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ABSTRACT 

The integration of distributed generators (DGs) into distribution networks 

leads to the emergence of active distribution networks (ADNs). These networks have 

advantages, such as deferring the network upgrade, lower power losses, reduced 

power generation cost, and lower greenhouse gas emission, DGs are classified due 

to their interface with the network as inverter-interfaced or synchronous-interfaced. 

However, DGs integration results in bidirectional power flow, higher fault 

current levels, deterioration of the protection coordination of the directional 

overcurrent relays (DOCRs) which are used in ADNs, reduced system stability due 

to the inverters’ lack of damping. The stability can be enhanced by controlling the 

inverters to behave as synchronous generators, which are known as synchronverters. 

In this thesis, a two-stage optimal protection coordination (OPC) scheme is 

proposed to guarantee reliable protection of ADNs while protecting synchronverters 

from overcurrent using virtual impedance fault current limiters (VI-FCLs). VI-FCLs 

provide a cost-effective way to protect synchronverters from overcurrent. The first 

stage integrates the fault current calculations of synchronverters in the fault analysis 

to find the parameters of VI-FCLs used to limit the synchronverter’s fault current. 

In the second stage, the fault current calculations, along with the designed VI-FCLs 

from the first stage, are employed to determine the optimal relays’ settings to 

minimize the total operating times for all the DOCR. It is found that fixed VI-FCLs 

can limit synchronverters’ fault currents but may make the OPC problem infeasible 

to solve. Thus, an adaptive VI-FCL is proposed to ensure a feasible OPC under 

various fault conditions, i.e., locations and resistances. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Synchronverters are inverter-interfaced distributed generators (DGs) with a 

controller that mimics the behavior of synchronous generators (SGs). The synchronverter 

controller adds virtual inertia to avoid the unwanted attributes of traditional inverters, i.e.,  

too fast and can’t reject small disturbances [1]. However, a synchronverter may generate a 

current higher than its rated current when it is under a fault condition [2]. A possible 

solution to overcurrent conditions is by controlling the synchronverter as a current source. 

However, the directional overcurrent relays (DOCRs) may malfunction, thus, worsening 

the grid stability and complicating the short-circuit analysis. Virtual-impedance fault 

current limiters (VI-FCLs) are non-physical impedances added to the synchronverter’s 

equivalent circuit by controlling its output current, as will be explained later.  Equipping 

synchronverters with VI-FCLs can keep their voltage source model intact, and thus, 

enhancing the coordination of DOCRs. To ensure coordinated synchronverter protection, 

VI-FCLs should be considered in short-circuit current calculations and the optimal 

protection coordination (OPC). OPC is a process to determine the optimal settings of 

DOCRs that minimize the total operating time of all primary and backup relays [3]. In this 

thesis, it is proposed to equip synchronverters with VI-FCLs to ensure reliable and cost-

effective protection of distribution networks without the need for communication or 

physical fault current limiters (i.e., extra hardware).  
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1.2  Objectives 

The objective of this thesis is to develop a current limitation method for 

synchronverters in active distribution networks (ADNs). The developed current limitation 

method should keep the voltage source model of a synchronverter intact to be used in fault 

current calculations as a part of a proposed two-stage OPC scheme. The first stage of the 

proposed OPC scheme aims at sizing the VI-FCLs for short-circuit current calculations. 

The second stage determines the optimal relays settings that minimize the total operating 

time of primary and backup relays and maintain proper coordination to isolate the fault 

area. 

The adopted synchronverter model with VI-FCLs is validated in twofold. First, the 

developed short circuit current calculations are compared with time-domain simulations. 

Second, the performance evaluation includes two systems, i.e., a grid-synchronverter 

system and a Canadian 9-bus distribution network. Further, the proposed OPC scheme that 

adopts fixed VI-FCLs is extended to accommodate adaptive VI-FCLs. The adaptive VI-

FCLs enhance the performance of OPC and make it immune to different fault locations 

and resistances.  
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1.3  Thesis Organizing 

This thesis comprises seven chapters that survey the literature, review the basics of 

the core topics, identify the problems under study, explain the proposed solution, and lastly, 

validate and evaluate the proposed solution. The thesis is organized as follows: 

Chapter 2 reviews the literature on synchronverter modeling and control, OPC, and 

fault current limiter strategies. Shortcomings and gap analysis are illustrated in this chapter.  

Chapter 3 explains the preliminaries to understand the operation principles of 

synchronverters and the generic formulation of the OPC program. 

Chapter 4 states the problem of the high current generation from synchronverters 

during faults accompanied by time-domain simulations and demonstrates the necessity of 

the proposed two-stage OPC as opposed to the classic OPC program. 

Chapter 5 demonstrates the design of the proposed VI-FCL controller along with 

time-domain simulations for synchronverters’ current limitations and confirms the voltage 

source model of synchronverters with VI-FCLs. Further, this chapter formulates the 

proposed two-stage OPC scheme and explains each stage. 

Chapter 6 shows simulation results that (i) validate the synchronverter voltage source 

model, (ii) evaluate the performance of the proposed two-stage OPC, and (iii) demonstrate 

the need for the adaptive VI-FCLs.  

Lastly, Chapter 7 draws the thesis conclusions and suggests directions for future 

work. 

 



 

4 

 

CHAPTER 2 

LITERATURE SURVEY 

2.1  Introduction 

The rate of distributed energy resources (DERs) integration is occurring at a higher 

pace due to the increasing concerns about carbon emissions caused by fossil-fuel power 

plants. DERs could contribute to reducing the prices of purchasing electricity and 

enhancing system reliability [4].  

The integration of DERs, in the form of DGs, results in bidirectional power flow at 

the distribution level, and hence, the evolution of ADNs [5]. However, the integration of 

renewable-based DGs comes at a cost. In addition to their intermittent power nature, 

renewable-based DGs have no inertia, and therefore they could adversely impact the 

system stability [6].  

2.2  Synchronverter Modeling and Control 

To overcome the lack of damping caused by renewable-based DGs, it is imperative 

to equip the DG controller with a means to reject disturbances. To enhance the system 

damping, the concept of synchronverters emerged [1]. A synchronverter is an inverter with 

a novel control scheme that mimics the behavior of SGs. The synchronverter has all the 

good and bad attributes of an SG. Synchronverter parameters of a can be chosen to 

eliminate the magnetic saturation and eddy currents. The lost energy of an SG due to 

friction is not lost in a synchronverter; it is directed back to the inverter’s DC bus. 



 

5 

 

The synchronverter operational characteristics are also applied to static synchronous 

compensator (STATCOM) to mimic synchronous condensers. The mathematical model of 

SG operates in the compensator mode is utilized without a phase-locked loop (PLL) [7]. 

Also, the synchronverter concept is applied to back-to-back converters used in high-power 

wind-based DGs [8]. The converters on both sides run as synchronverters. The outcome 

was to make wind-powered systems more friendly. The novel synchronverter algorithm 

proposed in [1] is updated to eliminate the need for a PLL unit [9]. It can automatically 

synchronize with the grid, track the grid frequency after reconnection, and it exhibits better 

dynamic performance with reduced complexity and less computational burden. This 

synchronverter is known as a self-synchronized synchronverter.  

Synchronverters are modeled as a voltage source behind their interfacing filter 

impedance. Consequently, a synchronverter could suffer from high inrush currents during 

short-circuit faults, which can break down its power electronic switches [2]. Therefore, a 

fault current limiting strategy is required to limit its fault current. 

2.3  Fault Current Limiters 

Fault current limiters (FCLs) are series devices to hold short-circuit currents below 

the desired value. FCLs should have zero impedance during regular operation, have large 

impedance during fault events, and withstand the grid voltage. FCLs are also required to 

have a long lifetime, high reliability, and be fast-acting and recovering [10]. FCLs are 

available in different topologies and technologies, as categorized in Figure 2.1 [11]. 
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Figure 2.1. Fault current limiters classification. 

 Fuses are simple and reliable and used in medium and low voltage networks. 

Circuit breakers are a common part of a protection system. Reactors are used to increase 

the network impedance [12]. However, traditional FCLs have shortcomings when they are 

utilized in power systems. Fuses are one-time use; reactors are bulky and expensive; circuit 

breakers require periodic maintenance.  

Non-superconducting FCLs represent better options. As the transformer-coupled 

bridge considered to be a better option as compared to the conventional transformers and 

reactors[13]. DC reactors are presented as a cost-effective FCL [14]. Diodes bridge was 

also proposed to hold the current magnitude through a discharging resistor in the proposed 

structure [15]. The Non-superconducting FCLs are also proposed to enhance the stability 

along with current limitations [16], [17]. But they require periodic maintenance and cause 

a persistent voltage drop during normal operation. 
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On the other hand, superconducting FCLs (SFCLs) cause a negligible voltage drop 

during normal operation. SFCLs are more advanced in technology since materials with 

high conductivity are used, such as Yttrium-Barium-Copper-Oxide (YBCO), and Bismuth-

Strontium-Calcium-Copper-Oxide (BSCCO). The materials, as mentioned earlier, can change 

its conductivity from a superconducting state to a normally conducting state in a process called 

“quenching” [18]. Resistive type SFCL is proposed and developed in [19]. During normal 

conditions, the resistance is very low, opposing a high resistance during fault to limit the 

current. Inductive type SFCL is proposed in [20] to be placed as shorted secondary winding of 

a transformer. If a fault occurs, the inductive SFCL placed at the secondary winding quenches 

and increases the impedance to limit the current. Also, hybrid type SFCLs are proposed to 

overcome the problems of the SFCLs types before hybridization [21]. Even with the superior 

performance of SFCL, problems of a high level of complexity in design, high cost as a 

consequence of employing the superconducting material and cooling systems, reduced 

reliability, and short lifetime. Therefore, the shortcomings of FCLs drove the research toward 

different techniques. 

2.4  Current Limitation Through Control Algorithms 

An alternative way to implement FCLs is by modifying the DG controller to limit 

the inverter’s fault current, similar to the effect of adding a physical series impedance [22].  

This modification adds a virtual impedance in the DG equivalent circuit and leads to the 

development of VI-FCLs. The need for VI-FCLs arises to protect the inverter’s switches 

from any thermal stress during short-circuit faults. 

A protection strategy is proposed to protect the voltage source inverter against large 

load currents in [23]. The proposed strategy is performed by reducing the reference point 



 

8 

 

of the inverter’s voltage such that the inverter acts as a voltage source behind a virtual 

resistance when the inverter’s current exceeds a certain threshold. The analysis, design, 

and implementation of a VI-FCL is presented in [24]. The stability, transient response, and 

power flow performance of the DG are considered toward the design. The improvement of 

the low-voltage ride-through capability of a doubly-fed induction generator is proposed in 

[25]. The improvement was made through the limitation of the current by a virtual 

resistance when the stator of the generator is subjected to grid disturbances. Another work 

is done in [26] to limit the current for inverters operating in parallel with synchronous 

generators. The use of VI-FCL is to avoid the current saturation point, which usually leads 

to stability issues. In [27], VI-FCL control is proposed for microgrids powered by inverters. 

The VI-FCL is implemented in the inverters controller by adding a virtual impedance loop. 

This loop is active only during faults to control the magnitude of the voltage. 

The concept of VI-FCL isn’t only limited to traditional inverters but also has been 

applied to synchronverters. The authors of [28] propose a single-phase self-synchronized 

synchronverter with current-limiting capability. The proposed synchronverter can self-

synchronize before the grid connection, and it limits the current during grid disturbances. 

The current limitation is done by controlling the synchronverter current to track a saturated 

reference current generated by a virtual impedance. The characteristics and restraining 

method are discussed in [2], in which the current is produced by a virtual impedance and 

limited by a hysteresis controller to track a pre-set reference current. The proposed method 

[29] extends the work in [28] by improving the dynamic response of the active and reactive 

power loops, and by allowing for current limitation using proportional-resonant (PR) 

controllers. In [30], the fault currents of parallel synchronverters are limited during 
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disturbances. The current control is performed by generating an indirect virtual reference 

value to be tracked by the inverter’s output current while avoiding the loss of synchronism 

when the current saturates. 

The existing VI-FCL control methods for synchronverters mainly focus on stability 

enhancement or protection of power-electronic switches. There is a gap in modeling 

synchronverters with VI-FCLs for the protection of ADNs, particularly, OPC studies. 

2.5 Optimal Protection Coordination (OPC) 

 OPC is the determination of relays settings in a way to isolate faulted areas within a 

power system while ensuring minimum area isolation during a fault event [3]. The OPC 

studies have been conducted many times with different solvers, considering passive FCLs, 

and different relay characteristics. 

In [31], the OPC problem is formulated as Mixed-Integer Nonlinear Programming 

(MINLP) and has been solved using the particle swarm optimization (PSO). [32] enhances 

the solution of the PSO algorithm using constraint handling. In [33], the objective function 

of the Genetic Algorithm (GA) solver is modified by adding a parameter to handle the 

miscoordination problem for both continuous or discrete relays settings. Other examples 

for solving the OPC program using different solvers to reduce the value of the objective 

function are presented in [34]–[41]. 

The proposition of using FCLs in series with DGs to restore coordination among 

DOCRs is proposed in [42]. First, the relay settings are obtained. Then, the FCL size is 

calculated to keep the coordination time between primary and backup relays within a 

certain limit. In [43], besides employing a hybrid GA solver,  different network topologies 

are taken into account. In [44], the application of FCLs for the OPC of microgrids is 
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considered. This study considers an inductive FCL to be placed at the substation to reduce 

the incoming current from the main grid to guarantee proper coordination for the islanded 

and grid-connected modes of microgrid operation.  

In [45], the OPC formulation incorporated time considerations specified by fault-

ride-through (FRT) requirements. The OPC using a new time-current-voltage characteristic 

is proposed in [46]. This study considers the relay’s voltage measurement in addition to 

the current magnitude to further minimize the objective function. In [47], the OPC problem 

is formulated considering dual settings for DOCRs to enhance the coordination and reduce 

the relay’s operation time in meshed ADNs. [48] proposed a Cuckoo hybrid optimization 

to resolve the OPC program in [32]. The result of this study shows a significant reduction 

in the total operating time of all relays. 

However, the effect of synchronverters on DOCRs is not analyzed, and the OPC 

problem was not formulated to incorporate synchronverters. 

2.6  Conclusion 

Synchronverters can enhance system stability but should be protected against inrush 

currents during faults. FCLs are required to suppress the inrush currents, but the physical 

FCLs aren’t the best choice toward a cost-effective solution. VI-FCLs can provide a 

remedy by only modifying the DG controller. Besides limiting the fault current, VI-FCLs 

are also designed to enhance the stability and transient response. Nonetheless, VI-FCLs are 

not incorporated in OPC studies, especially,  for ADNs powered with synchronverters. 

Further studies need to be conducted to incorporate VI-FCLs in short-circuit analysis and 

OPC studies.  Also, most of the existing VI-FCLs are assumed to be fixed, which may make 
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the relay’s current undetectable when the fault resistance is relatively high. Figure 2.2 

summarizes the literature survey and highlights the shortcomings. 

 

 

Figure 2.2. Literature survey summary. 
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CHAPTER 3 

PRELIMINARIES 

3.1  Introduction 

In order to integrate synchronverters in the formulation of the OPC problem, the 

fundamentals of both synchronverters and OPC should be reviewed. In this chapter, the 

idea of operating a three-phase inverter to mimic the behavior of a synchronous generator 

is presented. Case studies are conducted to explain the model and control of 

synchronverters. Furthermore, the basic formulation of OPC based on [44] is illustrated by 

a case study on a 9-bus Canadian distribution network powered by four synchronverters. 

3.2  Synchronverter Implementation 

The synchronverter comprises two parts, the power part which injects energy into the 

grid and the electronic component to control the power part. The power part is a three-

phase inverter, as depicted in Figure 3.1. The inverter has three legs; each leg consists of 

two fully controlled switches. The switches shown are insulated gated bipolar transistors 

(IGBTs) with their antiparallel diodes. The LC filter components are 𝑅𝑠 , 𝐿𝑠 , and 𝐶𝑠  to 

reduce the voltage and current ripples. The power part is connected to the grid through a 

circuit breaker. The network is represented by a voltage source behind an impedance 

(𝐿𝑔and 𝑅𝑔). On the other hand, the electronic part is responsible for regulating the real and 

reactive powers of the synchronverter. 
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Figure 3.1. Synchronverter’s power part. 

The back electromotive force vector 𝑒  is related to the synchronverter terminal voltage 

vector 𝑣  through the filter impedance and the current flowing vector 𝑖 . Therefore, 𝑒  is 

given by 

𝑒 = 𝑣 + 𝑅𝑠𝑖 + 𝐿𝑠

𝑑𝑖

𝑑𝑡
(3.1) 

The vectors 𝑒, 𝑣, and 𝑖 are defined by 

𝑒 =  [𝑒𝑎 𝑒𝑏 𝑒𝑐]𝑇 (3.2a) 

𝑣 =  [𝑣𝑎 𝑣𝑏 𝑣𝑐]𝑇 (3.2b) 

𝑖 =  [𝑖𝑎 𝑖𝑏 𝑖𝑐]𝑇 (3.2c) 

The 𝑒 vector is generated due to the rotor movement in synchronous generators, while this 

rotor is virtual in synchronverters. However, the same equation holds for both 

𝑒 =  𝑀𝑓𝑖𝑓𝜃̇ siñ 𝜃 − 𝑀𝑓

𝑑𝑖𝑓

𝑑𝑡
cos̃ 𝜃 (3.3) 

During steady-state conditions, the field current 𝑖𝑓 is constant, thus, (3.3) can be rewritten 

as 

𝑒 =  𝜃̇𝑀𝑓𝑖𝑓 siñ 𝜃 (3.4) 
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where  𝑀𝑓 denotes the mutual inductance. The terms  siñ 𝜃 and cos̃ 𝜃 represent balanced 

sinusoidal functions: 

siñ 𝜃 =  [sin 𝜃  sin (𝜃 −
2𝜋

3
) sin (𝜃 −

4𝜋

3
)]

𝑇

 (3.5a) 

cos̃ 𝜃 =  [cos 𝜃  cos (𝜃 −
2𝜋

3
) cos (𝜃 −

4𝜋

3
)]

𝑇

 (3.5b) 

Therefore, the electromotive force vector 𝑒 can be expressed as 

𝑒 =  𝐸 siñ 𝜃 (3.6) 

where 𝐸 is the magnitude of the electromotive force. The active and reactive powers are 

defined by 

𝑃 =  𝜃̇𝑀𝑓𝑖𝑓〈𝑖, siñ 𝜃〉 (3.7a) 

𝑄 =  −𝜃̇𝑀𝑓𝑖𝑓〈𝑖, cos̃ 𝜃〉 (3.7b) 

where 𝜃̇ is the angular frequency, which is governed by the acceleration of a synchronous 

generator: 

𝜃̇ =  
1

𝐽
∫ (𝑇𝑚 − 𝑇𝑒 − 𝐷𝑝(𝜃∗̇ − 𝜃̇)) 𝑑𝑡 (3.8) 

where 𝐽 is the moment of inertia for a synchronous generator; here, it is called the virtual 

inertia. 𝑇𝑚  is equivalent to the mechanical torque of a synchronous generator. In a 

synchronverter, 𝑇𝑚 is defined as a function of the active power set point 𝑃𝑠𝑒𝑡 and the grid 

nominal frequency 𝜃̇𝑛, i.e., 

𝑇𝑚 =  
𝑃𝑠𝑒𝑡

𝜃̇𝑛

 (3.9) 
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In (3.8), 𝑇𝑒 represents the electromagnetic torque of the synchronverter. It is proportional 

to the active power given in (3.7a), i.e., 

𝑇𝑒 =  𝑀𝑓𝑖𝑓〈𝑖, siñ 𝜃〉 (3.10) 

Referring to (3.8), 𝐷𝑝 is the frequency droop coefficient. 𝐷𝑝 regulates the droop relation 

between active power and grid frequency. 𝐷𝑝  drives the synchronverter to generate an 

incremental real power for every drop incremental in grid frequency, i.e., 

 𝐷𝑝 =  −
∆𝑇

∆𝜃̇𝑛
 (3.11) 

Since the synchronverter has a virtual inertia 𝐽,  it can be controlled based on the time 

constant of the frequency loop 𝜏𝑓 and 𝐷𝑝 as follows:  

𝐽 = 𝐷𝑝𝜏𝑓  (3.12) 

Another power loop is associated with the reactive power 𝑄, which is regulated with 

respect to the measured terminal voltage. The reactive power generation 𝑄  can be 

controlled through 𝑀𝑓𝑖𝑓 by choosing a proper 𝐷𝑞 droop coefficient which affects defined 

later reactive power regulating factor K. the term 𝑀𝑓𝑖𝑓 is defined as 

𝑀𝑓𝑖𝑓 =  ∫
1

𝐾
(𝑄𝑠𝑒𝑡 − 𝑄 + 𝐷𝑞(𝐸∗ − 𝑉𝑔)) 𝑑𝑡 (3.13) 

where 𝑉𝑔  is the magnitude of the terminal voltage, 𝐸∗ is the magnitude of the reference 

voltage, 𝑄𝑠𝑒𝑡  is the reactive power setpoint, 𝐷𝑞  is the Q–V droop coefficient, K is the 

reactive power regulating factor. 𝐷𝑞  drives the synchronverter to inject an incremental 

reactive power corresponding to an incremental drop in the terminal voltage as given by 
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𝐷𝑞 =  −
∆𝑄

∆𝑉𝑔
 (3.14) 

𝐾 depends on the time constant of the voltage loop 𝜏𝑣 and 𝐷𝑞, i.e.,  

𝐾 = 𝐷𝑞𝜏𝑣𝜃̇ (3.15) 

Figure 3.2 shows the block diagram that includes the synchronverter’s model and 

controller in (3.2)–(3.15). The droop characteristics of the synchronverter allow reliable 

operation when it is grid-connected or standalone [1]. 

  

Figure 3.2. Synchronverter’s Control algorithm diagram. 

3.3 Synchronverter Simulation 

The synchronverter model is simulated in this section when it is connected to a grid 

to demonstrate the power tracking mechanism. The model is built in MATLAB/Simulink, 

and it follows the mathematical model described in Section 3.2. It is worth noting that the 
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simulated model is developed in per unit (p.u.) so that it can be easily integrated into 

distribution networks at different voltage levels and power ratings. Table 3.1 displays the 

synchronverter parameters used for simulation.  

Table 3.1. Synchronverter’s simulation parameters. 

Parameter Value Parameter Value 

𝑆𝑏𝑎𝑠𝑒  4 MVA 𝜏𝑓 0.002 s 

𝑃𝑠𝑒𝑡  3.6 MW 𝜏𝑣 0.02 s 

𝑄𝑠𝑒𝑡 1.74 MVAR 𝑉𝐷𝐶  784 V 

𝐸∗ 480 V 𝑓 60 Hz 

𝑅𝑠 0.003 Ω 𝑅𝑔 0.0014 Ω 

𝐿𝑠 0.004 mH 𝐿𝑔 0.0013 mH 

 

Figure 3.3 shows the simulated systems, in which, the power part of the 

synchronverter is simulated by the average model of a three-phase inverter, and the grid is 

modeled by a voltage source behind an impedance.  

 

Figure 3.3. Synchronverter’s simulation model. 

In that model, 𝐷𝑝 is calculated to drive the synchronverter to generate 100% of the 

real power for every 5% drop in the grid’s frequency. On the other hand, 𝐷𝑞 is chosen to 
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drive the synchronverter to generate 100% of reactive power for every 10% drop in the 

grid’s voltage magnitude.  

The nominal setpoints for active and reactive powers are 0.9 p.u. and 0.4359 p.u., 

respectively. To check the active and reactive power tracking, the grid frequency and 

voltage are changed.  

As shown in Figure 3.4(a), the grid frequency is dropped to 57 Hz between t = 0.5 s 

and 0.7 s, i.e., 5% frequency variation. It can be seen that the active power tracks the 

setpoint accurately when the frequency is 60 Hz, as shown in Figure 3.4(b). During the 

frequency disturbance, the active power jumped to 1.8 p.u. due to the droop characteristics. 

5% drop in the frequency corresponds to 100% active power increase, and that why the 

active power increases from 0.9 p.u. to 1.8 p.u. Nonetheless, the reactive power is not 

impacted by the changes in the frequency, as shown in Figure 3.5(c). Figures 3.5(d) and (e) 

display the corresponding changes in the back EMF and output current. 
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Figure 3.4. Synchronverter response to 5% frequency drop. 

The operation of the Q–V droop characteristic is assessed by varying the grid voltage. 

As shown in Figure 3.5(a), the grid voltage magnitude is dropped to 0.9 p.u. between t = 

0.5 s and 0.7 s, i.e., 10% magnitude variation. It can be seen that the reactive power tracks 

the setpoint accurately when the magnitude is 1.0 p.u. as shown in Figure 3.5(b). During 

the voltage drop, the reactive power jumped to 0.88 p.u. due to the Q–V droop characteristic  

10% drop in the voltage magnitude corresponds to a 100% reactive power increase, i.e., 

0.44 p.u. additional reactive power. However, the active power is not impacted by the 

changes in the voltage, as shown in Figure 3.5(c). Figures 3.5(d) and (e) display the changes 
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in the back EMF and output current as a result of the voltage drop. E is increased as a result 

of the reactive power increase. This happens because both E and Q are proportional 𝑀𝑓𝑖𝑓. 

 

Figure 3.5. Synchronverter’s response during a 10% magnitude drop. 

3.4 Protection Coordination of Directional Overcurrent Relays 

DOCRs are typically used for distribution network protection. They respond to the 

magnitude and direction of fault currents. As the magnitude of the fault current increases, 

a DOCR reacts faster [3]. OPC of DOCRs is the process of selecting proper primary-and-

backup relay sets and adjusting the relays’ settings to minimize the total operating time and 

ensure minimum isolation of a faulted area.  
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Figure 3.6. Protection coordination of a simple radial system. 

Figure 3.6 is used to elaborate on how to select primary-and-backup relay sets. The 

red dot and arrow refer to the fault location. The fastest relay to operate should be the 

closest to the fault location, i.e., 𝑅1. If it doesn’t work, 𝑅2 should act after an intentional 

time delay as a backup for 𝑅1. This delay is known as the coordination time interval (𝐶𝑇𝐼). 

Likewise, 𝑅3 is the backup for 𝑅2 with double the 𝐶𝑇𝐼 between 𝑅1 and  𝑅2.   

The objective of the OPC is to minimize the total operating time for all relays to 

guarantee fast fault isolation while considering 𝐶𝑇𝐼 to ensure coordination. In this thesis, 

the OPC program is formulated based on [44]. The objective function is to minimize the 

summation of the operating times of all primary and backup relays as 

𝑚𝑖𝑛 𝑇 =  ∑ ∑(𝑡𝑛𝑗
𝑝

+ ∑ 𝑡𝑛𝑗𝑘
𝑏𝑘

𝑁𝐵

𝑘=1

)

𝑁𝐹

𝑗=1

𝑁𝑅

𝑛=1

 (3.16) 

where 𝑁𝑅 is the total number of relays, 𝑁𝐹 is the total number of fault locations, 𝑛 and 𝑗 

are indices for relays and fault locations, respectively, and 𝑁𝐵 the number of backup relays 

associated with each primary relay with 𝑘  denoting the backup relay identifier. Each 

primary relay may have one or more backup relays. The superscripts 𝑝 and 𝑏𝑘 stand for 

the primary and backup relay, respectively. The DOCRs typically adopt inverse-time 

characteristics that are given by 
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𝑡 = 𝑇𝐷𝑆
𝐴

(
𝐼𝑓

𝐼𝑝
)

𝐵

− 1

 (3.17) 

where 𝑇𝐷𝑆  is the time dial settings,  𝐴  and 𝐵  are constants that define the relay 

characteristics, and  𝐼𝑓 is the magnitude of the fault current measured by the relay, and 𝐼𝑝 

is the relay’s pickup current. 𝐼𝑝 should be higher than the relay’s nominal current (during 

normal conditions) by a margin, for instance, 25% or more. The decision variables of this 

optimization program are 𝐼𝑝 and 𝑇𝐷𝑆 and are subjected to the following bounds: 

𝐼𝑝𝑚𝑖𝑛

(𝑛) ≤ 𝐼𝑝
(𝑛) ≤ 𝐼𝑝𝑚𝑎𝑥

(𝑛)           ∀𝑛 (3.18a) 

𝑇𝐷𝑆𝑚𝑖𝑛
(𝑛)

≤ 𝑇𝐷𝑆(𝑛) ≤ 𝑇𝐷𝑆𝑚𝑎𝑥
(𝑛)

          ∀𝑛 (3.18b) 

A set of nonlinear constraints is imposed to ensure a minimum operating gap between 

each primary relay and its backup (𝐶𝑇𝐼) as follows:  

𝑡𝑛𝑗𝑘
𝑏𝑘 − 𝑡𝑛𝑗

𝑝
≥ 𝐶𝑇𝐼                    ∀𝑛, {𝑗, 𝑘} (3.19) 

3.5 OPC for a Canadian Test System 

The OPC is performed for a 9-bus test system power with four synchronverters based 

on a Canadian distribution network [49], as shown in Figure 3.7. The system encompasses 

eight loads and four synchronverters. Each load is rated at 2 MVA with 0.9 lagging power 

factor. Each synchronverter is 4 MVA and is interfaced to the grid through a 480V/12.47kV 

transformer. The transformer impedance is 10%. Balanced faults (f10 – f17) are applied at 

the midpoints of the lines, as indicated by the red dots. 
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Figure 3.7. Schematic diagram of the 9-bus test system. 

To calculate the short-circuit currents through the relays, a circuit model for the 

synchronverters should be adopted. Since a synchronverter imitates the behavior of an SG, 

a voltage source model is used to represent synchronverters in short-circuit current 

calculations. The details of that model with VI-FCLs will be explained in Chapter 5.  The 

OPC program is solved using the GA. The GA is used since the problem is highly nonlinear. 

Thus, using an exact solver make may not guarantee optimality [50].  Solving the OPC 

program results in a total operating time of 25.5065s. The optimal settings for each relay 

are displayed in Table 3.2.  
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Table 3.2. Relays optimal settings to minimize their operating times. 

Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) 

1 0.1421 1.3666 12 0.0980 1.2500 

2 0.1258 1.2501 13 0.0591 1.2500 

3 0.0983 1.2501 14 0.1060 1.3639 

4 0.1409 1.4956 15 0.0100 1.2500 

5 0.0510 1.2500 16 0.1368 1.2500 

6 0.1999 1.2501 17 0.2800 0.6250 

7 0.0101 1.2500 18 0.2893 0.6251 

8 0.1327 1.2500 19 0.3083 0.6255 

9 0.1413 1.2505 20 0.2264 0.6251 

10 0.1435 1.2500 21 0.3137 0.6256 

11 0.1106 1.2920  

 

Based on Table 3.2, the relay’s operating times are calculated as in Table 3.3. As 

can be seen, the 𝐶𝑇𝐼 constraints are preserved, i.e., the time gap between each primary 

relay and its backup is greater than or equal to 0.2s. These results confirm the successful 

implementation of the OPC program in a distribution network powered by synchronverters. 
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Table 3.3. Operating times of primary-backup sets corresponding to their faults. 

Fault P1 B11 B12 P2 B21 B22 

f10 
R1 

0.5091 

R10 

0.709 

R17 

0.7083 

R2 

0.6201 

R4 

0.8192 
 

f11 
R3 

0.3701 

R1 

0.5691 
 

R4 

0.7409 

R6 

0.9403 
 

f12 
R5 

0.2092 

R3 

0.4085 
 

R6 

0.8584 

R8 

1.0577 

R18 

1.0577 

f13 
R7 

0.049 

R5 

0.2352 

R18 

1.0577 

R8 

0.9341 

R19 

1.1338 
 

f14 
R9 

0.5040 

R2 

0.7033 

R17 

0.7083 

R10 

0.6249 

R12 

0.8246 

R20 

0.8241 

f15 
R11 

0.3713 

R9 

0.5703 

R20 

0.8241 

R12 

0.7268 

R14 

0.9263 
 

f16 
R13 

0.2160 

R11 

0.4150 
 

R14 

0.8459 

R16 

1.0449 
 

f17 
R15 

0.0400 

R13 

0.2390 

 R16 

0.9716 

R21 

1.1611 
 

T = 25.5065 s 
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CHAPTER 4 

PROBLEM STATEMENT 

4.1  Introduction 

The overall shortcomings in Chapter 2 motivate the work of this thesis as follows: 

• A synchronverter model has to be adopted for the purpose of short-circuit current 

calculations and OPC studies. 

• There is a need to develop a current limiter that ensures safe and reliable operation 

of synchronverters and keep their models at different fault conditions intact. 

• A new formulation for OPC studies that include synchronverters with current 

limiters is needed without adding complexity. 

In this chapter, the problem of inrush currents from synchronverters is demonstrated, 

and VI-FCLs are promoted as a remedy. Besides, issues related to unified OPC schemes 

are explained.  

4.2  Synchronverter Inrush Current  

The synchronverter modeling for the fault current calculation purposes was studied 

for balanced faults [2] and unbalanced faults [51]. Both studies modeled the synchronverter 

as a voltage source, as supported by (3.4) and (3.6). A synchronverter can be modeled as a 

voltage source behind an impedance, as illustrated in Figure 4.1.  
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Figure 4.1. Synchronverter’s voltage source model. 

Because of the nature of the voltage source model and the absence of a current limiter, 

a synchronverter may inject high inrush current during faults. To demonstrate this problem, 

a bolted fault is applied at the point of common coupling (PCC) of the test system shown 

in Figure 4.2. The fault current from the synchronverter is above three times the inverter’s 

rated current are displayed in Figure 4.3.  

 

Figure 4.2. Grid-synchronverter test system with a fault at the PCC. 
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Figure 4.3. Synchronverter fault current during a balanced fault. 

A possible way to limit the current is by adding a hard limiter, which will make the 

synchronverter behaves as a current source [28]. Figures 4.4 and 4.5 illustrate how a current 

limiter can be added to the synchronverter controller. Dividing the voltage difference 

between the generated EMF 𝑒 and the terminal voltage 𝑣𝑡 by the filter, impedance obtains 

a reference value for the inverter’s output current. This value is then transformed to the 

synchronously rotating reference frame (𝑑𝑞) using Park’s transformation to deal with dc 

quantities, which can be limited. A PI controller ensures that the limited reference current 

is tracked. The output of the PI controller is added to the 𝑑𝑞  components of 𝑣𝑔 , which 

provides a feed forward compensation, to generate the new EMF 𝑒′ that results in a limited 

current during faults. Finally, the added terms are transformed back to 𝑎𝑏𝑐 to generate the 

PWM signals that trigger the inverter.  
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Figure 4.4. Synchronverter controller with hard current limiting. 

 

Figure 4.5. Current limiting controller. 

Time-domain simulation is carried out to examine the feasibility of the hard limiter 

that was added to the original model of the synchronverter. Figure 4.6 shows that the 

inverter’s current could be successfully limited to 1.5 p.u. after the fault inception at t = 0.5 

s.  
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Figure 4.6. Synchronverter’s saturated current during a balanced fault event. 

However, the use of hard current limiters may make the OPC problem infeasible to solve 

because the fault current from inverters will not be sensitive to fault location and resistance. 

Thus, a suitable fault current limiting technique should be developed to keep the reliable 

operation of DOCRs. It is therefore proposed to limit the fault current from synchronverters 

using VI-FCLs. 

4.3 OPC Formulation 

The OPC formulation is extended to determine the magnitudes of VI-FCLs that keep 

the current within desired limits and keep the voltage source model intact. This formulation 

is similar to the one done in Chapter 3, but it has constraints on the VI-FCL parameters, 

which are formulated in terms of the fault currents to be limited. The objective function to 

be minimized is given (3.16) with the time-current characteristic defined in (3.17). Also, 

the relays settings are subjected to the bounds in (3.18) and (3.19). The VI-FCLs are 
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incorporated in the OPC through the magnitude of the inverter’s fault current 𝐼𝑓, which is 

defined for each synchronverter by  

𝐼𝑓
(𝑑)

=
(𝐸 − 𝑉𝑓)(𝑑)

𝑍𝐹𝐶𝐿
(𝑑)

 (4.1) 

where 𝑑 is the synchronverter identifier, 𝐸 is the magnitude of the EMF, 𝑉𝑓  is the measured 

terminal voltage during faults, and 𝑍𝐹𝐶𝐿
(𝑑)

 is the magnitude of the VI-FCL impedance, which 

is bounded as follows:  

𝑍𝐹𝐶𝐿
(𝑑)

𝑚𝑖𝑛
≤ 𝑍𝐹𝐶𝐿

(𝑑)
≤ 𝑍𝐹𝐶𝐿

(𝑑)

𝑚𝑎𝑥
               ∀𝑑 (4.2) 

A set of nonlinear constraints is imposed to ensure the current levels are less than 

150% of the rated current, i.e.,  

𝐼𝑓
(𝑑)

≤ 1.5 𝑝. 𝑢. (4.3) 

Likewise, the GA is used to solve the OPC program with VI-FCLs.  Table 4.1 shows 

the optimal relays’ settings obtained using the unified formulation. The probability of 

returning a feasible solution is low. Besides the time elapsed to return, a feasible solution 

is long. The program is run in a loop to solve the OPC problem. Whenever a feasible 

solution is detected, the program terminates. This usually takes a few hours to obtain a 

feasible solution.  

This problem could be alleviated if a good initial guess is used and when relaxing the 

fault current constraint in (4.3). However, using a good initial guess may not be an available 

option, especially when dealing with many decision variables. Also, relaxing the fault 
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current constraint may result in a higher inverter’s fault current, which could damage the 

synchronverter. 

Table 4.1 Relays optimal settings obtained from the unified OPC. 

Relay TDS(s) Ip (p.u.) Relay TDS(s) Ip (p.u.) 

1 0.1458 1.2500 12 0.0694 1.2500 

2 0.1565 1.2500 13 0.1614 1.2500 

3 0.0981 1.2500 14 0.0200 1.2564 

4 0.2010 1.2500 15 0.1938 1.2500 

5 0.0538 1.2525 16 0.2947 1.2500 

6 0.2497 1.2501 17 0.0279 0.6251 

7 0.0200 1.2500 18 0.0262 0.6251 

8 0.1865 1.2501 19 0.0225 0.6370 

9 0.1299 1.2500 20 0.0306 0.6251 

10 0.1817 1.2500 21 0.0694 0.6250 

11 0.1183 1.3421  

 

The reason behind the solution infeasibility is related to the DGs protection relays 

(R18 – R21). The magnitude of the fault currents measured by the DG relays are functions 

of the VI-FCL values, which are, in turn subjected to bounds and nonlinear constraints. 

Unlike the traditional OPC formulation in Chapter 3, the unified OPC formulation 

mandates performing short-circuit current calculations for every set of VI-FCLs and at each 

fault location. Thus, the problem becomes highly nonlinear. This leads to a relatively 

higher execution time and the global optimal solution is less likely to be obtained. Tables 

4.2 and 4.3 show the operating times of the relays and the sizes of VI-FCLs that correspond 

to the relays’ settings in Table 4.1. 
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Table 4.2 Operating times of the 9-bus system relays using unified formulation. 

Fault P1 B11 B12 P2 B21 B22 

f10 
R1 

0.5368 

R10 

0.7361 

R17 

0.7360 

R2 

0.6581 

R4 

0.8573 
 

f11 
R3 

0.3942 

R1 

0.5934 
 

R4 

0.7782 

R6 

0.9777 
 

f12 
R5 

0.2342 

R3 

0.4333 
 

R6 

0.8814 

R8 

1.0809 

R18 

1.0806 

f13 
R7 

0.0673 

R5 

0.2663 

R18 

1.0806 

R8 

0.9491 

R19 

1.1493 
 

f14 
R9 

0.5290 

R2 

0.7282 

R17 

0.7360 

R10 

0.6600 

R12 

0.8595 

R20 

0.8604 

f15 
R11 

0.4026 

R9 

0.6020 

R20 

0.8604 

R12 

0.7524 

R14 

0.9514 
 

f16 
R13 

0.2520 

R11 

0.4513 
 

R14 

0.8746 

R16 

1.0742 
 

f17 
R15 

0.0795 

R13 

0.2789 

 R16 

0.9865 

R21 

1.187 
 

T = 26.6166 s 

 

Table 4.3 VI-FCLs magnitude obtained from the unified formulation. 

Synchronverter’ location 𝑍𝐹𝐶𝐿(𝑝. 𝑢. ) 

4 0.1828 

5 0.1825 

6 0.1822 

9 0.1809 

 

As the fault current limit is lowered, it becomes more difficult to obtain values for VI-FCLs 

that guarantee a feasible solution. For example, sizing VI-FCLs to limit the fault current at 

1.3 p.u. increases the probability to return an infeasible solution as compared to 2.6 p.u. It 

is worth noting that the unified OPC formulation adopts an approximate synchronverter 

model for short circuit current calculations, i.e., a voltage source behind an impedance. The 
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angle of the voltage source is zero. If a more accurate model is employed, such as the model 

in [2], the unified OPC program could take longer time to return a feasible solution or it 

may fail to obtain one.    

Another problem encountered is related to the DG control scheme. As explained 

earlier in section 4.2, the synchronverter fault current can be saturated to a specific limit. 

Thus, the synchronverter becomes a current source. The current source DG model ensures 

constant current generation during regular operation as well as during faults. However, it 

is desired to have DGs controlled as a voltage source to support the grid’s voltage during 

disturbances. Having a synchronverter controlled as a current source may cause 

miscoordination, affect the reliable and secure operation of the DOCRs, and result in faults 

spreading. 

Table 4.4 shows the operating times of DOCRs in the 9-bus system after remodeling 

DG1 and DG3 are as current sources. These DGs inject their rated currents (1.0 p.u.) during 

faults. Also, R18 is the DOCR associated with DG1, and R20 is the DOCR associated with 

DG3. DG2 and DG4 are modeled as voltage sources, and their current injection is related 

to their operating condition. The DOCRs usually have pickup currents at least 25% higher 

than their nominal current. If a bolted fault occurs near DG2 or DG4, the fault condition 

stimulates the DG to generate current more elevated than its rated value and also higher 

than the pickup current of the associated DOCR. Therefore, the DOCR operates as intended 

and results in limited fault spreading. 

On the other hand, if a bolted fault occurs near DG1 or DG3. The DG maintains its 

rated current generation during fault conditions due to its control scheme. The DOCR 
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associated with this DG may not operate properly, as demonstrated by the negative times 

in Table 4.4. This happens because the DOCR cannot detect a fault condition when the DG 

current is limited to a value less than the pickup current. As a consequence, the DG keeps 

supplying the grid with a fault current near its rated current, which reduces the grid 

efficiency and may cause a fault spreading. 

Table 4.4 Operating times of the 9-bus system after remodeling DG1 and DG3. 

Fault P1 B11 B12 P2 B21 B22 

f10 
R1 

0.5368 

R10 

0.7361 

R17 

0.7360 

R2 

0.6581 

R4 

0.8573 
 

f11 
R3 

0.3942 

R1 

0.5934 
 

R4 

0.7782 

R6 

0.9777 
 

f12 
R5 

0.2342 

R3 

0.4333 
 

R6 

0.8814 

R8 

1.0809 

R18 

-0.8763 

f13 
R7 

0.0673 

R5 

0.2663 

R18 

-0.8763 

R8 

0.9491 

R19 

1.1493 
 

f14 
R9 

0.5290 

R2 

0.7282 

R17 

0.7360 

R10 

0.6600 

R12 

0.8595 

R20 

-0.7085 

f15 
R11 

0.4026 

R9 

0.6020 

R20 

-0.7085 

R12 

0.7524 

R14 

0.9514 
 

f16 
R13 

0.2520 

R11 

0.4513 
 

R14 

0.8746 

R16 

1.0742 
 

f17 
R15 

0.0795 

R13 

0.2789 

 R16 

0.9865 

R21 

1.187 
 

 

Therefore, the synchronverter should be equipped with a VI-FCL to limit its fault 

current and keep its voltage source model intact, thus avoiding the shortcomings of the 

current source model. Further, an OPC scheme has to be developed to prevent the problems 

associated with the unified OPC program while accurately calculating synchronverters’ 

fault currents. 
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CHAPTER 5 

PROPOSED TWO-STAGE OPC SCHEME INTEGRATING VI-FCLs 

5.1  Introduction 

In this chapter, the integration of VI-FCLs within the synchronverter controller is 

illustrated. It is proposed to use VI-FCLs with synchronverters to keep their voltage source 

model intact. This model can be easily incorporated in the OPC program and guarantee 

feasible solutions. A two-stage OPC algorithm is developed to determine the relays’ 

optimal settings and VI-FCL parameters. Simulation results confirm the effectiveness of 

the proposed algorithm and promote it as a cost-effective solution toward the reliable 

protection of ADNs. 

5.2 Proposed VI-FCL Controller 

Figures 5.1 and 5.2 demonstrate the proposed VI-FCL controller. There are two steps to 

include a VI-FCL in synchronverter’s model. First, 𝑅𝑠 and 𝐿𝑠 (that represent the filter’s 

parameters) have to be enlarged to include the VI-FCL’s resistance and inductance. When 

a balanced fault occurs at the synchronverter’s terminals, i.e., the worst-case scenario, the 

magnitude of the fault current can be calculated using 

𝐼𝑓
(𝑑)

=
(𝐸 − 𝑉𝑡)(𝑑)

√(𝑅𝑠
′ )2 + (𝜔𝐿𝑠

′ )2
 (5.1) 

where 𝑅𝑠
′  and 𝐿𝑠

′  are the enlarged resistive and inductive components that include VI-FCL 

impedance parameters. During faults, 𝑅𝑠
′  and 𝐿𝑠

′  should replace 𝑅𝑠  and 𝐿𝑠 . Second, the 

setpoints of the real and reactive powers should be given in terms of the limited fault 

current. Holding the setpoint of the real power at the prefault value, while the VI-FCL is 

active, increases the virtual acceleration defined in (3.8). This happens due to the drop in 
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𝑇𝑒 during the fault, which makes the term (𝑇𝑚 − 𝑇𝑒) higher than zero, thus, increasing the 

virtual acceleration. On the other hand, keeping the setpoint of the reactive power constant 

at the prefault value makes it higher than 𝑄. This leads to higher 𝑀𝑓𝑖𝑓, and consequently, 

𝐸. The fault current from the inverter could exceed its limit even when the VI-FCL is active. 

Therefore, it is proposed to set the reference values of the real and reactive powers as 

follows  

𝑃𝑓 =  
3

2
𝐸𝐼𝑑 (5.2) 

𝑄𝑓 =  
3

2
𝐸𝐼𝑞 (5.3) 

where 𝐼𝑑 and 𝐼𝑞 are the 𝑑𝑞 components of the synchronverter’s current during faults. The 

setpoints in (5.2) and (5.3) are given in terms of the limited current 𝑑𝑞 components and 

magnitude of the EMF.   

  

Figure 5.1. The proposed synchronverter controller. 
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Figure 5.2. The proposed VI-FCL to limit the current during faults. 

To demonstrate the effectiveness of the proposed VI-FCL, time-domain simulations 

are carried out using the grid-synchronverter test system. First, the current saturation is 

disabled, and 𝑅𝑠
′  and 𝐿𝑠

′  are assigned twice values of 𝑅𝑠  and 𝐿𝑠  during the fault. It is 

noteworthy that, 𝑅𝑠
′  and 𝐿𝑠

′  are active only during faulty conditions.  

 

Figure 5.3. Synchronverter’s fault currents with and without due to VI-FCL (prefault power setpoints). 

Figure 5.3 depicts the fault currents of the synchronverter with and without the VI-

FCL when the prefault power setpoints are enabled. 
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Figure 5.4. Synchronverter’s fault currents with and without due to VI-FCL (proposed power setpoints). 

The VI-FCL could reduce the fault current without the need for a hard limiter; 

however, the fault current is around 2.0 p.u. Next, the proposed setpoints for the real and 

reactive powers are enabled in conjunction with the VI-FCL. As shown in Figure 5.4, the 

inverter’s current could be further limited to a value below 1.5 p.u. when the new real and 

reactive power setpoints are used during the fault. These results confirm the justification 

behind updating the real and reactive power setpoints along with enabling the VI-FCL. The 

optimal selection of the VI-FCL parameters is discussed and verified in the next section.  

5.3 Proposed Two-Stage OPC 

The VI-FCL controller proposed in the previous section has the benefits of limiting 

the current during faults and keep the voltage source model of the synchronverter intact, as 

shown in Figure 5.5. 
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Figure 5.5. Synchronverter equivalent model. 

In which, the grid is represented by an  equivalent circuit, where 𝐸𝑒𝑞  is the grid equivalent 

voltage, 𝑅𝑒𝑞  is the grid equivalent resistance, and 𝐿𝑒𝑞 is the equivalent grid inductance. 

Thus, the synchronverter is modeled as a voltage source in the proposed two-stage 

optimization. The proposed two-stage OPC scheme guarantees feasibly and returns a 

solution at a much faster pace as opposed to solving the unified OPC program defined in 

Section 4.3. The proposed OPC imposes the constraints related to the VI-FCLs and the 

fault current magnitude in the first stage. The outcome of this stage is the fault currents and 

parameters of the VI-FCL that are required to perform the traditional OPC.  

To calculate the fault current generated by a synchronverter subjected to a balanced 

fault, the algorithm suggested in [2] for short circuit current calculations is employed. The 

main concept in fault current calculation is to consider a short period of 0.2s. This short 

period is divided into smaller time segments. In each segment, the following sequence is 

applied: 

(i) Measuring the electromagnetic torque 𝑇𝑒, reactive power 𝑄, synchronverter’s 

EMF magnitude 𝐸, and synchronverter’s angular frequency 𝜃̇ are measured. 

(ii) Calculating the virtual acceleration and the rate of change in 𝐸 using 

𝜃̈ =  
1

𝐽
(𝑇𝑚 − 𝑇𝑒 − 𝐷𝑝(𝜃̇∗ − 𝜃̇)) (5.4a) 
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𝑑𝐸

𝑑𝑡
=  

𝑑𝜃̇

𝑑𝑡
+

𝜃̇

𝐾
(

𝑑(𝑀𝑓𝑖𝑓)

𝑑𝑡
) (5.4b) 

(iii) Integrating (5.4a) to get ∆𝜃̇, and integrating (5.4b) to get 𝛥𝐸 

(iv) Updating the magnitude 𝐸 and the frequency 𝜃̇ by adding their values to the 

changes calculated in the previous step 

𝐸 =  𝐸 + 𝛥𝐸 (5.5a) 

𝜃̇ =  𝜃̇ + ∆𝜃̇ (5.5b) 

(v) Calculating the values of the AC and DC components, i.e., the aperiodic 

component decaying with time and the periodic component. The fault current 

is the sum of both components as given by 

𝑖𝑑𝑐 = (
𝐸𝑒𝑞

′ sin(𝜃2
′ − 𝛾)

√𝑅′2 + (𝜔𝐿′)2
−

𝐸𝑒𝑞 sin(𝜃2 − 𝛾)

√𝑅2 + (𝜔𝐿)2
) 𝑒−

𝑡
𝑇𝑎  (5.6a) 

𝑖𝑎𝑐 = (
𝐸 sin(𝜔𝑡 + 𝜃 − 𝛾)

√𝑅′2 + (𝜔𝐿′)2
−

𝐸𝑒𝑞
′ sin(𝜔𝑡 + 𝜃2

′ − 𝛾)

√𝑅′2 + (𝜔𝐿′)2
) (5.6b) 

𝑖𝑓 =  𝑖𝑑𝑐 + 𝑖𝑎𝑐 (5.6c) 

where 𝐸𝑒𝑞  and 𝜃2 are the grid equivalent voltage amplitude and phase, respectively, during 

normal conditions. 𝐸𝑒𝑞
′  and 𝜃2

′  are the equivalent voltage magnitude and phase during the 

fault, respectively. 𝑅 and 𝐿 depend on the synchronverter internal impedance and the grid 

equivalent impedance as given by 

𝑅 =  𝑅𝑠 + 𝑅𝑒𝑞  (5.7a) 

𝐿 =  𝐿𝑠 + 𝐿𝑒𝑞 (5.7b) 
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During faults, 𝑅  and 𝐿  change to 𝑅′  and 𝐿′  to model the current limiting 

mechanism. Thus, 𝑅′ and 𝐿′ are defined as 

𝑅′ =  𝑅𝑠
′ + 𝑅𝑒𝑞

′  (5.8a) 

𝐿′ =  𝐿𝑠
′ + 𝐿𝑒𝑞

′  (5.8b) 

where 𝑅𝑠
′  and 𝐿𝑠

′  are the synchronverter’s resistance and impedance during faults, 

respectively. These parameters include the proposed VI-FCL components to limit the fault 

current to less than 1.5 p.u. as follows: 

𝑅𝑠
′ =  𝑅𝑠 + 𝑅𝐹𝐶𝐿 (5.9a) 

𝐿𝑠
′ =  𝐿𝑠 + 𝐿𝐹𝐶𝐿 (5.9b) 

The impedance’s angle 𝛾 and the time constant 𝑇𝑎 are calculated by 

𝛾 = 𝑡𝑎𝑛−1 (
𝜔𝐿′

𝑅′
) (5.10a) 

𝑇𝑎 =
𝐿′

𝑅′
 (5.10b) 

The described short-circuit current calculation method is the core of the first stage of the 

proposed two-stage OPC because it allows for imposing and modeling the VI-FCL 

constraints.  

An overall flow chart describing the proposed two-stage OPC is shown in Figure 5.6. 

In the first stage, the magnitude of the periodic current component of each synchronverter 

is calculated by 

𝐼𝑓
(𝑑)

=
(𝐸 − 𝑉𝑝𝑐𝑐

′ )(𝑑)

√((𝑅𝑠 + 𝑅𝐹𝐶𝐿)(𝑑))2 + (𝜔(𝐿𝑠 + 𝐿𝐹𝐶𝐿)(𝑑))2
 (5.11) 
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Figure 5.6. Proposed two-stage OPC flow chart. 

The objective of the first stage is to minimize the summation of all fault currents 

injected by the synchronverters as 
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Min 𝐼 =  ∑ 𝐼𝑓
(𝑑)

𝐷

𝑑=1

 (5.12) 

The superscript d is the synchronverter identifier, while D is the total number of 

synchronverters in the ADN. The variables to be determined are the resistances and 

inductances of the VI-FCLs, i.e., 𝑅𝐹𝐶𝐿
(𝑑)

 and 𝐿𝐹𝐶𝐿
(𝑑)

. The reactance of a VI-FCL is set to be six 

times bigger than its resistance, which corresponds to an  𝑋/𝑅 = 6. Therefore, the following 

bounds on the VI-FCL resistance and inductance are imposed 

𝑅𝐹𝐶𝐿𝑚𝑖𝑛

(𝑑)
≤ 𝑅𝐹𝐶𝐿

(𝑑)
≤ 𝑅𝐹𝐶𝐿𝑚𝑎𝑥

(𝑑)
         ∀𝑑 (5.13a) 

6𝑅𝐹𝐶𝐿𝑚𝑖𝑛

(𝑑)

2𝜋𝑓
≤ 𝐿𝐹𝐶𝐿

(𝑑)
≤

6𝑅𝐹𝐶𝐿𝑚𝑎𝑥

(𝑑)

2𝜋𝑓
         ∀𝑑 (5.13b) 

A set of nonlinear constraints is imposed to limit the magnitude of the 

synchronverters fault current to a specific value as in (4.3). The returned results from the 

first stage are the fault currents flowing in each branch and the limited synchronverters 

fault currents along with the VI-FCLs’ parameters. 

The second stage of the proposed OPC scheme is a reformulation of the classic OPC 

program given by (3.16)–(3.19). The OPC formulation is simplified by moving the VI-

FCL and current limits constraints to the first stage. Thus, the solver in the second stage 

determines only the optimal relays’ settings.  

5.4  Conclusion 

This chapter explains the proposed VI-FCL control design for a synchronverter in 

ADNs. The proposed VI-FCL controller to limit the fault current from synchronverters is 

demonstrated. A two-stage OPC scheme is proposed to incorporate the synchronverter VI-

FCLs in short-circuit current calculations. The first stage determines the parameters of the 
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VI-FCLs to limit the fault current of each synchronverter to a certain threshold as well as 

calculates the fault current through each line of the ADN. In the second stage, the OPC is 

formulated contingent upon the obtained VI-FCLs from the first stage. The two-stage OPC 

represents a cost-effective protection scheme to protect ADNs with synchronverters.  
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CHAPTER 6 

PERFORMANCE EVALUATION OF THE PROPOSED SOLUTION 

6.1  Introduction 

In this chapter, the synchronverter model with VI-FCL is assessed and verified. The 

verification is done by comparing the results from the fault current calculations to the 

results from fault currents obtained by time-domain simulations. Further, the performance 

of the proposed two-stage OPC is tested on the Canadian 9-bus and IEEE 30-bus systems. 

The need for an adaptive VI-FCL formulation is justified to keep a detectable fault current 

regardless of the fault location. The proposed adaptive VI-FCL is also evaluated and 

validated. Furthermore, the proposed OPC is used to obtain the parameters of the adaptive 

VI-FCLs.  

6.2  Proposed VI-FCL Evaluation and Validation 

The proposed controller developed and tested for an arbitrary value of VI-FCL in the 

previous chapter. The evaluation is done in this section by using the resistance and 

inductance components that limit the fault current generation to less than 1.5 p.u. based on 

the output of the first stage. Figure 6.1 shows the current limitation when a synchronverter 

is subjected to a balanced bolted fault at its terminals. The proposed VI-FCL can 

successfully limit the fault current to a value of less than 1.5 p.u. in steady-state. 
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Figure 6.1. Limited synchronverter’s fault current during a balanced fault. 

The voltage source model used in the proposed two-stage OPC is verified in two 

steps. The first step is a simple system of an inverter controlled by the proposed VI-FCL 

controller and connected to a grid represented as a voltage source model, as shown in 

Figure 3.3. The values of the synchronverter parameters used in this simulation are shown 

in Table 3.1. The first test of validation is done by simulating the generated fault current if 

the grid voltage drops from its nominal down to 0 p.u. Figure 6.2 shows the calculated fault 

currents versus the simulated fault currents during the voltage drop. 



 

48 

 

 

Figure 6.2. Synchronverter simulated current compared to the calculated current for the first case. 

As seen in Figure 6.2, the calculated current is 1.487 p.u., and the simulated current 

is 1.475p.u. resulting in a deviation less than 0.5 %. 

 

Figure 6.3. Synchronverter Simulated current compared to the calculated current for the second case. 
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Second, the short-circuit current calculation is assessed for a less severe fault that 

causes the terminal’s voltage to drop to 0.4 p.u. As shown in Figure 6.3, the simulated 

current has a magnitude of 0.8954 p.u., which almost matches the calculated current (i.e., 

0.902 p.u.). the deviation in this case is less than 1%.  

 

Figure 6.4. Synchronverter Simulated current compared to the calculated current for the third case.  

The third validation case study simulates a fault that results in a voltage drop to 0.2 

p.u. Under this condition, the simulated current is 0.327 p.u., while the calculated current 

is 0.312 p.u. as magnitudes, as shown in Figure 6.4.  The compared current magnitudes are 

in match with a deviation of 4.45 %.  

The second step of the validation is done by simulating faults in the 9-bus system 

shown in Figure 3.9. Each synchronverter is subjected to faults at its terminal. 

Synchronverter denoted DG1 at bus 4 is tested for three faults located at bus 4, 

synchronverter denoted DG2 at bus 5 is tested for three faults located at bus 5, 

synchronverter denoted as DG 3 at bus 6 is tested for three faults located at bus 6 and 

synchronverter denoted as DG4 at bus 9 is tested for three faults located at bus 9.  
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Table 6.1 shows the comparison between the simulated and calculated currents. In 

all three faults, the deviation is less than 5%. These results confirm the accuracy of the VI-

FCL modeling in short-circuit calculations. 

Table 6.1. Synchronverter model validation for 9-bus system. 

DG 1 calculated and simulated results comparison 

𝑅𝑓 (𝑝. 𝑢. ) 𝐼𝑐𝑎𝑙
(1)

 (𝑝. 𝑢. ) 𝐼𝑠𝑖𝑚
(1)

(𝑝. 𝑢. ) Dev % 

0 0.744 0.724 2.19 

0.09 0.456 0.447 1.95 

0.35 0.199 0.201 1.04 

DG 2 calculated and simulated results comparison 

𝑅𝑓 (𝑝. 𝑢. ) 𝐼𝑐𝑎𝑙
(2)

 (𝑝. 𝑢. ) 𝐼𝑠𝑖𝑚
(2)

(𝑝. 𝑢. ) 𝐷𝑒𝑣 % 

0 0.745 0.732 1.75 

0.09 0.456 0.445 2.50 

0.35 0.200 0.202 0.99 

DG 3 calculated and simulated results comparison 

𝑅𝑓 (𝑝. 𝑢. ) 𝐼𝑐𝑎𝑙
(3)

 (𝑝. 𝑢. ) 𝐼𝑠𝑖𝑚
(3)

(𝑝. 𝑢. ) 𝐷𝑒𝑣 % 

0 0.749 0.724 3.24 

0.09 0.465 0.450 3.22 

0.35 0.199 0.200 0.50 

DG 4 calculated and simulated results comparison 
𝑅𝑓 (𝑝. 𝑢. ) 𝐼𝑐𝑎𝑙

(4)
 (𝑝. 𝑢. ) 𝐼𝑠𝑖𝑚

(4)
(𝑝. 𝑢. ) 𝐷𝑒𝑣 % 

0 0.7440 0.7120 4.22 

0.09 0.4562 0.4431 2.87 

0.35 0.1998 0.2010 0.99 

 

It is worth noting that the displayed results in Table 6.1 are calculated according to 8 MVA 

base power and 480V/12.47 kV base voltages. Thus, the maximum fault current is 0.75 p.u. 

which corresponds to 1.5 p.u. when the synchronverter ratings are used as the system bases. 

The developed VI-FCL model kept the synchronverter model intact because the 

inverter’s current is limited by an impedance, not a hard limiter.  

6.3  Proposed Two-Stage OPC Performance Evaluation 

The outcomes of the proposed two-stage OPC schemes are examined. The values of 

VI-FCL components to limit the fault currents, and the relays optimal settings are 
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determined. The system under study is the same 9-bus system. The results obtained are the 

resistive and inductive components of each VI-FCL, and relays operating time 

corresponding to the determined relays optimal settings. The calculations are based on 8 

MVA and 480V/12.47kV bases. Table 6.2 shows the output of the first stage, i.e., the 

required VI-FCL resistances and inductances to limit the fault current at all possible 

locations. 

Table 6.2. VI-FCL components of each synchronverter of the 9-bus system. 

Synchronverter location 𝑅𝐹𝐶𝐿
(𝑑)

 (𝑝. 𝑢. ) 𝐿𝐹𝐶𝐿
(𝑑)

 (𝑝. 𝑢. ) 

Bus 4    0.184    0.00293 

Bus 5    0.183    0.00291 

Bus 6    0.184    0.00293 

Bus 9    0.182    0.00289 

 

 The shown values of the VI-FCLs are obtained for the worst-case scenario, which is 

a bolted fault at the synchronverter’s terminal. Utilizing the VI-FCL parameters, the second 

stage of the proposed OPC scheme is conducted to determine the optimal relays’ settings, 

as displayed in Table 6.3. Then, the obtained relay settings are used to calculate the 

operating times as shown in Table 6.4 

Table 6.3. Relays optimal settings of the 9-bus system. 

Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) 

1     0.1392     1.2501 12    0.1290     1.3905 

2     0.1504     1.2500 13     0.0557     1.2500 

3     0.0914     1.2500 14     0.1590     1.2500 

4     0.1950     1.2501 15     0.0101     1.2501 

5     0.0466     1.2673 16     0.1908     0.6250 

6     0.2439     1.2500 17     0.2850     0.6250 

7     0.0101     1.2500 18     0.0265     0.6250 

8     0.1828     1.2500 19     0.0282     0.6251 

9     0.1229     1.2501 20     0.0210     0.6252 

10     0.1757     1.2501 21     0.0293     1.3905 

11     0.1128     1.2500    
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Table 6.4. Relays’ operating times corresponding to the optimal relays’ settings. 

Fault P1 B11 B12 P2 B21 B22 

F10 R1 

0.5126 

R10 

0.7121 

R17 

0.7119 

R2 

0.6324 

R4 

0.8319 

 

F11 R3 

0.3675 

R1 

0.5667 

 R4 

0.7551 

R6 

0.9546 

 

F12 R5 

0.2047 

R3 

0.4040 

 R6 

0.8606 

R8 

1.0597 

R18 

1.0608 

F13 R7 

0.0339 

R5 

0.233 

R18 

1.0608 

R8 

0.9304 

R19 

1.1298 

 

F14 R9 

0.5008 

R2 

0. 6998 

R17 

0.7119 

R10 

0.6385 

R12 

0.8378 

R20 

0.8416 

F15 R11 

0.3707 

R9 

0.5700 

R20 

0.8416 

R12 

0.7334 

R14 

0.9329 

 

F16 R13 

0.2147 

R11 

0.4138 

 R14 

0.8579 

R16 

1.0574 

 

F17 R15 

0.0400 

R13 

0.2391 

 R16 

0.9710 

R21 

1.1722 

 

T = 25.6676 s 

 

The difference in operating time between any backup relay and its primary relay is 

equal or greater than 0.2 s, which indicates the 𝐶𝑇𝐼  constraints are satisfied, conforms 

effective coordination.  

The proposed two-stage OPC may not converge to a feasible solution if the fault 

resistance is not low enough. The VI-FCL is sized according to the worst-case condition, 

which could be too conservative. Therefore, the need for an adaptive VI-F that varies 

according to the fault condition arises. The following section states the problem that could 

appear due to the use of fixed VI-FCLs and proposes a remedy for it. 
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6.4 Adaptive VI-FCL Problem Statement and Evaluation 

Referring to (3.17), let’s consider R19, which is associated with the synchronverter 

connected at bus 5. This relay acts as a backup for R8. Figure 6.5 shows the layout of the 

section under investigation. 

 

Figure 6.5. schematic diagram of the section under investigation. 

If the fault resistance during f13 fault inception is not around zero, the calculated VI-

FCL may be larger than needed to limit the fault current. Thus, the fault current could be 

limited to a value less than the relay’s pickup current. Consequently, the resultant operating 

time is an infinite or negative number, as shown in Table 6.5. Thus, GA returns an infeasible 

solution. Theoretically, a solution could be available by relaxing the fault current limit. As 

a demonstration, the proposed two-stage OPC is performed to consider three different fault 

resistances (0 Ω, 0.5 Ω, and 2 Ω.) The values of the relays’ optimal settings are global for 

all the resistances listed in Table 6.6 

Table 6.5. R19 operating times corresponding to different fault currents. 

𝑅𝑓 (Ω) 𝐼𝑓
(2)

 (𝑝. 𝑢. ) 𝑡𝑅19 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

0 0.745 1.047 

1 0.456 -0.5814 

5 0.200 -0.1622 

 

 

 



 

54 

 

Table 6.6. Relays global optimal settings for different fault resistances. 

Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) 

1     0.1266     1.4355 12     0.1269 1.2507 

2     0.1500     1.2500 13     0.0595     1.2500 

3     0.0809     1.4895 14     0.1570     1.2500 

4     0.1945     1.2500 15     0.0100     1.2500 

5     0.0465     1.2705 16     0.1848     1.2830 

6     0.2432     1.2500 17     0.2656     0.7261 

7     0.0100     1.2500 18     0.2396     0.6250 

8     0.1825     1.2501 19     0.2536     0.6251 

9     0.1224     1.2500 20     0.1868     0.6251 

10     0.1606     1.4151 21     0.2570     0.6250 

11     0.1022     1.4941 T = 90.2 s 

 

However, this solution is impractical since a relaxation on the VI-FCL leads to fault 

currents higher than 2.5 p.u., and this would damage the inverter’s switches. An adaptive 

impedance is proposed to keep the synchronverter protected and ensure detectable fault 

currents, which will make the proposed two-stage OPC program feasible to solve. 

The proposed adaptive VI-FCL depends on the value of the constant VI-FCL 

formulated earlier to intercept bolted balanced faults. The adaptive VI-FCL controller 

varies the value of the VI-FCL components according to the synchronverter’s terminal 

voltage. If the fault is bolted, the full value of the fixed VI-FCL impedance will be engaged. 

When faults are less severe—which corresponds to relatively lower voltage drops—only 

partial engagement of the fixed VI-FCL is allowed. The adaptive VI-FCL represents a 

droop characteristic in terms of the magnitude of the inverter’s terminal voltage  as follows: 

𝑍𝑎𝑑𝑝 = 𝑚𝑉𝑡 + 𝑏 (6.1) 

where 𝑍𝑎𝑑𝑝  is the magnitude of the adaptive impedance, 𝑚  is the slope of the line 

representing the adaptive impedance, and 𝑏  is a constant. The slope of the adaptive 

impedance line is determined based on  
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𝑚 = − (
𝑍𝑎𝑑𝑝

𝑚𝑎𝑥 − 𝑍𝑎𝑑𝑝
𝑚𝑖𝑛

𝑉𝑡
 𝑚𝑎𝑥 − 𝑉𝑡

 𝑚𝑖𝑛) (6.2) 

where 𝑍𝑎𝑑𝑝
𝑚𝑎𝑥 is the maximum value of the adaptive VI-FCL, which corresponds to the fixed 

value of the VI-FCL imported from the first stage of the proposed OPC scheme,  𝑍𝑎𝑑𝑝
𝑚𝑖𝑛 is 

the minimum magnitude of the adaptive VI-FCL to be engaged when the voltage drop is 

minimal,  𝑉𝑡
 𝑚𝑎𝑥 and 𝑉𝑡

 𝑚𝑖𝑛 denotes the maximum and minimum values of 𝑉𝑡. The value of 

𝑏 can be calculated as follows: 

𝑏 =  𝑍𝑎𝑑𝑝
𝑚𝑎𝑥 − 𝑚𝑉𝑡

 𝑚𝑖𝑛 (6.3) 

This formulation is done to keep the fault current generated from a synchronverter 

during low-impedance faults detectable. Finally, the values of the adaptive VI-FCL 

components are calculated according to the following equations 

𝑅𝑎𝑑𝑝 =
𝑍𝑎𝑑𝑝

√1 + (𝑋 𝑅⁄ )2⁄  (6.4) 

𝐿𝑎𝑑𝑝 = (𝑅𝑎𝑑𝑝(𝑋 𝑅⁄ )) 2𝜋𝑓⁄  (6.5) 

 

where 𝑋/𝑅  is equaled to 6.0, and 𝑓  is the grid frequency. The proposed adaptive 

formulation is tested to guarantee the current limitation and feasibility of the OPC program. 

The synchronverter understudy is DG2. Table 6.7 displays the parameter of the adaptive 

VI-FCL used in this case study. 

Table 6.7. Parameters of the adaptive VI-FCL for the synchronverter at bus 5. 

Parameter Value 

𝑍𝑎𝑑𝑝
𝑚𝑎𝑥 1.1156 p.u. 

𝑍𝑎𝑑𝑝
𝑚𝑖𝑛 0.2688 p.u. 

𝑉𝑡
 𝑚𝑎𝑥 0.8 p.u. 

𝑉𝑡
 𝑚𝑖𝑛 0 p.u. 
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The value of the maximum adaptive VI-FCL is imported from the first stage of the 

proposed two-stage OPC; the minimum value is calculated based on  

𝑍𝑎𝑑𝑝
𝑚𝑖𝑛 =

𝐸 − 𝑉𝑡
 𝑚𝑎𝑥

𝐼𝑓𝑚𝑎𝑥

(2)
 (6.6) 

Figure 6.6 shows the droop characteristic representing the adaptive VI-FCL. The proposed 

adaptive VI-FCL is tested using time-domain simulations to verify its performance. Figure 

6.7 demonstrates the operation of the adaptive VI-FCL at different voltage drops. The 

proposed adaptive VI-FCL ensures a detectable level of fault current at various voltage 

drops.  

 

Figure 6.6. Calculated adaptive VI-FCL compared to constant VI-FCL. 



 

57 

 

 

Figure 6.7. Simulated adaptive VI-FCL to keep the constant current during voltage change. 

As this case applies to R19, the relay measures a high fault current, and as a result, it 

responses quickly. In other words, the adaptive VI-FCL ensures a margin between the 

relay’s measured current and its pickup value. The parameters for all adaptive VI-FCLs are 

listed in Table 6.8.  

Table 6.8. Parameters of all adaptive VI-FCLs.  

Synchronverter location 𝑚 𝑏 

Bus 4 -1.0633 1.1192 

Bus 5 -1.0585 1.1156 

Bus 6 -1.0645 1.1204 

Bus 9 -1.0494 1.1083 

 

6.5  Case Study on the IEEE 30-bus System 

In this section, the calculations are applied to a bigger system to assert the 

effectiveness of the proposed two-stage OPC scheme. 
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The system under study is the distribution portion of the IEEE 30-bus system, which 

is displayed in Figure 6.8. and its data is available in [52]. Synchronverters are connected 

at various locations. Each synchronverter is rated at 10 MVA and connected through a 480 

V/33 kV step transformer. Buses 2,8 and 12 are the feeding nodes from the main grid 

through three 50 MVA, 132 kV/33 kV. The network is equipped with 56 relays. The bolted 

balanced fault locations are the midpoint of each line. The synchronverters are subjected 

to bolted faults at their terminals, similar to the previous study. These faults are used to 

calculate the required VI-FCL to limit the fault current.  

The proposed two-stage OPC is applied to determine the parameters of VI-FCLs and 

the relays’ optimal settings. Table 6.9 displays the parameters of the fixed VI-FCLs 

calculated in the first stage of the proposed OPC.  
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Figure 6.8. Distribution network of the IEEE 30-bus system. 
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Table 6.9. Parameters of fixed VI-FCLs used with the IEEE 30.-bus system. 

Synchronverter 

location 
𝑅𝐹𝐶𝐿

(𝑑)
 (𝑝. 𝑢. ) 𝐿𝐹𝐶𝐿

(𝑑)
 (𝑝. 𝑢. ) 

Bus 3     0.0539     0.0008585 

Bus 4     0.0537     0.0008548 

Bus 5     0.0540     0.0008601 

Bus 6     0.0537     0.0008545 

Bus 7     0.0539     0.0008573 

Bus 9     0.0537     0.0008554 

Bus 10     0.0540     0.0008601 

Bus 11     0.0528     0.0008405 

Bus 14     0.0531     0.0008456 

 

The relays’ optimal settings are determined in the second stage and listed in Table 6.10. 

These settings result in the relays’ operating times shown in Table 6.11. As can be seen, the 

protection coordination is maintained, i.e., 𝐶𝑇𝐼 is equal to 0.2s or higher. Also, the inverters’ 

currents are limited to the current magnitudes to less than 1.5 p.u. These results confirm 

the successful operation of the proposed two-stage OPC.  
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Table 6.10. Relays’ optimal settings in IEEE 30-bus system. 

Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢) Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢) 

1 0.0501     1.2501 29   0.0907  1.2500 

2     0.0986     1.2501 30     0.1331     1.2500 

3     0.0598     1.2501 31     0.1123     1.2500 

4     0.0853     1.2500 32     0.1097     1.2500 

5     0.0950     1.2501 33     0.1226     1.2501 

6     0.1143     1.2500 34     0.1097     1.2500 

7     0.1588     1.2500 35     0.0573     1.2501 

8     0.1047     1.2501 36     0.0501     1.2500 

9     0.1216     1.2500 37     0.0914     1.2894 

10     0.1145     1.2501 38     0.1328     1.2500 

11     0.1385     1.2634 39     0.0907     1.2500 

12     0.1267     1.2501 40     0.0500     1.2500 

13     0.1087     1.2500 41     0.0846     1.2503 

14     0.0963     1.2501 42     0.0501     1.2500 

15     0.1332    1.2507 43     0.0855     1.2614 

16     0.0894     1.2500 44     0.0689     1.2500 

17     0.0823     1.2526 45     0.0500     1.2500 

18     0.1044     1.2500 46     0.0500     1.2500 

19     0.1318     1.2500 47     0.0500     1.2500 

20     0.1580     1.2501 48     0.0500     1.2500 

21     0.0677     1.2525 49     0.0501     1.2500 

22     0.1541     1.2505 50     0.0501     1.2500 

23     0.1098     1.2500 51     0.0500     1.2500 

24     0.0647     1.2501 52     0.0500     1.2500 

25     0.1260     1.2500 53     0.0500     1.2500 

26     0.0815     1.2500 54     0.2607     1.2501 

27     0.0924     1.2500 55     0.2638     1.2500 

28     0.0722     1.2500 56     0.2335     1.2528 
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Table 6.11. Relays operating time for IEEE 30-bus system. 

FL P1 B11 B12 B13 B14 P2 B21 B22 B23 B24 

15 

R1 R4    R2 R5 R8 R45  

0.237 0.437    0.2968 4.729 0.62 1.984  

16 

R5 R3 R10 R48  R6 R1 R8 R45  

0.329 0.723 0.533 1.999  0.3602 0.817 0.6 1.984  

17 

R7 R5 R1 R45  R8 R12 R49   

0.483 0.684 0.914 1.984  0.3811 0.607 2.002   

18 

R3 R2    R4 R6 R10 R48  

0.266 0.467    0.2714 0.933 0.557 1.998  

19 

R11 R7 R49   R12 R20 R52   

0.484 0.688 2.004   0.4299 0.652 1.995   

20 

R9 R6 R3 R48  R10 R14 R16 R50  

0.408 0.606 0.604 1.994  0.3716 0.582 0.571 1.994  

21 

R13 R16 R9 R50  R14 R18 R51   

0.343 0.612 0.616 1.994  0.3692 0.568 1.990   

22 

R17 R13 R51   R18 R22    

0.292 0.493 1.990   0.3951 0.605    

23 

R21 R17    R22 R19 R24 R26 R46 

0.192 0.395    0.6896 0.89 0.892 0.891 1.976 

24 

R19 R11 R52   R20 R21 R24 R26 R46 

0.485 0.685 1.995   0.4531 0.655 0.805 0.784 1.979 

25 

R23 R21 R19 R26 R46 R24 R28 R53   

0.318 0.621 0.830 1.225 1.979 0.2624 0.462 1.978   

26 

R25 R24 R21 R19 R46 R26 R32 R27   

0.369 1.794 0.642 0.822 1.979 0.2997 0.499 0.986   

27 

R27 R23 R53   R28 R25 R32   

0.341 0.542 1.979   0.2421 0.713 0.515   
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28 

R15 R14 R9 R50  R16 R30    

0.417 0.618 0.617 1.994  0.3617 0.565    

29 

R31 R25 R27   R32 R34 R29 R54  

0.385 0.584 0.584   0.3526 0.600 0.622 0.619  

30 

R29 R15    R30 R31 R34 R54  

0.367 0.567    0.4151 0.621 0.617 0.619  

31 

R33 R31 R29 R54  R34 R35 R38   

0.387 0.587 0.587 0.618  0.4036 0.605 0.604   

32 

R35 R55    R36 R33 R38   

0.381 0.616    0.1601 0.567 0.652   

33 

R37 R33 R35   R38 R40 R44 R47  

0.333 0.533 0.617   0.4426 1.048 0.642 1.991  

34 

R43 R40 R37 R47  R44 R41    

0.273 0.718 0.503 1.991  0.4334 0.635    

35 

R39 R37 R44 R47  R40 R42 R56   

0.294 0.495 0.623 1.991  0.2503 1.431 0.538   

36 

R41 R39 R56   R42 R43    

0.334 0.533 0.538   0.2349 0.434    

T = 119.57 

 

The need for adaptive impedance arises if different fault resistances are involved. As 

similar to the 9-bus system, the adaptive impedance is formulated to keep the 

synchronverters’ current generation around the desired level. The test is done for three 

different fault resistances 0 ohms, 0.5 Ω, and 2 Ω. The values of fixed resistances and 

inductances listed in Table 6.9 are used to obtain the droop characteristics of the adaptive 

VI-FCLs, as given in Table 6.12. 
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Table 6.12. Parameters of adaptive VI-FCLs used with the IEEE 30.-bus system. 

Synchronverter location 𝑚 𝑏 

Bus 3 -0.1342     0.3279 

Bus 4 -0.1341     0.3266 

Bus 5 -0.1343     0.3285 

Bus 6 -0.1343     0.3266 

Bus 7 -0.1343     0.3279 

Bus 9 -0.1342     0.3266 

Bus 10 -0.1342     0.3285 

Bus 11 -0.1343     0.3212 

Bus 14 -0.1341     0.3230 

 

The obtained relays’ settings based on the adaptive VI-FCLs are listed in Table 6.13. These 

values maintain proper coordination between the DOCRs. For instance, as demonstrated in 

Table 6.14, the time difference between primary and back-up relays during f1–f5 is more 

than or equal to the CTI for the different fault resistances. Also, it is worthy noted that the 

operating times of R48 and R49 relays associated with synchronverters involved in Table 

6.14 are maintained for all the fault resistances due to the adaptive VI-FCL that maintain 

the synchronverter’s current higher than the associated relay’s pickup current regardless of 

the fault location. 
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Table 6.13. Relays’ global settings in IEEE 30-bus system. 

Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) Relay 𝑇𝐷𝑆(𝑠) 𝐼𝑝 (𝑝. 𝑢. ) 

1     0.1009     1.2500 29     0.1225     1.2506 

2     0.1486     1.2515 30     0.1846     1.2503 

3     0.1032     1.3440 31     0.1739     1.2884 

4     0.1577     1.2512 32     0.1977     1.2577 

5     0.1083     1.2502 33     0.1438     1.2500 

6     0.1672     1.2500 34     0.1524     1.2562 

7     0.1866     1.2905 35     0.1273     1.2582 

8     0.1293     1.2506 36     0.0500     1.2502 

9     0.1583     1.2587 37     0.1180     1.2570 

10     0.1448     1.2505 38     0.1660     1.2665 

11     0.1789     1.2500 39     0.1218     1.2500 

12     0.1532     1.2500 40     0.0968     1.2560 

13     0.1275     1.2520 41     0.1198     1.2543 

14     0.1107     1.2754 42     0.1053     1.2504 

15     0.1674     1.2521 43     0.1374     1.2533 

16     0.1073     1.2500 44     0.0898     1.2501 

17     0.1061     1.2574 45     0.2559     1.2500 

18     0.1134     1.2776 46     0.4097     1.2666 

19     0.1841     1.2503 47     0.4398     1.2501 

20     0.1871     1.2516 48     0.0500     1.2500 

21     0.1092     1.2688 49     0.0501     1.2500 

22     0.1617     1.2500 50     0.0500     1.2500 

23     0.1572     1.2504 51     0.0500     1.2500 

24     0.1540     1.3565 52     0.0501     1.2500 

25     0.1623     1.4569 53     0.0500     1.2500 

26     0.1910     1.2508 54     0.0500     1.2500 

27     0.1559     1.2532 55     0.0642     1.2533 

28     0.1251     1.4366 56     0.0500     1.2500 

T = 690.8690 s 
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Table 6.14. Relays’ operating times for different fault resistances. 

FL 𝑅𝑓(Ω) P1 B11 B12 B13 B14 P2 B21 B22 B23 

15 0 
R1 

0.4473 

R4 

0.8057 

   R2 

0.4475 

R5 

0.818 

R8 

0.7659 

R45 

0.7804 

16 0 

R5 
0.3749 

R3 
1.4278 

R10 
0.6734 

R48 
1.9838 

 R6 
0.4709 

R1 
1.6454 

R8 
0.7414 

R45 
0.7804 

17 0 

R7 

0.5759 

R5 

0.78 

R1 

1.8401 

R45 

0.7804 

 R8 

0.4709 

R12 

0.7333 

R49 

1.9826 

 

15 0.5 R1 

0.5425 

R4 

0.9282 

   R2 

0.4853 

R5 

0.9729 

R8 

0.9009 

R45 

1.2268 

16 0.5 R5 

0.4189 

R3 

1.6298 

R10 

0.7828 

R48 

1.9838 

 R6 

0.5831 

R1 

1.8211 

R8 

0.8948 

R45 

1.2268 

17 0.5 R7 

0.6351 

R5 

0.99 

R1 

3.9231 

R45 

1.2268 

 R8 

0.5287 

R12 

0.8551 

R49 

1.9826 

 

15 2 R1 

1.087 

R4 

2.0504 

   R2 

0.7028 

R5 

1.4059 

R8 

2.5410 

R45 

1.4837 

16 2 R5 
0.7016 

R3 
2.5129 

R10 
1.2085 

R48 
1.9838 

 R6 
0.9180 

R1 
2.4462 

R8 
3.0859 

R45 
1.4837 

17 2 R7 

0.8979 

R5 

2.1590 

R1 

1.2085 

R45 

1.4837 

 R8 

0.9180 

R12 

2.4462 

R49 

1.9826 

 

 

6.6 Conclusion 

In this chapter, the capability of VI-FCLs to limit the fault current is validated using 

a Canadian 9-bus distribution system. The proposed VI-FCL model and controller are 

validated by comparing short-circuit current calculations to fault currents obtained from 

time-domain simulations. Further, the proposed two-stage OPC is tested when adopting 

fixed VI-FCLs on the 9-bus system.  It is observed that using fixed VI-FCLs could make 

the proposed OPC program infeasible when the fault resistance is not near zero. Therefore, 

adaptive VI-FCLs are proposed and implemented to adapt to different fault conditions. 

Simulation results prove the effectiveness of the proposed VI-FCLs in enhancing the 
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solution and avoiding unmet constraints since VI-FCLs ensure detectable faults currents 

even at relatively high fault resistance. Furthermore, the performance evaluation is 

conducted on the IEEE 30-bus system. As seen from the obtained results, the OPC solution 

is feasible and obtained at a low computational burden. The results presented in this chapter 

confirm that the proposed two-stage OPC scheme with adaptive VI-FCLs is a cost-effective 

strategy to protect ADNs powered with synchronverters.  
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CHAPTER 7 

THESIS CONCLUSION AND FUTURE WORK 

7.1 Thesis Conclusion 

A survey is conducted to review topics related to ADNs, synchronverters, fault 

current limitations, and OPC, and to highlight the shortcomings addressed by the research 

presented in this thesis. The survey is followed by explaining the basics of synchronverter 

modeling and control and formulating the traditional OPC program. Then, the problem of 

inrush current from synchronverters is illustrated. The need for a voltage source model 

using VI-FCLs for OPC studies is stated. The problem statement is supported by simulation 

results. To address this problem, the traditional OPC is augmented by VI-FCLs to be solved 

in a unified manner; however, infeasibility issues could occur, which may require 

constraints relaxing.  

Alternatively, a two-stage OPC scheme is proposed and formulated to handle the VI-

FCL constraints separately from those for the relays’ settings. The proposed scheme 

simplifies the OPC formulation and avoids infeasibility issues. Simulation results on the 

Canadian 9-bus system prove the successful operation of the proposed scheme when the 

fault resistance is near zero. However, infeasibility issue could occur when the fault 

resistance is relatively high. This problem occurs because fixed VI-FCLs may result in fault 

currents that are below the relays’ pickup currents. To solve this issue, adaptive VI-FCLs 

are proposed to ensure a measurable margin between the fault current and the relay’s pickup 

current. The proposed adaptive VI-FCL adopts a droop characteristic between the 

magnitude of the virtual impedance and the magnitude of the inverter’s terminal voltage. 

Simulation results using the 9-bus and the IEEE 30-bus systems confirm the effectiveness 
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of the proposed two-stage OPC with adaptive VI-FCLs as cost-effective protection means 

of ADNs with synchronverters. 

7.2 Future Work 

Further research on the OPC of ADNs with synchronverters may investigate different 

relay characteristics and modes of operation of ADNs, and unbalanced loading conditions. 

Also, it can be extended to intercept the transient currents generated to reduce the stress on 

the power electronic components. 
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