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ABSTRACT 

Electricity systems are undergoing significant changes. Demands are shifting in magnitude and 

temporal distribution due to developing policies and technologies such as electric vehicles, heat 

pumps, embedded generation and energy storage, while an increasingly renewable supply is 

intermittent and less flexible. As such, there is currently great uncertainty in the industry and future 

business pathways may vary significantly from the current paradigm. This research focused on 

developing a set of models which can be used by utility companies to leverage their smart meter 

data and gain insights into possible future impacts and opportunities.  

The thesis presents a series of novel models, developed and implemented with data provided from 

a utility in Southern Ontario. First, a regression model was developed to leverage the full value of 

utility smart meter data by disaggregating residential and commercial sector demands into base, 

heating and cooling end uses. The use of a variable temperature changepoint only marginally 

improved prediction accuracy, but significantly shifted disaggregation results, particularly at 

hourly resolution. This model was also applied for weather normalization, assessment of 

technology change and projection under different climate scenarios. A second model used this and 

additional data from literature to project long term utility level average and peak seasonal load 

curves. A dynamic interface with parameterized controls allowed real-time visualization of 

technology and policy impacts on the demand curve. A set of eight literature-based scenarios were 

also projected to demonstrate the extreme range of impacts predicted by different literature. These 

led to the conclusion that unmanaged technology penetration can lead to significant challenges 

such as increased peaks, large ramp rates and lower utilization. An analysis was then performed at 

finer geographic resolution, investigating impacts on representative distribution system 

transformers. First, the current variation in local technology penetration was examined, showing a 

significantly skewed distribution with many transformers having up to ten times the average rates. 

Clustering was then used to identify a set of eight diverse, representative transformer load profiles. 

Future scenarios were modeled, demonstrating that the impacts of technology and optimal 

mitigation techniques vary significantly between regions of the distribution system. Finally, the 

dynamic utility load curve model was also updated to project demands for the representative 

transformer groups identified. This allows users to simultaneously assess local impacts and 

mitigation strategies, as well as aggregate effects on the overall system demands. Together these 

works combine to provide a valuable toolset and significant insight into potential system impacts. 
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CHAPTER I: INTRODUCTION 

1 BACKGROUND 

Climate change is currently one of the largest political topics on a global scale and focus on 

mitigating its effects has continuously grown in recent years. In the center of this debate is the 

future of energy markets and energy systems, as efforts are made to reduce dependence on fossil 

fuels and shift to more sustainable sources. This involves focusing on efficiency, development of 

intermittent renewable energy sources such as wind and solar, and the transition of end-uses such 

as transportation and heating towards electricity. Such initiatives are already impacting the 

magnitude and distribution of daily electricity demand, as discussed by the Canadian National 

Energy Board (NEB) [1], as well as numerous other authorities concerned over highly variable 

demand such as California’s ‘duck curve’ [2]. The low flexibility of some clean generation assets 

is resulting in supply balancing challenges for system operators. Furthermore, the erosion of 

demand due to embedded generation has led to significant discussion around the potential for a 

‘utility death spiral’ [3]. One utility in the United States even saw three major companies 

representing 5% of their total demand forfeit significant exit fees in 2015 in order to leave the 

utility and independently source renewable supply [4]. While new demands from electric vehicles 

(EVs) and electric heating (EH) such as heat pumps (HPs) could offset some of the lost revenues, 

they also may increase peak demands, requiring investment in expensive peaking generation and 

distribution assets. These significant shifts in the temporal distribution of the demand curve only 

exacerbate the supply and demand balancing problems discussed previously.  

A significant complicating factor in the impending challenge is the large degree of uncertainty 

around both future regulatory measures and technology development. Utility Dive found the most 

commonly cited concern of utility workers in the past two year’s surveys to be uncertainty in 

market conditions and regulations [5]. Also, depending on which authority or scenario is 

considered, projections for technology deployment vary significantly. For example, the NEB’s 

2018 report [6] and the joint Institut de l’énergie Trottier and e3 Hub report [7] lead to estimations 

of Canadian EV penetration between 5-10% in 2030 in all scenarios, whereas the IESO’s 2015 

Planning Outlooks C & D [8] project penetrations equivalent to over 14%. These variations can 

even be large between scenarios by the same authority: NEB reference case scenario EV sales [6] 

combined with the vehicle ages in Ontario [9] lead to an estimated 12.6% penetration by 2040, 

compared to the technology case where this value is surpassed by 2030 and estimated to reach 

44.9% by 2040. Likewise, the Independent Electricity System Operator’s (IESO) four planning 

outlook projections vary significantly, with residential EH penetration decreasing slightly to 17% 

in one scenario, and more than doubling to 42% in another. Furthermore, the projections can 

change quickly from year to year, as shown by the technology case in the 2017 NEB Energy 

Market assessment projecting 25 GW of solar power by 2040 [10], compared to only 14 GW one 

year later in the 2018 technology scenario results [6]. In order to avoid risk, properly plan for future 
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energy systems and develop policy, the potential implications of these scenarios need to be 

modeled and evaluated. 

Historically, short-term, high resolution models have been used for operations planning, while 

longer-term predictions of bulk and peak demands were used for capacity planning [11]. However, 

due to the expected demand curve changes, these may no longer be sufficient for adequate policy 

planning. As a result, several organizations have developed detailed models for long-term changes 

in electricity supply and demand at much higher resolution. The U.S. Energy Information 

Administration (EIA) [12] and National Renewable Energy Laboratory (NREL) [13], [14] have 

developed bottom up models which use specific end-use curves to construct the total demand up 

to a national scale. These can be used to assess future energy sector scenarios based on sector and 

technology change, and demand growth. Other research attempted to partially reduce this extreme 

complexity and data requirement by separating only specific end-uses from sector load curves. 

Boßmann and Staffell used the models DESSTinEE and eLOAD to project scenarios for Germany 

and the UK in 2050 [15]. Meanwhile, the Lawrence Berkeley National Laboratory’s LBLN-Load 

model used customer clusters, disaggregating weather related demands with a temperature 

changepoint model and allocating other significant demands based on end-use datasets [16]. A set 

of Danish studies simplified still further using only sector load curves and adding demand for the 

new technologies of EVs and heat pumps to assess the impact on local and national electricity 

demand curves and systems [17]–[19]. A similar approach was also used for other Scandinavian 

countries by Koreneff et al. [20]. This literature provides a variety of insights and modeling 

techniques at varying levels of detail. However, the vast majority are focused at the national scale 

with varying degrees of local resolution. Furthermore, the Danish study showed that national 

datasets resulted in underestimation of local extremes.  

Figure I-1 uses a framework adapted from an NREL presentation on their detailed dsgrid model 

[21] to present a variety of energy models in terms of their extent and resolution in three categories: 

geographic, temporal and sectoral. The extent refers to the upper limit of model scope within that 

category, while the resolution indicates the lower level of detail included. It can be seen that the 

majority of models do not have high geographic resolution and focus mainly at the national scale. 

Meanwhile, the standard utility planning is quite limited in resolution across all three categories. 

The models with highest resolution require extreme volumes of data and computation, and once 

again generally focus on spanning up to large geographic extents. While many utilities now have 

a wealth of information from the proliferation of smart meter data, they may not have the expertise 

and resources to analyze it. For these reasons, the focus of this thesis is to develop a set of relatively 

simple models which will allow for a utility to easily use their data to gain insights into their 

customer base and the potential challenges or opportunities which may arise under the vast array 

of potential future scenarios. Such models and analyses will offer the opportunity to assess local 

mitigation techniques and make informed investments and policy decisions. The scope and 

resolution of this study is marked by the green circle on the adapted figure. 
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Figure I-1: Energy Model Literature Resolution Summary [21] 

2 METHODOLOGY 

Many utilities currently have smart meters recording customer demand data, however submetering 

of individual end uses is uncommon and typically limited to specific studies of limited sample size. 

Therefore, Chapter II focuses on developing a model to disaggregate specific end uses from the 

aggregate customer groups (sectors in this case), which can then be used in further modeling 

processes. Specifically, a temperature changepoint model based on nonlinear regression is 

developed to differentiate heating, cooling and base demand. The model implements several novel 

techniques to improve the fit of the data: using average temperature data of varying temporal 

resolutions to capture short and long term weather effects, using a varying changepoint 

temperature for each hour of the day to reflect behaviour changes, and implementing three probit 

models to reflect seasonal installation of portable air conditioners. While flexible for application 

on any data, this method was applied to residential and commercial sector customer data from a 

utility partner in southern Ontario. In addition to disaggregation, once fitted the model can then be 

used to project demand of a weather normalized year, or under different climate change scenarios. 

The disaggregated loads could also be used to asses the impact of changing technology mixes in 

space conditioning. This model was applied in both respects in the following chapters. 

Chapter III details a model designed to visually project average and peak seasonal daily load curves 

for a utility. The method assumes that sector demand will not change significantly in hourly 

distribution except where influenced by specific policy or technology changes. Thus, 

representative hourly curves for each sector could be scaled based on projected demand changes, 

while a set of modifying parameters are identified and associated with specific technology end-

use load curves. All of the identified factors are parametrized in dynamic controls which can be 
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adjusted in real time to show the impacts on daily demand curves. The dynamic nature allows the 

opportunity to quickly assess a wide range of scenarios, identifying each parameter’s impact and 

their potential interactions. The parameters included as controls in the model are as follows: 

• sector and specific end-use growth rates 

• EV penetration and charging pattern 

• residential and commercial rooftop PV penetration and orientation 

• residential and commercial EH penetration 

• residential and commercial electric hot water (HW) penetration 

• residential and commercial electric cooling penetration 

• average temperature increase (due to climate change) 

• energy storage (ES) capacity 

• industrial Corporate Power Purchase Agreements (CPPAs) 

• microgrid communities 

This model was once again calibrated with data from the southern Ontario utility partner. Both the 

residential and commercial data were disaggregated using the model discussed in Chapter II, then 

weather normalized and projected for alternate climate scenarios. PV generation data was also 

provided by the utility and extrapolated depending on the scenario, based on estimated regional 

potential. Most other parameters were based on simplified data from other sources. Using this 

model eight scenarios for 2040 were presented as a case study: four adapted from the IESO’s 

planning outlooks [8], and four developed based on a variety of literature sources. The vast 

difference in results between scenarios, all based on literature projections, demonstrated the 

uncertainty in the industry and extreme range of potential outcomes. This highlights the 

requirement for this form of flexible, dynamic modeling for risk assessment, evaluation of 

mitigation techniques and informed planning. 

An investigation into even finer geographical resolution, at the transformer level, is detailed in 

Chapter IV. This chapter examines the effects of localized clustering at the transformer level and 

how future technology penetration scenarios may impact the distribution system. To begin the 

variability in current localized technology penetration rates was assessed across different 

transformers in the utility partner’s service area. PV penetration was estimated based on the meter 

data provided by the utility, while residential and commercial EH penetration rates were estimated 

by clustering customers to identify those with EH. These results justified examination of extreme 

penetration scenarios in later steps, as even if the impacts are not expected to occur on a broader 

scale for many years, local effects may be seen much earlier. Next, the current normalized load 

curves of all transformers were clustered into groups using k-means. The resulting representative 

clusters showed significant differences in seasonality and daily demand distribution, 
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demonstrating the need to consider a diverse set of conditions when evaluating future impacts on 

the distribution system. These differences can be explained by similar localized clustering of 

technology use and customer behaviours. The representative cluster set was then used as the basis 

for a similar application of modeling future scenarios as in Chapter III, this time assessing 

distribution system impacts. Average characteristics of each cluster were used to establish the 

baseline demand, while specific end-use curves were added for technologies such as EV, PV, EH 

and ES. The results for each cluster were presented, as well as the aggregated impact on the total 

demand. The wide range of scenarios investigated allowed for identification of potential mitigation 

techniques to defer future capacity investment in different transformer clusters. Furthermore, 

comparing the impact on the local and total demand allows for the crafting of policies and decisions 

which benefit both the distribution level and overall electricity system. 

An additional Appendix C is also included, detailing updates made to the model presented in 

Chapter III in order to incorporate the finer resolution investigation of Chapter IV. This updated 

version presents the projected seasonal average and peak load curves for the total utility and each 

of the transformer clusters. It also includes several additional parameters such as local relative 

growth and penetration rates, and heat pump penetration. 

The three chapters in this thesis combine to provide a valuable modeling toolset for electricity 

system planners and operators. Using the wealth of smart meter data currently available to most 

utilities, these models can be calibrated and applied to quickly asses a wide range of scenarios. 

Their relatively simple parameterized design requires minimal computational and additional data 

resources. The insights gained through such evaluation can significantly aid in future planning and 

policy development.  
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1 INTRODUCTION 

Reliability in the energy system is of utmost importance and requires significant planning and 

forecasting. Accurate short-term forecasts are required to ensure adequate, and where possible, 

optimal unit commitment. Long-term forecasts are also required to aid in capacity planning and 

ensure that the system will have sufficient generation and transmission assets to meet future 

demand when and where required. Furthermore, the composition and complexity of national grids 

is changing with higher penetration of non-dispatchable renewable energy systems such as wind 

and solar, changing end uses such as electrical vehicles and heat pumps, and the implementation 

of energy storage. As energy systems become more challenging to manage, regulators and 

investors must decide which policies and technologies to develop or prepare for, increasing the 

importance of proper planning and accurate forecasts.  

The introduction of smart-meters has increased the granularity of data collected from our energy 

systems which has improved some forecasting accuracy. Individual customer metering data on a 

fine temporal resolution is available in many regions and recorded by many utilities in the 

Canadian province of Ontario. Paatero and Lund developed detailed bottom-up models using 

individual appliance loads and use patterns produced from empirical probabilistic equations [1]. 

Another study applied this form of model with Danish data, specifically focusing on the potential 

for load control of appliances [2]. Meanwhile, Sandels, Widén and Nordström used similar 

appliance data, along with Markov chains to determine use patterns, and a physical model to 

predict heating demands [3]. However, these models require large volumes of detailed data from 

submetering of individual appliances or end-uses. Such data richness is presently not common, 

and studies from one region cannot always be applied to another without validation. Even within 

a country or province technology use patterns or penetration rates may vary significantly.  

Weather can be a principal cause for seasonal and daily variation in electricity demand, and the 

lack of end-use data for space heating and cooling makes it challenging to forecast these effects. 

This is particularly important for assessing the impact of climate change or technological 

development. One study examined the factors effecting electricity demand in the cities of Athens 
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and London and identified that temperature is the most significant factor, but that the response to 

weather varies significantly [4]. In each city minimum demands were seen at different 

temperatures (20 °C and 16 °C respectively), highlighting the importance of regional analysis and 

the development of an adaptive model which can be applied to different regions. Hart and Dear 

similarly assessed the weather sensitivity at a further refined appliance level, identifying how 

specific end-uses varied with temperature [5]. An understanding of these relationships has led to 

the development of various models to disaggregate weather-related demands and project future 

effects. These include the use of Fourier series, neural networks, and regression. One paper used 

Fourier and additional orthonormal functions to model residential weather-independent demands, 

while implementing a dynamic response model to simulate weather-dependent loads [6]. Ji, Xu 

and Ye proposed a model where Fourier series are used to predict lighting-plug demands which 

are then subtracted from total demand to find HVAC demands [7]. The validated these results with 

actual data for four commercial buildings, however did not propose a model to predict future 

weather effects. Niu, O’Neil and O’Neil used a modified Fourier series which incorporated 

temperature effects to disaggregate HVAC from base demands, then examined various data driven 

algorithms to predict future weather effects from this data [8]. Another study used neural networks 

to predict short-term electricity consumption in households, examining the effects of various 

climate parameters and specifically focusing on the influence of air conditioning [9]. Swan and 

Ugursal provided a good review of these modeling techniques as well as numerous others, 

highlighting the advantages and disadvantages of each method [10]. While neural networks can 

provide high accuracy, their black-box nature makes it difficult to interpret the results and project 

for different scenarios. Regression models, which can be used for both disaggregation and 

prediction, are preferred for their simplicity and interpretability.  

Hong, Wilson and Xie focused on regression with polynomial functions of temperature, along with 

dummies to indicate the time of day and day type, in order to predict future demand and normalize 

monthly projections [11]. This study produced accurate predictions for hourly demand, as well as 

monthly peak demand but did not look to disaggregate the demand. Hobby and Shoshitaishvili 

predicted the effect of temperature on electricity consumption at each hour of the day using a cubic 

function [12]. The resulting demand was disaggregated as weather-related demand, while 

additional analysis was applied to further disaggregate the non-weather related demands. However, 

the weather-related demand was not identified specifically as heating or cooling. Several other 

studies have simplified the relationship between demand and temperature by breaking the 

temperature range into segments, and assuming linear relationships between variables within each 

segment. This has been applied to individual commercial customers, breaking the temperature 

distribution into 10°F temperature ranges from 50 to 100°F [13]. Going further, a study of 

residential customers recognized that the transition points for temperature relationships may 

change between customers. This study used three line segments with varying transition points 

fitted to the specific data and was able to identify five specific parameters for each house [14]. 

These included the average effects of temperature changes in cooling and heating seasons, and the 
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typical “activity load” at times of occupancy. Birt, et al. suggested this model could help utilities 

to identify candidate homes for demand side management programs but did not focus on projecting 

future demand [14].  

One common method simplifies the relationship between temperature and demand still further, 

using a single changepoint where the average consumer in a region transitions from heating to 

cooling. Along with these methods comes the terminology of heating degree days (HDDs) and 

cooling degree days (CDDs) which represent the number of degrees the average daily temperature 

is below or above (respectively) the changepoint temperature. In these studies HDDs and CDDs 

are the main inputs into the regression models. This type of model is very simple and functions 

well for aggregate demand where finer variations in customer behaviors are masked. Multiple 

studies have used this method to assess the impact of climate change scenarios in various regions. 

Mahmood, Saleemi and Amin used a model relating HDDs and CDDs to monthly electricity 

demand in the Kirachi district of Pakistan to examine the impact of increasing temperatures [15]. 

Another study examined monthly energy demands under climate change conditions and 

emphasized the importance of regional analysis due to the differences in sectoral compositions, 

infrastructure and climate [16]. Auffhammer, Baylis and Hausman examined a daily timescale, 

projecting the impacts of RCP4.5 and RCP8.5 conditions on both peak and average daily demand 

for multiple regions in the United Sates, and projected disproportionate growth in peak demand in 

most regions [17]. Kipping and Trømburg applied similar regression models with HDDs and other 

data to analyse Norwegian residential and commercial demand at hourly resolution, with a specific 

focus on heating demand [18–21]. The models also included the difference in HDD value between 

consecutive days as a parameter in the regression model. Analyses of individual houses and 

aggregate data showed that this variable accounted for thermal conservation on back to back cold 

days. HDDs facilitate disaggregation of base demand and heating demand and when combined 

with survey response data, the approach enabled identification of the demand associated with each 

type of heating system [18]. This information is valuable for projecting how demand may change 

in the future due to non-climate related factors, such as changes in technology penetration rates. 

Kipping and Trømburg then showed that the regression models using average daily temperature 

produced comparable results to models with hourly weather data [19]. In this study heating degree 

hours (HDHs) and cooling degree hours (CDHs) were calculated by the same method as HDDs 

and CDDs, simply using hourly data. The same daily model was also applied to model and 

disaggregate commercial building demand, comparing electrically heated and district heated 

buildings [20] and to disaggregate residential and commercial demand (heating & base) from 

regional aggregate demand [21]. These models demonstrate a simple disaggregation method for 

aggregate data which allows for projection of changing climate and technology conditions. 

This study supports specific objectives of the Climate Led Energy Evolution Network 2040 

(CLEEN2040), a progressive, look-head network focused on preparing energy stakeholders for the 

range of potentially disruptive modifiers that will impact energy systems between now and 2040.  

A priority objective of this network is the development of progressively determinant 
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technoeconomic demand models for representative stakeholders, from system operators to end 

users, that can ultimately be used to generate a spectrum of what-if scenarios intended to mitigate 

risk. In particular, this paper presents change point regression models to disaggregate utility level 

demand in the Canadian Province of Ontario and allow for projection of future demand curve 

dynamics at an hourly resolution. A model will be developed using the residential sector demand 

data, then also applied to the commercial sector to test its cross applicability. While the electricity 

demand in the Kipping and Trømburg’s data from Norway varies mostly due to heating demand, 

Ontario data shows a significant heating and cooling season. This paper also presents several new 

techniques for improving the model fit including the use of multiple temperature parameters at 

varying time resolutions, varying changepoints dependent on the time of day and day type (similar 

to the concept of using different fitted functions in [12]), and Probit analysis to model the usage 

of portable space conditioning devices.  

2 MATERIALS AND METHODS 

The following sections will detail the materials and methods used to develop the model. First the 

data used is presented in Section 2.1, followed by the regression model in Section 2.2, and finally 

the disaggregation method in Section 2.3. 

2.1 DATA 

The data used in this study includes one full year (2017) of hourly demand readings for 80,156 

residential customers and 8,278 commercial customers of a utility in Southern Ontario, as well as 

the corresponding hourly climate data from the Government of Canada historical records [22]. The 

datasets include customers of all building types and subsectors. The total hourly values from these 

datasets can be seen plotted on a scatter plot with colours indicating each month in Figure II-1 and 

Figure II-2.  The data was recorded in local standard time (LST) and adjusted for daylight savings 

time (DST) between March 12th and November 5th, to best reflect patterns in customer behaviour. 

Ten days of commercial customer data showed significant drops in demand and were suspected to 

contain measurement errors, thus were omitted. Several hours of temperature data were also 

missing, however there was never more than two sequential missing values, so the blanks were 

filled through linear interpolation between the preceding and following hours. All temperature data 

was shifted forward one hour to best match up with demand so that the temperature at hour 7:00 

was matched with the demand occurring between hour 7:00 and 8:00 (labeled 8:00). Finally, the 

sunrise and sunset times for each day in 2017 were also collected from the National Research 

Council of Canada sunrise/sunset calculator [23]. 

The coefficients found in preliminary linear regression of demand data against temperature data 

showed that in times of both cooling and heating, the increase in demand associated with a change 

in temperature was over three times as much in the residential sector compared to the commercial 

sector (p-values = 0 in all cases). This is also evident from examining the data in Figure II-1and 

Figure II-2. Similarly, the proportion of variance explained by temperature in this preliminary 
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analysis was much higher in the residential sector (R2 = 0.59 vs. 0.40). For this reason, in the 

remaining sections of this methodology only residential data will be presented as this was the 

dataset used for development of the model. The model was then applied to the commercial data by 

the same method, with both results included in Section 3.  

 
Figure II-1: Aggregate 2017 Hourly Residential Electricity Demand 

 
Figure II-2: Aggregate 2017 Hourly Commercial Electricity Demand 

2.2 REGRESSION MODEL 

This paper presents a multiple regression model for relating hourly electricity demand to climate 

and weather data. As is detailed in the following sections, a separate set of parameters, or sub-

model, is developed for each hour of the day on both weekdays and weekends/holidays (48 total). 

The overall model uses Eq. (1), where the time t and day type w indicate the sub-model:  

 𝐷𝑑,𝑤,𝑡 = ∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡
𝑖=𝐵6
𝑖=𝐵1 + 𝑃𝑜𝑠(∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡)𝑖=𝐻2

𝑖=𝐻1 + 𝑃𝑜𝑠(∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡)𝑖=𝐶6
𝑖=𝐶1 +  ∈𝑑,𝑡   Eq. (1) 

where: 

Dd = the hourly electricity on the dth day of the year 
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xi,d = the values on the dth day for the i variables which influence electricity demand and are 

described in the subsequent sections 

= the slope coefficients for the i variables influencing electricity demand from regression 

 ∈𝑑,𝑡  = the random error 

In each sub-model there are 14 variables (including 5 dummies), with those corresponding to base 

demand ranging from i=B1 to B6, those to heating from i=H1 to H2, and those related to cooling 

from i=C1 to C6. No intercept is required as it would be redundant with the dummy variables for 

day type described later. Note that although there are ten total day types, only five day-type 

dummies are required in each sub-model as they are each either a weekday or weekends/holiday 

sub-model. The function Pos( ) replaces all negative values with zero. During initial testing the 

model did not include this function and an ordinary least squares linear regression was performed, 

however on days with certain conditions the model would occasionally predict a negative cooling 

demand which is not possible. Therefore, this constraint was added to the model to improve the 

accuracy of disaggregation, and was found to also improve both the regression and cross validation 

results. All of the parameters included in the regression model are summarized in Table II-1 and 

detailed in the following sections. When ordinary least squares linear regression was performed 

all included parameters had p-values less than 0.01 in multiple sub-models, although not 

necessarily all. Note the Holiday-Midweek dummy includes holidays falling on a Tuesday, 

Wednesday or Thursday. This was used due to the low number of holidays which fall on these 

days and lack of sufficient data to include each day separately. Each set of sub-model coefficients 

was fitted in Python using the Optimize.Minimize function from the SciPy library [24] with the 

modified Powell method [25], solving for the minimum squared error. Thus the objective function 

which was minimized was the negative coefficient of determination between actual and predicted 

demand values and. The methodology is summarized in Figure II-3. 

Table II-1:Regression Model Parameters 

 Climate Parameters  Dummy Day Variables 

Weekday 

Models 

H1-2: HDH, 3dHDD 

C1-6: CDH, 5hCDH, 3dCDD, 

CDH*3dCDD, SDCH, HumSCDH,  

B6: Daylight 

B1-5: Monday, Tuesday, Wednesday, 

Thursday, Friday 

Weekend 

Models 

B1-5: Holiday-Monday, Holiday-Midweek, 

Holiday-Friday, Saturday, Sunday 
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Figure II-3: Methodology Summary 

2.2.1 CLIMATE PARAMETERS 

To model the effect of weather and disaggregate the space conditioning demands, the model 

mainly depends on CDDs and HDDs as input data. Several previous papers have shown that 

including temperature data from not only the current day, but also previous ones increases the 

accuracy of the model. Similarly, this model incorporates temperature data from several timespans, 

namely the current hour temperature, the past five-hour average temperature and the past 72-hour 

average temperature. This allows for the model to better accommodate for thermal conservation 

and the effects of fast short-term temperature changes, as well as longer term, slower changes. 

Testing showed that using the 5-hour and 72-hour average temperature, as opposed to the average 

of only the day before, or two days before provided the best model fit. This suggests that 

incorporating the full historical data over these periods allowed for the best representation of 

medium and longer-term temperature effects.  

Each of these average temperature values was separated into the cooling and heating effects, as 

detailed in 2.2.1.1. Thus, six temperature variables were developed: HDH, CDH, 5-hour average 

HDHs (5hHDH) and CDHs (5hCDH), and 3-day average HDDs (3dHDD) and CDDs (3dCDD). 

However, it was found that 5hDHD was not significant in the model and thus was excluded. 

Interaction variables between these temperature effects were also included, but testing suggested 

that the heating portion of the model required no interaction effects. For cooling the interaction 

between CDH and 3dCDD was found to improve model results significantly. The increased 

complexity for cooling is expected due to the higher variability seen at high temperatures 

compared to low temperatures (see Figure II-1). 

Previous studies have calculated degree days and hours with a consistent changepoint temperature, 

typically ranging approximately from 15 to 18°C [16-19], although often lower (12 to 14°C) for 

studies using commercial sector data [17], [20-21]. For example, the Government of Canada data 

uses a changepoint of 18°C [22]. This may suffice for models using only daily average 

temperature, however at finer resolutions this may not be adequate. Factors such as occupancy and 

activity would affect the requirement for heating or cooling and thus the changepoint temperatures. 

For this reason, the following section details the identification of varying changepoints for sub-
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models. The model was run with the varying changepoints, as well as a range of constant 

changepoints to assess whether varying the changepoint improved results. 

Preliminary results showed poor fit in the spring and summer periods, suggesting that cooling 

effects were still not being modeled adequately. Figure II-1shows that there is a very large demand 

variance at higher temperatures. Some months in the spring (April and May particularly) had 

several days which reach high temperatures, but the demand did not increase as significantly as in 

the summer. This effect can also be seen to a lesser degree in June. In the utility’s region many 

houses have portable air conditioners (ACs) such as in-window units, as opposed to central 

systems. It was assumed that these portable units were either not installed, or not turned on in 

months with only a few hot days, thus a model to account for their usage was established. This is 

detailed in Section 2.2.1.2 and led to the establishment of a new set of variables labelled summer 

cooling degree hours (SCDHs) to account for the effect of these portable air conditioning devices. 

Humidity was also found to influence demand in the evening/nighttime of these summer periods 

(p-value < 0.01 in 17 sub-models), thus humidex values were included using a similar method.  

2.2.1.1 CHANGEPOINT TEMPERATURES AND DEGREE HOURS/DAYS 

It is assumed that the changepoint between heating and cooling degree days is the temperature at 

which, on average, a customer has very little to zero heating or cooling demand. If temperature 

moves below or above this value, demand begins to increase as the customer begins heating, or 

cooling respectively. Based on this assumption, the changepoint is the temperature with lowest 

demand. Figure II-4 shows the hourly residential electricity demand graphed against temperature 

at 3:00AM and 3:00PM on weekdays, and weekends/holidays. By comparing the morning and 

afternoon distributions it is evident the minimum demand occurs at different temperatures 

(approximately 10 and 16°C respectively), and thus so does the change point. Furthermore, the 

increased demand due to changing temperatures is shown to be much less significant through the 

early morning. These shifting changepoints and effects can be explained by differences in human 

behaviour and occupancy throughout the day and it was hypothesized that developing a separate 

model for each hour of the day would allow for these factors to be reflected and improve the model 

fit. These human behaviour factors also vary between weekdays and weekends/holidays; therefore, 

it was assumed that treating these days separately would also improve fit. The variation between 

weekends and weekdays is not as clear from Figure II-4, however several hourly changepoints for 

weekends were just over 1 °C degree lower in the morning, and almost 1 °C degree higher in the 

early afternoon. These periods correspond to the times at which there would be the largest 

difference between day types in household occupancy and behaviour. Similarly, when simple 

linear regression was performed, the slopes observed during heating and cooling periods varied 

slightly between weekdays and weekends/holidays. Therefore, 48 total sub-models were produced 

for the 24 hours of the day and two day types. The benefit of this method is also significant given 

the noticeable discrepancy between the changepoint temperatures determined and the values used 

in the Government of Canada data.  
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The changepoints were determined by splitting the data into the 48 sets discussed previously, 

fitting it with a polynomial and finding the local minimum point of this polynomial (within the 

range of 5 to 22°C). Cross validation showed that a sixth order polynomial provided the most 

accurate estimate of the minimum point, without overfitting to the data. It should be noted that the 

effect of temperature also varies depending on the temporal granularity considered. For example, 

at 4:00 PM on weekdays the minimum demand was seen at temperatures of approximately 16°C, 

whereas the minimum demand corresponded to a three-day average temperature of approximately 

12°C. Therefore, this process was repeated to determine changepoints for each temporal resolution 

of temperature data as well. Once a changepoint temperature was found, the heating and cooling 

degree hours/days could be calculated using the following equations: 

𝐷𝐻𝑡,𝑅,𝑑 = 𝑀𝑎𝑥( 𝑇𝑐𝑡,𝑑,𝑅,𝑤 − 𝑇𝑡,𝑑,𝑅,𝑤, 0)  Eq. (2) 

𝐷𝐶𝑡,𝑅,𝑑 = 𝑀𝑎𝑥( 𝑇𝑡,𝑑,𝑅,𝑤 − 𝑇𝑐𝑡,𝑑,𝑅,𝑤 , 0)  Eq. (3) 

where 𝐷𝐻𝑡,𝑅,𝑑, 𝐷𝐶𝑡,𝑅,𝑑, 𝑇𝑡,𝑑,𝑅,𝑤 and 𝑇𝑐𝑡,𝑑,𝑅,𝑤 are the average degree heating hours/days, average 

degree cooling hours/days, average temperature and changepoint temperature at time t, on the dth 

day of the year, using time resolution R (one hour, five hour or 3 day average), and day type w.  

 
Figure II-4: The Time Dependent Effect of Temperature on Residential Demand 
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2.2.1.2 PROBIT ANALYSIS 

Probit analysis relates the percentage of a sample responding to an environmental variable to the 

value of the variable. Previous studies have used this method to model the patterns of air 

conditioning use [5,9]. These studies have used a sigmoidal response function to relate usage to 

both degree days and humidex. In this model two separate sigmoid functions were fitted to average 

temperature variables using the following equation: 

𝑃𝑚,𝑑,𝑡 =
1

1+𝑒−𝑛(𝑇𝑎𝑣𝑔−𝑇50)   Eq. (4) 

where  indicates the percentage response at month m, day d and time t, n and T50 are constants 

and Tavg is the variable to which the function is fitted. As previously discussed, many customers 

in the utility region have portable in-window air-conditioning units which are installed and turned 

on temporarily as required. It was assumed that each of these steps would be a response to changing 

temperatures over different time horizons. Thus, the sigmoid functions representing installation 

and removal of portable units were fitted as a response to the average temperature of the past week, 

while the response of turning these units on and off was fit to the past 24 hour average temperature. 

For the installation and turning on/off Probit models it was assumed that 5% of users would 

respond once the average temperature had reached the maximum hourly changepoint temperature 

(approximately 16°C). The removal model assumed all but 5% of units would be removed once 

the average temperature reached the minimum hourly changepoint temperature (approximately 

10°C). Finally, it was assumed for all models that 95% of the sample would respond once the 

average temperature reached the 95th percentile value of the year. Each sigmoid function was 

fitted to the two data points, finding the constants n, and T50 shown in Table II-2. 

Table II-2: Fitted Sigmoid Functions for Air Conditioning Probit Analysis 

  

5% Response 

Temp. (°C) 

95% Response 

Temp. (°C) 

Fitted Sigmoid 

Constant n 

Fitted Sigmoid 

Constant T50 

Installation (Avg. 

Weekly Temperature) 
16 22.77 0.8698 19.38 

Removal (Avg. 

Weekly Temperature) 
10 22.77 0.4611 16.38 

Tuned on (Avg. Daily 

Temperature) 
16 24.22 0.7164 20.11 

 

It was assumed that once a customer had installed their portable AC units they would not remove 

them due to a slight temperature drop, until the summer cooling season had ended. Inspection of 

the data suggested that the increased response to CDHs and CDDs seen in the summer continued 

through September, beginning to decline in October. Therefore, the installation (Eq. (5)) and 

removal (Eq. (6)) models were adapted to the following: 

 𝐹𝑜𝑟 𝑚 ≤ 9:   𝑃𝑚,𝑑,𝑡 = 𝑀𝑎𝑥 (
1

1+𝑒−𝑛(𝑇𝑎𝑣𝑔−𝑇50)
 , 𝑃𝑚,𝑑,𝑡−1)  Eq. (5) 
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𝐹𝑜𝑟 𝑚 ≥  10:   𝑃𝑚,𝑑,𝑡 = 𝑀𝑖𝑛 (
1

1+𝑒−𝑛(𝑇𝑎𝑣𝑔−𝑇50)
 , 𝑃𝑚,𝑑,𝑡−1)  Eq. (6) 

where m is the month of the year. The installation percentage increases through the spring to a 

peak in the summer, using Eq. (5) and the installation constants. In the fall, installation percentage 

then declines as temperature decreases, using Eq. (6) with the removal constants.  

These summer cooling effects were incorporated into the regression model through a variable 

named SDCH which was calculated as follows: 

𝑆𝐶𝐷𝐻 = 𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 ∗ 𝑃𝑜𝑛 ∗ 5ℎ𝐶𝐷𝐻    Eq. (7) 

This variable incorporates the percentage of portable AC devices installed (based on weekly 

average temperature), the percentage of those installed which are on (based on daily average 

temperature), and the magnitude of response (based on past five-hour average temperature). 

Finally, the effect of humidity was incorporated similarly with the variable HumSDCH and using 

the past five-hour average humidex: 

𝐻𝑢𝑚𝑆𝐷𝐶𝐻 = 𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 ∗ 𝑃𝑜𝑛 ∗ 5ℎ𝐻𝑢𝑚𝑖𝑑𝑒𝑥  Eq. (8) 

2.2.2 ADDITIONAL PARAMETERS 

Several non-climate variables were also included in the regression model. The sunset and sunrise 

times were incorporated into the model using a variable indicating whether there was daylight in 

a given hour (1 for sunlight, 0 for not). If the sunrise/sunset occurred part way through the hour, 

the variable was set to the proportion of time with sunlight. For example, if sunset occurred at 8:30 

PM, the value for hour 9:00 PM would be 0.5 because half of the time period 8:00-9:00 has 

sunlight. Finally, although the response to weather change was assumed to be consistent within 

the groups of weekdays and weekends, the baseline demand may vary. For this reason, a set of 

dummy variables were included to indicate the day of the week. These dummy variables replaced 

the need for an intercept as they essentially represented a different intercept for each day type.  

2.3 DISAGGREGATION 

One benefit of using a changepoint model is that once the model had been fitted, the demand can 

easily be disaggregated. It was assumed that the demand is composed of a baseline demand which 

does not vary significantly throughout the year, and two temperature-dependant portions, space 

heating and space cooling. Although previous analysis of various non-space-conditioning 

appliances included in base demand has demonstrated variations of demand in devices such as 

refrigerators and water heaters with weather, these variations are much less significant. Thus the 

assumption here that all demand associated with temperature variables is space conditioning 

demand should provide a reasonable estimate. In order to reflect any systematic error on seasonal 

basis, the error from the regression model was added to the base demand. Based on this assumption 

the demand can be disaggregated as follows: 
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𝐵𝐷𝑑,𝑤,𝑡 = ∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡
𝑖=𝐵6
𝑖=𝐵1 + ∈𝑑,𝑡     Eq. (9)  

where 𝐵𝐷𝑑,𝑤,𝑡 is the baseline demand, ∈𝑑,𝑡 is the error from the regression model in Eq. (1) and 

B1 to B6 is the subset of non-climate parameters, 

𝐻𝐷𝑑,𝑤,𝑡 =  ∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡
𝐻2
𝐻1        Eq. (10) 

where 𝐻𝐷𝑑,𝑤,𝑡 is the heating demand and H1 to H2 is the subset of parameters for heating (DH 

variables), and 

𝐶𝐷𝑑,𝑤,𝑡 =  ∑ 𝛽𝑖,𝑤,𝑡 𝑥𝑖,𝑑,𝑡
𝐶6
𝐶1        Eq. (11) 

where 𝐶𝐷𝑑,𝑤,𝑡 is the cooling demand, and C1 to C6 is the subset of parameters related to cooling 

(DC variables). In this method, the error term is assumed to be daily variation in the baseline 

demand. The disaggregated demand is compared to similar data from relevant literature in 3.2.2. 

This model could also be applied for prediction of future demand based on predicted weather data 

and these predictions could be similarly disaggregated. The only difference there would be that 

there is no known error term for the baseline demand in Eq. (9), but this could be replaced by a 

random variable.  

3 RESULTS & DISCUSSION 

The following sections detail the regression (Section 3.1) and disaggregation (Section 3.2) results 

obtained for both the residential sectors. 

3.1 REGRESSION RESULTS 

The regression results are first presented for the residential sector since this was the data used to 

develop the model. The results are then compared to those obtained using fixed changepoint 

models. These are followed by the results obtained by applying the same method to the commercial 

sector.  

3.1.1 RESIDENTIAL SECTOR 

The regression results showed a good fit with the actual data, with the predictions explaining over 

97% of the variance within the complete dataset (R2 = 0.9710). This was comparable to the R2 of 

0.99 found by Kipping and Trømburg, despite the challenge of having both a significant heating 

and cooling effect. The mean absolute percent error (MAPE) for all hourly predictions was 4.57%. 

This is comparable to the range of 3.5-5.0% shown by the models studied by Hong, Wilson, and 

Xie, which had the disadvantage of not allowing for simple disaggregation [11]. When using 

regression, it is possible to produce a model which is very well fit to the specific data used in 

calibration, but which performs poorly when applied to new datasets. This phenomenon of excess 

specificity is known as overfitting, whereas the ability of a model to be applied to new data is 

called generalizability. To ensure the model was not overfitting the data and was sufficiently 
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generalizable that it could be applied for demand predictions with future weather datasets, cross 

validation was performed. In cross validation, a dataset is split into two portions, training and 

testing. The model is fit using the training data, then applied to predict the testing data. The model 

performance is compared in both portions of the dataset, and if it performs significantly worse 

with the testing data this indicates it was overfitted. For this application, the cross validation was 

repeated 1000 times with a training set composed of a randomly selected 70% of the data, and the 

remaining 30% used for testing. The results for each sub-model can be seen in Table II-3. 

Stratification was used when selecting the datasets to ensure each day type was represented in the 

training set. There was only one holiday on a Tuesday and Friday, so these instances were always 

included in the training set. The average coefficient of determination for the training sets was 

0.9423 while the value for the test set was only slightly lower at 0.9223. The models for 

weekends/holidays performed significantly worse with the testing set. This is due to the smaller 

quantity of data for this day type, but the training and testing coefficients of determination were 

still reasonably comparable at 0.9419 and 0.9129 respectively. It is notable that the worst fit was 

obtained around the time when customers are getting up in the morning and getting ready for the 

day (8:00AM on weekdays and 9:00-10:00 AM on weekends/holidays). This could be because this 

would be a time of high activity not dependant on temperature, leading to a larger proportion of 

unexplainable variability. It should be noted that the cross-validation results provide an idealized 

measure of model accuracy when it comes to projecting future demand. In reality, model inputs 

such as predicted future weather data will contain uncertainty and thus the error of future projected 

electricity demands could be much higher. For projections, the model accuracy will partially 

depend on the accuracy of the data input into it. 
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Table II-3: Residential Cross Validation Coefficients of Determination 

Model Time / 

Day Type 

Training Testing 

Weekdays 
Weekends /  

Holidays 
Weekdays 

Weekends /  

Holidays 

12 AM 0.9528 0.9503 0.9373 0.9178 

1 AM 0.9475 0.9447 0.9281 0.9033 

2 AM 0.9421 0.9398 0.9189 0.8938 

3 AM 0.9368 0.9362 0.9140 0.8900 

4 AM 0.9367 0.9345 0.9146 0.8786 

5 AM 0.9344 0.9330 0.9140 0.8779 

6 AM 0.9319 0.9315 0.9093 0.8663 

7 AM 0.9244 0.9359 0.9032 0.8821 

8 AM 0.8932 0.9214 0.8669 0.8568 

9 AM 0.9330 0.9032 0.9161 0.8101 

10 AM 0.9401 0.9110 0.9225 0.8453 

11 AM 0.9431 0.9264 0.9265 0.8719 

12 PM 0.9433 0.9492 0.9244 0.9178 

1 PM 0.9516 0.9570 0.9386 0.9289 

2 PM 0.9580 0.9555 0.9474 0.9271 

3 PM 0.9624 0.9601 0.9525 0.9371 

4 PM 0.9617 0.9602 0.9524 0.9373 

5 PM 0.9596 0.9597 0.9496 0.9372 

6 PM 0.9574 0.9596 0.9469 0.9362 

7 PM 0.9567 0.9578 0.9466 0.9293 

8 PM 0.9532 0.9586 0.9423 0.9243 

9 PM 0.9569 0.9645 0.9462 0.9375 

10 PM 0.9555 0.9643 0.9415 0.9284 

11 PM 0.9527 0.9498 0.9390 0.9008 

Average 0.9452 0.9443 0.9291 0.9015 

Total Average 0.9448 0.9153 

 

Figure II-5  displays the residuals (model error) plotted against temperature. When the residual has 

a negative value, this indicates demand was overpredicted by the model, while conversely a 

positive residual indicates an underprediction. The residuals are approximately normally 

distributed, however Figure II-5 shows that the variance of the error is not constant across the 

entire temperature range.  At temperatures higher than about 15 °C, error variance appears to 

increase, suggesting that the model was not as accurate in modeling cooling demand. This indicates 

that the error term in the model was not, as hypothesized, entirely due to fluctuations in base 

demand caused by unmodeled behavioural variations. Therefore, the disaggregation method likely 

provides less accurate estimates of air conditioning demand compared to heating. Initial models 

notably over estimated cooling demand in April, May and June, while underestimating the effects 
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in July, August and September. For this reason, the Probit analysis components were added to 

model the installation and use of portable air conditioning units. While the Probit analysis 

improved results, it still did not perfectly model the air conditioning use. This is further supported 

by Figure II-6 which shows the average actual and modeled demand for each month. The same 

months were on average over and under projected, although to a lesser degree than in initial 

models.  

  
Figure II-5: Residuals Plot vs. Temperature 

 
Figure II-6: Actual and Predicted Avg. Monthly Residential Demand 
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3.1.2 COMPARISON TO COMBINED DAY TYPE & FIXED CHANGEPOINT 

MODELS 

It was proposed that the use of a variable changepoint for each time of day and day type would 

result in a more accurate model and disaggregation of the demand. In order to test this hypothesis, 

models were also produced where day types were not differentiated (24 hourly sub-models) as 

well as with a range of fixed changepoints. Typically, the base temperature for the computation of 

CDDs and HDDs is between 15 °C and 18 °C, however the variable changepoint method found 

changepoints as low as 9 °C at some hours. Therefore, the range considered spanned from as low 

as 9 °C to a slightly higher than typical 20 °C. Table II-4 shows several metrics and statistics for 

each of the resulting models. The use of separate sub-models for weekdays and weekends/holidays 

resulted in an improved fit but only by 0.10% and 0.0015. This slight improvement may not be 

sufficient to justify the additional computation required. Using a variable changepoint temperature 

produced both the smallest MAPE and largest coefficient of determination, however only by 

0.08% and 0.0013 compared to the most accurate fixed changepoint models (12-13°C). This 

suggests that although a variable changepoint increased the accuracy of the predicted demand, the 

effect was only marginal. The data also shows that the percentage of demand predicted as base 

demand, cooling demand and heating demand varied depending on the changepoint selected. 

While these differences appear minor from the average values included in Table II-4, the shifts 

within the day at finer temporal resolution are much more significant. For example, the 18 °C fixed 

changepoint model predicted 43% more heating demand between 12 AM and 8AM than the 

varying changepoint model. Evidently this has implications for the accuracy of disaggregation on 

an hourly timescale, however without actual data to compare the results to it cannot be determined 

with certainty which method was more accurate. It is worth noting that all the models produced 

with the typical range of fixed changepoint temperatures predicted a significantly lower proportion 

of base demand (~2.5%), a slightly higher proportion of cooling demand (~0.5%) and significantly 

higher proportion of heating demand (~2%). 
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Table II-4: Model Results with Combined Day Types and Various Changepoints 

Day Types 
Changepoint 

Temperature 
MAPE Overall R^2 % Base % Cool % Heat 

Separate Multiple 4.57% 0.9710 72.4% 17.9% 9.7% 

Combined Multiple 4.67% 0.9695 72.4% 17.9% 9.7% 

Separate 9 4.85% 0.9686 76.4% 16.3% 7.3% 

Separate 10 4.76% 0.9691 75.3% 16.8% 7.9% 

Separate 11 4.69% 0.9695 74.1% 17.3% 8.6% 

Separate 12 4.65% 0.9697 72.9% 17.8% 9.3% 

Separate 13 4.66% 0.9697 71.8% 18.2% 10.0% 

Separate 14 4.70% 0.9694 70.8% 18.5% 10.7% 

Separate 15 4.79% 0.9688 70.1% 18.7% 11.2% 

Separate 16 4.92% 0.9678 69.7% 18.7% 11.6% 

Separate 17 5.07% 0.9666 69.7% 18.4% 11.9% 

Separate 18 5.20% 0.9656 69.6% 18.2% 12.2% 

Separate 19 5.26% 0.9650 69.2% 18.0% 12.7% 

Separate 20 5.32% 0.9644 68.9% 17.8% 13.2% 

3.1.3 COMMERCIAL SECTOR APPLICATION 

The model was also calibrated with commercial data from the same utility to test the cross 

applicability between sectors. The resulting commercial model explained an even higher 

proportion of the variance than the residential model (R2 = 0.9790), with a significantly lower 

MAPE (1.85%). The cross-validation results shown in Table II-5 demonstrate that the models were 

not overfitted. One sub-model (7 AM) showed both poor average training and testing fit, despite 

having a good fit when applying the model to all of the data (0.9100). However, of the 1000 

repetitions almost 50% showed similarly high cross-validation results to the other sub-models, 

while the others had very poor fits bringing down the average. When the training fit was high, the 

testing fit was also high and visa versa. This suggests that portions of this sub-model dataset are 

less dependant on weather (resulting in lower fits when selected as training data), but not that the 

model is overfitting. Despite the high accuracy of the overall model, the table shows that the fit 

for each given sub-model at a given hour and day-type was lower than in the residential results. 

This is likely because a lower proportion of the variation in commercial demand is due to weather 

(leading to worse sub-model fits), but a higher proportion is explained by time of day and day type 

(leading to a good overall model fit).  
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Table II-5: Commercial Cross Validation Coefficients of Determination  

Model Time / 

Day Type 

Training Testing 

Weekdays 
Weekends /  

Holidays 
Weekdays 

Weekends /  

Holidays 

12 AM 0.8920 0.9084 0.8688 0.8614 

1 AM 0.8871 0.9185 0.8609 0.8715 

2 AM 0.8885 0.9164 0.8589 0.8628 

3 AM 0.8811 0.9190 0.8508 0.8697 

4 AM 0.8870 0.9096 0.8604 0.8389 

5 AM 0.8746 0.9043 0.8397 0.8068 

6 AM 0.8793 0.9012 0.8433 0.8108 

7 AM 0.8815 0.6688 0.8471 0.5302 

8 AM 0.8688 0.9172 0.8337 0.8648 

9 AM 0.8386 0.8950 0.7978 0.8027 

10 AM 0.8715 0.8973 0.8411 0.8324 

11 AM 0.9125 0.9098 0.8936 0.8479 

12 PM 0.9330 0.9174 0.9177 0.8643 

1 PM 0.9406 0.9200 0.9276 0.8671 

2 PM 0.9419 0.9226 0.9275 0.8742 

3 PM 0.9496 0.9269 0.9385 0.8779 

4 PM 0.9508 0.9293 0.9370 0.8851 

5 PM 0.9521 0.9159 0.9411 0.8668 

6 PM 0.9454 0.9170 0.9326 0.8654 

7 PM 0.9385 0.9227 0.9257 0.8732 

8 PM 0.9304 0.9185 0.9151 0.8609 

9 PM 0.9169 0.9150 0.8976 0.8593 

10 PM 0.9087 0.9183 0.8860 0.8579 

11 PM 0.8909 0.9182 0.8649 0.8714 

Average 0.9067 0.9045 0.8836 0.8426 

Total Average 0.9056 0.8631  

 

Figure II-7 shows the model produced an accurate average prediction for each month, suggesting 

that all seasonal effects are well represented in the model. However, the larger errors in the 

overprediction of August demand and underprediction of September show that the cooling effect 

was once again not as well modeled. Overall, the model produced for the commercial data showed 

better results than the residential, likely in large part due to the lower overall variability in this 

sector. 
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Figure II-7: Actual and Predicted Avg. Monthly Commercial Demand 

3.2 DISAGGREGATION RESULTS 

Based on the regression model and results present previously, the data was then disaggregated into 

base, cooling and heating demands. These disaggregation results are first presented for the 

residential sector, then compared to submeter data from another city in Ontario. Lastly, the 

commercial sector disaggregation is presented.  

3.2.1 RESIDENTIAL DISAGGREGATION 

Based on the model produced for the residential demand, the demand was disaggregated into the 

three main components of base demand, heating demand and cooling demand. Figure II-8 shows 

the average disaggregated demand for each season. As expected, base demand stays relatively 

constant through the year, and the summer and winter show large proportions of cooling and 

heating demand respectively. The spring and fall show a smaller mix of both heating and cooling. 

Based on the assumptions of the model, if the heating and cooling demands are disaggregated 

accurately, the base demand should remain fairly constant, only varying due to fluctuation in 

behaviour and appliance use. To test this assumption, the base demand of each month is compared 

in Figure II-9. Each month shows similar base demand with a few notable exceptions. As 

previously mentioned, it seems the cooling demand in the late spring and early summer months 

was consistently overpredicted and as a result, these months can be seen to have lower predicted 

base demands. Similarly, the cooling demand in the later summer months was underpredicted and 

therefore the base demand is slightly higher. The month of December also was predicted to have 

higher base demand through the day compared to most months. This can be partially explained by 

the fact that weekends and holidays had higher base demands and that there were 12 such days in 
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December, compared to an average of about nine in the other months. Finally, the most significant 

variation can be seen between hours 5:00 PM to 9:00 PM. This is caused by variation in lighting 

requirements in the evening due to changing sunset times and is accounted for in the model by the 

‘daylight’ variable. Likewise, sunrise times would explain a portion of the morning variation, 

although the differences are less obvious when examining Figure II-9. 

 
Figure II-8: Average Seasonal Disaggregated Residential Demand 

 

Figure II-9: Disaggregated Base Residential Demand by Month 
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3.2.2 RESIDENTIAL VALIDATION 

The data modeled in this study did not have any accompanying submeter data with which the 

disaggregation could be evaluated, thus in this section it will be compared to submeter data from 

another study. Koskal, Rowlands and Parker [26] monitored several end-uses in 25 homes in the 

town of Milton, Ontario from 2011 to 2013. Since this study is also in Southern Ontario, only four 

to six years earlier, it would be expected that the behaviours and technologies driving demand, 

while not identical, should be similar. Therefore, the measured data from this submetering study 

was adapted to determine the approximate base, heating and cooling demands. It should be noted 

that in the Milton study, the furnace was used all year round for ventilation during both space 

heating and cooling periods. Therefore, when adapting the data from this study, furnace demand 

was considered heating demand in the winter and cooling demand in the summer. The average 

daily residential base demand during summer and winter weekdays, as modeled in this study and 

adapted from the Milton data, can be seen in Figure II-10. Demand was converted into a percentage 

basis to facilitate comparison between the different sample sizes (n = 80156 vs. Milton, n = 25).  

Overall the distribution of base demand is notably similar between the modeled and actual results. 

It is notable that the differences between the summer and winter modeled base demand (less 

pronounced morning and evening peaks in the summer) can also seen in the Milton data. However, 

the modeled demand is more evenly distributed than the actual measured data. This could be 

explained by the smaller sample size in the Milton data which is less likely to include extreme 

outliers and therefore result in more pronounced peaks. Additionally, the study recognized that the 

results may not be representative as the homes monitored were on average larger and had a higher 

annual income and electricity usage than the Ontario average [26]. Another potential explanation 

is improving appliance efficiency since 2013, which would decrease the magnitude of peaks. 

 

Figure II-10: Modeled and Adapted Base Demands [26] 
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The distributions of heating and cooling demands modeled in this study and adapted from the 

Milton submeter data can be seen in Figure II-11. The cooling demands show generally similar 

distributions, however the heating demands are quite different. Specifically, the adapted Milton 

data shows a significant peak in heating demand in the morning and a lesser one in the evening. 

This could be explained by certain customers using setback temperatures at night. In this case, the 

thermostats are programmed to let the house decrease in temperature through the night while 

occupants are asleep, then return to normal temperature settings in the morning. This would result 

in a significant morning peak. As noted, the Milton study was in an area with larger houses and 

higher incomes, thus having programmable thermostats is likely. Furthermore, since this morning 

peak would be similar through the majority of the heating season, the model presented in this paper 

may not identify the peak as temperature dependant and thus not disaggregate it. This possibility 

was supported by examination of the data which showed that compared to the rest of the day, the 

demand in the morning had a less defined changepoint for the 3-day average temperature. In other 

words, there was wider range of values over which morning demand showed little temperature 

dependence.  

Another potential explanation for the difference in morning demands is the fact that the Milton 

heating data is adapted from furnace demand, which in some cases is used for both space 

conditioning and water heating. The morning and evening peaks could be explained by occupants 

showering in the morning before leaving for work or showering upon returning home from work 

and using hot water for chores such as washing dishes. These demands were not intended to be 

included in the disaggregated heating demand modeled in this paper. Since the adapted Milton 

data from the summer includes both air-conditioning and furnace demands, hot water use could 

also explain the higher morning demand seen in the summer. In order for a definitive conclusion 

to be drawn, more representative submeter data is required.  

It should also be noted that the seasonal variation of water heating demand represents a potential 

source of error in the model presented. Although much of the water heating demand does not 

depend on weather, some portions do. For example, if the water entered the house at a colder 

temperature and thus required the furnace to run longer to heat it, this impact may be reflected. 

This is another potential explanation for the less defined 3-day average changepoint temperature 

in the morning, when households would be consuming hot water for morning showers. The 

morning period of lower temperature dependence resulted in the model finding higher 3-day 

average changepoint temperatures, with a peak occurring at around 8:00 AM.  This would either 

result in the model disaggregating increased hot water demand during cold periods as space 

heating, or identifying lower levels of cooling demand during hot periods because of this being 

offset by the decreased demand for hot water. Given the lack of a morning heating demand peak 

and low morning cooling demands, the second possibility appears likely. Once again submeter 

data is required to validate the cause of the 3-day average changepoint temperature peaking at 8:00 

AM and how it is impacting the results.   
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Figure II-11: Modeled and Adapted Heating and Cooling Demands 

3.2.3 COMMERCIAL DISAGGREGATION 

The disaggregation method was also applied to the commercial model and the average seasonal 

results are shown in Figure II-12. Once again, the base demand is quite consistent with some 

noticeable variation due to changing in lighting demands in the evening. It is notable that the 

heating and cooling demands represent much lower proportions of the total demand (3.55% and 

6.62% respectively) compared to residential demand. This is to be expected, however these values 

are lower than the average Ontario values of 8% and 9% respectively, published by the IESO for 

2015 [27]. This could be due to a different mix of commercial building types, or different energy 

sources for heating and cooling purposes. For example, the local University has an onsite energy 

conversion centre which controls the campus heating and cooling systems [28]. Once again to 

properly validate this disaggregation, sample sub-metered data would be required. 
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Figure II-12: Average Seasonal Disaggregated Commercial Demand 

4 CONCLUSION 

This paper presents a regression model for predicting aggregate hourly electricity demand based 

on weather. The model also disaggregates the demand into base, heating and cooling demands to 

facilitate additional modeling and analysis. The model requires minimal data inputs (only historical 

demand, weather, and daylength data) and can be applied in regions where submetering data is not 

available. A unique method of processing the temperature data into various temporal resolutions 

allowed the model to better capture both short and long-term weather impacts. The model provided 

comparably accurate predictions for aggregate residential demand and explained even high 

proportions of variance when applied to the commercial sector. However, it was less accurate 

during periods of high temperature (high cooling demand). This was partially mitigated through 

the unique implementation of 3 Probit models to better reflect AC usage. Future work will require 

additional analysis to further improve modeling of the behaviour that drives space cooling as the 

transition between heating and cooling seasons occurs.  

The results of the disaggregation method appeared to be limited by the accuracy the model. For 

months in which demand was consistently overestimated, the heating or cooling demands were 

also overestimated, while the base demand was projected to be low (and visa versa). The results 

showed similarities to sub-meter data from another study in a similar region. This suggests that the 

model may provide accurate estimates of heating and cooling demand on average. The novel use 

of a variable changepoint only slightly improved the accuracy of the model. However, it had 

significant impacts on the disaggregation, and therefore the predicted quantity and temporal 
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distribution of hourly heating and cooling demands. Additional data is required to validate the 

disaggregation results and confirm whether these differences constitute an increased 

disaggregation accuracy. 

In conclusion, this method creates an opportunity to generate valuable data for future analyses 

from simple high resolution submeter data available at most utilities. Once the model is developed 

for a specific region it could be applied to project future demand under various climate change 

scenarios and assess the effect on the system. Future work will focus on validating the 

extrapolation of this model by comparing predictions of historical demand with actual data, and 

then applying the model to analyses of future scenarios. Furthermore, by changing the magnitude 

and distribution of the disaggregated space conditioning demands, the impact of changing 

technologies and penetration rates can also be assessed. 
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1 INTRODUCTION 

For the last two decades, the Canadian province of Ontario has had a focus on the development of 

a cleaner, more sustainable electricity sector. This began with the removal of coal, then shifted to 

the development of renewable energy supplies, energy conservation and efficiency through the 

implementation of the Green Energy and Green Economy Act in 2009 [1], [2]. This drove a major 

shift in the electricity supply mosaic of the province. The Independent Electricity System Operator 

(IESO) now reports 36% of total generation capacity is renewable, while an additional 35% is 

powered by nuclear [3]. While these technologies have reduced the carbon footprint of the 

electricity sector, they also have some disadvantages [4]. Nuclear is not quickly ramped up or 

down, thus is mostly limited to covering base load. Solar and wind are variable and non-

dispatchable, which compounds the challenging balance of supply and demand. The transition 

towards renewable systems also moves globally, as worldwide wind energy capacity almost 

doubled and solar photovoltaic (PV) capacity more than quadrupled between 2012 and 2017 [5]. 

Concerns surrounding balancing supply and demand are amplified by load curves that change in 

both shape and magnitude. For example, the Canadian National Energy Board (NEB) discussed 

the changes from 2002 to 2016 in Ontario’s average daily energy demand, presenting an overall 

decrease in demand accompanied by a now more pronounced evening peak [6]. This was attributed 

to efficiency improvements and embedded PV capacity. There are also more extreme changes like 

the now well-known duck curve in California. This is produced by a large drop in demand 

throughout the midday due to embedded PV generation capacity, followed by an extreme ramp in 

demand towards the final evening peak as the sun begins to set [7]. Further, as electricity systems 

have become cleaner, focus has shifted to transitioning historically fossil markets towards 

electrification. Increasing efficiency of electric heat pumps doubled sales between 2012 and 2017 

[8]. The International Energy Association (IEA) projects the use of electricity for heating to 

continue to grow significantly in buildings as well as the industrial sector. Likewise, the demand 

from electrical vehicles (EVs) is expected to triple between 2018 and 2023. 
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As demand becomes more volatile throughout the day, it becomes more difficult for utilities and 

system operators to match supply and demand, plan future capacity requirements, and ensure 

consistent grid frequency [9]. This may eventually limit the penetration of intermittent generators 

[10]. Furthermore, the temporal distribution of demand will have a significant impact on the costs 

for the system operators, utilities and consumers. Increased variability and demand peaking could 

require oversizing of distribution assets, resulting in lower utilization and higher energy prices to 

recover the capital costs of the facilities. An investigation on the impact to utility revenues under 

various residential rate structures showed current volumetric tariffs did not reflect the impacts of 

PVs and EVs on the distribution grid [11]. In a 2019 survey of utility workers in the U.S. and 

Canada by Utility Dive, 96% and 91% of respondents expected significant or moderate increases 

in EV and PV penetration respectively [12]. Further, two of the three most commonly cited 

challenges with their regulatory models were justifying emerging investments and managing 

distributed resources. The major theme of the survey was uncertainty. This seems justified given 

that recent studies estimating future trends show wide variation in the ranges of predicted 

scenarios, let alone the effects these will each have on the load curve [13]–[17]. 

Historically many system operator and utility forecasting efforts have focused on short term 

predictions at high temporal resolution for operations planning, and long-term predictions of bulk 

and peak demands for capacity planning and informing policy decisions [18]. These can be 

complimented by medium term forecasts of moderate resolution focused on system reliability in 

the immediate future. A wide range of forecasting methods have been applied as summarized in 

several reviews [19], [20]. However, with the aforementioned changes and challenges looming, it 

is essential that long-term projections also consider the changing shape of the daily load. A review 

of current and future forecasting trends stressed the importance of not only macro drivers, but also 

sectoral decomposition and detailed temporal granularity describing consumption in peak hours, 

as well as those surrounding them [21]. One technique is to identify representative load curves for 

specific energy demanding sectors, scale them by the projected future total demand in each sector, 

and then recombine them to produce the total future load curve. Hainoun used this method in a 

study of future Syrian demand, deriving weekly and hourly coefficients for different day types to 

describe the temporal distribution of various sector demands [22]. Similarly, some of the long-

term forecasting and optimization models like the popular TIMES model discussed by Suganthi 

and Samuel [19] includes the option to input load curves for varying sub-annual lengths of time, 

but the model itself does not predict the distribution [23]. For example Pina, Silva and Ferrão used 

several 24 hourly segments in each of the four seasons as inputs into the TIMES model to assess 

a case study of investing in renewable energy on the island of São Miguel in Azores, Portugal [10]. 

While this method accounts for changes in hourly demand due to growth or decline in sectors, it 

does not account for new technologies or policies, as also recommended by Lindberg et al. [21]. 

A variety of studies have examined specific scenarios of higher technology penetration (embedded 

photovoltaics [24], heat pumps [25], and/or electric vehicles [26]), demonstrating significant 

impacts on the total or sectoral demand or load duration curves. In order to fully encompass the 
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technological changes, both the U.S. Energy Information Administration (EIA) [27] and National 

Renewable Energy Laboratory (NREL) [16], [28] have developed detailed national scale bottom 

up models which construct the total load curves from many specific end-use curves. However, 

these are extremely complex and data intensive. 

Another subset of publications finds a balance between these intensive bottom up methods and the 

more simplified ones detailed previously. Koreneff et al. used seasonal indexes and hourly 

coefficients for three types of days to identify sector load curves [29]. The approach also accounted 

for specific technologies (heat pumps and EVs) that could significantly affect the future shape of 

the load curve but may not be reflected in the base model. Similarly, in other studies, consumption 

profiles for Danish customer segments were identified using monthly, hourly and day-type 

coefficients. Andersen, Larsen, and Boomsma used scaled sector load curves while adding 

additional EV and heat pump load [30]. This same model was then used to project demands 

regionally based on local sector loads [31] and as an input to EnergyPLAN to assess the Danish 

energy system [32]. Meanwhile, Boßmann and Staffell used two different models to project future 

load curves in Germany and the UK for the year 2050 [33]. One model, DESSTinEE, uses a similar 

sector load curve methodology, however breaks them down further to include transportation, and 

building space heating, water heating, cooling, and all other appliances. The other, eLOAD, uses 

a similar method, dividing each sector into ‘relevant applications’ which represent significant 

shares of demand and leaving the ‘remaining load’ as its own category [33]. In both cases these 

are scaled based on total demand projections. Finally, the Lawrence Berkeley National 

Laboratory’s LBLN-Load model uses partially disaggregated load curves for representative 

customer clusters [34]. Weather effects are disaggregated and predicted with a temperature 

changepoint model, while other disaggregated loads are estimated from end-use datasets or 

assumed to represent a constant percentage of unassigned loads. All of these studies and models 

provide significant insight into the projected changes that will occur to the future load curves. 

However, most of the detailed model studies which could account for all relevant factors were 

focused on a national scale, and in some cases still required high volumes of end-use data. Notable 

differences exist between regions, including the supply and distribution infrastructure, customer 

sectors and characteristics, and end use technologies: all of which make it important to perform 

analyses on a regional scale [35]. As seen in the work by Andersen et al., extreme local values 

were not as accurately reflected when using national scale data [31]. Given the recent abundance 

of smart meter data being collected by utilities, this paper aims to address this research gap. Here 

we present a partially disaggregated load curve model which can be calibrated with local utility 

data to project their future electricity demands under a wide range of scenarios.  

This paper will present a model predicting the average and peak shape of daily load curves in each 

season in the year 2040. A combined methodology will be used, implementing sector load curves 

identified based on historical data, with only the most important end uses disaggregated and 

specific new technology load curves identified. One of the most useful features of the model is its 
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interface that enables users to adjust a variety of existing and new influencers, see the results in 

real time, and quickly investigate a wide range of demand scenarios. 

2 MATERIALS AND METHODS 

The following sections detail a daily electricity demand curve model based on Visual Basic for 

Applications coding. The model integrates principal parameters into sliding and button controls. 

This allows modifiers to be adjusted to generate a range of demand scenarios in real time. A sample 

visual of the interface side is shown in Figure III-1, displaying some of the controls on the left-

hand. Some metrics are shown below the graphical display, as well as a toggle box where the user 

can choose to display any individual season, a summary of all seasons, or the validation results.  

The immediate and visual feedback of the model facilitates rapid risk and opportunity 

identification for utilities. Once a risk has been identified, other parameters can also be adjusted to 

assess how the situation might be avoided and inform future investment or policy choices. As a 

case study, we model a variety of load distribution scenarios based on literature to illustrate the 

non-trivial uncertainty in projected energy demands. The model has been calibrated with data from 

a utility in southern Ontario.  

 
Figure III-1: Sample Interface and Projected Summer Demand Curve – IESO Outlook C 



 

38 

 

2.1 BASE MODEL 

A fundamental assumption of this model is that specific sectors of the energy market have 

representative load curves based on behavioural patterns and end-uses that remain relatively 

constant through time but are significantly different between sectors. It was assumed that these 

load curves vary only in magnitude over time, except where influenced by disruptive technologies 

and policies. Thus, the total future load curve for each sector can be developed by scaling each 

sector load curve by the projected future demand, while additional supply and demand curves are 

introduced to reflect changing technology and policy. The sum of these curves will produce a 

projected daily average load curve. Since behavioural patterns and end uses vary between seasons, 

separate archetypical sector load curves and future demand shares were identified for each season. 

The sectors identified were Industrial, Residential, Commercial and Other. The ‘Other’ sector was 

intended to represent all load not encompassed in the Industrial, Commercial and Residential 

categories, however the data collected here did not include any such load and was therefore set to 

zero. The overall methodology is summarized in Figure III-2. 

 

Figure III-2: Summary of Model Materials and Methods  

The demand curve model was calibrated with data sourced from utility partners located in Southern 

Ontario. Load data for 80,156 residential, 8,278 commercial and 226 industrial customers 

containing one year of hourly demand from 2017 was used as the baseline year. The annual data 

was split into four approximate seasons of three months each: Spring (March, April and May), 

Summer (June, July and August), Fall (September, October and November), and Winter (January, 

February and December).The finishing hour was used to identify the electricity data, meaning 

demand from 7:00 to 8:00 was labeled as 8:00, etc. To best reflect the consistent behavioural 

patterns of customers, the data was adjusted from local standard time (LST) to daylight savings 

time (DST) between March 12th and November 5th. The commercial and industrial data showed 

significantly lower demand during ten days of the year where several customers suddenly dropped 

to almost zero demand. Measurement errors were suspected; thus, this data was omitted. The 
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coefficients for the seasonal average daily curves for each sector can be calibrated based on the 

following formulas: 

𝑑𝑚,𝑠,𝑡
�̅�

= (
𝐷𝑚

�̅�

𝑛𝑠
) ∗ 𝑘𝑚,𝑠,𝑡 ∗ 𝑠𝑚,𝑠   Eq. (1) 

𝑆𝑚,𝑠
�̅�

= 𝐷𝑚
�̅�

∗ 𝑠𝑚,𝑠  Eq. (2) 

where: 

𝑑𝑚,𝑠,𝑡
�̅�

 = average energy demand for the customers in a given sector (m = 1 to 4), during a given 

season (s = 1 to 4) at a given hour of the day (t = 1 to 24) in base year �̅�  

𝐷𝑚
�̅�

 = total annual demand of the customers in sector m in base year �̅�,  

𝑛𝑠 = number of days in season s,  

km,s,t = a coefficient which represents the percentage of daily demand in sector m during season s 

which occurs during hour t  

𝑠𝑚,𝑠 = a coefficient which represents the percentage of annual demand in sector m occurring in 

season s 

𝑆𝑚
�̅�

 = the total demand in season s of the customers in sector m in base year �̅� 

Thus, four seasonal and 96 hourly coefficients were identified for each sector, representing an 

average scaled load curve. Prior to fitting these coefficients, the Residential and Commercial data 

was weather normalized, and the heating, cooling and hot water demands were disaggregated to 

be included separately as modifying parameters. This is discussed in section 2.2.1. The industrial 

demand did not require this as it showed little dependence on weather. The calibrated hourly 

coefficients (km,s,t), which form the normalized base load curves for each sector, are displayed in 

Figure III-3. With the main weather dependant technologies disaggregated, the seasonal curves are 

notably similar, and the evening variations can be explained by increased lighting demands with 

shorter day lengths. 

 

Figure III-3: Scaled Seasonal Daily Base Load Curves by Sector 
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As with each sector, any specific technologies or policies identified as influencing parameters must 

have daily load curves. Each specific parameter varied slightly in formulation and how their 

respective load curves and total demands were determined is detailed in section 2.2. Once 

determined, the coefficients for sectors and parameters can be used to predict future demand curves 

for a given year y, using the following: 

𝑑𝑠,𝑡
𝑦

= ∑ (
𝐷𝑚

�̅�

𝑛𝑠
) ∗ (1 + 𝑖𝑚)(𝑦−�̅�) ∗ 𝑘𝑚,𝑠,𝑡 ∗ 𝑠𝑚,𝑠𝑚 + ∑ 𝑑𝑝,𝑠,𝑡

𝑦
𝑝   Eq. (3) 

where 𝑖𝑚 represents the average projected annual growth rate (user-controlled parameter) for 

energy sector m, and 𝑑𝑝,𝑠,𝑡
𝑦

 is the total demand for parameter p in year y, season s, at time t as 

determined by equations (5)-(11) in section 2.2.  

It was assumed that peak demands occur due to extreme weather events (either warm or cold), thus 

peak load can be estimated with average load curves for all sectors and parameters except those 

which are weather-related. The model makes a peak demand projection by additionally scaling 

each weather-related parameter by peaking coefficients, which represent the ratio between the 

average seasonal weather-related demands, and the peak demands. The coefficients are calibrated 

using the following formula: 

𝑃𝑝,𝑠,𝑡,𝑇
�̅�

= 𝑑𝑝,𝑠,𝑡
�̅�

∗ 𝑚𝑝,𝑠,𝑡,𝑇  Eq. (4) 

where 𝑃𝑝,𝑠,𝑡,𝑇
�̅�

 is the demand occurring on the peak day for weather related parameter p, in season 

s, during hour t, and 𝑚𝑝,𝑠,𝑡,𝑇 is the corresponding coefficient. These coefficients can also vary 

depending on projected climate conditions T, as is detailed section 2.2.1.2. 

2.2 INFLUENCING PARAMETERS 

The influencing parameters are either new supply or demand from developing technologies which 

are not represented in historical sector curves, or are specific end-use demands expected to change 

significantly which have thus been disaggregated from the base sector demand.  Each of these 

parameters has specific controls in the model interface and are detailed in the following 

subsections. 

2.2.1 ELECTRIFIED HEATING, COOLING AND HOT WATER 

Heating, cooling and hot water (HW) represented over 85% and 70 % of 2015 energy demands in 

Ontario’s residential and commercial sectors respectively [36]. The electric portion of these 

demands is likely to increase significantly in coming years due to heating equipment switching 

from traditional fossil fuel combustion, to electric sources such as heat-pumps. Meanwhile, rising 

temperatures due to climate change increase the magnitude of the already largely electric cooling 

demands. As detailed in 2.2.1.1, within both the residential and commercial sectors electrified 

heating, cooling and HW were disaggregated and identified as separate parameter-based load 

curves. This allows these end-uses to be adjusted based on the penetration of electrified technology 
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and the effects of climate change, rather than assuming they will only scale proportionally with 

the growth or decline of the overall sectors. Once the demands are disaggregated, their demand 

curve coefficients can be calibrated like sector demands using equations (1)-(2).   

As discussed further in section 2.3.1, the total potential demand (if there were 100% penetration) 

for each end-use and sector can be estimated using base year penetration rates and total demands. 

Similar to other sectors, they can then be projected forward to 2040 with estimated average annual 

growth rates. These total potential demands can then be scaled by the projected 2040 penetration 

rates for each electrical technology (from 0 to 100%) and sector to determine the projected 

electrical demand. Thus, future demands can be calculated by the following formula: 

𝑑𝑝,𝑠,𝑡
𝑦

= (
𝐷𝑝

�̅�

𝑛𝑠
) (

𝑃𝑒𝑛𝑝
𝑦

𝑃𝑒𝑛𝑝
�̅�) ∗ (1 + 𝑖𝑝)(𝑦−�̅�) ∗ 𝑘𝑝,𝑠,𝑡 ∗ 𝑠𝑝,𝑠 ∗ 𝑐𝑝,𝑠,𝑡,𝑇  Eq. (5) 

where: 

𝐷𝑝
�̅�

 = total annual demand of parameter p (ex. residential heating) in base year �̅� 

𝑃𝑒𝑛𝑝
𝑦

 = the penetration (user-controlled) of parameter p in year y 

𝑖𝑝 = projected average annual growth rate for parameter p 

 kp,s,t = coefficient found with Eq. (1) for parameter p in season s during hour t 

𝑠𝑝,𝑠 = coefficient found with Eq. (2) for parameter p in season s 

𝑐𝑝,𝑠,𝑡,𝑇 = coefficient found with Eq. (8) for parameter p in season s during hour t with climate 

conditions T (detailed in Section 2.2.1.2) 

Each of parameter penetration and growth rates has a dynamic control in the model. Note the 

growth rate accounts for the expected growth of the sector (ex. for residential electrified heating, 

growth in number of households) and change in relative demand intensity (ex. changes in appliance 

efficiency). Changes due to increased or decreased technology penetration are controlled 

separately. For example, the growth rate for a technology could be negative due to increasing 

efficiency, but the total projected demand might be increased due to a higher penetration rate. The 

base penetration rates used for the utility are summarized in Table III-1. Recent commercial data 

could not be found for space cooling, and a trend of slightly increasing penetration was shown, so 

the upper limit of the values estimated for 2009 was used. 

Table III-1: Baseline Technology Penetration Rates 

 Electrified Heating Electrified HW Electrified Cooling 

Residential 15 % [37] 17% [37] 93% [37] 

Commercial 10 % [17] 19% [17] 75% [38]–[40] 
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2.2.1.1 DISAGGREGATION 

To disaggregate the residential and commercial demand a regression model was developed. Many 

previous studies have used temperature to predict electricity demand as well as identify demand 

of specific end uses [41]–[44]. The concept of heating degree days (HDDs) and cooling degree 

days (CDDs) has been used by several papers to investigate the impacts of climate change on 

demand at a range of temporal resolutions [35], [45], [46]. Furthermore, a series of studies by 

Kipping and Trømburg used the same concept to model and disaggregate heating and cooling 

demand in residential and commercial buildings [47]–[50]. This method assumes that there is a 

changepoint temperature at which customers transition from heating to cooling demand. Thus, 

HDDs represent the number of degrees which the average daily temperature is less than this 

changepoint and CDDs represent the number of degrees higher. This same concept can be applied 

to different spans of time, for example with heating or cooling degree hours (HDH or CDH). 

Heating degrees (HD) and cooling degrees (CD) can be calculated by equations (6) and (7) where 

t is the length of time considered, 𝑇𝑡 is the average temperature across the length of time and 𝑇𝑐𝑡 

is the changepoint temperature for the length of time considered. 

𝐷𝐻𝑡 = 𝑀𝑎𝑥( 𝑇𝑐𝑡 −  𝑇𝑡, 0)  Eq. (6) 

𝐷𝐶𝑡, = 𝑀𝑎𝑥( 𝑇𝑡 − 𝑇𝑐𝑡 , 0)  Eq. (7) 

This technique was implemented using a regression method detailed in prior work [51]. The 

method used multiple time spans to capture short and longer term weather impacts, a varying 

changepoint temperature depending on time and type of day, and Probit analysis to estimate 

seasonal installation of portable air conditioning units.  

The regression model was fit to the utility’s data with climate data from Government of Canada 

historical records [52] and sunrise/sunset times from the National Research Council of Canada 

calculator [53]. It could then be used to predict future weather normalized demand and 

disaggregate it. Predictions were made for future years using the Canadian Weather Year for 

Energy Calculation (CWEC) dataset, which contains one year of climate data created by 

combining twelve “Typical Meteorological Months” from the past 30 years based on statistical 

comparison [54]. The predicted demand associated with HD and CD variables at each hour was 

allocated as heating and cooling demand respectively, while the remainder was considered ‘base’ 

demand. The errors in the original model predictions were assumed to represent variability in base 

loads and thus seasonal average errors were carried forward and incorporated as a component of 

the base demand in the normalized projections. The weather normalized results with these 

additional error terms were used to calibrate the model in equations (1)-(2) & (4). 

The electricity demand for HW cannot as easily be disaggregated with climate data because most 

of the demand is not weather sensitive. Various sources have studied and modeled different 

influences on hot water demand, including seasonal variations [55], household size [56], day types 

[57], and potential for direct load control [58]. Although there are changes in consumer demand 
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throughout the year, as well as variations in the incoming temperature of water, these effects were 

assumed to be negligible and therefore, water heating demand was assumed to be constant 

throughout the year at summer demand levels. 

Knight, et al. showed hot water usage in Canada has a similar pattern to other countries with some 

cultural variations [59]. Therefore the U.S. Department of Energy (DOE) dataset containing 

archetypal simulated energy load curves for residential and commercial buildings was selected due 

to cultural similarity, geographic proximity, and availability of data for both sectors [60]. The 

model predicted natural gas demand as opposed to electricity, but it was assumed that the temporal 

distribution would be consistent regardless of the energy source. This assumption was used due to 

the limited availability of data, and it is recognized that this may need to be refined in the future.  

For residential demand a group of American cities in the same region (Buffalo, Cleveland, 

Chicago, Detroit-City, Detroit-Metro, and Rochester) were selected and found to all have notably 

similar simulation results [60]. The average of these locations was used as the final residential HW 

load curve. This was also validated against an hourly profile of typical HW consumption from the 

California Energy Commission, showing a similar pattern [57]. The commercial simulations were 

performed for one city in the region (Chicago) and included a sampling of 16 commercial building 

types. A weighted average HW load curve was used based on the percentage of demand seen from 

each industry in Ontario according to the IESO outlook data [17]. Notably, the residential and 

commercial simulations showed the same hourly distribution of HW demand in all seasons, 

however they predicted an average 26% and 39% increase respectively between the summer and 

winter. This suggests disaggregated heating demand may include crossover from HW demand. 

Using these HW load curves, the ‘base’ sector curves determined through the regression model, 

and the proportion of HW demand detailed in the IESO data, the HW demand was disaggregated 

to produce the ‘Residential - other’ and ‘Commercial - other’ load curves. These represent the 

distribution of all sectoral demand excluding heating, cooling and HW and were the demands used 

to determine the sector load curve as described in Eq. (1). The final annual average coefficients 

(not differentiated by season) for each sector can be seen in Figure III-4. 

 

Figure III-4: Disaggregated Heating, Cooling and HW Scaled Demand Curves 
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2.2.1.2 CLIMATE CHANGE 

The regression model [51] used to produce weather-normalized projections can also be applied to 

project the impacts of different weather conditions due to the changing climate. In order to examine 

the effect of increasing average temperatures, projections were made using the same CWEC 

dataset, but with all temperature values increased in increments of 0.5 °C. This was performed for 

temperature increases ranging from 0.5 °C up to 2.0 °C. For each increment, the projected weather-

related demands were compared to those of the base weather data and a scaling coefficient was 

determined for both the average and peak seasonal demands, using Eq. (4) and the following: 

𝑑𝑝,𝑠,𝑡,𝑇
�̅�

= 𝑑𝑝,𝑠,𝑡
�̅�

∗ 𝑐𝑝,𝑠,𝑡,𝑇  Eq. (8) 

where 𝑑𝑝,𝑠,𝑡,𝑇
�̅�

 is the average projected demand for weather-related parameter p, in season s, on 

hour t, with average temperature increase T, and 𝑐𝑝,𝑠,𝑡,𝑇 is the corresponding scaling coefficient. 

The average increase in temperature is dynamically controlled by the user.  

2.2.2 ELECTRICAL VEHICLES 

The integration of electrical vehicles (EVs) has the potential to markedly impact the demand curve. 

The impact of a variety of technical, spatial and behavioural/economic factors on the magnitude 

and distribution of demand has been modelled, including vehicle size, charging infrastructure 

capacity and location, consumer occupation, and charging preference [61]. Studies have also 

identified the opportunity for EVs to be a controlled demand source, and modelled the potential 

for significant load shifting to balance daily demand fluctuations [62], [63].  

In this preliminary model, the characteristics of this parameter have been simplified to illustrate 

the baseline impact anticipated with increasing penetration. The projected number of personal 

vehicles can be determined as the product of estimated future population in the region and the 

estimated future quantity of vehicles per capita in the region. The quantity of personal vehicles per 

capita was estimated based the historical data for a series of similarly sized cities in Southern 

Ontario from Transportation Tomorrow surveys from 1986-2016 [64]. Based on the average values 

and slowly increasing trend, a 2040 value of 0.735 personal vehicles per capita was extrapolated. 

The total number of EVs can then be determined through the EV penetration which is the first of 

three EV related controls in the model. This can be then be multiplied by the estimated demand 

(9.22 kWh [17]) per vehicle to generate the total daily demand. 

The next two controls affect the distribution of EV demand throughout the day. There are a variety 

of sources that suggest significantly different distributions. One interface control determines 

whether the daily distribution is based on IESO [17] or NREL [16] projections. Each of these 

resources includes multiple potential load curves, thus the final control allows adjustment of the 

mix of the distributions from a given source. The IESO has a projected load profile for a 

convenience dominated charging pattern with minimal load management, and one for a charging 

pattern with effective load management (based on the current load curve). The third control defines 
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the percent of vehicles (or demand) following the load management curve. Thus, when this control 

is set to 0%, the load curve is the projection without load management, and when at 100% it is 

with optimal load management. When set to any value in between the curve is a weighted mix of 

both projections. Similarly, NREL has two potential hourly load shapes which are mixed 

depending on the control settings. The default is a scenario where the utility has no control. In this 

case, all charging occurs when consumers return home and continues until complete or until a new 

trip is started. The alternate curve is predicated based on the condition that charging infrastructure 

is abundant and the consumer will have the opportunity to plug in their EV whenever parked. The 

adapted potential load curves from each of these sources as well as a sample of the mixed results 

are shown in Figure III-5.  

The projected future demand can be determined using Eq. (5), where the hourly coefficients are 

determined based on the dynamic controls discussed. No seasonal effects were considered so all 

seasonal coefficients were set to 0.25. Since the penetration and demand in the base year may be 

zero, these values are replaced with placeholders indicating the total potential penetration and 

demand as estimated previously. 

 

Figure III-5: Projected EV Load Curves for a) IESO and b) NREL 

2.2.3 PHOTOVOLTAICS 

Photovoltaics in the form of rooftop panels are reaching significant penetration in residential and 

commercial markets; in Q1 2018 IESO reported just over 2GW of embedded solar capacity [65]. 

This represents approximately 5% of the total capacity currently installed on the transmission grid 

and already has started to impact the shape of daily demand curves [3], [6].  

The potential production capacity available from rooftop solar panels was estimated to be 

approximately 3.01 kW per capita in a large region of South Eastern Ontario, assuming a future 

average efficiency of 22.9% [66]. This covered a variety of population densities and landscapes 
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and was thus assumed to be representative of Ontario. The total potential capacity can then be 

estimated and scaled by the projected population and percent penetration according to prescribed 

scenarios.  

Along with customer demand data, many utilities meter embedded generation separately 

(particularly if a feed in tariff is present). The utility partner with which this model was calibrated 

also provided metered production from 765 customers with solar assets in the region. This can be 

used to establish average seasonal coefficients for the PV parameter, as can be seen in Figure III-6 

a). The coefficient at each hour determined with Eq. (9) is the percentage of the average day’s peak 

hourly production in that season. Seasonal coefficients are determined from Eq. (10), using a 

regional capacity factor from Natural Resources Canada [67] to relate peak hourly production on 

the average day of each season with estimated installed capacity. Note all demands in this case are 

negative since PVs provide supply. 

𝑘𝑝,𝑠,𝑡 = (
𝐷𝑝,𝑠,𝑡

�̅�

𝑚𝑖𝑛𝑡(𝐷𝑝,𝑠,𝑡
�̅�

)
)    Eq. (9) 

𝑠𝑝,𝑠 = (
𝑚𝑖𝑛𝑡(𝐷𝑝,𝑠,𝑡

�̅�
)

𝐶𝑝
�̅� )  Eq. (10) 

where: 

𝐷𝑝,𝑠,𝑡
�̅�

 = total demand of parameter p, at time t, in season s, of base year �̅� 

𝑚𝑖𝑛𝑡(𝑋) = is a function that finds the minimum value of X for all t 

𝐶𝑝
�̅�

 = the installed capacity of parameter p in year �̅� 

The shape of production curves will also vary depending on the orientation of a solar panel. A 

variety of sources have examined the possibility of shifting PV alignment to optimally match 

production with demand [68]–[70]. Two representative sets of coefficients were established in the 

model for south and west facing panels. The seasonal curves produced previously from the utility 

data were assumed to be for traditional south facing panels and thus used in the model for the 

baseline scenario. An additional parameter which allows the user to specify a mix of West facing 

panels was also included, with the load curve responding accordingly and producing a weighted 

combination of the two curves. The sample west facing distribution from Richardson and Harvey’s 

work was adapted and assumed to be a representative curve for the summer [70]. The other seasons 

were estimated by scaling this curve by the relative hourly production compared to the summer 

(this was assumed to be proportional to solar radiation). The resulting hourly coefficients are 

shown Figure III-6 b). 
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Figure III-6: Photovoltaic Scaled Load Curves a) South, b) West 

Although the curves have the same shape, the model includes two parameters which differentiate 

between residential and commercial photovoltaic penetration so that these can be adjusted 

individually. Based on the formulas in [66] used to calculate total roof area per capita, it was 

estimated that 40% of the total potential solar capacity per capita is commercial, whereas 60% is 

residential. It should also be noted that for the baseline curve, both parameters were set to 2.5% 

based on current estimated capacity and projected potential capacity. The model also displays the 

total penetration from both sectors in a metric commonly used by utilities, percent of peak demand.  

Projections of future production are made using the following equation, where 𝐶𝑝 is the estimated 

total potential capacity: 

𝑑𝑝,𝑠,𝑡
𝑦

= 𝐶𝑝 ∗ 𝑃𝑒𝑛𝑝
𝑦

∗ 𝑘𝑝,𝑠,𝑡 ∗ 𝑠𝑝,𝑠 Eq. (11) 

2.2.4 NON-UTILITY PROCUREMENT 

Another trend in energy markets is customers leaving traditional utility models in pursuit of 

independent energy procurement either through community microgrids or corporate power 

purchase agreements (CPPAs).  

As an approximation, in this model it is assumed that a microgrid community will have a 

combination of commercial and residential demand at a ratio consistent with the overall utility 

demand. The total capacity of microgrids can be adjusted dynamically. Since this essentially 

represents residential and commercial customers leaving, a supply curve with the same coefficients 

(but negative) as the total projected residential and commercial demands for the current scenario 

will be applied. The magnitude of supply is constrained such that the peak of this total microgrid 

supply curve will be equal to the selected capacity of the grid, owing to the assumption that each 

microgrid is designed to meet the average daily peak demand of all connected consumers.  
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To illustrate the effect of large industrial customers leaving, it was assumed in this model that all 

CPPAs would be signed with corporations in the industrial sector. A dynamic control allows the 

user to set the total capacity of all CPPAs which produces a negative supply curve with the same 

distribution as the industrial sector. It will be assumed that the CPPA is able to meet average daily 

peak demand and thus the highest point on the negative supply curve will be equal to the 

established total capacity. 

2.2.5 ENERGY STORAGE 

The implementation of utility scale energy storage is unique from the other parameters in that the 

shape of the load curve produced depends completely on the demand of each of the other load 

curves. As such any time another parameter is adjusted, the energy storage is redistributed. This 

model parameter is adjusted based on the total projected energy storage in GWh and can be 

changed by increments of 0.1 GWh. A round-trip efficiency of 70% was assumed based on the 

assumption that a combination of batteries and bulk energy storage such as pumped hydro storage 

or compressed air energy storage would be used [71]. It is assumed the storage is fully charged 

and discharged once per day. 

An algorithm was developed so that when energy storage capacity is added by the user, additional 

‘charging’ demand is added to the times of lowest demand on the daily demand curves, while 

negative ‘discharging’ supply is added during the peak hours. This is done iteratively, adding 

0.01GWh of demand and 0.007 GWh of supply at a time (ten steps per 0.1 GWh added by the 

control) until the total value is reached. While this may not result in perfectly smoothed demand 

curve the limited steps reduce computation requirements to ensure smooth model operation. 

Furthermore, real energy storage operation is unlikely to be perfectly optimized since future 

demands are uncertain. The model also includes an option to control whether energy storage is 

charged through the “Grid” or “Solar Only.” In grid charging the energy storage charging demand 

can be allocated during any hours, whereas with solar charging it can only occur at times when 

solar panels are producing power. Therefore, during solar charging, the total energy storage is also 

effectively limited by the total solar production. 

2.3 SCENARIOS 

To validate the accuracy of the model, it was first tasked with matching historical demand data 

from the base year in 2017. The model automatically generates an estimated baseline curve from 

the load curves and annual demand data entered. This was compared to the utility partner’s data in 

Section 3.1.   

In addition, to demonstrate the capabilities of the model and assess the range of potential outcomes 

for demand distributions, a variety of scenarios were developed as a case study. In 2016 the IESO 

produced the “Ontario Planning Outlook” (OPO) report which includes a range of economic and 

technological scenarios (Outlooks A – D) for the next 20 years [17]. This includes projections of 
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the future energy demand in a variety of sectors as well as the penetration of specific technologies. 

These were used to generate one set of scenarios. Furthermore, to examine the potential effects of 

more extreme sector disruption, an additional set of scenarios were projected. 

2.3.1 IESO OUTLOOKS 

Outlook A considers a scenario where adoption of new disruptive technology such as electrical 

heating and EVs is low. A lower overall growth and continued focus on conservation and 

efficiency measures results in a slight decline in demand across almost all energy sectors. Outlook 

B is similar except in this scenario economic and population growth remain higher, matching the 

conservation and efficiency gains to result in a marginal growth in total demand across most 

sectors. Outlooks C & D use similar growth projections to scenario B, but also consider additional 

electrification. Both project higher electrical heating and EV penetration rates, as well as a 

significant portion of industrial demand, which is currently met through onsite fossil fuel 

combustion, transitioning to electricity from the grid. The difference between the two is that 

Outlook D has slightly higher projections for each of these categories. The main characteristics of 

each outlook are summarized in Table III-2.  

To determine the model inputs for each outlook, a series of calculations and estimations were 

performed using the outlook data; the full results can be seen in the supplemental material. Each 

outlook includes baseline demand for each sector in Ontario from 2015, as well as projections for 

the year 2035. Using these values, the average annual growth rates for each sector can be calculated 

and projected forward to 2040 (see Table S1). Demand data is also provided for specific end uses 

in both the commercial and residential sectors, including heating, cooling and hot water. By 

subtracting these demands from the total, this data can be used to determine the projected growth 

rate of the weather-independent end uses, or ‘other’ commercial and residential sectors. 

Furthermore, the current and projected penetration rates of electrical heating and hot water are 

provided. Using this information, the estimated total potential demand for these end uses can be 

determined in each scenario (see Table S2). With these theoretical total potential demands the 

growth rate for these parameters can then be calculated for each scenario to reflect the projected 

effects of changing consumer choices or technological efficiencies independently from the change 

in market penetration. Finally, the outlooks include projections of the average characteristics of 

electric vehicles and the total demand of the transportation sector. This was extrapolated to 2040, 

along with historical Statistics Canada data on vehicle registrations [72]. The EV data was then 

converted into an approximate equivalent market penetration in each scenario (see Table S3) so 

that it could be applied to the model parameter.  
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Table III-2: IESO Outlook Characteristics [17] 
O

u
tl

o
o
k

 

Years 

Growth in 

Number of 

House-

holds 

Growth in 

Commer-

cial Floor 

Space 

Annual 

Growth in 

Industrial 

GDP 

Electric 

Heating & 

HW Gain 

in Market 

Share 

Electrifi-

cation of 

Industrial 

Fossil 

Fuel Uses 

Mil-

lions of 

EVs in 

Ontario 

A 
2015-2025 11% 10% 0% 

0% 0% 0.6 
2025-2035 7% 8% 1% 

B 
2015-2025 14% 15% 1% 

0% 0% 1.0 
2025-2035 9% 11% 1% 

C 
2015-2025 14% 15% 1% 

25% 5% 2.4 
2025-2035 9% 11% 1% 

D 
2015-2025 14% 15% 1% 

50% 10% 2.4 
2025-2035 9% 11% 1% 

 

All IESO Outlook data is based on gross projections for the entire province, thus may not be strictly 

representative of the changes that are expected to be seen locally. However, they provide baseline 

scenarios for demonstration. Therefore, in each IESO scenario the projected sector growth rates 

for the respective Outlook were applied to the baseline sectoral demand seen in 2017. Likewise, 

the parameters controlling residential and commercial electrical heating and HW penetration rates 

were set to equivalent province-wide penetration projections. Since these projections were for 

2035, the projected trends for penetration were extrapolated to 2040 in each scenario using fitted 

curves (Table S4). Likewise, the EV penetration parameter was set based on the extrapolated 

projected penetration rate. Since multiple parameter calculations require the future population, an 

estimate was made for each scenario by applying the household growth rates to the current 

population [73]. The resulting population projections were in close agreement to those estimated 

from the Ontario Ministry of Finance’s expected regional growth [74]. 

2.3.2 ADDITIONAL SCENARIOS 

The additional scenarios were developed based on a variety of literature sources. Table III-3 

summarizes the parameter values used in each scenario and the justification for their selection. The 

first two additional scenarios were developed to illustrate more extreme ranges in demand that 

could be realistically expected based on IESO Outlooks and additional sources. The next two 

scenarios were developed to demonstrate the sensitivity of Ontario’s electricity market to 

developing a ‘duck-curve.’ The first duck curve scenario uses values that fall well within the cited 

ranges, while the second ‘extreme duck curve’ scenario shows modifying factors at their extreme 

values. 
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Table III-3: Additional Scenario Characteristics 

 High Scenario Low Scenario  
Duck Curve 

Scenario 

Extreme Duck 

Curve Scenario 

S
ec

to
r 

&
 

P
o
p
u
la

ti
o
n
 

G
ro

w
th

 R
at

es
 

IESO Outlook 

maximums [17] 

IESO Outlook 

minimum [17] 

IESO Outlook A 

[17] 

IESO Outlook B 

[17] 

E
V

 P
en

et
ra

ti
o
n

 45% - NEB 

projected sales 

with Canadian 

Vehicle Survey 

age distribution 

[13], [75] 

7% - IESO 

Outlook A [17] 

35% - interpolated 

from Institut de 

l’énergie Trottier 

and e3 Hub 2030 

and 2050 

projections [14] 

45% - NEB 

projected sales 

with Canadian 

Vehicle Survey 

age distribution 

[13], [75] 

E
V

 

C
h
ar

g
in

g
 

D
is

tr
ib

u
t

io
n

 NREL 50% Home, 

50% Work 

Charging [16] 

NREL 50% Home, 

50% Work 

Charging [16] 

NREL 50% Home, 

50% Work 

Charging [16] 

NREL 75% Home, 

25% Work 

Charging [16] 

E
le

ct
ri

c 
H

ea
ti

n
g
 

&
 H

W
 

P
en

et
ra

ti
o
n

 

61% residential & 

commercial – 

NEB, Trottier, 

IESO Outlook D & 

Quebec data [13], 

[14], [17], [76] 

2015 Ontario 

levels [17] 

31% - midpoint 

value, close to 

IESO Outlook C 

[17] 

61% residential & 

commercial – 

NEB, Trottier, 

IESO Outlook D & 

Quebec data [13], 

[14], [17], [76] 

E
m

b
ed

d
ed

 R
o
o
ft

o
p
 

P
V

 P
en

et
ra

ti
o
n

 

7% - NEB 

reference case [13] 

25% - NEB 

technology case 

projections [13], 

[76] and high 

current penetration 

relative to other 

regions [65], [77] 

20%- NEB 

technology case 

projections [13], 

[76] 

30% - similar to 

high penetration 

neighbourhoods in 

California [78], 

[79] 

N
o
n
-u

ti
li

ty
 

p
ro

cu
re

m
en

t 

 

10% of total 

demand leaving for 

microgrids or 

CPPAs – double 

losses seen by NV 

Power [80] 

 

10% of total 

demand leaving for 

microgrids or 

CPPAs – double 

losses seen by NV 

Power [80] 
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3 RESULTS & DISCUSSION 

The following sections discuss the results of the model once calibrated with utility data. First it is 

validated through comparison with the actual data, then the eight case study scenarios are 

presented. 

3.1 BASELINE VALIDATION 

Figure III-7 compares the actual, modeled, and normalized seasonal demand curves. The modeled 

curve shown includes the error from weather disaggregation in the base demand, as described in 

section 2.2.1.1. Before the inclusion (not shown in figure), the mean absolute percent error 

(MAPE) between 2017 modeled and actual data was 0.80%, with the highest error being seen in 

the spring (1.54%). The incorporation of this error into the modeled demand improved the 

accuracy to only 0.04% MAPE. There was still a very small error, presumably due to the missing 

data in certain sectors which required some days to be discarded when calculating the actual total 

seasonal averages. The normalized curve is the demand predicted based on the CWEC dataset. 

Similarly, Figure III-8 compares the actual, modeled and normalized peak seasonal demand 

curves. The fit between modeled and actual curves was not as consistent for the peak demand. 

While the spring and winter hourly MAPEs were between 1- 2%, the summer and fall were higher 

at 4.43% and 2.57% respectively. Although the modeled summer peak day did not directly follow 

the actual data, the error during evening peak hours was only 0.74%. In contrast, the modeled fall 

data showed a better fit in the night and morning (1.92%) but was significantly over predicted in 

the late evening (6.03%). This can be partially explained by the fact that the error terms included 

for the fall were positive due to a general underprediction of fall demand by the model. However, 

the extremely hot days were generally overpredicted, thus this intended correction actually 

increased the error. This could also explain to a lesser degree the error in the summer. It also 

suggests that in future work it may be beneficial to include a sperate error adjustment term for peak 

demands. 

The weather normalized curves were significantly different in some seasons for both average and 

peak demands. The CWEC data had warmer summer and spring temperatures than seen in 2017, 

resulting in an increase in modeled cooling demands. In both cases the normalized average daily 

demand was 3.8% higher, while the peak day demands were over 7% and 14% higher respectively. 

In contrast, the temperatures in fall 2017 were lower than those in the CWEC dataset. Although 

this resulted in a projected increase in heating demands, this was offset by reduced cooling 

demands and resulted in a lower total demand (1.5% less average day and 12% less peak day 

demands).  
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Figure III-7: Actual, Modeled and Normalized 2017 Seasonal Average Demand Curves 

 

Figure III-8: Actual, Modeled and Normalized 2017 Peak Seasonal Demand Curves 
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3.2 IESO OUTLOOKS 

For each outlook the model produced four seasonal demand curves broken into the various sectors 

and end uses. An example model output (summer demand curve for the IESO Outlook C) is shown 

in Figure III-1. To facilitate comparison between scenarios, the 2017 modeled, 2040 projected 

average and 2040 projected peak demands from each season were combined for each scenario and 

presented in Figure III-9. A similar combined curve can also be viewed by the user in the model. 

In addition, Table III-4 shows a variety of metrics which can be used to assess the changes to the 

demand curve in each scenario. The peak ramp rate is defined as the largest increase or decrease 

between successive hours in the future average seasonal demand curves. This is important as it 

indicates the level of flexibility required from supply assets to increase or decrease their generation 

to match demand. The ramp rates from peak demand curves were not considered in this metric as 

these represent outlier occurrences and the goal was to quantify the ramp rates which would be 

commonly experienced in day to day operations under the new scenarios (rather than perhaps only 

once or twice a year). Note, the ‘Modeled 2017’ data represents the weather normalized 2017 

results, and the bolded values in the peak and daily demand columns represent the total base values. 

All other values in these columns represent the change from these base values in the given scenario. 

Table III-4: IESO Outlook Metrics 

IESO Outlook 

Change 

in Peak 

Demand 

(MWh) 

Change in 

Avg. Daily 

Demand 

(MWh) 

Load Factor 

(Avg. de-

mand / Peak 

demand) 

Peak Ramp Rate 

of Seasonal 

Avg. Days 

(MWh/h) 

Avg. Hourly CV 

of Seasonal 

Avg. Days 

Modeled 2017   327.0 3828.4  0.488 18.6 12.9% 

Actual 2017 -32.7 -66.2 0.533 17.8 12.9% 

A -16.0 -186.9 0.488 18.2 14.2% 

B 17.3 321.9 0.502 20.3 14.4% 

C 56.1 1367.9 0.565 32.2 15.4% 

D 75.8 2009.4 0.604 35.7 14.7% 
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Figure III-9: Projected Seasonal Demand Curves – IESO Outlooks A (Top Left), B (Top Right), 

C (Bottom Left) & D (Bottom Right) 

Table III-4 shows that the weather normalized demand had a significantly higher peak demand as 

well as a slightly increased average demand compared to the 2017 data. As mentioned previously, 

the CWEC dataset had higher summer temperatures, which resulted in the large increase in peak 

demand. These higher summer temperatures and those in the spring were also responsible for the 

increased average demand, partially offset by the lower fall temperatures. Since the peak load was 

projected to increase more significantly than average, the load factor decreased from 0.533 to 

0.488. These increased weather effects also resulted in marginal increases in peak ramp rate, while 

the hourly coefficient of variation (CV) stayed constant.  
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Outlook A showed only a slight decrease in total and peak demand, as well as peak ramp rate, 

while in Outlook B there was a slight increase in all three. Neither scenario projected significant 

change in the modifying parameters and as a result Figure III-9 shows marginal change to the 

overall shape of the curves. Outlook B does show a slightly more pronounced morning peak due 

to the increased HW demand and electric vehicle charging upon arrival at work. This also explains 

the increased average seasonal CV of hourly demand curves in both scenarios. Outlook A has an 

identical load factor to the 2017 modeled data, while the load factor increases to 0.502 in Outlook 

B. The increase can be explained by the fact that the main differences in parameters (increased 

electrified heating, HW and EV penetration) add demand either to all seasons equally or in the 

non-peak seasons disproportionately. Therefore, the peak demand increased relatively less than 

total demand, resulting in a higher load factor.  

Outlooks C and D showed increased electrified heating, HW and EV penetrations as well as high 

growth in the industrial sector. These resulted in a significant growth in the peak demand and total 

demand. The ramp-rate also showed a large increase in these scenarios, but as opposed to the peak 

and total demands, the difference between Outlooks C and D was not significant. In the modeled 

2017 data as well as Outlooks A and B, the peak ramp-rate was ramping down as demand 

plummeted at the end of the day, whereas in D it was a ramp-up in the morning and in C both were 

almost equal. This is caused by the same factors which resulted in a more pronounced morning 

peak in Outlook B, but to a much greater degree (as can be seen in Figure III-9). Furthermore, 

industrial demand was projected to grow significantly due to electrification of fossil fuel end-uses. 

While overall the industrial sector has a more evenly distributed demand than the residential and 

commercial sectors, the daily peak ramps very quickly in the early morning. The two pronounced 

peaks seen in Outlooks C and D also resulted in increased CV values. It is noteworthy that the CV 

was significantly lower in Outlook D than Outlook C despite a visible increase in daily variability 

in Figure III-9. This is because CV is a measure of the variance relative to the mean. The higher 

electrification of heating and industry increased base demand, meaning the variance, represented 

a smaller proportion of mean demand. A similar trend was also seen with the increasing load 

factors from Outlooks A to D. Although the increasing peak demands would require a larger 

capacity not used through the night and non-peak seasons, this would represent an increasingly 

smaller proportion of the total system capacity.  

The increasing load factor values can also be explained by another significant shift which occurred 

with Outlook D; the projected overall peak demand occurred in the winter instead of the summer. 

With significant peaks in both the winter and summer, the load is more evenly distributed 

throughout the year. The IESO projections suggested that the winter peak would surpass summer 

peaks as early as the late 2020’s in Outlook D and early 2030’s in Outlook C, with the winter peak 

continuing to increase and widening the gap in the following years [17]. In contrast, these results 

suggest that the peak demand would have just barely surpassed the summer peak in 2040, and only 

in Outlook D. This difference is rational since the utility being studied is one of the most southern 
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in Ontario and thus would see much higher air conditioning and lower heating demands than the 

average Ontario utility.  

These four outlooks illustrate the wide range in future scenarios being projected. The results 

demonstrated that increasing electrification of heating, transportation and industry would result in 

greater demand variability and increased ramp rates. However, this would also lead to a higher 

base demand, thus resulting in a higher load factor and potentially a lower relative variability. 

While the multiple peaks and high ramp rates pose a challenge, particularly in a system with 

increasing intermittent renewable penetration, if the new loads can become partially dispatchable, 

the lower relative variance (CV) could be smoothed.  

3.3 ADDITIONAL SCENARIOS  

The resulting impacts to the demand curves in the high demand, low demand and two duck curve 

scenarios are summarized in Table III-5, while Figure III-10 shows the projected load curves. Once 

again, bolded values in the peak and daily demand columns for the weather normalized ‘Modeled 

2017’ scenario represent the total base values, while the remainder of the columns represent the 

change from these base values. 

 

Table III-5: Additional Scenario Outlook Metrics 

IESO Outlook 

Change 

in Peak 

Demand 

(MWh) 

Change in 

Avg. Daily 

Demand 

(MWh) 

Load Factor 

(Avg. de-

mand / Peak 

demand) 

Peak Ramp Rate 

of Seasonal 

Avg. Days 

(MWh/h) 

Avg. Hourly CV 

of Seasonal 

Avg. Days 

Modeled 2017   327.0 3828.4  0.488 18.6 12.9% 

Actual 2017 -32.7 -66.2 0.533 17.8 12.9% 

High 151.6 2364.0 0.539 33.2 18.0% 

Low -48.9 -1142.0 0.403 25.4 27.6% 

Duck Curve 47.1 639.3 0.498 31.0 21.9% 

Extreme Duck 89.3 487.4 0.432 37.3 29.7% 
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Figure III-10: Projected Seasonal Demand Curves – High Demand (Top Left), Low Demand 

(Top Right), Duck Curve (Bottom Left) & Extreme Duck Curve (Bottom Right) 

The high and low demand scenarios demonstrate the extreme range in demand which could 

reasonably be expected. The high scenario projects an average of over 3.5 GWh more demand per 

day than the low scenario, and a peak hourly demand over 200 MW higher. As in the IESO Outlook 

D, the high demand scenario showed a winter peak due to the large growth in heating demands. 

Likewise, the increased electric heating, hot water and EV penetration added demand to non-peak 

seasons, resulting in a more evenly distributed demand throughout the year and generally more 

favourable metrics. Although there is a large growth in the average evening peak due to the 

electrical vehicle penetration, the high overall demand meant that the variation was relatively less 

significant, leading to a high load factor (0.539) and relatively low CV (18.0%). The CV was 

higher than the modeled 2017 data, but not compared to the low scenario where the CV rose to 
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27.6% and load factor dropped to 0.403, making the system less profitable and more challenging 

to manage. The high CV and low load factor were caused by the large quantity of solar supply in 

the afternoon. Since the PV capacity does not produce much electricity during the evening peak, 

the peak demand declined significantly less relative to the total demand. The result is a minor duck 

curve shape. The only factor which would make the high demand scenario more difficult to operate 

than the low scenario was the peak ramp rate. While the evening demand spike in the low scenario 

did produce a higher ramp rate than 2017 data, it was not as large as the evening drop-off of the 

high scenario (25.4 MWh/h compared to 33.2 MWh/h). 

Figure III-10 shows that both duck curve scenarios produced a similarly shaped average demand 

curve to the low demand scenario. A prominent morning peak is followed by a significant decline 

in demand throughout the afternoon to values even lower than those seen at night. This is then 

followed by a very large, sustained growth in demand from noon into the evening. Comparing the 

first duck curve scenario to the low scenario, the lower PV penetration, results in a less significant 

drop in demand in the afternoon, but the high EV charging demand when consumers return home 

from work causes a larger evening peak. This scenario uses all parameter values well within the 

ranges found in literature and exemplifies the sensitivity utilities may have to developing this type 

of demand curve if not managed properly. While this scenario does have a slightly higher load 

factor than the modeled 2017 data due to the electric heating and EV penetration balancing 

seasonal variation, it also has much higher variability throughout the day as shown by the high 

ramp rate and CV.  

The extreme duck curve scenario has even higher penetration of the disrupting technologies and 

demonstrates the worst-case scenario, with afternoon valleys almost as deep as the low scenario, 

and peak demands even higher than the previous duck curve. While the peak demand increased 

almost twice as much compared to first duck curve scenario, the total demand only increased by 

about half. This is because a large portion of the increased demand from electrification is met by 

embedded PV assets which, as previously mentioned, do not produce much electricity during the 

evening peak. Furthermore, the very high electric heating penetration in this scenario resulted in a 

winter peak, when PV generation is lowest. This combination makes this scenario particularly 

difficult to manage as there is a low load factor (0.432), and very high peak ramp rates (37.3 

MWh/h) and CV (29.7%). The peak winter season has a much smaller range of daily demands and 

therefore could hypothetically use a relatively high proportion of cheap and clean base supply such 

as hydro or nuclear. However the other seasons, despite having less total demand, have a much 

larger daily range and more significant late afternoon to eventing ramp. Assuming base demand 

generators have limited dispatchability to meet this ramp, it would be necessary to maintain a large 

quantity of responsive assets to meet these huge demand fluctuations in the other seasons. As a 

result, there would either need to be redundant idle capacity, or a large proportion of the supply 

mix composed of quickly dispatchable generators such as those powered by fossil fuels.  

These results once again illustrate the extreme range of possible outcomes and the challenging 

balance of multiple interacting parameters. Electrified heating can balance seasonal demand and 
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create higher proportions of base demand in some scenarios, but it can also cause imbalances if 

other parameters such as PVs reach high penetration levels. Likewise, EVs may represent an 

opportunity to replace demand being met by embedded capacity, but this may not be beneficial if 

they are disproportionately increasing peak demand. Both sets of scenarios highlight the necessity 

of a tool which allows the user to quickly assess all potential outcomes and balance the risks and 

rewards with proactive policies and investments. 

4 CONCLUSION 

This paper presents a model designed to project the shape of the 2040 average and peak seasonal 

demand curves for a utility based on a wide range of parameters. The model was developed so that 

the modifying parameters can be adjusted to illustrate their effects and interactions in real time. 

The changing shape of the daily load curve has non-trivial implications for the operation and 

profitability of a utility. Thus, this tool enables utilities to examine the range of potential outcomes, 

assess risk and evaluate mitigation techniques. 

The model was calibrated with data from an Ontario utility. The linear model used for weather 

normalization and disaggregation had a very good fit with 2017 data and the errors were included 

in the base demand component to reflect any systematic seasonal errors. This could potentially be 

improved with more specific data about customer appliances to further disaggregate demands into 

specific end uses, such as heat pumps vs. baseboard heaters, or central vs. portable air-

conditioning. The results of the average load curve model were validated against the actual 2017 

data showing a very good fit. The peak demands predicted by the scaled load curve model showed 

adequate fit, but could be improved for extremely hot days, particularly those occurring outside of 

the hot season (summer). In the future, additional error terms will be considered to improve this 

fit. Another option for further study would be to use larger quantities of weather data and develop 

a peak curve based on an upper percentile range, rather than a single peak datapoint. The main 

limitation of the scaled load curve model is that it assumes sector distributions will remain constant 

except for the identified disruptive parameters. This may not be valid if relevant factors are 

overlooked and thus not disaggregated. Future studies could break down each sector further into 

specific industries and end uses to help further refine the model.  

Some additional features will also be added in future versions of the model. This includes the non-

trivial quantification of relevant capital costs and revenues for each projected scenario. 

Additionally, in future work a climate change parameter will scale heating and cooling parameters 

based on the projections of the Canadian Centre for Climate Modelling and Analysis. 

Eight scenarios based on IESO Outlooks and other literature were presented as a case study and to 

illustrate the significant range in potential demand distributions for a future utility. The resulting 

notable variations demonstrate the complexity of the system and multitude of scenarios which 

could be considered. Of those presented, the low load factors and high ramp rates illustrated in the 

duck curve scenarios showed the potential negative impacts of increasing technology penetration 
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without proper policy and planning. Given the uncertainty of future predictions an immediately 

illustrative tool of this nature that enables stakeholders to quickly assess a range of projections and 

identify the impacts and interactions of various technologies or policies can be very valuable. 

Beyond projecting the impacts of challenging scenarios, the model could also be used to assess 

how various technologies and policies may be used to mitigate or offset negative impacts. 
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CONNECTION OF CHAPTER III AND CHAPTER IV 

The utility load curve model detailed in Chapter III was the result of several iterations on previous 

versions of a similar model. The goal was to develop an initial baseline proof of concept and then 

continually refine it to include more parameters and provide more accurate projections. This 

presented version will be the first to be published (once accepted), however it has since been 

continually refined based on additional research and stakeholder feedback. One of the main 

objectives of this research was to provide tools and analysis for utilities at a finer resolution than 

the national scale models typically seen in previous literature. Therefore, the next step in this 

research was to model even lower levels in the distributions system. Chapter IV investigates local 

technology and customer variability within a utility’s service area at the transformer level, with 

the goal in mind being to use this information to develop a more refined version of the load curve 

model. While some modeling and scenario analysis was performed in Chapter IV, this was done 

outside of the framework detailed in Chapter III. Then, upon conclusion of this research, the utility 

load curve model from Chapter III was updated to incorporate the finer resolution data, as well as 

a few additional parameters. These modifications are detailed in Appendix C. 
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1 INTRODUCTION 

With the global focus on climate change, there has been increased efforts to transition energy 

systems from fossil fuels to more sustainable sources. This emphasis has led to significant 

development in renewable systems such as photovoltaic solar panels (PVs) which are often 

installed on rooftops and connected directly to local distribution systems. However renewable 

generation can present challenges as it is intermittent and does not necessarily match demands 

temporally. Furthermore, the magnitude and timing of demand is changing quickly as sectors 

traditionally based on fossil fuels such as heating, and transport are transitioning to electric heating 

(EH) often in the form of heat pumps (HPs) and electrical vehicles (EVs). All of these factors are 

leading to a large degree of uncertainty in the sector, as evidenced by Utility Dive’s 2019 survey 

of utility workers [1]. With the vast majority of respondents expecting growth in EV and PV 

penetrations in their region, they described significant forthcoming challenges in terms of 

justifying emerging investments and managing distributed energy resources. These issues will 

challenge the energy system as operators struggle to maintain balance with less flexible supply 

and more volatile demand, while local utilities are required to invest in larger capacity to meet 

peak demands despite significant portions of their total demand being met by local generation.  

Researchers have investigated the potential impacts of these technologies on distribution grid 

demands. Muratori used a Markov process to construct load profiles for 200 households and 348 

EVs, examining the impact of various penetration and charging levels on individual residential 

customer profiles, as well as on an aggregated transformer profile [2]. Another study modeled the 

demand of plug-in hybrid EVs on a residential transformer using ten representative weekdays from 

a metered household and ten generated profiles from representative drivers in the National 

Household Travel Survey (NHTS) 2009 [3]. The resulting demand curve was used to calculate the 

estimated transformer hotspot and life loss. Similarly, Gray and Morsi estimated hot spot 

temperature and resulting transformer loss of life using the NHTS and the 2015 Canadian Plug-in 

Electric Vehicle Survey to generate EV demand profiles [4]. They also examined the addition of 



 

68 

 

rooftop solar panels, demonstrating that they significantly improved the life of the transformer by 

decreasing demand and allowing it to cool, even if generation was not concurrent with peak 

demand. Beaufils and Pineau investigated the impact of these two technologies on utility revenues 

and concluded common volumetric tariffs would likely not be sufficient to balance revenues with 

costs [5]. While these studies investigated a variety of charging patterns, they assumed a single 

representative aggregate base demand for the transformer. This may not be representative of the 

diversity found within the system.  

Another set of literature performed in depth load flow or expansion planning analysis of real, 

representative, or model distribution systems with new technology penetration. One study used 

models of a real urban network with 6000 customers, a rural one with 189 residential customers 

and a ‘generic’ one with 386, combined with real EV data from the SwitchEV project [6]. They 

found that the distribution system was not homogeneous, with some regions having much higher 

capacity to handle EV penetration than others (the urban network in their study). Mao, Gao and 

Wang used Monte Carlo simulation of EV loads and time series analysis to simulate load flow in 

urban, suburban and rural areas of Columbus Ohio, assessing the loss of life on both continuous 

loading equipment such as transformers and discrete operation equipment such as voltage 

regulators [7]. They also found differences in impact between regions, with the suburban area 

being most prone to depreciated asset value. Another paper examined the impact of PV generation 

on network losses and congestion in a real distribution system in Barcelona, finding that excessive 

penetration actually increases these issues (particularly in semi-urban areas) and concluding 

analysis should be done on a local basis [8]. Other studies used statistical databases on 

representative residential customer groups in order to generate various representative consumer 

and network load curves. McKenna et al. modeled demand for seven UK household types and 

found the optimal PV, HP, or PV and HP capacities to serve each household [9]. Neighborhood 

characteristics were then clustered into three groups and representative networks developed for 

each using the household types. Load flow analysis was applied to each network under various 

penetration rates of PV and HP, finding that infrastructure upgrade costs were lower in urban areas 

[9]. Another study examined three potential future scenarios considering EV, PV, HP, and micro 

combined heat and power, as well as demand flexibility [10]. Load profiles were modeled for old 

and new residential developments in 10 population densities. Finally, an expansion planning model 

formulated as an MILP problem was also used to investigate the optimal configuration of 

technology penetration, considering EV, PV, Wind and energy storage (ES) [11]. The results 

showed that implementation of ES along with EVs delayed investment in infrastructure. These 

studies provide valuable insight, however, focus exclusively on residential transformers. While the 

main impact from EVs is expected to be on residential transformers, one proposed method for 

shifting the load and impact from EVs is through diverse charging opportunities such as at 

workplaces or public charging stations [6], [12]. Likewise, other technologies such as HP and PVs 

will be present with all customer types.  
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The representative clusters of customers or neighborhoods used in many of the previous studies 

are based on detailed statistical and demographic data which may not be available to utilities or 

system operators for refined regions within their service areas. They could instead simulate the 

entire system with actual data and additional load added for various scenarios, as Neaimeh et al. 

did for specific regions [6], but this requires significant computing resources. Instead, this paper 

proposes that representative transformer load profiles could be determined through clustering, 

allowing a much lower volume of analysis to identify potential risks, opportunities and strategies 

for mitigation in diverse regions across the service area. Clustering of demand curves has already 

been performed in a number of studies for the targeting of customers in demand response initiatives 

[13]–[15]. However, as far as the authors are aware the only such clustered analysis applied to 

transformer level loads on the distribution system was by Wamburu, et al. [16]. This study used 

transformer load data from a small city and clustered the average daily load curves, illustrating 

significantly different distributions and hypothesizing about the reasons and impacts. However, 

they did not use these clusters as the basis for their investigation and instead performed a detailed 

analysis on all of the transformer load curves, examining how heavily each transformer was loaded 

compared to its capacity, before adding EV demand and presenting the change in loading. 

Additionally, this paper postulated that technology penetration will not be uniform and thus 

investigated scenarios of disproportionate penetration across transformers [16]. This assumption 

is supported by studies such as Javid and Nejat’s which developed a multiple logistic regression 

model to predict EV penetration in different counties based on demographic, economic and 

infrastructure characteristics [17]. Another study recognized this potential as well and suggested 

these clustering effects could result in significant local impacts even at low overall penetration [2]. 

In fact, similar clustering effects in terms of customer behaviors and end-uses can explain the 

variations and patterns of baseline load currently observed across transformers.  

Based off these observations, this paper presents an investigation into the impacts of technology 

clustering and penetration on distribution transformers. The first contribution of this paper is an 

assessment of the current technology clustering effects, through examining localized penetration 

rates of PVs, and EH at the transformer level in a real utility service area. This can serve as a 

reflection of what range of distributions may be reasonably expected with new penetrating 

technologies in the future. Next, clustering analysis is performed on real transformer loads to find 

eight diverse representative load curves. Finally, a variety of EV, PV, EH and ES penetration 

scenarios are presented to illustrate how each transformer cluster is impacted by the technologies 

and their interactions. Based on these results, a variety of mitigation techniques can be assessed to 

develop policy recommendations. Additionally, the impacts in each scenario are aggregated up to 

the total demand curve because the local distribution system is not the only factor impacted and 

this must be considered in order to make informed decisions. Specifically, this paper investigates 

the disconnect between local optimal operation of energy storage, and operation which is optimal 

for the overall system. The use of a small number of representative clusters simplifies the analysis, 

reducing computing needs and allowing for a wide variety of scenarios to be quickly assessed. 
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2 MATERIALS AND METHODS 

This paper presents an investigation into the local variability of customer types and technology 

penetration within the distribution system of an electricity utility and the potential future impacts 

of new technology penetration. The current penetration of PV and EH across different transformers 

was assessed as an indication of the relative differences which could also be expected from new 

technology. Clustering was then performed to identify a set of representative typical load curves 

for transformers within the city. Finally, a set of scenarios for increased EV, PV and EH technology 

penetration was assessed for each transformer cluster, to examine the potential system impacts and 

policy implications.  

Clustering was used to identify customer characteristics as well as to group transformers into 

representative clusters based on similar load curve patterns. The k-means method was selected for 

all clustering performed in this analysis due to its simplicity and certainty of convergence. 

Furthermore, comparison of different clustering methods has shown that k-means performs well 

when the goal is to identify a range of unique and representative load patterns [18]. It was 

implemented in Python with scikit-learn, using the optimized ‘k-means ++’ seeding method to 

improve convergence speed [19]. In all cases the goal was to group similarly distributed curves 

regardless of magnitude. Thus, prior to clustering all load curves were normalized by dividing all 

data points by the mean demand for that customer. Using this method, the normalized data still 

represents daily and seasonal fluctuations, but on a relative basis (as a percentage of average 

demand).  

Customer demand data from a southwestern Ontario utility was used in this investigation. The data 

was filtered to remove any customers with more than 30 days of missing data. After filtering, the 

data included hourly meter data for 79497 residential, 7669 commercial, and 201 industrial 

customers, as well as 761 distribution connected solar panel installations. This data is mapped to 

the 6272 distribution transformers; however, no additional customer description was available, nor 

the capacity ratings of each transformer. The following sections will detail the methodology used 

to assess the local variability and establish representative clusters for the case study scenarios. First 

the technique used to assess local technology penetration is detailed in Section 2.1 followed by the 

method for clustering transformer load curves in Section 2.2, and lastly the methods by which 

future scenarios were generated are presented in Section 2.3. 

2.1 LOCALIZED PENETRATION 

Each solar installation was identified as a unique customer and thus the customer penetration at 

any given location could be easily identified as the ratio between PV customers and other 

customers. In contrast, no data was available on which households contained electric heating, 

therefore this had to be determined from the load data. To achieve this, residential and commercial 

customers were grouped into clusters and those belonging to clusters where the demand showed a 

strong correlation to cooler temperatures (increasing demand) were assumed to have electric 
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heating. As mentioned previously, clustering of customer load profiles is common and despite not 

specifically focusing specifically on electric heating, several works have identified clusters with 

different space conditioning characteristics in a similar manner [20], [21]. The method used in this 

paper is tailored specifically to the objective of identifying heating and cooling characteristics. 

The clustering was performed with demand data at both daily and monthly resolutions. The use of 

daily demand eliminated hourly variance due to customer behaviour differences, while providing 

many data points to establish the relationship with temperature. Meanwhile, the monthly resolution 

provided a clear display of seasonal patterns and provided validation. Cluster membership is not 

definitive in the k-means algorithm as the clusters identified may vary with repetition, thus using 

two resolutions facilitated comparison and confirmation of memberships. A customer was 

assumed to have a significant portion of EH if included in the strongly temperature dependant 

cluster at either resolution, or if at both resolutions it was included in either the moderate 

temperature dependence cluster or the cluster which transitioned to high temperature dependence 

(added EH during the year). The number of clusters was determined through the elbow method, as 

well as examining the results to ensure appropriate differentiation between the groups with regards 

to their relationship with temperature. Both residential and commercial customers were grouped 

into 12 clusters. 

2.2 REPRESENTATIVE TRANSFORMERS 

Clustering was also applied to group transformers with similar demand distributions and identify 

a representative set. The total net demand (sum of all customer demand and local PV production) 

in each hour was used as the basis for clustering. Several outliers were identified where certain 

transformers had extreme changes in demand for a portion of the year (presumably due to new 

development or system restructuring), or significant capacities of solar panels were installed part 

way through the year. Thus, to avoid clusters converging to these extreme outliers, the normalized 

net data was filtered to remove any transformer with a peak or minimum value higher/lower than 

a factor of 10 or -10. This method assumes that no transformer would see demand (or production) 

in any hour ten times that of the overall average, unless there was a significant compositional 

change through the year. Since the goal is to identify representative clusters, these unique cases 

are not relevant and thus the total number of transformers clustered was reduced from 6272 to 

6123. 

When selecting the number of clusters to use in this case it was essential to balance the need for a 

large enough set to represent the full range of variations, while not so large to require excessive 

modeling efforts when assessing scenarios. Once again using the elbow method and examination 

of the resulting clusters, eight was selected as the final number.  
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2.3 TECHNOLOGY PENETRATION SCENARIOS  

In order to assess the impact of future technology penetration on each of the representative 

transformer clusters a variety of scenarios were modeled. One load curve was estimated for each 

cluster using the average characteristics of the cluster along with the normalized profile. The 

baseline demand for each cluster was first estimated by multiplying the normalized profile by the 

average hourly net demand for the transformers in the cluster. Several additional loads or supplies 

were then calculated for each scenario to account for the impact of increased EV, PV, EH, and ES 

penetration. The same method was also applied with the total utility demand to illustrate how these 

factors may also impact operation of the larger scale electricity system. 

The total potential EV demand was calculated based on the Independent Electricity System 

Operator’s (IESO) estimates in their planning outlook (9.22 kWh/vehicle/day [22]), as well the 

estimated future number of light duty vehicles in the city. This value was estimated based on 

historical growth in vehicles per capita in similar Southern Ontario cities [23] and the population 

in the region [24]. The demand can then be scaled by the estimated penetration rate. A constant 

average daily distribution and demand was assumed for each day of the year, however the shape 

of the distribution depended on whether vehicles were determined to be only charged at home, or 

at work as well. Fischer, Harbrecht, Surmann and McKenna, as well as Shepero and Munkhammar 

modeled EV demands with stochastic Markov chains and showed how the distribution of EV 

demand would differ between charger locations, presenting distributions with notably similar 

shapes [25], [26]. Therefore, the distribution used for scenarios with only home charging was a 

weighted average of the profiles adapted from Fischer et al. for different types of occupations. This 

was weighted by the relative quantity of demand expected for each occupation, the percentage of 

workers falling into each category and the estimated proportion of people who use their vehicle 

each day in each category [25], [27], [28]. When charging both at home and at work were assumed, 

the profiles for each location were adapted from those produced by Fisher et al. under the 

assumption the driver charged their vehicle whenever possible (regardless of current state of 

charge). In this case approximately 56.4% of demand was met at home, with the remainder 

occurring at work [25]. With either distribution, whichever portion of demand occurred at home 

was allocated to each representative transformer based on the proportion of the total number of 

residential customers located in that cluster. Meanwhile, the proportion of workplace demand on 

transformers was allocated to the commercial and industrial customers based on current 

employment statistics (60% and 40% respectively) and assumed to be proportional to the demand 

[29]. This method assumes that bigger workplaces with a higher electricity demand will likely 

have more employees, and as a result more EVs charging there.  

In order to simulate the impacts of increased PV penetration it is necessary to estimate the potential 

for growth. Total theoretical capacity was calculated based on Wiginton, Nguyen and Pearce’s 

estimation of approximately 3.01 kW of potential rooftop capacity per person in a comparable 

region of Southern Ontario [30], and the population in the region [24]. Based on the formulas 
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provided by [30], it was also estimated that approximately 60% of viable roof area is residential, 

with the remainder being flat rooved commercial or industrial buildings. These total potential 

capacities were then allocated to each transformer cluster similarly to the EVs: residential potential 

based upon the proportion of total customers in the cluster, and commercial/industrial based on 

the proportion of total sector demands. The current installed PV capacity in each cluster was also 

estimated from the local generation data and a regional capacity factor from Natural Resources 

Canada [31]. These localized current and potential capacities could then be used to determine 

approximate capacity penetration rates for each transformer (as opposed to the previously 

mentioned customer penetration rates from section 2.1). The historical cluster generation curves 

can then be scaled and subtracted from the baseline demands using the baseline capacity 

penetration and the penetration specified in the scenario. The exception to this process was cluster 

6 where there was insufficient current PV capacity and instead the total generation load curve and 

penetrations were used as proxy. 

Similarly to the PVs, the estimated electric heating demand was calculated using the historical data 

and scaled based on projected penetration increases. Only the data from cluster 5 was used to 

determine historical heating demand as this transformer group had very high heating penetration 

and thus was assumed to demonstrate the best representation of high penetration demands. It was 

assumed that the aggregate residential heating demand distribution would be similar across 

different clusters, however this may not be the case for commercial demand since different 

customer types may have significantly different demand distributions. Furthermore, many of the 

transformer clusters had low numbers of electrically heated commercial customers, making it 

difficult to disaggregate a heating distribution which could be reliably scaled. For these reasons, 

only residential heating penetration was considered as a factor in the scenarios. The data from 

cluster 5 was scaled to fit each transformer cluster based on the proportion of residential customers 

and projected penetration. Furthermore, the impact of air source HPs was also assessed by scaling 

heating demands by the estimated coefficient of performance based on temperature data. It was 

assumed the HPs would be sized to meet all heating demands and the performance follows the 

average relationship to temperature detailed by Szekeres and Jeswiet [32]. The variable speed 

centrally ducted HP was selected due to the capacity to meet all demands even at low temperatures, 

and the fact that most Ontario households already have central heating and/or cooling [33], [34]. 

Since only total demands were known, the estimated heating demands from the cluster 5 residential 

customers had to be disaggregated using a model based on previous work [35]. Several adjustments 

were made to account for the significantly higher heating penetration in this data. Firstly, several 

additional variables were added for the sun angle, and civil/nautical dawn and dusk times, to 

account for the period before/after complete sunset/sunrise where additional lighting may also be 

required. Furthermore, it was found that in the presence of both significant cooling and heating, 

the algorithm disaggregated too much demand into both categories, resulting in extremely low 

base demands. Placing a buffer of 3 degrees on either side of the determined changepoint 

temperatures for calculating heating and cooling degrees improved model fit and produced base 
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demands closer to expected values. This was confirmed through the concept of the ‘locus of 

minimum load,’ which suggests that the days of minimum load in the transition months between 

heating and cooling seasons will show similar demand distributions and be representative of the 

total load without heating or cooling (baseload) [36]. Examining the Tuesdays, Wednesdays and 

Thursdays (which have the most consistent demand distributions) in April, May, September and 

October (transition months with days of minimum load), the average hourly base demand produced 

by the modified model had a mean absolute percent error of only 0.9% when compared to the locus 

of minimum load. Further details on the updated disaggregation model can be found in Appendix 

C, Section 2.2. 

The use of ES at each transformer was simulated using an algorithm. When applied, it was assumed 

that a battery system with the same specifications of a Tesla Powerwall would be implemented: 

13.5 kWh of energy, 5kW maximum continuous real power and 90% round trip efficiency [37]. 

For the purpose of this algorithm it is assumed that the battery charges and discharges fully once 

per day. Thus, for each day of the year, 1 kWh of ‘charging demand’ and ‘discharging supply’ are 

allocated to the hours with the lowest and highest net demand respectively. This is repeated until 

the total demand and supply capacity has been allocated for each day. Note that on the last 

repetition of this algorithm one full kWh hour is not allocated, only the remaining portion of 

charging and discharging capacity. The max power capacity is respected by ensuring that the total 

charging or discharging in a given hour is at most 5kWh. In order to demonstrate how optimizing 

ES for the local transformer vs. total aggregate demand can result in differences, the same 

algorithm was also applied to the total demand curve, allocating 6272 times as much supply and 

demand (1 ES unit/transformer). This can then be compared to the distribution formed by 

aggregating the individual transformer cluster results.  

In order to assess the impacts of each of these technologies on each transformer cluster, a wide 

variety of scenarios were assessed. The median transformer has 12 customers, while the average 

has 14, meaning that the lowest possible penetration above 0% for some technologies on a typical 

transformer is ~7-8%. For transformers with residential customers, the customer numbers increase 

to 14 and 16, meaning a minimum penetration of 6-7% for technologies which are one unit per 

household, and 3.5-4% for EVs (an estimated 1.8 vehicles per household). These values represent 

the minimum penetrations examined, while the others are based off of projections from the 

literature and the localized clustering effects demonstrated in Section 3.1. Scenarios investigating 

penetration of multiple technologies were also considered to determine the impacts of their 

interaction and examine specific policy implications. All of the scenarios assessed are described 

in Table IV-3 to Table IV-7 of section 3.3. 

3 RESULTS & DISCUSSION 

The following sections detail the results, including variations in localized penetration (Section 

3.1), the representative transformer clusters (Section 3.2) and implications of future penetration 

scenarios (Section 3.3). 
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3.1 LOCALIZED PENETRATION 

Based on the total number of PV installations and other customers, the overall customer 

penetration rate can be estimated at under 0.9%. However, when looking at the ratio on a 

transformer level, this can be seen to vary significantly. Given that when there are low customer 

numbers, penetration rates become insignificant (for example one of two customers equals 50% 

penetration) the following analysis focuses on transformers with a larger number of customers. 

Not including transformers with less than ten non-PV customers, the penetration ranges from 0-

25% and more than 100 transformers had over ten times the average penetration. Figure IV-1 

shows the full distribution of PV penetration rates across transformers with at least 10 non-PV 

customers. There are also 3643 transformers fitting this criterion which have no PV installations 

(0% penetration) and are not included in the figure to avoid stretching the vertical axis and allow 

easier visualization of the distribution. Although also excluded from the figure, it is also worth 

noting that one transformer with 9 residential customers had an extremely high 67% penetration, 

demonstrating how even more extreme outliers can occasionally be observed in small areas.  

 

Figure IV-1:PV Customer Penetration Across Transformers 

In order to identify the customers with EH, all customers were clustered into twelves groups and 

the relationship between demand and temperature was examined. This large number of clusters 

allowed for the differentiation of a customer group with very significant temperature dependence 

(full EH), as well as one with less significant relationships (combined systems or supplemental 

electric heating). Furthermore, smaller outlier clusters were identified, such as customers which 

transitioned from high temperature dependence at the beginning of the year to low dependence at 

the end of the year (~1% of residential and 2.5% of commercial customers), and visa versa (~1% 

of residential and commercial customers). These were assumed to represent customers which 

changed heating systems or occupancy during the year. 
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Based off the method established it was estimated that approximately 10.7% and 14.4% of 

residential and commercial customers respectively have EH. These values are close to the 

provincial averages estimated in previous studies: 10.6-19.3% for residential [22], [38], [39] and 

10-17% for commercial [22], [40]. As with PV installations, the penetration rates showed 

significant localized variation. Of the 3944 transformers which had at least 10 residential 

customers with complete data, 2420 had at least one customer with electric heating, while 231 had 

more than triple the average penetration rate. In fact, 32 transformers showed 100% penetration of 

residential EH. A histogram displaying the full distribution of residential EH penetration rates 

across transformers with at least 10 customers can be seen in Figure IV-2. 

 

Figure IV-2: Residential EH Penetration Across Transformers 

Most transformers with commercial customers had much lower numbers of customers, making the 

local penetration rates in many cases not relevant (ex. 100% if there is only one commercial 

customer). Of the 2361 transformers with commercial customers without missing data, only 446 

had at least 5. The penetration rates in these cases ranged from 0-67%, with 63 transformers having 

double the average penetration rate. Figure IV-3 shows the full distribution of commercial EH 

penetration rates across transformers with at least 5 commercial customers. 
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Figure IV-3: Commercial EH Penetration Across Transformers 

The localized penetration rates vary significantly across different parts of the distribution system. 

This was shown for both new developing technology (PVs), as well as older ones (EH) and 

demonstrates the need for the analysis performed in this paper. Firstly, the concentrated grouping 

of these different technologies will result in vastly different local load profiles which must be 

considered when modeling future impacts on the distribution system. Furthermore, when assessing 

and planning for the growth of new technologies and their impacts, it is essential to consider this 

clustering effect and model higher penetration scenarios than what might be expected on average. 

For example, although it may be many years before EV penetration reaches 25% on average, PVs 

have already reached 25% penetration in a few neighbourhoods despite an average penetration of 

only 0.9%. Examining the impacts of higher penetrations will help to prepare for these occurrences 

and allow for informed policy development to minimize negative impacts. 

3.2 REPRESENTATIVE TRANSFORMER LOAD PROFILES 

The clustering of distribution system transformer load profiles produced eight representative 

distributions. The seasonal averages of these curves can be seen in Figure IV-4 and the extreme 

variation between clusters demonstrates the need for more detailed analysis than just sector 

averages when modelling potential impacts on the distribution system and making policy 

decisions. Through examining these results and the customers connected to the transformers in 

each cluster, it was possible to draw some generalizations about what each cluster represents. This 

information is summarized in Table IV-1, along with the number of transformers belonging to 

each cluster. To illustrate how the localized clustering of technology can have an impact on and 

correlate with different load profiles, Table IV-2 describes the estimated penetration rates for PV 

and EH in each cluster. Data removed as outliers is also included in the tables labeled as cluster 

99, to provide transparency in regard to the type size and proportion of customers which were 

removed. 



 

78 

 

 

Figure IV-4:Transformer Cluster Average Seasonal Load Curves 

It can be seen that clusters 1 and 3, which represent over 70% of all the transformers in the city, 

contain the vast majority of residential customers (93%) and thus are likely located in residential 

neighbourhoods. In addition, there is a significant quantity of small businesses: commercial 

customers with average annual demand significantly less than the overall average. Similarly, the 

large number of PV installations (85% of total) show relatively small average productions, as 

might be expected from residential or small business rooftop installations. The main difference 

between these clusters is that Cluster 3 has a higher proportion of residential customers and also 

shows a much more pronounced increase of demand in the summer, suggesting higher cooling 

demands. Without further customer information it is difficult to determine if this is due to larger 

housing, or older housing with lower insulation and less efficient cooling systems. Cluster 3 also 

has a below average proportion of EH and thus a lower winter demand which further accentuates 

the relative peaking in the summer. 

Meanwhile, Cluster 5 represents a significantly smaller number of neighborhood transformers 

where there is a very high EH penetration, resulting in a significant winter peak. This cluster 

contains a large number of residential customers as well as 600 moderately sized commercial 

customers (close to average annual demand). However, upon investigation it was noticed that both 

sets showed almost identical average load distributions, suggesting that these commercial 

customers may simply be apartment buildings which do not have unit submetering and thus are 

registered as larger commercial customers. This suggests that cluster 5 may be representative of 

more urban neighborhoods, as is also supported by the higher number of larger industrial 

customers compared to clusters 1 and 3. 
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Clusters 6 to 8 are representative of transformers located in business areas, mostly containing 

commercial and industrial customers. As evidenced by the average annual demand in Table IV-2, 

the majority of customers in Cluster 6 are medium sized businesses, which can be seen in Figure 

IV-4 to have significant cooling demands in the summer. Cluster 8 has a similar average demand 

for commercial customers, but also includes some bigger industrial ones and PV installations. The 

load curve shows a similar shape, but has significantly less seasonality, partially due to PV 

generation matching the seasonal demand variance. Continuing this trend, Cluster 7 contains a 

bigger proportion of even larger commercial, industrial and PV customers. The load curve shows 

little variation between seasons or even within the day and therefore likely represents transformers 

for large shift-based facilities which operate 24/7 such as hospitals, factories, etc. 

Finally, clusters 2 and 4 both represent unique situations seen by only a small number of 

transformers (23 and 88) which are unlikely to be useful for modeling, but nonetheless should be 

separated from the other clusters. Cluster 2 represents transformers with extremely large, likely 

ground mounted, PV installations which mostly have their own dedicated transformers. 

Meanwhile, cluster 4 contains many commercial customers with high demand at night and minimal 

during the day, which have been assumed to be street lighting. Another small subset which was fit 

into this cluster due to the load curve similarity, is transformers with mixed customer demands and 

very large PV installations which drop net demand to near, or below, zero during the day. 



 

80 

 

Table IV-1: Transformer Cluster Descriptions, Counts and Demands 
C

lu
st

er
 

Description 
Transformer 

Count 

Total Number of Customers 
Average Annual Customer Demand 

(MWh) 

Res. Com. Ind. PV Res. Com. Ind. PV 

1 
Moderate space conditioning  

demand - residential 
1,597 30,943 1,832 1 292 6.8 18.4 223.7 -11.9 

2 
Mostly large ground mounted 

PVs 
23 0 17 3 25 0.0 13.1 2.6 -227.1 

3 
High cooling demand  

- residential 
2,891 42,975 496 0 357 7.5 14.9 0.0 -6.4 

4 
Streetlights & large commercial 

/ industrial rooftop PVs 
88 33 209 4 7 5.0 19.8 674.5 -294.4 

5 
High heating demand  

commercial & residential 
484 3,731 600 17 22 10.3 60.0 968.0 -29.1 

6 
High cooling demand  

- commercial 
364 475 2,117 32 5 6.0 35.4 187.7 -1.7 

7 
Low variability industrial & 

commercial customers 
517 1,026 1,759 78 9 5.6 164.6 3,439.7 -220.4 

8 
Low space conditioning  

commercial 
159 23 407 52 19 5.9 40.9 519.1 -120.0 

99 Outliers 149 291 232 14 25 2.6 29.1 51.3 -214.3 

All   6,272 79,497 7,669 201 761 7.3 61.2 1,599.0 -271.2 
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Generally, Table IV-2 shows that the technology penetration rates were relatively consistent across 

clusters, except in extreme cases where the technology became one of the defining characteristics 

of the cluster. Both residential and commercial EH ranged between 10-18% except for cluster 5 

where penetration was extremely high, and clusters 3 and 6 which were defined by particularly 

large cooling peaks and low heating demands in their respective dominant sectors.  

The PV penetration was not included for cluster 2 as there were more PVs than non-PV customers 

and as mentioned previously it is believed to include multiple large ground mounted facilities. 

When comparing the customer penetration rates (percentage of customers with PVs) previously 

discussed in section 3.1 to the capacity penetration rates (current capacity as a percentage of 

estimated regional potential capacity) estimated with the method detailed in section 2.3, they are 

significantly lower (total values of 0.9% vs. 2.5%). However, a large portion of this difference can 

be explained by some very large installations including the assumed ground mounted ones in 

cluster 2. Since the factor used to estimate total potential capacity only considered rooftop 

potential, ground mounted facilities should not be considered in the penetration rates. Furthermore, 

it is worth noting that if only residential customers are considered and it is assumed all PV 

installations under the IESO’s microFIT contract structure (<10kW capacity [41]) are residential 

installations, then the gap disappears. With these assumptions the estimated customer and capacity 

penetrations are 0.9% and 1.0% respectively. This may be an over estimation of both penetration 

rates as some microFIT contracts are with commercial customers, however it shows that including 

only smaller installations which would be expected to have less variance in capacity from customer 

to customer, the approximations using both methods are similar. This implies that current 

penetration is higher among large commercial and industrial customers compared to smaller 

businesses, resulting in the higher overall estimated capacity penetration rate compared to the 

customer value. 

Table IV-2: Transformer Cluster Technology Penetration Rates 

Cluster 
Estimated Technology Penetration 

Residential EH Commercial EH PV (Customer) PV (Capacity) 

1 13.4% 16.2% 0.9% 1.8% 

2 NA 18.8% NA NA 

3 4.0% 11.8% 0.8% 0.9% 

4 18.5% 15.7% 2.8% 71.8% 

5 66.7% 51.0% 0.5% 1.5% 

6 15.1% 7.1% 0.2% 0.0% 

7 16.5% 10.3% 0.7% 1.9% 

8 13.6% 10.4% 1.9% 6.3% 

99 15.6% 17.1% 4.7% 68.8% 

All 10.7% 14.4% 0.9% 2.5% 
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3.3 SCENARIO IMPACTS 

Clusters 2 and 4 were not considered in these scenarios since they represent a small number of 

outlier transformers for which the investigated technologies are for the most part not relevant. The 

results and analysis focus on the three mainly residential clusters (1, 3 and 5) and three 

predominately commercial and industrial ones (6, 7 and 8). The results of all scenarios are 

summarized in Table IV-3 to Table IV-7, showing the relative scenario peak demand compared to 

the baseline peak demand (Rel. Peak), the number of hours in the scenario where the demand is 

over 115% of the baseline peak demand (Hrs > 115%) and the ratio of average demand to peak 

demand, or load factor (LF). While the impact of the load curve on transformer life is not 

specifically modeled, previous work has used the guideline that an increase in peak hourly load of 

15% over the nominal transformer capacity decreases its life by a factor of ten, and another factor 

of 10 for a 50% increase [2]. The capacity of the transformers in this study are unknown and the 

current peak loading can vary significantly even within one utility service area [42], however 

comparing the change in peak load still provides a sense of the potential impact on distribution 

infrastructure, particularly in any areas which already are close to capacity. As transformer peaks 

increase utilities may need to invest in new capacity, meaning increased capital costs; however, if 

the total demands increase as well, this also will lead to increased revenues. Therefore changes in 

the LF metric, as the ratio between peak and average loads, provide an approximate ratio between 

changes in utility revenues and capital costs. The ‘utility death spiral’ mentioned in the literature 

review would occur when peak loads increase significantly while LF declines. 

The results for scenarios with increasing EV penetration can be seen in Table IV-3. Regardless of 

charging pattern, the minimum penetration of 4% has insignificant impact on the peak load and 

load factor. At penetrations of 25% or higher, significant effects are observed. With home charging 

only, two of the mainly residential clusters (1 and 3 which representing over 70% of all 

transformers) show increases in peak demand of more than 15%. This result is aligned with 

previous literature. Muratori projected a growth in transformer peak hourly load factor of 25-65% 

for 50% penetration depending on charging infrastructure, while 100% penetration led to 54-88% 

growth [2]. The adapted data used in this study considers mixed infrastructure and most residential 

transformers showed 28-34% peak growth for 45% penetration and 62-76% for 100% penetration. 

These corresponded to 51-114 and 430-1383 hours over the 115% threshold in each scenario. 

Notably, the smaller number of transformers with a winter peak (cluster 5) had much less 

significant impacts. Overall, the increased peaks were found to be mitigated when both home and 

work charging are used as the load is then spread across all transformers, and the 

commercial/industrial clusters show less significant impacts. This suggests that EV charging load 

does not coincide as significantly with baseline peak load hours in these sectors. This is also 

beneficial for the aggregate demand curve, reducing the evening peak and more evenly distributing 

EV demand throughout the day. However, even with mixed charging locations, at penetrations of 

45% or higher, the two residential clusters as well as cluster 7 show over 15% peak growth once 

again. At 100% penetration all clusters have exceed this threshold and cluster 7 shows 77% 
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increase in peak demand with over 1000 hours above the 115% threshold. Clusters 6 and 8 which 

generally represent smaller commercial and industrial customers were least impacted by EV 

penetration, with minimal increases in peak demand until higher than 45% penetration.  

While such high penetration rates may seem to be problems of the distant future, the analysis of 

localized clustering showed that at a technology penetration rate as low as 1% (projected for EVs 

by 2025 based on National Energy Board (NEB) sales estimates and historical vehicle age 

distributions [43], [44]), individual transformers can show up to 25% penetration. Furthermore, 

based on the NEB’s technology case projections, penetration is expected to reach 27% by 2035 

and 45% by 2040. If distributed at all similarly to current EH, by this point one could expect many 

transformers to reach 100% penetration. These results suggest that EV penetration could begin to 

significantly impact individual transformer lifespans in the near future. 

Table IV-3: EV Penetration Scenarios by Transformer Cluster 

EV Pen. &  

Charging 

Cluster 1 3 5 6 7 8 Total 

Baseline LF 41.6% 33.2% 43.0% 38.4% 64.1% 36.4% 52.9% 

4% - Home 

Charging 

Rel. Peak 103% 102% 101% 100% 100% 100% 102% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 41.8% 33.4% 43.0% 38.4% 64.1% 36.4% 52.8% 

4% - Home & 

Work Charg-

ing 

Rel. Peak 101% 101% 101% 100% 100% 100% 101% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 41.8% 33.3% 43.3% 38.8% 64.6% 36.7% 53.1% 

25% - Home 

Charging 

Rel. Peak 119% 116% 106% 101% 100% 100% 111% 

Hrs > 115% 7 1 0 0 0 0 0 

LF 41.9% 34.4% 43.0% 38.5% 64.1% 36.4% 51.9% 

25% - Home 

& Work 

Charging 

Rel. Peak 111% 109% 104% 101% 101% 101% 106% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 42.0% 33.8% 44.6% 41.0% 67.5% 38.3% 54.2% 

45% - Home 

Charging 

Rel. Peak 134% 128% 111% 101% 101% 100% 120% 

Hrs > 115% 114 51 0 0 0 0 16 

LF 42.0% 35.2% 43.1% 38.6% 64.1% 36.4% 51.3% 

45% - Home 

& Work 

Charging 

Rel. Peak 120% 117% 107% 102% 120% 103% 112% 

Hrs > 115% 10 1 0 0 39 0 0 

LF 42.2% 34.3% 45.8% 43.0% 59.7% 39.5% 54.9% 

100% - Home 

Charging 

Rel. Peak 176% 162% 125% 102% 101% 100% 144% 

Hrs > 115% 1383 430 28 0 0 0 303 

LF 42.1% 36.8% 43.1% 38.9% 64.1% 36.5% 49.9% 

100% - Home 

& Work 

Charging 

Rel. Peak 146% 137% 130% 117% 177% 126% 127% 

Hrs > 115% 218 118 34 4 1216 117 69 

LF 42.5% 35.2% 43.3% 42.9% 45.9% 36.3% 56.5% 
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Increasing penetration of rooftop PV is a concern not only for the grid operators who are fearful 

of the operating challenges of a potential ‘duck curve’ [45], but also utilities whose profits may 

begin to erode from net metering [1], [46]. Satchwell, Mills and Barbrose found that the impacts 

of customer-based PV on revenue outpaced the reduced infrastructure costs but suggested that this 

impact could be minimized by targeting areas where the PV installations most effectively deferred 

capital costs [46]. This can be assessed by examining the effect on the peak demand and load factor 

for the scenarios in Table IV-4. All clusters showed reduced peak loads with increasing 

penetration, except cluster 5. This is because it is the only cluster with a significant winter peak, a 

season in which PV production is lowest and most limited in time due to shorter day lengths. 

Notably, the predominately commercial/industrial clusters showed more significant peak reduction 

than the residential ones. In fact, at low penetration the reduction in peak demand outpaces the 

overall reduction in demand causing the load factor of curves to increase. As penetration increases 

beyond 25% this effect is reversed because the new peaks become during hours of low or no 

production which thus cannot be reduced significantly by PVs. Additionally, PV generation begins 

to exceed demand in many hours. These results indicate that that commercial or industrial PV 

installations may be best poised to defer capital investments for utilities and could in fact improve 

their revenue faster than costs in certain areas expecting growth. However extreme penetration 

levels will significantly reduce revenues. Furthermore, since the total system peak coincides with 

residential peak demand, high PV penetration does little to reduce peak demand for the total system 

and would result in lower utilization for other generation assets. As with EVs, these high 

penetration rates can be expected in the near future on certain transformers due to unequal localized 

penetrations (currently 100 transformers with ten times average penetration). The NEB technology 

case projects a doubling of solar capacity by 2030 and five times as much by 2040. 

Table IV-4: PV Penetration Scenarios by Transformer Cluster 

PV Pen. 
Cluster 1 3 5 6 7 8 Total 

Baseline LF 41.6% 33.2% 43.0% 38.4% 64.1% 36.4% 52.9% 

7% 

Rel. Peak 99% 98% 100% 96% 96% 99% 99% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 40.3% 32.3% 42.0% 38.7% 65.5% 36.5% 52.0% 

25% 

Rel. Peak 98% 96% 100% 89% 90% 91% 98% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 34.5% 28.0% 38.4% 38.5% 64.8% 37.2% 47.2% 

50% 

Rel. Peak 97% 95% 100% 84% 88% 84% 97% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 26.3% 21.6% 33.4% 36.3% 58.9% 35.9% 39.9% 

 

Increasing electrification of heating could prove to be a major source for increased revenues for 

electricity utilities in the coming years. Table IV-5 shows the results of scenarios with increasing 



 

85 

EH and demonstrates that at 40% penetration most transformers show little to no impact on peak 

demand. However, with higher penetration winter peaks grow significantly beyond the 115% 

threshold and even the 150% threshold with 100% penetration. Likewise, the total grid peak grows 

to 110% and 138% in each of these scenarios. This impact can be significantly mitigated if high 

efficiency HPs are used. These results suggest that with moderate EH penetration, or high HP 

penetration, utilities could benefit from increased revenues without capital investment in higher 

capacity infrastructure. Similarly, this would improve utilization of the current grid level 

generation assets, without requiring additional capacity investments. However, it should be noted 

that these results may not be indicative of the impacts in colder climates where a winter peak is 

currently seen, such as in more northern Ontario. Once again, while these high penetration rates 

on average are unlikely, they are already currently observed on some transformers and the IESO 

projects a doubling of penetration by 2035 in some scenarios [22]. It is also important to note the 

40% and 67% scenarios presented in Table IV-5 represent reduced and baseline penetrations for 

cluster 5, explaining the different impacts compared to clusters 1 and 3.  

Table IV-5: EH Penetration Scenarios by Transformer Cluster 

EH Pen. 

& System 

Cluster 1 3 5 6 7 8 Total 

Baseline LF 41.6% 33.2% 43.0% 38.4% 64.1% 36.4% 52.9% 

40% - 

Standard 

Rel. Peak 101% 100% 89% 100% 100% 100% 100% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 48.9% 41.8% 45.3% 38.7% 64.2% 36.4% 57.9% 

40% - HP 

Rel. Peak 100% 100% 89% 100% 100% 100% 100% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 44.3% 36.1% 45.3% 38.5% 64.1% 36.4% 54.6% 

67% - 

Standard 

Rel. Peak 139% 119% 100% 100% 100% 100% 110% 

Hrs > 115% 158 4 0 0 0 0 0 

LF 41.4% 40.5% 43.0% 39.0% 64.4% 36.5% 56.7% 

67% - HP 

Rel. Peak 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 46.9% 38.2% 43.0% 38.6% 64.2% 36.4% 56.1% 

100% - 

Standard 

Rel. Peak 186% 157% 114% 100% 100% 100% 138% 

Hrs > 115% 916 284 0 0 0 0 235 

LF 36.2% 35.7% 40.8% 39.4% 64.6% 36.5% 49.5% 

100% - 

HP 

Rel. Peak 104% 100% 105% 100% 100% 100% 100% 

Hrs > 115% 0 0 0 0 0 0 0 

LF 48.2% 40.8% 42.2% 38.8% 64.3% 36.4% 58.0% 

 

The potential impacts and interactions of multiple technologies penetrating to high levels are 

presented through a set of scenario results in Table IV-6. In these scenarios EVs were assumed to 
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always have access to home and work charging. The increased peak demand with high EV 

penetration can be partially offset when PV penetration is also high (45% and 25%). This is 

particularly effective in clusters 6 and 8 with small to medium sized business customers. However, 

as penetration increases still further (100% and 50%), this effect does not continue. The two 

scenarios including HP penetration demonstrate that even at significant penetration levels (67%) 

these will have no impact on the peak demands. Meanwhile, the additional demand due to 

electrified heating during non-peak seasons could serve to offset the reduced revenue due to net 

metered PV. However, with extreme penetration of all considered technologies the results are less 

promising: extreme peak load growth of 14-86% requiring investment in expensive capital, and 

lower load factors indicating less revenue relative to this capacity. It is also noteworthy that the 

extreme combination of EV and EH penetration results in overall system peaks being seen on 

winter mornings when heating demands are high and consumers begin charging their EVs at work. 

Table IV-6: Technology Combination & Mitigation Scenarios by Transformer Cluster 

Penetration 
Cluster 1 3 5 6 7 8 Total 

Baseline LF 41.6% 33.2% 43.0% 38.4% 64.1% 36.4% 52.9% 

45% EV  

25% PV 

Rel. Peak 114% 109% 107% 91% 120% 99% 106% 

Hrs > 115% 0 0 0 0 30 0 0 

LF 37.8% 31.1% 41.5% 43.7% 43.4% 55.0% 51.5% 

100% EV 

50% PV 

Rel. Peak 134% 124% 130% 114% 176% 123% 116% 

Hrs > 115% 62 19 34 0 1062 81 1 

LF 34.3% 28.8% 35.9% 37.2% 39.2% 32.2% 49.8% 

45% EV  

25% PV  

67% EH - HP 

Rel. Peak 114% 109% 107% 91% 120% 99% 106% 

Hrs > 115% 0 0 0 0 32 0 0 

LF 42.4% 35.7% 41.5% 43.9% 55.1% 38.3% 54.5% 

100% EV  

50% PV  

100% EH - HP 

Rel. Peak 148% 124% 134% 114% 176% 123% 134% 

Hrs > 115% 305 29 56 0 1066 83 99 

LF 36.6% 35.0% 35.4% 37.5% 39.3% 32.2% 46.9% 

 

To illustrate the effects of high technology penetration scenarios and help understand why certain 

technologies are impacting different transformer clusters each way, several resulting demand 

curves are presented in Figure IV-5. This shows the average summer and winter demand curves, 

as well as the peak demand curve for clusters 1, 6 and 8 when there is 45% EV (charged at work 

and home), 25% PV and 67% HP penetration. In the mainly residential cluster 1, the EV charging 

occurs in the evening, coinciding with current peak demand periods, and not when PV’s are 

producing power. In contrast, the two predominantly business sector clusters show peak EV 

demand in the morning, just before demand begins to ramp up for the workday. Furthermore, the 

peak demands through the afternoon occur simultaneously to PV production, particularly in the 

summer when cooling demand and PV generation are highest. However, it can also be seen that 

most PV generation does not occur at the same time as EV charging, particularly at work. Thus if 
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penetration levels increase still further, the peak morning EV demand quickly overtakes the 

baseline afternoon peak. This explains the reduced mitigating effect of PVs at high penetration 

observed previously from Table IV-6. This also demonstrates why the positive impacts of 

simultaneous EV and PV penetration are not produced with the larger customers in cluster 7, as 

Figure IV-4 shows they exhibit minimal afternoon peaking. 

  
Figure IV-5: Transformer Clusters 1, 6 & 8 with 45% EV, 25% PV and 67% EH – HP 

Penetration 

The last set of scenarios (shown in Table IV-7) investigates the use of ES to assess its ability to 

mitigate the negative impacts of technology penetration. Comparing these results to the baseline 
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scenarios without ES in previous tables shows that, as expected, ES is able to reduce peak demands 

and increase LF for all transformers. However, the effectiveness varies by cluster, with the 

residential ones showing the most significant impact. This is because these are smaller 

transformers with less load, thus the ES capacity represents a larger proportion of total demand. 

Conversely the very large transformers in cluster 7 show very little effect from only 13.5 kWh of 

energy storage. On all residential clusters ES can be seen to more significantly reduce the peak 

demand in high EV penetration scenarios, than switching from home only charging, to both home 

and work charging, or implementing higher penetration of PVs. This is not the case in the small 

business clusters 6 and 8 where PV is more effective until both EV and PV reach very high 

penetration. In the extreme penetration scenarios, one Powerwall equivalent of ES is still effective 

at reducing peak demand, but in several cases not below the 115% threshold. With increasing 

capacity of ES the effectiveness at reducing peak demands decreases significantly on residential 

transformers but remains relatively constant on commercial/industrial ones. With three Powerwall 

equivalents, all transformer clusters can maintain peak demand at 111% or less except for cluster 

7 where the extremely large transformer size would require much more significant storage to be 

effective. 

The column labeled “Total” in Table IV-7 displays the aggregated effects on the total demand 

curve, assuming each transformer has one unit of ES and operates so as to optimize locally. The 

“Grid” column uses the same capacity but optimizes for the overall grid demand. While initially 

the difference is small, with increasing technology penetration and variability of demand a 

significant difference between local and regional optimality develops. This suggests that it is 

necessary to determine a balance between servicing overall grid peak, so as to avoid unnecessary 

investment in significant peaking assets, while also serving local needs to reduce capacity 

requirements and extend the life of distribution system components. Since in most scenarios 

residential transformer load profiles best match the total profile in terms of peak demand timing, 

energy storage units on these transformers show the best conformity to energy storage which is 

optimized to total grid. It is only once extreme EV and EH penetrations are reached (resulting in 

winter morning peaks) that commercial ES begins to better align. 
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Table IV-7: ES Mitigation Potential by Transformer Cluster 

Scenario 
Cluster 1 3 5 6 7 8 Total  Grid 

Baseline LF 41.6% 33.2% 43.0% 38.4% 64.1% 36.4% 52.9% 52.9% 

25% EV - 

Home 

only 

ES 

Rel. Peak 110% 106% 100% 94% 98% 95% 106% 104% 

Hrs > 115% 0 0 0 0 0 0 0 0 

LF 45.3% 37.8% 45.9% 41.2% 65.5% 38.3% 54.5% 55.4% 

45% EV  

ES 

Rel. Peak 110% 107% 101% 96% 117% 99% 108% 105% 

Hrs > 115% 0 0 0 0 1 0 0 0 

LF 46.4% 37.7% 48.4% 45.7% 61.1% 41.0% 57.1% 58.6% 

45% EV  

25% PV  

ES 

Rel. Peak 103% 99% 101% 84% 117% 93% 100% 97% 

Hrs > 115% 0 0 0 0 8 0 0 0 

LF 41.7% 34.5% 43.9% 47.6% 56.2% 40.8% 55.0% 56.3% 

100% EV 

50% PV 

67% HP 

ES 

Rel. Peak 123% 111% 119% 107% 174% 117% 124% 116% 

Hrs > 115% 59 0 6 0 1048 1 29 1 

LF 41.6% 36.8% 39.0% 40.0% 39.9% 33.9% 49.4% 52.8% 

100% EV 

50% PV 

67% HP 

2 x ES 

Rel. Peak 116% 103% 110% 100% 171% 111% 121% 105% 

Hrs > 115% 5 0 0 0 1011 0 15 0 

LF 44.2% 39.9% 42.3% 43.0% 40.5% 35.8% 50.6% 58.4% 

100% EV 

50% PV 

67% EH - 

HP 

3 x ES 

Rel. Peak 111% 98% 108% 92% 168% 105% 121% 99% 

Hrs > 115% 0 0 0 0 982 0 15 0 

LF 46.5% 42.1% 43.5% 44.9% 41.1% 37.8% 49.3% 59.8% 

3.3.1 ANALYSIS 

While average penetration of EVs and PVs may not pose significant challenges in the near future, 

the current localized penetration of PVs showed over 100 transformers exhibiting ten times the 

average penetration. Thus, even at low levels which do not justify significant investments in 

diverse charging infrastructure, some residential transformers may begin to be impacted. The 

analysis showed that PVs were relatively ineffective at decreasing the growth in peak demand on 

such transformers, while ES proved more effective. Furthermore, on residential transformers the 

local optimal operation of ES generally aligned well with optimal operation for the grid, thus 

allowing deferral of investment in new transformers, while also potentially providing larger scale 

grid services. Residential EH demands were shown to have little impact on peak loads until 

extremely high penetrations if high efficiency HPs were implemented. These could be incentivised 

by utilities as an opportunity for increased revenues without exacerbating the need for capacity 

investments. As EV penetration increases further, it would be beneficial to diversify the charging 
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demands across transformers by encouraging or establishing charging stations as workplaces, 

particularly smaller businesses. These transformers also proved to be a good fit for PVs since the 

times of high generation better match peak demands as well as a small portion of the expected new 

EV charging demands. However, commercial and industrial areas were not as well matched for 

ES as their higher loads per transformer would require larger storage capacity to be effective, and 

the local optimal operation does not align as well with the aggregate grid requirements.  

4 CONCLUSION 

This study investigated the localized clustering of technology penetration and demand curve shape 

across the distribution system of an electric utility. It was found that even at low overall technology 

penetration some transformers exhibited much higher localized levels. Furthermore, transformer 

load curves varied significantly throughout the distribution system, even within sector groups. 

With a set of representative load curve clusters an analysis was performed to assess the impact of 

increased EV, PV, EH and ES penetration on transformers. The EV load curves were estimated 

based on previous literature and the projected peak load growth for residential transformers 

produced similar results to other studies, showing that high penetration could significantly reduce 

transformer life or require additional capacity investments. The impacts of PV and EH penetration 

in this study were based on historical data and showed that these technologies have varying effects 

on the peak load across different transformer clusters. Finally, the simulation of energy storage at 

each transformer cluster, as well on the total grid, showed differences in optimal operation. One 

limitation of the method used in this study is that despite better accounting for variability in 

transformers baseline loads, it only considered average EV charging profiles. While this produced 

similar results to previous literature it could be improved by using multiple EV charging profiles 

to determine how effects may vary with clustered differences in local driving behaviours. 

Additionally, with more diverse charging profiles future work could assess the potential for smart 

charging of EVs and investigate the impacts of various capacities of charging infrastructure. 

Based on the results obtained a series of recommendations can be made. Firstly, investment should 

be encouraged in diverse charging infrastructure to distribute load across transformers. ES is best 

implemented in residential neighbourhoods where it can effectively balance loads while 

simultaneously providing aggregate level grid services. In the region studied, residential EH if in 

the form of high efficiency HPs can provide increased revenues for utilities and will have little 

impact on transformer peak. Meanwhile, PVs are most effective at reducing peak demand on 

commercial and industrial transformers where baseline and projected EV charging demands are 

better aligned with the times of generation. These strategies could be implemented to defer 

infrastructure costs either through tailored customer incentives or direct investment by system 

operators and local distribution companies. 
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CHAPTER V: ENGINEERING CONTRIBUTIONS AND FUTURE 

RECOMMENDATIONS 

1 SUMMARY AND CONCLUSIONS 

Concerns over climate change and long-term sustainability are leading to significant changes in 

our energy systems. As such a wide range of studies have been undertaken to predict and project 

the future of energy systems. However, many of the most thorough of these efforts are performed 

on the national scale and require significant volumes of data. Processing on this level of analysis 

quickly becomes extremely computationally intensive if trying to increase resolution, and extreme 

local variations are often overlooked. Therefore, this work provides a significant research 

contribution by focusing on comprehensive models at a finer geographic resolution.  These can be 

calibrated by regional authorities using mostly their own in-house data and leveraged to gain 

insights into potential extreme local impacts. Furthermore, many extensive national level studies 

still present a large degree of uncertainty around how extensively and how quickly these system 

transformations will occur. For these reasons, rather then predicting specific scenarios, this thesis 

focused on the development of parameterized models with interfaces which allow the user to 

quickly assess a wide range of parameters and scenarios. By limiting to a finer geographic scope, 

the models presented provide the capability for utilities to process the overwhelming volume of 

smart meter data increasingly available into simplified informative projections. The dynamic 

design facilitates assessment of the potential impacts, opportunities and challenges which might 

occur in their specific region, under a vast array of scenarios. 

To begin, Chapter II focused on disaggregating total electricity data from smart meters into base, 

heating and cooling end-uses, to allow utilities to leverage this local data for future modeling 

analyses. The regression model developed built on previous changepoint models adding several 

new features and showed a good fit with both the aggregate residential and commercial sector data 

from the utility partner. It was found that extending the concept of degree days to different lengths 

of time allowed for short and long-term weather effects on demand to be better represented, while 

implementing variable changepoint temperatures depending on the time and type of day improved 

results still further. Peak cooling demands not seen in some of the previous study areas were further 

reflected in the model though inclusion of probit analysis to approximate gradually installed 

portable units. The developed method allows creation of valuable data for future analysis, 

facilitating weather normalization, projection of future climate change impacts, and assessment of 

changing technology for these services in future analyses.   

The utility level load curve model presented in Chapter III  contributes to the literature by 

establishing a parameterized dynamic framework allowing users to easily shift and scale sector 

and end-use load curves based on input scenario settings. The design facilitated visualization of 

how each of the factors and their interactions specifically impact local seasonal load curves. The 

tool could be used to quickly assess a range of scenarios and sensitivities, highlighting challenges 

and opportunities. A review of national and provincial literature allowed synthesis of a diverse set 
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of potential scenarios which were implemented in the model using data from a utility in southern 

Ontario. These projections demonstrated significant changes to the local daily demand curve, 

highlighting similar and unique potential issues and opportunities to those discussed in previous 

literature, in the context of the specific utility studied. Most importantly, these scenarios illustrated 

the extreme range of outcomes being projected by different sources and the current uncertainty in 

the industry, demonstrating the need for such flexible modeling techniques at refined geographic 

levels. Overall the model advances techniques in scenario assessment for utility planning and risk 

mitigation. 

In Chapter IV the level of analysis was further refined geographically to consider implications of 

new technology penetration within local utility distribution systems. Previous literature has 

suggested that technology penetration may vary within a service area, impacting different regions 

more significantly, however no studies were found quantifying these factors. This study 

investigated localized technology penetration rates for EH and PV across transformers and showed 

significant variance. This emphasizes that while overall penetration of new and developing 

technologies may remain low in the immediate future, distribution system models should also 

consider the impacts of much higher penetration levels to prepare for the smaller proportion of 

local extremes which will inevitably be produced. Transformer load curves were then clustered 

into a representative set of eight curves, showing that significant variation also occurs in baseline 

load throughout the utility service area and reinforcing the need for refined levels of modeling. In 

depth system load flow analysis was often performed in previous literature to assess impacts to the 

system however this has significant data and computational requirements. This study instead used 

the clustered representative transformer profiles and a similar parameterized, scenario-based 

modeling technique to that in Chapter III, to simplify the assessment of future transformer loads, 

while still reflecting system variability. Once again, the parameterized design eases examination 

of the impacts of moderate technology penetration as well as potential local extremes. As with 

other chapters, the method provides a way for utilities to process smart meter data into a fairly 

computationally simple model facilitating the assessment of future impacts and evaluation of 

policy decisions. 

2 FUTURE RECOMMENDATIONS 

The set of models presented in these studies and their application with smart meter data from a 

utility in southern Ontario provide an illustration of the uncertainty in the industry, and examples 

of the type of insights and value which can be gained through modeling. It was shown that the 

effect of technologies can vary significantly and can become impactful locally even when overall 

adoption is low. This reinforces the need to assess and prepare for extreme scenarios which may 

be seen in outlier examples, alongside more realistic ones likely to be broadly seen across the 

network. The model results serve as a recommendation of techniques utilities can use when 

considering their future business pathways and looking to make informed decisions.  
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The results also led to a few technology and sector specific recommendations to guide future policy 

development and investment. Firstly, it was shown that uncontrolled home EV charging can 

significantly increase total and local peak demands. Rooftop PV installations can partially offset 

these new peak demands and defer capacity investment. However, the majority of PV generation 

does not coincide with EV charging and thus total demand is decreased more significantly than 

the peak, which has implications for system operation and utility revenues. It was found that PVs 

were most effect at matching demands and deferring costs if installed with small businesses. In 

regions with summer peaks, such as the one studied, it was found that moderate penetration of EH 

could balance seasonal variances in total and local demand, allowing for higher capacity utilization 

and utility revenues, without increasing the peak. Lastly, energy storage was found to be the most 

effective tool for balancing demand. If installed within the distribution system this would be most 

beneficial with transformers in residential neighborhoods where local and system peak demands 

are best matched. These recommendations are based on results specific to the data used, however 

many may be also generally applicable to regions with similar characteristics. 

When designing modeling initiatives, a balance must be found between the level of detail required 

to provide meaningful results, and the resources required with increased complexity. While this 

research aimed to provide techniques and insights which could be leveraged with minimal resource 

requirements, there are still a few recommendations for how these analyses could be refined, or 

how complimentary research could improve the results. Firstly, the disaggregation model 

presented in Chapter III could be improved through validation with actual measured data. This 

could be achieved through a submetering study collecting heating, cooling and total loads for a 

selection of households. It would not only relieve the uncertainty around disaggregation results 

but could also provide insights into how the model could be improved. Additionally, further 

research should be done to find a method of tailoring a buffer temperature for each hour and day 

type (as discussed in Appendix C, section 2.2). An area for potential improvement in the utility 

level demand model from Chapter III would be to further break down sectors. If sufficient 

customer information was known, the customers could be split into subsectors. Alternatively, this 

could be achieved through clustering customer in sectors into groups with similar load curves, as 

was done with transformers in Chapter IV. Even without customer information clustering might 

allow for identification of subsector groups based on archetypical load curves, allowing for further 

assessment of the impact of differential growth and economic development. Lastly, the optimal 

clustering technique to be used in this method, as well the one proposed in Chapter IV, should be 

investigated further. K-means was applied in this study due to its simplicity and guaranty of 

convergence, however research into the optimal clustering techniques for these specific 

applications could improve results and reduce the computing resources required. 

The scenarios presented in these studies were far from exhaustive, therefore a series of future 

analyses should be performed with the presented model set in order to gain additional insight. For 

example, while the model presented in Chapter III included a parameter to demonstrate the impact 

on demand from an average change in temperature due to climate change, none of the presented 

scenarios delved into these impacts. Furthermore, the model was calibrated for future climate 
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conditions by using the normalized weather data and increasing all temperature values by the 

proposed average increase. This may not be representative of the true impacts of climate change 

as they could also result in greater daily and seasonal weather variability. Future studies could use 

projected climate change data sets such as those produced by the Canadian Centre for Climate 

Modelling and Analysis and provide more detailed investigation into the seasonal impacts under 

different scenarios. Similarly, both Chapter III and Chapter IV included controls or scenarios for 

the implementation of energy storage, but general assumptions were made around the type and 

characteristics of the energy storage to be used. Future specific studies should investigate the 

impact of different forms of energy storage by changing the constraints placed on its operation in 

the allocation algorithms. This could be used to examine the optimal mix and application of 

different forms of energy storage under diverse scenarios.  

Overall, in order for the modeling toolset presented to remain effective and provide valuable 

insight, it is essential that it be continually updated, and new investigations be performed to 

account for and assess the new technologies and policies arising every day.  

3 ENGINEERING CONTRIBUTIONS 

The engineering contributions of the research and the models presented in this thesis can be 

summarized by the following points: 

1. An improved regression model for predicting and disaggregating space conditioning from 

aggregate sector loads, through the novel incorporation of variable changepoint temperatures, 

multiple resolutions of temperature data and probit analysis (Chapter II) 

2. An adaptable model for long term utility level electricity demand at finer temporal resolution 

than standard utility models, and incorporating a wider set of modifying technologies and 

policies (Chapter III) 

3. A dynamic, parameterized framework and modeling interface with real-time visualizations of 

scenario results to facilitate evaluation of multiple impacts and scenarios (Chapter III) 

4. A literature review and summary of the range of future values projected by various sources for 

parameters influencing electricity demand in Canada (Chapter III) 

5. Presentation of a diverse set of scenarios for future electricity demand for a utility in Southern 

Ontario, demonstrating the uncertainty in the industry and extreme range of potential local 

outcomes (Chapter III) 

6. Quantification of the variability in local technology penetrations throughout a sample utility 

service area at the transformer level (Chapter IV) 

7. A clustering method for identifying residential customer segments with and without electric 

heating (Chapter IV) 

8. A clustering method for identifying a small set of representative transformer load profiles 

within a utility service area (Chapter IV) 
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9. Presentation of a set of archetypical of transformer load profiles based on a utility in Southern 

Ontario (Chapter IV) 

10. Presentation of the differing impacts of new technology penetration and policy implications on 

various archetypical transformer load profiles (Chapter IV) 

11. A dynamic model with real-time visualizations for scenario analysis of utility demand, 

illustrating the differing impacts at archetypical transformers (Appendix C) 

The majority of previous studies addressing the need for long term modeling at finer temporal and 

technological resolution have been focused on the national level. These require significant data 

resources which may not be available to local authorities, and often overlook local extremes. The 

relatively simple, adaptable models developed in this thesis can facilitate wider proliferation of 

state-of-the-art modeling techniques, for improved local planning. Furthermore, the use of 

dynamic parameterized techniques allows real-time visualization of scenario impacts. This 

facilitates navigating the industry uncertainty by allowing the user to: investigate a wide spectrum 

of scenarios, quickly identify the sensitivity and interactions of each parameter, and assess 

potential mitigation techniques. Together the models provide a much-improved toolset for utilities 

looking to plan their future business pathways.   
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APPENDIX A – PERMISSIONS FOR PREVIOUSLY PUBLISHED WORKS 

CHAPTER II: MODELING AND DISAGGREGATING HOURLY EFFECTS OF WEATHER 

ON SECTORAL ELECTRICITY DEMAND 

As specified in the Copyright and Journal Author Rights1, Elsevier permits authors to use their 

published articles for a range of non-commercial purposes including incorporation in a thesis, as 

long as full acknowledgment is provided to the published version. 

 

CHAPTER III: A SIMPLE PARAMETERIZED MODEL TO ADVANCE VISULAIZATION OF 

UTILITY LOAD CURVES FOR STRATEGIC SYSTEMS PLANNING 

Since the article has not yet been accepted for publication, no permissions are required. Once 

published, as specified in the Copyright and Journal Author Rights1, Elsevier permits authors to 

use their published articles for a range of non-commercial purposes including incorporation in a 

thesis, as long as full acknowledgment is provided to the published version. 

 

CHAPTER IV: INVESTIGATING DISTRIBUTION SYSTEMS IMPACTS WITH 

CLUSTERED TECHNOLOGY PENETARTION AND CUSTOMER LOAD PATTERNS 

Since the article has not yet been accepted for publication, no permissions are required. Once 

published, as specified in the Copyright and Journal Author Rights1, Elsevier permits authors to 

use their published articles for a range of non-commercial purposes including incorporation in a 

thesis, as long as full acknowledgment is provided to the published version. 

 

 
1 https://www.elsevier.com/about/policies/copyright (Accessed Jan. 29, 20) 
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APPENDIX B – CHAPTER III SUPPLEMENTAL MATERIAL 

Table B-1: IESO Outlook Projected Sector/Parameter Growth Rates 

O
u
tl

o
o
k

 

Sector 
2015 Gross  

Demand (TWh) 

Projected 2035 

Demand 

(TWh) 

Annual 

Growth Rate  

Utility Projected  

2040 Demand (GWh) 

A 

Industrial 34.7 28.8 0.9907 262.0 

C
o
m

. 

Heating 39.0 43.7 1.0057 19.8 

HW 4.0 2.3 0.9730 3.3 

Cooling 4.7 4.4 0.9975 30.5 

Other 41.9 39.3 0.9967 402.3 

R
es

. 
 

Heating 45.4 41.9 0.9959 51.2 

HW 17.7 16.3 0.9957 39.0 

Cooling 3.5 3.4 0.9976 98.4 

Other 36.1 35.1 0.9985 365.6 

B 

Industrial 34.7 34.9 1.0003 327.2 

C
o
m

. 

Heating 39.0 46.6 1.0089 21.3 

HW 4.0 2.5 0.9771 3.6 

Cooling 4.7 4.9 1.0020 33.8 

Other 41.9 43.4 1.0017 451.2 

R
es

. 
 

Heating 45.4 43.4 0.9977 53.3 

HW 17.7 17.3 0.9989 42.0 

Cooling 3.5 3.5 0.9999 103.8 

Other 36.1 36.6 1.0008 384.6 

C 

Industrial 34.7 42.8 1.0105 413.8 

C
o
m

. 

Heating 39.0 42.3 1.0041 19.1 

HW 4.0 3.7 0.9949 5.4 

Cooling 4.7 4.9 1.0020 33.8 

Other 41.9 43.4 1.0017 451.2 

R
es

. 
 

Heating 45.4 39.0 0.9924 47.3 

HW 17.7 17.6 0.9997 42.8 

Cooling 3.5 3.5 0.9999 103.8 

Other 36.1 36.6 1.0008 384.6 

D 

Industrial 34.7 50.7 1.0191 502.8 

C
o
m

. 

Heating 39.0 41.6 1.0032 18.7 

HW 4.0 3.9 0.9984 5.9 

Cooling 4.7 4.9 1.0020 33.8 

Other 41.9 43.4 1.0017 451.2 

R
es

. 
 

Heating 45.4 37.8 0.9909 45.6 

HW 17.7 17.7 1.0001 43.1 

Cooling 3.5 3.5 0.9999 103.8 

Other 36.1 36.6 1.0008 384.6 

*Note these values are estimated total potential demand. See Table S2 for calculation 
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Table B-2: Estimated Total Potential Heating & HW Demand  

  

  

Residential Commercial 

% 

Penetration 

Demand 

(TWh) 

Theoretical 

Total 

Demand 

(TWh) 

% 

Penetration 

Demand 

(TWh) 

Theoretical 

Total 

Demand 

(TWh) 

Current (2015) 

Heating 18% 8.3 45.4 10% 4.0 39.0 

HW 23% 4.1 17.7 19% 0.8 4.0 

Outlook A 

Heating 17% 7.0 41.9 11% 5.0 43.7 

HW 19% 3.1 16.3 17% 0.4 2.3 

Outlook B 

Heating 17% 7.3 43.4 11% 5.1 46.6 

HW 19% 3.3 17.3 17% 0.4 2.5 

Outlook C 

Heating 31% 12.3 39.0 31% 13.3 42.3 

HW 32% 5.6 17.6 35% 1.3 3.7 

Outlook D 

Heating 42% 15.7 37.8 45% 18.6 41.6 

HW 45% 7.9 17.7 48% 1.9 3.9 

 

Table B-3: Projected Equivalent EV Penetration 

O
u
tl

o
o
k

 

EVs 

2015 

Ontario Total 

Vehicles 2015 

(<4.5 Tonnes) 

Projected 

EVs 2035 

Extrapolated 

EVs 2040 

Projected Total 

Vehicles 2040  

(< 4.5 Tonnes) 

Projected 

Penetration 

2040 

A 5 7,866 605 755 10,507 7.2% 

B 5 7,866 1,003 1,252 10,507 11.9% 

C & D 5 7,866 2,401 3,001 10,507 28.6% 

Note: all numbers are in thousands of vehicles 
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Table B-4: Extrapolated EH & HW Penetration Rates 

Outlook End-Use 
Residential Pen. Commercial Pen. 

2035 2040 2035 2040 

A 
Heating 17% 17% 11% 11% 

Hot Water 19% 19% 17% 17% 

B 
Heating 17% 17% 11% 11% 

Hot Water 19% 19% 17% 17% 

C 
Heating 31% 39% 31% 40% 

Hot Water 32% 41% 35% 44% 

D 
Heating 42% 55% 45% 61% 

Hot Water 45% 62% 48% 64% 
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APPENDIX C – UPDATED CHAPTER III MODEL WITH LOAD CURVE 

CLUSTERS 

1 UPDATED MODEL  

The model presented in Chapter III was updated after publication to accommodate additional 

parameters and incorporate the results obtained in Chapter IV. The current structure and formulae 

were generally maintained with a few modifications (detailed in Section 2). In this version load 

curves were developed not only for the total demand, but also the demand curve in each of the 

transformer clusters identified in Chapter IV. Therefore, when calibrating coefficients using the 

formulae from Chapter III, one set of coefficients was found for the total data in each cluster and 

one for the overall total. As in the analyses performed in Chapter IV, the small outlier clusters (2 

and 4) were not considered as they represented unique circumstances which are not expected to 

experience the same changes as the other clusters. Thus, in total seven sets of coefficients (six 

clusters and one total) were calibrated for the new model and when controls are adjusted to a 

scenario, the projected load curve can be viewed for each transformer cluster and the total system.   

2 UPDATED & ADDITIONAL PARAMETERS & CONTROLS 

As well as the additional projected demand curves, the model was updated with some minor 

modifications and additional controls in order to refine the projections and accommodate changes 

on the local transformer cluster level. The modifications are detailed in the following sections. 

2.1 RELATIVE LOCAL PENETRATION RATES 

Firstly, in order to accommodate local differences in each of the clusters, local baseline penetration 

rates were determined for PV and EH using the techniques discussed in Chapter IV. Since these 

vary significantly between clusters, it follows that the future scenario penetration rates for a 

technology at each cluster may vary. Likewise, the growth or decline of sectors may differ. 

Therefore, each cluster was given a set of relative growth controls to change the impact of different 

parameters on each cluster. These are available for EV, ES, residential PV, business PV, residential 

EH, commercial EH, and residential HW penetration rates, as well as for overall residential, 

commercial and industrial sector growth rates. Note that while the main model includes individual 

growth parameters for different portions of some sectors (ie. heating, cooling, and other) only one 

relative control is provided, which impacts all of these portions respectively. The relative controls 

can range from 0% to 200% and indicate the deviation from the overall increase/decrease in 

technology penetration or growth/decline in a sector. If the relative control is set to 0%, the cluster 

curve would show the load curve projected with no additional technology penetration or no sector 

growth. Whereas at 200%, there would be double the additional technology penetration or double 

the growth/decline in sector demand compared to the overall scenario setting. This allows the 

sensitivity of a given cluster to specific parameters and local variations to be assessed. The impact 
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from relative sector growth rates are incorporated into equations (3) and (5) from Chapter III by 

changing the portion which relates to the growth rate as follows:  

𝑑𝑠,𝑡,𝐶
𝑦

= ∑ (
𝐷𝑚,𝐶

�̅�

𝑛𝑠
) ∗ (1 + ((1 + 𝑖𝑚)(𝑦−�̅�) − 1) ∗ 𝑅𝑒𝑙𝑚,𝐶) ∗ 𝑘𝑚,𝑠,𝑡,𝐶 ∗ 𝑠𝑚,𝑠,𝐶𝑚 + ∑ 𝑑𝑝,𝑠,𝑡,𝐶

𝑦
𝑝    

Eq. (C1) - modified Ch. III Eq. (3) 

𝑑𝑝,𝑠,𝑡,𝐶
𝑦

= (
𝐷𝑝,𝐶

�̅�

𝑛𝑠
) (

𝑃𝑒𝑛𝑝,𝐶
𝑦

𝑃𝑒𝑛𝑝,𝐶
�̅� ) ∗ (1 + ((1 + 𝑖𝑝)(𝑦−�̅�) − 1) ∗ 𝑅𝑒𝑙𝑚,𝐶) ∗ 𝑘𝑝,𝑠,𝑡,𝐶 ∗ 𝑠𝑝,𝑠,𝐶 ∗ 𝑐𝑝,𝑠,𝑡,𝑇,𝐶   

Eq. (C2) -modified Ch. III Eq. (5) 

This is only applied when processing transformer clusters, where 𝑅𝑒𝑙𝑚/𝑝,𝐶  is the relative growth 

of sector m in cluster C, impacting sector m or parameter p (for example heating parameter p for 

sector m). Note all other variables are the same as the original equations with the addition of one 

more subscript C, to indicate the cluster. 

The effect on local technology penetration rates is complicated still further by the fact that certain 

areas already have higher baseline penetration rates than others. For example, the baseline 

residential EH penetration rate is approximately 10%, however cluster 5 showed an estimated 

penetration over 63%. If the future scenario being projected estimated a doubling of overall EH 

penetration to 20%, one would expect the penetration in cluster 5 to increase, not decrease down 

to 20%. Thus, additional equations are also required to determine the projected penetration in year 

y of a parameter p at cluster C (𝑃𝑒𝑛𝑝,𝐶
𝑦

)  considering both the baseline local penetration and relative 

penetration growth control. It was assumed that additional penetration of new technologies in a 

scenario would be evenly distributed among all remaining customers who do not already have the 

technology and allocated to each cluster accordingly. In this case since cluster 5 already has a 

disproportionate number of people with EH, a lower proportion of customers are able to get new 

EH installed and thus the penetration would increase by less than the average 10% increase. 

Conversely if a decrease in penetration is projected, this would be distributed evenly across all 

customers with the technology and in the case of EH in cluster 5, would the penetration would 

disproportionately decrease. Based on this assumption and the relative penetration rate controls, 

the new penetration rate for each cluster C can be calculated based on equations C3 and C4: 

𝐹𝑜𝑟 𝑃𝑒𝑛𝑝
𝑦

≤  𝑃𝑒𝑛𝑝
�̅�

:  𝑃𝑒𝑛𝑝,𝐶
𝑦

= 𝑃𝑒𝑛𝑝,𝐶
�̅�

+ (𝑃𝑒𝑛𝑝
𝑦

− 𝑃𝑒𝑛𝑝
�̅�

) ∗ 𝑅𝑒𝑙𝑃𝑒𝑛𝑝,𝐶 ∗ (
1−𝑃𝑒𝑛𝑝,𝐶

�̅�

1−𝑃𝑒𝑛𝑝
�̅� )       Eq. (C3) 

𝐹𝑜𝑟 𝑃𝑒𝑛𝑝
𝑦

≥  𝑃𝑒𝑛𝑝
�̅�

:  𝑃𝑒𝑛𝑝,𝐶
𝑦

= 𝑃𝑒𝑛𝑝,𝐶
�̅�

+ (𝑃𝑒𝑛𝑝
𝑦

− 𝑃𝑒𝑛𝑝
�̅�

) ∗ 𝑅𝑒𝑙𝑃𝑒𝑛𝑝,𝐶 ∗ (
𝑃𝑒𝑛𝑝,𝐶

�̅�

𝑃𝑒𝑛𝑝
�̅� )           Eq. (C4) 

where Penp
y
 is the overall penetration rate for parameter p in year y (or base year ), 𝑃𝑒𝑛𝑝,𝐶

𝑦
 is the 

local penetration rate at cluster C, and 𝑅𝑒𝑙𝑃𝑒𝑛𝑝,𝐶 is the relative penetration rate for p at cluster C. 
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2.2 HEATING AND COOLING DISAGGREGATION 

As mentioned in Chapter IV, the disaggregation model detailed in Chapter II was updated from its 

original description to include more data for modeling the effects of changing day lengths and 

sunlight. In addition to the dummy variable based on sunrise and sunset times, two similar dummy 

variables were added for ‘Nautical’ and ‘Civil’ sunrise/sunset [1], as well as a variable for sun 

angle at each hour of the day (set to 0 if below the horizon) [2]. These better accounted for times 

with partial daylight. They were found to improve the fit with both the total residential and 

commercial data, decreasing MAPE from 4.57% and 1.85% to 4.36% and 1.80% respectively, 

while also smoothing the disaggregated profiles around sunrise and sunset hours.  

In addition, since the load curve of each transformer cluster is modeled, this disaggregation was 

applied to the data from each cluster. A poor fit was found with data showing very high heating 

demands and minimal cooling (as in cluster 5), with base demand being significantly 

underpredicted by the model. This was discovered through comparison with the locus of minimum 

load which assumes that the days with minimal load in the transitional seasons will have little to 

no space conditioning and thus be representative of the base load [3]. It was found that the poor fit 

could be alleviated by adding a buffer temperature range in which no CD or HD were assigned. 

This suggests for households with high heating and low cooling there is comfort zone (perhaps 

due to thermal inertia), which is a range of temperature over which minimal or no space 

conditioning is used. Thus, equations 2 and 3 from chapter II were modified to include a buffer 

temperature Tb: 

𝐷𝐻𝑡,𝑅,𝑑 = 𝑀𝑎𝑥(( 𝑇𝑐𝑡,𝑑,𝑅,𝑤 − 𝑇𝑏) −  𝑇𝑡,𝑑,𝑅,𝑤, 0)  Eq. C5 

𝐷𝐶𝑡,𝑅,𝑑 = 𝑀𝑎𝑥( 𝑇𝑡,𝑑,𝑅,𝑤 − (𝑇𝑐𝑡,𝑑,𝑅,𝑤 + 𝑇𝑏), 0)  Eq. C6 

For cluster 5 it was found that the optimal buffer was 3 and 2.5 degrees respectively for residential 

and commercial data. The resulting modeled base demands and locus of minimum load for each 

sector in the transition months can be seen in Figure C-1 and C-2. A constant buffer was used, 

however just like changepoint temperatures, it is likely that the optimal value may change with 

different behaviours and occupancies at different times and types of days. Furthermore, 

preliminary experimentation showed that using a smaller buffer temperature could slightly 

improve the fit of the model with datasets that did not include significant heating. This suggests 

that future work should be done in implementing a variable buffer temperature to accompany the 

variable changepoint. However, since for most clusters the improvements were only marginal and 

the locus of minimum load showed a good fit, a buffer temperature (manually optimized) was only 

implemented for cluster 5. 
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Figure C-1: Cluster 5 Residential Locus of Minimum Load and Modeled Base Demand 

 

Figure C-2: Cluster 5 Commercial Locus of Minimum Load and Modeled Base Demand 

2.3 ELECTRIC HEATING, COOLING AND HOT WATER 

The electric heating, cooling and HW were disaggregated from each the transformer cluster curve 

using the same method as in Chapter III, using the updated regression model discussed in the 

previous section. However, the commercial HW demand was not disaggregated in the new model 

because each transformer cluster would include a different cross section of commercial customers 

with potentially significantly different quantities and distributions of HW demand. Thus, the 

assumptions made around this parameter in the aggregate model would not be true locally. Less 
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variability would be expected between residential household types, therefore the residential HW 

demand was still disaggregated using the average expected curve. One other difference in the 

updated model was that the baseline penetration rates for EH in each cluster and the total were 

determined using the clustering method detailed in Chapter IV rather than from historical 

literature. 

The application of the regression model to each of the clusters revealed different residential heating 

and cooling profiles in each cluster, as demonstrated in Figure C-3. While the cooling profiles 

showed generally the same distribution with varying degrees of afternoon peaking (some profiles 

more evenly distributed through the day), the heating profiles showed more significant differences. 

This was particularly notable when comparing the results for cluster 3 which has very minimal 

heating demands (4.0% EH penetration) to cluster 5 where EH was the group’s defining 

characteristic (63.4% penetration). Meanwhile, cluster 1, which had a mix of cooling and heating 

demands, shows a similar curve to the total demand and appears to be close to the average of 

clusters 3 and 5. One potential explanation for these differences is that in the regions with low 

primary EH, there may still be use of supplemental electric heating such or portable heaters. These 

would tend to depend more on consumer occupancy patterns, thus explaining the evening peak 

seen in cluster 3. Furthermore, since the proportion of heating demand is low, any errors in 

disaggregation due to seasonal differences in non-heating demand will be much more significant. 

Meanwhile, in cluster 5 while these same demands might still be present in certain households, the 

high quantity of demand from households with EH as their primary source is much larger and thus 

is the determining factor for the shape of the disaggregated demand curve. By this reasoning it was 

assumed that the heating profile disaggregated from cluster 5 would provide the best representation 

of the heating profile which could be expected in scenarios of increasing EH penetration. Thus, 

any additional EH added in a scenario was assumed to follow the characteristics that were derived 

from the cluster 5 disaggregation. 

 

Figure C-3: Average Cluster Residential Heating and Cooling Profiles 

Two additional controls were also added to the model to account for the potential for new EH to 

be in the form of HPs. The new first control allows the user to determine the percentage of future 
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households with EH which will use HPs and the second determines what type of HP is to be used. 

The three types of HPs which can be selected (Single Stage, Variable Speed Centrally Ducted, and 

Variable Speed Ductless) were based on the parameters presented by Szekeres and Jeswiet [4]. 

The baseline HP penetration was estimated at 25% for residential customers based on various 

sources [5], [6]. These were assumed to have average characteristics similar to a single stage heat 

pump. No data could be found for commercial heat pump installation rates, so this is currently set 

to 0%. These values are currently rough estimates, however, could be easily modified with 

additional data.  

In all cases it was assumed the HPs were sized to meet all household demand. The coefficient of 

performance (COP) was estimated for each hour of the year using the local temperature data, and 

assuming the use of back-up resistance heating (COP=1) at temperatures below the minimum HP 

operating temperature. Using this data and the disaggregated heating demand, seasonal average 

COPs were found for each hour of the day (and for each HP type), along with values for the peak 

day. In order to account for the effect of currently installed HPs, the electric heating demand 

disaggregated using the regression model must first be adjusted to the actual heat demand based 

on baseline HP penetration and COPs. This heating profile can then be scaled based on the scenario 

growth rate and change in penetration (as in Chapter III) to get the future heat demand. The future 

heating demand must then be converted to actual electricity demand using the new projected HP 

penetration and COP. In both steps the conversion between electricity demand for heating and 

actual heat demand (or visa versa) can be accomplished using Eq. (C7): 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 = 𝐻𝑒𝑎𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 ((1 − 𝐻𝑃𝑃𝑒𝑛) +
𝐻𝑃𝑃𝑒𝑛

𝐻𝑃 𝐶𝑂𝑃
 ) Eq. (C7) 

2.4 ELECTRIC VEHICLE PROFILES AND ALLOCATION 

This updated version of the model maintains the same structure for controlling EV penetration and 

charging, however the data sources and control options have been updated in order to allow 

differentiation between expecting charging profiles and demands at different clusters. Fischer, 

Harbrecht, Surmann and McKenna, used stochastic Markov chains to model EV demands 

producing different daily charging distributions depending on charger location, driver occupation 

and a variety of other factors [7]. These results were adapted and combined with local statistical 

data on labour forces [8], and the number of people using their vehicles to drive to work each day 

[9] to produce overall weighted load curves in different charging scenarios (see Figure C-4). The 

control for EV penetration remained unchanged, however the other two were modified to match 

this new data source. Instead of allowing the user to choose between IESO or NREL data, this was 

adapted to the choice of whether consumers would be assumed to charge only at a single location, 

or whenever charging is available (two locations: residential and workplace). When single location 

charging is selected, the second slider control determining the shape of the distribution allows the 

used to adjust what percentage of consumers charge exclusively at their workplace (with the 

remaining portion charged only at home). If it is selected that EVs will be charged whenever a 

station is available, the second control instead allows the user to set what portion of workplaces 
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are assumed to have charging stations available. The adapted profiles for each of these charging 

situations can be seen in Figure C-4, and a weighted average is produced based on the settings of 

each control. It should be noted that in Figure C-4 the ‘Only Home’ and ‘Only Workplace’ curves 

each add to a total of 100% since charging exclusively occurs at either of these locations, whereas 

the ‘Both – Home’ and ‘Both- Workplace’ curves cumulatively add to 100% as the demand is 

distributed between the two locations as adapted from Fischer et al.’s study. 

 

Figure C-4: Electric Vehicle Residential and Commercial Load Curves 

In this method since there is a differentiation between home and workplace charging demands, 

these are allocated separately to each of the clusters based on the cluster characterises (similarly 

to Chapter IV). The total expected residential charging demand is allocated to clusters based on 

the percentage of residential customers in each cluster. Similarly, the workplace EV charging 

demand is allocated based on the businesses at each cluster. However, this demand is assumed to 

be proportional to the total electricity demand as opposed to the number of businesses. This is an 

approximation based on the assumption that larger businesses with higher electricity demand will 

have more employees (and therefore more workers’ vehicles). This allocation was done separately 

for the commercial and industrial sectors, using statistical data on the number of jobs in each sector 

to determine the relative proportion for each [10]. The result of this method is that, each cluster 

will have a different proportion and temporal distribution of EV charging, depending on the local 

customer mix. As an illustrative example, Figure C-5 shows the total EV charging demand split 

by each cluster (a) and the distribution of demand at each cluster (b) in a scenario of 25% EV 

penetration with both home and work charging and 50% of workplaces having chargers available.  
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Figure C-5: Example EV Demand a) Total by Cluster b) Distribution by Cluster 

2.5 LOCAL PHOTOVOLTAIC CAPACITIES AND ALLOCATION 

The controls for PVs remain the same as in Chapter III apart from the ‘commercial penetration’ 

being changed to ‘business penetration’ in order to account for the fact that both commercial and 

industrial facilities may install solar panels. However, similarly to the EVs, in this updated model 

PV capacity from the total demand curve must be allocated to each cluster based on the local 

customer characteristics and the estimated potential. As such, the baseline and estimated potential 

capacities were split into a residential and business portion. The total and local baseline capacities 

were divided based on the contract structure, assuming smaller installations under the IESO’s 

microFIT (MF) contracts (<10kW capacity [11]) would be residential, while larger Feed In Tariff 

(FIT) contracts would be businesses. While this is not completely accurate, it is a sufficient 

approximation as the vast majority of MF contracts are residential, and the small proportion of 

business ones are insignificant compared to the much larger FIT capacity. As in Chapter III, 

capacities were estimated from annual production using a regional capacity factor [12]. 

The total estimated potential capacity was assumed to be 60% residential and 40% business based 

on the formulas from Wiginton, Nguyen and Pearce [13]. These total potentials were then allocated 

to each cluster similarly to the EV demand: residential capacity based on the proportion of 

residential customers in each cluster, and business capacity based on the proportion of total 

business electricity demand (commercial and industrial) in each cluster. Once again, it is assumed 

that the number of households is the best metric for allocating residential technology, whereas with 

businesses it was assumed that on average those with larger demands would likely have larger 

workplaces and therefore more roof space and solar potential. 

A unique set of hourly and seasonal coefficients was determined for the total demand curve and 

each cluster. Figure C-5 shows the summer (a) and winter (b) seasonal production curves (hourly 

coefficients times seasonal coefficients) for each cluster. While solar production would be 



 

112 

expected to have generally the same distribution throughout the city, slight differences can be seen 

observed. These could be caused by factors such as slightly different geographical positioning, 

panel efficiencies, or building differences including proximity, roof angles and shading. Cluster 6 

had very low baseline PV penetration (0.3% residential and 0.0% business), with the majority of 

these being installed mid way through the year. Therefore, the hourly and seasonal coefficients for 

the total demand curve were also used as the best approximation for cluster 6. Since no actual 

generation data is available for west facing panels in each cluster, the same control and 

approximate curves detailed in Chapter III were used for all clusters. 

 

Figure C-6: Cluster Solar Production 

2.6 ENERGY STORAGE CHARGING STRATEGY 

The energy storage algorithm functions with generally the same iterative method outlined in 

Chapter III, however with one additional choice was added to the control which determines how 

the energy storage operates. In addition to the ‘Grid’ and ‘Solar Only’ methods there is also a 

“Local” option. The original two choices function as previously, allocating demand to the total 

curve based on its distribution. The demand and supply are then allocated to each cluster based on 

the percentage of total demand seen in that cluster (ie. clusters with higher demand have a larger 

proportion of ES), retaining the same temporal distribution. These methods reflect the operation 

of ES for balancing the total supply and demand, as would be expected if the ES was optimized 

from a system operator perspective. As a result, the ES operation may not be optimal for local 

clusters and could potentially even increase transformer overloading. Meanwhile, the “Local” 

method takes the opposite approach. Once again total ES capacity is allocated to each cluster based 

on demand proportions, but the charging and discharging are then scheduling in each cluster based 

on the local demand distribution. These demands and supplies are then summed up to the overall 

total demand curve. This simulates how ES would operate if optimized for the needs of the 

distribution grid and on an aggregate level can lead to simultaneous charging and discharging of 
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ES in different parts of the grid (different clusters). These alternative options are available to 

visualize the contrast between different ES operation strategies in future scenarios, and support 

identification of locations where ES can most effectively be deployed to balance both needs.  

3 UPDATED MODEL INTERFACE AND OUTPUTS 

The updated model interface includes the same views and controls (with changes detailed in 

Section 2), along with additional views for each cluster. Figure C-7 shows an example of the 

updated main interface for the total demand curve where a variety of parameter controls are 

available. Comparing this to the interface shown in Figure III-1, an additional toggle box can be 

seen at the bottom where the user can switch to view load curves for other transformer clusters. A 

sample of this view for Cluster 6 is shown in Figure C-8. In this interface the relative penetration 

and growth controls for the cluster being viewed are located on the left-hand side. The same set of 

load curve metrics can be seen below the demand curve graph. From this interface the user can 

return to the main scenario controls by either selecting ‘Total’ in the ‘Transformer’ toggle box, or 

by clicking the button on the bottom left. A similar interface is available for each transformer 

cluster. 

 

Figure C-7: Sample Modified Model Interface – Total System Demand 
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Figure C-8: Sample Modified Model Interface - Cluster 6  
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