
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-7-2020

Parallel Implementation of Privacy Preserving Multi-Layer Neural Parallel Implementation of Privacy Preserving Multi-Layer Neural

Networks Networks

Dipeshkumar Shaileshkumar Patel
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Patel, Dipeshkumar Shaileshkumar, "Parallel Implementation of Privacy Preserving Multi-Layer Neural
Networks" (2020). Electronic Theses and Dissertations. 8386.
https://scholar.uwindsor.ca/etd/8386

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8386?utm_source=scholar.uwindsor.ca%2Fetd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Parallel Implementation of Privacy
Preserving Multi-Layer Neural Networks

By

Dipeshkumar Shaileshkumar Patel

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2020

c©2020 Dipeshkumar Shaileshkumar Patel

Parallel Implementation of Privacy Preserving Multi-Layer Neural Networks

by

Dipeshkumar Shaileshkumar Patel

APPROVED BY:

B. Balasingam

Department of Electrical and Computer Engineering

D. Alhadidi

School of Computer Science

S. Samet, Advisor

School of Computer Science

May 7th, 2020

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

With recent technological advancements, the amount of personal user data that

is being generated is immense. Due to the large volume of data, machine learning

algorithms such as neural networks are serving as the backbone to derive patterns from

this data quickly. This need for big data analytics comes at the cost of the privacy of

user data. The second challenge that must be solved relates to the scalability of the

machine learning algorithm. Neural networks are known to deteriorate as the volume

of the data increases due to complex sum and sigmoid calculations. Therefore in this

thesis, an attempt to parallelize the neural network while also maintaining the privacy

of user data is made. This model would provide a viable option for big data analytics

without sacrificing the privacy of individual users while also maintaining precision

and the classification accuracy of the model. The implementation of the parallelized

privacy preserving neural network will be based on the MapReduce computing model

which provides advanced features such as fault tolerance, data replication, and load

balancing.

IV

DEDICATION

Dedicated to my late father Shaileshkumar Motibhai Patel, my mother

Jayana Shaileshkumar Patel, and my brother Akshay for their overwhelming

enthusiasm, support, love, and for making everything possible.

V

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Saeed Samet for his contin-

uous support and inputs through out my work. I could not have imagined a better

mentor for my study. I would also like to thank Dr. Dima Alhadidi and Dr. Bal-

akumar Balasingam for their inputs that helped me in refining and improving my

work and helping me in guiding my work in proper direction and leading my thesis

towards a gracious completion.

Also, I would like to thank my batch mates Parth Shukla, Lokesh Gupta,

Jayanth Kulkarni and Prit Patel, for keeping me encouraged, without whom I

could not have imagined my journey at the University. Special thanks to my best

friends Jay Patel, Neel Patel, Yash Patel, and Kushang Patel for always being

there.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENTS VI

LIST OF TABLES IX

LIST OF FIGURES X

1 Introduction 1
1.1 Big Data and Privacy Requirements 1
1.2 Motivation Behind The Work . 3
1.3 Problem Statement & Outlined Solution 4
1.4 Structure of Thesis . 4

2 Overview of Related Technologies 6
2.1 Privacy Preserving Methods in Big Data 6

2.1.1 Anonymization . 6
2.1.1.1 K-Anonymity . 6
2.1.1.2 L-Diversity . 8
2.1.1.3 T-Closeness . 9

2.1.2 Secure Multi-Party Computation 10
2.1.3 Differential Privacy . 11

2.2 The Perceptron . 13
2.3 Multi-Layer Neural Networks . 15
2.4 MapReduce . 17

3 Related Works 19
3.1 Privacy Preserving Neural Networks 19

3.1.1 CryptoNets . 20
3.1.2 Miscellaneous Approaches . 21
3.1.3 Trusted Hardware Components and Trusted Execution Envi-

ronments . 25
3.2 Approaches to Scale Neural Networks 25

4 Methodology 28
4.1 Privacy-Preserving MapReduce Differentially Private Neural Network 1 29
4.2 Privacy-Preserving MapReduce Differentially Private Neural Network 2 31
4.3 Privacy-Preserving MapReduce Differentially Private Neural Network 3 33
4.4 Differentially Private Stochastic Gradient Descent 34

VII

4.5 Neural Network Architecture . 36
4.6 Datasets . 36

5 Experimental Results & Analysis 37
5.1 Scalability Analysis . 37
5.2 Performance Analysis . 40

5.2.1 PPMRDPNN 1 Analysis . 40
5.2.2 PPMRDPNN 2 Analysis . 43
5.2.3 PPMRDPNN 3 Analysis . 46

5.3 Comparative Analysis . 49

6 Conclusion & Future Work 51
6.1 Conclusion . 51
6.2 Future Work . 52

REFERENCES 53

VITA AUCTORIS 57

VIII

LIST OF TABLES

2.1.1 Data set before applying K anonymity [3] 7

2.1.2 Data set after applying K anonymity [3] 8

2.1.3 Data set after applying L diversity [3] 9

2.1.4 Data set after applying T closeness [3] 10

4.0.1 Hadoop Specifications . 29

4.5.1 Neural Network Architecture . 36

5.2.1 PPMRDPNN 1 MNIST Overall Results 43

5.2.2 PPMRDPNN 1 Synthetic Data Overall Results 43

5.2.3 PPMRDPNN 2 MNIST Overall Results 45

5.2.4 PPMRDPNN 2 Synthetic Data Overall Results 46

5.2.5 PPMRDPNN 3 MNIST Overall Results 48

5.2.6 PPMRDPNN 3 Synthetic Data Overall Results 48

5.3.1 Results Obtained by Peer Researchers 49

5.3.2 Results Obtained by Proposed Methods 49

IX

LIST OF FIGURES

2.1.1 Ideal Protocol with 4 Parties [10] . 11

2.1.2 Working of Differential Privacy [15] 12

2.2.1 The Perceptron . 14

2.3.1 Multi-layer Neural Network Architecture 15

2.4.1 MapReduce . 18

4.1.1 Privacy-preserving Model 1 [21] . 31

4.2.1 Privacy-preserving Model 2[21] . 32

4.3.1 Privacy-preserving Model 3 [21] . 34

4.4.1 Differentially Private Stochastic Gradient Descent [1] 35

5.1.1 Scalability for PPMRDPNN 1 . 38

5.1.2 Scalability for PPMRDPNN 2 . 38

5.1.3 Scalability for PPMRDPNN 3 . 39

5.2.1 PPMRDPNN 1 Low Noise . 40

5.2.2 PPMRDPNN 1 Medium Noise . 41

5.2.3 PPMRDPNN 1 High Noise . 42

5.2.4 PPMRDPNN 2 Low Noise . 44

5.2.5 PPMRDPNN 2 Medium Noise . 44

5.2.6 PPMRDPNN 2 High Noise . 45

5.2.7 PPMRDPNN 3 Low Noise . 46

5.2.8 PPMRDPNN 3 Medium Noise . 47

5.2.9 PPMRDPNN 3 High Noise . 47

X

CHAPTER 1

Introduction

1.1 Big Data and Privacy Requirements

As of 2013, 2.5 quintillion bytes of data are created daily. The volumes of data are

vast; the generation speed of data is so fast that the data and information space

has become global. The analysis of the databases that store this data can provide

opportunities to solve major problems in our society like healthcare and others. A

hefty portion of organizations decide not to incorporate the services of big data an-

alytics due to the absence of standard security and privacy protection tools. So es-

sentially, big data specifically refers to those data sets that are so large and complex

that traditional data processing tools and techniques are not sufficiently applicable.

The amount of data that is generated on the internet, social networking, Internet of

Things (IoT) devices, and many other companies, is drastically increasing every day.

Big Data is formally defined as ”The information asset characterized by such a high

volume, velocity, and variety to require specific technology and analytical methods

for its transformation into value.” [15]. Based on this definition, the three properties

most suitable for the term are the 3V’s, also known as, volume, velocity, and variety.

Although these are the three main properties, others complement the features of big

data such as veracity, validity, variability, and vagueness. When the term volume is

related to big data, it refers to the large quantity of data at hand. Velocity is the

measure of how fast the data is coming in. The flow of the information is known

as the velocity vector. The diversity of big data, i.e., they may contain text, audio,

image, video, etc. is signified by variety.

1

1. INTRODUCTION

Privacy and security in terms of big data is an important issue. For complex applica-

tions the big data security model is not recommended as it will get disabled by default.

However, without it, data can be breached easily. To understand the difference be-

tween privacy and security, we must understand the context of each term. Privacy

refers to the privilege to have some control over how personal information is collected

and used. Which provides users the capacity to stop information about themselves

from becoming known to people other than those they give information to. One se-

rious issue is the de-identification of personal information during transmission over

the Internet. When we think about security we think about the practice of defending

information and information assets using technology and processes from a wide array

of security aspects such as: unauthorized access, modification, recording, destruction,

disruption, and disclosure. So when comparing both security and privacy we under-

stand that security is fundamental for protecting data, its not sufficient for addressing

privacy. To ensure big data privacy, various tools and techniques have been developed

in the past few years. The tools and techniques have been prepared per the big data

life cycle, i.e., data generation, data storage, and data processing. In the initial phase

of data generation, access restriction and data falsification techniques are used. The

middle stage of data storage relies on encryption techniques. These encryption tech-

niques rely on Identity-Based Encryption (IBE), Attribute-Based Encryption (ABE),

and storage path encryption. In addition, to protect sensitive information, hybrid

clouds are utilized to store the sensitive data on the cloud. The data processing

phase relies on privacy preserving data publishing (PPDP) [15]. Privacy preserving

data publishing consists of anonymization techniques such as generalization and sup-

pression. These techniques can be further coupled to solve classification, clustering,

and association rule mining problems. Classification and clustering techniques tend

to split the input into different groups, while association rule mining techniques find

relationships and trends within the input data. To handle the various measurements

of big data in terms of variety, velocity, and volume, there is a need for efficient and

effective frameworks to process this type of data that tends to come in at extremely

high speeds for a plethora of sources. The scope of our implementation will rely on

2

1. INTRODUCTION

big data privacy preservation in the phase of data processing. This type of model

categorizes the system into a stream, batch, graph, and machine learning process-

ing. Two stages are needed for privacy protection in the data processing phase. The

initial stage will safeguard the data from disclosure due to the possibility of it con-

taining sensitive information. The second stage will consist of extracting meaningful

information from the data without breaking privacy.

1.2 Motivation Behind The Work

Deep learning based off of artificial neural networks has become the backbone for

modeling, classifying and recognizing complex data such as images, speech, and text.

The unparalleled accuracy of these methods has made them the foundation for AI-

based products and services on the internet. Commercial companies that collect user

data on a large scale have become the main beneficiaries of this upcoming technology.

This is largely because the success of deep learning methods is directly proportional

to the amount of data available for training. Companies such as Google, Facebook,

and Apple take advantage of massive amounts of training data collected from their

users and the vast computational power of GPU farms to deploy deep learning on

a large scale. Massive data collection required for deep learning presents obvious

privacy issues. Highly personal user data is kept by large organizations indefinitely.

The users can neither delete it, nor restrict the way the organization chooses to use

it. Images and voice recordings often contain accidentally captured items such as

faces, computer screens, license plates, and the sound of other people talking. This

data is kept and subject to subpoenas and warrants, as well as warrantless spying by

national security and intelligence outfits. Many data owners, such as hospitals, are

unable to share data due to privacy and confidentiality concerns and cannot benefit

from large scale deep learning. Another issue that is not addressed in the literature

is that there are a lack of suitable privacy-preserving machine learning for users that

want to utilize them at a larger scale. Data privacy is also required by law in some

cases, e.g., for medical or financial data. Additionally, the desire of customers and

3

1. INTRODUCTION

clients for discretion and privacy is growing and has become a topic of public focus.

1.3 Problem Statement & Outlined Solution

The aim of this research is to attempt to parallelize the neural network while also

maintaining the privacy of the users data. This approach would provide a viable

option for big data analytics without sacrificing the privacy of individual users while

also maintaining the precision and the classification accuracy of the model. The

deployment of the parallelized privacy preserving neural network will be based on

the MapReduce computing model which provides advanced features such as fault

tolerance, data replication, and load balancing.

We tackle the problem with points stated below which we discuss comprehensively

in subsequent chapters of thesis.

• Development of the neural networks will be done using TensorFlow-privacy.

The networks will be optimized using a differentially private stochastic gradient

algorithm which will provide strong privacy guarantees.

• We present three novel neural network architectures to tackle three different

data intensive scenarios.

• The three scenarios tackle situations varying from: large volume of testing data

being present, large volume of training data being present, and a vast number

of neurons being present in the neural network.

1.4 Structure of Thesis

The subsequent chapters of the thesis are organized as follows. In Chapter 2, we

present the readers with succinct knowledge which lays a technical foundation for the

rest of the thesis. As for Chapter 3, we present the Literature Survey of related work

done in the area. Chapter 4 explains the implemented Methodology to solve the

problem. Chapter 5 includes the experiment results and analysis of the proposed

4

1. INTRODUCTION

solution and comparison with other methods. And lastly, In Chapter 6, we conclude

the thesis and address the work that can be possibly done in the future to refine the

proposed solution.

5

CHAPTER 2

Overview of Related Technologies

2.1 Privacy Preserving Methods in Big Data

The methods described in this section have been used to provide privacy to a certain

amount but their demerits have also led to the creation of more advance methods and

applications.

2.1.1 Anonymization

Anonymization is one of the most traditional techniques for privacy preserving data

mining, where generalization and suppression techniques are applied in order to pro-

tect an individuals privacy. In generalization, quasi-identifiers are replaced with less

particular but semantically consistent values. Whereas, in suppression techniques

some information is not released at all. However, re-identification is a weakness of

anonymization. To alleviate this threat, the concepts of k-anonymity, l-diversity,

and t-closeness were proposed to enhance traditional techniques for privacy preserv-

ing data mining. When anonymization is transferred to privacy preserving big data

analytics, the risk of re-identification increases so we must ensure that the privacy

preserving algorithms used are efficient. In the next few paragraphs we will explore

the three main anonymization algorithms: k-anonymity, l-diversity, and t-closeness.

2.1.1.1 K-Anonymity

K-anonymity is a property of a data set, usually used in order to describe the dataset’s

level of anonymity. A dataset is k-anonymous if every combination of identity-

6

2. OVERVIEW OF RELATED TECHNOLOGIES

revealing characterisitics occurs in at least k different rows of the dataset[29]. K-

anonymity is prone to two attacks namely homogeneity attack and the background

knowledge attack. K-anonymity can be applied on patient data as seen in table 2.1.1.

S.No Zip Age Disease

1 57677 29 Cardiac Problem

2 57602 22 Cardiac Problem

3 57678 27 Cardiac Problem

4 57905 43 Skin Allergy

5 57909 52 Cardiac Problem

6 57906 47 Cancer

7 57605 30 Cardiac Problem

8 57673 36 Cancer

9 57607 32 Cancer

Table 2.1.1: Data set before applying K anonymity [3]

K-anonymity algorithm is applied with k value as 3 to ensure 3 indistinguishable

records when an attempt is made to identify a particular person’s data. K-anonymity

is applied on two attributes, Zip and age as seen in Table 2.1.1. The result after

applying K anonymity can be seen in Table 2.1.2. The above technique has utilized

generalization to achieve anonymization. If we were to figure out that John’s age is 27

and he lives in 57677 zip codes then we can conclude that John has a cardiac problem

even after the anonymization as shown in Table 2.1.2. This is called Homogeneity

attack. For example, if John is 36 and it is known that John does not have cancer,

then John definitely must have a Cardiac Problem. K-anonymity can be achieved

by using either generalization or suppression [29]. K-anonymity can be optimized

to prevent data loss by minimizing generalization. Identity disclosure is the major

privacy threat which cannot be guaranteed by K-anonymity.

7

2. OVERVIEW OF RELATED TECHNOLOGIES

S.No Zip Age Disease

1 576** 2* Cardiac Problem

2 576** 2* Cardiac Problem

3 576** 2* Cardiac Problem

4 5790* >40 Skin Allergy

5 5790* >40 Cardiac Problem

6 5790* >40 Cancer

7 576** 3* Cardiac Problem

8 576** 3* Cancer

9 576** 3* Cancer

Table 2.1.2: Data set after applying K anonymity [3]

2.1.1.2 L-Diversity

To address the homogeneity attack that can break K-anonymity, L- diversity was

introduced. As per L-diversity there must be L well represented values for the sensitive

attribute (disease) in each equivalence class [23]. If the variety of the data is large,

it becomes difficult to implement L-diversity. L-diversity has its own weakness in the

form of the skewness attack [23]. When the overall data distribution is skewed into

a few equivalence classes attribute disclosure cannot be ensured. L-diversity is also

prone to the similarity attack[23]. From table 2.1.3 it can be seen that if it is known

that John is 27 years old and lives in the 57677 zip, then John is definitely in the low

income group because the salaries of all the people in the 576** zip is low compared

to others in the table. This is known as the similarity attack.

8

2. OVERVIEW OF RELATED TECHNOLOGIES

Sno Zip Age Salary Disease

1 576** 2* 5k Cardiac Problem

2 576** 2* 6k Cardiac Problem

3 576** 2* 7k Cardiac Problem

4 5790* >40 20k Skin Allergy

5 5790* >40 22k Cardiac Problem

6 5790* >40 24k Cancer

Table 2.1.3: Data set after applying L diversity [3]

2.1.1.3 T-Closeness

Another improvement to L diversity is the T-closeness measure. T- closeness is a

measure where an equivalence class is considered to have ’T-closeness’ if the distance

between the distributions of sensitive attribute in the class is no more than a threshold

and all equivalence classes have T- closeness [19]. T-closeness can be calculated on

every attribute with respect to sensitive attribute. From table 2.1.4 it can be observed

that if we know John is 27 years old, it is still difficult to estimate whether John

has a cardiac problem or not and if he is under the low income group or not. T-

closeness may ensure attribute disclosure but implementing it may not give a proper

distribution of data all the time. Earth Movers Distance metric is used to measure

the distance or closeness between two attributes[19]. The idea of EMD is to imagine

both probability distributions as piles of dirt and calculate the minimum amount of

work needed to reshape the first pile so that it has the same shape as the second [19].

The key attribute of EMD is that it takes distance into account.

9

2. OVERVIEW OF RELATED TECHNOLOGIES

S.No Zip Age Salary Disease

1 576** 2* 5k Cardiac Problem

2 576** 2* 16k Cancer

3 576** 2* 9k Skin Allergy

4 5790* >40 20k Skin Allergy

5 5790* >40 42k Cardiac Problem

6 5790* >40 8k Flu

Table 2.1.4: Data set after applying T closeness [3]

2.1.2 Secure Multi-Party Computation

Secure Multi-party Computation (SMPC) is an important subset of cryptography.

It has the potential to enable real data privacy. SMPC refers to the cryptographic

protocols allowing the distributed computation of a function over inputs that are

distributed without disclosing any information about the inputs [10]. Yao [31] in-

troduced this idea in 1982 with the help of the Millionaire’s problem, which allowed

two parties to determine whose values was larger without disclosing anything about

the individuals values. To get a better understanding, lets use an example: a secret

number that is larger than 1000, a hundred users within a system, and a quorum of 10

users. Each user is given a unique number between 100 and 199. Since the minimum

quorum requirement is 10 users, anytime a group of 10 or more people come together,

their combined numbers, x, will reveal the secret (x > 1000) without revealing any

persons individual number. Protocols based off of secure multi-party computations

tend to be compared to ideal protocols that utilize a trusted third party. A trusted

third party (TTP) is essentially an additional party that all participants fully trust.

These comparisons to a secure multi-party computation protocol become trivial, be-

cause each party can then just send their input to the third party who then sends

the results to each party. The goal of SMPC is to perform these computations and

achieve the security of a TTP protocol without the TTP.

10

2. OVERVIEW OF RELATED TECHNOLOGIES

Fig. 2.1.1: Ideal Protocol with 4 Parties [10]

From figure 2.1.1 we observe that there are n parties, denoted as P1, .., Pn having

inputs from x1, ..., xn. There are also a set of publicly known functions f1, ..., fn each

associated with the n inputs. The goal of SMC is that at the end of the protocol,

each participant receives the output for the corresponding function. The security goal

is that each participant should only be aware of their input and the output received

from the function and nothing else. Also, if a set of participants collude with each

other that nothing should be revealed other than what can be inferred.

2.1.3 Differential Privacy

Differential privacy is essentially a very rigorous mathematical definition of privacy.

An algorithm is differentially private if when an algorithm performs some statistical

analysis on a database, after looking at the output of that analysis, one cannot tell if

any user’s data was included in the original dataset or not. Simply put, differential

privacy guarantees that the behaviour of an algorithm will hardly changes when

11

2. OVERVIEW OF RELATED TECHNOLOGIES

an individual joins or leaves the dataset [8]. Anything the algorithm might output

on a database containing some individual’s information is almost as likely to have

come from a database without that individual’s information [8]. This guarantee

holds for any individual and any dataset. There are many other privacy measures

that can be used to secure user information. Anonymization is the most commonly

used technique. We have discussed the shortcomings of anonymization techniques.

They tend to be susceptible to threats such as the homogeneity attack, background

knowledge attack, linkage attack, differencing attack, etc. For example, Sweeney

[29] showed that quasi-identifiers such as gender, date of birth, and zip code can be

used to re-identify the majority of American people. Differential privacy provides

mathematical guarantees against these types of attacks. Differential privacy does not

define privacy under a binary notion of data being private or not. Differential privacy

assess privacy as an accumulative risk. Every time a users data is processed it is at

more risk to be exposed. The two parameters used to quantify privacy when working

with differential privacy are (ε, δ). Where ε denotes a metric of privacy loss at a

differential change in data, and δ bounds the probability of an arbitrary change in

the model behaviour.

Fig. 2.1.2: Working of Differential Privacy [15]

In differential privacy, analysts are not allowed to interact with databases con-

taining sensitive user information directly. A piece of software known as the privacy

12

2. OVERVIEW OF RELATED TECHNOLOGIES

guard is introduced between the analyst and the database to help protect privacy.

Figure 2.1.2 can be further explained in 4 steps:

• Step 1 The analyst can query the database through the privacy guard

• Step 2 The privacy guard evaluates the query and other previous queries to

assess the privacy risk.

• Step 3 The privacy guard will then fetch the answer from the database

• Step 4 Some noise will be added to the answer according to the privacy risk

and finally forwarded to the analyst

To finally summarize differential privacy in the form of a definition presented in

[8], a randomized function K gives ε - differential privacy if for all datasets D1 and

D2 differing on at most one element, and for all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≥ exp(∈)× Pr[K(D2) ∈ S]

2.2 The Perceptron

The perceptron is the simplest form of a neural network in the form of a linear

classifier used for binary predictions. In order for a perceptron to work, the data

must be linearly separably. It will not converge if the data is nonlinear [26]. A

perceptron takes several binary inputs x1, x2, ..., and produces a single binary output.

13

2. OVERVIEW OF RELATED TECHNOLOGIES

Fig. 2.2.1: The Perceptron

From figure 2.2.1, we can see that the perceptron takes in three inputs, x1, x2, x3. It

can have more or fewer inputs. To determine the output, the perceptron model is

dependent on the summation of weights. Weights w1, w2, ..., are real numbers that

express the importance of the respective inputs to the output. Whether the output

of the neuron is, 0 or 1, is determined if the weighted sum, Σjwjxj, is less than or

greater than some threshold value θ [26]. In algebraic terms, the notation can be seen

in equation 1.

output =

0, if Σjwjxj ≤ θ.

1, if Σjwjxj > θ.

(1)

Equation 1 represents the basic mathematical model for the perceptron algorithm.

Although it is easy to understand we can still simplify the equation by making two

notation changes. The initial change will be to write Σjwjxj as a dot product, w ·

x ≡ Σjwjxj, where w and x represent a vector that consists of the weights and the

inputs[26]. The second change is to move the threshold to the other side of the

inequality and to then replace it by what’s known as the perceptron’s bias, b ≡ −θ

[26]. Using the bias instead of the threshold, the rule can be rewritten:

output =

0, if w · x+ b ≤ θ.

1, if w · x+ b > θ.

(2)

14

2. OVERVIEW OF RELATED TECHNOLOGIES

In effect, the bias is a measure that will measure how easy it is for the perceptron to

output a 1. Or to put in other terms, it is a measure that measure how easy it is to

get the perceptron to ”fire”. If a perceptron has a large bias value, the perceptron

can easily output a 1, but if the bias is a large negative value, it becomes the difficult

for the perceptron to fire a 1 [26]. Once this value is computed, it is then passed

through an activation function. This function is non-linear and is called the activation

function. The purpose of the activation function is to introduce non-linearity into the

output of the neuron. This is an important aspect since most real world data is non-

linear and we want neurons to learn these non-linear representations. Every activation

function will take a single input and perform a certain fixed mathematical operation

on it.

2.3 Multi-Layer Neural Networks

A Multi-Layer Neural Network contains one or more hidden layers apart from one

input and output layer. While a single layer perceptron can learn only linear functions,

multi-layer neural networks can also learn non-linear functions.

Fig. 2.3.1: Multi-layer Neural Network Architecture

15

2. OVERVIEW OF RELATED TECHNOLOGIES

figure 2.3.1 shows a multi-layer neural network. Here, the units are arranged into

a set of layers, and each layer contains some number of identical units. Every unit

in one layer is connected to every unit in the next layer. The term used to denote

this is ”fully connected”. The first layer is the input layer, and its units take the

values of the input features. The last layer is the output layer, and it has one unit

for each value the network outputs. A single unit is denoted in figure 2.3.1, as this

particular architecture would be used for a regression or binary classification task.

All the layers between these are known as hidden layers. The units within each

layer is known as input units, output units, and hidden units, respectively. The

number of layers is expressed as the depth, and the number of units in each layer is

defined as the width. The basic neural network model can be described as a series of

functional transformations [4]. First we construct M linear combinations [4] of the

input variables x1, ..., xD in the form

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (3)

Where j = 1, ...,M , and the superscript (1) indicates that the respective parameters

are in the first layer of the neural network[4]. The parameter wji denotes the weights

and wj0 denotes the bias. The quantities aj are known as the activations. Each of

them will be transformed by utilizing a differentiable, non-linear activation function

to give

zj = h(aj). (4)

The nonlinear function h(·) are usually chosen to be the logistic sigmoid function or

the ’tanh’ function [4]. These values are once again linearly combined to give

ak =
M∑
j=1

w
(1)
kj zj + w

(2)
k0 (5)

where k = 1, ..., K, and K is the total number of outputs. These transformations are

16

2. OVERVIEW OF RELATED TECHNOLOGIES

related to the second layer of the neural network and w
(2)
k0 still corresponds to the

bias values. After this the output units are finally transformed using an appropriate

activation function to give a set of outputs yk. Each output unit is transformed using

a logistic sigmoid function or any other activation function that is suitable according

to the distribution of the data [4]. We denote the logistic sigmoid function below in

equation 6.

yk = σ(ak) (6)

where,

σ(a) =
1

1 + exp(−a)
(7)

In essence, we can combine all the different stages of the entire network that, the

sigmoidal function would take the form of

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(8)

In equation 8, the weights and bias variables have been combined into a vector

w. So as you can see, the neural network is simply a nonlinear function from a set

of input variables to a set of output variables controlled by a vector of modifiable

parameters [4].

2.4 MapReduce

MapReduce is a programming framework that allows us to perform distributed and

parallel processing on large data sets in a distributed environment [6]. The framework

consists of two distinct tasks - Map and Reduce. In the Map job, the block of data is

read and processed to produce key-value pairs as intermediate outputs. These key-

value pairs are then used as inputs into the Reducer. The Reducer then aggregates

these intermediate data tuples into a smaller set of key-value pairs or tuples to produce

17

2. OVERVIEW OF RELATED TECHNOLOGIES

the final output. The overall MapReduce process can be seen in figure 2.4.1.

Fig. 2.4.1: MapReduce

To get a more in depth understanding, when we split the file into chunks, each one

of them forms the input of a map task. Each map task is assigned to a computer

node called worker, which applies the map function to each key-value pair of the

corresponding input chunk[6]. The intermediate key-value pairs produced are stored

in the local disks of the workers. In order to speed up the algorithm and balancing

the load of workers, each intermediate key-value pair is stored in the local disk into

buckets through a hash function h [6]. Each bucket is assigned to a different worker,

which applies a reduce function specified by the user [6]. There are two important

functions that are included in these three phases, the shuffle and sorting function. The

shuffle function is the process of transferring data from the mappers to the reducers.

In order to speed up the algorithm this function can start even before the map phase

has finished. Shuffle is usually the most cost expensive round. The sorting function

is the process of sorting the series of values with the same key. If zero reducers are

specified, the MapReduce job will stop at the end of the map phase.

18

CHAPTER 3

Related Works

3.1 Privacy Preserving Neural Networks

The introduction of novel machine learning techniques has brought on a technological

revolution. The ability to train a machine to make decisions as a human would brings

a new perspective to what can be achieved. Machine learning benefits fields ranging

from social engineering, image recognition, healthcare services, financial services, etc.

The quality of the output of a machine learning algorithm is directly proportional

to the size and quality of the dataset that its trained on. Since data collection is a

scattered process, a lot of effort is required to collect them. Users tend to reluctantly

submit their data to third-party collectors. To convince users that their data is

secure and private, an approach to train the machine learning algorithms in a privacy

preserving way must be utilized. For this fundamental techniques such as encryption,

differential privacy, and other miscellaneous approaches can be used. When these

techniques are utilized on the data and then used to train a neural network we can

say that the neural network has satisfied a privacy preserving constraint. The scientific

term that is used to identify neural networks trained on encrypted data is CryptoNets.

Other ways to create privacy preserving neural networks include differential privacy,

genetic algorithms, third party servers, etc. which we will discuss further in this

chapter.

19

3. RELATED WORKS

3.1.1 CryptoNets

ML Confidential [11] which was developed by Graepel et. al., is a convolutional neu-

ral network that works on a homomorphic encryption (HE) scheme. Instead of the

nonlinear activation function they use a polynomial based approximation method.

They assume a cloud service based scenario, and ensure privacy during the transfer

period of the data from client and server. A public and private key is generated for

each client in the key generation phase [11]. Client data will be encrypted using ho-

momorphic encryption during the data transfer period to the server[11]. The training

of the model will be done using the encrypted data on the cloud and then use the

training model to classify the test dataset [11].

Another approach to creating cryptonets would be through using a low latency

framework like Gazelle, proposed by [17], they combine HE with garbled circuits to

create a privacy preserving Prediction as a Service (PaaS) environment. The authors

utilize Single Instruction Multiple Data (SIMD) to improve the encryption speed of

the homomorphic encryption process [17]. The goal of Gazelle is to allow the client

to do the classification process without revealing the input to the server and also

preserve the privacy of the model in the server[17]. To preserve the privacy of the

convolutional neural network the authors hide the weight, stride size, and bias in the

convolutional layers[17]. They go on to show that Gazelle completely outperforms

the cryptonets [7] proposed by Gilad-Bachrach et al., and MiniONN [20] in terms of

runtime.

The cryptonets [7] proposed by Gilad-Bachrach et al. infuses homomorphic en-

cryption in to the convolutional neural network. They show that cloud services can

apply encrypted predictions on encrypted training data, and then return the en-

crypted prediction to the client[7]. The client can then decrypt the prediction using

their own private key[7]. This implementation would be very useful to hospitals in

particular. The major disadvantage that this method presents is that with increase

in the number of non-linear layers the performance is limited. The error rate tends

to increase and the accuracy drops with deeper neural networks.

20

3. RELATED WORKS

We will now further evaluate on MiniONN proposed by [20]. MiniONN is a frame-

work that converts neural networks into oblivious neural networks. The conversion

results in accuracy loss due to the transformations of nonlinear functions. Two obliv-

ious transformations are provided for the piecewise linear activation function and for

the smooth activation function [20]. A smooth functions can be changed into a con-

tinuous polynomial by parting the function into a few sections. At that point, for each

part, polynomial estimation is utilized for the estimation, bringing about a piecewise

linear function. MiniONN supports any activation function that has a monotonic

range, piecewise polynomial, or can be approximated into polynomial functions[20].

SecureML, proposed by [24] is a method that leverages secure multi-party compu-

tation for privacy preserving deep learning. It utilizes Oblivious Transfer (OT), Yao’s

Garbled Circuits, and Secret Sharing [24]. They utilize linear and logistic regression

in a deep learning environment. They propose an addition and multiplication algo-

rithm for values that are secretly shared in linear regression. Stochastic Gradient

Descent (SGD) is used to calculate the optimum value of regression [24]. The main

weakness of this scheme is that its optimal for simple neural networks only. This

results in a very low accuracy.

3.1.2 Miscellaneous Approaches

The authors in [2] propose three machine learning models that consist of the com-

bination of Kernel Learning mode and Deep Neural Networks to lead to a novel

Multi-Kernel Learning and Hybrid Learning model to help better preserve privacy in

big data. The authors try to address the issue of privacy preserving machine learning

via utility maximizing lossy compression of data. The authors proposed models try

to give users access to only information necessary for the intended use, but nothing

else [2]. For this the authors focus on kernel learning which is efficient in learning

low-dimensional data and privacy – preserving utility cases, and the second candi-

date the authors focus on is deep learning. Deep learning will allow the effective

extraction of utility information from numerous feature representations else [2]. The

authors state that to the best of their knowledge they are first to propose this model

21

3. RELATED WORKS

of Multi-Kernel Learning and Hybrid Learning. Neural Network Architecture Before

kernel selection for the neural network is done, kernel-based compression is done as

it has shown to be effective in utility- maximizing lossy compression. Kernel-based

compression is done to obtain the dimensional projections from each kernel induced

vector space. There are two reasons for this, if the class is normally distributed after

mapping with the covariance then the projections are known to be optimal. Second,

these observations will capture the maximum mutual information between the obser-

vations and the utility subspace spanned by the class centers [2]. Because different

kernels provide different classification performances for a given task the authors per-

form a filtering process based on discriminant information metric. The discriminant

information metric measures the mutual information between the mapping and the

label. If a mapping has a low DI score it is removed. This will reduce the amount

of information and regularize the learning space allowing the DNN to learn more ef-

fectively [2]. A direct effect would be seen by an increase in classification accuracy.

Due to the reduction in information privacy preservation would also improve [2]. DI

metric is directly proportional to predictive accuracy. A fully-connected feed-forward

neural network with Rectified Linear Units (ReLU). Non-linear feature mappings will

occur up until the narrow layer, which will then be project on to the subspace. The

mappings are learnt by the neural network together with the projection [2]. In the

hybrid model, the input layer of the DNN will consist of multi-kernel features. The

rest will be a regular feed forward neural network. This separation between the fea-

tures and the DNN gives us the separation between public and private spheres [2].

Now for the compressive hybrid model, the multi-kernel features will again be the

input to the DNN. The hybrid model will include a narrow funneling layer which will

ensure the separation between public and private spheres. The hybrid model provides

the best privacy preservation among all the competing models [2].

Shokri et. al design, implement, and evaluate a system that allows numerous

parties to learn simultaneously using an accurate neural network model without the

sharing of their respective input datasets [27]. The authors parallelize and execute the

stochastic gradient descent optimization algorithm asynchronously, while also allow-

22

3. RELATED WORKS

ing each party to train their input dataset independently. This minimizes the sharing

of the models’ key parameters. The users’ preserve the privacy of their respective data

and still benefit from the models of other users. This will boost learning accuracy

beyond what they would achieve if a single dataset was used [27]. The authors state

that they are the first to implement this to the best of their knowledge. No previous

work has addressed the problem of collaborative deep learning with multiple partici-

pants using distributed stochastic gradient descent [27]. The aim of deep learning is

to extract complex features from high dimensional data and utilize those features to

build a model to produce an output. Neural networks that are used in deep learn-

ing are usually multi-layered networks so more abstract features can be computed as

nonlinear functions of lower level features. Usually, in a multi-layer neural network,

each neuron will receive the output of the neurons from the previous layer along with

a bias signal. The core protocol of the author’s approach is a Selective Stochastic

Gradient Descent protocol. During this protocol certain parameters contribute more

to a neural networks objective function and so these parameters undergo much bigger

updates during a particular iteration of training. In Selective SGD the user selects

approximately half of the parameters to be updated at each iteration. These can be

selected at random or by selecting those parameters whose values are farthest from

the local optima (larger gradient) [27]. The distributed selective SGD assumes that

two or more participants are training independently and at the same time. Partici-

pants will asynchronously share the gradients they individually computed with each

other. Each participant has full control on what they can share [27]. The sharing of

the gradients can be done directly, through a trusted central server, or through secure

multi-party computations [27]. The overall architecture of the proposed system can

be seen above. It is assumed that there are N participants and each has their own

local private dataset for training. The existence of a parameter server is assumed in

this proposed system [27]. Initialization of the parameters is done by each individual

and these parameters can be uploaded to the parameter server using a parameter

exchange protocol [27]. The parameters can be accessed by each participant through

this server. Now each participant can begin training using the stochastic gradient

23

3. RELATED WORKS

descent algorithm. The distributed selective stochastic gradient descent algorithm

(DSSGD) is independently run by the participants during each iteration [27]. The

steps of the DSSGD are shown below: Choose initial parameters and learning rate.

• Step 1: Download the parameters from the server and replace the corresponding

local parameters.

• Step 2: Run Stochastic Gradient Descent on the local dataset and the local

parameters should be updates according to step 1.

• Step 3: The gradient vector is computed, which is the vector of changes in all

local parameters due to SGD.

• Step 4: Upload the gradient vector to the parameter server.

The authors in [12] approach the problem of privacy-preservation in neural net-

works from a different perspective.They couple incremental learning and genetic al-

gorithms to achieve privacy preservation in neural networks. They go on to present

that their method allows to obtain an accurate model based on information in dis-

tributed databases without any information sharing during the training process with-

out degrading the classification accuracy. This approach allows to construct a global

classifier based on the horizontal partitioning of the data. The main characteristic

of the work done by [12] is that the distributed learning is done without exchanging

any pattern between the different operations hence preserving privacy. Local models

are built in accordance to the number of data partitions. Once each local classifiers

are trained they send the results to a central entity. At this central entity, a genetic

algorithm is used to build a more accurate final model taking advantage of the in-

cremental learning capacity [12]. This global model is then sent to each entity for

classification of new data. The authors evaluated their proposed approach using six

classification problems: shuttle, letter, adult, nursery, waveform and mushroom [12].

The proposed model in [12] was compared with the Naive-Bayes, Tree-Augmented

Naive-Bayes (TAN), C4.5, and with the artificial neural network. These were used a

local classifiers on each node.

24

3. RELATED WORKS

3.1.3 Trusted Hardware Components and Trusted Execution

Environments

Software Guard Extensions, that are featured in Intel processors starting with Sky-

lake, provide safe areas (enclaves) that protect code and data from every other soft-

ware on the platform. This includes privileged software such as the operating system

and hypervisor. Any code running in an enclave can operate on sensitive data with-

out the fear of accidental exposure of the data on the platform. The privacy and

integrity of the enclave is supported by the hardware. We can observe Chiron, pro-

posed by the authors in[14] which is a system for privacy preserving machine learning

as a service. Chiron conceals the training data from the service operator and also

hides the training algorithm and model structure[14]. Although its immplemented

on Intel SGX enclaves, it relies on other principles to achieve dual data privacy and

model confidentiality[14]. Chiron will run the standard machine learning process in

the enclave. A Ryoan sandbox is utilized to prevent the model from leaking training

data to the service operator[14]. With the help of a parameter server, Chiron is able

to achieve distributed training as model parameters can be shared within the enclave.

3.2 Approaches to Scale Neural Networks

In this section we will see the current work implemented in parallelization of neural

networks through MapReduce. When we think about the traditional machine learning

algorithms, we usually separate them according to their differences. The authors in [5]

show that most of the traditional machine learning algorithms fit a Statistical Query

Model (SQM) and they can be conveyed in a certain ”summation form” which enables

them to be easily parallelized on multicore componenents. A variety of learning

algorithms that are covered in [5] include locally weighted linear regression, k-means,

logisitic regression, naive Bayes, SVM, ICA, PCA, guassian dicriminant analysis, EM,

and backpropagated Neural Networks. The neural networks will be our main focus

as that is the core area we plan to expand our work on. For multicore systems,

25

3. RELATED WORKS

concurrent applications benefit the most due to little communication between the

cores [5]. According to [5] the Statistical Query Model permits a learning algorithm to

access the learning problem only through a statistical query oracle. Suppose we have

a function f(x, y) over instances, the statistical query oracle returns an estimate of

the expectation of f(x, y), essentially and average over the training/test distribution.

So any algorithm that calculation statistics or gradients can fit this model sinces

these computations can be batched and expressed as a sum over data points. When

the algorithm does calculations, these calculations can be divided over the multiple

cores. A division of the data set into as many pieces as there are cores is done.

Each core is given its share of the data to sum the equations over, and the results of

the all the cores are then aggregated in the form of the algorithm called ”summation

form”. The architecture that is proposed in [5] is largely inspired from the MapReduce

architecture proposed in the original paper [6]. The data is then cached for subsequent

MapReduce calls. Every algorithm will have its own instance, and each MapReduce

task will be assigned to its engine [5]. Similar to the MapReduce engine proposed

in [6], this engine will also have a master node which helps coordinates the mappers

and the reducers. The masters job consists of assigning the split data to different

mappers and then collects the intermediate data from the mappers. After this data is

collected, the master node will then delegate the data to the reduce to process it and

return the final results. The parallel implementation of the neural network model will

focus on the backpropagation process [5]. The network structure defined allows each

mapper to propagate its set of data through the neural network. For each training

example, the error is backpropagated and a partial gradient is calculated for each

of the weights in the network [5]. The reducer then sums all the partial gradients

from each mapper and performs a batch gradient descent to update all the weights

in the network [5]. The authors experimentation phase consisted of each algorithm

running on the MapReduce framework and the other being a serial implementation

without the framework. The experiments were performed on 8 machine learning data

sets from the UCI Machine Learning repository and two others from research groups.

In [22], Long and Gupta presented a scalable parallel artificial neural network using

26

3. RELATED WORKS

MPI (Message Passing Interface) for parallelization.It is worth noting that MPI was

designed for data intensive applications with high performance requirements. MPI

provides little support in fault tolerance. If any fault happens, an MPI computation

has to be started from the beginning. As a result, MPI is not suitable for big data

applications, which would normally run for many hours during which some faults

might happen. Sun et. al [28] implement a deep learning algorithm to train the

input data, where a MapReduce programming model is made use of to parallelize

the computation. They utilize a cloud computing hadoop cluster. The progress of

their machine learning algorithm takes place in three steps [28]. First, the step of

pre-training which makes use of deep learning technology to initialize weights, the

step to fine-tune the weights, and the last step aiming at improving the precision.

The motivation for adding a pre-training step is to counter act the inefficiency of back

propagation when converting high-dimensional data into low-dimensional data. They

utilize restricted Boltzmann machine for this. In the fine-tuning step, the algorithm

will train the pre-trained weights using back-propagation to get a precise value for

the weights. In the last step Adaboosting is utilized to refine the result of the data

training. For testing their algorithm, the authors in [28] utilize the MNIST dataset

and the AWS cloud computing platform with multiple EC2 instances. From the

overall evaluations the authors result prove that MapReduce has an excellent speed-

up performance and that high classification accuracy can also be achieved once the

overfitting problem has been overcame.

27

CHAPTER 4

Methodology

To tackle the problem statement, we propose three architectures that when coupled

with a differentially private algorithm to help preserve privacy and to deal with dif-

ferent types of data-intensive scenarios. The initial situation that we aim to address

is in which there is a large volume of testing data to be classified. In this scenario,

each mapper builds the same differentially private neural network classifier using the

same set of training data and a portion of the testing data. The second data-intensive

scenario focuses on the volume of the training data being very large. In this case,

the training data is segmented into data chunks which are processed by mappers in

parallel. Each mapper still builds the same differentially private neural network but

uses only a portion of the training dataset to train. An ensemble technique known as

bootstrapping will be used to maintain accuracy. The third scenario targets a situa-

tion in which the number of neurons in the neural network is significant. In this case,

the third model parallelizes and distributes the neural network among the mappers

in such a way that each mapper utilizes a portion of the neurons for training. The

neural networks will be implemented using TensorFlow-private enforcing differential

privacy, ensuring that the data will remain private. The infrastructure will be created

with the help of AWS EMR instances. The Hadoop cluster will consist of 5 nodes,

in which four will be Datanodes, and the remaining one will be a Namenode. The

hardware setup that will be utilized can be seen in table 4.0.1.

28

4. METHODOLOGY

Namenode

CPU: Core i7@3GHz

Memory:8 GB

SSD: 750 GB

OS: Linux

Datanodes

CPU: Core i7@3.8GHz

Memory: 32 GB

SSD: 250 GB

OS: Linux

Network bandwidth 1Gbps

Hadoop version 3.1.1

Table 4.0.1: Hadoop Specifications

4.1 Privacy-Preserving MapReduce Differentially

Private Neural Network 1

As previously stated the initial architecture proposed will be dealing with a situation

in which there is a large volume of testing data to be classified. Consider a testing

dataset that is segmented across mappers qi = r1, r2, r3, ..., rin, qi ∈ Q, where

1. qi denotes an instance;

2. Q denotes a dataset;

3. in denotes the length of qi; it is also used to determine the number of inputs to

the neural network;

4. the inputs are enclosed in the format of 〈instancek, targetk, type〉;

5. instancek represents qi, which is the input to the neural network;

6. targetk represents the desired output in instancek is a training instance.

29

4. METHODOLOGY

7. type consist of two values ”train” or ”test”, which will be marked by instancek,

if the value is ”test” the targetk field will be empty.

The files that contain the instance are stored and saved into the Hadoop Distributed

File System (HDFS) first. Each file will consist of the entire training data and a

portion of the testing data. The number of files will determine the number of mappers

to be utilized. In the initialization phase, each mapper will initialize a neural network.

Hence, there will be n differentially private neural networks in the cluster. All the

neural networks will follow the same structure and parameters. The mappers will read

the data in the form of 〈instancek, targetk, type〉 from the files and parses the data

files. If the type field consists of the ”train” value then that instance will be the input

in the neural network. The output of each of the layers is computed within the neural

network until the output layer generates the final output indicating the end of the

feed forward process. The neural networks on each mapper will then begin the back

propagation process. The weights and biases for each neuron will be updated. This

process is repeated until all the instances that are labelled as ”train” are processed

and the error is satisfied.

Each mapper will now begin classifying all instances labelled as ”test” by running

the feed forward process. Since each mapper only classifies a portion of the test set,

efficiency has increased. After that every mapper outputs an intermediate key value

pair in the form of 〈instancek, ojm〉, where instancek is the key and ojm is the output

of the mth mapper. The reducer then collects and merges the outputs the results into

the Hadoop Distributed File System. The architecture can be seen in figure 4.1.1.

30

4. METHODOLOGY

Fig. 4.1.1: Privacy-preserving Model 1 [21]

4.2 Privacy-Preserving MapReduce Differentially

Private Neural Network 2

The second scenario focuses on when the training data to be processed is significantly

large. In this situation, the training data is divided into chunks. Each of these data

chunks is fed as an input to the mappers. The criteria to determine the number

of mappers is dependent on the number of data chunks generated. So, each neural

network on the mappers will produce an independent classifier based on the training

parameters. The neural networks are trained using only a portion of the training data

to help reduce the computation overhead. A major issue is that the classification

accuracy of each neural network will degrade as it is trained on only a portion of

the training data. To solve this an ensemble technique such as bootstrapping is

utilized to convert numerous weak learners into a number of strong learners. To give

a brief overview, bootstrapping is a statistical re-sampling technique used to estimate

statistics on a population by sampling a dataset with replacement. In the initial

step of this algorithm balanced bootstrapping is performed to generate a number of

31

4. METHODOLOGY

subsets which will then be saved as individual files in the Hadoop Distributed File

System (HDFS). When the algorithm starts each mapper constructs one differentially

private neural network where the weights and biases are initialized in a range from

-1 to 1. The first record is then input into the neural network from the input file.

The mapper first parses the data and finds the instance type. If the instance type

is ”train” the data is fed into the classifier. Each neuron in the different layers will

then compute their outputs and generate the final output indicating the end of the

feed-forward process. The back-propagation process will then begin and the weights

and bias values will be computed and updated accordingly. The training process will

continue until all the training instances are run through. Now the all the instances of

type ”test” will be fed into the classifier for classification. The mappers will produce

the final classification results in the format of 〈instancek, ojm〉. In the last step, the

reducer will collect all the intermediate outputs. The outputs with the same key

will then be merged together. The reducer will then perform the majority voting

operation and output the final results into the Hadoop Distributed File System. The

architecture for the second algorithm can be seen in figure 4.1.2

Fig. 4.2.1: Privacy-preserving Model 2[21]

32

4. METHODOLOGY

4.3 Privacy-Preserving MapReduce Differentially

Private Neural Network 3

The third privacy-preserving algorithm aims to accommodate a significantly large

neural network on one MapReduce cluster. Hence, each mapper will be responsible

for holding many neurons. Many iterations take place in the algorithm containing

n layers. There will be n − 1 MapReduce tasks to implement the algorithm. The

feed-forward process in this algorithm will run for n − 1 iterations, while the back-

propagation process takes place in the last iteration. A data format in the form

of 〈reducerm, instancen, wij, θj, targetn, (w
2
ij, θ

2
j , ..., w

n−1
ij , θn−1

j)〉 is used to guarantee

that data passes from mapper to reducer in an efficient flow. Here reducerm represents

the mth reducer and instancen represents the nth training or testing instance from

the dataset. The weights and biases are represented by Wij and θj. Unlike our

previous two models, in this model the parameters are not initialized at startup,

they are saved in one file on the Hadoop Distributed File System. When the initial

computation begins, the mappers will compute the neurons output and publish in

the format of 〈reducerm, xj, (w2
ij, θ

2
j , ..., w

n−1
ij , θn−1

j), targetn〉, where xj is the output

of the neuron. The first parameter will guarantee that the mth reducer will collect the

output, maintaining the structure of the network. In this initial phase the weights and

biases will be set to values between -1 to 1. This reducer then produces m outputs.

The reducerm′ output indicates to the m
′th mapper to start processing the output

files. These output files are the input files for the next layer in the network. This

process continues where the mappers compute the neurons outputs and adjusting

the values of the weights and biases accordingly. The process continues until the

end of the feed forward process. The last round of back-propagation starts by the

mappers processing 〈reducerm′ , xj, (w
n−1
ij , θn−1

j), targetn〉, computing the output of

neurons, and publishing the results in the form of 〈xj, targetn〉. One reducer will

then collect the outputs in the form of 〈xj1, xj2, xj3, ..., xjk, targetn〉. The reducer

will then begin the back-propagation process and compute new weights and biases

for each layer. The previous input files containing the weights, biases, and outputs

33

4. METHODOLOGY

are retrieved and updated with the new values. The new values are updated in

the 〈reducerm, instancen, wij, θj, targetn, (w
2
ij, θ

2
j , ..., w

n−1
ij , θn−1

j)〉 format. The second

instance will be read by the reducer in the way of 〈instancen+1, targetn+1〉 since

instancen+1 and targetn+1 represent the updated values. The training process will

continue until all instances are processed and the error has been satisfied. During

classification, only the feed-forward process will be run and the reducer will publish

in the same format as the previous two models. The architecture for this model can

be seen in figure 4.3.1.

Fig. 4.3.1: Privacy-preserving Model 3 [21]

4.4 Differentially Private Stochastic Gradient De-

scent

Before we discuss the working of the differentially private stochastic gradient descent,

lets look at the working of the traditional stochastic gradient descent. Stochastic

gradient descent is an iterative process. During each iteration a random batch of

data is sampled from the training set. The error is then calculated between the

model prediction and the training label. The error which is also known as the loss is

34

4. METHODOLOGY

then differentiate with respect to the model parameters. These derivatives allow us to

see which model parameters to tweak in order to reduce the error. This will help the

model come closer to predicting the correct label. Iteratively computing the gradients

and applying them to update model parameters is known as descent. To ensure that

traditional stochastic gradient descent is differentially private two modifications are

needed. Foremost, the sensitivity of each gradient must be bounded. In simpler words,

there is a need to limit the amount of influence an individual training point can have

on a gradient computation. To solve this, the gradient is clipped on each training

point that it is computed on. This way it allows to bound how much each training

point can influence the model parameters. Second, we must randomize the algorithms

behaviour to make it statistically impossible to know whether or not any data point

was included in the training set by comparing the updates SGD utilizes when it

operates with or without the particular point in the training set. This is achieved

by sampling random noise and adding it to the clipped gradient. The algorithm,

proposed by [1] can be seen in figure 4.4.1.

Fig. 4.4.1: Differentially Private Stochastic Gradient Descent [1]

35

4. METHODOLOGY

4.5 Neural Network Architecture

The architecture of the neural network that is used in our algorithm can be seen in

table 4.5.1.

Layers Filter Pool Size Units Kernel Size Strides Padding Activation Function

Convolutional 16 - - 8 2 same RELU

Max Pooling - 2 - - 1 - -

Convolutional 32 - - 4 2 valid RELU

Max Pooling - 2 - - 1 - -

Flatten Layer - - - - - - -

Dense Layer - - 32 - - - RELU

Dense Layer - - 10 - - - SOFTMAX

Table 4.5.1: Neural Network Architecture

4.6 Datasets

The two datasets that have been utilized are the MNIST and a synthetic dataset that

was generated. MNIST is a collection of images that represent handwritten digits.

The MNIST dataset consists of a total of 70,000 images. Each image is 28 pixels

in width and 28 pixels in height, for a total of 784 pixels. The images are divided

in 10 different classes representing numbers from 0 to 9. The synthetic dataset that

we have created consists of 8 million values. The dataset consists of 12 features and

there are 3 different classes.

36

CHAPTER 5

Experimental Results & Analysis

Based on the methodology discussed we develop the system and test it various sce-

narios and derive the analysis of the results. The implementation of the three privacy

preserving algorithms was done using Hadoop, an open source implementation frame-

work of the MapReduce computing model. The Hadoop cluster was built on amazon

web services using Elastic MapReduce instances.

5.1 Scalability Analysis

Several experiments were carried out to measure the scalability of the algorithms

using the MNIST and synthetic dataset. Figure 5.1.1 is showing the computational

efficiency of the first privacy-preserving algorithm. From the graph, we can observe

the computational efficiency of a stand-alone neural network and the first proposed

privacy-preserving algorithm. Initially, our privacy-preserving algorithm behaves sim-

ilarly to the independent neural network. As the volume of the data increases, it

becomes evident that our privacy-preserving algorithm outperforms the independent

neural network. This is mainly due to the distribution of the testing data on the

mappers and the data nodes. Now figure 5.1.2 which shows the computational effi-

ciency of our second privacy-preserving algorithm. From the figure, we can see that

even from the start, the second proposed algorithm slightly beats the stand-alone

37

5. EXPERIMENTAL RESULTS & ANALYSIS

Fig. 5.1.1: Scalability for PPMRDPNN 1

Fig. 5.1.2: Scalability for PPMRDPNN 2

neural network and moves on to ultimately outperform the independent neural net-

work and PPMRDPNN 1. Similar to PPMRDPNN 1 algorithm, PPMRDPNN 2 also

38

5. EXPERIMENTAL RESULTS & ANALYSIS

scales well with growth in the data.

Fig. 5.1.3: Scalability for PPMRDPNN 3

Figure 5.1.3 shows the computation overhead incurred by the third privacy-preserving

algorithm. We can observe that the algorithm scales similarly to the independent

neural network, although it’s still faster. The third privacy-preserving algorithm

incurs higher overhead than our previous two proposed algorithms PPMRDPNN 1

and PPMRDPNN 2. This is because the map and reduce tasks are performed in

one scheduled job in our last two algorithms while our third privacy-preserving al-

gorithm performs many other duties causing the mappers and reducers to start and

stop multiple times continuously. Although PPMRDPNN 3 does not scale as well

as PPMRDPNN 1 and PPMRDPNN 2, it still performs better than the independent

neural network as the dataset grows larger. From the analysis of the three graphs

presented we can see that in terms of scalability, PPMRDPNN 1 and PPMRDPNN 2

would be the most efficient out of the proposed privacy-preserving algorithms. In the

next section we will discuss the performance analysis of all three privacy-preserving

algorithms.

39

5. EXPERIMENTAL RESULTS & ANALYSIS

5.2 Performance Analysis

The performance of all three privacy-preserving algorithms is measured as a function

of the privacy budget, ε. The algorithms are tested using three different levels of

the privacy budget. Each dataset was tested on the model under conditions where

the noise multiplier was changing to gauge a better understanding of the tradeoff

between accuracy and privacy. The increase in value of the noise multiplier is directly

proportional to the increase in security of the data. The levels range from low noise,

medium noise, and high noise. When the privacy budget ε is small, it signifies higher

privacy guarantees but lower accuracy. When the privacy budget ε is higher, it

means lower privacy guarantees but higher accuracy. The closer the value of ε is to

zero indicates a higher level of security. In this section, we observe the performance

analysis and find an optimal tradeoff between the privacy budget ε and accuracy.

5.2.1 PPMRDPNN 1 Analysis

In this section, we will observe the performance for the first privacy preserving al-

gorithm, PPMRDPNN 1. The privacy budget, ε is set at 8.01 to indicate low noise

injection. So, from Figure 5.2.1 (a), it can be observed that as the algorithm continues

to train on the MNIST dataset, the accuracy reaches to 99%. Now this is possible

since the noise injected into the data is fairly low.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.1: PPMRDPNN 1 Low Noise

40

5. EXPERIMENTAL RESULTS & ANALYSIS

The model is trained using 32 mappers for 60 epochs on the MNIST dataset and for

900 epochs on the synthetic dataset. Each of the 32 mappers gets an entire portion of

the training set and 1 of 32 splits of the test data. Each mapper would classify 1,250

instances for the MNIST dataset and 165,000 instances for the synthetic dataset.

By observing Figure 5.2.1(b), we can see that the training process is rougher than

the training process on the MNIST dataset. This is due to a few reasons, such as

the quality of the dataset. The MNIST dataset is much more refined than our syn-

thetic dataset. Also, we must consider that each mapper is training on more values

using synthetic dataset, which would result in more fluctuations. Regardless, PPM-

RDPNN 1 still achieves the same accuracy of 99% since there is low noise injection.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.2: PPMRDPNN 1 Medium Noise

From figure 5.2.2, we can observe the performance of PPMRDPNN 1 when a medium

amount of noise is injected into the data. The privacy budget ε is equal to 3.01 in this

case. The same measures as previous are used to evaluate the model when medium

noise is injected. We can observe that with the increase in noise our model achieved

97.5% on the MNIST dataset and 96.6% on the synthetic dataset. It can also be seen

that the curve for training is smoother for the MNIST dataset than our synthetic

dataset due to reasons we have already discussed. It can also be seen to achieve a

lower privacy budget our model is trained for less epochs on both datasets. This time

we train for 45 epochs on the MNIST dataset and 800 epochs on the synthetic dataset

41

5. EXPERIMENTAL RESULTS & ANALYSIS

allowing the model fewer epochs to query the noisy data when training resulting in

a lower privacy budget. Although there is a minor drop in accuracy, the increase in

security allows the model to be an positive choice for privacy preserving deep learning.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.3: PPMRDPNN 1 High Noise

The graphs in figure 5.2.3 show the performance of PPMRDPNN 1 under the condi-

tions when high noise is injected into the system. The privacy budget ε is equal to

1.13 making it as close to industry standard as possible. We train the neural network

for even fewer epochs this time. We train the model for 15 epochs on the MNIST

dataset and for 700 epochs on the synthetic dataset. There is a significant drop in

accuracy in comparison to when ε = 8.01 and ε = 3.01. When we inject high noise

we obtain an accuracy of 95.5% for the MNIST dataset and 91% for the synthetic

dataset. Although the accuracy for the MNIST dataset is not bad, the accuracy drop

for the synthetic dataset indicates that for larger datasets the accuracy could be below

expectations. Looking at the overall results regarding the scalability of the algorithm

and the privacy - accuracy tradeoff, PPMRDPNN 1 has proven to be an optimistic

model for large scale privacy preserving deep learning. Table 5.2.1 shows the overall

results of the model for the MNIST dataset can be seen along with other parameters

used to train the model. Table 5.2.2 shows the overall results and parameters for the

synthetic dataset.

42

5. EXPERIMENTAL RESULTS & ANALYSIS

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 1.3 256 15 1.13 95.5%

0.25 1.0 256 45 3.01 97.5%

0.25 0.7 256 60 8.01 99.0%

Table 5.2.1: PPMRDPNN 1 MNIST Overall Results

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 7 33,360 700 1.13 91%

0.25 6.6 33,360 800 3.01 96.6%

0.25 5.9 33,360 900 8.01 99.0%

Table 5.2.2: PPMRDPNN 1 Synthetic Data Overall Results

After analyzing both tables we can come to the conclusion that an optimal tradeoff

between privacy and accuracy can be achieved while distributing the computation of

the neural network.

5.2.2 PPMRDPNN 2 Analysis

To evaluate PPMRDPNN 2, we use the same two datasets, where the mappers are

trained by subsets of the training data and produced classification results of the

testing instances based on bootstrapping and majority voting. Figure 5.2.4 presents

the accuracy results of the PPMRDPNN 2 on the two datasets when low noise is

injected. It shows that with an increase in the number of training epochs in each sub

neural network, the accuracy based on majority voting continues to increase. In the

scenario of low noise injection, PPMRDPNN 2 achieves an accuracy of 98.7% on the

MNIST data set when trained for 60 epochs. An accuracy of 99% is produced on the

synthetic dataset when trained for 900 epochs. When we compare the accuracy curve

of both datasets to the PPMRDPNN 1 low noise results, we see that the curve is

smoother for the PPMRDPNN 2 algorithm. This indicates that the PPMRDPNN 2

model shows higher stability. The privacy budget for low noise injection remains the

43

5. EXPERIMENTAL RESULTS & ANALYSIS

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.4: PPMRDPNN 2 Low Noise

same at ε = 8.01. This time 18 mappers are used with each mapper classifying 1100

instances for the MNIST dataset and 147,000 instances for the synthetic dataset. We

can observe the performance results for PPMRDPNN 2 with medium noise injection

in figure 5.2.5.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.5: PPMRDPNN 2 Medium Noise

The PPMRDPNN 2 model is able to achieve an accuracy of 95.5% on the MNIST

dataset when the privacy budget ε = 3.01 and an accuracy of 98% on the synthetic

dataset. To achieve an accuracy this high with medium level noise injection proves

that this model is better than our previous PPMRDPNN 1 algorithm. The smooth

learning curve further proves our hypothesis of PPMRDPNN 2 being more stable

44

5. EXPERIMENTAL RESULTS & ANALYSIS

than PPMRDPNN 1. The model starts off slowly with a low accuracy for both

datasets and then proceeds to increase drastically with increase in training. Hence,

the bootstrapping algorithm and majority voting maintain the classification accuracy

even though the mappers are training on segmented datasets. Figure 5.2.6 presents

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.6: PPMRDPNN 2 High Noise

the accuracy under high noise injection. The accuracy drop is minimal for the MNIST

dataset under high noise injection as an accuracy of 94.5% is still achieved. Although,

we see a significant drop in accuracy from 98% to 93% for the synthetics dataset. This

is due to the dataset being significantly larger than the MNIST dataset meaning at

higher noise injection it becomes to difficult for the model to extract meaningful pat-

terns. The privacy budget ε = 1.13 shows that a high amount of noise was introduced

into the system and our algorithm still produces optimistic results. Evaluating Table

5.2.3 and 5.2.4 we can see that with medium noise injection an optimal tradeoff can

be achieved and our second privacy preserving algorithm is a viable solution for large

scale privacy preserving deep learning.

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 1.3 256 15 1.13 94.5%

0.25 1.0 256 45 3.01 95.5%

0.25 0.7 256 60 8.01 98.7%

Table 5.2.3: PPMRDPNN 2 MNIST Overall Results

45

5. EXPERIMENTAL RESULTS & ANALYSIS

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 7 33,360 700 1.13 93.0%

0.25 6.6 33,360 800 3.01 98.0%

0.25 5.9 33,360 900 8.01 99.0%

Table 5.2.4: PPMRDPNN 2 Synthetic Data Overall Results

5.2.3 PPMRDPNN 3 Analysis

PPMRDPNN 3 executes an entirely parallel and circulated neural network utilizing

Hadoop to manage a complex network with many neurons. Figure 5.2.7 presents the

results of our third proposed method with low noise injection. From observing the

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.7: PPMRDPNN 3 Low Noise

figure we can see that the PPMRDPNN 3 trains smoothly on the MNIST dataset but

fluctuations can be observed in the training of the synthetic dataset. We utilize 32

mappers in the implementation of this algorithm. In comparison with our previous

two algorithms, PPMRDPNN 3 produces a lower accuracy when there is low noise

injection. An accuracy of 98.5% and 95.6% is achieved for the MNIST and synthetic

dataset. As seen in the other algorithms, the accuracy continues to increase as it is

trained on more instances. The privacy budget ε is the same for all low noise injection

scenarios at 8.01. The accuracy obtained is respectable but its not comparable to the

46

5. EXPERIMENTAL RESULTS & ANALYSIS

accuracy achieved by PPMRDPNN 1 and PPMRDPNN 2.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.8: PPMRDPNN 3 Medium Noise

When we observe the results obtain by PPMRDPNN 3 in the case of medium noise

injection, we can notice the fluctuation in the accuracy curve for both datasets. We

see an accuracy of 97.3% and 92% achieved for the MNIST and synthetic datasets.

The accuracy achieved for the MNIST dataset is respectable with the privacy budget

being 3.01. Regardless, the accuracy obtained for the synthetic dataset is fairly low in

comparison with our previous model under the condition of medium noise injection.

Based on the fluctuations seen in the accuracy curves we can assess that this model

is not as stable as our previous two models.

(a) MNIST (b) Synthetic Dataset

Fig. 5.2.9: PPMRDPNN 3 High Noise

47

5. EXPERIMENTAL RESULTS & ANALYSIS

This is justified since PPMRDPNN 3 has to perform several other tasks discussed in

chapter 4 unlike PPMRDPNN 1 and PPMRDPNN 2. Figure 5.2.9 shows the results

for PPMRDPNN 3 under high noise conditions. Under the high noise conditions

the accuracy drops significantly for this model. An accuracy of 93.5% and 89% is

achieved for the MNIST and synthetic dataset. In comparison to all the other tests

performed, PPMRDPNN 3 performs poorly under these conditions. When we couple

these results with the scalability analysis of PPMRDPNN 3 we see that in comparison

to the other two models, this model is outperformed. Although it does not perform

as well as the other two models, the results are still respectable under the conditions

through which it was implemented and the additional tasks that it performs. The

model performs well under the persepective of feasibility testing. Table 5.2.5 and

5.2.6 show the overall results and other model parameters.

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 1.3 256 15 1.13 93.5%

0.25 1.0 256 45 3.01 97.3%

0.25 0.7 256 60 8.01 98.5%

Table 5.2.5: PPMRDPNN 3 MNIST Overall Results

Learning Rate Noise Multiplier Number of Microbatches Epochs Privacy ε Accuracy

0.25 7 33,360 700 1.13 89.0%

0.25 6.6 33,360 800 3.01 92.0%

0.25 5.9 33,360 900 8.01 95.6%

Table 5.2.6: PPMRDPNN 3 Synthetic Data Overall Results

48

5. EXPERIMENTAL RESULTS & ANALYSIS

5.3 Comparative Analysis

To get a better understanding of our results, we compare them with several states of

the art privacy-preserving neural networks. The results in table 5.3.1 represent the

results obtained by other researchers, and table 5.3.2 represents the results obtained

by the execution of our privacy-preserving models. When we compare our results

Model Dataset Neural Network Depth Accuracy

Shokri et.al. [27] MNIST 11 layers 99.17%

MiniONN [20] MNIST 9 layers 97.6%

Gilad-Bachrach et. al. [7] MNIST 9 Layers 99.0%

SecureML [24] MNIST 5 Layer 93.1 %

Table 5.3.1: Results Obtained by Peer Researchers

Model Privacy Budget (ε) Neural Network Depth
Accuracy

Scalability
MNIST Synthetic

PPMRDPNN 1

1.13

7 Layers

95.5% 91.0%

Good3.01 97.5% 96.6%

8.01 99.0% 99.0%

PPMRDPNN 2

1.13

7 Layers

94.5% 93.0%

Excellent3.01 95.5% 98.0%

8.01 98.7% 99.0%

PPMRDPNN 3

1.13

7 Layers

93.5% 89.0%

Poor3.01 97.3% 92.0%

8.01 98.5% 95.6%

Table 5.3.2: Results Obtained by Proposed Methods

with the results obtained by other researchers, we see that there is not a signifi-

cant difference in the accuracy obtained. The privacy models implemented by [20],

[24], [7] are all secure cryptonets that we have discussed in chapter 3. Now, these

49

5. EXPERIMENTAL RESULTS & ANALYSIS

secure cryptonets use encryption techniques to protect user data during the train-

ing phase. When these encryption techniques are coupled with the complex sigmoid

calculations of the neural network, the scalability of the neural networks collapses.

When we compare the accuracy of these approaches, we see that our models match

the performance of the state of the art methods under the conditions of low noise

injection. Our neural networks can achieve similar accuracies using fewer layers of

processing. We also present the scalabilities of all of our models and prove that an

optimal privacy-accuracy tradeoff can be achieved for large scale privacy-preserving

deep learning. For example, if we look at table 5.3.2 we can see that PPMRDPNN 2

with medium and high noise injection still achieves a respectable accuracy with minor

discrepancies when compared to the models proposed by [20], [24], [7], and [27]. An

additional benefit of PPMRDPNN 2 is the excellent scalability of the model for large

datasets. PPMRDPNN 1 also provides excellent results under high and medium noise

injection with good scalability. PPMRDPNN 3 achieves respectable accuracy scores

for the MNIST dataset under high and medium noise injection in comparison to the

peer models. The poor scalability aspect does not make it a viable model for large

scale datasets. When we compare our models with the performance presented by [27],

we see that Shokri et al. achieves higher accuracy. Still, the scalability of their model

is not tested against large datasets. Additionally, their model is still susceptible to

reconstruction attacks since they rely on a third party parameter server. In con-

clusion, our PPMRDPNN 1 and PPMRDPNN 2 model prove to be a viable option

for large scale privacy-preserving deep learning as they provide optimal scalability

coupled with an efficient privacy and accuracy tradeoff.

50

CHAPTER 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, we address the scalability and privacy issues of neural networks for large

scale privacy-preserving deep learning with the help of the MapReduce framework.

We implement the neural network architecture with the help of TensorFlow-privacy

and optimize the system using a differentially private stochastic gradient descent al-

gorithm to ensure strong privacy guarantees. In the initial chapters, we discuss the

various needs for privacy-preserving deep learning and different privacy-preserving al-

gorithms. We also discuss the utility of the neural network and also discuss methods

used in literature to scale and preserve the privacy using the neural network model.

From this, we pick up a new problem of implementing multiple neural networks in par-

allel using various data distribution techniques that utilizes an existing differentially

private algorithm to enable a way to secure user data while extracting the full benefits

of deep learning. We propose three novel models to achieve privacy-preserving deep

learning, and we evaluate and analyze the models thoroughly.

In the later sections, we do an in-depth analysis of the scalability aspects of

all three models. We test all three models under three levels of noise injections to

provide strong privacy guarantees. We then do a performance analysis of our model by

examining the effects by tweaking core parameters. We benchmark the performance

of our models with existing approaches. Finally, although the architecture of our

peers work is different, we can say that the performance of our models can match the

performance of their work in aspects such as accuracy.

51

6. CONCLUSION & FUTURE WORK

6.2 Future Work

When implementing our models, we restrict it to the MapReduce framework. In the

future, using Apache Spark would be beneficial as it provides in-memory processing

to speed up the execution process. Additionally, we use TensorFlow-privacy and

differential privacy to implement and train our neural networks. The models could

be trained on a secure and trusted hardware environment such as Intel SGX to provide

additional privacy guarantees. Furthermore, our models are most viable for multiple

data owners. There is a future scope to implement these models and make them

feasible for a broader audience.

52

REFERENCES

[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K.,

and Zhang, L. (2016). Deep Learning with Differential Privacy. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, pages 308–318, Vienna, Austria. Association for Computing Machinery.

[2] Al, M., Chanyaswad, T., and Kung, S. Y. (2018). Multi-Kernel, Deep Neural Net-

work and Hybrid Models for Privacy Preserving Machine Learning. In 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 2891–2895.

[3] Aldeen, Y. A. A. S., Salleh, M., and Razzaque, M. A. (2015). A comprehensive

review on privacy preserving data mining. SpringerPlus, 4(1):694.

[4] Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

[5] Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., and Olukotun,

K. (2006). Map-reduce for Machine Learning on Multicore. In Proceedings of the

19th International Conference on Neural Information Processing Systems, NIPS’06,

pages 281–288, Cambridge, MA, USA. MIT Press. event-place: Canada.

[6] Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on

Large Clusters. In OSDI’04: Sixth Symposium on Operating System Design and

Implementation, pages 137–150, San Francisco, CA.

[7] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., and Wernsing,

53

REFERENCES

J. (2016). CryptoNets: applying neural networks to encrypted data with high

throughput and accuracy. In Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48, ICML’16, pages 201–

210, New York, NY, USA. JMLR.org.

[8] Dwork, C. and Roth, A. (2014). The Algorithmic Foundations of Differential

Privacy. Foundations and Trends R© in Theoretical Computer Science, 9(3–4):211–

407.

[9] Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals

of Statistics, 7(1):1–26. Publisher: Institute of Mathematical Statistics.

[10] Frikken, K. B. (2011). Secure Multiparty Computation (SMC). In van Tilborg,

H. C. A. and Jajodia, S., editors, Encyclopedia of Cryptography and Security, pages

1121–1123. Springer US, Boston, MA.

[11] Graepel, T., Lauter, K., and Naehrig, M. (2013). ML Confidential: Machine

Learning on Encrypted Data. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg,

J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C.,

Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G.,

Kwon, T., Lee, M.-K., and Kwon, D., editors, Information Security and Cryptol-

ogy – ICISC 2012, volume 7839, pages 1–21. Springer Berlin Heidelberg, Berlin,

Heidelberg. Series Title: Lecture Notes in Computer Science.

[12] Guijarro-Berdiñas, B., Mart́ınez-Rego, D., and Fernández-Lorenzo, S. (2009).

Privacy-Preserving Distributed Learning Based on Genetic Algorithms and Arti-

ficial Neural Networks. In Omatu, S., Rocha, M. P., Bravo, J., Fernández, F.,

Corchado, E., Bustillo, A., and Corchado, J. M., editors, Distributed Computing,

Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Liv-

ing, Lecture Notes in Computer Science, pages 195–202. Springer Berlin Heidelberg.

[13] Hesamifard, E., Takabi, H., Ghasemi, M., and Wright, R. N. (2018). Privacy-

preserving Machine Learning as a Service. Proceedings on Privacy Enhancing Tech-

nologies, 2018(3):123–142.

54

REFERENCES

[14] Hunt, T., Song, C., Shokri, R., Shmatikov, V., and Witchel, E. (2018). Chiron:

Privacy-preserving Machine Learning as a Service. arXiv:1803.05961 [cs]. arXiv:

1803.05961.

[15] Jain, P., Gyanchandani, M., and Khare, N. (2016). Big data privacy: a techno-

logical perspective and review. Journal of Big Data, 3(1):25.

[16] Ji, Z., Lipton, Z. C., and Elkan, C. (2014). Differential Privacy and Machine

Learning: a Survey and Review. arXiv:1412.7584 [cs]. arXiv: 1412.7584.

[17] Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A. (2018). Gazelle: A Low

Latency Framework for Secure Neural Network Inference. arXiv:1801.05507 [cs].

arXiv: 1801.05507.

[18] Li, G., Su, X., and Wang, Y. (2019). A Privacy Protection Method for Learn-

ing Artificial Neural Network on Vertically Distributed Data. In Deng, K., Yu, Z.,

Patnaik, S., and Wang, J., editors, Recent Developments in Mechatronics and Intel-

ligent Robotics, Advances in Intelligent Systems and Computing, pages 1159–1167.

Springer International Publishing.

[19] Li, N., Li, T., and Venkatasubramanian, S. (2007). t-Closeness: Privacy Beyond

k-Anonymity and l-Diversity. 2007 IEEE 23rd International Conference on Data

Engineering, pages 106–115.

[20] Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivious Neural Network Pre-

dictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security - CCS ’17, pages 619–631,

Dallas, Texas, USA. ACM Press.

[21] Liu, Y., Yang, J., Huang, Y., Xu, L., Li, S., and Qi, M. (2015). MapReduce

Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

[22] Long, L. N. and Gupta, A. (2008). Scalable massively parallel artificial neu-

ral networks. Journal of Aerospace Computing, Information and Communication,

5(1):3–15.

55

REFERENCES

[23] Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007).

L-diversity: Privacy Beyond K-anonymity. ACM Trans. Knowl. Discov. Data, 1(1).

[24] Mohassel, P. and Zhang, Y. (2017). SecureML: A System for Scalable Privacy-

Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy

(SP), pages 19–38, San Jose, CA, USA. IEEE.

[25] Pathak, M. A. and Raj, B. (2013). Privacy-Preserving Speaker Verification

and Identification Using Gaussian Mixture Models. IEEE Transactions on Au-

dio, Speech, and Language Processing, 21(2):397–406.

[26] Rajaraman, A. and Ullman, J. D. (2011). Mining of Massive Datasets. Cam-

bridge University Press, New York, NY, USA.

[27] Shokri, R. and Shmatikov, V. (2015). Privacy-Preserving Deep Learning. In

Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’15, pages 1310–1321, New York, NY, USA. ACM. event-place:

Denver, Colorado, USA.

[28] Sun, K., Wei, X., Jia, G., Wang, R., and Li, R. (2015). Large-scale Artificial

Neural Network: MapReduce-based Deep Learning.

[29] Sweeney, L. (2002). K-anonymity: A Model for Protecting Privacy. Int. J.

Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570.

[30] Tanuwidjaja, H. C., Choi, R., and Kim, K. (2019). A Survey on Deep Learning

Techniques for Privacy-Preserving. In Chen, X., Huang, X., and Zhang, J., editors,

Machine Learning for Cyber Security, Lecture Notes in Computer Science, pages

29–46, Cham. Springer International Publishing.

[31] Yao, A. C. (1982). Protocols for secure computations. In Proceedings of the

23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pages

160–164, USA. IEEE Computer Society.

56

VITA AUCTORIS

NAME: Dipeshkumar Shaileshkumar Patel

PLACE OF BIRTH: Lusaka, Zambia

YEAR OF BIRTH: 1996

EDUCATION: Higher Secondary Diploma – Science Stream, Knowl-
edge High School, Nadiad, Gujarat, India, 2014

Charotar University of Science and Technology
(CHARUSAT), B.Tech in IT Engineering, Anand, Gu-
jarat, India, 2018

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, Canada, 2020

57

	Parallel Implementation of Privacy Preserving Multi-Layer Neural Networks
	Recommended Citation

	tmp.1594160289.pdf.63Lu5

