
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

7-7-2020 

Development of A Robust, Soft and Flexible Selfhealing Polymer Development of A Robust, Soft and Flexible Selfhealing Polymer 

Based on Dynamic Coordinate Metallig and Bonds Based on Dynamic Coordinate Metallig and Bonds 

Julia Pignanelli 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Pignanelli, Julia, "Development of A Robust, Soft and Flexible Selfhealing Polymer Based on Dynamic 
Coordinate Metallig and Bonds" (2020). Electronic Theses and Dissertations. 8388. 
https://scholar.uwindsor.ca/etd/8388 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8388?utm_source=scholar.uwindsor.ca%2Fetd%2F8388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


   

DEVELOPMENT OF A ROBUST, SOFT AND FLEXIBLE SELF-
HEALING POLYMER BASED ON DYNAMIC COORDINATE METAL-

LIGAND BONDS 

 

By 

Julia Pignanelli  

 

A Thesis 

Submitted to the Faculty of Graduate Studies Through the Department of 

Chemistry and Biochemistry in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

at the University of Windsor 

 

Windsor, Ontario, Canada 

2020 

©  2020 Julia Pignanelli  

 

 



   

 

Development of a Robust, Soft and Flexible Self-Healing Polymer Based on 
Dynamic Coordinate Metal-Ligand Bonds 

 
 
 
 

by 
 
 

Julia Pignanelli 
 
 

 
 
 

APPROVED BY: 
 
 
 

__________________________________________________ 
B. Balasingam, 

 Department of Electrical and Computer Engineering 
 
 

__________________________________________________ 
J. Trant 

Department of Chemistry & Biochemistry 
 
 

__________________________________________________ 
J. Ahamed, Co-Advisor 

Department of Mechanical, Automotive and Materials Engineering 
 
 

__________________________________________________ 
S. Rondeau Gagné, Co-Advisor 

Department of Chemistry & Biochemistry 
 
 
 

        
 
 
May 11, 2020 
  



   iii 

 

DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION 

I. Co-Authorship  

I hereby declare that this thesis incorporates material that is result of joint research, 

as follows:  

Chapter 3 was co-authored with Blandine Billet, Matthew Straeten, Michaela Prado 

and Kory Schlingman under the supervision of Prof. Simon Rondeau-Gagné and Prof. 

Mohammed Jalal Ahamed. They main ideas, primary contributions, experimental 

designs, data analysis, interpretation, and writing were preformed by the author. The 

contribution of the co-authors was primarily through device and material 

characterization. Blandine Billet, Michaela Prado and Kory Schlingman contributed to 

the material characterization of the Iron-cross linked polymer system; Matthew Straeten 

contributed to the device characterization. All authors provided feedback and editions 

to the published manuscript. All authors have given approval to the final version of the 

manuscript. Chapter 3 was adapted with permission from Ref. 109 (Chapter 4) copyright 

2019 The Royal Society of Chemistry.  

 Chapter 4 of this thesis was co-authored with Zhiyuan Qian, and Xiaodan Gu, under 

the supervision of  Jalal Ahamed and Simon Rondeau-Gagné. The main ideas, 

contributions and writing were primarily done by the author. The co-authors contributed 

through a portion of the material characterization and data analysis. Zhiyuan Qian and 

Xiaodan Gu helped to study the viscoelasticity of the various metal-salt cross linked 

samples before and after healing using a rheometer to generate the storage and loss 

moduli of the materials.  All authors provided editing and feedback to the submitted 

manuscript.  

I am aware of the University of Windsor Senate Policy on authorship and I certify 

that I have properly  acknowledged the contribution of the other researchers to my thesis 

and have obtained writted permission from each of the co-author(s) to include the above 

material(s) in this thesis.  



 

 iv 

 I certify that, with the above qualifications, this thesis, and the research it pertains 

refers to, is the product of my own work. 

 

II. Previous Publications  

This thesis includes one original paper that have been previously published in peer 

reviewed journal of Soft Matter, as follows:  

Thesis Chapter Publication title/full citation Publication Status* 

Chapter 3 Pignanelli, J.; Billet, B.; Straeten, M.; 

Prado, M.; Schlingman, K.; Ahamed, M.; 

Rondeau-Gagné, S. Imine And Metal–

Ligand Dynamic Bonds In Soft Polymers 

For Autonomous Self-Healing Capacitive-

Based Pressure Sensors. Soft 

Matter 2019, 15 (38), 7654-7662. 

 

Published 

Chapter 4 Pignanelli, J.; Qian, Z.; Gu, X.; Ahamed, 

M.; Rondeau-Gagné, S. Modulating the 

Thermomechanical Properties and Self-

Healing Efficiency of Siloxane-Based Soft 

Polymers Through Metal-Ligand 

Coordination, 2020 

Published  

 

 I certify that I have received a written permission from the copyright owner(s) to 

include the above published material(s) in my thesis. I certify that the above materials 

describe work completed during my registration as a graduate student at the University of 

Windsor. 

III. General  



 

 v 

I declare that, to the best of my knowledge, this thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in this thesis, 

published or otherwise, are fully acknowledged in accordance with the standard referencing 

practices. Furthermore, to the extent that I have included copyrighted material that surpasses 

the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I 

have obtained a written permission from the copyright owner(s) to include such material(s) 

in my thesis.  

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vi 

ABSTRACT  

Herein, an intrinsic autonomous self-healing polymer system has been developed 

and explored leading to new materials that are easily able to be fine-tuned both mechanically 

and chemically. Through an easy condensation reaction, the system explored incorporates 

dynamic and reversible bonds within polydimethylsiloxane monomer chains, namely 

dynamic imine and metal-coordinated bonds, to enable autonomous self-healing while also 

allowing for simple alteration of the system through manipulation of the metal salt used to 

coordinate the ligands of the monomer units. In addition to the autonomous self-healing of 

the system, controlled degradability at mild pH and ultra-high stretchability (up to 800% 

strain) are possible through alteration of the metal to ligand ratio and type of metal used in 

the coordination. Characterization of this dynamic system was  performed through a variety 

of techniques such as tensile-pull strain testing, atomic force microscopy, UV-Vis 

spectroscopy, dynamic mechanical analysis, and shear rheology which showed that the 

highly dynamic imine bonds combined with the coordination with various transition metal 

salts allowed for the material to regenerate up to 88 % of its mechanical strength after 

physical damage while also being able to generate materials that ranged in their Young’s 

modulus from approximately 0.2 MPa to 10 MPa through simply altering the bonds formed 

through the metal ligand coordination interaction. Results suggest the mechanical properties 

of the system under investigation is directly related to its ability to regenerate upon damage. 

The new soft polymer has also been used as a dielectric layer in a capacitive based pressure 

sensor that is able to regenerate its mechanical and electrical properties upon damage, 

proving the possibility of our self-healing polymer for use in the next generation of self-

healing electronics.  
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CHAPTER 1.  INTRODUCTION  

1.1. The Revolutionary Field of Flexible Electronics        

People of the 21st century have undoubtedly become dependent on technology as a result of the 

benefits it provides in many aspects of everyday life such as communication, navigation, education, 

film and media, health and wellness, to name a few. With the rapid advancement technology and 

the resulting interconnection between people and things, researchers are striving to build up devices 

with optimal durability and conformability in order to promote longer lasting, cost effective and 

lower power consuming devices. As a result, the field of flexible electronics is a hot topic for 

material scientist, chemists and engineers due to its wide variety of applications ranging from 

wearable, implantable electronics, flexible industrial and biosensing technologies to large area mass 

production of energy storage and harvesters (Figure 1.1). 

Figure 1.1 Possible avenues for the field of flexible electronics. 

The term flexible can be defined by many qualities such as bendable, elastic, conformable, 

manufacturable or mass producible. With the rise in performance of flexible and conformable 

electronics, scientists are working towards development of novel materials and methods for 

fabrication of fully integrated, economically favorable electronic devices. Traditional materials for 

current state of the art electronics such as gold, crystalline silicon wafers, silver and carbon used in 

complementary metal oxide semiconductors (CMOS) are based on expensive substrates which 

limits their use from conformable and wearable devices.1 CMOS technology that is used in the 

majority of our electronics today have evolved to have high performance yet are limited to their 

shapes and sizes due to the physical rigidity of the high performing silicon based technologies.1 

Organic materials prove to be promising candidates for these technologies as they possess the 

thermochemical properties and tunability required to produce robust technologies. Moreover, these 

materials have begun to show performance comparable to tradition Si-based electronics.2 
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Therefore, researchers are moving  towards optimizing the electromechanical properties of more 

organic electroactive components and elastomeric substrates to improve the flexibility and 

robustness of the next generation of electronics. The lightweight, foldable, stretchable devices 

promote great potential for smart technology such as e-skin, artificial intelligence, robotics, 

wearable and industrial technologies to further enhance and accommodate human lives.1,3–6   

In the 1970’s in response to the energy crisis, one of the first flexible electronic devices 

was made through thinning of single crystal silicon wafer cells that were used on a flexible plastic 

substrate to enhance solar cell array flexibility as well as cost effectiveness of photovoltaic 

electricity.7 Flexible polymer substrates can be deposited with hydrogenated amorphous silicon as 

a result of the low deposition temperature to form the electrical contacts of the cells which allowed 

for the initial method of fabricating solar cells upon flexible substrates. Today solar cells are being 

made through roll-to-roll processes which allow for large scale, mass production of the photovoltaic 

energy sources. 8 

Thin film transistors (TFT) are also important components in the field of flexible 

electronics as they play a vital role in effective switches for pixel displays such as Liquid Chrystal 

Display (LCD) as well as medical imaging applications such as flexible digital detector for x-rays.9 

In 1968 Brody and colleagues reported one of the first flexible TFT’s using matrices of the devices 

compose of tellurium on a strip of paper for display applications.10 The group later applied this 

method using flexible substrates such as polyethylene and anodized aluminum warping foil and 

found that they were able to maintain device function upon bending at a 1/16’ radius.10 Methods 

to further enhance production of efficient yet durable TFT’s resulted in the active-matrix liquid-

crystal display (AMLCD) which allows for large-area chemical deposition onto flexible substrates 

similarly to the method used for solar cell fabrication. Poly-Silicon TFT’s later emerged on plastic 

substrates using laser-annealing to create switches for finger print detection sensors.11 As the 

research in this area continues to grow, the application of electronics will also become enhanced.  

In addition to the enhancement in the electronic signal processing speeds and displays, the 

benefits of conformable devices allow for 3-d data to be acquired similar to the human tactile 

sensation.  Sensors that translate mechanical signals such as force or pressure into electronic signals 

are essential for creating new wearable electronics  and electronic skin-like devices. All 

components of these flexible technologies must be able to withstand the conformability of the 

device including the power source, sensor, electrodes, communication and substrate aspects of the 

design. Pressure sensors in particular have gained interest in the field of flexible and wearable 
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electronics. For real monitoring of pressure it is crucial that the sensors are able to withstand 

bending, shear, torsion strain and vibration all while maintaining repeatable and sensitive output 

responses for a range of pressures applied (5-100 KPa).12 There are four main sensing mechanisms 

for pressure detection including piezoresistive, piezoelectric, field-effect transistor and 

capacitive.12 Among these mechanisms, field effect transistors are least suitable for flexible 

technologies despite their high sensitivity as a result of their mechanical rigidity for the metal-

oxide-semiconductor field effect transistor (MOSFET)-based and complex nanostructure design 

required for the more conformable Organic Field effect transistor (OFET) design.13  The most cost 

effective, large-area compatible and robust pressure sensing technologies for flexible electronic 

applications is capacitive based pressure sensing.14–17 Capacitive pressure sensing is based on the 

relationship between capacitance and distance separating electrodes that form a capacitor (Equation 

1).  

     𝐶 = 𝑘 !!
"#

                       (1)  

Applying a pressure to the top electrode results in a decrease in the distance between the electrodes 

and therefore an increased capacitance signal (Figure 1.2). 

Figure 1.2. Schematic design of capacitive pressure sensors. 

One of the benefits of this system includes the ability to use a wide range of flexible materials 

as the two components that form a parallel plate capacitor; the electrodes and dielectric material. 

For example, Lipomi and colleagues created a fully flexible capacitive pressure sensor made of an 

Ecoflex dielectric layer sandwiched between single-walled carbon nanotube (SWCNTs) coated 

polydimethylsiloxane (PDMS) electrodes.18 To account for the viscoelastic properties of elastomers 

that result in lower pressure sensitivity and hysteresis, dielectric surface microstructures create 

voids that enable elastic and reversible deformation upon external pressure applied.19 Bao and 
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colleagues created PDMS dielectric microstructures using a replica mold process to improve device 

sensitive from 0.02 KPa-1 to 0.55 KPa.19 Figure 1.2 illustrates a schematic representing the 

structured dielectric layer of a capacitive pressure sensor and its response to pressure applied in 

relation to capacitance measured.  Therefore, there is ample potential in the material science and 

chemistry research areas to create robust and tunable materials that can be used to further enhance 

the mechanical and electrical stability of the flexible pressure sensing technologies.  

1.2. Soft Materials for Electronics   

In order for the next generation of electronics to evolve it is essential that flexible, conformable 

materials to be optimized with the required electronic and mechanical properties to allow for the 

achievement of optimal and favorable performance and durability. Soft elastomeric materials are 

therefore critical to determining a rational design and development of materials needed in order to 

accelerate the fabrication of soft technologies to give material engineers an effective toolbox for 

the  next generation of electronics.  

For electronics to eventually become fully integrated into wearable technology, bendable, 

stretchable power sources and sensors, they must possess a wide variety of possible electronic and 

mechanical properties to account and provide for the robust nature of everyday life. In order to 

optimize material design to account for these properties, material chemists and engineers have 

discovered various methods to achieve flexible and stretchable materials through development of 

new structure architectures of conventional materials as well as the development of novel 

materials.20 The materials that make up electronic devices include, a flexible insulating substrate, 

conducting, semiconducting, and dielectric materials.21 The resulting devices are only as flexible 

as the most brittle component; therefore it is important that each piece of the system meets the 

desired robustness of the product. Foldable and stretchable circuits have been demonstrated by 

Rogers et al. using a wrinkled structure architecture of gold.22 This method of producing a 

stretchable metal or conductor is based on the  modification of the Au structure architecture, which 

allows for increased surface area of the electrodes to accommodate strain thus improvement of 

robustness of the material.5 This method is known as strain engineering, where a rigid thin film 

semiconducting or conducting material is placed on a pre strained elastomer. Upon elastomer 

release, the rigid material conforms to a wavy-like structure. Fabrication of such electronics has 

been explored using a combination of  robust and soft materials such as SWCNTs, ion-gels, 

nanosheets, poly(3-hexythiophene) fibers and rubber composites which has shown result in 

electronics able to withstand tensile strains up to 70% without failure.21 Despite the advances in 
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improving the stretchability and robustness of soft materials for electronics, there is still more work 

required to enhance conventional material physical properties while maintaining its optimal 

electronic properties.  

An approach to attaining flexible semiconducting materials involves  entangled and covalently 

bonded hydrocarbon chains. The combination of covalently bonded and entangled hydrocarbon 

chains allows for robust and soft elastomers, however soft materials that possess a variety of 

material and electronics characteristics are required for the future of electronics. Elastomeric 

matrices can be dispersed with various compounds to alter the elastomers electronic properties 

while maintaining its elastic properties. For example, Selivanova and colleagues reported a blended 

system of semiconducting polymers with branched polyethylene elastomer in order to fine-tune the 

solid-state morphology of the semiconducting polymer, while also allowing for a semiconducting 

elastomer blend for future applications in OFETs.23,24 Numerous other studies have focused on 

coating of SWCNTs films within silicon based rubbers to create transparent, conductive 

elastomers.18,25–27 The SWCNTs form tangled aggregates that are able to reconfigure in response to 

strain in order to maintain a stable conductive path for charge transport with the ability to be printed 

onto flexible substrates.28 Alternatively to this approach to modify the architecture of conventional 

materials, the synthesis of novel semi-conductive and conductive polymers is also a method to 

achieve soft, conformable materials for electronics through polymer backbone or side chain 

engineering.29,30 Conjugated polymers with sp2 hybridization allows for the electronic properties of 

conjugated polymers as a result of the delocalization of electrons throughout the polymer chain.31 

Alternatively, π-π-stacking of the polymer backbone can also create intermolecular charge transport 

in organic semiconducting polymer systems.32 Figure 1.3 summarizes the methods used to achieve 

flexible semiconducting materials. Most recent advances in synthesis of organic semiconducting 

materials has focused on resolving the competition between electronic and mechanical properties 

as they relate to solid state morphology.23,24,33,29  
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Figure 1.3. Summary of current methods used to achieve flexible semiconductive materials. (a) 

SWCNT Coating. Aadapted with permission from Ref. 18. Copyright 2011 Springer Nature. (b) 

Polymer Molecular Design. Adapted with permission from Ref. 33. Copyright 2015 American 

Chemical Society and from Ref. 29. Copyright 2019 American Chemical Society. (c) Physical 

Blending. Adapted with permission from Ref. 23. Copyright 2019 American Chemical Society. 

In addition to the semiconducting materials for electronics, dielectric materials are also valuable in 

ensuring low power and safe electronics. Most modern electronic circuitry is based on thin film 

transistors to amplify or switch various device signals. Therefore, the material components of these 

electronics including the semiconductor, the dielectric, substrate and the conductor must possess 

the mechanical and electrical performances compatible with flexible and stretchable electronics.  

While advances in enhancing the electronic capabilities of semiconducting and insulating 

materials has increased the potential for the future of flexible, stretchable electronics, another area 

of research that will further enhance the robustness of such materials is the field of self-healing 

materials. Considering the advances and progress in mechanically robust semiconducting materials 

for TFT’s it is crucial to also integrate the dielectric material that allows for low voltage, flexible 

power sources required for these technologies.  
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1.3. Dielectric Materials  

A dielectric material is an electrical insulator that is able to become polarized upon an applied 

voltage. Band theory is a theoretical model which describes conductivity of materials in their solid 

state based on the energy differences between the valence and conduction band. The smaller the 

energy gap, the easier it is for an electron to enter the higher energy conduction band. In comparison 

to conductive and semi-conductive materials, insulators have a high energy band gap between their 

lowest unoccupied molecular orbital (LUMO) or valence band and highest occupied molecular 

orbital (HOMO) or conduction band. Electrons in the valence band of semi-conductors can be 

promoted to the conduction band through application of an electric potential. The large difference 

between the conduction and valence band of insulating materials prevents electrons to flow when 

subjected to an electric potential. A comparison between the energy band gaps between insulators, 

semiconductors and conductors is illustrated in Figure 1.4.  

 

Dielectric polarization results from electrical charges shifting from their equilibrium position when 

placed in an electric field. Since charges repel one another, positive charges shift toward the electric 

field whereas the negative charges shift in the opposite direction of the field, as depicted in Figure 

1.5. The electric field that is created within the dielectric material as a result decreases the overall 

field due to the countering vectors of the fields.34   

Figure 1.4 Band theory energy profile schematic comparing band gap energies of an insulator, 

semiconductor and conductor. 
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The dielectric constant (k) of a material is directly related to its ability to store electrical charge, 

known as capacitance  at a given voltage when used in a parallel-plate metal-insulator-metal (MIM) 

capacitor. Rearrangement of Equation 1 for k represents this relationship, where d is the thickness 

of the dielectric material (Equation 2). High dielectric constant materials are important for the 

future of flexible electronics as higher storage of charge and therefore higher power is possible with 

lower operation voltage compared to lower dielectric constants with high operation voltages.  

                𝑘 = 𝐶 "#
!!

                     (2)   

Polarization density (P) of dielectric materials expresses the induced dipole moments of these 

materials where is the electric permittivity of vacuum (8. 854 × 10−12 F m−1),  is the electrical 

susceptibility which is related to the materials dielectric constant (k).	𝜒! is the electrical susceptibility 

which is related to the materials dielectric constant (k). 35  

   𝜒$ = 𝑘 − 1             (3) 

                            𝑃 = 𝜀%	𝜒$E              (4)  

Since the role of dielectric materials is to store electric potential energy, an important concept for 

TFT applications is for the material to be associated with a very low dielectric relaxation. Dielectric 

relaxation is defined as a delay in polarization in response to a changing electric field within the 

dielectric material. As a result there is an irreversible loss of energy or dielectric loss (tan δ) which 

Figure 1.5. Schematic of the polarization of a dielectric through an applied electric field and the 

resulting decreased net electric field. 
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is a measure of dielectric relaxation, where k’ and k represent imaginary and real dielectric 

constants. 34   The imaginary dielectric constant represents the energy absorbed by the material and 

the real dielectric constant represents the amount of energy stored. 36  

    tan 𝛿 = '(
'
	    (5) 

Dielectric breakdown occurs when the dielectric material reaches a threshold energy storage that 

once surpassed, results in conduction or the flow of electrical current, defined as leakage current. 

Once the exponential increase of leakage occurs the dielectric insulating layer becomes partially 

conductive leading to physical damage of the dielectric material. Therefore, in practice it is 

important to have a dielectric film with a high breakdown strength in order to produce robust 

electronics. Typically, the breakdown voltage of the material should be 1.5 times greater than the 

operation voltage of the device.37  

1.4. Overview and History of Self-Healing Materials 

 With the advancement of flexible and stretchable materials for electronic applications, the 

robustness of the materials is essential in order for function of the device to withstand the various 

forces it experiences in response to use in its flexible form. In terms of the semiconducting and 

conducting material components, the mechanical or physical structure of the films used to form 

circuits must be maintained in order to produce effective amplification or switching of the device. 

Not surprisingly, the dielectric insulating material must also maintain its shape and form in response 

to the various stresses experienced upon use in flexible devices in order to maintain its function of 

charge polarization effects. A common issue arises upon wear and tear of these advanced materials 

includes crack formation that results in device failure. Recently,  scientists have begun to explore 

the field of advanced materials with the ability to self-repair upon damage; a promising 

characteristic for economical and safety, lifetime and use of the next generation of electronics.26,38–

41 

 Living organisms possess interesting and useful features which allow for continuous self-

healing ability after damage. One of the most evident examples is that of human skin that is able to 

heal from a wide variety of damage. The general guidelines of wound healing can be mimicked by 

synthetic systems to respond to damage. In the case of the case of skin, the injury signals an 

inflammatory response which triggers cell proliferation followed by matrix remodeling.42 In 

synthetic systems a similar progression can be designed in order to initiate the material to regenerate 
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upon damage where actuation in response to damage triggers a kinetic chemical change that results 

in chemical repair (Figure1.6). Nature has  inspired scientists to emulate these concepts to create 

the next generation of materials capable of regenerating their physical and functional properties 

upon damage.39,43,44           

  

 The concept of attempting to improve the durability and robustness of materials dates back 

to the Roman era. A primitive concept of self-healing was perhaps first created by the romans who 

established a concrete that has lasted and created impressive architecture to this day. The method 

in which this ancient concrete can self-heal upon cracking is based on use of a mortar that combines 

volcanic ash and lime to produce a “glue” to bind bricks together to form the concrete.45 The lime 

becomes soluble when exposed to rain water and is able to be transported  and redistributed through 

the concrete network. Once the water evaporates, the lime solidifies to fill in the gaps created from 

the cracks in the concrete which effectively reinforces the structure as a whole. As described 

previously with the example of nature’s method of healing skin, the rainwater acts as a stimulus to 

actuate the healing process which transports to chemicals in the lime that become soluble in 

response to the water which later solidifies at the site of damage to repair the construct.   

 

1.5. Categorization and Characterization of Self-Healing Materials  

Applying these concepts to synthetic polymers that are used for flexible electronics 

applications, various works have introduced methods to achieve a wide variety of polymeric 

materials with the ability to self-heal.39 Self-healing, can be described as the ability of a material to 

recover a portion or the entirety of its mechanical and or functional properties over time after 

damage. The two categories of self-healing include autonomous and non-autonomous healing.38 

Autonomous healing occurs without the need for external interventions, rather it occurs 

spontaneously in response to the damage. Non-autonomous healing involves an external 

intervention to create the required chemical response to the damage. As illustrated in Figure 1.7, 

Figure 1.6. General Response to self-repair. 
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these two main categories of self-healing can be further divided into intrinsic or extrinsic self-

healing. Intrinsic healing implies the polymer network contains all active components required to 

repair the network upon damage whereas extrinsic healing implies the polymer network requires 

additional components such as encapsulated healing agents to initiate the healing process.46 An 

optimal self-healing system produces effective material and functional regeneration with minimal 

energy input and maximum repeatability of the healing process after repetitive damage. Therefore, 

intrinsic autonomous systems are preferred.   

 

Characterization of a materials self-healing efficiency (η), is done through comparison of the 

materials properties before damage and after healing. The healing efficiency is defined based on a 

specific function or property (f) that is restored which can be defined by equation 6:    

																																							𝜂 = 	 ∆*	+$,-$#
∆*	.,/01$

      (6) 

Typically, the material property that is considered to calculate self-healing efficiency is the 

tensile strain percentage after healing over a certain period of time. Full recovery of a materials 

property after healing is challenging. A materials performance will continue to decline after 

successive damage-healing cycles as a result.  Ideally, a system that is able to produce close to 

native performance upon damage to promote the maintenance of the material after failure and self-

healing. Figure 1.8 illustrates the gradual decline in material performance in terms of percent strain 

in response to stress after successive healing cycles resulting in decreased self-healing efficiency 

as a function of repair cycles.  

Figure 1.7. Types of self-healing polymers 
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1.5.1. Extrinsic Encapsulated Healing Agents  

One of the benefits of working with polymers to create self-healing material include its 

wide range of mechanical properties, ability to alter molecule functionality for fine tuning of the 

properties, high mobility and solubility. These factors have influenced researchers to incorporate 

encapsulated healing agents within the polymer matrix.  The active agents contained within these 

capsules are released upon damage to produce an extrinsic autonomous healing reaction.47 The 

concept is illustrated in Figure 1.9.47 

  

 

 

 

 

 

Figure 1.8. Material self-healing efficiency hysteresis after successive damage-heal cycles as a 

function of percent strain. 
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As illustrated in Figure 1.9 upon crack formation the inclusion containing monomers and or 

reagents is attracted toward the damage which results in their release. In addition to these 

heterogenic inclusions, a catalyst is also dispersed in the matrix in order to initiate the 

polymerization of the monomers in order to fill the crack site. Figure 1.10 demonstrates the efficient  

microencapsulated system for self-healing using encapsulated dicyclopentadiene (DCPD) 

monomers dispersed within an epoxy matrix with Grubb’s catalyst, bis(tricyclohexylphosphine 

benzylidene ruthenium (IV) dichloride, used to trigger the ring-opening metathesis polymerization 

(ROMP).47  

Figure 1.9.  Autonomous self-healing via extrinsic encapsulation of healing agent. 

Adapted with permission from Ref. [47]. Copyright 2001 Nature Publishing Group. 
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The careful design of the system allowed for 75% recovery of its mechanical strength after damage. 

Various other cross-linking reactions have been explored to achieve extrinsic autonomous self-

healing. For instance, PDMS polymerization triggered through release of a Pt catalyst, CuBr2/2-

methylimidazole complex reacted with epoxide as well as isocyanate with water have also shows 

promise for extrinsic self-healing of polymeric matrices.48,49 

While these extrinsic, encapsulated healing agent systems have been effective for producing 

self-healing materials, it is important to recognize its various limitations. First, the system is not 

able to repeatedly self-heal. Once the reagents have been released and the polymerization at the site 

of damage is complete, there are no longer anymore for successive damage. Additionally, the 

reagents required for this method must be carefully selected. The membrane of the capsulated 

monomers or reagents must rupture upon damage. The size of the capsules and amount of released 

materials must be sufficient enough to substantially regenerate the damaged material. The bulk 

Figure 1.10 (a) Encapsulated monomer polymerization reaction that occurs upon capsule rupture of 

DCPD with Grub’s catalyst. (b) SEM image of ruptured healing agent capsule. Adapted with 

permission from Ref. [47]. Copyright 2001 Nature Publishing Group. 
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properties of the material can be drastically affected by large capsules.  Alternatively, smaller 

capsules minimally affect the bulk properties of the material however do not contain sufficient 

materials to fully repair the damage. In addition to these factors, the catalyst used to initiate 

polymerization must not drastically affect the mechanical properties of the polymer, work at 

moderate temperatures within a short amount of time, and the viscosity of the monomeric units 

must be low for effective mass transport to the site of damage.  

1.5.2. Dynamic Bonding for Self-Healing  

In order to generate intrinsic self-healing materials, polymers that are able to form and 

reform dynamic bonds in response to energy dissipation has provided a promising avenue for 

modern materials. Various dynamic bonds have been explored through inclusion of chemical motifs 

within coordination chemistry and supramolecular polymers with the ability to autonomously 

repair. Through careful chemical design, spontaneous polymer self-healing is feasible through bond 

reformation upon damage. Dynamic cross-linking most commonly occurs through reversible 

covalent bonding, hydrogen-bonding and metal ligand coordination. Due to the repeatability of the 

bond formation and reformation of dynamic bonds, these systems produce ideally behaving robust 

materials that are directly related to the binding energies of the dynamic bonding network.    

 

 

 

 

Figure 1.11. Most common methods for dynamic polymer cross-linking. 
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 Generation of new chemical bonds as a method of self-healing is a popular approach to 

enable polymer self-healing properties at the intramolecular level. Covalent bonds have high 

binding energies and therefore are able to produce robust materials. Important factors to consider 

during chemical design of dynamic covalent bonds for self-healing polymers is the application and 

environment for the material use, the need for external triggers or reagents and the equilibrium 

energy barrier for the forward and reverse reaction. It is important to recognize the need for a system 

that is exchangeable at working conditions at the macroscopic level. Bond exchanged through heat 

or light for bulk self-healing has been explored which limits the possible use of these materials for 

a wide variety of applications.50–54 Several chemical reactions have shown to be effective for self-

healing at the macroscopic level. Diels-Alder chemistry based cycloaddition reactions has been 

studied to produce a self-healing thermoset polymer.50 The temperature-controlled self-healing 

elastomeric material was created through siloxane chains functionalized with 

maleimidocarboxyphenyl groups cross linked with a furan-modified polyhedral oligomeric 

silsesquioxane to cross-link the siloxane chains through a Diels-Alder reaction. The carbon-carbon 

bonds formed from the cycloaddition reactions allow for stable and robust materials to be formed. 

The furan groups are used as reactive dienes to work with the maleimide derivative, which reacts 

at room temperature however requires higher temperatures in the reverse direction.55 

Functionalization of the diene, accessibility of the reactive groups and application of mechanical 

forces have been shown to facilitate the reverse reaction of the cycloaddition.55,56 Additionally, the 

high activation energy required for the Diels-Alder reactions limits its compatibility with low glass 

transition (Tg) polymers.  

Dynamic covalent exchange reactions are a promising approach towards autonomous self-

healing. Imine bond formation generated from an acid-catalyzed condensation reaction of an 

aldehyde and amine has been studied.57 This method composed of self-healing through imine cross-

linkages allowed for a malleable, self-healing polymer network without the need for external 

catalyst as a result of residual unreacted primary amine chains within the low Tg network of 

polyethylene glycol (PEG) chains (Figure 1.13).57  
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Figure 1.12. Self-healing covalent polymer based on imine bond exchange. Adapted with 

permission from Ref. [57]. Copyright 2016. American Chemical Society. 

Additionally, the low energy barrier, spontaneous exchange of thiol and disulfide bonds has been 

exploited to produce spontaneously self-healing materials however, the exchange is pH dependent 

which again limits the possible applications.58,59  

 

 

 

  

 

 

 

 

 

 

Figure 1.13. Self-healing covalent polymer based on spontaneous exchange of thiol and 

disulfide bonds. Adapted with permission from Ref. [58]. Copyright 2013. Royal Society of 

Chemistry. 
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Lastly, radical exchange has become a useful method for self-healing where covalent bond 

cleavage generates a dree radical that can be used in a radical exchange for self-repair. This type of 

cross linking can be done using the breakdown and generation of carbon free radicals from NO-C 

bonds using thiocarbonate, thiuram disulfide derivatives or alkoxyamine moieties have been used 

for this method of intermolecular crosslinking.60,61 Figure 1.15 illustrates a polystyrene backbone 

functionalized with alkoxyamine moieties as intermolecular links for  reversible cross linking.  

Supramolecular bonding has also been investigated as a method of self-healing. 

Supramolecular chemistry refers to the chemical interactions between molecules, as oppose to 

within molecules. Hydrogen bonding is a supramolecular interaction that is used for dynamic non-

covalent interactions and has been reported in numerous studies for its use for self-healing.43,62–66 

Hydrogen bonds are defined as weak, dipolar interactions of a hydrogen atom attached to an 

electronegative atom such as oxygen that interacts with a neighboring electronegative atom. The 

dynamic behavior of these bonds formed between  polymer chains such as polyacrylate (PA) or 

polyurea (PU) allows for impressive mechanical and chemical resistant materials. Hydrogen 

bonded systems allows for fine tuning of the bonding strength through careful selection of the 

donor-acceptor pairs, with more complementarity creating more stable materials. For instance, 

Guan and colleagues developed a elastomer based on hydrogen bonding of brush polymers  with 

polystyrene (PS) backbone and hydrogen bonding units of polyacrylate-amide brushes, assembled 

Figure 1.14. Reversible intermolecular cross-linking through nitroxide mediated 

polymerization. Adapted with permission from Ref. [61]. Copyright 2011. American Chemical 

Society. 
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into a hard-soft microphase-separated supramolecular system, allowing for enhanced stiffness of 

nanocomposites along with the self-healing characteristics of hydrogen bonding.65 The design was 

able to regain 92% of its mechanical properties after 24 hours without the need to external influence 

or catalyst. Alteration of the brush lengths with the complimentary hydrogen bonding amide groups 

allowed for enhanced elastic modulus as a function of PA-amide brush repeat units (Figure 1.16). 

Additionally, the combination of a high and low Tg of this design allowed for phase separation at 

the bulk state with the polar phase containing the weak hydrogen bonds were ruptured as oppose 

to the stronger intermolecular bonds of the PS backbone. Ultimately this is explained to allow for 

the controlled self-healing process, where the low Tg of the PA amide matrix, the network mobility 

is high enough for the polymers to rearrange to reform the ruptured hydrogen bonds.46 Although 

this method has proven effective for the design of versatile self-healing materials, it fails to work 

as effectively in bulk and large area applications as a result of their  relative weak bonding nature 

limiting its environmental parameters and moisture sensitivity. 
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Figure 1.15. A hydrogen-bonding brush polymer design for self-healing supramolecular 

elastomers. Adapted with permission from Ref. [65]. Copyright 2012 Nature Publishing Group. 

With similar dynamics as hydrogen bonded supramolecular polymers along with the possibility of 

forming stronger dynamic bonds as a method of cross linking, metal-ligand coordination has 

attracted interest as an approach for self-healing. The coordinate-covalent bonds formed are strong 

enough to produce robust materials while also possessing the proper ability to dissipate energy 

upon strain through bond formation/reformation. Through incorporation coordinating motifs to 

polymer chains which can then bind through affinity to metal centers, the possibilities and control 

over the mechanical and chemical characteristic of the self-healing material is possible. In this way, 

there are multiple degrees to which a polymer system can be tuned to embody desirable 

characteristics such as mechanical strength, versatility, stretchability and self-healing capabilities. 

The type of metal ion, counterion, ligand location within the polymer chain as well as metal-ligand 

affinity all allow for various degrees of mechanical and self-healing properties.67–70 Coordination 

of Fe(III) by catechol units has been found in nature, where mussels’ bysses thread posess 

stretchable and self-healing capabilities.71  This has inspired a wide variety of investigations using 

various metals ligand interactions in order to create dynamic self-healing networks for modern 

materials. 67,68,70,72,73 As oppose to supramolecular cross-linking through hydrogen bonding, metal 

ligand interactions allow for stronger bonding and therefore more robust materials with larger 

avenues for tunability. Guan and colleagues designed a multiphasic system comparable to their 

study illustrated in Figure 1.16, however used metal-ligand coordination through imidazole 

containing brushes of PS backbones as a method of forming reversible crosslinks (Figure 1.17).   
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Figure 1.16. A hydrogen-bonding brush polymer design for self-healing supramolecular 

elastomers. Adapted with permission from Ref. [67]. Copyright 2014 American Chemical Society. 

1.6. Coordination Chemistry for Self-Healing Polymers 

The growth of crystal engineering and supramolecular chemistry has given rise to the 

development of coordination polymer research. Material properties are influenced by the way in 

which molecules are arranged. Crystal engineering focuses on understanding why molecules pack 

in certain ways in order to use to engineering molecules for new materials.74 This understanding at 

the crystal level governs the way in which the constituent molecules are arranged and thus the 

material properties that result. It has been suggested that supramolecular chemistry is considered 

to be crystal engineering at the solid state since molecular interactions in coordination polymers 

determine their packing arrangements. 75 

 Coordination polymers are a subset of supramolecular chemistry that use metal ions linked 

by coordinated ligands to form a polymer matrix. The molecular species are linked through 

coordination bonds which are defined as a bond in which both electrons originate from a single 

atom known as the ligand, whereas the metal acts as an electron acceptor. Main group and alkaline 

earth metals aren’t typically used for coordination polymers since their bonding nature is more 

covalent and ionic, respectively. Therefore, the design of coordination polymers focuses on 

transition and lanthanoid metals to promote coordinate interactions that provide strength and 

lability of the bonds. The interactions of ligands with the metals are therefore reversible and thus a 

promising option for self-healing materials. The resulting polymer networks produce generally 
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predictable geometries around transition metal ions which provides a parameter of cross-linking 

density control.  

Typical ligands used for metal-ligand coordinated polymers are illustrated in Figure 1.18. 

It is common for ligands to consist of two coordination sites, known as bidentate coordination. 

Pyridyl, imidazole, nitrile or carboxylate functional groups are common moieties used in 

coordination polymers as a result. While these are the most common ligands used for coordination 

polymers, it is important to highlight the point that any atom, molecule or ion can behave as a ligand 

as long as it contains a free lone pair of electrons. This is important to consider when selecting for 

the metal counterion used in the cross linking since a weaker coordinate bond can form with the 

anion of the metal, affecting the resulting polymer mechanics. Commonly used counterions used 

are halides, nitrate, perchlorate, tetrafluoroborate hexafluorophosphate and hexafluoro silicate or 

triflate salts. As for the typical transition metals used in the coordination, the first row of the 

transition metal elements in addition to Zn, Cs, Hg, Ag, Au, Pd and Pt. Such metals are selected 

due to their ready availability, stability and kinetic lability to participate in ligand coordination.  

  

Coordination spheres form to create cross linking sites where the metal is coordinate bonded to a 

few ligands. The crosslinking density is therefore dependent on the coordination number of the 

central metal ion, which is predicted based on crystal field theory crystallographic data. In addition 

Figure 1.17. Common ligand functional groups used in M-L coordinated polymers. (a) pyridyl, 

(b) bipyridyl, (c) imidazole, (d) carboxylate and (e) nitrile. 
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to the coordination number, the number of ligands that form the coordination sphere can be 

arranged in a monodentate or polydentate fashion, based on the number of atoms that are involved 

in the coordination on the ligand. Chelating ligands involved more than one donating atom on the 

ligand which creates a claw-like binding of the metal (Figure 1.19.). The coordination number of a 

metal is dependent on the metal and ligand size, metal ion charge and electronic configuration. The 

most common coordination geometries are illustrated in Figure 1.20.  

 

 

 

 

 

 

 

 

 

Figure 1.18. Example of a bidentate Metal-ligand coordination where one polymer chain 

contributes two coordination sites. Adapted with permission from Ref. [93]. Copyright 

2016 American Chemical Society. 
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The geometry of the metal-ligand (M-L) coordination in coordination polymers describes 

the cross-linking density. Based on the coordination number for transition metal complexes, the 

molecular geometries can be predicted. Crystal field theory explains the resulting geometries as the 

number of d-orbital electrons has an influence on the coordination geometry of the resulting 

material.74 The negatively charged ligand overlaps the negatively charged electrons of the d-orbital 

transition metal electrons therefor influencing the d-orbital energy. Thus, the predicted geometries 

are based on the most stable arrangement resulting in metal d-orbital energies with minimal electron 

orbital overlap between the metal and ligand. It is important to mention that the coordination 

geometries can be distorted depending on the coordination environment which depends on the type 

of solvent and counterion used in the coordination reaction.76  In addition to the predicted 

geometries of metal-ligand coordination, the bond strength of the metal-ligand interaction can be 

predicted based on crystallographic data which further influences the resulting properties of 

coordination polymers. The bond strength of the M-L bonds are directly related to the bond length, 

where the smaller the bond length the stronger the bond.77 Therefor, in addition the geometry of 

the coordination effects cross linking density and resulting material properties, the M-L bond 

strength is another method to fine tune such systems.  

 

Figure 1.19.Common d-block metal coordination geometries. 
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1.7. Scope of thesis  

In the past decade, there have been numerous studies and methods that have focused on the 

development of self-healing materials for flexible electronic applications.50,78–81 Despite the 

impressive developments in this field, the combination of desired mechanical properties along with 

self-healing capabilities is still a challenge as a result of the indirect relationship between chemical 

design and self-healing efficiency.82 Additionally, current methods require complex preparation or 

rely on external triggers for material regeneration. 47,83 Furthermore, the connection between self-

healing efficiency and physical properties, such as the elastic modulus, is still not fully understood.  

In this thesis a novel self-healing material is developed that is able to be chemically tuned to 

allow for a wide range of mechanical properties. The new materials will investigate metal-ligand 

coordination as a method of dynamic crosslinking using a PDMS based backbone.  

The general strategy to access autonomously healable materials at room temperature has been 

done through incorporation of moieties able to generate weak supramolecular interactions that can 

dynamically crosslink polymer chains. 65,71,84  This system is particular efficient for low glass 

transition temperatures as the segmental chain mobility of these materials is high, allowing the 

chains to reform supramolecular interactions upon damage.85,86 M-L supramolecular interactions 

are a particularly promising strategy toward robust, autonomous self-healing materials, however 

the importance of the methods to fine tune mechanical properties and self-healing capabilities of 

the materials is limited. Therefore, our work focuses of the simple preparation  of a new self-healing 

material, based on end-capped PDMS-based oligomers with N-Ligands, and the rational fine-

tuning of their self-healing efficiency and thermochemical properties through the variation and 

nature of the metal-ligand interactions used.  

As a result of the new materials being based on PDMS, its use as a self-healing dielectric in a 

flexible, capacitive pressure sensor will also be explored. The system is investigated through UV-

Vis spectroscopy, atomic force spectroscopy, tensile strain pull testing and shear rheology. 
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CHAPTER 2.  Experimental Procedure and Characterization Methods 

2.1 Materials  

Commercial reactants were used without further purification unless stated otherwise. All the 

solvents used in these reactions were distilled prior to use. Aminopropyl-terminated 

polydimethylsiloxane with molecular weight of 1000 Da, and dispersity of 1.33 was purchased 

from Gelest (Pennsylvania, USA). Pyridine-2-carboxaldehyde and Iron (II) tetrafluoroborate 

hexahydrate, Cobalt (II) tetrafluoroborate hexahydrate, Zinc tetrafluoroborate hydrate, Zinc 

trifluoromethanesulfonate and Zinc perchlorate hexahydrate were purchased from Sigma-Aldrich 

and used as received.  

2.2 Experimental Procedure  

Pre-polymer 1.  A round bottom flask equipped with a magnetic stir bar was charged with 

aminopropyl-terminated PDMS (20 g, 0.020 mol), pyrimidine-2-carboxaldehyde (4.28 g, 0.042 

mol) and CHCl3 (20 mL). The reaction was left stirring for 48 hours at room temperature and CH3Cl 

was removed under reduced pressure. The resulting materials was diluted in hexanes and was 

extracted with MeCN to remove unreacted monomer and dried under vacuum to afford pre-polymer 

1 (P1) as a viscous thick oil. 1H NMR  (300MHz, CDCl3, 298 K): 8.62 (d, J= 4.2 Hz, 2H), 8.35 (s, 

2H), 7.98 (dd, 7.8 Hz, 2H), 7.72 (t, 2H), 7.29 (t, J= 15.3 , 2H), 3.67 (t, J= 14.1, 4H), 2.29 (m, 12H), 

1.79 (m, 4H), 0.584 (t, 7.5 Hz, 4H) is reported in Figure A1. Molecular weight estimated from high 

temperature GPC (1,2,4-trichlorobenzene, 200°C): Mn = 839 Da, Mw = 2286 Da, PDI = 2.737. 

 

Figure 2. 1. Synthetic scheme of pre-polymer 1. 

Metal-Ligand Cross linking. In order to prepare crossed liked samples, pre-polymer (P1) was 

solubilized in dichloromethane, filtered on 0.45 µm filter, crosslinked with either Fe(BF4)2, 

Co(BF4)2, Zn(BF4)2, Zn(ClO4)2 or Zn(OTf)2  salts dissolved in a minimal amount of methanol. 



 

 38 

Solutions were left stiring for 30 minutes at room temperature prior to sample preparation. 

 

Figure 2. 2. Synthetic scheme for chemical cross linking of P1 where M(II) is either Fe(II), Co(II) 

or Zn(II) metal salts. 

 

2.3 Sample Preparation  

2.3.1 Self-healing dielectric for a self-healing capacitive pressure sensor 

 Once the pre-polymer was solubilized in dichloromethane, filtered on a 0.45 µm filter and 

crosslinked with Fe(II), it was casted into 3-cavities PTFE mold with cavity dimensions of 37.6mm 

L x 13.8mm W x 3mm D (Ted Pella). Once a gel was formed, the samples were placed in a vacuum 

oven at 50 °C and left to dry for 48 hours. Structuring of the dielectrics was performed by using an 

inverse PDMS-based mold prepared from commercially-available safety tape ribbons following a 

previously reported procedure.1,2 The mold was cured with UV-ozone for 5 minutes and was used 

as a stamp to produce the nanostructure on the desired materials. The polymer was then left for 24 

hours in vacuum at 50 °C to dry. Once dried, the sample was slowly peeled off and directly used 

for the fabrication of the devices. 

2.3.2 Preparation of model imine compounds  

The synthesis of the (E)-N-butyl-1-(pyridin-2-yl)methanimine has been performed according to a 

previously reported procedure.3 Following its preparation, the compound (1 eq.) was reacted with 

6-aminohexan-1-ol (1.2 eq.) in tetrahydrofuran (2 M). The reaction mixture was stirred for 72 h at 

30 °C. The product was used without any further purification for LC-MS analysis. 
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2.3.3. Sample preparation for comparison of various metal salts as cross-linking agents 

Pre-polymer P1 was solubilized in dichloromethane, filtered on 0.45 µm filter, crosslinked with 

either Fe(BF4)2, Co(BF4)2, Zn(BF4)2, Zn(ClO4)2 or Zn(OTf)2. The resulting materials was casted 

into custom-made dog-bone shaped PTFE mold with dimensions in accordance to the ASTM 

standard for thermoplastic elastomers (ASTM D412). Once a gel was formed, the samples were 

placed in a vacuum oven at 50 °C and left to dry for 48 hours. Once dried, the sample was slowly 

peeled off and used directly for further characterizations. 

2.4 Measurements and Characterization  

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 300 MHz spectrometer. 

The viscous oil of pre-polymer 1 (P1) was dissolved in deuterated chloroform (CDCl3) at room 

temperature. Chemical shifts are given in parts per million (ppm). Number average molecular 

weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) were evaluated 

by high temperature size exclusion chromatography (SEC) using 1,2,4-trichlorobenzene. UV-

Visible spectroscopy was performed on a Varian UV/Visible Cary 50 spectrophotometer. The 

surface structure of polymer film was obtained using a Multimode atomic force microscope (AFM, 

Digital Instruments) operated in the tapping mode at room temperature. Images were collected 

using Nanoscope 6 software and processed using WSxM 5.0 Develop 8.0 software. FTIR 

spectroscopy was performed on a Bruker ALPHA FTIR Spectrometer using a Platinum ATR 

sampling module. Calorimetric studies were conducted on a TA instruments DSC2500 and thermal 

gravimetric analysis was performed on a TA instruments TGA5500. Nitrogen (99.999%) was used 

to purge the systems at a flow rate of 60 mL/min. All samples were run in aluminum crucibles. 

TGA samples were held at 25 °C for 30 min before heated to 500 °C at a rate of 10 °C/min.  An 

Agilent E4980A 2MHz Precision LCR meter was used for capacitance measurements.   

2.4.1 Evans method for determining effective magnetic moment 

A previously reported procedure was followed.4 Briefly, samples of known concentration 

(0.9 mM) were prepared. An NMR tube made of concentric tubes was filled with pure solvent 

(CDCl3, inner tube) and sample (outer tube). The magnetic susceptibility (χmass) was determined 

by using the formula χmass = 3Δf/4πfm + χ0 + χ0(d0- ds)/m , where χmass is mass susceptibility 

(cm3g-1), Δf is the observed frequency difference (Hz), f is spectrometer frequency (Hz), m is the 

mass of paramagnetic substance (g·cm-3), χ0 is the mass susceptibility of solvent (cm3g-1), d0 is the 

density of solvent ( g·cm-3), and ds is the density of solution (g·cm-3). The magnetic susceptibility 
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was further converted to the effective magnetic moment (µeff) following a previously reported 

procedure. 4 

2.4.2. Evaluation of self-healing properties for capacitive pressure sensor dielectric layer 

  Self-healing was evaluated by tensile strain analysis as well as by device signal sensitivity 

before and after healing. For the tensile strain analysis, a flat molded sample was simply cut in half 

with a blade, pressed back together and left to heal for 24 or 48 hours before being characterized. 

Tensile-strain analysis was performed on an Instron Tensile Strain instrument with a test rate of 

100 mm/min. Self-healing ability of the pressure sensing devices was characterized by testing the 

device before and after a healing period of 48 hours. For evaluation of the self-healing properties 

by atomic force microscopy, a sample was frozen in liquid nitrogen and carefully cut with a scalpel. 

The films analyzed were spin coated on a cleaned glass substrate, at 2000 rpm for 1 min. It is 

important to mention that several attempts were required to make a cut small enough to properly 

self-heal, but large enough that the full capability of the  material is demonstrated. The cut sample 

was then left on the AFM stage on day 0 and measured after 24, 48 and 72 hours.  

2.4.3. Evaluation of self-healing properties for comparison of samples cross-liked with 
different metal salts 

Self-healing was evaluated by using a flat molded sample which was cut in half with a 

blade, pressed back together and left to heal for 2 hours before being characterized. Tensile-strain 

analysis was performed on an Instron Tensile Strain instrument with a test rate of 5 mm/min. 

2.4.4. Evaluation of degradability  

A small piece of the self-healing material was characterized in terms of degradability by 

placing a solid piece of the polymer in solution with ~ 1 M acetic acid and left to stir until fully 

dissolved (2 days). The resulting solution was then directly characterized without further 

treatments. 

2.4.5. Capacitive Pressure Sensor Device Fabrication and Characterization  

The structured dielectric used as the middle layer of the capacitive devices was prepared from 

the P1 polymer cross linked with Fe(BF4)2 in DCM solution through a previously reported method.2  

Capacitive Pressure Sensor Devices were fabricated by lamination of the structured dielectrics 

(self-healing polymer) with copper tape. Note that an overhanging end was left to be connected and 
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tested using Agilent E4980A 2MHz Precision LCR meter for capacitance measurements.  Sensors 

were tested using Agilent E4980A 2MHz Precision LCR meter for capacitance measurements. 

Sensitivity upon pressure was evaluated using a home-made force linear actuator and force sensor 

connected to the device.  The range of pressure evaluated was from 0 to 32 kPa. The devices were 

tested at various pressures within this range in order to construct a sensitivity curve. Stretched 

samples were subjected to 30% strain for 100 cycles using a custom-built stretching station. Healed 

samples were cut in half with a blade and pressed back together for intrinsic self-healing before 

being used as a dielectric. 

2.4.5 Atomic Force Microscopy   

Atomic Force Microscopy (AFM) has become a valuable tool in materials chemistry due 

to its high resolution at the nanometer scale allowing for the characterization of material 

topography.5 (AFM nanoindentation to determine Young’s modulus for different EPDM 

elastomers) AFM works by using a sharp cantilever tip that scans over a sample mounted on a 

piezo Chrystal. Changes that result in the Z direction (height) are due to the interaction of the tip 

with the substrate allowing for a topographical image to be formulated. The forces between the 

tip and surface allows for a 3D profile to be formed. The various modes used for AFM are 

dependent on the tips motion which is monitored using a laser beam which reflects off the 

cantilever tip and collected by a photodetector for image formation (Figure 2.1). 87  

2.4.6. UV-Vis spectroscopy          

Ultraviolet-visible spectroscopy is a powerful tool used for quantitative, analytical chemistry 

to determine presence of various transition metal ions, conjugation of organic molecules and 

Figure 2.3. AFM Scanner Set up. 87 
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biological molecules within assays. In principle, UV-Vis works by exciting the bonding and non-

bonding electrons with a source wavelength and comparing the intensity of light before and after 

collecting the sample to determine the absorbance at a particular wavelength of energy.  

The absorbance of a particular wavelength is dependent on the bonding and non-bonding 

electrons present in the molecule of interest. The lower the energy gap between the high energy 

occupied molecular orbital (HOMO) and lower energy unoccupied molecular orbital  (LUMO) 

energy bands, the easier it is to excite these electrons at lower energy or longer wavelengths. The 

possible transitions from lowest energy to highest energy gap includes: n–π*, π–π*, n–σ*and σ–σ* 

The absorbance of a solution is directly related to the concentration of the of the absorbing molecule 

according to the Beer-Labert law. Therefore, a UV-Vis spectrophotometer is useful to determine 

molecular interactions as well as a quantitative tool for determining concentration of a particular 

molecule of interest.   

 In particular, metal-ligand interactions are often characterized through UV-Vis 

spectroscopy. 6,7 When a metal-ligand complex is formed, the electronic transitions that result from 

the interaction leads to a unique spectrum that illustrates the various transitions present in the 

system. Transition metals form stable ions with incompletely filled d orbitals which create a 

repelling force when bounded to the electrons of a ligand. As a result, there is an increase in the 

energy of the d orbitals with a splitting between the 5 d orbitals. The energy absorbed is equal to 

the energy gap between the splitting of the 5 d orbitals. This energy varies based on the transition 

metal complexed as well as the nature of the ligands used. The charge transfer process also absorbs 

energy as a result of the electron transfer from the Highest Occupied Molecular Orbital (HOMO) 

of one species to the Lowest Unoccupied Molecular Orbital (LUMO) of another. From this 

information, Ligand to Metal Charge Transfer (LMCT) and Metal to Ligand Charge  (MLTC) 

bands are created in the UV-Vis spectrum. As a result, upon titration of a transition metal to a ligand 

solution, characteristic charge transfer bands allow for identification of the chemical interactions 

present.6,7 Therefore, UV-vis is a powerful tool used to characterize the presence of metal ligand 

coordination.  
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2.4.7. Tensile Strain Analysis 

Tensile testing works by applying an increasing load to a test sample until the point of failure.  

An extensometer measures the displacement of the sample in response to the strain rate applied 

throughout the tensile test. As a result a stress/strain curve is created allowing for the mechanical 

characterization of a material to be determined. The sample is loaded onto top and bottom grips 

attached to the universal testing machine, which are moved apart at a constant rate to create a strain, 

or elongation of the sample. The force on the sample and the resulting displacement of the grips 

are continuously collected as a function of time which allows for the construction of a stress-strain 

curve until the point of failure. After these data are collected, the tensile strength or Young’s 

modulus, yield strength and ductility can be determined. The tensile strength is calculated by the 

slope of the linear region of the stress-strain curve to the point of maximum stress. The yield 

strength corresponds to the stress at which the material reaches permanent deformation, or no 

longer behaves elastically. The ductility is determined as the strain at which the material failure 

occurs. 8 

 

 

Figure 2.4. Schematic of a tensile strain test. 123 



 

 44 

 2.4.8. Shear Rheology  

Shear rheology is an experimental technique used to examine the flow and deformation of 

materials upon subjection to a shear force. Rheometers are used to create a shear force, where a 

sample is subjected to a torque and the resulting rotational speed is collected to maintain the force 

or vice versa. A schematic of a single head rotational rheometer measuring system is illustrated in 

Figure 2.3. 

 

 

Advanced Rheometric Expansion System (ARES) is a strain-controlled instrument where the 

stress is measured on a sample as strain is applied. The shear strain applied through a motor to the 

top plate  in a sinusoidal or constant frequency, and then the torque that is experienced by the 

sample of interest is measured by a transducer. The amplitude and frequency of the strain applied 

by the motor are controlled by the operator, and the sample deformation or torque, is determined 

by the motor and transducer displacement with a known height (h) between plates. Oscillatory time 

sweeps provide information about a materials ability to change in response to applied strain which 

results in macro or microstructural rearrangements in response to shear strain. The ratio of applied 

strain to the measured stress gives  a quantitative measure of a materials stiffness based on its 

resistance to deformation. From this information, an oscillatory time sweep allows for 

determination of the viscoelasticity of a material. Pure elastic materials reach maximum stress 

directly  in phase with the maximum strain. Viscous materials experience maximum stress when 

the strain is out of phase by 90 degrees at a maximum. Therefore, a viscoelastic material will have 

a phase difference between stress and strain in between being in and out of phase. The phase angel 

is used as a relative measure of the materials viscous and elastic characteristics. The elastic 

contribution (G’) is the storage modulus, where energy is stored and the viscous contribution (G”) 

Figure 2.5. Illustration of a parallel plate rheometer. 124 
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is the loss modulus, which represents energy lost by the system upon shear strain applied to the 

sample.  Together the G’ and G” sum to represent the material stiffness (G*).  
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CHAPTER 3. IMINE AND METAL-LIGAND DYNAMIC BONDS IN SOFT POLYMERS 

FOR AUTONOMOUS SELF-HEALING CAPACITIVE-BASED PRESSURE SENSORS   

3.1 Introduction 

 Self-healing is an interesting property, inspired from the natural healing in living 

organisms, that can be synthetically enabled in a wide variety of materials.1,2 Best described as the 

ability of a specific material to regenerate itself upon damage (mechanical, thermal or chemical), 

self-healing can occur through different strategies/mechanisms and with/without the need for an 

external trigger.3,4 Self-healing has shown important promise for enhancing the durability and 

robustness of materials for various applications including  healthcare,  structural and biomedical 

engineering, advanced manufacturing and electronics.5–7 Therefore, research in self-healing 

materials has significantly intensified in the last decade with the design and preparation of a wide 

variety of new materials capable of regenerating themselves upon damage.8–10  

 In recent years, a wide variety of strategies have been designed and used to enable self-

healing in materials. Among others, the use of healing agents uniformly dispersed in an elastomeric 

matrix is one of the most common and efficient method to trigger self-healing upon mechanical 

stress.11,12 Another promising strategy relies on the rational design of self-healing materials through 

the use of chemical bonds capable of fission/recombination upon damage.13 This strategy, based on 

the dynamic crosslinking of polymers, has the advantage of being intrinsic, i.e. no external agent 

required for the regeneration.14 However, depending on the chemistry used, an external trigger 

(photoirradiation, thermal annealing, solvent annealing, etc.) can be necessary.15,16 For example, to 

point out only a few, the use of dynamic imine bonds,17 metal coordination with ligand moieties,18–

20 hydrogen bonds,21,22 and disulfide bonds have been shown to lead to an efficient self-healing.23 

In the field of electronics, the application of self-healing materials through dynamic bonds has led 

to the fabrication of multiple devices, including pressure sensors,24 strain sensors,25,26 and thin-film 

transistors.27,28 A variety of self-healable conductors,29,30 semiconductors,31,32 and dielectrics 

materials have also been developed to access self-healing electronics.33,34 However, despite the 

promises of self-healing materials, their large-scale use and application is still challenging. First, 

the need for an external trigger to enable the self-healing can limit the application of the materials 

and can be a significant drawback.35 Moreover, with the current environmental crisis created by 

non-degradable plastics, the application of materials that can regenerate themselves and be more 

robust might not help to reduce the environmental burden.36 Finally, the large-scale preparation of 

the materials can be costly, especially when expensive reactant or healing agents are required. 
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Therefore, the development of inexpensive, degradable and autonomous self-healing materials is 

critical.  

 Herein, we report the facile synthesis of novel silicone-based materials specifically 

designed to include a unique combination of dynamic imine and metal-coordination bonds. 

Through an easy condensation reaction, imine bonds are generated at the end-termini of a short 

siloxane chain. The resulting end-capped materials was chemically crosslinked with different ratios 

of a Fe(II)-based salt to achieve a dynamically crosslinked network. By controlling the ratio of 

metal crosslinker utilized, the dynamic materials and new crosslinking system were shown to be 

highly tunable, leading to materials with ultra-high stretchability (800% strain elongation), 

autonomous self-healing (24 hours at room temperature), and degradability in mild acidic 

conditions. The new materials have been characterized chemically and mechanically before and 

after healing, and after degradation through a combination of techniques, including UV-Vis and 

infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), size-exclusion chromatography 

(SEC), and tensile-pull strain testing. Furthermore, the resulting self-healing polymer has been 

utilized to fabricate highly sensitive and self-healable capacitive pressure sensors, capable of 

regenerating electrical and mechanical properties after damage. The method and results presented 

in this work open new opportunities for the large-scale synthesis of autonomous self-healing 

materials in a cost-effective manner, without requiring expensive or external healing agents as well 

as without impacting the long-term environmental sustainability.  

 

Figure 3.1. General approach to stretchable, self-healing and degradable materials through a 

combination of imine and metal-coordinating bonds. 
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3.2 Results and Discussion 

 

 

Scheme 3.1. Synthesis of pre-polymer 1 followed by chemical crosslinking with Fe(II)-based salts.   

The synthesis of the new self-healing polymer is depicted in Scheme 1. Starting from 

commercially-available aminopropyl-terminated polydimethylsiloxane, a condensation reaction is 

performed with 2-pyridinecarboxaldehyde to generate pre-polymer 1. Pre-polymer 1 (1000 Da) 

was directly used without further purification in a crosslinking reaction with a Fe(II)-based salt. In 

this study, Fe(II) tetrafluoroborate was used. Interestingly, as soon as the salt is added, the pre-

polymer immediately gelified and turned purple, which is typical for the formation of a Fe(II) 

coordination complex.39–41 To confirm the presence of Fe(II) in the materials, the materials’ 

effective magnetic moment (µeff) was determined by nuclear magnetic resonance (NMR) in 

solution, using Evans method (see Supporting Information).42,43 The crosslinked materials was 

found to have a µeff = 3.08 µb, which is a value that can be assigned to a high-spin Fe(II) complex.44  

From a design point of view, a system combining dynamic imine and metal-ligand bonds 

has been selected for multiple reasons. First, the generation of the pre-polymer does not require any 

heating or catalyst, and all the initial precursors are commercially available (cost below $0.5 per 

gram). Furthermore, both imine and metal-coordinating bonds have been shown to be highly 

dynamic, and typically lead to good self-healing properties in elastomeric materials.45–47 Therefore, 

the combination of both types of bonds can enable the formation of a very dynamic system, ideal 

for self-healing and stretchability. Finally, imine bonds are known to undergo reverse condensation 

in mild conditions, which is particularly interesting to trigger a controlled degradation of the 

materials.48  
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Figure 3.2. a) UV-vis absorption spectra of pre-polymer 1 in CHCl3 upon titration with 0.1 

equivalent increments of Fe(BF4)2 per polymer chain ; b) stress-strain curves of pre-polymer 1 

crosslinked with 0.25 equivalent of Fe(BF4)2 before and after self-healing for 2. 

To optically probe for the formation of a metal-coordination complex between the N-ligand 

generated after condensation reaction and Fe(II), UV-vis spectroscopy was utilized and the results 

are summarized in Figure 2a. To confirm the formation of the complex, a solution of pre-polymer 

1 was prepared and increments of 0.1 equivalent of a stock solution of Fe(BF4)2 were added up to 

two equivalents to ensure saturation of the coordination sites. As typically observed for Fe 

complexes with other N-ligands (bipyridine, triazoles, etc.), strong absorption bands appeared 

progressively at 350, 575 and 650 nm.49 These bands can be directly attributed to the formation of 

the Fe coordination complex in the materials, which is crosslinking the short oligomeric chains into 

a rigid polymer network.39,50,51 Further characterization of the crosslinked materials by Fourier-

Transform IR spectroscopy (FTIR) (Figure S1) and solution NMR showed very minor differences 

in the system before and after coordination, which can be attributed to the relatively low signal 

from the metal-ligand complex compared to the siloxane-based polymeric backbone. Interestingly, 



 

 50 

19F NMR analysis performed on the crosslinked materials shown the presence of only one signal 

(singlet) associated to fluorine (Supporting Information). This result potentially indicates that the 

tetrafluoroborate counter-ion remained close to the coordination complex. As shown on Figure 2a, 

the pre-polymer 1 almost immediately form a dense gel upon the addition of the metal salt, and 

completely becomes solid after 24 hours under a vacuum oven at 50 °C. As detailed in Figure S2 

and S3, energy-dispersive x-ray spectroscopy (EDX) and atomic force microscopy (AFM) images 

recorded on the crosslinked materials shown a uniform morphology, without metallic cluster or 

aggregate. It is also important to mention that no glass transition temperature was observed by 

dynamic scanning calorimetry (DSC) below -50°C, which can be observed for other PDMS-based 

materials.34 

Elastic modulus and tensile resistance are two critical parameters that can be used to assess 

the mechanical properties of soft materials. Therefore, tensile-pull testing was performed on free-

standing films of crosslinked polymers before and after healing. Results are summarized in Figure 

2b. First, the bulk mechanical properties were investigated for pre-polymer 1 crosslinked with 0.25 

equivalents of Fe, in order to excess the stoichiometric amount of ligand for the formation of an 

octahedral complex. Despite not being required to ensure a saturation of the thermomechanical 

properties, which should occur upon formation of the octahedral complexes, an excess of ligand 

was used to ensure a complete coordination of the Fe salt and avoid the presence of metallic cluster 

embedded in the materials, potentially negatively affecting the bulk stretchability and self-healing 

efficiency. Interestingly, the materials showed decent mechanical properties, with a maximum 

elongation before fracture at around 58 ±12 % (averaged on three samples). The difference in 

maximum elongation compared to other PDMS-based system can be attributed to a strong 

crosslinking between the short polymer chains upon adding Fe. A Young’s modulus of 1.53 MPa 

was also measured directly from the tensile-pull testing results. The crosslinked materials was then 

cut in half with a blade and self-healed (room temperature) for 24 and 48 hours. Interestingly, the 

resulting self-healed materials were shown to regain 48 ± 3 % and 88 ± 7 % of their maximum 

elongation before fracture, after respectively 24 and 48 hours (averaged on three samples). As 

shown in Supporting Information, it is important to mention that no external stimuli or trigger was 

used to enable that self-healing. Moreover, a similar stretchability and self-healing properties were 

observed for pre-polymer 1 crosslinked with 0.33 equivalents of Fe (Figure S4). These results 

strongly suggest that the pyridine ligands of the PDMS backbone can dynamically re-coordinate 

with the Fe and therefore reform the mechanical nature of the material as the crosslinking density 

is able to regenerate autonomously as a function of time. To demonstrate the versatility of the new 



 

 51 

dynamic crosslinking system, pre-polymer 1 was also crosslinked with 1 equivalent of Fe2+ to allow 

for a lower crosslinking density. As demonstrated in Figure 2c, the polymer crosslinked with 1 

equivalent of metal shown ultra-high stretchability, and a more viscoelastic behavior, ultimately 

capable to be elongated up to 800% of its initial length without fracturing. The modulus of the 

resulting crosslinked materials was found to be 0.06 MPa, which is considerably lower than the 

crosslinked materials with higher amount of Fe ions. This result demonstrates that the crosslinking 

can be completely tuned by controlling the metal to ligand ratio, thus enabling the preparation of 

materials with a wide range of mechanical properties and elasticity. 

AFM was also used to investigate the self-healing behaviour of the new crosslinked 

materials in thin films, and results are summarized on Figure S5. The films analyzed were spin 

coated on a cleaned glass substrate, frozen in liquid nitrogen and carefully cut with a scalpel to 

damage the surface. The cut samples were then left on the AFM stage on day 0 and measured after 

24, 48 and 72 hours of self-healing. Since self-healing can only occur when the polymer chains are 

getting back in close proximity to regenerate the initial dynamic crosslinks, the amount of materials 

is critical. If the materials is too thin or the cut too large, one can expect that the self-healing will 

not be optimal given the absence of enough materials to fill the gap and regenerate the initial 

morphology. Interestingly, the nanoscale crack started to heal after 24 hours and was shown to be 

almost disappeared after 72 hours, which confirm the efficiency of the self-healing in thin films, 

even when the quantity of materials to fill up the damaged region is minimal and that the segmental 

polymer chain mobility is reduced.  

As previously observed with other self-healing materials, both imine and metal-ligand 

bonds are known to be highly dynamic.17,52–54 In order to get insight into the contribution of both 

dynamic bonds for the self-healing of the current materials, further analysis on a model compound 

was performed. Specifically, model compound (E)-N-butyl-1-(pyridin-2-yl)methanimine) was 

synthesized using previously reported procedure.55 The compound was then reacted with 6-

aminohexan-1-ol in order to probe through mass spectrometry for the formation of an exchange 

product through transimination. As shown in Figure S6, a characteristic peak associated to the 

formation of an exchange product was observed, which confirms the dynamic behavior of the imine 

bond through bond exchange.  

With the ongoing environmental burden caused by the accumulation of non-degradable 

plastics and e-wastes, there is a growing interest in the design and synthesis of degradable 

functional materials to address the surge in demand for flexible electronics and sensors.56,57 As 
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previously demonstrated in other types of materials, the incorporation of dynamic bonds to 

chemically crosslink shorter units is a very promising strategy to control and trigger the degradation 

of materials into shorter sub-units, non-damageable for the environment.58,59 Since pre-polymer 1 

was shown to efficiently crosslink upon adding metal salts and to generate a dynamic crosslinked 

network, the investigation of the degradability of the materials was performed in order to determine 

if the resulting materials could be broken down into smaller siloxane-based units through the 

hydrolysis of the imine dynamic bonds. Toward that objective, the crosslinked materials (0.33 

equivalent of Fe(BF4)2) were submerged into an acidic aqueous solution (1M acetic acid) and the 

degradation reaction was probed by UV-Vis spectroscopy. Results are summarized in Figure 2d. It 

is important to mention that the mild acidic conditions were selected to match previous reports on 

the fabrication of transient electronics.60,61 As previously observed, the formation of a metal-ligand 

coordination complex with Fe ions results in the appearance of two strong absorption bands 

centered at 360 and 545 nm. Upon stirring the materials in 1 M acetic acid aqueous solutions for 

24 hours, the solid materials completely lost its characteristic purple color (typically associated 

with the formation of Fe complexes) and was slowly degraded until complete disappearance and 

formation of a resulting brown solutions (Figure 2d). This phenomenon was directly observed by 

UV-Vis, which showed the disappearance of the absorption bands attributed to the Fe complex and 

the return to the pre-polymer state. In order to probe for the degradability of the new materials 

under different conditions, a similar experiment was also performed in aqueous hydrochloric acid 

solutions with pH ranging from 1 to 6 (Figures S7 and S8). Similar to the results obtained with 

acetic acid, the self-healing polymer was completely degraded after 24 hours for pH= 1 to 3, 

confirmed by UV-Vis spectroscopy. For pH= 4 to 7, complete degradation of the crosslinked 

materials into smaller monomeric units was also observed after 72 hours. Upon degradation at each 

pH, an oil residue suspended in the aqueous solution was observed, which was further confirmed 

to be starting siloxane-based precursors. This simple experiment confirmed the possibility to 

control and activate the degradation of the new materials, thus enabling new opportunities for the 

design of degradable, yet robust, technologies. This property is particularly promising for the 

development of transient electronic materials and the possibility to completely degrade electronic 

devices.60 
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Figure 3.3. Normalized sensitivity curves for capacitance-based pressure sensor using self-healing 

polymer as dielectric layer. Sensors varied in terms of the conditions of dielectric materials; 

pristine, healed and stretched to 30% strain for 100 cycles. Optical microscope image shows the 

dielectric structuring and device design; dynamic sensor response of b) pristine and c) healed 

sensor, when subjected to simple repetitive finger tapping for a time range of 20 seconds 

In order to demonstrate the application of the new autonomous self-healing of the siloxane-

based materials, flexible and self-healable pressure sensors were fabricated, and results are 

summarized in Figure 3a. In order to determine the sensitivity of the capacitance-based pressure 

sensor, a force actuator was connected to a force meter to apply a range of pressures ranging from 

0 to 32 kPa. Results were measured and averaged from three pressure sensor devices. Since device 

sensitivity to small variation of pressure relies on the deformation of the dielectric materials upon 

pressure, microstructuring of the dielectric self-healing materials (0.33 equivalent of Fe(BF4)2) was 

performed by following a method previously described (Figure S9).37 These microstructures are 

important in increasing device sensitivity since they provide for multiple points along the device 

able to elastically respond to pressures applied.38 Additionally, these structures provide for air gaps 
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that can be replaced by the dielectric material once compressed from pressure applied which in 

turn, increases the dielectric constant and capacitance signal recorded according to the following 

equation C = εoεrS/δ where  is capacitance which is governed by the free-space permittivity ε0, εr 
the relative permittivity and S and  , the area of the conducting planes and the distance between 

them, respectively. In order to reassure that these materials are able to regenerate after fracture, 

each device was cut into half after initial pressure sensitivity measurements and allowed to heal 

over a 48-hour period in order to be retested. According to our results, the device maintained its 

mechanical and electrical properties to give approximately the same sensitivity (0.33 kPa-1) over 

four trials where the samples were either pristine, strained 30% for 100 cycles, self-healed and self-

healed followed by 30% strain for 100 cycles. The fact that the capacitive devices were able to 

maintain a good sensitivity after healing and 30% strain for 100 cycles confirmed the strong 

potential of the new tunable system for the design of wearable electronics human skin is typically 

known to experience a 30% strain elongation.62,63 It is important to highlight the fact that these 

devices can self-heal after simply pressing the two halves back together and let rest at room 

temperature without any other external factors, which most previous works require. An average 

change in capacitance change versus average pressure applied curve was constructed in order to 

demonstrate the small standard deviation between the 4 devices with different test conditions 

(Figure S10). Dynamic sensor data was also collected to show the response ability of the sensor 

before versus after healing of the dielectric layer (Figure 3 b and c, respectively). A consistent 

finger tapping pressure was applied to the device for a 20-second interval. Data was collected every 

100 ms. Interestingly, the sensor maintained a relatively constant response before and after healing, 

with the base capacitance varying from 4.5 to 5 pF and reaching 9.5 to 10 pF once the weight was 

placed. As shown in Table 1, the capacitive pressure sensors fabricated from the new self-healing 

polymeric system have a sensitivity comparable to devices prepared from more common elastomer 

and dielectric. However, the new system is entirely tunable, thus leading to a wide variety of 

properties, including self-healing, degradability and ultra-high stretchability. Moreover, the 

complexity of the system is reduced, as well as the cost of preparation, which is undoubtedly an 

important advantage for large-scale applications.  

Table 3.1. Performance comparison of the new self-healing pressure sensors with previously 

reported devices. 

Materials Sensitivity Healability 
Degradability/ 

Stretchability 
Ref. 



 

 55 

Fe-crosslinked siloxane 

oligomers 

(this work) 

0.33 kPa-1 Autonomous 
1M AcOH, 

ε = 800 % 
- 

Calcium carbonate, 

polyacrylic acid and 

alginate 

0.17 kPa-1 Autonomous ε = 55 % 64 

PDMS 1.0 kPa-1 No - 65 

PDMS 0.28 kPa-1 No - 66 

Polyurethane 1.9 kPa-1 
Non-

autonomous 
- 67 

 

3.3. Conclusion  

 A new approach towards autonomously self-healing was developed through rational design 

of siloxane-based oligomers with imine and metal-coordination moieties. This unique combination 

of dynamic bonds was achieved by preparing soft polymers by a facile condensation reaction 

between amino-terminated siloxanes and pyridine carboxaldehyde. The resulting materials were 

crosslinked with Fe(II) salts, crosslinking that can be easily tuned by controlling the amount of 

metal used. Interestingly, the new polymer was shown to be ultra-highly stretchable when a 1:1 

Fe/polymer ratio was used, reaching a maximum tensile strain before fracture of 800%. The 

samples prepared with 0.33 equivalents of Fe2+ showed autonomous intrinsic self-healing and 

were able to regenerate 88% of their initial mechanical properties after 48 hours without aid from 

any external stimuli. The materials were also shown to be entirely degraded into small oligomeric 

species in acidic conditions, thus opening the way for a controlled degradability. Since the new 

materials are particularly interesting as a component for self-healable electronics, the new polymer 

was used as a dielectric in self-healable capacitive-based pressure sensors. The dielectric was 

structured at the microscale to enhance device sensitivity in a pressure range of 0-32 kPa. The 

device was completely characterized before and after self-healing, and after multiple cycles of 30% 

strain conditions to investigate the performance of the self-healing dielectric. Our results 

demonstrate no significant deviation in terms of device sensitivity of the lower range of pressure 

applied (0-5 kPa), with a sensitivity of ~ 0.33 kPa-1. Additionally, the dynamic testing of our sensor 
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showed good response time and accuracy. Based on their low cost, high tunability and simple 

preparation, we believe this new dynamic polymer system will provide new opportunities for the 

creation of next-generation stretchable electronics that require improved material robustness, 

degradability, conformability and durability to improve lifespan and performance of electronics 
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CHAPTER 4. MODULATING THE THERMOMECHANICAL PROPERTIES AND 

SELF-HEALING EFFICIENCY OF SILOXANE-BASED SOFT POLYMERS THROUGH 

METAL-LIGAND COORDINATION   

4.1 Introduction  

Self-healing, defined as the capacity of a materials to regenerate spontaneously and 

autonomously, and restore completely (or partially) its initial properties after suffering from 

damages (strain, puncture, cracks, etc.), is a phenomenon attracting a lot of attention in materials 

science and engineering.38,40,88–90 Particularly promising for the development of advanced 

electronics and biotechnology, there has been a constant effort to develop novel strategies and 

materials designs to enable rapid and autonomous self-healing, without the use of external triggers 

or complex methodology.3,91–93 Among other, self-healing materials hold tremendous potential for 

applications in wearable and skin-inspired (bio)electronics, as devices need to emulate the 

properties of human skin, with the ability to autonomously regenerate its mechanical properties, 

while maintaining good electrical properties upon damage to preserve their initial function.4,6,94 

Despite important developments in this field, the combination of self-healing capabilities along 

with desired mechanical properties remains a challenge as the relationship between chemical design 

and self-healing efficiency is not always direct.95 Moreover, complex preparation or utilization of 

external trigger is still often required to activate materials regeneration.47,83 Furthermore, the 

relationship between self-healing efficiency and other physical properties, such as the elastic 

modulus, is still not fully unveiled. Therefore, a completely tunable approach to access a library of 

self-healing materials is highly desirable.  

 In recent years, various chemical strategies have been explored to enable self-healing in 

soft materials.96,97 A general strategy to access autonomously healable materials at room 

temperature has been developed through the incorporation of moieties capable of generating weak 

supramolecular interactions that dynamically crosslink the polymer chains.65,84,98,99 This strategy is 

particularly efficient for materials with low glass transition temperatures as the segmental chain 

mobility of these materials is high, thus enabling the chains to reconnect and regenerate the 

supramolecular bonds upon damage.85,100 Among other recent examples, Xu et al. reported a 

detailed investigation on the mechanical properties of metal-catecholate complexes.101 In addition 

to the role of coordination states on the mechanical properties, the authors also highlighted the 

importance of metal types for tunability. Self-healing capabilities have also been enabled through 

other strategies, such as metal-catalyzed reactions, reversible Diels-Alder reactions, and 



 

 62 

encapsulation of regenerating agents.102–105 It is important to mention that most of these systems 

require external stimuli such as heat or light, or require particular catalysts, solvents or 

plasticizers.106–108  

 Recently, our group reported the design and preparation of new self-healing materials, 

based on polydimethylsiloxane (PDMS) oligomers end-capped with imine and metal-coordinating 

moieties.109 Interestingly, by using a Fe(II) source, metal-ligand coordination occurs, thus 

supramolecular crosslinking the oligomers and generating a dynamic network. The new system was 

shown to be ultra-stretchable (ε = 800%) at room temperature. Moreover, depending on the amount 

of metal crosslinker used, the materials was also shown to be autonomously self-healing by 

regenerating 88% of its initial mechanical properties after 48 hours without aid from any external 

stimuli. Despite achieving good self-healing behavior and tunability, this system was limited Fe(II) 

source, and a complete rational evaluation of the influence of the metal source onto the self-healing 

efficiency and mechanical properties is required to design a large library of efficient self-healing 

materials.  

 Herein, we report the preparation of new self-healing materials, based on end-capped 

PDMS-based oligomers with N-ligands, and the rational fine-tuning of their self-healing efficiency 

and thermomechanical properties through the variation of the nature of the metal-ligand 

interactions used (Figure 1). More specifically, pre-polymer P1 (Scheme S1) was coordinated with 

different metal sources, including Fe(BF4)2, Co(BF4)2, Zn(BF4)2, Zn(OTf)2 and Zn(ClO4)2. These 

were carefully selected to probe for the effect of coordination geometry and bonds strengths on the 

thermomechanical properties. Moreover, through this evaluation, the important effect of the 

counter-ion on the self-healing properties was also accessed, which is sometimes overlooked in the 

literature.110,111 The results obtained through this investigation revealed a strong correlation 

between coordination bond strength and geometry and self-healing properties of the materials.  A 

fine-tuning of the materials self-healing efficiency was achieved, ranging from 60% to 80% after 

only 2 hours for cobalt and zinc-crosslinked materials respectively. Furthermore, the Young’s 

modulus was also fine-tuned, reaching a minimal value of 0.23 MPa, by varying the nature of the 

counter-ion used in complexation. This new and completely tunable approach to self-healing 

materials highlights the importance of dynamic metal-ligand crosslinking toward robust, self-

healing soft polymers. Furthermore, this system provides for a simple, low-cost yet effective 

method for obtaining a wide range of self-healing materials that can be used for various 

applications.  
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Figure 4.1. Self-healing of siloxane-based soft polymers (before and after physical cutting) through 

metal coordination. 

4.2. Results and Discussion   

The synthesis of pre-polymer P1, used toward the self-healing materials, is depicted in Scheme 

S1. The materials were prepared through a simple condensation between aminopropyl-terminated 

polydimethylsiloxane (1000 Da) with pyridine-2-carboxaldehyde to generate N-ligands from 

pyridine and imine functional groups as end-groups. Materials were used without further 

purification, and the complete synthetic procedure, characterization by thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC) are detailed in Experimental Section and 

Supporting Information. Thermogravimetric analysis (TGA) confirmed that all materials, 

independently of the metal salt used for crosslinking, are stable at temperature up to 150°C (Figures 

S1 to S5). As expected, DSC experiments confirmed that all materials have a Tg well below room 

temperature, typical for PDMS-like materials.112 In fact, for all materials, independently of the 

metal used, no Tg has been observed, indicating that the metal used for crosslinking does not have 

enough influence to significantly affect this parameter (Figures S6 to S10). This phenomenon has 

been previously reported with other self-healing materials.113,114 

To compare the metal-ligand coordination effect on the thermomechanical properties of the 

system, Co(BF4)2, Fe(BF4)2 and Zn(BF4)2 metal salts where used. The effect of the counter-ion was 

probed by utilizing Zn(ClO4)2, Zn(OTf)2 and Zn(BF4)2  salts. For all samples, 0.33 equivalents of 

the metal salt were used in solution to generate the metal-coordinated polymer. Metal-ligand 

interactions were selected as dynamic crosslinking strategy as their reversibility is well known, 

which has been confirmed by multiple techniques such as single molecule force spectroscopy.69 

Upon stress, the metal-ligand interactions are able to dissipate energy through rupture of the 

coordinate bond. However, due to the kinetic lability of the bonds, the supramolecular interaction 
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can reform upon release from strain. In general, the weaker the metal-ligand interaction (more 

kinetically labile chain and better ability to dissipate energy), the faster the bonds are able to reform. 

This dynamic reversibility has been observed with various ligands and metal centers including with 

cobalt, iron, and zinc, which are utilized in this work.93,115 It is also important to mention that the 

imine bonds are also known to be dynamically reversible, and are also playing a role on the self-

healing ability of this system.57,109,116,117  

 

Figure 4. 2. a) UV-vis absorption spectra of P1 in CH2Cl2  with Fe(BF4)2; b) molar ratio of Fe(BF4)2 

versus absorbance at 530 nm; c) UV-vis absorption spectra of P1 in CH2Cl2  with Co(BF4)2; d) 

molar ratio of Co(BF4)2 versus absorbance at 290 nm; e) UV-vis absorption spectra of P1 in CH2Cl2  

with Zn(BF4)2, and f) molar ratio of Zn(BF4)2 versus absorbance at 290 nm. Each titration included 
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0.1 molar equivalents of the respective metal salt (4.4 x 10-5 mM) per N-ligand in P1 (7.2 x 10-7 

mM). 

 

Figure 4.3. a) Stress-strain curve of pre-polymer P1 crosslinked with 0.33 eq. of Fe(II), Zn(II) or 

Co(II) before self-healing. BF4
- has been selected as counter-anion; b) Stress-strain curve of pre-

polymer P1 crosslinked with 0.33 eq. Zn(II) with BF4
-, ClO4

-
  and CF3SO3

- (OTf –) as counter-

anions, before self-healing; c) Stress-strain curve of pre-polymer P1 crosslinked with 0.33 eq. of 

Fe(II), Zn(II) or Co(II) after self-healing at room temperature for 2 hours. BF4
- has been selected 

as counter-anion, and d) Stress-strain curve of pre-polymer P1 crosslinked with 0.33 eq. Zn(II) with 

BF4
-, ClO4

-
  and CF3SO3

- (OTf –) as counter-anions, after self-healing at room temperature for 2 

hours.   

After confirming the coordination of metals and the geometry of the resulting complexes, 

a detailed investigation on the mechanical properties was performed in order to unveil the effect of 

coordination motif on self-healing. To perform this investigation, samples of P1 crosslinked with 

either Fe(BF4)2, Co(BF4)2 and Zn(BF4)2 were prepared in solution and casted into a PTFE mold. 

The resulting materials was dried at room temperature for 24 hours to remove any solvent residue. 

First, tensile-strain pull tests were performed on the soft crosslinked materials with different metals 

(Fe, Co and Zn) to get insight onto the maximal fracture strain, and the results are shown in Figure 

3a. Interestingly, despite showing similar coordination geometry for the metal-ligand complexes, 

the metal center selected was shown to have a significant effect on the maximal elongation before 

fracture. Samples prepared from Zn(II), Fe(II) and Co(II) demonstrated a maximum strain before 

fracture of respectively of 525%, 75% and 25%. This significant difference between the materials 

can directly be explained by the difference in M-L bond strengths. A direct relationship can be 

suggested between the bond length or strength of the M-L interactions where the smaller the bond 

a) b) 
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length, the stronger the association and thus the more brittle the material. Based on previous reports, 

bond lengths of Fe2+, Co2+ and Zn2+ coordinated to bipyridine-based ligands are 1.852, 1.848 and 

2.002 Å, which can be directly related to bond strength.118  Therefore, despite also having an 

octahedral geometry, coordination of Zn(II) is much weaker than Co(II) and Fe(II), which can 

explain the more brittle nature of the cobalt and iron-based polymers.  

 A similar investigation was also performed by varying the counter-ion using Zn(BF4)2, 

Zn(ClO4) and Zn(OTf)2 for the preparation of the materials. These specific counter-ions were 

selected for various reasons. First, tetrafluoroborate, perchlorate and triflate are non-coordinating 

counter-ions which promote the octahedral coordination geometry of the polymer ligands with the 

metal center, as confirmed by UV-Vis spectroscopy. Moreover, their size and stability differ, which 

can have an influence on the resulting supramolecular network and thermomechanical properties.119 

As shown in Figure 3b, materials prepared from tetrafluoroborate and triflate counter-ions showed 

similar maximum strain before fracture, around 515%. The sample prepared from zinc perchlorate 

showed a significantly reduced robustness, with a maximum fracture strain around 15%. This 

important counter-ion effect can be attributed to various factors, including size, coordinating ability 

and strength, and ion aggregation.120 Self-healing could be explained by the rearrangement of ion 

aggregation and the interdiffusion of polymer chains over the surface of the crack. Strong cation–

anion interaction and intensive ion aggregation for the counterion can restrict the mobility of the 

surrounding polymer chain, thus improving the mechanical strength but reducing self-healing 

ability. The three selected counter-ions are weakly coordinating, but OTf- and BF4
- are slightly 

bigger than ClO4
- with weak coordinating abilities, which ultimately can result in a plasticizing 

effect.  This impact of counter-ion on the mechanical properties and crystallization processes have 

been observed in various systems, including in self-healing PDMS-based polymers using nitrate 

and triflate-containing metal crosslinkers and in silver-thiadiazol complexes which strongly 

suggests this direct trend on metal-ligand coordination dynamics and counter anion size.76,110 

 To evaluate the self-healing efficiency of the materials, free-standing films of the different 

crosslinked materials were cut in two pieces and were slowly put back in physical contact. The 

resulting materials were left on the benchtop at room temperature for 2 hours and the healed film 

were evaluated by tensile-strain pull testing. It is important to mention that no additional trigger 

(thermal annealing, light exposure, etc.) were used in order to ensure an autonomous self-healing 

mechanism. The resulting self-healed materials were then analyzed by tensile-strain pull testing 

and the results are summarized in Figure 3c-d. The self-healing efficiency was determined by 

comparing the maximum elongation before damage and after a 2-hour healing period. As observed 



 

 67 

with the pristine samples, the healed materials showed a similar trends in terms of maximum 

fracture strain, with the Zn(II)-crosslinked materials showing a maximum elongation of 450% after 

self-healing (2 hours), corresponding to a self-healing efficiency of 87% (Table 1). This trend can 

be directly explained by the coordination of Zn(II), weaker but more dynamic than Co(II) and 

Fe(II), which can allow for a fast regeneration of the coordination complex when the polymer 

chains are put back in contact. Nonetheless, despite the stronger coordination, the Co(II) and Fe(II)-

containing self-healing polymers showed self-healing efficiencies of 61% and 71% respectively. 

For the effect of the counter-ion on the maximum strain at fracture after self-healing, a similar trend 

was also observed with the non-coordination large counter-ion having an increase plasticizing 

effect than the smaller ones. For the materials prepared from Zn(BF4)2 and Zn(ClO4)2, self-healing 

efficiency were relatively good after 2 hours (88 and 75% respectively).  

Table 4. 1. Elastic moduli and self-healing efficiencies of pre-polymer P1 crosslinked with various 

metal (II) sources. 

Metal Salt Elastic Modulus (MPa) Self-Healing Efficiencya (%) 

Co(BF4)2 8.10 ± 2.80 61 

Fe(BF4)2 1.80 ± 0.15 71 

Zn(BF4)2 0.26 ± 0.09 88 

Zn(ClO4)2 10.2 ± 1.40 75 

Zn(CF3SO3)2 0.23 ± 0.04 73 

a Defined as the difference between the maximum elongation before damage and after a 2-hour  

The metal center and type of counter-ion used in this system are not only have an important effect 

on the maximal strain before fracture and self-healing efficiency, but also directly influencing the 

thermomechanical properties of the soft materials. Therefore, to unveil the impact of the crosslinker 

used to prepare the materials on the soft materials, a complete evaluation of the thermomechanical 

properties, including Young’s moduli and maximum strain at fracture was performed using tensile-

strain pull testing. First, the Young’s modulus for all systems was evaluated by tensile-strain pull 

testing, and the results are summarized in Table 1. Similar to the trend observed for the maximum 

strain at fracture, the selection of the metal used for coordination has a direct effect on the elastic 

modulus of the resulting crosslinked materials. Zn(II), with the weaker interaction, led to a polymer 
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with a modulus of 0.26 MPa, which is one order of magnitude lower than commonly used PDMS.121 

When Fe(II) was used, this modulus increased to 1.8 MPa. Finally, when Co(II) was used, the 

resulting materials was more brittle, and its Young’s modulus increase to 8.1 MPa. This result can 

be directly correlated to the coordination bonds strength. The elastic moduli of Zn(II)-based 

materials with different counter-ions was then evaluated. Interestingly, when the counter-ion used 

is large and non-coordinating (tetrafluoroborate and triflate), the moduli remained fairly low, with 

a value of 0.26 and 0.23 MPa respectively. However, when perchlorate was used, the resulting 

materials became brittle with an elastic modulus of 10.2 MPa, which is considerably higher than 

commonly used PDMS-based elastomer. Nonetheless, in the current system, the Young’s modulus 

was showed to have a limited correlation with self-healing, as illustrated in Table 1.  

  

Figure 4.4. Storage modulus (G’) as a function of time during self-healing (a). P1-Zn(OTf)2, (b). 

P1-Zn(BF4)2, (c). P1-Zn(ClO4)2, and (d). P1-Fe(BF4)2. Both the modulus for sample before 

(black curve) and after (red) self-healing are plotted. 
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 The self-healing efficiency of the materials was also evaluated with shear rheometry using 

a method previously reported in the literature for similar soft materials.122 Briefly, a disk-shape (8-

mm diameter and approximately 1.5 mm thickness) pristine sample was first measured with a time 

sweep for 10 minutes using 8-mm parallel plates to establish the benchmark performance; then the 

sample, while sit between two plates, was split into two halves horizontally and brought into contact 

with a normal force of 0.5 N. Finally, another time sweep was immediately performed on the cut 

sample for 2 hours. Figure 4 plots storage modulus (G’) as a function of time for P1 crosslinked 

with Zn(OTf)2, Zn(BF4)2, Zn(ClO4)2, and Fe(BF4)2. It is important to mention that the samples 

crosslinked with Co(BF4)2 were shown to be too brittle for being characterized through this 

technique. Interestingly, it was observed that for the pristine materials, G’ (approximately equals 

to one third of elastic modulus for elastomer) is higher than the value derived from tensile strain 

analysis for Zn(OTf)2, Zn(BF4)2 and Zn(ClO4)2, while remains comparable for Fe(BF4)2. This can 

be attributed to the weaker coordination of Zn(II) than Fe(II). In addition, Figure 4 shows distinct 

self-healing behavior among these four samples: within 2 hours timeframe, G’ of Zn(OTf)2 and 

Zn(BF4)2 gets fully recovered or even shows higher G’ compared to the pristine sample, whereas 

Zn(ClO4)2, and Fe(BF4)2 only exhibits partial recovery of 49% and 32%. The trend is qualitatively 

consistent with the results from tensile-strain pull test. However, the efficiency of Zn(ClO4)2, and 

Fe(BF4)2 was found to be much smaller than the results obtained from tensile-strain pull test. This 

can be attributed to the difference in the cross-section area of the cut in the measurements, i.e., the 

cut for rheology measurements introduces a larger cross-section for self-healing. Yet, a full 

recovery of G’ is observed for Zn(OTf)2 and Zn(BF4)2. In addition, during recovery, Zn(OTf)2 and 

Zn(BF4)2 even shows a higher G’ than the pristine sample. This is presumably due to the high 

mobility of polymer chain crosslinked with Zn(OTf)2 and Zn(BF4)2 possessing weaker 

coordination. During the self-healing process, crosslinker migrates to the interface and potentially 

increases the crosslinking density and results in a higher G’. Similar behavior has been observed 

for a hydrogen-bonded polymer complex by Wang et al.122 In terms of counterion effect,  since 

ClO4
- shows slightly stronger coordination ability than OTf- and BF4

-, a lower self-healing 

efficiency was observed.  
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4.3. Conclusion 

 In summary, a novel approach to fine-tune the thermomechanical properties of soft, 

siloxane-based elastomers has been developed through the use dynamic metal-ligand interactions. 

Specifically, a new imine-based siloxane-based polymer has been crosslinked with various metal 

centers, including with Fe(II), Zn(II) and Co (II). Interestingly, the resulting polymers were shown 

to undergo rapid self-healing at room temperature (two hours) without the use of any external 

trigger. By tuning the strength of the metal-ligand interactions, a fine-tuning of the 

thermomechanical properties was effectuated. Samples prepared from Zn(II), Fe(II) and Co(II) 

demonstrated a maximum strain before fracture of 525%, 75% and 25%, and a self-healing 

efficiency of 88%, 71% and 61% respectively. This can be directly attribute to the difference in 

bond lengths (strength of the M-L interactions) where the smaller the bond length, the stronger the 

association and thus the more brittle the material. In addition to the effect of the metal center, an 

evaluation of the effect of the counter-ion on the self-healing efficiency and thermomechanical 

properties was also performed. Interestingly, an important effect of the counter-ion on the 

maximum strain at fracture after self-healing was observed and can be attributed to the large 

counter-ions having an increase plasticizing effect than the smaller ones. For the materials prepared 

from Zn(BF4)2 and Zn(ClO4)2, self-healing efficiency of 88 and 75 % respectively were observed 

after 2 hours. Furthermore, materials prepared from tetrafluoroborate and triflate counter-ions 

showed an almost similar maximum strain before fracture, around 515%. Finally, the fine-tuning 

of the metal-ligand interaction in the soft polymer allowed for the preparation of a wide variety of 

self-healing polymers with Young’s moduli ranging from 0.23 to 10.2 MPa. This new strategy to 

fine-tune the thermomechanical properties and self-healing of soft, siloxane-based polymers is 

highly versatile and the preparation of the materials is relatively simple. Therefore, this approach 

is particularly promising for many applications, including for soft electronics, advanced coatings 

and manufacturing and healthcare.  

 

 

 

 

 



 

 71 

4.4. REFERENCES  

1 A. M. Hussain and M. M. Hussain. CMOS-Technology-Enabled Flexible and Stretchable 

Electronics for Internet of Everything Applications, Adv. Mater., 2016, 28, 4219–4249. 

2 Y. Yao, H. Dong and W. Hu. Charge Transport in Organic and Polymeric Semiconductors 

for Flexible and Stretchable Devices, Adv. Mater., 2016, 28, 4513–4523. 

3 T. F. O ’connor, K. M. Rajan, A. D. Printz and D. J. Lipomi. Toward organic electronics 

with properties inspired by biological tissue, J. Mater. Chem. B, 2015, 3, 4947–4952. 

4 S. J. Benight, C. Wang, J. B. H. Tok and Z. Bao. Stretchable and self-healing polymers 

and devices for electronic skin, Prog. Polym. Sci., 2013, 38, 1961–1977. 

5 M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, 

R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya. An ultra-

lightweight design for imperceptible plastic electronics, Nature, 2013, 499, 458–463. 

6 Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan and Z. L. Wang. Skin-inspired 

highly stretchable and conformable matrix networks for multifunctional sensing, Nat. 

Commun., 2018, 9, 1–11. 

7 K. A. Ray. Flexible Solar Cell reliable power source that can provide power at any 

KelWrd-, IEEE Trans. Aerosp. Electron. Syst. 

8 D. Angmo, T. T. Larsen-Olsen, M. Jørgensen, R. R. Søndergaard and F. C. Krebs. Roll-to-

roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell 

modules and facile product integration, Adv. Energy Mater., 2013, 3, 172–175. 

9 T.-T. Kuo, C.-M. Wu, H.-H. Lu, I. Chan, K. Wang and K.-C. Leou. Flexible x-ray 

imaging detector based on direct conversion in amorphous selenium, J. Vac. Sci. Technol. 

A Vacuum, Surfaces, Film., 2014, 32, 041507. 

10 T. Peter Brody. The Thin Film Transistor—A Late Flowering Bloom, IEEE Trans. 

Electron Devices, 1984, 31, 1614–1628. 

11 N. D. Young, G. Harkin, R. M. Bunn, D. J. Mcculloch, R. W. Wilks and A. G. Knapp. 

Polysilicon TFT ’ s on Glass and Polymer Substrates, 1997, 18, 19–20. 

12 C. Liu, N. Huang, F. Xu, J. Tong, Z. Chen, X. Gui, Y. Fu and C. Lao. 3D printing 

technologies for flexible tactile sensors toward wearable electronics and electronic skin, 

Polymers (Basel)., 2018, 10, 1–31. 

13 H. Bin Yao, J. Ge, C. F. Wang, X. Wang, W. Hu, Z. J. Zheng, Y. Ni and S. H. Yu. A 



 

 72 

flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured 

microstructure design, Adv. Mater., 2013, 25, 6692–6698. 

14 B. Zhuo, S. Chen, M. Zhao and X. Guo. High Sensitivity Flexible Capacitive Pressure 

Sensor Using Polydimethylsiloxane Elastomer Dielectric Layer Micro-Structured by 3-D 

Printed Mold, IEEE J. Electron Devices Soc., 2017, 5, 219–223. 

15 D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. K. Tee, J. A. Bolander and Z. Bao. 

Electronic properties of transparent conductive films of PEDOT:PSS on stretchable 

substrates, Chem. Mater., 2012, 24, 373–382. 

16 B. B. Narakathu, A. Eshkeiti, A. S. G. Reddy, M. Rebros, E. Rebrosova, M. K. Joyce, B. 

J. Bazuin and M. Z. Atashbar. A novel fully printed and flexible capacitive pressure 

sensor, Proc. IEEE Sensors, 2012, 26–29. 

17 O. Atalay, A. Atalay, J. Gafford and C. Walsh. A Highly Sensitive Capacitive-Based Soft 

Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer, Adv. 

Mater. Technol., 2018, 3, 1–8. 

18 D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and 

Z. Bao. Skin-like pressure and strain sensors based on transparent elastic films of carbon 

nanotubes, Nat. Nanotechnol., 2011, 6, 788–792. 

19 S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. 

O. Muir, A. N. Sokolov, C. Reese and Z. Bao. Highly sensitive flexible pressure sensors 

with microstructured rubber dielectric layers, Nat. Mater., 2010, 9, 859–864. 

20 A. Sekiguchi, F. Tanaka, T. Saito, Y. Kuwahara, S. Sakurai, D. N. Futaba, T. Yamada and 

K. Hata. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives, Nano Lett., 

2015, 15, 5716–5723. 

21 M. Shin, J. H. Song, G. H. Lim, B. Lim, J. J. Park and U. Jeong. Highly stretchable 

polymer transistors consisting entirely of stretchable device components, Adv. Mater., 

2014, 26, 3706–3711. 

22 A. D. Kim, J. Ahn, W. M. Choi, H. Kim, T. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and 

J. A. Rogers. Stretchable and Foldable Silicon Integrated Circuits, Science (80-. )., 2008, 

320, 507–511. 

23 M. Selivanova, C. H. Chuang, B. Billet, A. Malik, P. Xiang, E. Landry, Y. C. Chiu and S. 

Rondeau-Gagné. Morphology and Electronic Properties of Semiconducting Polymer and 



 

 73 

Branched Polyethylene Blends, ACS Appl. Mater. Interfaces, 2019, 11, 12723–12732. 

24 M. Selivanova, S. Zhang, B. Billet, A. Malik, N. Prine, E. Landry, X. Gu, P. Xiang and S. 

Rondeau-Gagné. Branched Polyethylene as a Plasticizing Additive to Modulate the 

Mechanical Properties of π-Conjugated Polymers, Macromolecules, 2019, 52, 7870–7877. 

25 Z. Huang, M. Gao, Z. Yan, T. Pan, S. A. Khan, Y. Zhang, H. Zhang and Y. Lin. Pyramid 

microstructure with single walled carbon nanotubes for flexible and transparent micro-

pressure sensor with ultra-high sensitivity, Sensors Actuators, A Phys., 2017, 266, 345–

351. 

26 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya. A rubberlike 

stretchable active matrix using elastic conductors, Science (80-. )., 2008, 321, 1468–1472. 

27 D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and 

Z. Bao. Skin-like pressure and strain sensors based on transparent elastic films of carbon 

nanotubes, Nat. Nanotechnol., 2011, 6, 788–792. 

28 J. A. Rogers, T. Someya, Y. Huang, J. A. Rogers, T. Someya and Y. Huang. Materials and 

Mechanics for Stretchable Electronics Published by : American Association for the 

Advancement of Science Linked references are available on JSTOR for this article : 

Materials and Mechanics for Stretchable Electronics, 2010, 327, 1603–1607. 

29 M. U. Ocheje, B. P. Charron, Y. H. Cheng, C. H. Chuang, A. Soldera, Y. C. Chiu and S. 

Rondeau-Gagné. Amide-Containing Alkyl Chains in Conjugated Polymers: Effect on 

Self-Assembly and Electronic Properties, Macromolecules, 2018, 51, 1336–1344. 

30 Y. Li, W. K. Tatum, J. W. Onorato, S. D. Barajas, Y. Y. Yang, C. K. Luscombe and K. 

Christine. An indacenodithiophene-based semiconducting polymer with high ductility for 

stretchable organic electronics, Polym. Chem., 2017, 8, 5185–5193. 

31 S. Braun. Studies of materials and interfaces for organic electronics, Studies of materials 

and interfaces for organic electronics, 2007. 

32 N. Vogel. Springer Theses, Springer Theses, 2011. 

33 J. S. Kim, J. H. Kim, W. Lee, H. Yu, H. J. Kim, I. Song, M. Shin, J. H. Oh, U. Jeong, T. S. 

Kim and B. J. Kim. Tuning Mechanical and Optoelectrical Properties of Poly(3-

hexylthiophene) through Systematic Regioregularity Control, Macromolecules, 2015, 48, 

4339–4346. 

34 B. Wang, D. Qin, G. Liang, A. Gu, L. Liu and L. Yuan. High-k materials with low 



 

 74 

dielectric loss based on two superposed gradient carbon nanotube/cyanate ester 

composites, J. Phys. Chem. C, 2013, 117, 15487–15495. 

35 R. Ruppin. Electromagnetic energy density in a dispersive and absorptive material, Phys. 

Lett. Sect. A Gen. At. Solid State Phys., 2002, 299, 309–312. 

36 B. Wang, G. Liang, Y. Jiao, A. Gu, L. Liu, L. Yuan and W. Zhang. Two-layer materials of 

polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant 

and extremely low dielectric loss, Carbon N. Y., 2013, 54, 224–233. 

37 B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks and A. Facchetti. High- k Gate 

Dielectrics for Emerging Flexible and Stretchable Electronics, Chem. Rev., 2018, 118, 

5690–5754. 

38 C. E. Diesendruck, N. R. Sottos, J. S. Moore and S. R. White. Biomimetic Self-Healing, 

Angew. Chemie - Int. Ed., 2015, 54, 10428–10447. 

39 D. Y. Wu, S. Meure and D. Solomon. Self-healing polymeric materials: A review of 

recent developments, Prog. Polym. Sci., 2008, 33, 479–522. 

40 Y. J. Tan, J. Wu, H. Li and B. C. K. Tee. Self-Healing Electronic Materials for a Smart 

and Sustainable Future, ACS Appl. Mater. Interfaces, 2018, 10, 15331–15345. 

41 F. W. Went. Cladistics Linked references are available on JSTOR for this article :, Int. 

Assoc. Plant Taxon., 1971, 20, 197–226. 

42 B. Blaiszik, S. L. B. Kramer, J. S. Moore, N. R. Sottos, B. J. Blaiszik, S. L. B. Kramer, S. 

C. Olugebefola, J. S. Moore, N. R. Sottos and S. R. White. Self-Healing Polymers and 

Composites Second Sandia Fracture Challenge View project Shock Wave Energy 

Dissipation by Mechanochemically-active Materials View project Self-Healing Polymers 

and Composites, Annu. Rev. Mater. Res, 2010, 40, 179–211. 

43 F. Herbst, D. Döhler, P. Michael and W. H. Binder. Self-healing polymers via 

supramolecular forces, Macromol. Rapid Commun., 2013, 34, 203–220. 

44 B. Zhang, Z. A. Digby, J. A. Flum, E. M. Foster, J. L. Sparks and D. Konkolewicz. Self-

healing, malleable and creep limiting materials using both supramolecular and reversible 

covalent linkages, Polym. Chem., 2015, 6, 7368–7372. 

45 C. De Nardi, S. Bullo, L. Ferrara, L. Ronchin and A. Vavasori. Effectiveness of crystalline 

admixtures and lime/cement coated granules in engineered self-healing capacity of lime 

mortars, Mater. Struct. Constr., 2017, 50, 1–12. 



 

 75 

46 M. N. Tahir, M. U. Ocheje, K. Wojtkiewicz and S. Rondeau-gagné. 3 Self-Healing 

Materials : Design and Applications, . 

47 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. 

Brown and S. Viswanathan. Autonomic healing of polymer composites, Nature, 2001, 

409, 794–797. 

48 J. Yang, M. W. Keller, J. S. Moore, S. R. White, N. R. Sottos, J. Yang, M. W. Keller, J. S. 

Moore, S. R. White and N. R. Sottos. Microencapsulation of Isocyanates for Self-Healing 

Polymers Microencapsulation of Isocyanates for Self-Healing Polymers, 2008, 41, 9650–

9655. 

49 S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos and P. V. Braun. 

Polydiniethylsiloxane-based self-healing materials, Adv. Mater., 2006, 18, 997–1000. 

50 A. Nasresfahani and P. M. Zelisko. Synthesis of a self-hea(1) Nasresfahani, A.; Zelisko, P. 

M. Synthesis of a Self-Healing Siloxane-Based Elastomer Cross-Linked via a Furan-

Modified Polyhedral Oligomeric Silsesquioxane Investigation of a Thermally Reversible 

Silicon-Based Cross-Link. Polym, Polym. Chem., 2017, 8, 2942–2952. 

51 C. C. Deng, W. L. A. Brooks, K. A. Abboud and B. S. Sumerlin. Boronic acid-based 

hydrogels undergo self-healing at neutral and acidic pH, ACS Macro Lett., 2015, 4, 220–

224. 

52 W. Li, C. Zhang, S. Qi, X. Deng, W. Wang, B. Yang, J. Liu and Z. Dong. Polymer 

Chemistry, . 

53 B. D. Fairbanks, S. P. Singh, C. N. Bowman and K. S. Anseth. Photodegradable, 

photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction, 

Macromolecules, 2011, 44, 2444–2450. 

54 G. Zhao, C. Yang, L. Guo, H. Sun, C. Chen and W. Xia. Visible light-induced oxidative 

coupling reaction: Easy access to Mannich-type products, Chem. Commun., 2012, 48, 

2337–2339. 

55 P. M. Imbesi, C. Fidge, J. E. Raymond, S. I. Cauët and K. L. Wooley. Model Diels-Alder 

studies for the creation of amphiphilic cross-linked networks as healable, antibiofouling 

coatings, ACS Macro Lett., 2012, 1, 473–477. 

56 F. Yu, X. Cao, J. Du, G. Wang and X. Chen. Multifunctional Hydrogel with Good 

Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining 



 

 76 

Diels-Alder Click Reaction and Acylhydrazone Bond, ACS Appl. Mater. Interfaces, 2015, 

7, 24023–24031. 

57 A. Chao, I. Negulescu and D. Zhang. Dynamic Covalent Polymer Networks Based on 

Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties 

by Solvent, Macromolecules, 2016, 49, 6277–6284. 

58 M. Pepels, I. Filot, B. Klumperman and H. Goossens. Self-healing systems based on 

disulfide-thiol exchange reactions, Polym. Chem., 2013, 4, 4955–4965. 

59 G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang and Y. Chen. Dynamic hydrogels 

with an environmental adaptive self-healing ability and dual responsive Sol-Gel 

transitions, ACS Macro Lett., 2012, 1, 275–279. 

60 Z. P. Zhang, M. Z. Rong, M. Q. Zhang and C. Yuan. Alkoxyamine with reduced 

homolysis temperature and its application in repeated autonomous self-healing of stiff 

polymers, Polym. Chem., 2013, 4, 4648–4654. 

61 C. Yuan, M. Z. Rong, M. Q. Zhang, Z. P. Zhang and Y. C. Yuan. Self-healing of polymers 

via synchronous covalent bond fission/radical recombination, Chem. Mater., 2011, 23, 

5076–5081. 

62 H. Li, R. Wang, H. Hu and W. Liu. Surface modification of self-healing poly(urea-

formaldehyde) microcapsules using silane-coupling agent, Appl. Surf. Sci., 2008, 255, 

1894–1900. 

63 C. Wang, H. Wu, Z. Chen, M. T. Mcdowell, Y. Cui and Z. Bao. Self-healing chemistry 

enables the stable operation of silicon microparticle anodes for high-energy lithium-ion 

batteries, Nat. Chem., 2013, 5, 1042–1048. 

64 C. Wang, N. Liu, R. Allen, J. B. H. Tok, Y. Wu, F. Zhang, Y. Chen and Z. Bao. A rapid 

and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide, 

Adv. Mater., 2013, 25, 5785–5790. 

65 Y. Chen, A. M. Kushner, G. A. Williams and Z. Guan. Multiphase design of autonomic 

self-healing thermoplastic elastomers, Nat. Chem., 2012, 4, 467–472. 

66 R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. 

M. Lange, J. K. L. Lowe and E. W. Meijer. Reversible polymers formed from self-

complementary monomers using quadruple hydrogen bonding, Science (80-. )., 1997, 278, 

1601–1604. 



 

 77 

67 D. Mozhdehi, S. Ayala, O. R. Cromwell and Z. Guan. Self-healing multiphase polymers 

via dynamic metal-ligand interactions, J. Am. Chem. Soc., 2014, 136, 16128–16131. 

68 Z. Tang, J. Huang, B. Guo, L. Zhang and F. Liu. Bioinspired Engineering of Sacrificial 

Metal-Ligand Bonds into Elastomers with Supramechanical Performance and Adaptive 

Recovery, Macromolecules, 2016, 49, 1781–1789. 

69 C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. 

Linder, X. Z. You and Z. Bao. A highly stretchable autonomous self-healing elastomer, 

Nat. Chem., 2016, 8, 618–624. 

70 B. Sandmann, B. Happ, S. Kupfer, F. H. Schacher, M. D. Hager and U. S. Schubert. The 

self-healing potential of triazole-pyridine-based metallopolymers, Macromol. Rapid 

Commun., 2015, 36, 604–609. 

71 N. et al. Holten-Andersen. Metal-coordination: using one of nature’s tricks to control soft 

material mechanics., J. Mater. Chem. B 2, 2467, 2013, 5791–5797. 

72 F. Dumitru, A. van der Lee and M. Barboiu. Chiral superstructures from homochiral 

Zn2+, Co2+, Fe2+-2,6-bis (aryl ethylimine)pyridine complexes, Chirality, 2019, 31, 763–

775. 

73 S. Schmatloch, M. F. González and U. S. Schubert. Metallo-supramolecular diethylene 

glycol: Water-soluble reversible polymers, Macromol. Rapid Commun., 2002, 23, 957–

961. 

74 T. S. Thakur, R. Dubey and G. R. Desiraju. Crystal Structure and Prediction, Annu. Rev. 

Phys. Chem., 2015, 66, 21–42. 

75 P. Blue, P. Blue and W. W. Ii. Coordination polymers design, analysis and application, in 

Royal Society of Chemistry, 2009, pp. 1–18Coordination polymers design, analysis and 

application. 

76 M. L. Tong and X. M. Chen. Synthesis of Coordination Compounds and Coordination 

Polymers, Synthesis of Coordination Compounds and Coordination Polymers, Elsevier 

B.V., 2017. 

77 W. Jacob and R. Mukherjee. Synthesis, structure, and properties of monomeric Fe(II), 

Co(II), and Ni(II) complexes of neutral N-(aryl)-2-pyridinecarboxamides, Inorganica 

Chim. Acta, 2006, 359, 4565–4573. 

78 Y. L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y. C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. 



 

 78 

Gu, C. Wang, M. He, J. W. Chung and Z. Bao. Stretchable self-healing polymeric 

dielectrics cross-linked through metal-ligand coordination, J. Am. Chem. Soc., 2016, 138, 

6020–6027. 

79 Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger and C. Wang. 

A Transparent, Self-Healing, Highly Stretchable Ionic Conductor, Adv. Mater., 2017, 29, 

1–9. 

80 J. 6b08220. pd. Ko, Y. J. Kim and Y. S. Kim. Self-Healing Polymer Dielectric for a High 

Capacitance Gate Insulator, ACS Appl. Mater. Interfaces, 2016, 8, 23854–23861. 

81 X. Y. Jia, J. F. Mei, J. C. Lai, C. H. Li and X. Z. You. A Highly Stretchable Polymer that 

Can Be Thermally Healed at Mild Temperature, Macromol. Rapid Commun., 2016, 37, 

952–956. 

82 W. H. Binder. The Past 40 Years of Macromolecular Sciences: Reflections on Challenges 

in Synthetic Polymer and Material Science, Macromol. Rapid Commun., 2019, 40, 1–7. 

83 I. L. Hia, V. Vahedi and P. Pasbakhsh. Self-Healing Polymer Composites: Prospects, 

Challenges, and Applications, Polym. Rev., 2016, 56, 225–261. 

84 K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara and H. Otsuka. Self-

healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free 

dynamic covalent bonds at room temperature, Angew. Chemie - Int. Ed., 2012, 51, 1138–

1142. 

85 Y. Yang, X. Ding and M. W. Urban. Chemical and physical aspects of self-healing 

materials, Prog. Polym. Sci., 2015, 49–50, 34–59. 

86 S.-M. Kim, H. Jeon, S.-H. Shin, S.-A. Park, J. Jegal, S. Y. Hwang, D. X. Oh and J. Park. 

Self-Healing Materials: Superior Toughness and Fast Self-Healing at Room Temperature 

Engineered by Transparent Elastomers (Adv. Mater. 1/2018), Adv. Mater., 2018, 30, 

1870001. 

87 R. R. L. De, D. A. C. Albuquerque, T. G. S. Cruz, F. M. Yamaji and F. L. Leite. 

Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles 

and Applications, At. Force Microsc. - Imaging, Meas. Manip. Surfaces At. Scale, , 

DOI:10.5772/37583. 

88 Y. Yang and M. W. Urban. Self-healing polymeric materials, Chem. Soc. Rev., 2013, 42, 

7446–7467. 



 

 79 

89 T. Aida, E. W. Meijer and S. I. Stupp. Functional Supramolecular Polymers, Science (80-. 

)., 2012, 335, 813–817. 

90 A. B. W. Brochu, S. L. Craig and W. M. Reichert. Self-healing biomaterials, J. Biomed. 

Mater. Res. - Part A, 2011, 96 A, 492–506. 

91 J. Y. Oh, S. Rondeau-Gagné, Y. C. Chiu, A. Chortos, F. Lissel, G. J. N. Wang, B. C. 

Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. 

Kim, L. Jin, J. W. Chung, J. B. H. Tok and Z. Bao. Intrinsically stretchable and healable 

semiconducting polymer for organic transistors, Nature, 2016, 539, 411–415. 

92 S. Zhang and F. Cicoira. Water-Enabled Healing of Conducting Polymer Films, Adv. 

Mater., 2017, 29, 1703098. 

93 Y. L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y. C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. 

Gu, C. Wang, M. He, J. W. Chung and Z. Bao. Stretchable self-healing polymeric 

dielectrics cross-linked through metal-ligand coordination, J. Am. Chem. Soc., 2016, 138, 

6020–6027. 

94 M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok and Z. Bao. 25th anniversary 

article: The evolution of electronic skin (E-Skin): A brief history, design considerations, 

and recent progress, Adv. Mater., 2013, 25, 5997–6038. 

95 W. H. Binder. The Past 40 Years of Macromolecular Sciences: Reflections on Challenges 

in Synthetic Polymer and Material Science, Macromol. Rapid Commun., 2019, 40, 1–7. 

96 R. P. Wool. Self-healing materials: A review, Soft Matter, 2008, 4, 400–418. 

97 J. A. Syrett, C. R. Becer and D. M. Haddleton. Self-healing and self-mendable polymers, 

Polym. Chem., 2010, 1, 978–987. 

98 N. Holten-Andersen, A. Jaishankar, M. J. Harrington, D. E. Fullenkamp, G. DiMarco, L. 

He, G. H. McKinley, P. B. Messersmith and K. Y. C. Lee. Metal-coordination: using one 

of nature’s tricks to control soft material mechanics, J. Mater. Chem. B, 2014, 2, 2467. 

99 H. Ying, Y. Zhang and J. Cheng. Dynamic urea bond for the design of reversible and self-

healing polymers, Nat. Commun., 2014, 5, 1–9. 

100 S. M. Kim, H. Jeon, S. H. Shin, S. A. Park, J. Jegal, S. Y. Hwang, D. X. Oh and J. Park. 

Superior Toughness and Fast Self-Healing at Room Temperature Engineered by 

Transparent Elastomers, Adv. Mater., 2018, 30, 1–8. 

101 Z. Xu. Mechanics of metal-catecholate complexes: The roles of coordination state and 



 

 80 

metal types, Sci. Rep., 2013, 3, 7–9. 

102 J. Zhao, R. Xu, G. Luo, J. Wu and H. Xia. Self-healing poly(siloxane-urethane) elastomers 

with remoldability, shape memory and biocompatibility, Polym. Chem., 2016, 7, 7278–

7286. 

103 B. S. Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin. Room-Temperature Self-Healing 

Polymers Based on Dynamic- Covalent Boronic Esters, Macromolecules, 2015, 2098. 

104 Y. Zhao, W. Zhang, L. P. Liao, H. M. Wang and W. J. Li. The self-healing composite 

anticorrosion coating, Phys. Procedia, 2011, 18, 216–221. 

105 Y. L. Liu and T. W. Chuo. Self-healing polymers based on thermally reversible Diels-

Alder chemistry, Polym. Chem., 2013, 4, 2194–2205. 

106 R. Hoogenboom. Hard autonomous self-healing supramolecular materials-A contradiction 

in terms?, Angew. Chemie - Int. Ed., 2012, 51, 11942–11944. 

107 D. Y. Zhu, M. Z. Rong and M. Q. Zhang. Self-healing polymeric materials based on 

microencapsulated healing agents: From design to preparation, Prog. Polym. Sci., 2015, 

49–50, 175–220. 

108 J. A. Syrett, G. Mantovani, W. R. S. Barton, D. Price and D. M. Haddleton. Self-healing 

polymers prepared via living radical polymerisation, Polym. Chem., 2010, 1, 102–106. 

109 J. Pignanelli, B. Billet, M. Straeten, M. Prado, K. Schlingman, M. J. Ahamed and S. 

Rondeau-Gagné. Imine and metal–ligand dynamic bonds in soft polymers for autonomous 

self-healing capacitive-based pressure sensors, Soft Matter, 2019, 15, 7654–7662. 

110 Y. L. Rao, V. Feig, X. Gu, G. J. Nathan Wang and Z. Bao. The effects of counter anions 

on the dynamic mechanical response in polymer networks crosslinked by metal–ligand 

coordination, J. Polym. Sci. Part A Polym. Chem., 2017, 55, 3110–3116. 

111 S. Bode, M. Enke, R. K. Bose, F. H. Schacher, S. J. Garcia, S. van der Zwaag, M. D. 

Hager and U. S. Schubert. Correlation between scratch healing and rheological behavior 

for terpyridine complex based metallopolymers, J. Mater. Chem. A, 2015, 3, 22145–

22153. 

112 J. M. Sirrine, S. A. Schexnayder, J. M. Dennis and T. E. Long. Urea as a monomer for 

isocyanate-free synthesis of segmented poly(dimethyl siloxane) polyureas, Polymer 

(Guildf)., 2018, 154, 225–232. 

113 D. D. Zhang, Y. B. Ruan, B. Q. Zhang, X. Qiao, G. Deng, Y. Chen and C. Y. Liu. A self-



 

 81 

healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds, 

Polymer (Guildf)., 2017, 120, 189–196. 

114 B. Zhang, P. Zhang, H. Zhang, C. Yan, Z. Zheng, B. Wu and Y. Yu. A Transparent, 

Highly Stretchable, Autonomous Self-Healing Poly(dimethyl siloxane) Elastomer, 

Macromol. Rapid Commun., 2017, 38, 1–9. 

115 L. Liu, S. Liang, Y. Huang, C. Hu and J. Yang. A stretchable polysiloxane elastomer with 

self-healing capacity at room temperature and solvatochromic properties, Chem. 

Commun., 2017, 53, 12088–12091. 

116 F. García, J. Pelss, H. Zuilhof and M. M. J. Smulders. Multi-responsive coordination 

polymers utilising metal-stabilised, dynamic covalent imine bonds, Chem. Commun., 

2016, 52, 9059–9062. 

117 H. Liu, H. Zhang, H. Wang, X. Huang, G. Huang and J. Wu. Weldable, malleable and 

programmable epoxy vitrimers with high mechanical properties and water insensitivity, 

Chem. Eng. J., 2019, 368, 61–70. 

118 A. F. Wells. Structural Inorganic Chemistry, 5th Edition, Clarendon Press, Oxford, 1984, 

p. 1288Structural Inorganic Chemistry, 5th Edition. 

119 R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomie 

Distances in Halides and Chalcogenides, Acta Crystallogr., 1976, A32, 751–767. 

120 J. Cui, F. M. Nie, J. X. Yang, L. Pan, Z. Ma and Y. S. Li. Novel imidazolium-based 

poly(ionic liquid)s with different counterions for self-healing, J. Mater. Chem. A, 2017, 5, 

25220–25229. 

121 J. Pignanelli, K. Schlingman, T. B. Carmichael, S. Rondeau-Gagné and M. J. Ahamed. A 

Comparative Analysis of Capacitive-Based Flexible PDMS Pressure Sensors, Sensors 

Actuators A. Phys., 2019, 285, 427–436. 

122 Y. Wang, J. He, S. Aktas, S. A. Sukhishvili and D. M. Kalyon. Rheological behavior and 

self-healing of hydrogen-bonded complexes of a triblock Pluronic® copolymer with a 

weak polyacid, J. Rheol. (N. Y. N. Y)., 2017, 61, 1103–1119. 

123 E. Archives. Engineering Archives, Engineering Archives, 

http://www.engineeringarchives.com/img/les_mom_necking_1.png. 

124 Malvern Instruments Worldwide. Malvern Instruments White Paper - A Basic 

Introduction to Rheology Shear Flow, 2016, 1–20. 



 

 82 

CHAPTER 5: CONCLUSIONS, FUTURE WORK AND PERSPECTIVES 

5.1. Conclusion  

In summary, a dynamic, self-healing and tunable PDMS based elastomer was established based 

on a simple, cost effective and large-scalable method of metal-ligand crosslinking of pyridine-

capped elastomeric chains. Through the rational design of soft siloxane-based oligomers with imine 

and metal-coordination moieties, a unique combination of dynamic bonds was enabled through a 

simple condensation reaction of amino-terminated siloxane chains with pyridine carboxaldehyde. 

Cross linking of the resulting oligomers with Fe(BF4)2 with varying metal to ligand ratios 

demonstrated the tunability of the system through simply controlling the amount of coordination 

sites. As the amount of coordination sites increased relative to the end termini ligands of the 

oligomer, the greater the stretchability of the cross-linked elastomer, with results reaching up to an 

800% strain before failure. Samples prepared through coordination with a 1:3 metal to ligand ratio 

proved to have autonomous intrinsic self-healing up to 88% of its original mechanical strength after 

a 48-hour healing period at room temperature. The dynamic versatility of the coordinate bonds was 

further demonstrated through the degradability of the material at mild conditions. Due to the 

dielectric nature of PDMS, the self-healing material was used as a dielectric layer of a capacitance-

based pressure sensor using a previously reported design.(Cite)  The dynamic response of the sensor  

before and after a damage-heal cycle showed a good response time and accuracy. The device 

functioned with a sensitivity of 0.33 kPa-1 at low pressures tested (0-5 kPa) with no significant 

deviations after a 48 hours damage-heal cycle of the dielectric layer, further enhancing the promise 

of our system. 

 The PDMS based system was also crosslinked using various other metal sources including 

Co(BF4)2  Zn(BF4)2, Zn(Otf)2 and Zn(ClO4)2, which demonstrated the wide range of mechanical 

properties possible based on altering the ratio of metal to ligand, the metal identity as well as the 

counterion effects of the metal salt used. Young’s modulus of the system ranged from 0.23 to 10.2 

MPa depending on the metal salt used to cross link the oligomeric chains. Therefore, in order to 

fine-tune the thermomechanical properties of soft elastomers has been developed through dynamic 

metal-ligand interactions. The various metal centers used in this study all demonstrated rapid, 

autonomous, intrinsic self-healing at room temperature within two hours. The strength of the metal-

ligand interaction had a direct effect on the mechanical properties of the resulting crosslinked 

materials. The samples cross linked through Zn(II), Fe(II) and Co(II) demonstrated a maximum 

strain before fracture of 525%, 75% and 25%, and a self-healing efficiency of 88%, 71% and 61% 
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respectively. The smaller the bond length, the stronger the crosslinks and therefore the less strain 

endured before fracture, and the higher the modulus attained. Comparing Fe(II), Co(II) and Zn(II) 

metal-ligand coordination using tetrafluoroborate based salts resulted in Young’s Modulus of 1.8 

MPa, 8.10 MPa and 0.26 MPa, respectively. The counter-ion used also demonstrated a prominent 

effect on the thermomechanical and self-healing efficiency of the materials. The effect of the 

counterion is evident through analysis of the tensile strain analysis where the Young’s modulus 

ranged from 0.23 MPa to 10.2 MPa through alteration of the counterion from a larger trimethyl 

sulfonate anion to a smaller chlorate anion.  It was concluded that the larger counterions induce a 

plasticizing effect resulting in an increased maximum strain before failure and lower Young’s 

modulus. As a result of this high tunability, low cost and facile preparation, this new dynamic 

polymer system is promising for the creation of the next generation of stretchable materials for 

electronics that require simple processing, high mechanical robustness, degradability, 

conformability and durability in order to enhance the performance and lifespan of electronics. 

5.2 Future Work and Perspectives  

The next steps of this research are to study the dielectric constant of the material to determine 

if the metal-ligand interactions effect on the dielectric constant of PDMS. The characterization of 

the self-healing capabilities of thin films is also an important characteristic to study in order to 

determine the limitations of the system at the microscale. Additionally, the use of the materials for 

large scale printing of dielectric layers for various applications such as solar cells, field-effect 

transistors and capacitors in order to optimize the processing methods for the next generation of 

flexible electronics. Due to the ease of preparation of the dynamically crosslinked material at the 

gram scale, as well as its solubility in low boiling point solvents, the system shows high potential 

for slot-coat die printing. It is anticipated that as the field of flexible and stretchable electronics 

continues to grow, new materials that possess mechanical durability, self-healing capabilities and 

tunable properties that can be produced in a large scale through printing technologies. As a result 

of the ability to produce materials into functional inks with the capability to be printed onto a variety 

of substrates at low cost with conformable opportunities for industrial production. 

With the results highlighted within this thesis, it is believed that our system will contribute to 

the next generation of soft, flexible, self-healing materials for large scale, cost effective applications 

that will ultimately enhance the robustness of flexible electronics for use in our daily lives.  

 



 

 84 

APPENDICES 

APPENDIX A. CHAPTER 3 SUPPORTING INFORMATION 

 

 

 

Figure A1. 1H NMR spectrum of pre-polymer 1 in CDCl3 after washing with hexanes/MeCN. 
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Figure A2. 1H NMR spectrum of pre-polymer 1 crosslinked with Fe(II) in CDCl3 
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Figure A.3. 19F NMR spectrum of pre-polymer 1 crosslinked with Fe(II) in CDCl3. 

 

 

Figure A4. FT-IR spectra of pre-polymer 1 before and after crosslinking with 0.25 eq. of Fe(BF4)2. 
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Figure A5. Energy-dispersive x-ray spectroscopy (EDX) analysis map; a) scanning electron 

Micrograph of EDX scanning area cumulative elemental overlay (yellow = Si, red = Fe), and b) 

independent elemental overlay of Fe atoms. Scale bar is 2 µm.   

 

 

Figure A6. Atomic force microscopy (AFM) a) height image, and b) 3d image of pre-polymer 1 

after Fe(II) coordination. Scale bar is 2.0 µm. 
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Figure A7. Stress-strain curves of pre-polymer 1 crosslinked with 0.33 equivalent of Fe(BF4)2  a) 

before; b) after self-healing for 24 hours, and c) after self-healing for 48 hours at room temperature. 

Measurements were recorded on two samples from two different batches of materials.  
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Figure A.8. Atomic force microscopy (AFM) height images of pre-polymer 1 after Fe(II) 

coordination a) after being cut with a razor blade; b) after 24 hours of self-healing; c) after 72 hours 

of self-healing, and d) depth profile of the damaged zone and its evolution upon self-healing. Scale 

bar is 20 µm. No more cut at the nanoscale was observed by AFM after more than 72 hours.  
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Figure A9. Preparation of compound (E)-N-butyl-1-(pyridin-2-yl)methenamine and investigation 

of the dynamic behavior of the imine bond by mass spectrometry. Measurements were completed 

in ASAP(+) sensitivity mode using the crude samples. 

 

 

Figure A10. UV-Vis spectra of pre-polymer 1 pristine, after Fe(II) coordination, and after being 

stirred in a 1.0 M solution of hydrochloric acid for 4 hours. 
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Figure A11. Degradation of Fe(II)-crosslinked soft polymer at various pH (aqueous HCl solutions) 

upon a) initial time; b) 24 hours, and c) 72 hours of stirring. 
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Figure A12.  a) 2-D Optical Microscope image of dielectric structures and b) 3D image of dielectric 

structures. 

 

 

 

Figure A13. a) Standard deviation between devices sensitivity: Pristine,100 cycles at 30% strain, 

healed for 24 hours, and healed after 100 cycles at 30% strain. Sensitivity averaged over 4 devices. 
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APPENDIX B. CHAPTER 4 SUPPORTING INFORMATION 

 

Figure B2. Thermogravimetric analysis of pre-polymer P1 crosslinked with Fe(BF4)2. 
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Figure B1. Thermogravimetric analysis of pre-polymer P1 crosslinked with Co(BF4)2 
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Figure B3. Thermogravimetric analysis of pre-polymer P1 crosslinked with Zn(OTf)2 

 

 

Figure B4. Thermogravimetric analysis of pre-polymer P1 crosslinked with Zn(BF4)2 
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Figure B5. Thermogravimetric analysis of pre-polymer P1 crosslinked with Zn(ClO4)2 
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Figure B6. Differential scanning calorimetry curve for pre-polymer P1 crosslinked with Zn(ClO4)2 

 

 

 

Figure B7. Differential scanning calorimetry curve for pre-polymer P1 crosslinked with Zn(BF4)2 
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Figure B8. Differential scanning calorimetry curve for pre-polymer P1 crosslinked with Co(BF4)2 

 

Figure B9. Differential scanning calorimetry curve for pre-polymer P1 crosslinked with Fe(BF4)2 
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Figure B10. Differential scanning calorimetry curve for pre-polymer P1 crosslinked with Zn(OTf) 
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Figure B11. a) UV-vis absorption spectra of P1 in CH2Cl2 with Zn(OTf)2; b) UV-vis absorption 

spectra of P1 in CH2Cl2 with Zn(ClO4)2; insets plot molar ratio of each Zn(II) salt  versus 

absorbance at 290 nm. Each titration included 0.1 molar equivalents of the respective metal salt per 

N-ligand in P1.  
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