Output of LB-Triangulation

The input graph is with black edges and has 10 nodes and 17 edges. There is an

addition of four edges to make it chordal while applying the algorithm.

11

Figure 2.2: Output of LB-Triangulation Algorithm

2.1.3 Complexity of LB-Triang

The algorithm repeatedly converts any minimal separator in the neighborhood of

the vertex considered into a clique, instead of making the vertex simplicial.

LB-Triangulation algorithm can yield any minimal triangulation and can be

implemented to run in O(nm) time.

2.2 LEX-M

Lex-M produces a minimal elimination ordering(MEO) [23]. An ordering α is

called minimal elimination ordering of graph G, if G+
α is a minimal triangulation

of G. Any graph G and any clique K in G, there exists a minimal elimination

ordering of G where the vertices of K are numbered last, i.e. with numbers

n− |K|+ 1, n− |K|+ 2, ...n. Therefore, as opposed to the first vertex of an

MEO, the last vertex of an MEO can be chosen arbitrarily. [23, 15]. Thus,

vertex v appends its number α(v) to the label of every vertex which is connected

directly or a path all of whose internal vertices are unnumbered and have

lexicographically smaller labels than u. Such path is called fill path. Edge uv is

12

then an edge of the resulting minimal triangulation, and can be added to G+
α .[15]

This algorithm uses only the information from input graph G and the vertex

labels during the whole process, so the added fill edges have no effect on the

execution.

Algorithm 2: Lex-M [15]

Input: An arbitrary graph G = (V,E)

Output: A minimal elimination ordering α of G and the corresponding

minimal triangulation G+
α

1 F = φ for all vertices v in G do

2 l(v) = φ

3 for i = n down to 1 do

4 Choose an unnumbered vertex v of lexicographically maximum label;

5 α(v) = i, S = φ

6 for all unnumbered vertices uinV do

7 if there is an edge uv or a path u, x1, x2, ..., xk, v in G through

unnumbered vertices such that l(xi) is lexicographically smaller

than l(u) for 1 ≤ i ≤ k then

8 S = S ∪ {u}

9 for all vertices u ∈ S do

10 Append i at the end of l(u) if uv /∈ E then

11 F = F ∪ {uv}

12 H = (V,E ∪ F)

13

2.2.1 Example of Lex-M

1

0 2

5

3

4

1

0 2

5

3

4

Figure 2.3: Example of Lex-M

• No. of vertices(n) = 6, No. of edges(m) = 7, S = φ, F = φ

• Starting with v = 5,and α(5) = 6, Vertices 2, 3 have an edge with 5, so

S = {2, 3} and labels will update l(5) = {}, l(2) = {6}, l(3) = {6}. 5 is

numbered now. No new edge added.

• Now either 2 or 3 can be selected as both are of lexicographically same

length, α(3) = 5. Selected 3, already uv edge between 4, 5 but 5 is

numbered and a path 2, 0, 4, 3 with u = 2, internal vertices 0, 4 have

lexicographically smaller label length than 2. S = {2, 4}. Fill -edge queue

F = {(2, 3)} is updated, labels updated:

l(3) = {6}, l(2) = {5, 6}, l(4) = {5}. 3 is numbered now.

• Next selected v = 2 (maximum lexicographic label length), α = 4.Already

edge 0 and path 2, 0, 4, so S = {0, 4}.Fill - edge queue F = {(2, 3), (2, 4)} is

updated and labels updated as l(2) = {5, 6}, l(0) = {4}, l(4) = {4, 5}.2 is

numbered now.

• Next selected 4 (maximum lexicographic label length), α(4) = 3. Already

edge with 0 and 1, no path is left amongst them, so S = {0, 1}. No edge is

added and labels updated as l(4) = {4, 5}, l(0) = {3, 4}, l(1) = {3}.4 is

numbered.

14

• Next v = 0, α(0) = 2 and an edge with 1, so S = {1}, no new edge added.

Labels updated as: l(0) = {3, 4}, l(1) = {2, 3}. 0 is numbered.

• Left with v = 1, so given number as 1.

• Fill -edge queue is F = {(2, 3), (2, 4)}, add edges in the graph G.

• Minimal Elimination Ordering: {1, 0, 4, 2, 3, 5}

Table to summarize example results:

Vertex Number Label

0 2 {3, 4}

1 1 {2, 3}

2 4 {5, 6}

3 5 {6}

4 3 {4, 5}

5 6 {}

Table 2.1: Lex-M Example Summary

2.2.2 Output of Lex-M

The input graph is with black edges of 6 and 7 edges. There is addition of two

edges to make it chordal while applying the algorithm.

15

Figure 2.4: Output of Lex-M

2.2.3 Complexity of Lex-M

This algorithm constructs an ordering α for initially unordered graph G = (V,E)

and constructs a label l(v) given by the final value of label(v) for each v ∈ V .

The complexity of Lex-M is O(nm)[1]. This time bound is not followed

immediately since it has n main steps, and O(n+m) time is required to follow

all fill paths from the processed vertex.

2.3 Minimum Degree Vertex

Minimum Degree method chooses a vertex v of minimum degree in Gi−1 at each

step i. Minimum Degree Vertex heuristic is in the lookout of addition of as few

edges as possible during triangulation. The input graph is denoted as

G = (V,E), with |V | = n and |E| = m. The transitory graph obtained at the

end of each step is denoted by H = (V,E +Q) where Q is list of Fill-edges. We

remove the vertices with degree say D, D < 2 (i.e. number of edges incident on

it is less than 2). Then, the remaining vertices with D ≥ 2 are arranged in the

ascending order and considered in the same order. In the case where two or more

vertices are of same degree, one of them is chosen first arbitrarily. We take a

vertex v from the reduced vertex set and find its neighbors, make the

16

neighbourhood a clique and then remove the vertex from graph H. The degrees

of the remaining vertices in graph H are updated. We will continue till all the

vertices are exhausted and in the end, we will add all the edges added in graph H

to the graph G. Thus, the graph becomes chordal with as few edges as possible.

17

Algorithm 3: Minimum Degree Vertex

Input: An arbitrary graph H

Output: Chordal Graph C, and Fill-in queue Q of the edges added

1 Consider the vertex list Vlist

2 Sort Vlist in ascending order of degrees

3 Remove the vertices v in Vlist which has degree D(v) < 2

4 for vertex j in set Vlist do

5 Find neighbours of j

6 if No edge between neighbours then

7 Add an edge between them

8 Edge is inserted into the list of edges Q

9 else

10 No edge is added.

11 Remove vertex j from the graph H and consider next vertex of lowest

degree

12 Degree is updated

2.3.1 Example of MDV

2 6

3

1

4

0 5

2 6

3

1

4

0 5

Figure 2.5: Example of MDV

• DH(0) = 3, NH(0) = {2, 4, 5}, add an edge between 2 and 5, 4 and 5,

already edge 2-4 is there.

• DH(2) = 3, NH(2) = {4, 5, 6}, already edges 4-5,5-6 is present, add 4 and 6.

18

• DH(3) = 3, NH(3) = {4, 5, 6}, already edge 4-5,5-6,4-6 is present.

• DH(4) = 2, NH(4) = {5, 6}, edge 5-6 is already present.

2.3.2 Output of Minimum Degree Vertex

The input graph is with black edges and there is addition of two edges to make it

chordal while applying the algorithm.

Figure 2.6: Output of Minimum Degree Vertex

2.3.3 Complexity of MDV

It is a fast algorithm and can be implemented in O(n2m) time.

19

2.4 Comparison between Triangulation

Algorithms

We have conducted comparisons between these algorithms on the basis of the

number of edges added for triangulation and the run time of algorithm.

2.4.1 Comparison between LB- triang and MDV

The comparison is done based on the number of edges added in three of them

during triangulation. We have drawn comparison till graphs on 1000 vertices.

#Nodes #Edges #EdgesLBT #EdgesMDV

80 100 194 93

100 150 337 191

150 200 709 275

200 250 1056 401

300 350 1576 603

400 450 1997 754

500 550 3162 1041

600 650 3626 1280

700 750 4298 1627

800 850 6177 1886

900 950 7422 2386

1000 1050 8242 2393

Table 2.2: Comparison of LB-Triang and MDV

20

Figure 2.7: Output Comparison of LB-Triang and MDV

The input is a graph on 10 nodes and 17 edges. LB-Triangulation added 4 edges

and MDV added 3 edges.

2.4.2 Comparison amongst MDV,LB-Triang and

Lex-M

MDV, LB-Triang and Lex-M are compared based on number of edges added and

run time. We made a table comparing edges and run time. MVD has been the

quickest and added least number of edges in minimum run time. Lex-M and

LB-Triang both provide minimal triangulation and added comparable edges but

LB-Triang is very fast compared to Lex-M. Through the years, Lex-M has given

inspiration to other minimal triangulation algorithms that have either used it or

21

enhanced it.

#N - Number of Nodes

#E - Number of Edges

T (s)MD - Run time of MDV in seconds

EMDV - Edges added in Minimum Degree Vertex

T (s)LBT - Run time of LB-Triang in seconds

ELM - Edges added in Lex-M

T (s)LM - Run time of Lex-M in seconds

22

#N #E T(s)MD #EMDV T(s)LBT #ELBT T(s)LM #ELM

10 15 0.005 3 0.004 5 0.020 3

15 20 0.006 3 0.007 3 0.086 4

20 25 0.008 9 0.1395 14 0.245 15

25 30 0.014 18 0.031 29 1.676 29

30 35 0.014 17 0.039 31 2.295 29

35 40 0.016 20 0.644 37 4.337 44

40 45 0.020 35 0.107 52 29.42 53

45 50 0.254 23 0.110 44 21.07 31

50 55 0.031 34 0.175 58 94.433 77

55 60 0.038 40 0.196 61 174.10 105

60 65 0.042 38 0.282 63 279.27 93

65 70 0.037 29 0.233 45 135.20 41

70 75 0.051 46 0.381 54 501.73 101

75 80 0.563 54 0.476 80 1924.64 85

80 85 0.047 37 0.521 71 1190.49 108

85 90 0.065 60 0.692 130 5961.90 115

90 95 0.054 50 0.681 111 2209.08 104

95 100 0.064 55 1.06 107 33876.62 166

100 105 0.068 61 1.316 102 37015.93 103

105 110 0.088 75 1.0730 164 12177.240 131

‘110 120 0.099 85 1.052 132 105279.911 149

Table 2.3: Comparison of MDV, LB-Triang and Lex-M

23

2.4.3 Output Comparison of MDV, LBT and Lex-

M

Figure 2.8: Output Comparison of MDV,LBT and Lex-M

The input graph has 10 nodes and 17 edges.

24

Chapter 3

Generation of Chordal Graphs by

taking Union

This chapter supports the generation of Chordal Graphs by taking union of

Chordal Graphs but with as few edges as possible while using Minimum Degree

Vertex in it.

3.1 Definition of the Dirac’s Theorem

Theorem 3.1.1. If Γ1 and Γ2 are chordal graphs and Γ1 ∩ Γ2 is a clique or

empty, then Γ1 ∪ Γ2 is a chordal graph [8].

3.1.1 Example for the Dirac’s Theorem

The below example suggests that the union of two chordal graphs whose

intersection is either empty or a clique will be a chordal graph.

• First figure is a graph G = (V,Edg} with vertices as V = {A,B,C,D,E}

and edges as Edg = {AB,BC,CD,DE,BE,BD,AE}

• Graphs BCDE and ABE are two chordal graphs.

• Their intersection which is EB is chordal. Hence, graph G is chordal.

25

A

B

CD

E

E B

CD

A

E B

E B

∩

Figure 3.1: Example of Dirac’s theorem

3.1.2 Counter Example of Dirac’s Theorem

A B

CD

E

A B

ED

E B

D C

D

E B

∩

Figure 3.2: Counter Example of Dirac’s theorem

We present a counter example to show that if the overlap is not a clique, the

union of two chordal graphs is not chordal. The process involves three steps

mentioned as below:

26

• First figure is a graph G = (V,Edg} with vertices as V = {A,B,C,D,E}

and edges as Edg = {AB,BC,CD,AD,AE,BE,DE,CE}

• Graphs ABDE and EBDC are two chordal graphs.

• Their intersection which is DEB is neither empty nor clique. Hence, graph

G is not chordal.

3.2 Generation of K-chromatic Chordal

Graphs

The process of generating K-Chromatic chordal graphs is as follows:

• Step 1: Generate an arbitrary graph G = (V,E) with |V | = n and |E| = m.

• Step 2: Finding mutually independent vertices M from the graph G, make

them chordal say H by making such vertices simplicial and then remove

from the input graph.

• Step 3: Apply Minimum Degree Vertex heuristic to the non-mutual set of

vertices and make graph chordal, say C.

• Step 4: Combine graphs in Step 2 and 3 i.e., H ∪ C and check for

chordality and name this graph as I

• Step 5: Perform minimum vertex coloring algorithm on the graph I.

(Additional Feature)

3.2.1 Finding mutually independent vertices

A maximal independent set is found in graph G using networkx. An independent

set is a set of nodes such that the subgraph of G induced by these nodes contains

no edges. A maximal independent set is an independent set such that it is not

possible to add a new node and still get an independent set. The neighbors of

27

vertices in maximal independent set are found and made clique. After making

the neighbors clique, we will remove mutually independent vertices from graph

G.

Algorithm 4: Mutually Independent Vertices

Input: An arbitrary graph G with number of vertices and number of

edges

Output: Graph H with edges added using mutually independent vertices

1 Using nx.maximal independent set find all the mutually independent

vertices mi and put them in list Mi List

2 for vertex mi in set Mi List do

3 Find neighbours of mi

4 if No edge between neighbours then

5 Add an edge between them

6 else

7 No edge is added

8 Remove all the mutually independent vertices from the graph

3.2.2 Applying Minimum Degree Vertex

After removing mutually independent vertices, perform triangulation on the

remaining graph consisting of non-mutual set of vertices using Minimum Degree

Vertex to make the graph chordal. The Dirac’s theorem [8] still holds as the

neighborhood of each vertex in the independent set being an induced subgraph

of a chordal graph is also chordal.[21]

28

Algorithm 5: Minimum Degree Vertex for K-Chromatic

Input: A partial chordal graph H

Output: Chordal Graph C

1 Make vertex list excluding mutually independent vertices namely wmi list

2 Sort the wmi list in ascending order of degrees

3 Remove the vertices v which has degree D(v) < 2 for vertex j in set

wmi list do

4 Find neighbours of j

5 if No edge between neighbours then

6 Add an edge between them

7 else

8 No edge is added

9 Remove vertex j from the graph H and consider next vertex of lowest

degree

10 Degree is updated

3.2.3 Minimum Vertex Coloring Algorithm - Welsch

Powell

The output from the combination of above two algorithms is a chordal graph. A

vertex coloring is an assignment of labels or colors to each vertex of a graph such

that no edge connects two identically colored vertices. A vertex coloring that

minimize the number of colors needed for a given graph G is known as a

minimum vertex coloring of G. In other words, no two adjacent vertices will be

of the same color. The minimum number of colors itself is called the chromatic

number, denoted χ(G), and a graph with chromatic number χ(G) = k is said to

be a k-chromatic graph. We use Welsch-Powell algorithm for minimum vertex

coloring.[11]

• Step 1. Find the degree of each vertex.

29

• Step 2. List the vertices in the order of descending degrees.

• Step 3. Color the first vertex with color 1.

• Step 4. Move down the list and color all the vertices not connected to the

colored vertex, with the same color.

• Step 5. Repeat step 4 on all uncolored vertices with a new color, in

descending order of degrees until all the vertices are colored.

Algorithm 6: Minimum Vertex Coloring

Input: A chordal graph C

Output: Chordal Graph with colored vertices

1 Find the degree D(v) of all the vertices v in vertex set V

2 Sort the vertex list V in descending order of degrees

3 Remove the vertices v which has degree D(v) < 2 for vertex j in set V do

4 Color the first vertex with color 1 Check the other vertices in the list,

use the same color if they are not connected

5 Check the next uncolored vertex in that order and repeat the same

3.2.4 Example of K-Chromatic Chordal Graph

2

3

5

4

0

1

2

3

5

4

0

1

Figure 3.3: Example of K-Chromatic Chordal Graph

In the example above, Number of nodes (n = 6) and Number of Edges (m = 10).

• Mutually independent vertex is only [3], neighbors i.e. N(3) = {0, 1, 2, 4, 5}.

Edges are added between {(0, 2), (0, 5), (1, 5), (2, 4), (2, 5)} and already

30

edges are present between (0, 1), (0, 4), (1, 2), (1, 4), (4, 5). 5 edges are

added. Removed 3 from graph and consider remaining graph.

• Perform Minimum Degree Vertex for remaining graph, arrange all the

vertices in ascending order based on their degrees while ignoring vertices

with Degree < 2.

• Selected 0, N(0) = [1, 2, 4, 5], already edges are amongst them. Remove 0

and update degrees.

• Selected 1, N(1) = [2, 4, 5], already edges are amongst them. Remove 1 and

update degrees.

• Selected 2, N(2) = [4, 5], already edges are amongst them. Remove 2 and

update degrees.

• Selected 4, N(4) = [5], already edges are amongst them. Remove 4 and

update degrees.

• Graph becomes chordal now with addition of 5 edges.

• Welsch Algorithm is applied and all the six vertices gets six different color.

31

3.2.5 Output of K-Chromatic Chordal Graph

Figure 3.4: Output of K-Chromatic Chordal Graph with MDV

The green edges are added to make graph chordal via Mutually Independent

Vertices Method and the blue edges using MDV and in the following figure

Minimum Vertex Coloring is applied. Number of nodes n = 11 and Number of

Edges m = 18 in the input graph.8 edges are added using Mutually Independent

Vertices and 1 edge is added using MDV. The last graph represents an additional

feature of Minimum Vertex coloring and colors 11 nodes using 6 colors.

32

Chapter 4

Conversion from Bipartite

Graphs

4.0.1 Bipartite Graphs

A bipartite graph G = (P,Q,E) is a graph whose vertices can be divided into

two disjoint and independent sets P and Q such that every edge connects a

vertex in P to one in Q.[28]

a

b

c

u

v

x

y

P Q

Figure 4.1: Example of Bipartite Graph

4.0.2 Chain Graphs

The bipartite graph (U, V,E) is a chain graph if the neighborhoods of the nodes

in U form a chain i.e. there is a bijection π : 1, 2, ..., |P | an ordering of P such

that Γ(π(1)) w Γ(π(2)) w Γ(π(3)) w ... w Γ(π(|P |)).[28]

33

a

b

c

u

v

x

y

P Q

Figure 4.2: Conversion of Bipartite Graph to Chain Graph

4.1 Bipartite to Chain Graph via Chordal

Graph using MDV

• Determining the minimum number of edges that must be added to a

bipartite graph to make it a chain graph is NP-complete.

• By reduction from this problem it can be shown that the minimum fill-in

problem for chordal graphs is NP-complete.

• We exploit this reduction to propose the following heuristic for obtaining a

chain graph from a chordal graph.

• Use the MDV heuristic to add few fill-in edges to reduce an appropriate

graph (C(G) in the lemma above) to a chordal graph.

Lemma 4.1.1. Let G be a bipartite graph. C(G) is chordal if and only if does

not contain a pair of independent edges.[28]

It supports that computing minimum fill-in is NP-Complete. We will convert

bipartite to chain graph via chordal graph with as few edges as possible.

• Step 1: Consider a bipartite graph, G = (P,Q,E).

• Step 2: Make P and Q as cliques.

• Step 3: To the graph obtained, apply Minimum degree Vertex heuristic.

• Step 4: Remove the fill-edges added while making P and Q cliques. The

graph obtained is a chain graph.

34

4.1.1 Step 1: Consider a Bipartite Graph

a

b

c

d

f

e

g

P Q

Figure 4.3: P and Q as cliques

A Bipartite graph G = (P,Q,E) is taken with P = {a, b, c} and Q = {d, e, g, f}

and E = {ad, ae, be, bg, cf}.

4.1.2 Step 2: Making P and Q as cliques

a

b

c

d

f

e

g

P Q

Figure 4.4: P and Q as cliques

Add edges amongst a, b, c and d, e, f, g (dotted lines) to make P and Q as cliques.

35

4.1.3 Step 3: Applying MDV

a

b

c

d

f

e

g

P Q

Figure 4.5: Applying MDV(dashed lines)

Tc

• D(a) = 4, neighbors of a are {b, c, d, e}, add edges bd, cd, ce.

• D(g) = 4, neighbors of g are {b, f, e, d}, add edge bf .

4.1.4 Step 4: Obtain Chain Graph

a

b

c

d

f

e

g

P Q

Figure 4.6: Chain Graph

We will remove edges added in P and Q which were added while making them

cliques. Thus, the graph obtained is chain graph.

36

4.2 Conversion of Bipartite to Chordal

Graph-Reduction

The problem of computing minimum triangulation is NP-Hard but it is shown to

be NP-Complete for Bipartite graphs using reduction method.

Chain graphs are used for reduction. Two edges (u, v), (x, y) are said to be

independent in a graph G if the nodes u, v, x, y are distinct and the subgraph of

G induced by them consists of exactly these two edges. Yannakakis(1981) gave

following lemmas for reduction:

Lemma 4.2.1. A bipartite graph is a chain graph if and only if it does not

contain a pair of independent edges.[28]

Lemma 4.2.2. Let G be a bipartite graph. C(G) is chordal if and only if does

not contain a pair of independent edges.[28]

Lemma 4.2.3. It is NP-Complete to find the minimum number of edges whose

addition to a bipartite graph G = (P < Q,E) gives a chain graph.[28]

4.2.1 Bipartite to Chain Graph Conversion

The bipartite graph (U, V,E) is a chain graph if the neighborhoods of the nodes

in U form a chain i.e. there is a bijection π : 1, 2, ..., |P | an ordering of P such

that Γ(π(1)) w Γ(π(2)) w Γ(π(3)) w ... w Γ(π(|P |)).[28]

37

Algorithm 7: Bipartite to Chain Graph

Input: A Bipartite Graph

Output: A bipartite chain graph

1 for vertex v1 in set V1 do

2 Find degree D(v1) of each vertex

3 Rank the vertices based on their degrees i.e. the one with highest

degree is given the maximum rank.Store the vertex in that order in a

list named as ranklist and use indices as ranks.

4 for vertex v2 in set V2 do

5 Find neighbour of each vertex v2 along with its rank in the list named

rank list

6 Assign the rank σ(v2) to v2 of its neighbor of highest rank in ranklist

7 if D(v2) < σ(v2) then

8 Make D(v2) = σ(v2) i.e. add an edge between v2 with the vertex in

set V1 to make these equal

9 else

10 No edge is added in this case

4.2.2 Example of Bipartite to Chain Graph Con-

version

a

b

c

u

v

x

y

P Q

Figure 4.7: Conversion of Bipartite Graph to Chain Graph

Γ(b) = {u, v, x, y}, Γ(a) = {u, v}, Γ(c) = {v}

Γ(b) w Γ(a) w Γ(c)

38

Rank the vertices by decreasing vertex degree. σ(b) = 1, σ(a) = 2, σ(c) = 3

σ(u) = 2, σ(v) = 3, σ(x) = 1, σ(y) = 1

4.2.2.1 Conversion of Chain Graph to Chordal Graph

It is based on heuristic to find the node of maximum degree in both parts of the

graph. Then, join such neighbors of the node in the other side of graph.

Algorithm 8: Chain to Chordal Graph

Input: A Chain Graph with number of nodes in both parts of the graph

and number of edges

Output: A chordal graph with increased number of edges

// V1 is set of vertices in P side of graph

// V2 is set of vertices in Q side of graph

1 for vertex v1 in set V1 do

2 Find the vertex with maximum D(v1) and list its neighbors in set V2.

Add edges amongst all the neighbors of the maximum degree v1 in

set V2

3 for vertex v2 in set V2 do

4 Find the vertex with maximum D(v2) and list its neighbors in set V1.

Add edges amongst all the neighbors of the maximum degree v2 in

set V1

39

4.2.3 Example of Chain Graph to Chordal Graph

Conversion

The above example shows the conversion of chain graph to chordal graph.

• In the first part of graph i.e. {a, b, c}, b has the highest degree i.e.

D(b) = 4 and the vertices connected to b are u, v, x, y and we will add an

edge between all these vertices. Edges {uv, ux, uy, vx, vy, xy} are added.

• In the second part i.e. {u, v, x, y}, D(v) = 3 which is highest and its

neighbors are {a, b, c}, so edges added are : {ab, ac, bc}

a

b

c

u

v

x

y

P Q

Figure 4.8: Example of Chain Graph conversion to Chordal graph

40

4.2.4 Output of Bipartite to Chordal graph con-

version using Reduction

Figure 4.9: Conversion from Bipartite to Chain and then Chordal Graph on (3,
4) nodes and 8 edges

First figure is a bipartite graph with number of nodes in first part as 4 and in

second part as 5 with number of edges as 12. Then, there is a chain graph with 4

blue edges required for conversion. Followed by Chordal graph with an addition

16 green edges needed for triangulation.

41

4.3 Conversion of Bipartite to Chordal

Graph by Minimum Degree Vertex

Minimum Degree Vertex heuristic is applied on a bipartite graph. The aim is to

make this bipartite graph chordal with as few edges as possible.

Algorithm 9: Minimum Degree Vertex for Bipartite Graphs

Input: A bipartite graph G = (P,Q,E)

Output: Chordal graph H = (P,Q,E + F)

1 Combine the vertex list of both P and Q into V .

2 Sort V in ascending order of degrees.

3 Remove the vertices v in V which has degree D(v) < 2

4 for vertex j in V do

5 Find neighbours of j

6 if No edge between neighbours then

7 Add an edge between them

8 Edge is inserted into the list of edges F

9 else

10 No edge is added.

11 Remove vertex j from the graph G and consider next vertex of lowest

degree.

12 Degree is updated

42

4.3.1 Example of Bipartite to Chordal Graph

MDV

6
8

3

7

04

1
2

5

6
8

3

7

04

1
2

5

Figure 4.10: Bipartite Chordal Graph Output

• Graph G = (P,Q,E), Nodes in P = 4, Nodes in Q = 5, Edges E = 16

• Combined vertex List i.e. V = {0, 1, 2, 3, 4, 5, 6, 7, 8} and arrange them in

ascending order of degrees and the order of vertices along with their

degrees is in order of vertex followed by degree V ′ = {(0, 3),(1, 5), (2, 4), (3,

4),(5, 4), (6, 3), (7, 4), (8, 3)}. In case of ties in degree, one of them is

chosen arbitrarily. Dictionary is updated and vertex chosen is removed

every time.

• Starting with v = 4,Neighbors of N(4) = [0, 1], will add an edge between

them. Degrees are updated and 4 is removed.

• Next, 0 is selected , N(0) = [1, 5, 7]. (1, 7) and (1, 5) are already present, so

edge (5, 7) is added. Degrees are updated and 0 is removed.

• Next, 6 is selected, N(6) = [1, 2, 3]. As none of them existed beforehand, so

add edges (1, 2), (1, 3), (2, 3). Degree updated and removed vertex 6.

• 8 is selected, N(8) = [1, 2, 3], no edges are added since they are already

present and removed vertex 8.

43

• 1 is chosen, N(1) = [2, 3, 5, 7],no edges are added since they are already

present and removed vertex 1.

• 2 is selected, N(2) = [3, 5, 7], no edges are added since they are already

present and removed vertex 2.

• 3 is selected, N(3) = [5, 7], no edges are added since they are already

present and removed vertex 3.

• The graph is empty and MDV added 5 edges to the bipartite graph while

making it chordal.

4.3.2 Output of Bipartite to Chordal graph MDV

Figure 4.11: Output of Bipartite to Chordal graph using MDV

44

4.4 Comparison between Reduction and

MDV

We will compare both the algorithms based on number of edges added and run

time.

#NodesP #NodesQ #Edges Time(s)MDV #EdgesMDV Time(s)Red #EdgesRed

25 25 100 0.157 450 0.244 576

45 55 150 0.376 1789 3.777 2265

75 75 200 0.652 4143 20.29 5331

120 80 250 1.032 6471 59.715 8725

100 150 300 1.30 10214 150.24 13861

150 150 350 2.396 16570 325.28 20941

200 150 400 2.40 22303 716.46 29353

210 190 450 2.45 28408 1003.32 35806

225 225 500 3.96 36011 1514.72 44703

200 300 550 4.02 39747 2194.24 52285

300 250 600 5.45 57185 6864.61 70956

300 300 650 6.63 64369 5001.81 80628

350 300 700 7.448 78169 7838.11 97660

Table 4.1: Comparison of Reduction and MDV

4.4.1 Output of Comparison of Reduction and

MDV

The initial inputs are: Nodes in P = 7, Nodes in Q = 8 and Edges = 22. Edges

added in Reduction is 49 and edges added in MDV is 14.

45

Figure 4.12: Output Comparison for Reduction and MDV

46

Chapter 5

Nearly Chordal Graphs

A graph is chordal if it contains no induced cycle Ck, k ≥ 4. A graph is nearly

chordal if for every vertex, the induced sub graph of its non-neighbors is chordal.

[6]

a

b

cd

e

Figure 5.1: Nearly Chordal Graph

5.1 Our Approach of Generation of Nearly

Chordal

We will begin with Complete graph on n nodes. A complete graph is a graph in

which each pair of graph vertices are connected to each other by an edge. A

complete graph of n vertices has
(
n
2

)
which is (n(n− 1))/2 edges. It is nearly

chordal by default and we will make use of the basic definition of nearly chordal

to convert this complete graph into nearly chordal graph. We will delete edges

from complete graph while ensuring its nearly chordal property which is for

every vertex, the subgraph induced by the set of its non-neighbors is chordal.

47

5.1.1 Methodology

Before mentioning the steps, I would liked to define the terminologies, I have

used in the process. Graph G = (V,E) has V as vertex set and E as edge set.

• {u, v} is an edge with vertices as u and v to delete.

• N(u) and N(v) are the neighbors of vertex u and v respectively.

• NN(u) and NN(v) are the non-neighbors of the vertex u and v

respectively.

• G(v ∪NN(u) is the subgraph induced on the vertex v and non-neighbors

of u. Similarly, G(u ∪NN(v) is the subgraph induced on vertex u and

non-neighbors of v.

• Vertex w is a set of vertices excluding the union of neighbors of u and v.

• G(NN(w)) is the subgraph induced on non-neighbors of the vertex w.

Complete Graph

Edge {u, v} to delete

Step 1 and Step 2

Can’t deleteFollow both steps?

Delete edge {u, v}

No

Yes

Figure 5.2: Flow Diagram for Nearly Chordal Graph Generation

Below is the criteria in two steps, we followed while conversion:

48

• Step1 : If we remove the edge {u, v}, where v ∈ NN(u) and u ∈ NN(v),

check if G(v ∪NN(u)) and G(u ∪NN(v)) is chordal. If they are chordal,

we may consider deleting them, followed by step 2 and if this is not true,

we will add the edge {u, v} back and no need to perform step 2.

• Step2 : Check if u and v belong to the NN(w) of some w where

w ∈ {V − (N(u) ∪N(v)). If u, v ∈ NN(w), check if removing the edge

{u, v} destroys the chordality of G(NN(w)).

We have applied above two steps to convert a complete graph into nearly

chordal. We input the number of nodes in a complete graph, make complete

graph and then select any random edge for deletion based on above two steps.

5.1.1.1 Example

In figure a to k, we demonstrate how it started with a complete graph and

resulted in an empty graph. The output depends on the edges given as input and

the user may exit anytime as every iteration provides nearly chordal graph.

• Figure (a) is a complete graph with 5 nodes and 10 edges.

• In Figure b, edge {2, 3} is deleted.As we could see, N(2) = [0, 1, 3, 4] and

N [3] = [0, 1, 2, 4], w = []. Thus, NN(2) = [3] and NN(3) = [2] and both of

them are chordal, so we can delete edge {2, 3}.

• In Figure c, edge {3, 4} is deleted. As, N(3) = [0, 1, 2, 3] and

N(4) = [0, 1, 4], w = []. Thus, NN(3) = [2, 4] and NN(4) = [3], and both of

them are chordal. Thus, we may delete edge {3, 4}.

• In figure d, edge {1, 2} is deleted. As, N(1) = [0, 2, 3, 4] and

N(2) = [0, 1, 4], w = []. Thus, NN(1) = [2] and NN(2) = [1, 3], both of

them are chordal, so we may delete this edge.

• In Figure e, edge {0, 2} is deleted. As, N(0) = [1, 2, 3, 4] and

N(2) = [0, 4], w = []. Thus, NN(0) = [2] and NN(2) = [0, 1, 3], both of

them are chordal, so we may delete this edge.

49

• In Figure f, edge {1, 3} is deleted. As, N(1) = [0, 3, 4] and

N(3) = [0, 1],since w is non-empty, we find

w = [2], NN(w) = [0, 1, 3], NN(1) = [2, 3] and NN(3) = [1, 2, 4], both of

them are chordal, so we may delete this edge.

• In Figure g, edge {0, 1} is deleted. As, N(0) = [1, 3, 4] and N(1) = [0, 4],

since w is non-empty, we find w = [2], NN(w) = [0, 1, 3], NN(0) = [1, 2]

and NN(1) = [0, 2, 3], both of them are chordal, so we may delete this edge.

• In figure h, edge {0, 4} is deleted. As, N(0) = [3, 4] and

N(4) = [0, 1, 2], w = []. Thus, NN(0) = [1, 2, 4] and NN(4) = [0, 3], both of

them are chordal, so we may delete this edge.

• In Figure i, edge {0, 3} is deleted. As, N(0) = [3] and N(3) = [0], since w

is non-empty, we find w = [1, 2, 4], NN(w) = [0, 3], NN(0) = [1, 2, 4, 3] and

NN(3) = [1, 2, 4, 0], both are chordal, so we may delete this edge.

• In Figure j, edge {2, 4} is deleted. As, N(2) = [] and N(4) = 1,

NN(2) = [3, 0, 4, 1] and NN(4) = [2, 3, 0], both are chordal, so we may

delete this edge.

• In Figure k, edge {1, 4} is deleted.

50

1

2

03

4

0

3

14

2

3

1

42

0

4

2

0

3

1

3 0

4

2

1

1

4

23

0

3

0

4

1

2 3

0

2

4

1

3

0

2

4

1

3

0

2

4

1

3

0

2

4

1

a b c d

e f g h

(2,3)

(4,3) (1,2) (0,2)

(3,1)

(1,0) (0,4)

(0,3)

(2,4) (4,1)

i j k

Figure 5.3: Nearly Chordal Graph Example

51

5.1.2 Output of Generation of Nearly Chordal

Graph

In the above output, the input is a complete graph with n = 7 nodes. For the

nearly chordal graph, it is user’s discretion to select which edge(s) to delete and

every deletion gives nearly chordal graph. I have randomly deleted 7 edges in the

order as mentioned below: {(4, 6), (5, 1), (2, 3), (0, 1), (6, 5), (1, 3), (0, 2)}.

Figure 5.4: Complete Graph to Nearly Chordal Graph

5.2 Recognition Algorithm for Nearly Chordal

We have devised an algorithm to check if any arbitrary graph is nearly chordal

or not. The input is number of nodes and number of edges. An arbitrary graph

is made and each of its vertices are checked with the nearly chordal property.

52

Algorithm 10: Nearly Chordal Recognition

Input: An arbitrary graph G = (V,E)

Output: Check whether G is nearly chordal or not

1 C = φ

2 is nearly Chordal = False

3 for all vertex v in V do

4 Find non-neighbours of v, NNv Induce subgraph on non-neighbors,

SG(NNv)

5 if NNv is empty or SG(NNv) is chordal then

6 Append v to C

7 if len(C) == len(V) then

8 is nearly Chordal = True

5.3 Relationship amongst Chordal, Nearly

Chordal and Weakly Chordal Graphs

A simple, undirected graph G = (V,E) is said to be weakly chordal if neither G

nor its complement, G, has an induced chordless cycle on five or more

vertices.[17].

While studying the relationships, we came to below conclusions:

• Every chordal graph is weakly chordal and nearly chordal.(Figure 5.4)

a

b

cd

e

Figure 5.5: Chordal, Nearly and Weakly Chordal

53

• A weakly chordal graph may or may not be Chordal or Nearly Chordal.

(Figure 5.5)

a b

c

de

f g

h

Figure 5.6: Only Weakly Chordal Graph

• A nearly chordal graph may or may not be chordal or weakly

chordal.(Figure 5.6)

a

b

cd

e

Figure 5.7: Only Nearly Chordal Graph

• A nearly chordal graph but not weakly chordal.(Figure 5.8)

a

b

cd

e
f

Figure 5.8: Nearly Chordal Graph but not weakly Chordal

• A nearly chordal and weakly chordal graph which is not chordal.(Figure

5.9)

54

a b

cd

Figure 5.9: Nearly and Weakly Chordal Graph but not Chordal

WCG

NCG

CG

Figure 5.10: Relationship between Nearly Chordal, Weakly chordal and Chordal
Graphs

In words, the relationship is depicted from above figures covering below relations:

• A Chordal Graph is both Nearly Chordal and Weakly Chordal.

• A weakly chordal graph maybe chordal or nearly chordal or both.

• Similarly, a nearly chordal graph maybe chordal or nearly chordal or both.

55

Chapter 6

Conclusions

This thesis contributes towards the aim of studying, implementing and

comparing various triangulation algorithms. Minimal and Minimum

Triangulation represents the number of fill-in edges added for to convert

arbitrary graph into chordal. We have generated chordal graphs with fewest

edges possible.

Chapter 2 throws ample light on the minimal triangulation algorithms including

Lex-M and LB-Triangulation along with minimum triangulation heuristic of

Minimum Degree Vertex Algorithm (MDV). MDV has been an efficient

approximation algorithm which we have used in various other triangulation

methods.The comparison amongst these three are done on the basis of the

number of edges added in an arbitrary graph while triangulation. Chapter 3

focuses on generation of chordal graphs by taking union of two chordal graphs.

Dirac’s Method has been modified in order to achieve triangulation with fewest

possible edges. The triangulation is performed on union by segregating vertices

into Mutually Independent and non-mutually independent set. The vertices

which are Mutually Independent are picked, such vertices are made simplicial

and then removed from the graph. On the remaining set of vertices, Minimum

Degree Vertex is applied to make it chordal.Then we take union of these two

part of graphs and check for chordality. As soon as graph becomes chordal, we

56

color vertices using Minimum Vertex Coloring based on the principle that no two

adjacent vertices are of the same color. In Chapter 4, Bipartite graphs come into

play. Since computing Minimum triangulation is NP-Complete, we use

Reduction method to convert Bipartite into Chain graphs via Chordal Graphs

adding as few edges as possible. For this purpose we used MDV We used

Minimum Degree Vertex on the Bipartite graph also and record the number of

edges added. We drew a comparison between the number of edges added via

Reduction and MDV. Chapter 5 is about the generation of Nearly Chordal

Graphs. We have introduced a heuristic to generate such graphs from Complete

graphs by edge deletion and preserving the nearly chordal property.A graph is

said to be nearly chordal if all its vertices, have chordal non-neighbors.

The main idea has been to generate triangulations with fewest edges possible.

We compared previous methods in terms of edges to support the triangulation

problem. The generation of Nearly Chordal also insinuates towards more

research in the field. Some of the things to look forward in the future is

described in the upcoming section.

6.1 Future Works

The future works has a wide spectrum involving many interesting topics. As we

have generated nearly chordal graphs, there should be detailed characterizations

of it in place. Once can explore triangulation problem in Nearly Chordal Graphs.

The relationship between chordal, nearly chordal and weakly chordal graphs may

be studied.

The cataloguing problem can be solved for both chordal and nearly chordal

graphs.The cataloguing can be performed can be performed for smaller graphs.

The cataloguing problem will generate all chordal or nearly chordal graphs for a

particular number of nodes.Such catalogues will be helpful in providing general

idea about graphs and their properties.

An open problem could be put forth to find a sequence of vertices for elimination.

57

Given a chordal graph G, starting with any clique R of G, we can add the

remaining vertices one by one, each time adjoining a new vertex to a clique of the

graph obtained so far. When all the vertices not in R have been added we get G.

The challenge lies in finding such a sequence of vertices in G−R constructively.

58

BIBLIOGRAPHY

[1] Anne Berry. A wide-range efficient algorithm for minimal triangulation. In

SODA, volume 99, pages 860–861. Citeseer, 1999.

[2] Jean RS Blair, Pinar Heggernes, and Jan Arne Telle. Making an arbitrary

filled graph minimal by removing fill edges. In Scandinavian Workshop on

Algorithm Theory, pages 173–184. Springer, 1996.

[3] Jean RS Blair, Pinar Heggernes, and Jan Arne Telle. A practical algorithm for

making filled graphs minimal. Theoretical Computer Science, 250(1-2):125–

141, 2001.

[4] Jean RS Blair and Barry Peyton. An introduction to chordal graphs and

clique trees. In Graph theory and sparse matrix computation, pages 1–29.

Springer, 1993.

[5] LM Blumenthal. Theory and applications of. Distance Geometry, 1970.

[6] Andreas Brandstädt and Ch́ınh T Hoàng. On clique separators, nearly chordal

graphs, and the maximum weight stable set problem. Theoretical Computer

Science, 389(1-2):295–306, 2007.

[7] Peter Buneman et al. A characterisation of rigid circuit graphs. Discrete

mathematics, 9(3):205–212, 1974.

[8] Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem

Mathematischen Seminar der Universität Hamburg, volume 25, pages 71–76.

Springer, 1961.

59

[9] Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs.

Pacific journal of mathematics, 15(3):835–855, 1965.

[10] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the

chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56,

1974.

[11] GeeksForGeeks. Welsh powell graph colouring, 2019.

[12] Alan George and Joseph WH Liu. The evolution of the minimum degree

ordering algorithm. Siam review, 31(1):1–19, 1989.

[13] Martin C Golumbic. Algorithmic aspects of perfect graphs. Annals of Discrete

Mathematics, 21:301–323, 1984.

[14] Ryan B Hayward. Weakly triangulated graphs. Journal of Combinatorial

Theory, Series B, 39(3):200–208, 1985.

[15] Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Math-

ematics, 306(3):297–317, 2006.

[16] Louis Ibarra. Fully dynamic algorithms for chordal graphs. In Proceedings

of the tenth annual ACM-SIAM symposium on Discrete algorithms, pages

923–924, 1999.

[17] Sudiksha Khanduja, Aayushi Srivastava, Asish Mukhopadhyay, and Md. Za-

milur Rahman. Generating weakly chordal graphs from arbitrary graphs.

arXiv:2003.13786v1, 2020.

[18] Lilian Markenzon, Oswaldo Vernet, and Luiz Henrique Araujo. Two meth-

ods for the generation of chordal graphs. Annals of Operations Research,

157(1):47–60, 2008.

[19] Tatsuo Ohtsuki. A fast algorithm for finding an optimal ordering for vertex

elimination on a graph. SIAM Journal on Computing, 5(1):133–145, 1976.

60

[20] Md Zamilur Rahman, Udayamoorthy Navaneetha Krishnan, Cory Jeane,

Asish Mukhopadhyay, and Yash P Aneja. A distance matrix completion

approach to 1-round algorithms for point placement in the plane. In Trans-

actions on Computational Science XXXIII, pages 97–114. Springer, 2018.

[21] Fujis M. Rahman Z., Dhillon T. and Mukhopadhyay A. Generation of k-

chromatic chordal graphs, 2017.

[22] Ronald C Read. A survey of graph generation techniques. In Combinatorial

mathematics VIII, pages 77–89. Springer, 1981.

[23] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects

of vertex elimination on graphs. SIAM Journal on computing, 5(2):266–283,

1976.

[24] Oylum Şeker, Pinar Heggernes, Tınaz Ekim, and Z Caner Taşkın. Gen-

eration of random chordal graphs using subtrees of a tree. arXiv preprint

arXiv:1810.13326, 2018.

[25] RE Tarjan. Maximum cardinality search and chordal graphs. 1976. Unpub-

lished lecture notes for CS, 259.

[26] Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to

test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM Journal on computing, 13(3):566–579, 1984.

[27] Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic

number of a graph and its application to timetabling problems. The Computer

Journal, 10(1):85–86, 1967.

[28] Mihalis Yannakakis. Computing the minimum fill-in is np-complete. SIAM

Journal on Algebraic Discrete Methods, 2(1):77–79, 1981.

61

VITA AUCTORIS

Name: Aayushi Srivastava

Place of Birth: Lucknow, Uttar Pradesh, India

Year: 1993

Education: Bachelor of Technology in Computer Science and Engineering from

Amity University, India (2012 - 2016)

Masters in Computer Science at the University of Windsor, Canada (Fall 2018 -

Summer 2020)

62

	Generating Chordal Graphs with few Fill-in Edges: An Experimental Study
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	The Triangulation problem
	Problem Statement
	Motivation
	Thesis Organization
	Preliminaries
	Graph Terminologies
	What are chordal graphs?
	Properties of Chordal Graphs
	Minimal Vertex Separators
	Perfect Elimination Ordering
	Maximum Cardinality Search

	Minimal and Minimum Triangulations: A Comparitive Study
	Study of LB-Triangulation
	Example of LB-Triangulation
	Output of LB-Triangulation
	Complexity of LB-Triang

	LEX-M
	Example of Lex-M
	Output of Lex-M
	Complexity of Lex-M

	Minimum Degree Vertex
	Example of MDV
	Output of Minimum Degree Vertex
	Complexity of MDV

	Comparison between Triangulation Algorithms
	Comparison between LB- triang and MDV
	Comparison amongst MDV,LB-Triang and Lex-M
	Output Comparison of MDV, LBT and Lex-M

	Generation of Chordal Graphs by taking Union
	Definition of the Dirac's Theorem
	Example for the Dirac's Theorem
	Counter Example of Dirac's Theorem

	Generation of K-chromatic Chordal Graphs
	Finding mutually independent vertices
	Applying Minimum Degree Vertex
	Minimum Vertex Coloring Algorithm - Welsch Powell
	Example of K-Chromatic Chordal Graph
	Output of K-Chromatic Chordal Graph

	Conversion from Bipartite Graphs
	Bipartite Graphs
	Chain Graphs

	Bipartite to Chain Graph via Chordal Graph using MDV
	Step 1: Consider a Bipartite Graph
	Step 2: Making P and Q as cliques
	Step 3: Applying MDV
	Step 4: Obtain Chain Graph

	Conversion of Bipartite to Chordal Graph-Reduction
	Bipartite to Chain Graph Conversion
	Example of Bipartite to Chain Graph Conversion
	Conversion of Chain Graph to Chordal Graph

	Example of Chain Graph to Chordal Graph Conversion
	Output of Bipartite to Chordal graph conversion using Reduction

	Conversion of Bipartite to Chordal Graph by Minimum Degree Vertex
	Example of Bipartite to Chordal Graph MDV
	Output of Bipartite to Chordal graph MDV

	Comparison between Reduction and MDV
	Output of Comparison of Reduction and MDV

	Nearly Chordal Graphs
	Our Approach of Generation of Nearly Chordal
	Methodology
	Example

	Output of Generation of Nearly Chordal Graph

	Recognition Algorithm for Nearly Chordal
	Relationship amongst Chordal, Nearly Chordal and Weakly Chordal Graphs

	Conclusions
	Future Works

	BIBLIOGRAPHY
	VITA AUCTORIS

