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Abstract 

The objective of this research is to create a condition monitoring software program that is able to 

monitor the operating conditions of the components of an open-loop pusher-style wind tunnel. 

The implementation of the condition monitoring program will play an important role to prevent 

the most unexpected failures as well as performance degradation in wind tunnel components that 

result from unusual operating conditions such as high temperature and high vibration. To identify 

the parameters that need to be monitored using the condition monitoring program, fault tree 

analysis is used. The study finds that wind tunnel failure happens as a result of motor and fan 

failure. The most likely failure indicators of motor and fan failure are high temperature and high 

vibration, respectively. To estimate the probability of wind tunnel failure based on motor 

temperature and fan vibration, a statistical model is developed using the union rule of 

probability. Furthermore, using the cumulative distribution function of the Beta distribution, the 

study defines failure probability functions for the motor and fan in terms of operating 

temperature and vibration, respectively. The condition monitoring program is implemented in 

LabView software and this research uses simulated data to demonstrate the functionality of the 

program. The program can perform real-time motor and fan condition monitoring if data 

acquisition devices are used that are compatible with the LabView software. The user interface 

of the LabView program displays motor and fan conditions and provides feedback to the wind 

tunnel user to make appropriate decisions for operation with high motor temperature and/or fan 

vibration. 

  



v 

 

Dedication 

This thesis is dedicated to my parents Mr. Abul Kalam and Mrs. Bilkis Begum, for their 

love, support, and sacrifices. I want to give special thanks to my friend Md. Zahirul Hoque for 

his encouragement and support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Acknowledgments 

I want to express my utmost gratitude to my co-advisors, Dr. Beth Anne Schuelke-Leech 

and Dr. Jeff Defoe for being excellent mentors. Their mentorship towards the completion of this 

thesis will help me to make better decisions in my personal and professional life. It has been a 

great privilege to work with them.  

My gratitude also goes to the committee members Dr. Afshin Rahimi and Dr. Xiang 

Chen, for their insightful advice and effort to review my thesis.  

I am also thankful to my friends, especially in the Turbomachinery and Unsteady Flows 

Research Group. 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Contents 

Declaration of originality ............................................................................................................... iii 

Abstract .......................................................................................................................................... iv 

Dedication ....................................................................................................................................... v 

Acknowledgments.......................................................................................................................... vi 

List of Tables ................................................................................................................................. xi 

List of Figures .............................................................................................................................. xiii 

Nomenclature……...……………………………………………………………………………. xv 

1. Introduction ............................................................................................................................. 1 

1.1 Condition Monitoring ....................................................................................................... 1 

1.1.1 Condition Monitoring Methods ................................................................................ 2 

1.1.2 Importance of Condition Monitoring ........................................................................ 3 

1.2 Overview of the Open Loop Pusher-Style Wind Tunnel at the University of Windsor .. 4 

1.3 Objective and High-Level Approach ............................................................................... 6 

1.4 Thesis Contributions ........................................................................................................ 7 

1.5 Thesis Outline .................................................................................................................. 7 

2. Literature Review .................................................................................................................... 9 

2.1 Appropriate Technique to Evaluate the Wind Tunnel Failure Modes ............................. 9 

2.2 Construction of Fault Tree Diagram .............................................................................. 11 

2.3 Major Causes of the Wind Tunnel Components Failure ................................................ 13 

2.3.1 Major Causes of Electric Motor Failure ................................................................. 13 

2.3.2 Major Causes of Fan Failure ................................................................................... 17 



viii 

 

2.3.3 Major Causes of Inverter Failure ............................................................................ 21 

2.4 A Review of Statistical Concepts Used in Condition Monitoring ................................. 25 

3. Methodology .......................................................................................................................... 28 

3.1 Fault Tree Analysis for the Wind Tunnel....................................................................... 28 

3.1.1 Fault Tree Analysis for Motor Failure .................................................................... 29 

3.1.2 Fault Tree Analysis for Fan Failure ........................................................................ 30 

3.1.3 Fault Tree Analysis for Inverter Failure ................................................................. 32 

3.2 Parameters of Interest ..................................................................................................... 33 

3.3 Wind Tunnel Failure Model ........................................................................................... 34 

3.4 Variables of the Wind Tunnel Failure Model ................................................................ 35 

3.5 General Approach of Failure Reference Curve .............................................................. 35 

3.6 International Standards of Motor Temperature and Fan Vibration ................................ 36 

3.6.1 Motor Temperature ................................................................................................. 36 

3.6.2 Fan Vibration .......................................................................................................... 37 

3.7 Assumptions Related to Failure Reference Curves ........................................................ 38 

3.8 Statistical Concepts Used to Create Failure Reference Curve ....................................... 40 

3.8.1 Cumulative Distribution Function .......................................................................... 40 

3.8.2 Beta Distribution ..................................................................................................... 42 

3.9 Determining the Parameters of the Failure Reference Curves ....................................... 43 

3.10 Creating the Failure Reference Curves Using CDF of the Beta Distribution ................ 44 

3.11 Classification of Motor, Fan, and System Failure .......................................................... 46 

3.12 Allowable Operating Range for System Failure ............................................................ 48 

3.13 Running Average............................................................................................................ 48 



ix 

 

4. Implementation ...................................................................................................................... 49 

4.1 Overview of LabView .................................................................................................... 49 

4.2 Human-Machine Interface Design ................................................................................. 49 

4.3 Statistical Concepts Used for Data Analysis .................................................................. 50 

4.3.1 Running Average .................................................................................................... 50 

4.3.2 CDF of the Beta Distribution .................................................................................. 51 

4.3.3 Union Rule of Probability ....................................................................................... 52 

4.4 The Framework of Program Operations......................................................................... 52 

4.5 Examples of Program Functionality Using Simulated Data .......................................... 54 

4.5.1 Motor Temperature Related Messages ................................................................... 54 

4.5.2 Fan Vibration Related Messages ............................................................................ 56 

4.5.3 Motor Condition Related Information .................................................................... 57 

4.5.4 Fan Condition Related Information ........................................................................ 58 

4.5.5 System Failure Related Information ....................................................................... 58 

5. Summary, Contributions, and Future Work .......................................................................... 60 

5.1 Summary ........................................................................................................................ 60 

5.2 Thesis Contributions ...................................................................................................... 61 

5.3 Conclusion ...................................................................................................................... 61 

5.4 Research Limitations ...................................................................................................... 62 

5.5 Future Research .............................................................................................................. 63 

 

References 65 

Appendix A Sensitivity Analysis of the Failure Reference Curves 72 



x 

 

Appendix B Determining Shape Parameters (α, β) of CDF of Beta Distribution 81 

Appendix C Alpha and Beta Values for Different Optimization Algorithms 84 

Appendix D Front Panel and Block Diagram of the Remote Motor Control Program Using 

      LabView 85 

Vita Auctoris 86 

  



xi 

 

List of Tables 

Table 2.1:Percentage of motor failure [15]. .................................................................................. 13 

Table 2.2: Motor failed components based on the survey [15]. .................................................... 14 

Table 2.3: Causes of motor components failure [16]. ................................................................... 15 

Table 2.4: Failure modes and failure patterns for motor components [17]. ................................. 16 

Table 2.5: Summary of causes of motor failure [15]–[17]. .......................................................... 17 

Table 2.6: Root causes of centrifugal fan failure [18]. ................................................................. 18 

Table 2.7: Causes of fan cooling fan failure by failure category [19]. ......................................... 19 

Table 2.8: Common causes of centrifugal fan failure [20]. .......................................................... 20 

Table 2.9: Summary of causes of centrifugal fan failure [18]–[20]. ............................................ 21 

Table 2.10: Percentage of tickets issued for inverter components failure [21]. ........................... 22 

Table 2.11: Causes of inverter failure listed in the TECO-Westinghouse inverter manual [22]. . 23 

Table 2.12: Percentage of inverter failure symptoms [26]. .......................................................... 24 

Table 2.13: Summary of the inverter failure-related information [20] and [21]. ......................... 24 

Table 3.1: Motor faults distribution [30]. ..................................................................................... 30 

Table 3.2: F-class motor temperature ratings [39] and [40]. ........................................................ 37 

Table 3.3:  ISO 10816-1 standard for vibration [42]. ................................................................... 38 

Table 3.4: Classification based on the probability of failure. ....................................................... 46 

Table 3.5: Temperature and vibration values for each class. ........................................................ 46 

Table 4.1: Number of running average points used for different classes. .................................... 51 

 

Table A.1: Temperature classes when prob. is 1% at 40°C or 45°C or 50°C............................... 73 



xii 

 

Table A.2: Temperature classes when prob. is 0.5% or 1% or 1.5% at 45°C .............................. 74 

Table A.3: Temperature classes when prob. is 75% or 80% or 85% at 150°C ............................ 75 

Table A.4: Temperature classes when prob. is 80% at 147.5°C or 150°C or 152.5°C................. 76 

Table A.5: Vibration classes when prob. is 1% at 1.6 mm/s, 1.8 mm/s, and 2 mm/s ................... 77 

Table A.6: Vibration classes when prob. is 0.5% or 1% or 1.5% at 1.8 mm/s ............................. 78 

Table A.7: Vibration classes when prob. is 75% or 80% or 85% at 6.5 mm/s ............................. 79 

Table A.8: Vibration classes when prob. is 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s ............... 80 

 

 

  



xiii 

 

List of Figures 

Figure 1-1: Open loop pusher-style wind tunnel at the Center for Engineering Innovation .......... 5 

Figure 1-2: Components of the open loop pusher-style wind tunnel (a) AC Motor (b) Inverter and 

(c) Centrifugal Fan. ......................................................................................................................... 5 

Figure 1-3: Schematic diagram of the wind tunnel components setup. .......................................... 6 

Figure 2-1: Events and gates used in FTA. (a) Basic event (b) Intermediate event (c) AND gate 

and (d) OR gate. ............................................................................................................................ 11 

Figure 2-2: Example of a fault tree diagram. ................................................................................ 12 

Figure 3-1: Fault tree diagram for the wind tunnel. ...................................................................... 28 

Figure 3-2: Fault tree diagram for motor failure. .......................................................................... 30 

Figure 3-3: Fault tree diagram for fan failure. .............................................................................. 31 

Figure 3-4: Fault tree diagram for inverter failure. ....................................................................... 32 

Figure 3-5: FTA representing the early warning signs for the wind tunnel components failure. . 33 

Figure 3-6: Normal operating temperature of the motor. ............................................................. 38 

Figure 3-7: The shape of the failure reference curve is concave up. ............................................ 40 

Figure 3-8: Cumulative distribution function curve. .................................................................... 41 

Figure 3-9: The shape of the Beta distribution CDF curve varies for different α and β values. ... 43 

Figure 3-10: Failure reference curve for motor failure. ................................................................ 45 

Figure 3-11: Failure reference curve for fan failure. .................................................................... 45 

Figure 3-12: Graphical representation of the temperature classes. ............................................... 47 

Figure 3-13: Graphical representation of the vibration classes. ................................................... 47 

Figure 3-14: Example of running average. ................................................................................... 48 

https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899248
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899248
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899249
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899250
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899250
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899257


xiv 

 

Figure 4-1: Human-machine user interface. ................................................................................. 50 

Figure 4-2: Flowchart of the LabView program. .......................................................................... 53 

Figure 4-3: Front panel marked with segments. ........................................................................... 54 

Figure 4-4: Temperature related messages. (a) Normal class, (b) Moderate class, (c) High class, 

and (d) When the temperature difference between actual reading and previous running average 

reading is higher than 5°C. ........................................................................................................... 55 

Figure 4-5: Vibration related messages. (a) Normal class, (b) Moderate class, (c) High class, and 

(d) When the vibration difference between actual reading and previous running average reading 

is higher than 1mm/s. .................................................................................................................... 56 

Figure 4-6: Motor condition related information. (a) Motor temperature reading, and (b) 

Probability of motor failure reading. ............................................................................................ 57 

Figure 4-7: Fan vibration-related information. (a) Fan vibration reading, and (b) Probability of 

fan failure reading. ........................................................................................................................ 58 

Figure 4-8: Information related to system failure. (a) Message for the allowable probability of 

failure, (b) Message for the high probability of failure, and (c) Probability of system failure..... 59 

 

Figure A-1: Probability is 1% at 40°C or 45°C or 50°C and 80% at 150°C ................................ 73 

Figure A-2: Probability is 0.5% or 1% or 1.5% at 45°C and 80% at 150°C ................................ 74 

Figure A-3: Probability is 1% at 45°C and 75% or 80% or 85% at 150°C .................................. 75 

Figure A-4: Probability is 1% at 45°C and 80% at 147.5°C or 150°C or 152.5°C ...................... 76 

Figure A-5: Prob. is 1% at 1.6 mm/s, 1.8 mm/s, and 2 mm/s and 80% at 6.5 mm/s .................... 77 

Figure A-6: Prob. is 0.5% or 1% or 1.5% at 1.8 mm/s and 80% at 6.5 mm/s .............................. 78 

Figure A-7: Prob. is 1% at 1.8 mm/s and 75% or 80% or 85% at 6.5 mm/s ................................ 79 

Figure A-8: Prob. is 1% at 1.8 mm/s and 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s .................. 80  

https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899269
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899269
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899269
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899270
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899270
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899270
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899271
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899271
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899272
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899272
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899273
https://uwin365-my.sharepoint.com/personal/rezaf_uwindsor_ca/Documents/%23%20Final%20Draft%205-20-2020/Final%20Draft%205-20-2020.docx#_Toc40899273


xv 

 

Nomenclature 

Symbols 

a location parameter of the Beta distribution 

b scale parameter of the Beta distribution 

f (t) probability density function 

F (𝑥) cumulative distribution function  

Ff fan failure  

Mf  motor failure  

Sf   system failure or, wind tunnel failure  

𝑥 real number 

X random variable  

α, β shape parameters of the Beta distribution 

Subscripts 

f failure 

Abbreviations 

CDF Cumulative Distribution Function  

FMEA Failure Mode and Effect Analysis  

FTA Fault Tree Analysis  

PHA Preliminary Hazard Analysis  

RMS Root Mean Square 

 



1 

 

1. Introduction 

 

This chapter presents an overview of this research study. At first, the chapter gives a general 

description of condition monitoring. Then the chapter introduces the wind tunnel that is used for 

this research. Next, the objectives and thesis contributions are presented. Finally, the structure of 

this thesis is outlined. 

 

1.1 Condition Monitoring  

Condition monitoring is defined as the process of monitoring and determining the condition of a 

machine while it is operating [1]. A comprehensive condition monitoring program provides 

thorough diagnostic information to the machine operator. By utilizing condition monitoring, the 

machine’s user will know the working state of the machine. As a result, it is possible to estimate 

how long a machine can operate in its current state and schedule future repair and maintenance 

work to avoid failure. The rapid development in sensors and data acquisition technologies have 

enabled an immense opportunity for condition monitoring. To determine the condition of a 

machine, different types of parameters such as temperature, vibration, lubrication, etc. are 

monitored [2]. By evaluating these parameters, the machine condition can be examined either 

continuously or periodically. The parameters that need to be studied depends on various factors, 

such as the specific machine design and application [3]. 

Ming has discussed the evolution of condition monitoring from 1960 to 2000 in [4]. 

Within this period condition monitoring went through four major development stages because of 

the advancement in the computer, microprocessor, and software program. In the early 60s, 
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condition monitoring was mostly dependent on skillful and experienced personnel. Analog 

instrument-based condition monitoring was introduced in the early 1970s. During this time, 

heavyweight analog instruments were used to collect condition monitoring data, and mainframe 

computers were used to store data in magnetic tapes. Digital instrument-based condition 

monitoring began in the mid-1980s and the instruments used in this period were lightweight with 

increased accuracy and efficiency. Software-based condition monitoring became available in the 

mid-1990s. Since then, using software has become popular to perform condition monitoring 

processes and data analysis. 

1.1.1 Condition Monitoring Methods 

In [5] and [6], condition monitoring methods are categorized into two different types, off-line 

monitoring, and online monitoring. For the off-line monitoring method, the machine is taken out 

of service to inspect the condition and mostly used for scheduled maintenance or routine 

monitoring. Usually, diagnostic tests and data collection are performed manually in the off-line 

monitoring methods. On the other hand, for the online monitoring methods, signals of the 

machine parameters are monitored continuously using wired or wireless systems. The main 

advantage of the online condition monitoring method is that usually, machine shutdown is not 

necessary, parameters are monitored without interrupting the machine’s normal operation.  

Examples of the off-line monitoring techniques are insulation resistance inspection and sugar test 

etc. and the online monitoring techniques are vibration analysis, temperature analysis, current 

analysis, etc. [5]. 

In addition to off-line and online methods, Zachrison [7] has classified condition 

monitoring into model-based and data data-driven approaches. The main idea of model-based 

approaches is to predict an output signal by analyzing an input signal that passes through a 
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model. Using a simulation or mathematical model it is possible to detect any unusual condition 

in the input signal. Examples of model-based approaches are parameter estimation, Kalman 

filter, parity space, etc. The common practice of data-driven approaches is to compare new data 

with the preprocessed old data instead of creating a new model. The processes of data 

comparison and storage vary for individual data-driven approach. Examples of data-driven 

approaches are Bayesian networks, principal component analysis, etc. These data-driven models 

are trained with a training sample that includes healthy and faulty data, and the effectiveness of 

these models depends on the training sample size [8]. 

 

1.1.2 Importance of Condition Monitoring 

Condition monitoring provides a myriad of benefits. The benefits that are relevant for this project 

are listed as follows. 

• Condition monitoring increases machine reliability and operational lifetime because it 

helps to find potential failure at an early stage. As the monitoring parameter provides 

valuable information about machine condition, condition monitoring assists to identify 

imminent failure before a complete failure happens. The knowledge about imminent 

failure helps the machine operator to take appropriate actions that result in increased 

machine reliability and operational lifetime. 

• In most cases, it is a proactive monitoring process that identifies any abnormality in a 

system or machine at the time of its occurrence. Usually, an abnormality is detected if the 

monitoring parameter values vary from the normal operating values. 

• In most instances, condition monitoring analyzes the health condition, so it can be used 

not to operate a machine in a state when a machine has severe performance degradation. 
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For instance, if a machine’s performance degradation occurs towards the maximum limit 

of a parameter such as temperature or vibration, using condition monitoring it is possible 

to operate the machine within the parameter’s limit when the possibility of performance 

degradation is low. 

• Condition monitoring helps to avoid secondary damage because it can detect a failure 

before the primary failure leads to a secondary failure. For instance, deterioration of a 

motor’s bearing can cause total bearing failure and bearing failure might lead to rotor 

failure [9]. 

 

1.2 Overview of the Open Loop Pusher-Style Wind 

Tunnel at the University of Windsor 
 

The focus of this research is the open loop pusher-style wind tunnel at the Center for Engineering 

Innovation (CEI), at the University of Windsor. The active components of the wind tunnel are 

motor, fan, and inverter. The wind tunnel is depicted in Figure 1-1 and the components are 

shown in Figure 1-2. To represent the wind tunnel components setup, a schematic diagram is 

shown in Figure 1-3. The motor and inverter used for the wind tunnel are from TECO-

Westinghouse Inc. The AC motor can output a maximum of 100 horsepower and it can rotate at 

a maximum speed of 3,600 RPM. The input voltage for the inverter is 575V. The fan installed at 

the wind tunnel is a centrifugal fan and it is from Northern Blower. Currently, the wind tunnel 

does not have a condition monitoring program to monitor the components. So, a condition 

monitoring program is needed that will help to identify incipient failures as well as deterioration 

of performance of the wind tunnel components. 
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            Figure 1-1: Open loop pusher-style wind tunnel at the Center for Engineering Innovation  

            (CEI), at the University of Windsor. 

 

a) b) 

c) 

Figure 1-2: Components of the open loop pusher-style wind tunnel (a) AC Motor 

(b) Inverter and (c) Centrifugal Fan. 
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1.3 Objective and High-Level Approach 

This thesis aims to create a condition monitoring software program for the wind tunnel.  

The program will utilize a model based on the addition rule of probability to determine the 

failure probability of the wind tunnel. The program will also use cumulative distribution function 

to analyze the parameters of the wind tunnel components. The program will be able to perform 

real-time monitoring about the state of the wind tunnel components when appropriate hardware 

such as data acquisition devices and sensors will be used. Furthermore, the program will give 

real-time feedback using text warnings and visual indications based on the operating state of the 

components. To create the condition monitoring program, the research also focuses on the 

following tasks. 

1. Identify the appropriate failure analysis technique to evaluate the failure modes. This will 

help to identify the failure modes as well as root causes of the wind tunnel and its 

components. 

AC Motor Centrifugal Fan Inverter Power 

Figure 1-3: Schematic diagram of the wind tunnel components setup. 
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2. Investigate the most likely root causes of the wind tunnel components failure. This will 

determine the parameters that need to be monitored using the program. 

3. Identify the normal operating range of the components at which probabilities of 

component failures are low.  

 

1.4 Thesis Contributions 

The major contribution of this thesis is that it presents a condition monitoring program to prevent 

wind tunnel components failure. The program has the ability to analyze input signals using the 

statistical concept cumulative distribution function of the Beta distribution. This thesis also 

contributes to the area of failure analysis of the wind tunnel components. The thesis includes the 

major root causes of the wind tunnel components failure. Furthermore, using the failure analysis 

technique this research finds the parameters that need to be monitored by the condition 

monitoring program. 

 

1.5 Thesis Outline 

Chapter 2 presents a thorough literature review on the wind tunnel components failure. The 

chapter also focuses on identifying a failure analysis technique to outline the major causes of 

wind tunnel failure. Following this, chapter 3 includes fault tree diagrams for the wind tunnel 

components and introduces a probability-based model. The chapter also focuses on determining 

the variables of the model. A LabView software-based condition monitoring program is 

presented in chapter 4. Using simulated data, a detailed description of the program operations is 
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also included in this chapter. Conclusion, research limitations and future work are discussed in 

chapter 5.  
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2. Literature Review 
This chapter investigates the literature review articles related to motor, fan, and inverter failures. 

Furthermore, this chapter includes basic information about failure analysis techniques as well as 

statistical concepts that are used in condition monitoring.  

2.1 Appropriate Technique to Evaluate the Wind 

Tunnel Failure Modes 

First and foremost, before developing the condition monitoring program, this research has to find 

the root causes that lead to the wind tunnel failure and identify the parameters that need to be 

monitored using the condition monitoring program. To figure out the root causes of the wind 

tunnel components a failure analysis technique is needed that will have the combinations of 

failure modes for each component. There are several techniques to determine the failure modes 

of a component such as fault tree analysis (FTA), preliminary hazard analysis (PHA), failure 

mode and effect analysis (FMEA), and process mapping.  

Reay [10] has described the FTA as a top-down deductive technique that starts with a top 

event and develops downwards to map the causes of a program failure. In other words, the FTA 

visualizes the combinations of failures that cause a program failure. Two types of analysis can be 

performed using FTA, qualitative, and quantitative. Qualitative FTA is used to identify the 

combinations of events that will lead to the program failure and the purpose of quantitative FTA 

is to determine the probability of a program failure. The main advantage of FTA is that it 

graphically shows the logical sequences of a failure. The disadvantage of FTA is that the tree 

diagram becomes extremely large for a complex system. 
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According to Sharma and Srivastava [11], the FMEA is used to identify potential failures 

including their causes and effects from a system, process, design, and/or service. The analysis 

evaluates and prioritizes the risks associated with the failures. It also suggests actions that can 

reduce or eliminate potential failures from occurring. Each failure mode is rated with a risk 

priority number that is calculated based on severity, occurrence, and detection of the failure. The 

risk priority number helps to identify the failures that have high-risk. As a result, appropriate 

actions can be taken to reduce or eliminate high-risk failures. The drawback of FMEA is that 

high-risk failures might be ignored because of inaccurate risk priority numbers.  

Gould et. al [12] have mentioned that the PHA is used to identify all potential hazards 

during the design and development of a process or an event. The main purpose of PHA is not to 

control the hazards but to recognize the hazards. The advantages of the analysis are that it ranks 

the identified hazardous events based on their severity and proposes follow-up actions and 

additional safety measures to prevent any accident. The disadvantage of PHA is that it might not 

identify all the hazards because the analysis is performed before the completion of a process or 

an event.  

Phillips and Simmonds [13] have stated that process mapping is a visual and impartial 

way to identify problems and how the problems may be solved. In other words, process mapping 

represents a series of steps or actions that help to achieve an outcome. It uses flowcharts to 

illustrate the tasks and flow of a process. This helps to identify the problems involved in a 

process. One of the main disadvantages of process mapping is that it allows to include 

insignificant and unnecessary steps of a process. 

For this research, FTA will be used to evaluate the wind tunnel failure modes because it 

graphically outlines the combinations of the failures of the wind tunnel using the root causes of 
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the component’s failures. FTA will also help to identify the parameters for the condition 

monitoring program. The main reasons other methods are unsuitable for this research are because 

they do not solely focus on failure modes and provide redundant information that this research 

does not intend to use. 

 

2.2 Construction of Fault Tree Diagram 

In the FTA, the main failure event of interest is known as a top event [14]. A fault tree diagram is 

created using events and gates. The gates and events used in this thesis are shown in Figure 2-1. 

The events are either intermediate or basic, and they are used to map the failure causes of the top 

event. The intermediate events can be further developed to find failure causes; however, basic 

events can not be developed further. Intermediate and basic events are represented by rectangles 

and circles, respectively. 

 

 

Figure 2-1: Events and gates used in FTA. (a) Basic event (b) Intermediate event (c) AND gate 

and (d) OR gate. 

         a)              b) 

         c)     d) 

Output 

Input 

Output 

Input 
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The gates are used to create a relationship between the events. In this thesis, two types of 

gates are used: AND gate and OR gate. The functionalities of the fault tree AND gate and OR 

gate are the same as Boolean intersection and union operations. For the AND gate, if all the input 

events occur at the same time, then the output event will occur. For the OR gate, the event will 

occur if at least one input event occurs. 

The example provided in Figure 2-2 represents a qualitative fault tree diagram. The fault 

tree diagram has six basic events (1, 2, 3, 4, 5, and 6), three intermediate events (A, B, and C), 

three OR gates, and one AND gate. Starting with the top event, System Failure is connected to an 

output of an OR gate that has three inputs. System Failure will happen if one of the intermediate 

events occurs. The intermediate events A and C are connected to the outputs of OR gates, so 

events A and C will take place if one of their corresponding basic events occurs. The 

intermediate event B is connected to an AND gate that has two inputs. So, event B will happen if 

both inputs occur. 

 

System Failure

OR

A B C

OR OR

1 5 62 43

AND

 

Figure 2-2: Example of a fault tree diagram. 
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2.3 Major Causes of the Wind Tunnel Components 

Failure  
 

Although there are enormous number of factors that contribute to motor, fan, and inverter 

failures, this thesis focuses on the major root causes that give early warning signs of failures. In 

the following sections, articles are discussed that include the common root causes of motor, fan, 

and inverter failures. 

2.3.1 Major Causes of Electric Motor Failure  

O'Donnell et al. [15] have performed an electric motor reliability analysis from a survey where a 

total of 1,141 AC and DC motors were used and the survey found 360 cases of motor failure. 

Even though both AC and DC motors are used in the survey, this reliability analysis is important 

for the research because it includes information about the most likely causes of motor failure. 

Table 2.1 shows the list of causes of motor failure and it is observed that mechanical crack, 

insulation breakdown, and overheating are the primary causes of motor failure. The study also 

finds that bearing and winding are the most failed components than any other components, as 

shown in Table 2.2.  

 

Table 2.1:Percentage of motor failure [15]. 

Causes of Failures  Number of failures 

Mechanical crack 113 

Overheating 45 

Insulation breakdown 42 

Electrical fault or malfunction 26 

Transient overvoltage 5 

Stalled motor 3 

Others   107 
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Table 2.2: Motor failed components based on the survey [15]. 

Failed Component* Induction Motors 

Bearing 152 

Winding 75 

Rotor 8 

Shaft or CPLG 19 

External device 10 

Not Specified  40 

*Some motors have more than one failed component per 

motor failure. 

 

 

Badawi and Almuhaini [16] have proposed a reliability model for electric motor driven 

(EMD) systems where they have analyzed the failure modes of motor components using over 

100 EMD systems. They have designed a fault tree model to identify the causes of failures in 

EMD systems. The main root causes that are found in the fault tree model are shown in Table 

2.3. The authors have categorized the root causes into five categories: environmental stress, 

thermal stress, mechanical and dynamic stress, electromagnetic stress, and other stresses. They 

have found that bearing, winding, and shaft are the three main components that contribute to 

motor failures and they have concluded that 80% of the motor failures are related to bearing 

failures. As seen in Table 2.3, the temperature has a high effect on bearing that gives an idea that 

the temperature is one of the early warning signs for motor failure. 
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Table 2.3: Causes of motor components failure [16]. 

 Shaft  Bearing  Stator  Rotor  

Environmental 

Stress 

● Corrosion 

● Moisture 

● Erosion 

● Excessive 

ambient 

temperature 

 

● Chemical 

● Excessive 

ambient 

temperature 

● Contamination 

● Excessive 

ambient 

temperature 

Thermal Stress ● Temperature 

gradients 

● Rotor bowing 

● Friction 

● Lubricant 

● Ambient 

temperature 

● Thermal aging 

● Loading 

● Ambient 

temperature 

● Thermal 

overload & 

unbalanced 

Electromagnetic 

Stress 

● Sideloading 

● Out of phase 

reclosing 

● Electrostatic 

coupling 

● Dielectric aging 

● Corona 

● Transients 

● Noise 

● Circling 

currents 

Mechanical and 

Dynamic Stress 

● Torsional load 

● Axial load 

● Misalignment 

● Shaft/Housing 

fits 

● Coil movement 

● Rotor strikes 

● Fatigue 

● Material 

deviations 

Other Stresses ● Manufacturing 

process 

● Vibration and 

shock 

● Air gap ● Wrong rotation 

direction  

 

 

Bonnet [17] has introduced a methodology to diagnose the root causes of a failed motor. 

The proposed methodology uses a checklist of failure modes and failure patterns. The 

methodology also includes lists of questions that are related to the failed motor’s appearance, 

application, and maintenance history. The checklist is based on stresses associated with motor 

components such as stator, rotor, bearing, and shaft. The checklist groups failure modes and 

failure pattern according to each motor component, as shown in Table 2.4. The checklist is useful 

for this thesis because it includes information about the parameters that are responsible for the 

motor component's failure.  
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Table 2.4: Failure modes and failure patterns for motor components [17]. 

Motor 

Component 

Failure Mode/Class Failure Pattern 

Stator Winding Turn to turn 

Phase to phase 

Coil to coil 

Open circuit 

Symmetrical 

Single phased 

Non-symmetrical and 

grounded 

Non-symmetrical and no 

ground 

Rotor Assembly Shaft 

Bearing 

Lamination 

Squirrel cage 

Thermal 

Magnetic 

Mechanical 

Environmental 

Ball bearings Fatigue spalling 

Wear 

Lubrication failure 

Cracks 

Seizures 

Thermal 

Vibration and noise 

Lubricant quality 

Mounting 

Mechanical & electrical 

damage 

Shaft Overload  

Fatigue 

Corrosion 

Ductile 

Beach marks 

Shear lips  

 

  

Table 2.5 shows a summary of the causes of motor failure. The purpose of this table is to 

find the common failure modes that are presented in the previous references. The table also helps 

to understand the failure types and their corresponding failure causes. The table categorizes the 

failure causes in terms of mechanical failure, electrical failure, environmental conditions, and 

human error. It is noticed from the table that most of the causes are related to mechanical failure. 

The causes of mechanical failure are categorized according to the failure of the mechanical parts. 

The table also shows that bearing has more causes of failure compared to other mechanical parts. 
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Table 2.5: Summary of causes of motor failure [15]–[17]. 

Failure Type Causes 

Mechanical 

failure 

Bearing ● Fatigue 

● Wear 

● Lubrication failure 

● Friction  

● Misalignment 

● Crack 

Shaft ● Overload 

● Fatigue 

Stator ● Coil movement 

● Rotor strikes 

Rotor ● Incorrect shaft/ Core fit 

● Fatigue/ Part breakage 

● Poor rotor to stator geometry 

Electrical failure ● Overcurrent  

● Overvoltage 

Environmental conditions ● High ambient temperature 

● Corrosion 

● Moisture 

● Erosion 

Human error ● Overload (high RPM) 

● Frequent start/ stop 

 

 

2.3.2 Major Causes of Fan Failure 

In [18] a thorough list of centrifugal fan failure problems and their associated root causes are 

listed, as shown in Table 2.6. The table shows that overheated bearings, overload on the driver, 

high vibration, and high noise levels related problems have the most root causes. It is also 

noticed that high vibration has more root causes than other problems. This literature review 

article has great importance for this research because the article includes almost all the root 

causes associated with centrifugal fan failure. The article also helps to understand the problems 

that occur because of those root causes.  
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Table 2.6: Root causes of centrifugal fan failure [18]. 

THE CAUSES 
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Abnormal End Thrust       ●     ●       

Aerodynamic Instability   ● ● ● ●   ● ●     

Air Leaks in System ● ● ●       ●       

Bearings Improperly Lubricated           ●  ●   ● 

Bent Shaft       ● ● ● ●   ●   

Broken or Loose Bolts or Setscrews       ●     ●       

Damaged Wheel ●   ● ●             

Dampers or Variable-Inlet Not 
Adjusted 

●   ●               

Dirt in Bearings       ●     ●       

Excessive Belt Tension       ●     ●     ● 

External Radiated Heat       ●             

Fan Delivering More Than Rated 

Capacity 
          ● ●       

Fan Wheel or Driver Imbalanced       ●     ●       

Foreign Material in Fan Causing 

Imbalance  
      ●     ● ●     

Incorrect Direction of Rotation ●   ●     ● ●       

Insufficient Belt Tension             ● ●     

Misalignment of Bearings, Coupling, 

Wheel 
      ●   ● ● ● ●   

Motor Improperly Wired           ● ● ●   ● 

Packing Too Tight or Defective 

Stuffing Box 
          ● ●   ● ● 

Specific Gravity or Density Above 

Design 
          ● ●   ●   

Speed Too High   ●   ● ● ● ●     ● 

Speed Too Low ● ● ●         ●   ● 

Too Much Grease in Ball Bearings       ●             

Total System Head Greater Than 

Design 
●   ● ●   ●     ●   

Total System Head Less Than Design   ●         ●     ● 

Unstable Foundation   ●   ●     ● ●     

Vibration Transmitted to Fan from 

Outside  
      ●     ● ●     

Wheel Binding on Fan Housing       ●   ● ● ●   ● 

Worn Bearings             ● ●     

120-Cycle Magnetic Hum             ● ●     

● Common Failure Modes of Centrifugal Fans 
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Although a centrifugal fan is used for the wind tunnel, this thesis discusses a literature 

review article that is based on a cooling fan because the article presents an actual fan failure 

analysis on 33 samples [19]. Table 2.7 shows the results obtained from the failure analysis. The 

table includes the failure category and the failure causes associated with each category. The 

study finds that most cooling fan failures are related to mechanical failure, electrical failure, and 

fan installation. This article is helpful for the research because it categorizes the root causes as 

well as organizes the root causes in rank order. 

 

Table 2.7: Causes of fan cooling fan failure by failure category [19]. 

Fan Failure Category Failure Causes (in rank order) Number of Failures 

Mechanical failure • Bearing failure 8 

 • Thermal distortion  

 • Impeller stress cracking  

Electrical failure • Electric overstress 8 

 • PCB cracking damage to components  

 • Wiring errors  

Fan installation • Connector crimping or pin opens 8 

 • Reversed airflow  

 • Loose cabling  

 • Excessive thermal resistance   

Acoustic failure 

• Nominal fan noise creates customer 

satisfaction issues 5 

 • Fan blade interference  

Serviceability • Poor access raises service costs 3 

System cooling performance • Overheating of tape drives 1 

 

Table 2.8 shows the list of troubleshooting processes that are obtained from the 

Greenheck centrifugal fan user manual [20]. The manual includes an extensive list of problems 

and causes that are related to the centrifugal fan. From the list, this thesis sorts out the common 

problems that are also found in other literature review articles. Table 2.8 shows that excessive 

noise, temperature, and vibration are common problems and they are caused by various factors 
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such as defective bearing, insufficient lubrication, misalignment of the shaft, motor, etc. This 

user manual categorizes the root causes in terms of parameters. This is useful for this research 

because it helps to understand parameters that show the early warning signs of fan failure. 

 

Table 2.8: Common causes of centrifugal fan failure [20]. 

Problem Causes Corrective Action 

Excessive 

Noise 

Wheel 

rubbing 

Adjust wheel. Tighten the wheel hub or bearing. 

Bearings Replace defective bearing(s). Lubricate bearings. 

Wheel 
unbalance 

Clean all dirt off the bike. Check wheel balance. 

Overheated 

Shaft 

Bearing 

Lubrication Check for excessive or insufficient grease in the 

bearings. 

Mechanical Replace damaged bearing. Relieve excessive belt 

tension. Align bearings. Check for the bent shaft. 

Excessive 

Vibration 

Belts Adjust the tightness of belts. Replacement belts 

should be a matched set. 

System 

unbalance 

Check alignment of the shaft, motor, and pulleys. 

Check wheel balance, rebalance if necessary. 

Coupling Check alignment between coupling, motor, and 

fan shafts.  
 

 

Table 2.9 shows the summary of the causes of centrifugal fan failure and lists the 

problems associated with the causes. The listed problems are related to vibration, temperature, 

noise, and overload. It is observed from the table that several failure causes contribute to 

vibration, temperature, and noise related problems. The table also shows that most of the failure 

causes lead to vibration-related problems. 
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Table 2.9: Summary of causes of centrifugal fan failure [18]–[20]. 

Causes Problems 

Vibration 

related 

Temperature 

related 

Noise 

related 

Overload 

Mechanical parts failure ● ● ●  

Vibration transmitted from outside ● ● ●  

Aerodynamic instability ● ● ●  

Unstable foundation ● ● ●  

Misalign bearing, coupling ● ● ●  

Improper lubrication ● ● ●  

Broken/ loose bolts/ screws ●    

Fan wheel imbalanced ●    

Air leaks ●    

High RPM    ● 

Bent shaft    ● 

Incorrect rotating direction    ● 

 

2.3.3 Major Causes of Inverter Failure 

Golnas [21] has analyzed the inverter components failure based on 3,500 service tickets issued 

by SunEdison’s Renewables Operation Center. The service tickets were used to keep records of 

issues related to power plant components such as inverter, meter, AC Subsystem, etc. The study 

finds that the highest percentage of tickets, 43% were issued for inverter related failure. Table 

2.10 shows the percentage of tickets issued for different inverter components failure. It is noticed 

that 28% of the inverter failed because of software failure and other major components of 

inverter failure are AC contactor and inverter board. The reason this study is important for this 

research is that it gives thorough information about the inverter failure areas that are obtained 

from a large sample size. It is inferred from the study that software-related failure is the primary 

root cause of inverter failure. 
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Table 2.10: Percentage of tickets issued for inverter components failure [21]. 

Failure Area Percent of tickets 

Control Software 28% 

Card/Board 13% 

AC Contactor 12% 

Fan(s) 6% 

Matrix/IGBT 6% 

Power Supply 5% 

AC Fuses 4% 

DC Contactor 4% 

Surge protection 3% 

GFI Components 3% 

Capacitors 3% 

Internal Fuses 3% 

Internal 

Relay/Switch 3% 

DC Input Fuses 2% 

[additional fields] 5% 

 

 

The user manual of the installed  TECO-Westinghouse inverter includes a list of probable 

faults and warnings [22]. From the manual, this thesis sorts out the faults that lead to potential 

inverter failure, as shown in Table 2.11. The faults listed in the table are also found in the 

literature review articles [23] and [24]. Table 2.11 shows that the most likely root causes for 

inverter failure are related to voltage, current, temperature, and communication error. This user 

manual is important for this research because it includes the list of causes of inverter failure and 

their appropriate solutions. 
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Table 2.11: Causes of inverter failure listed in the TECO-Westinghouse inverter manual [22]. 

LED display Description Cause Possible solutions 

Overvoltage Voltage exceeds 

level. 

The voltage is 

 too high. 

•   Reduce the input voltage. 

•   Replace braking transistor 

Under voltage Voltage is 

low. 

The voltage is 

too low. 

•   Replace control board or 

complete inverter. 

Heatsink 

overheat 

The temperature 

is too high. 

•   Ambient temp. 

too high. 

•   Cooling fan failed 

•   Replace the cooling fan. 

•   Reduce load / Measure 

output current 

Inverter 

overload 

Inverter thermal 

protection tripped. 

Load too heavy. Reduce motor load, check the 

duty cycle. 

Communicati- 

on error 

LCD keypad 

communication 

error. 

Keypad and inverter 

are unable to 

communicate. 

Replace control board 

Inverter over 

heating 

Inverter overheats 

warning. 

Digital input 

overheats warning 

active. 

•   The multi-function input 

function set incorrectly. 

•   Check to wire 

Overcurrent 

  

The current reaches 

a high level. 
•    Inverter current 

too high. 

•   Check load and duty cycle 

operation. 

 

Avor and Chang [25] have performed a reliability analysis for variable frequency drive 

using FMEA. Their FMEA model includes several failure modes for an inverter. The top failure 

modes listed in the model are insulated gate bipolar transistor not switching, clamp capacitor 

failure, and gate unit supply failure. In [23] inverter failures are found because of fuse failure, 

stress, damage, or aging of parts such as a switch, capacitor, and fan.  

Estratios et al. [26] have investigated the inverter faults and failure based on 295 inverter 

cases. Table 2.12 shows the inverter failure symptoms that they observed from the study. The 

table shows that 33% of the inverter failed because of voltage malfunction. Other common 

failure symptoms of inverter failure are display malfunction and test procedure or firmware 

update. 
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Table 2.12: Percentage of inverter failure symptoms [26]. 

Failure Symptoms Percentage (%) 

Output Voltage Malfunction 33 

Test Procedure/ Firmware update 30 

Display Malfunction 27 

Cooling System Malfunction 5 

Failure Indication on Display 5 

Other malfunction 4 

 

Table 2.13 shows a summary of the inverter failure-related information utilizing the 

knowledge learned from previous references.  The table includes failure types and their 

corresponding failure causes or areas. The table categorizes the failure types into electrical 

failure, hardware failure, and software failure.  

 

Table 2.13: Summary of the inverter failure-related information [20] and [21]. 

Failure Type Failure Cause / Area 

Electrical 

failure 
• Overvoltage 

• Under voltage 

• Overcurrent 

Hardware 

failure 
• Fan(s) 

• Display malfunction 

• LCD keypad failure 

• Capacitors, Card/Board 

• AC/ DC Contactor 

• AC/ DC Fuses 

• Internal Fuses 

• Surge protection 

• Matrix/IGBT 

• Internal Relay/Switch 

• GFI Components 

• Wire 

Software 

failure 
• Control Software 

• Communication protocol failure 

• Firmware update 
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2.4 A Review of Statistical Concepts Used in Condition 

Monitoring 

Currently, a wide range of statistical concepts, machine learning algorithms, signal processing 

techniques, and mathematical functions are used in condition monitoring. This research only 

focuses on the statistical concepts that are found commonly in the literature. Several statistical 

concepts, namely Bayes’ theorem, hidden Markov model, and time series forecasting are widely 

used in condition monitoring. A basic description of these concepts is described as follows: 

Stone [27] has stated that Bayes’ theorem is a probability-based theorem that utilizes the 

prior information of an event and when new information of that event becomes available, it 

updates the posterior probability. The posterior probability is a conditional probability that is 

revised or updated after considering new information. In statistics, conditional probability 

represents the probability of one event based on its relation to another event. Because of this 

feature, Bayes’ theorem has a wide range of applications in terms of decision making, especially 

in the fields of science, biology, and medicine, etc. [27]. One of the reasons Bayes’ theorem is 

used in condition monitoring is because the theorem allows for updating failure information 

about a parameter when new failure data become available. The disadvantage of Bayes’ theorem 

is that the posterior probability is heavily influenced by the prior information. As a result, the 

theorem can generate misleading results. 

Zoubin [28] has defined the hidden Markov model as a tool that represents probability 

distributions over sequences of observations. The hidden Markov model has two properties. 

First, the hidden Markov model uses a Markov chain to acquire the transition between variables 

or states. A Markov chain is a model that gives probabilities of a sequence of random variables 
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or states. Second, the hidden Markov model assumes that the variables or states are hidden from 

the observer. The hidden Markov model can be divided into two layers, the hidden layer, and the 

observation layer. In the hidden layer, the Markov chain exists, and the observation layer is 

considered as the output of the hidden layer. There are three algorithms of hidden Markov 

model: forward-backward, Viterbi, and Baum-Welch.  

In condition monitoring, the time series forecasting method is used to predict a machine 

performance using parameter data. Adhikari and Agrawal [29] have defined the time series 

forecasting as predicting the future by understanding the knowledge from the past. In time series 

forecasting, past observations are analyzed to develop a mathematical model and future events 

are predicted using the mathematical model. The mathematical model is generated using the time 

series method. Time series is defined as a sequential set of data points that are measured over 

successive times. A time series generally has four components: trend, cyclical, seasonal, and 

irregular. Seasonal variations of a time series are fluctuations that repeat over a specific period. 

Trend variations correspond to the up or down movement of fluctuations. Cyclical variations 

describe the medium-term changes in a time series. Irregular variations are caused by 

unpredictable influences. Popular time series models used in forecasting are Autoregressive 

(AR), Moving Average (MA), Autoregressive Moving Average (ARMA), and Autoregressive 

Integrated Moving Average (ARIMA).  

The above-described concepts are not suitable for this research because they have several 

constraints. The Bayes’ theorem possesses variable that relates to the prior probability of an 

event and the value of the prior probability variable is not always available. Besides, results 

obtained from the Bayes’ theorem do not always satisfy the real-world expectations. The hidden 

Markov model is not appropriate to evaluate wind tunnel parameters because it requires a 
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sequence of possible events and the events are dependant on each other based on probability 

values. The time series forecasting is not suitable for this project because the project intents to 

create a real-time monitoring program that will monitor the state of the wind tunnel components 

if data acquisition devices are used.  

 

A comprehensive literature review on the failures of the motor, fan, and inverter, as well as 

basic descriptions of FTA and several statistical concepts, were summarized in this chapter. 

Since the purpose of this research is to create a condition monitoring program, so the research 

has to identify the parameters that need to be monitored using the program. In the next chapter, 

FTA will be used to find the parameters that show the most obvious signs of failures associated 

with motor, fan, and inverter. In addition, the next chapter presents a statistical model as well as 

discusses several statistical concepts that will be used to develop the condition monitoring 

program. 
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3. Methodology 
This chapter presents FTA to evaluate the failure modes of the wind tunnel. The chapter also 

includes a statistical model that uses union rule of probability and introduces failure reference 

curves to determine the variables of the model. In addition, the chapter categorizes the motor 

temperature and fan vibration values into different classes.  

 

3.1 Fault Tree Analysis for the Wind Tunnel  

To graphically represent the combinations of the wind tunnel failures, qualitative FTA is used. A 

fault tree diagram is created using the failures of the wind tunnel components motor, fan, and 

inverter, as shown in Figure 3-1. The wind tunnel failure represents the top event of the fault tree 

diagram and is connected to the output of an OR gate. The component’s failures are connected to 

the inputs of the OR gate. The reason OR gate is used because the wind tunnel failure will 

happen if one of the components fails. 

 

Wind Tunnel Failure

OR

Fan Failure 

Inverter Failure

Motor Failure

 

Figure 3-1: Fault tree diagram for the wind tunnel. 
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To investigate the common failures of the components, manufacturers were contacted. 

The manufacturers suggested that the most likely causes of the motor, fan, and inverter failures 

are related to temperature, vibration, and cooling fan failures, respectively. In the following 

sections, the FTA for the wind tunnel components is presented based on the knowledge learned 

from the literature review and considering the manufacturer’s suggestions. 

 

3.1.1 Fault Tree Analysis for Motor Failure 

A fault tree diagram for motor failure is developed, as shown in Figure 3-2. The diagram 

includes the most likely root causes of the motor failure that are found common in most of the 

literature review articles. The diagram has several intermediate events such as temperature, 

vibration, human error, electrical, and mechanical parts failure. The temperature-related failures 

include the root causes that lead to mechanical parts failure and electrical failure. The diagram 

shows that the root causes of mechanical parts failure also contribute to vibration-related failures.  

Table 3.1 shows the percentage of motor faults based on a survey of 1,005 motors that 

was done by the Electric Power Research Institute and the faults listed in the table cause 90% of 

motor failures [30]. The table shows that the percentage of stator faults and rotor faults is 37% 

and 10%, respectively.  In [31] it is found that one of the main causes of stator and rotor faults is 

overheating. Furthermore, another study shows that 35% - 40% of motor failures are because of 

the stator winding insulation failure and high temperature is the main reason for insulation failure 

[32]. Considering the above-mentioned data and the manufacturer’s suggestion, it is certain that 

the temperature is the most likely parameter that shows early warning signs of motor failure. 
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Motor Failure 

Temperature Vibration Human error

Overload 

( High 

RPM )

Over 

current

Over 

voltage 

Frequent 

start/ stopBearing RotorStator Shaft

High ambient 

temperature

Electrical Mechanical parts failure 

 

Figure 3-2: Fault tree diagram for motor failure. 

 

Table 3.1: Motor faults distribution [30]. 

 Types of faults Percentage of Faults 

Bearing 41 

Stator  37 

Rotor cage (broken rotor bars/ end-rings) 10 

Air-gap irregularities and others 12 

 

3.1.2 Fault Tree Analysis for Fan Failure 

Figure 3-3 shows the fault tree diagram for fan failure. The primary root causes of fan failure are 

included in the diagram. The intermediate events of the fault tree are vibration, temperature, 

noise, and overload. The diagram shows that vibration, temperature, and noise share the root 

causes related to mechanical parts failure, misaligned bearings or coupling, aerodynamic 
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instability, etc. There are several other root causes such as air leaks, imbalanced fan wheel, and 

broken/loose screws that also cause vibration. 

Hipni et. al [33] investigated the damage analysis of a centrifugal exhaust fan. Their 

analysis shows that the most dominant damage symptom is noticed in bearing and excessive 

vibration is the reason for bearing damage. In addition, the centrifugal fan operator’s manual 

from Kice Industries Inc. lists the common problems associated with a centrifugal fan [34]. The 

primary problems listed in the manual are excessive vibration, inadequate performance, 

excessive noise, and premature component failure. Incorporating the centrifugal fan failure 

information and the knowledge learned from the fan fault tree diagram, it is found that the 

vibration is the primary indicator for centrifugal fan failure. 
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Temperature OverloadNoise
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imbalanced 
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Figure 3-3: Fault tree diagram for fan failure. 
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3.1.3 Fault Tree Analysis for Inverter Failure 

Figure 3-4 represents the fault tree diagram for inverter failure. The diagram helps to understand 

the failure mechanism of the inverter. The intermediate events of the fault tree diagram are 

failures related to electrical, hardware, and software. From the diagram, it is found that the two 

primary reasons for electrical failure are current and voltage. The main root causes of the 

hardware failure are cable failure, cooling fan failure, and LCD keypad failure. For the cooling 

fan failure, it is the temperature that leads to hardware failure. From the TECO-Westinghouse 

user manual, it is found that software failure happens if the inverter's software and keypad on the 

control board are unable to communicate. 

 

Hardware 
failure
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Figure 3-4: Fault tree diagram for inverter failure. 
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3.2 Parameters of Interest  

This research finds the parameters for the condition monitoring program considering the 

knowledge learned from the FTA of the wind tunnel failure and the manufacturer’s suggestion. 

As temperature and vibration show the early warning signs of motor and fan failure, respectively, 

they are the primary parameters of interest for this research, as shown in Figure 3-5. This 

research will not consider inverter failure for the condition monitoring program because Figure 

3-1 shows that the inverter failure can cause motor failure, however, it can not cause wind tunnel 

failure.  

 

Wind Tunnel Failure

OR

Fan FailureMotor Failure

Vibration

Mechanical

 Failure 

E.g. bearing, blade 

failure

Temperature

Mechanical 

Failure 

E.g. winding, 

bearing, shaft

 
 

Figure 3-5: FTA representing the early warning signs for the wind tunnel components failure. 
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3.3 Wind Tunnel Failure Model 

To create the wind tunnel failure model, this research uses the union rule of probability because 

it meets the real-world expectation in terms of wind tunnel failure [35]. For instance, the 

probability of wind tunnel failure should always be higher than the probability of individual 

component failure. Furthermore, it is a simple rule to use; the theories described in the literature 

review chapter are complicated and do not fulfill the appropriate requirements of this project. 

The equation of the addition rule of probability is shown in Eq. (3-1). 

 

 P (A + B) = 1 - ((1 - P (A)) * (1 - P (B))) (3-1) 

 

The motor temperature and fan vibration are independent variables for this research. The 

wind tunnel failure model considering the motor temperature and fan vibration is shown in Eq. 

(3-2).   

 

 P (Sf) = 1 - ((1 - P (Mf)) * (1 - P (Ff))) (3-2) 

 

where, Sf, Mf, and Ff represent system failure, motor failure, and fan failure, respectively. The 

variables P (Mf), P (Ff), and P (Sf) mean the probability of motor failure, fan failure, and system 

failure, respectively. For this research, it is considered that temperature is the reason for motor 

failure and fan failure happens as a result of vibration. 
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3.4 Variables of the Wind Tunnel Failure Model 

In Eq. (3-2), there are two variables, P (Mf) and P (Ff). To get the values of these variables, 

motor and fan manufacturers were contacted. However, manufacturers did not share the 

information. So, this thesis presents motor and fan failure reference curves to obtain the 

variables. The curves represent the characteristics of motor and fan failure and show the relation 

between temperature and vibration values in terms of the probability of motor and fan failure 

values. The general idea of creating the failure reference curve is presented in the following 

section. 

 

3.5 General Approach of Failure Reference Curve 

The following steps are taken into consideration when creating the failure reference curve for 

any parameter. 

• Identify the endpoints or scale of the curve. This can be obtained from the maximum and 

minimum operating range of the parameter. Usually, values of the operating range can be 

acquired from the manufacturers, international standards, or machine parameter rating.  

• Determine the shape of the failure reference curve in terms of failure probability versus 

the parameter values. For instance, the shape of the curve can be concave up, concave 

down, or s-shaped.  

• Utilize the cumulative distribution function concept to create the failure reference curve. 

The cumulative distribution function is calculated from the integral of the probability 

density function and the probability density function represents the probability 

distribution of the parameter value [36].  
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• Utilize the Beta distribution for the cumulative distribution function because Beta 

distribution allows any type of shape for the cumulative distribution function curve [37].  

 

Detailed descriptions of the cumulative distribution function and Beta distribution are 

presented in the later sections of this chapter. The shape of the cumulative distribution function 

curve of the Beta distribution depends on four coefficients, one location parameter, one scale 

parameter, and two shape parameters [38]. The location parameter and scale parameter are 

obtained from the endpoints of the curve. To determine the shape parameters, two points are 

needed that fall under the shape of the curve.  The two points are used to create two equations of 

the cumulative distribution function. Solving the two equations will give the values of shape 

parameters. Once all the coefficient values are obtained then the failure reference curve can be 

generated using the cumulative distribution function equation of the Beta distribution.   

The failure reference curves of the motor and fan are created based on international standards 

of motor temperature and fan vibration and these standards are described in the following section. 

 

3.6 International Standards of Motor Temperature 

and Fan Vibration 

International standards of the motor temperature and fan vibration are used to determine the 

operating endpoints of the failure reference curves. The standards are discussed as follows: 

3.6.1 Motor Temperature  

Motor temperature rating depends on the insulation system, and based on the insulation system, 

the motor is divided into different classes. The motor used for the wind tunnel belongs to F- class 

motor. According to the International Electrotechnical Commission (IEC) and the National 



37 

 

Electrical Manufacturers Association (NEMA) standard, F-class motor operating temperature 

ranges from -20°C to 155°C, as shown in Table 3.2 [39] and [40].  

 

Table 3.2: F-class motor temperature ratings [39] and [40]. 

F-Class Motor 100 HP, 75 KW 

Minimum Temperature  - 20°C 

Maximum Temperature  155°C 

 

3.6.2 Fan Vibration 

The International Organization for Standardization (ISO 10816-1) provides the standard to 

evaluate machine vibration severity in the 600 to 12,000 RPM (10 to 200 Hz) range [41], [42]. 

According to the ISO 10816-1 standard, the fan used for the wind tunnel falls under the large 

rigid foundation (class 3) category. For vibration severity analysis, ISO 10816-1 standard uses 

root mean square (RMS) velocity instead of actual velocity. Table 3.3 shows the limits for 

different vibration stages. RMS value is used for vibration because it represents the overall 

magnitude of harmonic oscillation. For a set of n values (𝑥1, 𝑥2,….., 𝑥𝑛), the RMS value is 

calculated using the Eq. (3-3) 

 
𝑥𝑅𝑀𝑆 =  √

1

𝑛
(𝑥1

2 +  𝑥2
2 + ⋯ + 𝑥𝑛

2) 
(3-3) 

 

For condition monitoring, whether to consider RMS velocity or actual velocity depends 

on the type of data acquisition device used to monitor vibration values. The reason is that there 

are data acquisition devices that give vibration value either in RMS velocity or in actual velocity. 

This research uses LabView software to create the wind tunnel condition monitoring program. 
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The LabView software has a RMS function. The function is used to calculate the RMS value. 

Using the function actual velocity data can be converted to RMS velocity data. 

 

Table 3.3:  ISO 10816-1 standard for vibration [42]. 

Vibration  

RMS Velocity in mm/s 

Class 3 

Large Rigid Foundation 

    0 to 1.80     Good 

    1.81 to 7.09     Satisfactory 

    7.10 to 11.20     Unsatisfactory 

    11.21 to 45.00     Unacceptable 

 

3.7 Assumptions Related to Failure Reference Curves 

The failure reference curves are created utilizing the international standard and the information 

obtained from the literature review. However, a few considerations are made due to insufficient 

information. 

• The average normal operating temperature for the motor is 45°C. The normal operating 

temperature is the summation of ambient temperature and temperature rise. According to 

the International Union of Pure and Applied Chemistry (IUPAC), 25°C is considered as 

the standard ambient temperature [43]. For this research, the temperature rise is chosen to 

be 20°C, as shown in Figure 3-6. 

Figure 3-6: Normal operating temperature of the motor. 

Ambient Temp. 25°C 

Δt: 20°C 
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• The shape of the failure reference curves is concave up, as shown in Figure 3-7. The 

reason for choosing the concave up shape is because motor and fan performance degrades 

sharply at high temperature and vibration values. According to the motor instructions 

manual of TECO-Westinghouse Inc., the motor insulation resistance becomes 

approximately halved for each 10°C increase in insulation temperature above the standard 

maximum temperature [44]. This information implies that at high temperatures, the 

insulation resistance decreases sharply. As a result, the probability of motor failure 

increases rapidly. The vibration has similar impacts on fan failure. When vibration is low, 

the probability of fan failure is low, and the probability of fan failure increases 

remarkably when vibration value is high.  

To create the curve, the probability of motor failure is considered to be 1% at the 

normal operating temperature, 45°C and 80% at 150°C. The reason is that the F-class 

motor is highly unlikely to fail because of temperature-related issues when it is running at 

a very low temperature, 45°C. Besides, the reason for choosing 80% probability at 150°C 

is because, towards the maximum temperature limit, a little change in temperature will 

have a greater impact on the motor’s performance degradation. This performance 

degradation will lead to severe damage to the motor and increase the probability of motor 

failure.  

For the fan, the probability of fan failure is considered to be 1% when vibration is 

1.8 mm/s and 80% at 6.5 mm/s. The reason is that Table 3.3 shows that the vibration 

range for the Good class falls between 0 to 1.8 mm/s, so between this range probability of 

failure is low. The reason for choosing 80% at 6.5 mm/s is that at a high vibration, fan 

performance degradation and failure probability are extremely high. 



40 

 

 

Figure 3-7: The shape of the failure reference curve is concave up. 

A sensitivity analysis of these values is presented in Appendix A. The analysis shows that 

the impacts are low for the changes in the probability, temperature, and vibration values. 

 

3.8 Statistical Concepts Used to Create Failure 

Reference Curve 

The statistical concepts of cumulative distribution function (CDF) and Beta distribution are used 

to create the curves. The reason CDF is used because it gives accumulated probability value and 

the Beta distribution is used because it allows the shape of the CDF curve to be concave up. 

Detailed explanations of the cumulative distribution function and Beta distribution are presented 

in the following sections. 

3.8.1 Cumulative Distribution Function 

The cumulative distribution function F( 𝑥 ) for a continuous real-valued random variable X is 

defined for every number 𝑥 by [45], 
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 F ( 𝑥 ) = P (X ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞
 (3-4) 

𝑥 represents any real number, i.e., −∞< 𝑥 <∞ and F (𝑥) gives the “accumulated” probability “up 

to 𝑥 ” [46]. f (t) is the probability density function of X that satisfies the following properties 

[47]: 

• Probability of X between two points a and b, P (a ≤ X ≤ b) = ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
 

• f (t) is non-negative or f (t) ≥ 0 for all real 𝑥. 

• The total area under the graph of f (t) = ∫ 𝑓(𝑡)𝑑𝑡
∞

−∞
 = 1 

The cumulative distribution function, F( 𝑥 ) satisfices the following criteria [36]: 

• F (−∞) = 0 

• F (∞) = 1  

• F (𝑥) is an increasing function that means if x < y, the F (𝑥) ≤ F (𝑦) for all real 𝑥, 𝑦. 

Figure 3-8 shows different shapes of cumulative distribution function curves. 

 

Figure 3-8: Cumulative distribution function curve. 
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For each 𝑥, F (𝑥) is the area under the density curve to the left of 𝑥, and F (𝑥) increases as 

𝑥 increases [45]. The CDF curve varies depending on the distribution. So, the research needed to 

find such a distribution that will allow the shape of the CDF curve to be a concave up as well as 

represents the physical reality of the motor and fan failure probability. For instance, when 

temperature and vibration values are low, a small change in values will not have much impact on 

failure probability; however, when the values are high, a minor change will have a significant 

impact on the motor and fan failure probability. After a thorough investigation, it was found that 

CDF of the Beta distribution can create the desired concave up shape.  

3.8.2 Beta Distribution 

The advantage of the Beta distribution is that it can take on different shapes [48] that will allow 

the shape of the failure reference curve to be concave up. Although the Weibull distribution is 

widely used in failure data analysis and reliability analysis [49], it is not possible to create a CDF 

curve concave up using Weibull distribution. So, the Beta distribution is the appropriate 

distribution for this research. The Beta distribution is a continuous probability distribution that 

has four parameters: two positive shape parameters, one scale parameter, and one location 

parameter [38]. The CDF of Beta distribution is defined as [50], 

 
𝐹(𝑥) =  

∫ (𝑡−𝑎)𝛼−1(𝑏−𝑡)𝛽−1 𝑑𝑡
𝑥

0

𝐵(𝛼, 𝛽) 
;    𝑎 ≤ 𝑥 ≤  b; 𝛼, 𝛽>0 

(3-5) 

where the Beta function is 

 𝐵(𝛼,  𝛽) = ∫ (𝑡 − 𝑎)𝛼−1(𝑏 − 𝑡)𝛽−1 𝑑𝑡
1

0
 (3-6) 

where, α and β are the shape parameters, and the variables a and b represent the location 

parameter and scale parameter, respectively. The shape of the CDF curve of Beta distribution is 

dependent on these four parameters, as shown in Figure 3-9.  
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Figure 3-9: The shape of the Beta distribution CDF curve varies for different α and β values. 

 

3.9 Determining the Parameters of the Failure 

Reference Curves 

To create the motor and fan failure reference curves, the values of the parameters of Eq. (3-5) are 

needed. For this research, the location parameter, a, and the scale parameter, b values are set by 

the two endpoints of the failure reference curves and the values are obtained from the 

international standards of the motor temperature and fan vibration. To obtain the shape 

parameters α and β, two equations are required, and to solve two equations, two points are 

needed. The points are chosen in a way that the desired concave up curve passes through those 

points and the first point is lower than the second point on the XY-plane. 
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3.10  Creating the Failure Reference Curves Using 

CDF of the Beta Distribution 

For the motor failure reference curve, the values of the location parameter, a is 25, and the scale 

parameter, b is 130. For the fan failure reference curve, location parameter, a is 0, and the scale 

parameter, b is 7.1. The two chosen points for the motor failure reference curve are (45, 0.01), 

and (150,0.8) and for the fan failure reference curve are (1.8, 0.01) and (6.5,0.8). The 

mathematical calculation is complicated to get the shape parameter values. So, programming 

codes are created using Python software, as shown in Appendix B. The tables in Appendix C 

show the values of the shape parameters, α, and β. Once all the parameter values are obtained, 

the failure reference curves are generated, as presented in Figure 3-10 and Figure 3-11. 

The starting point of the motor failure reference curve is chosen to be 25°C. The reason is 

to match with the international standard of ambient temperature. As the curve starts from 25°C, 

so for any temperature value less than 25°C, the probability of failure will be 0. Also, Table 3.3 

shows that the scale for fan vibration ranges from 0 to 45 mm/s. However, the endpoint for the 

fan failure curve is chosen to be 7.1 mm/s because the Unsatisfactory class for vibration starts 

from 7.1 mm/s. As the wind tunnel is new, so the fan vibration should not reach to the 

Unsatisfactory class. 

It is considered that the measured variables are continuous and the variables will take on 

any values. As a result, if the value of the temperature or vibration changes suddenly, the 

proposed failure reference curve will be able to give failure probability value for the increased 

temperature or vibration value. 
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Figure 3-10: Failure reference curve for motor failure. 

 

 

Figure 3-11: Failure reference curve for fan failure. 
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3.11 Classification of Motor, Fan, and System Failure 

The purpose of classification is to find the normal operating range for motor temperature and fan 

vibration. This will also help the condition monitoring program to give feedback based on the 

state of the motor and fan condition. The program will change the feedback according to the 

temperature and vibration classes. The program will use running average and the classification 

will help to change the number of data points included in the running average. The probabilities 

of motor, fan, and system failure are classified into three classes. The idea of classifying 

probability is obtained from D'Ayala et al. [51]. The classes are: Normal, Moderate, and High 

and the probability assigned in the classes are shown in Table 3.4. 

 

Table 3.4: Classification based on the probability of failure. 

Probability of failure (%) Classes for temperature, 

vibration, and system failure 

 0 < Probability ≤ 25      Normal  

 25 < Probability ≤ 50      Moderate  

 50 < Probability ≤ 100      High  

 

Table 3.5 shows the temperature and vibration values corresponding to the classes, and 

Figure 3-12 and Figure 3-13 show the temperature and vibration classes in the failure reference 

curves. 

Table 3.5: Temperature and vibration values for each class. 

Class Temperature (°C)   Vibration (RMS velocity in mm/s) 

Normal  Temperature ≤ 108   Vibration ≤ 4.5 

Moderate  108 < Temperature ≤ 133   4.5 < Vibration ≤ 5.6 

High  133 < Temperature    5.6 < Vibration  
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Figure 3-12: Graphical representation of the temperature classes. 

 

 

Figure 3-13: Graphical representation of the vibration classes. 
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3.12 Allowable Operating Range for System Failure 

Even though system failure probability is classified into three classes, the system should not 

operate in a state when the probability of failure is high. For this reason, the condition 

monitoring program will not allow the system failure probability to reach the High class. So, the 

maximum allowable system failure probability will be up to the Moderate class or 50%.  

3.13  Running Average 

The condition monitoring program will use the running average to smooth spikes in the 

temperature and vibration signals.  The running average is a concept that moves the average 

values. It computes the average of a set of data over a specified number of periods [52]. When 

new data becomes available, running average drops the old data and moves the average values 

along the time scale. The advantages of running average are that it is a simple way to smooth 

short-term fluctuations in a signal and reduces the impact of random spikes. The number of 

running average points affects how the running average reacts to the signal. The higher the 

running average points are, the lesser it is to respond to signal fluctuations. Figure 3-14 shows 

that the impact of fluctuations reduces as the number of running average points increases. 

 

Figure 3-14: Example of running average.  
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4.  Implementation 
In this chapter, a LabView software-based condition monitoring program is presented. The 

program is designed to determine the wind tunnel failure probability as well as monitor motor 

and fan conditions. This program is capable of performing actual condition monitoring if actual 

sensor data are obtained using data acquisition devices. This chapter includes short descriptions 

of the statistical concepts that are used to create the program. The chapter also demonstrates the 

program functionalities using simulated data that represent the actual sensor data. 

4.1 Overview of LabView 

Laboratory Virtual Instrument Engineering Workbench (LabView) is a visual programming 

language that was primarily developed to facilitate instrumentation control and/or monitor 

machine/equipment test data acquisition, and data analysis [53]. LabView consists of two parts: a 

front panel and a block diagram. The front panel is used as the user interface and the basic 

elements of the front panel are classified as controls and indicators. The block diagram is where 

program code exists, and the code is written using blocks. 

4.2 Human-Machine Interface Design  

To fulfill the primary purpose of this thesis, a virtual instrument (VI) is created and the VI runs 

within the LabView environment. The human-machine interface is shown in Figure 4-1. The 

LabView program considers motor temperature and fan vibration as input signals. It displays, 

analyzes, and stores temperature and vibration data. Furthermore, the program provides text and 

visual warnings based on motor temperature and fan vibration. 
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Figure 4-1: Human-machine user interface. 

 

 

4.3 Statistical Concepts Used for Data Analysis  

The LabView program uses statistical concepts: running average, CDF of the Beta distribution, 

and union rule of probability to perform condition monitoring. The description of the concepts 

are as follows: 

4.3.1 Running Average 

For the LabView program, the running average is used to smooth the effect of signal 

fluctuations. The criterion for choosing the appropriate number of running average data points 

may be related to several factors such as data sampling rate and the physical behavior of the 

motor temperature and fan vibration. For this research, it is considered that the effect of signal 
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fluctuations will be low when the values of temperature and vibration are low. For this reason, in 

the LabView program, the number of running average data points used for each class decreases 

as the probability of failure increases. Table 4.1 shows the number of data points used for each 

class. Using the running average concept will help to reduce misleading warning messages in the 

LabView user interface. For instance, if a signal is in the Moderate class and a high spike adds 

up to the signal, it might cause the program to display that the signal is in the High class.  

 

Table 4.1: Number of running average points used for different classes. 

 

Temperature (Class) Vibration (Class) 

5 Point Running Average Normal Normal 

3 Point Running Average Moderate Moderate 

Actual Reading High  High  

 

 

4.3.2 CDF of the Beta Distribution 

The program uses failure reference curves, as discussed in Section 3.8 to determine the 

probabilities of motor and fan failure. As the failure reference curves are based on CDF of the 

Beta distribution, the LabView program uses the Probability VIs palette because it has a Beta 

CDF function. The Beta CDF function requires shape parameter values to generate probability 

values from an input signal. The shape parameter values are obtained from the Python code as 

discussed in the previous chapter. Two different functions are created to process temperature and 

vibration signals. Once the temperature and vibration signals pass through the Beta CDF 
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functions, equivalent probability values are generated. These probability values are used as the 

variables of the probability-based model. 

4.3.3 Union Rule of Probability 

To get the overall probability of system failure, the LabView program uses the probability-based 

model as presented in Section 3.3. The model consists of two variables motor temperature and 

fan vibration. The values of the variables are obtained from the Beta CDF functions as explained 

in the preceding section.  

 

4.4 The Framework of Program Operations 

The high-level program operations are shown in Figure 4-2. At the beginning of the program, the 

program will read temperature and vibration data. Then the program will calculate running 

average according to the temperature and vibration classes and store the data into Excel files. 

After that, the program will display running average values through waveform charts, and at the 

same time, the program will show text and visual messages based on the running average values.  

Next, the program will compare temperature and vibration data with the failure reference 

curves to obtain the probabilities of motor and fan failure and plot the probability values in the 

waveform charts. Then the program will calculate the probability of wind tunnel failure using the 

probability-based model and display the probability values using a waveform chart. The program 

will also give warning messages according to the probability of failure values.  
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Stop
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Figure 4-2: Flowchart of the LabView program. 
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4.5 Examples of Program Functionality Using 

Simulated Data 

To describe the functionalities of the condition monitoring program, simulated data are used. The 

front panel of the LabView program is divided into eight segments, as shown in Figure 4-3.  

 

Figure 4-3: Front panel marked with segments. 

 

4.5.1 Motor Temperature Related Messages 

Segment 1 shows information related to the motor temperature. This segment displays text 

messages and turns on/off the LED light based on the temperature class, as shown in Figure 4-4. 

If the temperature value is in the Normal or Moderate class, the program operates normally; 

however, if the temperature value reaches the High class, the program turns on the LED light and 

displays a warning message to stop the wind tunnel. The red vertical bar on the right side shows 

the actual temperature readings.  

1

2

864

753
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The program also gives a warning message and turns on the LED light if the temperature 

difference between actual reading and previous running average reading is higher than 5°C. The 

reason for considering 5°C is reasonable can be justified from the temperature measurement 

done by Karakoulidis et. al [54]. Karakoulidis et. al measured the temperature of a F-class 

motor’s windings, core area, and ball bearing using different loads. For 80% load, the 

temperature was measured for 20 minutes with a sample rate of one reading per minute. The 

readings of the windings, core, and ball bearing show that in almost all cases, the difference 

between two consecutive readings is close to 5°C and does not exceed 5°C. So, choosing 5°C is 

reasonable because it will be alarming if the difference is higher than 5°C. Besides, to monitor 

a)  b)  

c)  d)  

Figure 4-4: Temperature related messages. (a) Normal class, (b) Moderate class, (c) High class, 

and (d) When the temperature difference between actual reading and previous running average 

reading is higher than 5°C. 
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the temperature using this program, the intended sampling frequency is one reading per minute 

that is obtained from the measurement process of Karakoulidis et. al [54]. 

4.5.2 Fan Vibration Related Messages 

Segment 2 displays fan vibration-related messages. The functionalities of this segment are the 

same as the previous segment. The program shows text messages and visual warnings 

corresponding to the vibration class, as shown in Figure 4-5. The blue vertical bar indicates the 

actual vibration readings.  

 

a)  b)  

c)  d)  

Figure 4-5: Vibration related messages. (a) Normal class, (b) Moderate class, (c) High class, 

and (d) When the vibration difference between actual reading and previous running average 

reading is higher than 1mm/s.  
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Besides, the user will see a warning message if the vibration difference between the 

actual reading and the previous running average reading is higher than 1mm/s. The reason for 

choosing 1mm/s can be justified by the vibration analysis performed by Rastegari and Bengtsson 

[55]. They have measured the vibration of a gas circulation fan and used RMS values in mm/s 

unit. Their analysis shows that at normal operating conditions, the difference between two 

consecutive vibration readings is less than 1mm/s. So, considering 1mm/s is reasonable to 

observe an abrupt increase between two consecutive vibration readings. Using the program, the 

intended sampling frequency for vibration is one reading per second. 

4.5.3 Motor Condition Related Information  

Segment 3 and 4 display motor conditions through the waveform charts and the charts show the 

temperature running average values and the probabilities of motor failure, as shown in Figure 4-

6. In segment 3, the program uses the failure reference curve concept, as discussed in section 

4.3.2. The program passes the temperature running average values through the Beta CDF 

function and outputs the corresponding failure probability values. Besides, the program shows 

the temperature running average readings and actual readings numerically in segment 4.   

  

a)  b)  

Figure 4-6: Motor condition related information. (a) Motor temperature reading, and 

(b) Probability of motor failure reading. 
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4.5.4 Fan Condition Related Information  

The functionalities of segments 5 and 6 are about fan conditions. In these segments, fan vibration 

readings and probabilities of fan failure are shown using waveform charts and numerical data, as 

shown in Figure 4-7. The program passes running average values through the LabView Beta 

CDF function to determine the probabilities of fan failure.   

 

 

 

 

 

 

 

 

 

4.5.5 System Failure Related Information 

System failure information is shown in segments 7 and 8. Segment 7 displays system failure 

related text and visual messages, and segment 8 shows the probability of system failure using 

waveform chart and numerical value. The probability of system failure is determined using the 

probability-based model. The program considers the allowable probability of system failure up to 

50% probability because in Table 3.4 the Moderate class is considered up to 50%. The program 

displays messages based on the probability value, as shown in Figure 4-8. If the probability is 

Figure 4-7: Fan vibration-related information. (a) Fan vibration reading, and (b) Probability of 

fan failure reading. 

a)  b)  
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higher than 50%, the program turns on the LED light and displays a warning message to stop the 

wind tunnel operations. 

 

 

 

 

  

a) 

b) c) 

Figure 4-8: Information related to system failure. (a) Message for the allowable probability 

of failure, (b) Message for the high probability of failure, and (c) Probability of system 

failure. 
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5. Summary, Contributions, and 

Future Work 
 

5.1 Summary 

To create a condition monitoring program, this thesis presents a literature review that 

investigates the most likely causes of wind tunnel components motor, fan, and inverter failures. 

FTA was used to map the root causes of wind tunnel components failure. From the knowledge 

learned from the literature review and FTA, it was found that motor temperature and fan 

vibration are the most likely causes of wind tunnel failure. A statistical model was created using 

the union rule of probability to calculate the failure probability of the wind tunnel. The thesis 

presents failure reference curves to determine the variables of the model and the curves were 

created based on the international standards as well as the concept of CDF of the Beta 

distribution.  

Furthermore, the thesis presents a condition monitoring program that was created using 

LabView software. The program helps to determine the motor and fan conditions in terms of 

temperature and vibration, respectively. The program was developed based on the statistical 

concepts running average, CDF of the Beta distribution, and addition rule of probability to 

analyze the temperature and vibration signals. Besides, the program gives feedback to the wind 

tunnel user.  

There are some valuable lessons learned from the challenges of this project. Developing 

the condition monitoring program was challenging for several reasons. It was a difficult task to 
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find the appropriate parameters for the program that needs to be monitored using the program 

and determine the parameter values using CDF of the Beta distribution. Besides, implementing 

the statistical concepts in the program and having an accurate mathematical calculation to 

evaluate the signals were also challenging.  

 

5.2 Thesis Contributions 

The main contribution of this research is that it has developed a novel condition monitoring 

program. The program has a user-friendly human-machine interface, so in the future, anyone will 

be able to use the program without difficulty. The thesis includes a well-thought-out FTA for 

motor, fan, and inverter failures. The research also contributes to identify the most likely causes 

of the wind tunnel components failure. Furthermore, the thesis proposes failure reference curves 

to determine the probabilities of motor and fan failure. The curves also help to find the normal 

operating range for motor temperature and fan vibration. 

 

5.3 Conclusion 

Most importantly, with the help of the developed program, when students will work on the wind 

tunnel, they will be able to make appropriate decisions in case of abnormal temperature and 

vibration readings. The real-time feedback from the waveform charts, text messages, and the 

LED indicator light will assist the wind tunnel user to avoid failure and provide a safe operating 

environment at the wind tunnel lab. Furthermore, evaluating the temperature and vibration data, 

the user will be able to notice early warning signs of motor and fan failure.  
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5.4 Research Limitations 

There are several limitations to this project. The limitations are listed as follows:  

•  This research is limited to temperature and vibration variables because these variables 

show the most obvious signs of motor and fan failure. This research does not consider 

other variables that will have a reasonable impact on motor and fan failure. For instance, 

aging factors: thermal aging, electrical aging, environmental aging, and mechanical aging 

of the components were not considered for the system failure model. Over time the aging 

factors may have a significant impact on motor and fan failure because these factors are 

affected by various circumstances such as weather conditions, voltage fluctuation, current 

fluctuation, temperature variation, etc. [56].  

• The proposed failure reference curves are limited in several ways. First, it was found 

from the literature that at high temperature and vibration values, the motor and fan failure 

probabilities are high, so the shape of the curves were considered as concave up. Second, 

the normal operating temperature of the motor was chosen to be 45°C because the study 

did not have data acquisition devices to measure the actual temperature data. Finally, 

failure probability values were chosen for the motor and fan failure because those values 

were not found in the literature review, and the manufacturers did not share that 

information. Although the failure reference curves have several constraints, the 

sensitivity analysis in Appendix A shows the impacts of these values. The analysis shows 

that impacts on the motor and fan failure probability are small because of the change in 

values. 
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5.5 Future Research 

There are great opportunities for future research to improve the proposed condition monitoring 

program. The program was tested using simulated data to verify the program functionalities. To 

use the program for real-world applications, future research should consider using temperature 

and vibration data acquisition devices that are compatible with the LabView software.  

One of the objectives of this project was to give the LabView program complete authority 

to shut down the wind tunnel if the program detects any abnormality in temperature and 

vibration signals. This goal was not fulfilled due to time constraints and a lack of data acquisition 

devices. However, as part of the objective, a remote motor control program was developed using 

the LabView software. The front panel and block diagram of the program are shown in Appendix 

D. The program helps the user to control the motor rpm speed and rotating direction. Future 

research is needed to fulfill this unfinished objective.  

The research only deals with temperature and vibration variables. To create a better 

condition monitoring program, future research should include additional variables in the 

LabView program. Material aging is an important factor for component failure, so for future 

work, it is recommended to consider the aging factors in the system failure model. The aging 

factors such as electrical aging and mechanical aging can be evaluated using the Fourier 

transform, wavelet transform, and artificial neural network [57] and [58]. Currently, the program 

uses a lookup table to display warning messages to the user. In the LabView program, the 

machine learning concept artificial neural network can be used for the decision-making of 

displaying warning messages [59]. The artificial neural network has three layers input layer, 

hidden layer, and output layer and the hidden layer is the information processing layer of the 

artificial neural network [60]. The artificial neural network can be trained for the normal 
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conditions of the temperature and vibration signals and if any abnormality happens in the signals 

the artificial neural network will display warning messages. 

Furthermore, the program stores temperature and vibration data into excel files for future 

use. Evaluating those data to verify how the motor and fan performance change over time will be 

significant future work. Finally, predicting remaining useful life (RUL) is one of the 

recommended tasks in condition monitoring, so future studies are suggested to predict remaining 

useful life for the motor and fan. 
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Appendix A 

Sensitivity Analysis of the Failure Reference Curves 

 

The purpose of this sensitivity analysis is to show how the failure reference curves and the 

temperature and vibration classes change if the assumed values were different. For temperature 

the failure reference curve was created considering the probability of motor failure is 1% at 45°C 

and 80% at 150°C. Out of the four assumed values, the sensitivity analysis is performed keeping 

three values unchanged and using three different values for the other assumed value. Among the 

three values, one value is the original value that is used to create the failure reference curve and 

the other two values are chose in a way that one is above the original value and another one is 

below the original value. The reason considering three values are adequate to perform sensitivity 

analysis is because it gives an overall idea about the sensitivity of the change in temperature for 

increasing and decreasing values.  The sensitivity analysis includes figures where motor failure is 

considered 0.5% or 1% or 1.5% at 45°C; 1% at 1% at 40°C or 45°C or 50°C; 75%, 80% and 

85% at 150°C; and 80% at 147.5°C, 150°C and 152.5°C. These are the chosen assessment 

criteria for this sensitivity analysis. The analysis shows that the changes in temperature class 

boundaries are relatively low for the changes in the values. 

The failure reference curve for fan failure was obtained assuming the probability of fan 

failure is 1% at 1.8 mm/s and 80% at 6.5 mm/s. The sensitivity analysis includes figures where 

fan failure is considered 0.5% or 1% or 1.5% at 1.8 mm/s; 1% at 1.6 mm/s, 1.8 mm/s and 2 

mm/s; 75%, 80% and 85% at 6.5 mm/s; and 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s. From the 

analysis, the changes in class boundaries were calculated and no significant amount of change is 

noticed in the vibration classes. 
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Figure A-1: Probability is 1% at 40°C or 45°C or 50°C and 80% at 150°C. 

 

 

 

Table A.1: Temperature classes when probability is 1% at 40°C or 45°C or 50°C. 

 

Class Probability of failure is 1% at 40°C or 45°C or 50°C 

40°C 45°C 50°C 

Normal  Temperature ≤ 104 Temperature ≤ 108 Temperature ≤ 112 

Moderate  104 < Temperature ≤ 132 108 < Temperature ≤ 133 114 < Temperature ≤ 135 

High  132 < Temperature  133 < Temperature  135 < Temperature  

The temperature unit is °C. 
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Figure A-2: Probability is 0.5% or 1% or 1.5% at 45°C and 80% at 150°C. 

 

 

 

Table A.2: Temperature classes when probability is 0.5% or 1% or 1.5% at 45°C. 

 

Class Probability of failure is 0.5% or 1% or 1.5% at 45°C 

0.5% 1% 1.5% 

Normal  Temperature ≤ 111 Temperature ≤ 108 Temperature ≤ 105 

Moderate  111 < Temperature ≤ 135 108 < Temperature ≤ 133 105 < Temperature ≤ 132 

High  135 < Temperature  133 < Temperature  132 < Temperature  

The temperature unit is °C. 
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Figure A-3: Probability is 1% at 45°C and 75% or 80% or 85% at 150°C. 

 

 

 

Table A.3: Temperature classes when prob. is 75% or 80% or 85% at 150°C. 

 

Class Probability of failure is 75% or 80% or 85% at 150°C 

75% 80% 85% 

Normal  Temperature ≤ 114 Temperature ≤ 108 Temperature ≤ 104 

Moderate  114 < Temperature ≤ 138 108 < Temperature ≤ 133 104 < Temperature ≤ 129 

High  138 < Temperature  133 < Temperature  129 < Temperature  

The temperature unit is °C. 
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Figure A-4: Probability is 1% at 45°C and 80% at 147.5°C or 150°C or 152.5°C. 

 

 

 

Table A.4: Temperature classes when prob. is 80% at 147.5°C or 150°C or 152.5°C. 

 

Class Probability of failure is 80% at 147.5°C or 150°C or 152.5°C 

147.5°C 150°C 152.5°C 

Normal  Temperature ≤ 104 Temperature ≤ 108 Temperature ≤ 114 

Moderate  104 < Temperature ≤ 129 108 < Temperature ≤ 133 114 < Temperature ≤ 139 

High  129 < Temperature  133 < Temperature  139 < Temperature  

The temperature unit is °C. 
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Figure A-5: Prob. is 1% at 1.6 mm/s, 1.8 mm/s, and 2 mm/s and 80% at 6.5 mm/s 

 

 

 

Table A.5: Vibration classes when prob. is 1% at 1.6 mm/s, 1.8 mm/s, and 2 mm/s. 

 

Class Probability of failure is 1% at 1.6 mm/s, 1.8 mm/s, and 2 mm/s 

1.6 mm/s 1.8 mm/s 2 mm/s 

Normal  Vibration ≤ 4.4 Vibration ≤ 4.5 Vibration ≤ 4.6 

Moderate  4.4 < Vibration ≤ 5.5 4.5 < Vibration ≤ 5.6 4.6 < Vibration ≤ 5.6 

High  5.5 < Vibration  5.6 < Vibration  5.6 < Vibration  

The vibration unit is mm/s. 
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Figure A-6: Prob. is 0.5% or 1% or 1.5% at 1.8 mm/s and 80% at 6.5 mm/s. 

 

 

 

Table A.6: Vibration classes when prob. is 0.5% or 1% or 1.5% at 1.8 mm/s. 

 

Class Probability of failure is 0.5% or 1% or 1.5% at 1.8 mm/s 

0.5% 1% 1.5% 

Normal  Vibration ≤ 4.7 Vibration ≤ 4.5 Vibration ≤ 4.4 

Moderate  4.7 < Vibration ≤ 5.7 4.5 < Vibration ≤ 5.6 4.4 < Vibration ≤ 5.5 

High  5.7 < Vibration  5.6 < Vibration  5.5 < Vibration  

The vibration unit is mm/s. 
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Figure A-7: Prob. is 1% at 1.8 mm/s and 75% or 80% or 85% at 6.5 mm/s. 

 

 

 

Table A.7: Vibration classes when prob. is 75% or 80% or 85% at 6.5 mm/s. 

 

Class Probability of failure is 75% or 80% or 85% at 6.5 mm/s 

75% 80% 85% 

Normal  Vibration ≤ 4.7 Vibration ≤ 4.5 Vibration ≤ 4.4 

Moderate  4.7 < Vibration ≤ 5.8 4.5 < Vibration ≤ 5.6 4.4 < Vibration ≤ 5.4 

High  5.8 < Vibration  5.6 < Vibration  5.4 < Vibration  

The vibration unit is mm/s. 
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Figure A-8: Prob. is 1% at 1.8 mm/s and 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s. 

 

 

 

Table A.8: Vibration classes when prob. is 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s. 

 

Class Probability of failure is 80% at 6.3 mm/s, 6.5 mm/s and 6.7 mm/s 

6.3 mm/s 6.5 mm/s 6.7 mm/s 

Normal  Vibration ≤ 4.3 Vibration ≤ 4.4 Vibration ≤ 4.8 

Moderate  4.3 < Vibration ≤ 5.3 4.4 < Vibration ≤ 5.5 4.8 < Vibration ≤ 5.8 

High  5.3 < Vibration  5.5 < Vibration  5.8 < Vibration  

The vibration unit is mm/s. 
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Appendix B 

 
Determining Shape Parameters (α, β) of CDF of Beta Distribution 

 

Temperature: 

from scipy.stats import beta 

from scipy.optimize import minimize 

# Loss fucntion using Mean Squared Error  

def lossfunction(x):  

    alpha_shape = x[0]  

    beta_shape = x[1]  

    d_1= (beta.cdf(45, alpha_shape, beta_shape, scale=130,loc=25) –  0.01)**2  

    d_2= (beta.cdf(150, alpha_shape, beta_shape, scale=130,loc=25) –  0.8)**2  

    d = d_1 + d_2 

    mean_squared_error = d/2 

    #print ("Loss function values: ", mean_squared_error) 

    return mean_squared_error 

# Optimization Algorithm  

print ("Nelder-Mead: ",minimize(lossfunction, x0=[0.5, 0.5], method='nelder-mead')) 

#print ("TNC: ",minimize(lossfunction, x0=[0.5, 0.5], method='TNC')) 

#print ("BFGS: ",minimize(lossfunction, x0=[0.5, 0.5], method='BFGS')) 

#print ("CG: ",minimize(lossfunction, x0=[0.5, 0.5], method='CG')) 

#print ("Powell: ",minimize(lossfunction, x0=[0.5, 0.5], method='Powell')) 

 

 

Vibration: 

from scipy.stats import beta 

from scipy.optimize import minimize 

# Create loss fucntion using Mean Squared Error  

def lossfunction(x):  

    alpha_shape = x[0]  

    beta_shape = x[1]  

    d_1= (beta.cdf(1.8, alpha_shape, beta_shape, scale=7.1,loc=0) – 0.01)**2  

    d_2= (beta.cdf(6.5, alpha_shape, beta_shape, scale=7.1,loc=0) – 0.8)**2  

    d = d_1 + d_2 

    mean_squared_error = d/2 

        #print ("Loss function values: ", mean_squared_error) 

    return mean_squared_error 

# Optimization Algorithm  

print ("Nelder-Mead: ",minimize(lossfunction, x0=[0.5, 0.5], method='nelder-mead')) 

#print ("TNC: ",minimize(lossfunction, x0=[0.5, 0.5], method='TNC')) 

#print ("BFGS: ",minimize(lossfunction, x0=[0.5, 0.5], method='BFGS')) 

#print ("CG: ",minimize(lossfunction, x0=[0.5, 0.5], method='CG')) 

#print ("Powell: ",minimize(lossfunction, x0=[0.5, 0.5], method='Powell')) 
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Plotting failure reference curve for temperature: 

from scipy.stats import beta 

import matplotlib.pyplot as plt 

import numpy as np 

fig= plt.figure(figsize=(6,4), dpi=100) 

ax = fig.add_subplot(111) 

x = np.arange(25,156,1) # Create x values 

#print(x) 

#Using CDF of Beta distribution 

y = beta.cdf(x,2.14750324,0.65953124, scale=130, loc=25) 

print("45\u2103 CDF(%) \u03B1=2.14, \u03B2=0.65: ",np.c_[x, y*100]) 

#Plot CDF curve  

plt.plot(x,y, color = 'blue',label='\u03B1=2.14,  \u03B2=0.65', linewidth=1.75) 

# Scatter points 

A = [25, 45, 150, 155] 

B = [0, 0.01, 0.8,1] 

ax = fig.add_subplot(111) 

# location of the scatter points 

plt.annotate('(25,0)', xy=(25, 0), xytext=(20, .05)) 

plt.annotate('(45,0.01)', xy=(45, 0.01), xytext=(38, .055)) 

plt.annotate('(150,0.8)', xy=(150, 0.8), xytext=(128, .8)) 

plt.annotate('(155,1)', xy=(155, 1), xytext=(137, 0.98)) 

plt.xlabel('Temperature (\u2103)') 

plt.ylabel('CDF (Motor Failure)') 

plt.legend(fontsize = 'small', loc='upper left') 

# plotting the points   

#plt.scatter(A, B, marker='o', markerfacecolor='blue', markersize=12)  

plt.scatter(A, B, label= "stars", color= "red", marker= "o", s=40)  

# draw straight line 

d=.50   

ax.margins(x=0) 

ax.hlines(d, xmin=10, xmax=161,linewidth=1, color='k') 

plt.yticks(np.arange(0, 1.1, 0.1))  

plt.show() 

 

 

 

Plotting failure reference curve for vibration: 

from scipy.stats import beta 

import matplotlib.pyplot as plt 

import numpy as np 

fig= plt.figure(figsize=(6,4), dpi=100) 

ax = fig.add_subplot(111) 

x = np.arange(0,7.2,0.1) # Create x values 

#print(x) 

# Using CDF of Beta distribution 
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y = beta.cdf(x,3.58844012,1.19446306, scale=7.1, loc=0) 

# Plot CDF curve  

plt.plot(x,y, color = 'blue',label='\u03B1=3.59, \u03B2=1.19', linewidth=1.75) 

# Scatter points 

A = [0, 1.8, 6.5, 7.1] 

B = [0, 0.01, 0.8,1] 

ax = fig.add_subplot(111) 

# location of the scatter points 

plt.annotate('(0,0)', xy=(0, 0), xytext=(-.3, .05)) 

plt.annotate('(1.8, 0.01)', xy=(1.8, 0.01), xytext=(1.21, 0.05)) 

plt.annotate('(6.5, 0.8)', xy=(6.5, 0.8), xytext=(5.3, .78)) 

plt.annotate('(7.1, 1)', xy=(6.8, 1), xytext=(6.15, .98)) 

plt.xlabel('Vibration (mm/s)') 

plt.ylabel('CDF (Fan Failure)') 

plt.legend(fontsize = 'small') 

# plotting the points   

#plt.scatter(A, B, marker='o', markerfacecolor='blue', markersize=12)  

plt.scatter(A, B, label= "stars", color= "red", marker= "o", s=40)  

# draw straight line 

d=.50  

ax.margins(x=0) 

ax.hlines(d, xmin=-.3, xmax=7.2,linewidth=1, color='k') 

plt.yticks(np.arange(0, 1.1, 0.1))  

plt.show() 
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Appendix C 

Alpha and Beta Values for Different Optimization 

Algorithms 

 

Temperature  

Optimization 

Algorithm 

Mean Squared Error 

Loss Function Value 

Beta Distribution CDF Parameters  

Alpha Beta Location Scale 

Nelder- mead 6.476e-13 2.14750324 0.65953124 25 130 

TNC 1.184e-08 2.14030247 0.6588179 25 130 

BFGS 4.786e-10 2.14903426 0.6596868 25 130 

CG 9.128e-13 2.14762377 0.65954841 25 130 

Powell 6.048e-07 2.14755403 0.6595388 25 130 

 

Vibration  

Optimization 

Algorithm  
Mean Squared Error 

Loss Function Value 

Beta Distribution CDF Parameters  

Alpha Beta Location Scale 

Nelder- mead 2.862e-13 3.58851886 1.19447976 0 7.1 

TNC 2.779e-08 3.56659719 1.19061271 0 7.1 

BFGS 5.748e-09 3.57854365 1.19275383 0 7.1 

CG 2.488e-07 3.65752775 1.20655799 0 7.1 

Powell 1.638e-33 3.58855558 1.19448419 0 7.1 
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Appendix D 

Front Panel and Block Diagram of the Remote Motor 

Control Program Using LabView. 
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