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Abstract 

Stay cables are one of the main structural elements in a cable-stayed bridge. Due to their 

high lateral flexibility and low inherent damping, cables are susceptible to large-amplitude 

vibrations that can adversely affect bridge safety and serviceability. As a practical measure, 

passive viscous dampers are installed transversely near the cable-deck anchorage. 

However, such devices can only provide a limited amount of damping. In recent years, the 

need for an effective yet simple control technique has led to the development of high-

performance passive negative stiffness dampers (NSD). The present dissertation aims to 

study the behaviour of NSDs, enable their design for mitigating excessive bridge stay cable 

vibrations and evaluate their control effectiveness in comparison with other alternative 

schemes. To investigate the behaviour of NSDs, an analytical study has been conducted to 

obtain the in-plane free-vibration response of a shallow-flexural damped cable. The effect 

of damper stiffness was modeled as a linear spring aligned in parallel with a linear viscous 

dashpot. As a refinement to the existing damper design formulas, a unified design equation 

has been developed for the idealized fixed-fixed and hinged-hinged cable boundary 

conditions. The design procedure is based on an asymptotic solution to the modal damping 

ratio of the cable-damper system. The mode superposition method (MSM) has been 

adopted to numerically simulate the dynamic response of a controlled shallow-flexural 

cable subjected to arbitrary dynamic excitations. The numerical efficiency of the MSM was 

improved by including the cable static displacement caused by an arbitrary point load at 

the damper location as a correction term in the shape function vector and modifying the 

conventional sinusoidal shape functions to satisfy the boundary conditions. Results showed 

that the refined design formula yielded a slightly conservative estimation and therefore safe 
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damper design. Also, the enhanced MSM-based numerical framework was found to 

substantially reduce the computational cost for designing cable vibration control schemes. 

Using the aforementioned analytical and numerical tools, the control performance of a 

NSD has been evaluated. The superior control effectiveness of a NSD compared to the 

positive- and zero-stiffness dampers was justified by employing the force generation 

mechanism of a viscous damper with linear stiffness. Theoretical and practical limits of the 

negative damper stiffness have been identified to ensure the stability of NSD and avoid 

unsafe design. An innovative NSD design procedure for mitigating both the single-mode 

and the multi-mode stay cable vibrations has been proposed. Analytical design 

relationships have been developed to determine NSD parameters for achieving the desired 

damping ratio in target mode(s). The impact of damper support flexibility on the NSD 

control performance has been studied to determine the optimum combination of NSD 

parameters and damper support stiffness. Results showed that the performance of a NSD 

designed/optimized based on the proposed methods was comparable to that of an optimal 

active controller. Furthermore, it has been found that optimizing NSD for a flexible damper 

support would result in a cost-efficient NSD design and inhibit additional NSD-induced 

cable displacement. The outcomes yielded from this dissertation extend the current 

knowledge associated with the dynamic behaviour of NSD-equipped bridge stay cables. 

The developed analytical/numerical tools and optimization methods contribute to the 

bridge industry by enabling accurate, efficient and reliable design of cable-NSD systems 

either in the preliminary design stage or during the rehabilitation process of cable-stayed 

bridges. The findings of this study will assist infrastructure management and improve the 

global economy by extending the life-span of cable-stayed bridges.  
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Chapter 1 Introduction 

 

1.1. Background 

The original idea of cable-stayed bridges coincided with the development of suspended 

bridges in Europe in the early 19th century. However, the concept was abandoned for a long 

time after the collapse of the first built examples in England and Germany due to a lack of 

proper understanding of their structural behaviour [1]. Prior to the emergence of modern 

cable-stayed bridges in the 20th century, several hybrid bridges were built using stay cables 

as stiffening elements in suspension bridges. An outstanding example of this type is the 

Brooklyn Bridge in New York, designed by J. A. Roebling in 1869 and opened in 1883 

[2]. The era of modern cable-stayed bridges began after the World War II in the early 1950s 

with the construction of the Strömsund Bridge in Sweden (1956) and the Düsseldorf triple 

bridge family in Germany (1957, 1969 and 1976) [3]. The economic efficiency, aesthetic 

aspect, ease of construction, and adaptability to poor soil conditions have greatly 

contributed to the worldwide popularity of cable-stayed bridges [4]. Consequently, the 

feasible span of cable-stayed bridges has increased rapidly in the recent decade due to the 

advances in materials and construction methods. Examples of super-long cable-stayed 

bridges include the Russky bridge (Russia-2012) with a record span of 1104 m, the Sutong 

Bridge (China-2008) with a span of 1088 m, and the Stonecutters Bridge (China-2009) 

with a span of 1018 m [5].  
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Stay cables are one of the main load-carrying structural elements in a cable-stayed bridge. 

The length of the cables depends directly on the free span of the bridge, and as it increases, 

the lateral flexibility of the cables would also increase. Moreover, in order to maintain the 

static equilibrium of the cables, large tension is applied during installation, which 

significantly reduces their intrinsic damping ratio [6]. According to the field measurements, 

the majority of stay cables have an intrinsic damping ratio less than 0.3% [7]. Hence, due 

to their low inherent damping and high lateral flexibility, stay cables are prone to large-

amplitude vibrations when subjected to dynamic excitation such as environmental and 

traffic loads [8]. This problem has been well documented and addressed in recent decades. 

One of the earliest reports was the high-amplitude cable vibrations at the Brotonne Bridge 

(France) in 1977 [9]. With the rapid growth of cable-stayed bridges in the 1980s, numerous 

cable vibration incidences were reported particularly with the presence of wind, rain, snow, 

ice and a combination thereof [10]; these include the 2 m peak-to-peak vibrations on the 

Tempozan Bridge (Japan) [11], 1 m peak-to-peak vibrations on the Fred Hartman Bridge 

(United States) [12], an estimated 2.5 m peak-to-peak vibrations on the Dubrovnik Bridge 

(Croatia) [13], and 0.7 m peak-to-peak vibrations on the Dongting Lake Bridge (China) 

[14]. Regardless of the origin of the vibration mechanisms (i.e. rain-wind-induced vibration 

(RWIV), buffeting, galloping, vortex-induced vibration, parametric excitation, etc.), 

recurring large-amplitude cable oscillations would accelerate fatigue and can seriously 

damage the cable protection system, the cable-deck and cable-pylon anchorages, and the 

control devices attached to the cable [13] and thus adversely affects the life-span of both 

the stay cables and the bridge itself [15]. Besides, excessive vibration also has a negative 

impact on the public's confidence on bridge safety. Therefore, preventing the occurrence 
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of severe cable vibrations and controlling their amplitude to allowable limits are of great 

importance during the construction and operation of cable-stayed bridges. 

Extensive studies on various mechanisms associated with cable vibration have assisted 

engineers to find effective solutions to mitigate excessive vibrations. Practical approaches 

for controlling cable vibrations include aerodynamic and mechanical measures [16]. In the 

former, the common practice is to modify the aerodynamic properties of the cables by 

applying modifications to the surface of cable protective sheath in the form of helical fillets 

[17], longitudinal ribs [18] and patterned dimples [19]. These modifications are mainly 

designed to prevent the formation of longitudinal water rivulets on the cable surface, which 

is believed to be responsible for rain-wind-induced vibration of stay cables [20]. One of 

the major limitations of this approach is its inability to effectively control cable vibrations 

due to mechanisms other than rain-wind-induced vibration. Also, surface modification is 

difficult to implement on existing stay cables on site and helical fillets have been reported 

to increase the drag on longer cables [9]. Nevertheless, cable surface treatment has become 

a standard component in the cable manufacturing industry during the past decades [21]. 

Mechanical type vibration controlling methods, on the other hand, tend to improve the 

dynamic behaviour of a stay cable by modifying its stiffness and/or damping properties. 

To improve the in-plane stiffness of a stay cable, transverse cross-tie(s) can be used to 

connect adjacent cables. Cross-ties can effectively suppress cable vibrations due to 

different mechanisms by increasing the in-plane frequency of interconnected cables [22] 

and redistributing the kinetic energy in the system [23], increasing modal mass of the cables 

[10], enhancing cable damping [24], and reducing sag variation among the connected 

cables [2]. The main drawbacks of applying cable networks include the generation of a 



4 
 

large number of closely spaced local modes, the inability to control out-of-plane vibrations, 

and the impact of cross-ties on bridge aesthetics [25]. Cross-ties have been successfully 

applied to a number of cable-stayed bridges [1,26–28] and research is ongoing to further 

develop this method [29–35]. 

As an alternative effective mechanical measure, the low structural damping of stay cables 

can be increased by providing additional energy-dissipating devices. Passive dampers have 

been extensively installed on stay cables both externally or internally [21]. In the external 

configuration, transverse viscous dampers [36–39] can be mounted near the cable-deck 

anchorage, usually at 2 to 5% of the cable length to the anchorage, and tuned mass dampers 

[40] can be installed along the cable. In the internal configuration, friction dampers [41] 

and high damping rubber (HDR) dampers [42] can be placed inside the cable-deck 

anchorage block. It has been shown through analytical studies that the performance of 

transverse viscous dampers is compromised when the effects of cable sag [43], cable 

bending stiffness [44], damper support stiffness [45,46] and positive damper stiffness 

[39,47] are not negligible. In addition, these dampers may become inadequate in the case 

of longer stay cables where the damper installation location is relatively closer to the cable 

end. Moreover, viscous dampers may not be able to suppress multi-mode cable vibrations 

since they are often optimized to control a specific mode [48]. Field observations indicate 

that cable vibrations are often dominated by multiple modes, especially in the case of 

RWIV [10,38,49]. On the other hand, the dominant modes of a cable vibration incident 

depend on the excitation source and are subjected to change. Hence, optimizing the 

performance of a passive viscous damper for a specific single-mode may result in 

suboptimal damper performance for other cable modes. In such cases, more efficient 
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control tools such as active [50–52] and semi-active [53,54] devices need to be used. An 

important feature of these control methods is their adaptability to unforeseen loading 

conditions. As a widely used semi-active control device, magneto-rheological (MR) 

dampers have been installed on a number of cable-stayed bridges [55,56].  

The application of active control schemes has been limited by their high demand on a 

power source and stability concerns. On the other hand, semi-active dampers require real-

time measurement of cable response as well as pre-designed controllers and computer-

based calculations to generate the control action [57]. Although these tools typically require 

less power and are inherently stable, their design and implementation are more challenging 

and costly than the conventional passive dampers. Therefore, the development of a passive 

system capable of achieving control effectiveness at the level of active/semi-active control 

schemes has been of interest to researchers in recent decades. The crucial need of more 

efficient, robust and cost-effective passive control techniques has led to the recent 

development of negative stiffness dampers (NSD). The idea of NSD emerged when the 

negative-stiffness behaviour in the force-deformation response of optimally-controlled 

active dampers was found to improve their control performance [58]. As a result, it was 

attempted to artificially introduce the negative stiffness mechanism in control systems 

designed for seismically-excited buildings [59], cable-stayed bridges [60], and stay cables 

[61,62]. In parallel, the efficiency of several NSD specimens has been experimentally 

studied in stay cable vibration control [63–65]. Recent experimental [66] and numerical 

[67] studies have shown that NSD provide a significantly improved control performance 

compared to conventional viscous dampers and mitigates cable vibration comparable to 

optimal active controllers [68].  
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1.2. Motivation 

Application of passive discrete dampers has been a classical solution for mitigating stay 

cable vibrations since its first implementation on the Brotonne Bridge (France) [69]. 

External transverse dampers are typically placed near the lower cable anchorage at a 

distance of about 2% of the cable length. Design tools are available for selecting optimum 

viscous dampers to control cable vibrations under a specific mode [39,43,44,70–72]. 

However, the existing approaches do not consider the effects of damper stiffness, damper 

support stiffness, cable sag, and cable bending stiffness in the analytical formulation. Due 

to the possible interaction of these factors to influence the damper performance, a 

comprehensive analytical model is needed to take into account all the above factors. In 

addition, the effect of damper stiffness can be explicitly investigated to address the design 

of three categories of dampers, namely the positive stiffness damper (PSD), the zero-

stiffness damper (ZSD), and the negative stiffness damper (NSD). Access to such a model 

is particularly essential for a better understanding of the dynamic behaviour of the cable-

NSD system and the development of design and optimization tools for NSDs. 

In addition to analytical solutions, numerical methods such as the finite difference method 

(FDM) [73] and the mode superposition method (MSM) [69,74] have been adopted to 

study the dynamic behaviour of undamped and damped stay cables. In these methods, the 

governing equation of a cable motion is solved numerically and the control performance is 

evaluated by calculating the modal damping ratio of the damped cable. Application of 

MSM has led to the presentation of a widely used universal curve for designing viscous 

dampers [69]. In order to design semi-active control systems, the MSM has been improved 

by adding the static correction to enhance its accuracy and computational efficiency [57]. 
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However, the existing numerical models do not consider the effects of cable stiffness and 

cable sag, though both effects would have impact on the dynamic behaviour of a damped 

cable. On the other hand, assumptions have been made to obtain asymptotic design 

relationships which yield a more conservative damper design. It is necessary to evaluate 

the error associated to these assumptions and specify the permissible range of design 

parameters that ensure a safe design. 

As an efficient tool to control the wind-induced cable vibrations, NSD has received much 

attention in recent years. Experimental [64–66], analytical [61], and numerical [67,68] 

studies have been performed to investigate its dynamic behaviour. In these studies, a 

simplified cable model (i.e. taut cable), along with a rigid damper support, was considered. 

Two issues were reported for the NSD-equipped cables including the instability of the 

cable-damper system for large amounts of negative stiffness in the NSD [61] and the 

increased cable displacement around the damper installation location [67]. To address the 

first issue, an allowable limit for the negative stiffness of NSD was proposed to ensure 

system stability [67]. In order to portray a more accurate picture of the NSD functionality 

and stability, the effects of cable sag and cable bending stiffness must be included in the 

model. Besides, a few studies have shown that damper support stiffness may also have a 

considerable influence on the performance of a viscous damper [45–47,71]. Since dampers 

are likely to be supported by a flexible structure, neglecting the damper support stiffness 

may result in inaccurate NSD design. The aforementioned issues regarding the NSD design 

can be addressed by developing comprehensive models that incorporate the effects of cable 

sag, cable bending stiffness, damper stiffness, and damper support stiffness. This will allow 

for accurate NSD design and facilitates its practical application on cable-stayed bridges. 
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On-site records have shown that wind-induced cable vibrations may be governed by more 

than one mode. Also, even in the case a single-mode dominates, the excitation source 

would dictate which mode is to be considered. The majority of the existing methods for 

designing passive dampers target at a specific mode of cable vibration. Due to the passive 

nature of this type of damper, such methods would result in a suboptimal damper 

performance in the case of multi-mode cable vibration and unforeseen wind loads. A 

number of studies investigated the problem of optimizing passive [48,75], nonlinear [76], 

and semi-active [77] dampers for multi-mode cable vibration control. However, in these 

studies, the damper is not designed to achieve a specific damping ratio in the target modes 

and the effects of cable sag, cable bending stiffness, and damper support stiffness are not 

considered. Cost-efficient passive systems are generally preferable for semi-active control 

schemes because of their simplicity. The design of passive systems does not need real-time 

measurements. Recently, NSD has emerged as a good candidate for controlling multi-mode 

cable vibrations due to its remarkable damping capacity. However, existing NSD design 

tools only address single-mode cable vibration control and it is of the utmost importance 

to study the potential application of NSD in mitigating multi-mode cable vibrations and 

extend the current design/optimization approaches for NSD. 

1.3 Objectives 

This research aims at proposing new approaches for controlling harmful cable vibrations 

by means of efficient passive dampers such as NSD by improving the existing analytical 

and numerical dynamic models of a damped cable. The objectives of the current study are 

as follows: 
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1. Develop a comprehensive analytical model for the dynamic response of a damped 

stay cable by including the effects of cable sag, cable bending stiffness, damper 

stiffness, and damper support stiffness and considering different cable boundary 

conditions. (Chapter 3, Section 3.2) 

2. Obtain asymptotic solutions for the modal damping ratio of a damped cable based 

on the comprehensive analytical model (Step 1) and propose a damper design tool 

applicable to NSD, PSD and ZSD. Provide easy-to-use design curves to facilitate 

the design process of a passive damper. (Chapter 3, Section 3.3) 

3. Establish a numerical model for the dynamic response of a damped stay cable based 

on the mode superposition method and improve the accuracy and computational 

efficiency of this model by applying a static correction technique. (Chapter 4) 

4. Study the action mechanism and stability requirements of NSD and propose design 

formulas for optimizing NSD to control single-mode cable vibrations. Provide a 

more accurate stability criterion for NSD design. (Chapter 5) 

5. Investigate the effect of damper support stiffness on the dynamic behaviour and 

controlling performance of NSD. In case the flexible support is beneficial, optimize 

the damper support stiffness. (Chapter 6) 

6. Formulate NSD design equations to achieve target damping ratio in two or more 

dominant modes under multi-mode cable vibration. Conduct numerical studies to 

verify the applicability of the proposed design equations to full-size stay cables 

under wind excitation. (Chapter 7) 
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Chapter 2 Literature Review 

 

2.1. Introduction 

In this chapter, reference studies and recent findings in the field of vibration control of 

bridge stay cables are reviewed. The classical linear theory of cable dynamics is first 

described. Then, existing analytical and numerical methods for the dynamic analysis of a 

damped cable are explained and conventional passive approaches for controlling stay cable 

vibrations are presented. Next, the literature that has focused on the characteristics of high-

performance passive negative stiffness dampers (NSD) as well as their application in cable 

vibration control is surveyed. In addition, studies that have investigated the role of damper 

support stiffness on control performance are discussed. Finally, current passive and semi-

active approaches for mitigating multi-mode cable vibrations are discussed. The purpose 

of this chapter is to portray existing solutions for stay cable vibration control and identify 

the urgent problems that require further attention. 

2.2. Linear theory of cable dynamics 

2.2.1. Undamped cables 

The linear theory of free vibrations of a suspended undamped cable was developed by 

Irvine and Caughey [78]. Figure 2-1 shows the mechanical model of a horizontally 

suspended uniform cable with a unit mass per length of 𝑚, a length of 𝐿, and an axial 

stiffness of 𝐸𝐴. The horizontal component of the cable tension is denoted by 𝐻. The x-axis 

is taken along the cable chord direction and the y-axis is in the vertical in-plane direction. 
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In this figure, 𝑧 𝑥  and 𝑤 𝑥, 𝑡  represent the static displacement of the cable under its own 

weight and the dynamic in-plane displacement of the cable, respectively. If the cable sag 

is less than one-eighth of the span, i.e. 𝑑 𝑧 0.5𝐿 𝐿 8⁄ , the static profile of the cable 

can be approximated as parabolic and described as:  

𝑧 𝑥
𝑚𝑔𝐿

2𝐻
𝑥
𝐿

𝑥
𝐿

 (2-1) 

Accordingly, the in-plane motion of the cable free vibration can be described by a 2nd order 

partial differential equation expressed as: 

𝑚
𝜕 𝑤
𝜕𝑡

𝐻
𝜕 𝑤
𝜕𝑥

ℎ
𝑑𝑧
𝑑𝑥

0 (2-2) 

where ℎ 𝑡  is the horizontal component of the additional cable tension due to cable motion 

and is only a function of time. It should be noted that the effects of cable bending stiffness 

and cable inherent damping have been ignored in Eq. (2-2). A linearized equation is 

obtained for ℎ 𝑡  based on the geometric and elastic compatibility of an infinitesimal cable 

element subjected to external and internal loads [79]. It can be expressed as: 

ℎ 𝑡
𝑚𝑔𝐸𝐴
𝐻𝐿

𝑤 𝑥, 𝑡 𝑑𝑥 (2-3) 

 

Fig. 2-1. Dynamic response of a suspended undamped cable (after Irvine and Caughey 
[78]). 
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where 𝐿 1 𝑑𝑧 𝑑𝑥⁄ ⁄ 𝐿 1 8 𝑑 𝐿⁄  is the effective cable length and 𝑑

𝑚𝑔𝐿 8𝐻⁄  is the cable sag. For antisymmetric in-plane modes of vibration, the integral 

term on the right-hand side of Eq. (2-3) is equal to zero and hence, ℎ 𝑡 0.  

In this case, the natural frequencies are given by: 

𝜔
2𝑛𝜋
𝐿

𝐻 𝑚⁄      𝑛 1,2,3, …  (2-4) 

The symmetric in-plane modes are affected by the cable sag and their corresponding natural 

frequencies are governed by the following transcendental equation: 

tan 𝛽 𝐿 𝛽 𝐿 4 𝜆⁄ 𝛽 𝐿     𝑛 1,2,3, …  (2-5) 

where 𝛽 𝜔 𝑚 𝐻⁄  and 𝜆 8𝑑 𝐿⁄ 𝐿 𝐻𝐿 / 𝐸𝐴⁄  is the Irvine’s sag-extensibility 

parameter. Equation (2-5) can be solved numerically to determine the modal frequencies 

of in-plane symmetric modes of a flat-sag suspended cable. Figure 2-2 illustrates the 

relation between the first four natural frequencies of a flat-sag suspended cable and the sag-

extensibility parameter 𝜆  provided by Irvine [79]. As shown in the figure, for 𝜆 4𝜋 , 

the frequency of the first mode is greater than that of the second mode. This will cause the 

first symmetric modal component to have two internal nodes (i.e. locations with zero 

displacements) along the span. Also, for 4𝜋 𝜆 16𝜋 , both the first and the second 

symmetric modes have two internal nodes. This phenomenon is known as the modal cross-

over. The above equations have been extensively used in the studies of cable dynamics and 

the parameter 𝜆  has been identified as a key factor in explaining the behaviour of cables. 

However, the main limitation of Irvine’s solution is that the effect of cable flexural stiffness 

is excluded in the formulation. 
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Shimada [80] proposed a method for estimating the tension of an undamped cable from 

ambient vibrations by using an exact solution of the cable motion. By considering the 

effects of cable flexural rigidity, cable sag, and inclination of the cable, the equation of 

motion can be expressed as: 

𝑚
𝜕 𝑤
𝜕𝑡

𝐸𝐼
𝜕 𝑤
𝜕𝑥

𝐻
𝜕 𝑤
𝜕𝑥

ℎ
𝑑𝑧
𝑑𝑥

0 (2-6) 

where 𝐸𝐼 is the flexural rigidity of the cable. The exact solution of Eq. (2-6) results in the 

following characteristic equation for the cable tension: 

Φ
𝐿 𝐻
𝐸𝐴

8𝑑
𝐿

1
𝑚 𝐿

𝑄 𝑅 𝐿Φ 0 (2-7) 

where Φ, 𝑄, 𝑅 and 𝑚  are functions of the cable properties, i.e. mass, length, tension, and 

axial and flexural rigidity; 𝑑 𝑚𝑔𝐿 cos 𝜃 8𝐻⁄  is the sag of an inclined cable; and 𝜃 is 

 

Fig. 2-2. Variation of the first four modal frequencies of a flat-sag suspended cable 
with Irvine’s sag-extensibility parameter (modal cross-over phenomenon) (after Irvine 

[79]). 
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the inclination angle. The frequency of higher modes of cable vibration is obtained by 

applying microtremor measurement methods to estimate the ambient cable vibrations on-

site. Then the cable tension is calculated by solving Eq. (2-7) using iterative numerical 

methods. In order to facilitate these calculations, approximate relationships have been 

proposed by Zui et al. [81] for calculating the cable tension based on the frequency of the 

first, second, or higher modes. 

Mehrabi and Tabatabai [73] developed a finite difference (FD) formulation for evaluating 

the dynamic response of a damped cable by taking both the cable sag and cable bending 

stiffness effects into consideration. For a discretized cable with 𝑛 internal nodes, the free 

vibration response of node 𝑖 is assumed to take the form of 𝑤 𝑡 𝑢 𝑒 . By substituting 

𝑤  into Eq. (2-6), the eigenvalue problem that governs the discretized cable can be 

expressed in a matrix form as: 

𝑝 𝑴 𝑝𝑪 𝑲 𝑢 0  (2-8) 

where 𝑝 𝜉𝜔 𝑖𝜔 1 𝜉  is the complex eigenvalue pair and 𝑢  is the 

corresponding eigenvector. By assuming a parabolic self-weight profile and utilizing the 

central finite difference formulation, the stiffness matrix 𝑲 becomes: 

𝑲

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑄 𝑈 𝑊 0

𝑆 𝑈 𝑊
𝑆 𝑈

𝑆 ⋯
sym ⋮ ⋱

𝑄⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝜆 𝐻𝑙
𝐿

𝑱 (2-9) 

where 𝑄 7𝐸𝐼/𝑙 2𝐻/𝑙 for the fixed-fixed cable and 𝑄 5𝐸𝐼/𝑙 2𝐻/𝑙 for the 

hinged-hinged cable; 𝑈 4𝐸𝐼/𝑙 𝐻/𝑙; 𝑊 𝐸𝐼/𝑙 ; 𝑆 6𝐸𝐼/𝑙 2𝐻/𝑙; 𝑙 𝐿/ 𝑛
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1  and 𝑱 1  is the all-ones matrix. The mass and damping matrices are defined as 

𝑴 𝑚 𝑙 𝑰  and 𝑪 𝑐 𝑙 𝑰 , respectively, where 𝑚  is the nodal mass, 𝑐  is the nodal 

damping and 𝑰  is the identity matrix. Equation (2-8) can be solved numerically to estimate 

the modal frequencies of a cable using the provided FD matrices. Both the accuracy and 

the computational cost of the FD model are closely related to the spatial and temporal 

discretization. A more efficient numerical approach for analyzing dynamic response of 

cable systems is to apply the mode superposition technique, which will be reviewed in the 

next section. 

2.2.2. Damped cables 

As mentioned in Chapter 1, a practical measure to suppress harmful cable vibrations is to 

attach a transverse passive viscous damper near the cable end. To better understand the 

behaviour of a cable-damper system, Carne [82] studied the dynamic behaviour of a 

damped guy cable and proposed an analytical expression for the first modal damping ratio. 

Based on this asymptotic formula, the optimum damper size and the corresponding 

maximum damping ratio can be determined. Figure 2-3 shows the mechanical model of a 

taut cable attached with a transverse viscous damper at the position 𝑥 𝑥  from the left 

cable end. The term “taut” means both the effects of cable bending stiffness, 𝐸𝐼, and cable 

axial stiffness, 𝐸𝐴, are ignored. For this system, the equation of motion can be expressed 

as: 

𝑚
𝜕 𝑤
𝜕𝑡

𝐻
𝜕 𝑤
𝜕𝑥

𝑐 𝑤 𝑥 , 𝑡 𝛿 𝑥 𝑥  (2-10) 

where 𝑐  is the damper size and 𝛿 ∙  is the Dirac delta function. The term “ℎ 𝑑𝑧 𝑑𝑥⁄ ” 

observed in the left-hand side of Eq. (2-2) has been dropped as a result of taut cable 
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assumption. By considering the boundary and compatibility conditions at the damper 

installation location and using the separation of variables technique, the exact solution of 

Eq. (2-10) leads to the following transcendental equation for the complex system 

eigenfrequencies: 

𝐿∗

𝑥
tan𝛽𝐿∗

𝛽𝐿∗
𝑖∗𝑐 tan𝛽𝐿∗ 1 0 (2-11) 

where 𝐿∗ 𝐿 𝑥 , 𝑐 𝑐 √𝐻𝑚⁄ , and 𝑖∗ √ 1. Equation (2-11) can be solved 

approximately to find an asymptotic expression for the damping ratio of the first mode, 

which is given by:  

𝜁
𝑥 𝐿⁄

𝜋 𝑥 𝐿⁄ 𝑐
1 𝜋 𝑥 𝐿⁄ 𝑐

 (2-12) 

Equation (2-12) reveals that the damping ratio becomes zero either at 𝑐 0 or 𝑐 → ∞ and 

it is maximum for an intermediate value of 𝑐 . The optimum damper size and the 

corresponding maximum damping ratio can be expressed as: 

𝜁 ,  
𝑥 𝐿⁄

2
 𝑎𝑡 𝑐 ,

√𝐻𝑚
𝜋 𝑥 𝐿⁄

 (2-13) 

 

Fig. 2-3. Mechanical model of a damped taut cable (after Carne [82]). 
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Pacheco et al. [69] adopted the mode superposition method (MSM) to obtain the modal 

damping ratios of a damped cable by calculating the system complex eigenvalues using 

standard numerical methods. In this approach, the in-plane dynamic cable displacement is 

approximated by the following finite series: 

𝑤 𝑥, 𝑡 𝜙 𝑥 𝑞 𝑡  (2-14) 

where 𝑛 is the number of included modes, 𝜙 𝑥  is the 𝑖  modal shape function that 

satisfies all the kinematic boundary conditions, and 𝑞 𝑡  is the generalized coordinate of 

the 𝑖  mode. Sinusoidal shape functions defined as 𝜙 𝑥 sin 𝑖𝜋𝑥 𝐿⁄  are considered. 

By substituting Eq. (2-14) into (2-10), multiplying by 𝜙 𝑥  and integrating over the cable 

length, the matrix form of the equation of motion can be expressed as: 

𝑴 𝑞 𝑪 𝑞 𝑲 𝑞 0  (2-15) 

where 𝑴 𝛿  is the normalized mass matrix, 𝑪

2 𝑐 𝜋√𝐻𝑚⁄ sin 𝑖𝜋𝑥 𝐿⁄ sin 𝑗𝜋𝑥 𝐿⁄  is the normalized damping matrix, 𝑲 𝑖 𝛿  

is the normalized stiffness matrix and 𝛿  is the Kronecker delta. After constructing mass, 

damping and stiffness matrices, standard numerical methods are applied to calculate the 

complex eigenvalues of the system from which the modal damping ratios are determined. 

Figure 2-4 represents graphically the results in the form of a universal curve for estimating 

modal damping ratio of a damped taut cable [69]. In this figure, 𝑖 is the mode number and 

𝜔 𝜋 𝐿⁄ 𝐻 𝑚⁄  is the undamped natural frequency of the 1st mode. It was suggested 

to consider the effect of cable sag in order to obtain more accurate estimation of the 

damping ratio, especially for longer cables. 
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Krenk [70] conducted an analytical study to address the damping ratio of higher modes by 

assuming 𝑥 𝐿⁄ ≪ 1. In this study, the asymptotic damping ratio formula originally 

introduced by Carne [82] was extended to cover higher modes and expressed as: 

𝜁
𝑥 𝐿⁄

𝑖𝜋 𝑥 𝐿⁄ 𝑐
1 𝑖𝜋 𝑥 𝐿⁄ 𝑐

 (2-16) 

where 𝑖 is the mode number. The maximum damping ratio and the corresponding optimal 

damper size are given by 𝜁 ,  𝑥 𝐿⁄ 2⁄  and 𝑐 , √𝐻𝑚 𝑖𝜋 𝑥 𝐿⁄ . This 

equation governs the universal damper design curve proposed by Pacheco et al. [69]. An 

iterative procedure was also provided to accurately estimate the modal damping ratio when 

𝑥 𝐿⁄ 0.05. To investigate the effect of cable sag on the damping ratio of a cable-damper 

system, Krenk and Nielsen [43] included the effect of cable sag by considering the 

following equation of motion for the symmetric modes of a shallow cable equipped with a 

transverse viscous damper: 

 

Fig. 2-4. Universal curve for estimating modal damping ratio of taut cables attached 
with a viscous damper (after Pacheco et al. [69]). 
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𝑚
𝜕 𝑤
𝜕𝑡

𝐻
𝜕 𝑤
𝜕𝑥

ℎ
𝑑 𝑧
𝑑𝑥

𝑐 𝑤 𝑥 , 𝑡 𝛿 𝑥 𝑥  (2-17) 

An asymptotic solution for the modal damping ratio was derived as: 

𝜁
𝑥 𝐿⁄

𝑅
𝑖𝜋𝜂 𝑥 𝐿⁄ 𝑐

1 𝑖𝜋𝜂 𝑥 𝐿⁄ 𝑐
 (2-18) 

where 𝜂  and 𝑅  represent the effect of cable sag and are given respectively by 𝜂

2𝜓 𝑖𝜋⁄  and 𝑅 tan 𝜓 𝑥 𝐿⁄ 𝜓 tan 𝜓 12 𝜆⁄ 𝜓⁄ , 𝜓 0.5𝛽 𝐿, and 

𝛽  is the wave number of a shallow undamped cable given by the solution of tan 𝜓

𝜓 4 𝜆⁄ 𝜓 . The antisymmetric modes are not affected by the effect of cable sag and 

their corresponding damping ratio is still governed by Eq. (2-16). Consequently, the 

maximum damping ratio and the corresponding optimal damper size are given by 𝜁 ,  

𝑅 𝑥 𝐿⁄ 2⁄  and 𝑐 , √𝐻𝑚 𝑖𝜋𝜂 𝑥 𝐿⁄ . 

Following the approach developed in [69], Johnson et al. [57] proposed a control-oriented 

MSM-based model for analyzing the dynamic response of a damped shallow cable, where 

the computational efficiency of the MSM was substantially improved by applying the static 

correction technique [83]. In this study, the approximate static profile of a shallow cable 

subjected to a concentrated load at the damper location was selected as one of the shape 

function terms in the MSM. This term reflected the impact of damper presence on the 

vibrational shape of the cable and was expressed as: 
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1 �̅�
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12 𝜆

�̅� 1 �̅�  

(2-19) 

where �̅� 𝑥 𝐿⁄  and �̅� 𝑥 𝐿⁄ . Sinusoidal functions were selected for the remaining 

terms. As a result, the total number of terms required to reach an acceptable accuracy is 

substantially reduced and the numerical model can be used for designing semi-active and 

active control systems. However, the correction term given by Eq. (2-19) does not represent 

the exact static displacement profile of the cable and excludes the effect of cable bending 

stiffness.  

Krenk and Høgsberg [39] conducted an analytical study to examine the effects of damper 

stiffness and damper mass on the modal damping of a shallow cable equipped with a 

viscous damper. As shown in Fig. 2-5, the damper consists of a linear spring and a viscous 

dashpot aligned in parallel and a concentrated mass. It was shown that the effect of the 

damper stiffness is equivalent to a reduced damper installation location. Hence, the 

presence of damper stiffness will reduce damper effectiveness. The reduced damper 

installation location is expressed as: 

𝑥∗
𝑥

1 𝑥 𝑘 𝐻⁄
 (2-20) 

Also, the concentrated mass would act out-of-phase of the damper force and thus tends to 

increase the damper efficiency. The combined effects of the damper stiffness and mass can 

be approximated by the reduced stiffness 𝑘∗ 𝑘 𝜔 𝑚  in Eq. (2-20) provided that 

𝜔 2𝑘 /𝑚 , where 𝜔  is the natural frequency of the cable. 
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Hoang and Fujino [44] studied the effect of cable bending stiffness on the performance of 

a viscous damper attached to a fixed-fixed non-sag cable and obtained an exact analytical 

solution for the following equation of motion: 

𝑚
𝜕 𝑤
𝜕𝑡

𝐸𝐼
𝜕 𝑤
𝜕𝑥

𝐻
𝜕 𝑤
𝜕𝑥

𝑐 𝑤 𝑥 , 𝑡 𝛿 𝑥 𝑥  (2-21) 

A transcendental equation that governs the complex natural frequencies of the damped 

cable is derived based on the analytical solution of Eq. (2-21), which can be solved 

numerically to determine the damped modal frequencies and damping ratios. The following 

asymptotic expression for the modal damping ratio can be obtained by simplifying the 

transcendental equation for small values of cable bending stiffness parameter 𝜀

𝐸𝐼 𝐻𝐿⁄  and 4𝜀𝛽 𝐿 ≪ 1: 

𝜁
𝑥 𝐿⁄

𝑅
𝑖𝜋𝜂 𝑥 𝐿⁄ 𝑐

1 𝑖𝜋𝜂 𝑥 𝐿⁄ 𝑐
 (2-22) 

where 𝜂  and 𝑅  represent the effect of cable bending stiffness and are defined as 𝜂

1 𝑞 0.5𝑟𝑞  and 𝑅 1 𝑞 1 𝑞 0.5𝑟𝑞⁄ , respectively; 𝑞 1 𝑒 𝑟⁄  

and 𝑟 𝑥 𝐿⁄ √𝜀⁄ . It is shown that the cable flexural rigidity may reduce the maximum 

 

Fig. 2-5. Mechanical model of a damped shallow cable (after Krenk and Høgsberg 
[39]). 

L

w(x,t)
z(x)

x

m,EI
H H

xd

kdcd

md
y



22 
 

achievable damping ratio up to 20% while it would increase the optimal damper size. The 

maximum damping ratio and the corresponding optimal damper size are governed by 

𝜁 ,  𝑅 𝑥 𝐿⁄ 2⁄  and 𝑐 , √𝐻𝑚 𝑖𝜋𝜂 𝑥 𝐿⁄ . 

Fujino and Hoang [71] proposed a comprehensive formula for the design of viscous 

dampers based on an analytical study on a damped inclined cable fixed at both ends. The 

combined effects of cable sag, cable bending stiffness and damper support flexibility were 

considered. As depicted in Fig. 2-6, the effect of damper support flexibility was modeled 

by a linear spring attached in series with the dashpot. In this case, an asymptotic formula 

for the damping ratio can be expressed as: 

𝜁
𝑥 𝐿⁄

𝑅 𝑅 𝑅
𝜂 𝜂 𝜂

1 𝜂 𝜂 𝜂
 (2-23) 

where 𝜂  and 𝑅  represent the effect of damper support stiffness and are defined as 𝜂

𝜂 1 𝑘⁄  and 𝑅 𝜂 𝜂 1 𝑘⁄⁄ , respectively; 𝑘 𝑘 𝑥 𝐻⁄  is the nondimensional 

damper support stiffness; and 𝜂 𝑖𝜋 𝑥 𝐿⁄ 𝑐 √𝐻𝑚⁄  is the nondimensional damper size. 

 
Fig. 2-6. Mechanical model of a damped shallow-flexural cable (after Fujino and 

Hoang [71]). 
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Therefore, the most general form for the maximum achievable damping ratio and the 

optimal damper size of the cable-damper system shown in Fig. 2-6 can be found as 

𝜁 ,  𝑅 𝑅 𝑅 𝑥 𝐿⁄ 2⁄  and 𝑐 , √𝐻𝑚 𝑖𝜋𝜂 𝜂 𝑥 𝐿⁄ . It was shown that the 

damper support stiffness reduces the damper performance by up to 12% for 𝜀 10  and 

𝑘 20. Figure 2-7 compares the exact and the asymptotic 1st modal damping ratio of a 

typical cable attached with a viscous damper at 𝑥 𝐿⁄ 0.02. It can be seen that the 

asymptotic solution (Eq. (2-23)) is slightly conservative as it gives smaller values for the 

damping ratio compared to the exact numerical solution of the governing transcendental 

model. 

2.3. Negative stiffness dampers and their application 

The concept of “negative stiffness” was first used to develop zero-gravity testbeds for 

spacecraft experiments [84]. It was subsequently adopted to manufacture low-frequency 

 

Fig. 2-7. Combined effects of cable sag and flexural rigidity on modal damping ratio 
in cable with viscous damper (after Fujino and Hoang [71]). 
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vibration isolators for vibration-sensitive equipment such as electron microscopes [85] and 

installed in vehicle seat suspension for improving driver vibration isolation [86]. In the 

field of structural vibration control, the usage of negative stiffness damper in controlling 

cable vibrations emerged when the apparent negative stiffness phase in the force-

deformation response of an optimally-controlled active damper was observed to be 

beneficial for the control performance [58]. As an attempt to artificially introduce the 

negative stiffness mechanism in control systems, Iemura and Pradono [87] proposed a 

semi-active control algorithm to produce a pseudo-negative stiffness hysteresis loop for 

variable-orifice dampers installed on a seismically-excited cable-stayed bridge. The 

pseudo-negative stiffness behaviour helped to achieve a nearly-rigid perfectly-plastic 

force-deformation curve with a large damping ratio. The performance of the variable 

damper with pseudo-negative stiffness was compared with a conventional linear damper 

and showed better control performance. The variable-orifice damper with pseudo-negative 

stiffness was observed to generate less control force for providing the same amount of 

damping. In parallel, negative stiffness elements were implemented as a yield mechanism 

in seismic control of buildings [88]. The commercial application of negative stiffness 

systems is still limited due to the lack of reliable design tools, the possible need for an 

additional re-centering mechanism in the control device, and the risk of instability in the 

controlled system if designed improperly. 

Li et al. [61] studied the role of negative stiffness in the behaviour of active and semi-active 

control schemes for stay cable vibration reduction. The authors considered a taut cable 

model and conducted analytical and MSM-based numerical analysis by introducing a 
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pseudo-viscoelastic (P-VE) damper to replace the active/semi-active device in the analysis. 

The damping ratio of P-VE with positive or negative stiffness, 𝑘 , is governed by: 

𝜁
𝑥 𝐿⁄

𝑖𝜋 𝑥 𝐿⁄ 𝑐
1 𝑘 𝑥 𝐻⁄ 𝑖𝜋 𝑥 𝐿⁄ 𝑐

 (2-24) 

It is reported that a sufficiently large negative stiffness in P-VE can cause instability by 

producing an infinite damping ratio and zero natural frequency in the cable-damper system. 

To prevent instability, the negative stiffness should satisfy the following condition: 

𝑘 𝑥
𝐻

1 (2-25) 

 

Fig. 2-8. Comparison of first modal damping ratio for various damper stiffness 
between asymptotic solution and complex numerical eigenvalue analysis (𝜀

𝑐 /√𝐻𝑚) (after Li et al. [61]). 
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Figure 2-8 illustrates the damping performance of P-VE with different values of negative 

stiffness in the first mode. It can be seen the P-VE with negative stiffness demonstrates 

considerably better performance compared to the zero or positive stiffness cases.  

Weber and Boston [62] developed an optimized clipped viscous damper with negative-

stiffness (VD&NS) control strategy for suppressing cable vibration. In contrast with 

optimal linear-quadratic regulator (LQR) control, the proposed scheme does not require 

full state feedback and is suitable for practical implementation. Also, its implementation 

does not use real-time estimation of the damper displacement which is required for semi-

active controllers. The performance of VD&NS was validated experimentally for a stay 

cable equipped with a magneto-rheological (MR) damper at 4% cable length. It was shown 

that the proposed control algorithm with negative-stiffness is able to provide twice as much 

cable damping as experimentally optimized viscous damping. Weber and Distl [77] 

approximated the control force characteristics of a semi-active clipped linear-quadratic 

 

Fig. 2-9. Configuration of magnetic negative stiffness damper (MNSD) (after Shi and 
Zhu [63]). 
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regulator (LQR) by using collocated viscous damping with negative stiffness for 

controlling multi-mode cable vibration. This system provides superior damping ratio as 

compared to optimized viscous dampers (1.87 to 2.33 times more cable damping) in both 

single-mode and multi-mode cable vibrations. An advantageous feature of the proposed 

semi-active controller is its independency of the excitation frequency in the case of single-

mode vibration.  

On the other hand, NSD prototypes have been proposed and experimentally tested to 

further demonstrate their effectiveness. Shi and Zhu [63] introduced innovative 

configurations of passive magnetic NSD consisting of static and moving magnets arranged 

in a conductive pipe (Fig. 2-9). The negative-stiffness behaviour (i.e. force in the direction 

of motion) is generated between the magnets and the damping effect is realized by eddy-

current in the conductive pipe. Both specimens provide symmetrical negative stiffness with 

a compact design that facilitates their practical use on stay cables. In a subsequent study, 

Shi et al. [67] evaluated the performance of a passive NSD in controlling vibrations of a 

taut stay cable using analytical and numerical approaches. Results showed that the 

asymptotic solution can provide accurate estimation of damping for either positive or 

moderate negative stiffness. However, the accuracy of the solution would be affected if 

significant negative stiffness exists in the damper. The NSD stability limit was revisited 

and it was found that the NSD tends to amplify local displacement at the damper location. 

Shi et al. [68] compared the performance of passive NSD with active LQR control for stay 

cable vibration control. It was shown that NSD could provide a high damping ratio in a 

specific vibration mode while the LQR could effectively mitigate several modes at the 

same time. In this case, NSD tended to reduce the frequency of the target mode, whereas 
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the active LQR slightly increased the modal frequencies of the damped cable. Besides, the 

control performance improved with an increasing number of state feedbacks. However, 

access to all states of the system, as required by the LQR controller, would be a major 

challenge in practice.  

Shi et al. [66] conducted an experimental study to verify the superiority of NSD for stay 

cable vibration control as suggested by analytical and numerical results. NSD was found 

to be four times as effective as the optimal viscous dampers in providing damping in a 

cable-damper system under different loading conditions. The effect of cable bending 

stiffness and boundary conditions on the predicted NSD performance was found to be 

significant. It was reported that the experimental results were more agreeable with the case 

of a flexural cable with fixed-fixed ends (Fig. 2-10). Therefore, the application of a taut 

cable model would result in an overestimated damping ratio and lead to unsafe design. 

 

Fig. 2-10. Comparison between experimental and simulated damping ratios (after Shi 
et al. [66]). 
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Zhou and Li [64] proposed a passive NSD prototype by adding two compressed springs 

perpendicular to an oil damper (Fig. 2-11). A mechanical model for the NSD was 

established. Numerical simulations and experimental tests were conducted to evaluate the 

damper performance in suppressing single-mode and multi-mode stay cable vibrations. 

Results confirmed the superior NSD performance for cable vibration mitigation as 

compared to the oil damper alone. More recently, Liu et al. [65] attached pre-compressed 

springs to a superelastic shape memory alloy (SMA) damper to obtain a novel self-

centering NSD (SCNSD) damper. Experimental and numerical studies were conducted to 

investigate the performance of SCNSD in controlling a single degree of freedom (SDOF) 

system. It was observed that SCNSD is highly effective in controlling SDOF vibrations 

and reducing peak acceleration and displacement. 

 

Fig. 2-11. Schematic of a NSD device fabricated by attaching two compressed springs 
to the oil damper (after Zhou and Li [51]). 
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2.4. Effect of damper support stiffness 

The damper support flexibility can adversely affect the control performance of passive 

viscous dampers. It has been shown experimentally and analytically that mounting viscous 

dampers on a flexible support would reduce the achievable damping ratio. In some cases, 

dampers installed on cable-stayed bridges are mounted on a support structure. Hence, it is 

necessary to consider the effect of damper support stiffness. Huang and Jones [45] studied 

the effect of damper support stiffness on the damper effectiveness of a cable-damper 

system by assuming a taut cable model and considering a linear elastic support in series 

with the damper. Two types of damper were investigated, namely linear viscous damper 

and friction damper. Exact analytical solutions of the system motion and approximate 

expressions for the modal damping ratio and the maximum force between the damper and 

the support spring were derived. A family of universal curves were proposed that indicated 

that the damper support flexibility would reduce the performance of both the viscous and 

friction dampers. 

The impact of damper stiffness and damper support stiffness on the performance of a linear 

viscous damper was studied by Fournier and Cheng [46] through experimental tests and 

numerical simulations. Empirical design formulas for selecting the optimum damper size 

and predicting the maximum achievable system modal damping were proposed, which took 

into account the effect of damper stiffness and damper support stiffness. Results showed a 

good agreement between the predicted maximum damping ratio using the proposed 

equations and other existing methods (Fig. 2-12). It was postulated that the efficiency of a 

linear viscous damper in mitigating stay cable vibrations would be maximized when the 

damper stiffness is negligible and the damper support is nearly rigid. 
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2.5. Multi-mode cable vibration control 

The existing methods for optimizing the design of passive viscous dampers generally focus 

on the control cable vibration dominated by a specific mode. However, on-site records 

indicate that the first few cable modes are often excited simultaneously in the case of RWIV 

[10,38,49]. On the other hand, the dominant cable modes during a vibration incidence 

highly depend on the excitation source and may vary. Hence, using single-mode-based 

approaches to optimize passive viscous damper design, including NSDs, may result in 

suboptimal damper performance. In order to address this concern, multi-mode vibration 

control techniques have been studied by a number of researchers for both passive and semi-

active dampers of a linear or nonlinear nature.  

Wang et al. [75] proposed a method to optimize the performance of viscous dampers in 

mitigating multi-mode cable vibrations. The optimal damper size was obtained by 

 

Fig. 2-12. Comparison of maximum achievable damping ratio estimations for zero 
damper stiffness (after Fournier and Cheng [46]). 
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minimizing the difference between the optimal gain of an idealized active actuator and the 

achievable gain of a practical viscous damper. Weber et al. [48] developed an analytical 

method for the optimization of linear viscous dampers. It could supply a sufficient amount 

of damping to multiple modes simultaneously and also allows the damper to be positioned 

as close as possible to the end of the cable. This systematic approach provides equal 

damping ratio to the lowest and the highest target modes, whereas a higher damping ratio 

for the intermediate modes is obtained. However, a target damping ratio can be addressed 

directly. Hoang and Fujino [76] studied the behaviour of nonlinear dampers and obtained 

an equivalent damping ratio by using energy-based arguments. Results showed that a 

nonlinear damper could effectively suppress cable motion containing a wide range of 

modes and was, therefore, more advantageous than linear dampers in multi-mode vibration 

control. Weber and Distl [77] introduced a semi-active control scheme for multi-mode 

cable vibration mitigation. It is based on the approximate collocated solution of a clipped 

negative-stiffness viscous damper optimized by the linear quadratic regulator (LQR) 

method and requires real-time measurement of the damper stroke and force. In this regard, 

linear passive devices would be a better choice for designing a less-complicated 

measurement-free controller. Izzi et al. [89] studied the application of nonlinear Targeted-

Energy-Transfer (TET) devices to control stay cable vibration. The TET device was 

modelled as a dashpot with a viscous damper in parallel with a power-law nonlinear elastic 

spring element and a lumped mass restrained to one end. By considering the effects of the 

nonlinear elastic damper stiffness, the lumped mass and the support flexibility, a new set 

of “universal design curves” for the TET devices were derived. It was found that the peak 

regions of these amplitude-dependent design curves were flatter than that of the 
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conventional viscous dampers and thus the TET devices would be more effective in multi-

mode vibration control of cables. 

The recently emerged NSD devices have shown high damping capability which is 

comparable to smart semi-active systems. Nonetheless, since existing NSD design tools 

only address single-mode cable vibration control, it is of the utmost importance to study 

the potential of NSD in mitigating multi-mode cable vibrations. 

2.6. Summary 

The above literature review has identified the need for an analytical model that can address 

the combined effects of cable sag, cable bending stiffness, damper stiffness, and damper 

support stiffness, on the behaviour of a damped cable. It is essential to develop such 

comprehensive analytical model to predict the control performance of positive- and 

negative stiffness dampers more accurately and to better understand the dynamic behaviour 

of a cable equipped with these control devices (Chapter 3). The asymptotic relationships 

derived to predict the damping ratio were shown to involve conservative approximations. 

To evaluate the effect of such approximations on the damper design, a high-precision 

numerical model is also needed to simulate the dynamic response of a damped cable and 

verify the damping ratio predicted by the asymptotic formulas. However, the existing 

numerical models do not take into account the combined effects of cable sag and flexural 

rigidity. Therefore, the next objective of this research is to develop an accurate and 

computationally efficient and numerical model for analyzing the dynamic response of a 

damped cable (Chapter 4). 

In addition, the majority of existing studies focused on NSDs and their control function 

have used simple analytical models based on the taut cable assumption. By using the 
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comprehensive analytical and numerical models developed in Chapters 3 and 4, the control 

performance of negative stiffness dampers and their stability issues will be investigated in 

detail (Chapter 5).  Due to the very limited studies on the effect of damper support stiffness 

on the performance of passive dampers, especially NSD, it is necessary to devote a separate 

chapter to this effect and propose analytical methods to optimize the damper support 

flexibility (Chapter 6). Besides, the high potential of NSD makes it a good candidate for 

multi-mode vibration control of stay cables. So far, no studies have been conducted on 

NSD optimization for multi-mode vibration control of stay cables. By adopting the 

analytical model developed in Chapter 3, a new method will be proposed to optimize NSD 

for suppressing cable vibrations dominated by two or more cable modes. This topic will be 

discussed in more detail in Chapter 7 of this dissertation. 
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Chapter 3 Analytical Study on the Modal Damping of a Cable-damper 

System 

 

3.1. Introduction 

In this chapter, an analytical model will be developed for predicting the dynamic response 

of cable-damper systems by including the effect of the damper stiffness. The objective is 

to further extend the existing analytical model developed by Fujino and Hoang [71], in 

which the influence of cable sag, cable flexural stiffness, and damper support stiffness have 

been considered. The equation of motion of a damped cable equipped with a passive 

viscous damper is formulated. Both the fixed-fixed and hinged-hinged boundary conditions 

are studied. The damper stiffness and the damper support stiffness are modeled as linear 

springs in the damper mechanical model. The free vibration response is expressed in the 

form of a transcendental equation for the modal frequencies of the system. Besides seeking 

a numerical solution for the governing transcendental equation, an asymptotic solution is 

also derived, which, as a refinement of the existing damper design tool by Fujino and 

Hoang [71], accounts for the effect of the damper stiffness in terms of a reduction factor 

and a modification factor to the maximum achievable system damping. 

3.2. Analytical model for the free vibration response of a cable-damper system 

3.2.1. Fixed-fixed cable 

Consider a sagged inclined cable with a transverse damper placed at a distance 𝑥 𝑥  

from the lower end, as shown in Fig. 3-1. The cable is fixed at both ends and its orientation 
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is described by an angle 𝜃 between the cable chord and the horizontal direction. The 

coordinate system is defined such that the x-axis is along the cable chord and the y-axis is 

along the transverse in-plane direction. By considering the effects of cable sag and cable 

flexural stiffness, the in-plane motion of the studied cable-damper system under the effect 

of an external distributed load is governed by: 

𝑚
𝜕 𝑤
𝜕𝑡

𝐸𝐼
𝜕 𝑤
𝜕𝑥

𝐻
𝜕 𝑤
𝜕𝑥

ℎ
𝑑 𝑧
𝑑𝑥

𝑓 𝑥, 𝑡 𝐹 𝑡 𝛿 𝑥 𝑥  (3-1) 

where 𝑤 𝑥, 𝑡  is the transverse in-plane displacement of the cable; 𝑧 𝑥  is the static cable 

displacement due to its self-weight; 𝐻 is the chord tension, 𝑚 is the mass per unit length, 

𝐸𝐼 is the flexural rigidity, and 𝐸𝐴 is the axial rigidity of the cable; 𝐹 𝑡  is the concentrated 

damper force; 𝑓 𝑥, 𝑡  is the in-plane distributed load; 𝛿 ∙  is the Dirac delta function; and 

ℎ 𝑡  is the additional chord tension due to the cable motion. By assuming a parabolic 

distribution for the static cable displacement under its self-weight defined as 𝑧 𝑥

 
Fig. 3-1. Mechanical model of a shallow-flexural cable equipped with a transverse 

viscous damper. 
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4𝑑𝑥/𝐿 1 𝑥/𝐿  with the cable sag given by 𝑑 𝑚𝑔𝐿 𝑐𝑜𝑠 𝜃 / 8𝐻 , the dynamic cable 

tension ℎ 𝑡  can be expressed as: 

ℎ 𝑡 𝐿
𝐸𝐴

8𝑑
𝐿

𝑤 𝑥, 𝑡 𝑑𝑥 (3-2) 

where 𝐿 𝐿 1 8 𝑑/𝐿  is the effective cable length in static equilibrium state. 

Under free vibration, the cable transverse displacement, the damper force and the 

additional chord tension can be respectively expressed as 𝑤 𝑥, 𝑡 𝑤 𝑥 𝑒 , 𝐹 𝑡

𝐹 𝑒  and ℎ 𝑡 ℎ𝑒 , where 𝜔 is the natural frequency of motion and 𝑖 1. By 

substituting these expressions into the homogeneous form of Eq. (3-1), it can be reduced 

to the following 4th order ordinary differential equation: 

𝑑 𝑤
𝑑𝑥

1
𝜀𝐿

𝑑 𝑤
𝑑𝑥

𝛽
𝜀𝐿

𝑤
8𝑑
𝜀𝐿

ℎ

𝐻
 (3-3) 

where 𝛽 𝜔 𝑚/𝐻 is the wave number and 𝜀 𝐸𝐼/ 𝐻𝐿  is the nondimensional cable 

bending stiffness parameter.  

By dividing the cable into two segments on the left and right side of the damper installation 

location, the cable displacement can be expressed for each side as 𝑤 𝑥, 𝑡 𝑤 𝑥 𝑒  

and 𝑤 𝑥∗, 𝑡 𝑤 𝑥∗ 𝑒 , respectively, where 𝑥∗ is the chord direction from the top of 

the cable. 

Equation (3-3) can be explicitly solved for 𝑤 𝑥  and 𝑤 𝑥∗  to obtain: 
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𝑤 𝑥 𝐴 sin 𝛾 𝑥 𝐵 cos 𝛾 𝑥 𝐶 sin ℎ 𝛾 𝑥 𝐷 cosh 𝛾 𝑥

8𝑑
𝛽𝐿

ℎ

𝐻
            0 𝑥 𝑥  

(3-4) 

𝑤 𝑥∗ 𝐴 sin 𝛾 𝑥∗ 𝐵 cos 𝛾 𝑥∗ 𝐶 sin ℎ 𝛾 𝑥∗

𝐷 cosh 𝛾 𝑥∗
8𝑑
𝛽𝐿

ℎ

𝐻
            0 𝑥∗ 𝐿 𝑥  

(3-5) 

where 𝛾 , 1/ 2𝜀𝐿 1 4𝜀𝛽 𝐿 1 . Equations (3-4) and (3-5) consist of 9 

unknowns in total, including 8 coefficients 𝐴 ~𝐷  and 𝐴 ~𝐷 , and ℎ. These unknowns 

can be determined by applying the boundary conditions at the cable ends and the continuity 

conditions at the damper location, including 𝑤 0 𝑤 ′ 0 0, 𝑤 0 𝑤 ′ 0 0, 

𝑤 𝑥 𝑤 𝑥∗ , 𝑤 ′ 𝑥 𝑤 ′ 𝑥∗ , 𝑤″ 𝑥 𝑤″ 𝑥∗ , and 𝐸𝐼 𝑤‴ 𝑥 𝑤‴ 𝑥∗

𝐹  with 𝑥∗ 𝐿 𝑥 ; and by satisfying the complex form of Eq. (3-2), i.e. ℎ

8𝑑 𝐿⁄ 𝐸𝐴 𝐿⁄ 𝑤 𝑥 𝑑𝑥 𝑤 𝑥∗ 𝑑𝑥∗
∗

. After specifying the unknown 

coefficients and ℎ, the explicit form of 𝑤 𝑥  and 𝑤 𝑥∗  can be obtained. Considering the 

expression of 𝑤 𝑥  at the damper installation location, namely 𝑤 𝑥 , a transcendental 

equation is formed that relates the damper force, 𝐹 , to the natural frequency of the cable-

damper system. This equation can be expressed as: 

𝑓 𝛼𝑓
𝑓 𝑓 𝛼𝑓

𝐹
𝑤 𝐸𝐼

 (3-6a) 

where 

𝑓 2𝛾 𝛾 𝛾 𝛾 𝛾 𝑧 1 𝑧 𝛾 𝑧 1 𝑧  (3-6b) 
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𝑓 𝛾 𝛾 𝑧 𝑧 2𝛾 𝛾 1 𝑧 𝑧  (3-6c) 

𝑓 2𝛾 𝑧 �̄� 𝑧 sinh 𝛾 𝑥∗ 2𝛾 𝑧 �̄� 𝑧 sin 𝛾 𝑥∗  (3-6d) 

𝑓 𝛾 𝛾 2 cos 𝛾 𝑥∗ �̄� 𝑧 1 cosh 𝛾 𝑥∗

cosh 𝛾 𝑥∗ �̄� 𝑧 1 �̄� 1 �̄� 1

𝑧 1 cosh 𝛾 𝑥∗ 𝑥 𝑧 1 cos 𝛾 𝑥∗

𝑥 𝑧 2�̄� 1 𝑧 2�̄� 4𝑧 1  

(3-6e) 

𝑓 𝛾 𝛾 𝛾 𝑧 cos 𝛾 𝑥∗ 𝑥 𝛾 𝑧 cosh 𝛾 𝑥∗ 𝑥

4𝛾 𝛾 𝛾 �̄� �̄� cosh 𝛾 𝑥∗ 𝑥 sin 𝛾 𝑥∗

𝑥 𝛾 �̄� �̄� cos 𝛾 𝑥∗ sinh 𝛾 𝑥∗ 𝑥

𝛾 𝑧 𝑧 𝛾 3𝛾 𝛾 𝑧 𝑧 3𝛾 𝛾 / 2𝛾 𝛾 𝛾

𝛾  

(3-6f) 

and 𝛼 𝛾 𝛾 𝐿 1 𝛽 𝐿 /𝜆 ; 𝑧 sin 𝛾 𝐿 ; 𝑧 sinh 𝛾 𝐿 ; 𝑧 cos 𝛾 𝐿 ; 𝑧

cosh 𝛾 𝐿 ; �̄� sin 𝛾 𝑥 ; �̄� sinh 𝛾 𝑥 ; �̄� cos 𝛾 𝑥 ; �̄� cosh 𝛾 𝑥 ; 𝜆

8𝑑/𝐿 𝐿𝐸𝐴/ 𝐻𝐿  is the Irvine’s sag-extensibility parameter ; and 𝑤 𝑤 𝑥

𝑤 𝑥∗ . 

The mechanical model of a transverse damper and its support is shown in Fig. 3-1. In this 

model, the damper consists of a linear dashpot with size 𝑐  and a linear spring with stiffness 

𝑘  connected in parallel. The damper support is modeled as a linear spring with stiffness 

𝑘  connected to the damper in series. Based on this model, the time-dependent force 

generated by the damper can be expressed as: 
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𝐹 𝑡 𝑘 𝑢 𝑡 𝑘 𝑤 𝑥 , 𝑡  𝑢 𝑡 𝑐 𝑤 𝑥 , 𝑡  𝑢 𝑡  (3-7) 

where 𝑤 𝑥 , 𝑡  is the transverse cable displacement at the damper location and 𝑢 𝑡  is the 

displacement at the top of the damper support spring. Substitute 𝑤 𝑥 , 𝑡 𝑤 𝑒  and 

𝑢 𝑡 𝑢 𝑒  into equation (3-7), it yields: 

𝑢
𝑘 𝑖𝑐 𝜔 𝑤
𝑘 𝑘 𝑖𝑐 𝜔

 (3-8) 

Next, the damper force amplitude can be obtained as: 

𝐹 𝑘 𝑢
𝑘 𝑘 𝑖𝑐 𝜔
𝑘 𝑘 𝑖𝑐 𝜔

𝑤

𝑘 𝑘 𝑖𝑐 𝜔 𝑘 𝑘 𝑖𝑐 𝜔
𝑘 𝑘 𝑐 𝜔

𝑤  

(3-9) 

By substituting 𝐹 𝑤⁄  from Eq. (3-9) into Eq. (3-6a) and replacing 𝜔 with 𝛽 𝐻/𝑚, the 

transcendental equation can be solved for the complex wave number 𝛽 using standard 

numerical methods, based on which the modal damping ratio of the cable-damper system 

can be calculated as: 

𝜁
Im 𝛽

|𝛽 |
 (3-10) 

where Im ∙  and |∙| denote the imaginary part and the magnitude of a complex number, 

respectively, and 𝑛 is the mode number. 

3.2.2. Hinged-hinged cable 

The fixed-fixed support conditions assumed in Section 3.2.1 may not accurately reflect the 

behaviour of stay cables that are not rigidly connected to the deck. Also, it has been shown 
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that the response of very long stays, where the effect of cable bending stiffness is 

negligible, is better represented by hinged-hinged boundary conditions [90]. Therefore, it 

is necessary to provide an analytical model that can determine the damping ratio of such 

cables where a hinged-hinged end condition is more realistic. In order to extend the 

applicability of the aforementioned numerical approach for obtaining the natural frequency 

and modal damping ratio of the cable-damping system, the hinged-hinged cable boundary 

condition is considered in this section.  In this case, the boundary conditions 𝑤 ′ 0 0 and 

𝑤 ′ 0 0 which restrain the cable rotation at both ends should be replaced with 𝑤″ 0

0 and 𝑤″ 0 0. As a result, the transcendental equation of the cable displacement at the 

damper location becomes: 

𝐸𝐼𝑤

𝐹
𝑔

𝑔 𝑔
𝑔 𝛼𝑔

 (3-11a) 

where 

𝑔
𝑧 �̄� 𝛾 sinh 𝛾 𝑥∗ 𝑧 �̄� 𝛾 sin 𝛾 𝑥∗

𝑧 𝑧 𝛾 𝛾 𝛾 𝛾
 (3-11b) 

𝑔 𝑧 𝛾 �̄� 𝑧 sin 𝛾 𝑥∗ 𝑧 𝛾 �̄� 𝑧 sinh 𝛾 𝑥∗  (3-11c) 

𝑔 𝑧 𝛾 𝑧 1 �̄� �̄� 1 𝑧 𝑧 𝛾 𝑧 1 �̄� �̄� 1 𝑧  (3-11d) 

𝑔 2𝑧 𝑧 𝛾 𝛾 𝛾 𝛾 𝑧 𝛾 1 𝑧 𝑧 𝛾 1 𝑧  (3-11e) 

𝑔 𝑧 𝑧 𝛾 𝛾  (3-11f) 

By substituting 𝐹 𝑤⁄  from Eq. (3-9) into Eq. (3-11a) and solving the transcendental 

equation for the complex wave number 𝛽, the modal damping ratio of the cable-damper 

system can be calculated from Eq. (3-10).  
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3.3. Asymptotic solution for the modal damping ratio 

3.3.1. Fixed-fixed cable 

An asymptotic solution to Eq. (3-6) for predicting the modal damping ratio of a stay cable 

equipped with a transverse viscous damper has been developed by Fujino and Hoang [71]. 

Consider that the damper installation will cause a minimal perturbation in the wave number 

defined as 𝛥𝛽 𝛽 𝛽 ≪ 𝛽 , where 𝛽  is the 𝑛 ℎ modal wave number of the damped 

flexural-extensible cable and 𝛽  is the basic wave number of an undamped non-flexural 

extensible cable, which is governed by Eqs. (2-4) and (2-5). For small values of cable 

bending stiffness factor, i.e. 4𝜀𝛽 𝐿 ≪ 1, the following approximations can be made: 𝛾 ≅

1/√𝜀𝐿 ; 𝛾 ≅ 𝛽; 𝑧 ≅ 𝑧 ≫ 1 and sinh 𝛾 𝑥∗ ≅ cosh 𝛾 𝑥∗ ≅ 𝑒 𝑧 . By applying 

these terms to Eq. (3-6), simplifying and substituting into Eq. (3-10), it yields: 

𝜁
𝑥 /𝐿

≅ 𝑅 𝐼𝑚
2/𝑟 𝑥 𝐹 𝑤⁄ 𝐻 1 2𝑒 /𝑟 2𝑞/𝑟

1 𝑥 𝐹 𝑤⁄ 𝐻 1 𝑞 0.5𝑟𝑞
 (3-12) 

where 𝑟 𝑥 /𝐿 /√𝜀 and 𝑞 1 𝑒 /𝑟 are the auxiliary bending stiffness 

coefficients, and 𝑅 tan 𝜓 𝑥 𝐿⁄ 𝜓 tan 𝜓 12 𝜆⁄ 𝜓⁄  with 𝜓

0.5𝛽 𝐿 is a factor that reflects the effect of cable sag. Substituting Eq. (3-9) into Eq. (3-

12) and computing the imaginary part gives: 

𝜁
𝑥 /𝐿

≅ 𝑅
𝜅𝑏 1 𝑞

1 1 𝜅 𝑘 𝜂 𝜂 1/𝑘 𝑏
 (3-13) 

where 𝑏 𝜅𝑐 𝜔 𝑥 /𝐻; 𝜅 1/ 1 𝑘 /𝑘 ; 𝜂 1 𝑞 0.5𝑟𝑞 ; and 𝑘 𝑥 𝑘 /𝐻 

and 𝑘 𝑥 𝑘 /𝐻 are the normalized damper stiffness and damper support stiffness 

parameters. Equation (3-13) can be further simplified to: 
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𝜁
𝑥 /𝐿

≅ 𝐶 𝑅
𝐶 𝑏 1 𝑞

1 𝐶 𝜂 1/𝑘 𝑏
 (3-14) 

where 𝐶 1/ 1 𝑘 𝜂 1/𝑘  is the integrated stiffness coefficient and 𝑏

𝑐 𝜔 𝑥 /𝐻. By using the approximation 𝜔 ≅ 𝛽 𝐻 𝑚⁄  and adopting the reduction and 

modification factors defined by Fujino and Hoang [71], Eq. (3-4) can be reduced to the 

following refined design formula: 

𝜁
𝑥 /𝐿

𝑅 𝑅 𝑅
�̄� 𝜂 𝜂

1 �̄� 𝜂 𝜂
 (3-15) 

where 𝜂 𝑛𝜋 𝑥 𝐿⁄ 𝑐 /√𝐻𝑚 is the dimensionless damping parameter; 𝜂

𝛽 𝐿/ 𝑛𝜋  is the modification factor for 𝜂  due to the influence of cable sag; �̄� 𝐶 𝜂

𝐶 𝜂 1/𝑘  is the modification factor for 𝜂  due to combined effect of cable flexural 

rigidity, damper stiffness and damper support stiffness; and 𝜂  is the modification factors 

for 𝜂  due to the influence of cable flexural rigidity. Also, 𝑅 , 𝑅 1 𝑞 /𝜂  and 

𝑅 𝐶 𝑅 𝐶 𝜂 / 𝜂 1/𝑘  are the reduction factors for the maximum damping 

ratio due to the influence of cable sag, cable flexural rigidity and the combined stiffness 

effects of the cable, the damper and its support, respectively. Figure 3-2 provides the values 

of (𝜂 𝑅 ) factors for practical ranges of 𝜆  and 𝑥 𝐿⁄ . Similarly, Fig. 3-3 illustrates 

the variation of (𝜂 𝑅 ) factors with respect to the 𝜀 and 𝑥 𝐿⁄ . It should be noted that 

𝜂  and 𝑅  factors are equal to 1 for the antisymmetric modes with 𝑛 2,4, …, and as can 

be observed in Fig. 3-2, are almost equal to 1 for the higher order symmetric modes, namely 

modes 3, 5, etc.  
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For a given damper location, the maximum achievable cable damping ratio of the 𝑛 ℎ mode 

can then be identified by differentiating 𝜉  with respect to 𝜂  in Eq. (3-15), i.e. 

𝜁
𝑥 /𝐿

0.5𝑅 𝑅 𝑅   𝑎𝑡  𝜂
1

�̄� 𝜂sn
 (3-16) 

 
(a) 

 
(b) 

Fig. 3-2. Modification and reduction factors for the modal damping ratio due to the 
effect of cable sag. 
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Equation (3-16) can be used to design a cable-damper system when the damper has either 

zero, positive or negative stiffness. This expression is analogous to the design formula 

proposed by Fujino and Hoang [71], except for the proposed refined coefficients 𝑅  and 

�̄�  which include the effect of damper stiffness through the integrated stiffness coefficient 

𝐶 . The maximum achievable damping ratio of a transverse passive damper with zero 

 
(a) 

 
(b) 

Fig. 3-3. Modification and reduction factors for the modal damping ratio due to the 
effect of cable bending stiffness. 
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stiffness and rigid support attached to an ideal taut cable is given by 𝜁 𝑥 𝐿⁄⁄ 0.5 

[70]. According to Eq. (3-16), this ideal value is decreased by three reduction coefficients 

which respectively reflect the effects of cable sag (𝑅 ), cable bending stiffness (𝑅 ), and 

damper stiffness and support stiffness (𝑅 ). 

The integrated stiffness coefficient 𝐶  represents the combined influences of the damper 

support stiffness, the damper stiffness and the cable bending stiffness on the damping 

property of a damped cable and can be expressed as: 

𝐶 1
1

1 𝛹
1

1

1 𝑘 /𝑘 / 1 𝑘 𝜂
 (3-17) 

where 𝛹 𝑘 𝑘⁄ 1 𝑘 𝜂 1 𝑘 𝜂⁄  is an auxiliary parameter. The value of the 

normalized damper stiffness 𝑘  can be selected either positive or negative. In the case of 

zero damper stiffness, 𝛹 approaches infinity and based on Eq. (3-17), the integrated 

stiffness coefficient becomes 1. Figure 3-4 shows the variation of the integrated stiffness 

coefficient 𝐶  against 𝛹 for both PSD and NSD. It can be seen from the figure that based 

on the definition of   and its value, the viscous damper can be classified as PSD (𝛹 0) 

and NSD (𝛹 0); whereas 𝛹 0 corresponds to the scenario where the damper stiffness 

is much larger than the support stiffness (𝑘 ≫ 𝑘 ), which, in an extreme case, leads to the 

condition of rigid damper stiffness and/or zero support stiffness (𝑘 → ∞, 𝑘 0). 

Therefore, when the cable vibrates, the rigid stiffness of the damper would constrain the 

motion of the damper dashpot and thus the amount of the provided damping. Also, since 

no constraint would be provided by the damper support, the damper would play the role of 

an additional attached mass during cable vibration rather than dissipating energy. As 



47 
 

reflected in Fig. 3-4, the integrated stiffness coefficient 𝐶  becomes zero when 𝛹 0. 

According to Eq. (3-15), in this case the damper provides no damping and 𝜉 0. 

In the case of PSD, the damper has a positive stiffness which gives 𝛹 0. Based on Eq. 

(3-17), it results in 0 𝐶 1 and implies a lower damping ratio than the ZSD case. This 

phenomenon is in agreement with the existing experience [46,47,67,91] indicating that the 

presence of positive damper stiffness would have an adverse effect on the damper 

efficiency. Nevertheless, it was found that the impact of a positive stiffness was minor and 

could be neglected in the analysis and design [46,92]. Besides, if the positive stiffness of 

the damper becomes negligible (𝑘 → 0 ), 𝛹 would approach to infinity (𝛹 → ∞) and 

Eq. (3-17) would give 𝐶 1. In this case, Eq. (3-15) would have the same form as the 

design formula developed by Fujino and Hoang [71]. 

 

Fig. 3-4. Variation of the integrated stiffness coefficient 𝐶  as a function of 𝛹 for 
NSD and PSD. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-2

0

2

4

6

8

10

(no damping)



48 
 

In Fig. 3-4, two distinct regions separated by the line 𝛹 1 can be observed from the 

NSD zone where the damper stiffness is negative. It can be seen from the figure that for 

𝛹 1, the integrated stiffness coefficient 𝐶  is always greater than 1, which, according 

to Eq. (3-16), would give a maximum damping ratio higher than that of the ZSD case. This 

implies that NSD is more effective in vibration control than ZSD and PSD and should be 

designed in the region of 𝛹 1. As 𝛹 approaches to ∞ (𝑘 → 0 ), 𝐶  becomes 1 and 

Eq. (3-15) again reduces to the same form as the design formula by Fujino and Hoang [71]. 

In addition, it is interesting to note that as 𝛹 gradually increases and approaches to -1, the 

integrated stiffness coefficient would approach to infinity (𝐶 → ∞), and the NSD would 

thus lose its stability. The requirement to ensure stable performance of NSD will be further 

discussed in the next section. The second region corresponds to 0 𝛹 1, within which 

𝐶  becomes negative and highly sensitive to the variation of 𝛹. Even a slight decrease of 

the 𝛹 value could cause a drastic reduction of 𝐶  and thus a considerable impact on the 

damper performance. Therefore, it is recommended to avoid this region in designing NSD. 

To verify Eq. (3-15), a special case of rigid damper support and taut cable, which has been 

studied by Shi et al. [67], is considered. By assuming a rigid damper support, the following 

simplifications can be made: 

𝑙𝑖𝑚
→∞
𝐶 𝑙𝑖𝑚

→∞
1

1

1 𝑘 /𝑘 / 1 𝑘 𝜂

1

1 𝑘 𝜂
 (3-18) 

𝑙𝑖𝑚
→∞
�̄� 𝐶 𝜂  (3-19) 

𝑙𝑖𝑚
→∞
𝑅 𝐶  (3-20) 

Therefore, in this case, Eqs. (3-16) and (3-17) can respectively be written as: 
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𝜁
𝑥 /𝐿

𝐶 𝑅 𝑅
𝐶 𝜂 𝜂 𝜂

1 𝐶 𝜂 𝜂 𝜂
 (3-21) 

𝜁
𝑥 /𝐿

0.5𝐶 𝑅 𝑅   𝑎𝑡  𝜂
1

𝐶 𝜂 𝜂sn
 (3-22) 

In the case of a taut non-flexural cable, i.e. 𝜆 →0 and 𝜀 ≪ 1, the modification and reduction 

factors corresponding to the cable sag and bending stiffness effects would all become 1. 

Thus, the above equations can be reduced to: 

𝐶
1

1 𝑘
 (3-23) 

𝜁
𝑥 /𝐿

𝐶
𝐶 𝜂

1 𝐶 𝜂
𝜂

1/𝐶 𝜂
 (3-24) 

𝜁
𝑥 /𝐿

0.5𝐶   𝑎𝑡  𝜂
1
𝐶

 (3-25) 

which are equivalent to the design formulas proposed by Shi et al. [67]. Therefore, the 

validity of the integrated stiffness coefficient formulated in Eq. (3-17), and the damping 

property of the damped cable predicted by Eqs. (3-15) and (3-16) are verified for the special 

case of a taut non-flexural cable with rigid damper support. 

3.3.2. Hinged-hinged cable 

In the case of a hinged-hinged cable, a similar approach is followed to obtain the design 

equation. An asymptotic solution to Eq. (3-11) can be derived for small values of cable 

bending stiffness, i.e. 4𝜀𝛽 𝐿 ≪ 1. In this case, the following approximations can be made 

[71]: 
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𝛾 ≅
𝑟
𝑥

   ;   𝛾 ≅ 𝛽   ;    𝛾 𝛾 ≅
𝑟
𝑥

  ;   

sinh 𝛾 𝐿 ≅ cosh 𝛾 𝐿 ≫ 1  ;   

sinh 𝛾 �̄� ≅ cosh 𝛾 �̄� ≅ 𝑒 sinh 𝛾 𝐿  

(3-26) 

After applying these approximations and dropping negligible terms of 𝛽 𝑥 𝑟⁄ , Eq. (3-

11) can be simplified to: 

𝑤 𝐻

𝐹 𝑥
≅

𝛽 𝑥 tan
𝛽 𝐿

2 tan
𝛽 𝑥

2

2 tan
𝛽 𝐿

2
𝛽 𝐿

2
4
𝜆

𝛽 𝐿
2

1 𝑒
2𝑟

1 (3-27) 

Following the perturbation approach introduced by Krenk [70] and extended by Krenk and 

Nielsen [43], the wave number 𝛽  of the damped cable can be assumed as: 

𝛽 𝛽 𝛥𝛽  (3-28) 

where 𝛥𝛽  is a small wave number perturbation due to the damper installation; and 𝛽  is 

the real-valued wave number of the undampe cable. In the case of small damper distance 

from the cable end, i.e. 𝑥 𝐿⁄ ≪ 1, the following approximations are valid for symmetric 

modes (𝑛 1,3, …): 

tan
𝛽 𝐿

2
𝛽 𝐿

2
4
𝜆

𝛽 𝐿
2

≅ tan
𝛽 𝐿

2
12
𝜆

𝛽 𝐿
2

𝛥𝛽 𝐿
2

 

(3-29) 
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tan
𝛽 𝐿

2
tan

𝛽 𝑥
2

≅ tan
𝛽 𝐿

2
𝛽 𝑥

2
 

By substituting these expressions into Eq. (3-27) and simplifying, it yields: 

𝛥𝛽
𝛽

≅
𝑥
𝐿

𝑅
𝑤 𝐻
𝐹 𝑥

1 1 𝑒
2𝑟

 (3-30) 

According to Eqs. (3-10) and (3-28), an asymptotic expression for the modal damping ratio 

can be expressed as: 

𝜁
Im 𝛽

|𝛽 |
≅

Im 𝛥𝛽
𝛽

𝑥
𝐿

𝑅 Im

⎣
⎢
⎢
⎡ 1
𝑤 𝐻
𝐹 𝑥

1 1 𝑒
2𝑟 ⎦

⎥
⎥
⎤
 (3-31) 

By replacing 𝑤 𝐹⁄ 𝑘 𝑘 𝑖𝑐 𝐻 𝑚⁄ 𝛽 𝑘 𝑘 𝑖𝑐 𝐻 𝑚⁄ 𝛽 , considering 

𝛽 ≅ 𝛽 , and calculating the imaginary part of the right-hand expression in Eq. (3-31), it 

becomes: 

𝜁
𝑥 𝐿⁄

𝑅

⎩
⎪
⎨

⎪
⎧

𝜂 𝜂

𝑘 1 1 𝑒
2𝑟 1

𝑘
𝑘

1 1 𝑒
2𝑟

1
𝑘

𝜂 𝜂
⎭
⎪
⎬

⎪
⎫

 

(3-32) 

By adopting the same notation used for the refined damper design formula in Section 3.3.1, 

Eq. (3-32) can be further simplified in the form of damper design formula for a hinged-

hinged cable: 
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𝜁
𝑥 𝐿⁄

𝑅 𝑅 𝑅
𝜂 𝜂 𝜂

1 𝜂 𝜂 𝜂
 (3-33) 

where 𝑅 1 𝜂⁄  and 𝜂 1 𝑞 0.5𝑟𝑞  reflect the effect of cable bending stiffness, 

and 𝑅 𝐶 𝜂 𝜂  and 𝜂 𝐶 𝜂 1 𝑘⁄  are factors that represent the 

combined effects of cable bending stiffness, damper stiffness, and damper support 

stiffness.  

It is observed that the damper design formula presented by Eq. (3-33) has the same form 

as the one for a fixed-fixed cable, i.e. Eq. (3-15). However, the 𝑅  and 𝜂  factors, which 

exert a reduction in the achievable modal damping ratio due to the cable bending stiffness, 

have been modified. In general, the factors related to the effect of cable bending stiffness 

can be expressed in a unified form for the studied boundary conditions as follows: 

𝜂 1 𝑞 0.5 𝛼 𝑟𝑞  

𝑅 1 𝛼 𝑞 𝜂  

(3-34) 

where 0 𝛼 1 is the boundary condition factor and is defined as: 

Fixed-fixed:  𝛼 1 

Hinged-hinged:  𝛼 0 

(3-35) 

In other words, the damping ratio of the cable-damper system with a hinged-hinged 

boundary condition is less affected by the flexural rigidity of the cable than the fixed-fixed 

case. Given that the support condition of a real stay cable is in between these the two 

extreme end conditions, 𝛼  can be determined approximately by applying linear 

interpolation. For example, for a cable anchorage with 90% rotational fixity compared to 
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an ideal fixed-fixed condition, a value of 𝛼 0.9 can be used in Eq. (3-34) to compute 

𝜂  and 𝑅 . 

3.4. Performance comparison between NSD, PSD and ZSD 

To investigate the effect of damper stiffness on its performance, a parametric study is 

presented in this section. For this purpose, Eq. (3-15) is rewritten in the following form: 

𝑌
𝑋

1
𝐶 1 1

𝑘 𝜂
𝑋

 
(3-36) 

where 𝑌 𝜁 / 𝑥 /𝐿 𝑅 𝑅  is the normalized modal damping ratio which depends on 

the modified damping parameter 𝑋 𝜂 𝜂 𝜂 , the ratio between the damper support 

stiffness and the damper stiffness 𝑘 /𝑘 , and the product 𝑘 𝜂 . As can be seen from Eq. 

(3-17), the latter two are the governing parameters of the integrated stiffness coefficient 

𝐶 . It is noteworthy that for the special case of zero damper stiffness, 𝐶 1 and Eq. (3-

36) would reduce to 𝑌 𝑋 / 1 1 1/ 𝑘 𝜂 𝑋 . The maximum value of 𝑌  is 

determined by differentiating 𝑌  in Eq. (3-36) with respect to 𝑋 , which is: 

𝑌
|𝐶 |

2 1 1
𝑘 𝜂

|𝛹/ 𝛹 1 |

2 1 1
𝑘 𝜂

 𝑎𝑡 𝑋
1

|𝐶 | 1 1
𝑘 𝜂

 
(3-37) 

where |∙| denotes the absolute value. 

Figure 3-5 illustrates the variation of the normalized modal damping ratio 𝑌  as a function 

of 𝑋  at four different values of 𝑘 𝜂  when the damper stiffness is either positive or 

negative. The case of ZSD is also shown in the figure for reference. These curves depict 
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the isolated role of damper stiffness (either positive or negative) in the 𝑛 ℎ modal damping 

ratio of a cable-damper system. The optimum damper capacity, in terms of the damping 

coefficient 𝑐 , as well as the corresponding maximum achievable damping ratio 𝜁  of 

a specific cable-damper system can be identified from the apex of the 𝑌 𝑋  curves. They 

can also be used to compare the efficiency of cable-damper systems as a function of their 

different mechanical properties. In Figs. 3-5(a-d), four representative 𝑘 𝜂  values (i.e. 50, 

25, 5 and 1) are selected whereas in each subplot, three NSD cases with 𝐶 11, 5 and 2, 

two PSD cases with 𝐶 0.833 and 0.667, and the ZSD case (𝐶 1) are considered for 

comparison. It should also be noted that the influences of the damper support stiffness 𝑘 , 

 

Fig. 3-5. Performance of viscous dampers with negative, zero and positive damper 

stiffness for different 𝑘 𝜂  and 𝐶  values based on normalized parameters 𝑋  and 𝑌 . 
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the damper location 𝑥  and the cable length 𝐿, the cable chord tension 𝐻 and the cable 

flexural rigidity 𝐸𝐼 are all present in the term 𝑘 𝜂 . 

From Fig. 3-5, it is observed that the cable modal damping ratio in the two PSD cases is 

slightly smaller than that in the idealized ZSD case. As shown in Fig. 3-4, in the case of 

PSD, the integrated stiffness coefficient 0 𝐶 1, which, based on Eq. (3-37), would 

lead to a reduction of the maximum normalized modal damping ratio 𝑌 . Nevertheless, 

this reduction effect is not significant and may be neglected in practical applications. On 

the other hand, the cable modal damping ratio of all three NSD cases is substantially higher 

than that of the ZSD case. According to Eq. (3-17) and Fig. 3-4, for 𝛹 1, it would yield 

𝐶 1. Further, a more negative damper stiffness would correspond to a larger value of 

𝐶 , which, as reflected in Fig. 3-5, is the achievement of higher damping ratio (represented 

by 𝑌 ) with a lower damping coefficient (represented by 𝑋 ). 

It is learned from Eq. (3-37) that the maximum achievable damping of a damped cable is a 

function of 𝑘 /𝑘  as well as 𝑘 𝜂 . Therefore, the impact of these two parameters on the 

optimum performance of PSD and NSD, in terms of the maximum normalized modal 

damping ratio 𝑌 , is further studied in Figs. 3-6 and 3-7, respectively. 

Figure 3-6 shows the variation of 𝑌  against 𝑘 𝜂  for a PSD with 𝑘 /𝑘 0.005, 0.05 

and 0.2. The ZSD case is also shown for reference. It can be observed from Fig. 3-6(a) that 

the presence of a positive damper stiffness would decrease the amount of maximum 

achievable damping. For a given cable and a given damper support (both 𝜂  and 𝑘  remain 

as constants), using a PSD having more flexible stiffness (smaller 𝑘 /𝑘 ) would enhance 

the damper efficiency, which is consistent with the findings reported by Fournier and 
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Cheng [46]. In addition, it is interesting to note that the support stiffness 𝑘  plays different 

roles in how 𝑘 /𝑘  and 𝑘 𝜂  would influence the optimum performance of a PSD. If a 

damper support needs to be designed for a given damped cable (both 𝜂  and 𝑘  remain as 

constants), the pattern of the curves in Fig. 3-6(a) suggests that a more rigid damper support 

would yield a larger 𝑘 𝜂  but a smaller 𝑘 /𝑘 , which would either reduce or increase the 

maximum normalized modal damping ratio 𝑌 , with the effect of the latter being more 

dominant. Therefore, using a more rigid damper support would, overall, enhance the 

efficiency of PSD, which agrees with existing literature [46]. When the ratio between the 

damper stiffness and its support stiffness remains unchanged (𝑘 /𝑘  remains constant), 

 

Fig. 3-6. Optimum performance of PSD and ZSD as a function of (a) 𝑘 𝜂 , (b) 𝑘 /𝑘 , 

(c) 𝐶  and (d) both 𝑘 𝜂  and 𝑘 /𝑘 . 
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there exists an optimum value of 𝑘 𝜂 , beyond which a further increase of 𝑘 𝜂  would 

degrade the performance of a PSD. The optimum damper performance becomes less 

sensitive to 𝑘 𝜂  if the stiffness of the damper support is much more rigid than that of the 

damper, i.e. smaller value of 𝑘 /𝑘 . 

Figure 3-6(b) describes how the optimum performance of a PSD would be influenced by 

the stiffness ratio 𝑘 /𝑘  at four different levels of 𝑘 𝜂 . Results show that for a given cable 

and a given damper support (both 𝜂  and 𝑘  remain constants), a PSD with more rigid 

damper stiffness, i.e. larger 𝑘 /𝑘 , would decrease the efficiency of the damper. Again, 

this confirms the findings reported in [46]. Such an adverse effect becomes more obvious 

when 𝑘 𝜂  increases. 

The dependence of the maximum normalized modal damping ratio 𝑌  on the integrated 

stiffness coefficient 𝐶  is portrayed in Fig. 3-6(c) for 𝑘 𝜂 1, 5, 25 and 50. For a given 

cable and a given damper support (both 𝜂  and 𝑘  remain as constants), a 𝐶  range of 0 to 

1 covers the variation of the damper stiffness from rigid to 0. It can be seen from the figure 

that for a PSD, 𝑌  would increase linearly with respect to 𝐶  until it reaches 𝑌

0.5/ 1 1/ 𝑘 𝜂  at 𝐶 1, which corresponds to the ZSD case. In addition, it is also 

found that the benefit of choosing larger 𝑘 𝜂  to promote damper performance would fade 

out when 𝑘 𝜂  is sufficiently large, say, greater than 25, as reflected in Fig. 3-6(c) that the 

two 𝑌 𝐶  curves corresponding respectively to 𝑘 𝜂 25 and 𝑘 𝜂 50 almost 

coincide with each other. The combined effect of the two governing parameters, 𝑘 𝜂  and 

𝑘 /𝑘 , on the optimum performance of a PSD is shown as a performance surface in Fig. 

3-6(d). The pattern of the surface clearly suggests that more flexible damper stiffness and 
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more rigid damper support stiffness would enhance the energy dissipation capacity of a 

PSD. 

The optimum performance of NSD is illustrated in Fig. 3-7. Figure 3-7(a) portrays the 

effect of 𝑘 𝜂  on the maximum normalized modal damping ratio 𝑌  for four different 

stiffness ratios of 𝑘 /𝑘 0.02, 0.05, 0.2 and 0.5, of which only the portion of the 

curves that satisfies 𝛹 1 are shown (refer to Fig. 3-4). The pattern of the curves in the 

figure indicates that for a given cable and a given damper support (both 𝜂  and 𝑘  remain 

constants), a smaller stiffness ratio 𝑘 /𝑘  resulted from a more negative damper stiffness 

 

Fig. 3-7. Optimum performance of NSD as a function of (a) 𝑘 𝜂 , (b) 𝑘 /𝑘 , (c) 𝛹 
and (d) both 𝑘 𝜂  and 𝑘 /𝑘 . 
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would lead to a larger 𝑌 . This suggests that using a NSD having more negative damper 

stiffness would be beneficial for the damper efficiency, on the condition that the stability 

requirement of the NSD holds. Based on Eq. (3-37), should 𝑘 𝜂 1 1/ 𝑘 /𝑘 , NSD 

would lose its stability and 𝑌  would approach to infinity. The margin of stability for 

the four studied stiffness ratios is shown in Fig. 3-7(a) as dotted lines. They occur 

respectively at 𝑘 𝜂 49, 19, 4 and 1 for 𝑘 /𝑘 0.02, 0.05, 0.2 and 0.5. On 

the other hand, for a given cable (𝜂  remains as a constant), a more rigid damper support 

would correspond to larger 𝑘 𝜂  and 𝑘 /𝑘 . Although the effect of the former would 

promote the damper efficiency and that of the latter would degrade the damper 

performance, with the latter being dominant, using a more rigid damper support would thus 

have an adverse impact on the NSD performance, which is, interestingly, opposite to the 

PSD case. 

Similarly, the benefit of using NSD with more negative damper stiffness can be observed 

from Fig. 3-7(b). For a given cable and a given damper support (both 𝜂  and 𝑘  remain 

constants), with the decrease of 𝑘  value, i.e. the damper stiffness becomes more negative, 

𝑌  would increase until when 𝑘  reaches the stability bound defined by 𝑘 /𝑘

1/ 1 𝑘 𝜂 , where the damper performance is unstable and 𝑌  approaches infinity. 

The four dotted lines at 𝑘 /𝑘 0.5, 0.167, 0.0385 and 0.0196 in Fig. 3-7(b) 

define respectively the margin of stability for the cases of 𝑘 𝜂 1, 5, 25 and 50. The 

stability requirement of NSD will be discussed further in Chapter 5.  

Figure 3-7(c) depicts the variation of 𝑌  with 𝛹 at 𝑘 𝜂 1, 5, 25 and 50. As discussed 

earlier, 𝛹 1 would induce instability of a NSD, which, as reflected in the figure, 𝑌  
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would approach to infinity as 𝛹 tends to 1. The fact that there always exist two different 

𝛹 values for the same optimum damper performance 𝑌 , i.e. one in the region of 𝛹

1 and the other in 1 𝛹 0, suggests two possible choices of negative damper 

stiffness in the NSD design. However, since the one associated to the region of 1 𝛹

0 would corresponding to a more negative damper stiffness, to avoid potential instability 

issue, it is recommended to choose that in the region of 𝛹 1. For a given 𝛹 (or in other 

words, 𝐶 ) value, a NSD is observed to have better performance at larger 𝑘 𝜂 . However, 

similar to the PSD case, 𝑌  becomes saturated once 𝑘 𝜂  increases beyond a certain 

level, say 𝑘 𝜂 25. In addition, a lower bound for 𝛹 can be defined to ensure 𝑌 , 

which is 𝛹 1 𝑘 𝜂 . It is noteworthy that 𝑌  corresponds to the scenario of a 

ZSD with a rigid damper support. The combined effect of 𝑘 𝜂  and 𝑘 /𝑘  on the 

effectiveness of NSD is shown as a performance surface for 𝛹 1 in Fig. 3-7(d). 

Clearly, in the case of NSD, using a damper with more negative damper stiffness and a 

more flexible support would enhance its performance. 

The performance of PSD, ZSD and NSD devices has been demonstrated in Figs. 3-5 to 3-

7. Results show that for a given cable and damper capacity (i.e. damping coefficient 

remains the same), the efficiency of the damper in controlling cable vibration would be 

governed by the damper stiffness and the damper support stiffness. While a combination 

of flexible damper stiffness and rigid support is preferred in the design of PSD; a more 

flexible support and more negative damper stiffness should be selected to promote the NSD 

efficiency as long as the stability requirement is satisfied. In addition, the maximum 

achievable damping ratio of the idealized ZSD case represents the performance upper 

bound of a PSD with the same damper capacity. 
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3.5. Evaluation of the asymptotic solution 

In order to evaluate the accuracy of the proposed asymptotic solution to Eq. (3-6a), Eq. (3-

15) is applied to predict the damping property of a cable-damper system studied by 

Fournier and Cheng [46]. The cable was set up horizontally and fixed at both ends. It had 

a length of 𝐿 9.33 m, a unit mass of 𝑚 0.2 kg/m, a diameter of 𝐷 4.65 mm and a 

chord tension of 𝐻 3200 N. A passive linear viscous damper with a damping coefficient 

of 𝑐 32.2 N.s/m was designed to have variable damper stiffness (0, 280 N/m, and 600 

N/m) and support stiffness (47300 N/m, 82000 N/m, and rigid). The efficiency of the 

damper was evaluated for a number of installation locations via experimental test and 

numerical simulation. In the current study, only the case of 𝑥 /L 0.06 is selected for 

analysis. The system damping obtained from Eq. (3-15) is compared with the experimental 

and numerical results reported in [46], as well as with the numerical solution to Eq. (3-6a). 

Figures 3-8(a) and 3-8(b) portray respectively the first modal damping ratio of the studied 

cable-damper system with and without the consideration of cable sag and bending stiffness 

effects. In both figures, the solid and the dashed line correspond to the asymptotic and the 

numerical solution to Eq. (3-6a), respectively, whereas the experimental and the numerical 

results by Fournier and Cheng [46] are shown by the markers. It can be seen from Fig. 3-

8(a) that the first modal damping ratio of the damped cable yielded from the refined design 

formula, Eq. (3-15), is about 2% lower than the numerical solution and always lower than 

the experimental results. This implies that the proposed refined damper design formula 

would provide a relatively conservative and safe design which is desirable in engineering 

practice. On the other hand, the taut cable idealization is applied by assuming 𝜀 10  

and 𝜆 0.001 (small cable bending stiffness and sag-extensibility) and the first modal 
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damping ratio of this system is shown in Fig. 3-8(b). In this case, although the damping 

ratio predicted by Eq. (3-15) is found to agree well with the experimental results when the 

damper stiffness is relatively small, i.e. 𝑘 280 N/m, it could overestimate the 

experimental data when the damper is installed on more flexible support (𝑘

47.3 kN/m). Therefore, when applying the refined design formula to predict the damping 

property of a damped cable, the actual cable sag and bending stiffness should be considered 

to avoid the potential risk of unsafe design.  

Figure 3-9 demonstrates how the introduction of negative damper stiffness could enhance 

the energy dissipation capacity of the above studied cable-damper system. The first modal 

damping ratio of the system obtained from the asymptotic (Eq. (3-15)) and the numerical 

solution to Eq. (3-6) is portrayed in Fig. 3-9(a) for three different levels of damper support 

stiffness, i.e. 𝑘 47.3 kN/m, 82 kN/m and rigid. The 𝑘  value corresponding to the 

 

Fig. 3-8. Comparison of first modal damping ratio of a damped cable for equipped 
with a PSD of 𝑐 32.2 N∙s/m. 
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apex of each 𝜁 𝑘  curve defines the NSD stability requirement of the associated case. It 

is worth pointing out that since the damping coefficient 𝑐 32.2 N.s/m is not close to 

zero, the maximum modal damping ratio is thus finite. It can be seen from Fig. 3-9(a) that 

for a given damper support stiffness, as far as the damper stiffness satisfies the stability 

requirement defined by the numerical solution, the first modal damping ratio predicted by 

the asymptotic solution is always less than that by the numerical solution. This implies that 

Eq. (3-15) can be safely used in the design of NSD having negative damper stiffness within 

the stable range. To have a clearer picture on how the damping property of the studied 

cable would be affected when equipped with a PSD or a NSD resting on a finite stiffness 

support, the variation trend of its first modal damping ratio with respect to the damper 

stiffness and the damper support stiffness is shown in Fig. 3-9(b) based on Eq. (3-15). It is 

evident that the presence of negative damper stiffness would significantly enhance the 

energy dissipation capacity of the system. 

 
Fig. 3-9. Effect of damper stiffness on the damping property of a cable-damper 

system studied by Fournier and Cheng [46] for different damper support cases (PSD 
with 𝑐 32.2 N∙s/m) (A: Asymptotic, E: Exact). 
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3.6. Design example 

In this section, a design example is presented to further illustrate the application of the 

proposed refined design formula for designing viscous dampers with positive stiffness. An 

empirical formula for designing viscous damper to suppress cable vibrations was proposed 

by Fournier and Cheng [46] based on experimental test and numerical simulation, which 

took into account the effect of the damper stiffness and damper support stiffness. One of 

the application examples in that study considered the AS18 stay cable on the Fred Hartman 

Bridge [27], in which a viscous damper was needed to control rain-wind-induced 

vibrations. The cable had a length of 𝐿 112.28 m, a diameter of 𝐷 160 mm, a unit 

mass of 𝑚 52.9 kg/m and a chord tension of 𝐻 2732 kN. 

It was assumed that the damper would be installed at 𝑥 0.02𝐿 from the cable lower 

anchorage with its size being selected based on its optimum performance associated with 

the first mode of the cable. If after installing the damper, the bridge owner further requested 

the damper to be concealed in a tube for aesthetic reasons, what should be the requirement 

of the tube stiffness? What if the damper itself was measured to have a stiffness of 𝑘

25 kN/m? Investigate the respective optimum damper capacity for these two scenarios. In 

the current example, the design will be revisited by applying the proposed refined damping 

estimation formula. 

In practice, to suppress rain-wind-induced cable vibrations, it is recommended that the 

Scruton number 𝑆  should satisfy the condition 𝑆 𝑚𝜁/ 𝜌𝐷 10 [93], where 𝑚 is 

the cable mass per unit length, 𝜁 is the cable damping ratio, 𝜌 is the air density, and 𝐷 is 

the cable diameter. By assuming 𝜌 1.29 kg/m , the minimum required cable damping 
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ratio would be 0.624%. In other words, it requires the first modal damping ratio of the cable 

to be 𝜁 0.624%. 

If the proposed refined damping estimation formula, Eq. (3-16), is applied to conduct the 

design, the reduction factors in this equation can be calculated through the following steps:  

1. For an elastic modulus 𝐸 200 GPa [27] and an inclination angle 𝜃 35. 3∘ [94], 

the non-dimensional cable bending stiffness parameter 𝜀 and the sag parameter 𝜆  

of the cable can be computed as 𝜀 𝐸𝐼/ 𝐻𝐿 1.87 10  and 𝜆

8𝑑/𝐿 𝐿𝐸𝐴/ 𝐻𝐿 8𝑑/𝐿 𝐸𝐴/𝐻 0.446. 

2. The auxiliary bending stiffness coefficients are 𝑟 𝑥 /𝐿 /√𝜀 1.46 and 𝑞

1 𝑒 /𝑟 0.525, so the modification factor of the non-dimensional damper 

parameter 𝜂  (here, 𝑛 1) due to the effect of cable flexural rigidity is 𝜂 1

𝑞 0.5𝑟𝑞 0.273. 

3. The wave number of a sagged, non-flexural cable without damper can be 

determined from Fig. 3-2(a), which is 𝛽 0.0284. 

4. Based on Fig. 3-2(b), the reduction factor reflecting the influence of the cable sag 

on the maximum achievable damping ratio of the cable-damper system is 𝑅

0.963. 

5. The reduction factors representing the combined stiffness effects of the cable, the 

damper and the support, as well as the cable bending stiffness on the maximum 

achievable damping ratio respectively are 𝑅 0.273𝐶 / 0.273 1/𝑘  and 

𝑅 1 𝑞 /𝜂 0.826. 



66 
 

Since the minimum required cable modal damping ratio for the first mode is 0.624%, Eq. 

(3-16) can be used to determine the required tube stiffness for the two specified scenarios. 

3.6.1. Zero damper stiffness (𝑘 0) 

Application of Eq. (3-16) would yield 𝑘 13.4. Therefore, the minimum required axial 

stiffness for the damper tube is determined as 𝑘 , 𝑘 𝐻/𝑥 16.3 MN/m. If a tube 

with an outside diameter of 160 mm, a thickness of 10 mm and an elastic modulus of 2.5 

GPa is to be used, the maximum allowable tube length would be 𝐿 𝐴𝐸 𝑘 ,⁄

0.72 m. Finally, the optimum damping coefficient of the damper is computed as 𝜂

1 �̄� 𝜂s1⁄ 1/ 𝐶 𝜂 1 𝑘⁄ 𝛽 𝐿 𝜋⁄ 2.833, which gives 𝑐 , 542 kN∙s/m.  

The design formula provided by Huang and Jones [45], based on a taut cable assumption, 

a zero damper stiffness and a linear damper support stiffness in the mechanical model of 

the damped cable, can also be utilized to obtain the required tube stiffness. By using 

𝜁 / 𝑥 /𝐿 1/ 2 1 1/𝑘 , it is found that 𝑘 1.66. This is about 12% of the 

calculated value from the refined design formula (𝑘 13.4). Therefore, neglecting the 

bending stiffness effect in particular can result in an unsatisfactory design. 

3.6.2. Positive damper stiffness (𝑘 25 kN/m) 

The normalized damper stiffness 𝑘  and the integrated stiffness coefficient 𝐶  are 

calculated as 𝑘 𝑘 𝑥 /𝐻 0.021 and 𝐶 1 1/ 1 𝑘 /0.021 / 1 0.273𝑘 . 

After substituting into Eq. (3-16), it gives: 

𝜁
𝑥 /𝐿

0.5𝑅 𝑅 𝑅 0.0312 
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which yields 𝑘 13.8. Therefore, the minimum required axial stiffness of the tube and 

the optimum damping coefficient of the damper in this case can be determined respectively 

as 𝑘 , 16.8 MN/m and 𝑐 , 549.4 kN∙s/m. 

To assess the impact of the cable bending stiffness and sag on the damper performance, the 

minimum required damper support stiffness and the optimum damper capacity of the above 

two scenarios are re-analyzed by neglecting the cable bending stiffness and sag. Assume 

small values of 𝜀 and 𝜆 , i.e., 𝜀 10  and 𝜆 0.001, the reduction factors in Eq. (3-

16) are recalculated as 𝑅 1, 𝑅 0.992 and 𝑅 0.976𝐶 / 0.976 1/𝑘 . To 

satisfy the minimum required first modal damping ratio of 0.624%, Eq. (3-16) will give 

𝑘 1.74, i.e. 𝑘 , 2.12 MN/m and 𝑐 , 123.4 kN∙s/m for the case of ZSD; and 

𝑘 1.89, or 𝑘 , 2.30 MN/m and 𝑐 , 131 kN∙s/m for the case of 𝑘

25 kN/m. 

Table 3-1 summarizes the results of the current design example. For comparison, the design 

based on the empirical formula by Fournier and Cheng [46] are also presented in the table. 

The data in the two rightmost columns of Table 3-1 give the first modal damping ratio 𝜁  

of the damped cable, which are obtained by plugging respectively the designed values of 

𝑘 ,  and 𝑐  yielded from the current study and Fournier and Cheng [46] into Eq. (3-6a) 

and numerically solve it for the complex wave number 𝛽 , and then using Eq. (3-10) to 

obtain the 𝜁 . For example, in the case of a sagged cable with 𝑘 0, the current study 

requires 𝑘 , 16.3 MN/m and 𝑐 , 542 kN∙s/m, based on which the numerical 

first modal damping ratio is determined to be 0.644%. Compared to the target damping 
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ratio of 0.624%, the current design would result in a damping ratio 3.21% higher than that 

required. This percentage difference between the numerical and the target first modal 

damping ratio is shown in the parentheses below the corresponding numerical solution in 

the table. As can be seen from Table 3-1, the error is as low as 1.44% when the cable sag 

and bending stiffness are neglected, and 3.21% when the actual sag and bending stiffness 

parameters are considered. In both cases, the design based on the proposed refined damping 

estimation formula is slightly conservative and on the safe side. The design based on the 

empirical formula proposed by Fournier and Cheng [46] is much more conservative. The 

selected damper support stiffness and optimum damper capacity could yield a cable first 

modal damping ratio up to 36.1% higher than that required. This is believed to be mainly 

due to the fact that the empirical damper design formula in [46] was developed based on 

the taut and non-flexible cable assumption.  

Table 3-1. Summary of the design example results. 

Deign case 

Minimum required damper 
support stiffness 𝑘 ,  

MN/m  

Optimum damping 
coefficient 𝑐 ,   

kN s/m  

Modal damping ratio 𝜁  
based on Eq. (3-6) 

Current 
study 

Fournier and 
Cheng [46] 

Current 
study 

Fournier and 
Cheng [46] 

Design by 
current 
study 

Design by 
Fournier 

and Cheng 
[46] 

Actual 𝜀 and 𝜆  
𝑘 0 

16.3 - 542 - 
0.644% 
(3.21%) 

- 

Actual 𝜀 and 𝜆  
𝑘 25 kN/m 

16.8 - 549.4 - 
0.644% 
(3.21%) 

- 

𝜀  and  𝜆 ≪ 1 
𝑘 0 

2.12 6.93 123.4 189.3 
0.633% 
(1.44%) 

0.849% 
(36.1%) 

𝜀  and  𝜆 ≪ 1 
𝑘 25 kN/m 

2.30 7.21 131 190.3 
0.633% 
(1.44%) 

0.837% 
(34.1%) 
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Therefore, results in Table 3-1 confirm the importance of including the cable bending 

stiffness and sag effects in evaluating the performance of a damped cable and providing a 

more cost-effective design [43]. It should be noted that according to Tabatabai and Mehrabi 

[24], more than 95% of the stay cables on site have a sag parameter 𝜆 1. Thus, the 

impact of the cable sag effect on the attainable damping ratio of a damped cable is 

negligible when compared to that of the cable bending stiffness. On the other hand, if 

Fujino and Hoang’s design formula [71] is applied to the PSD (𝑘 25 kN/m) case, it 

would lead to an underestimation of the required damper support stiffness by up to 3%, i.e. 

16.3 MN/m instead of 16.8 MN/m, which is not desirable. It is worth mentioning that the 

damper design formula developed by Fujino and Hoang [71] does not address the effect of 

damper stiffness and is equivalent to set 𝐶 1 in Eq. (3-16). 

3.6. Summary 

In this chapter, an analytical study has been conducted to refine existing viscous damper 

design formulas for cable vibration control, where the effect of the damper stiffness has 

been considered in the selection of optimum damper size and the prediction of the 

corresponding maximum achievable damping of a damped cable by introducing the 

integrated stiffness coefficient 𝐶 . Both the fixed-fixed and the hinged-hinged boundary 

conditions have been considered. Besides allowing the evaluation of the damper stiffness’ 

influence, the term 𝐶  enables studying the combined effects of the damper stiffness, 

damper support stiffness and cable bending stiffness on the damper performance. This 

refinement not only leads to a more accurate design of conventional passive viscous 

dampers having positive damper stiffness (PSD), but more importantly, extends its 

application to the design of negative stiffness dampers (NSD). An analytical model of a 
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general cable-damper system has been developed, of which the effect of cable sag and 

cable flexural stiffness are considered in modeling the cable behaviour, and the mechanical 

model of the viscous damper takes into account the effect of both the damper stiffness and 

damper support stiffness. Besides seeking a numerical solution to the system equation of 

motion, an asymptotic solution has also been derived to predict the damping property of a 

damped cable. One design example has been presented to illustrate the application of the 

proposed refined damper design tool in designing passive viscous dampers having positive 

stiffness. Compared to the numerical solution, the proposed refined damper design tool 

would give a slightly conservative prediction of the optimum damper size and the 

maximum achievable system damping ratio, which would yield a safe design in practice. 
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Chapter 4 Numerical Study on the Dynamic Response of a Damped 

Cable 

 

4.1. Introduction 

In this chapter, a control-oriented numerical model is developed to obtain the dynamic 

response of a stay cable equipped with a transverse damper/actuator for both fixed-fixed 

and hinged-hinged cable end conditions. The basis of this model is the improvement of the 

Mode Superposition Method (MSM) using the static correction technique. A new shape 

function set that consists of two parts was developed. The first part would be a static 

correction term and defined as the exact static displacement profile of a horizontal sagged 

cable subjected to a point load at the damper location, and the second part would be a series 

of sinusoidal functions, which, in the case of fixed-fixed ends, would be modified to be 

conformable to the boundary conditions. The effects of the cable sag and bending stiffness 

are included, and the exact expression of the cable self-weight profile corresponding to the 

fixed-fixed boundary condition is used in the formulation. This would provide a more 

efficient and accurate computational model that is not only applicable to conventional 

passive damper design, but also to the semi-active/active control design. The accuracy and 

numerical efficiency of the proposed control-oriented model are evaluated through 

numerical design examples of both passive and semi-active/active control. The 

performance of and the results obtained from the proposed model are compared with those 

of other existing models. 
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4.2. Dynamic response of a uniform cable equipped with a transverse damper 

4.2.1. Equation of motion 

Figure 4-1 illustrates a horizontal uniform stay cable equipped with a transverse external 

damper. The x-axis is along the cable chord direction and the y-axis is in the vertical (in-

plane) direction. In this figure, 𝑧 𝑥  and 𝑤 𝑥, 𝑡  represent the cable static displacement due 

to its self-weight and the cable dynamic in-plane motion, respectively. The cable boundary 

condition can be either hinged-hinged or fixed-fixed with the latter case shown. In this 

figure, 𝐿 denotes the cable length, 𝑚 is the mass per unit cable length, 𝑐 is the inherent 

damping coefficient per unit cable length, 𝐸𝐼 is the cable flexural rigidity and 𝐻 is the 

horizontal component of the static cable tension. The damper is located at a distance of 𝑥  

from the left support and its behaviour follows the illustrated mechanical model, with a 

damping coefficient 𝑐 , a damper stiffness 𝑘  and a damper support stiffness 𝑘 . 

After dropping the second order terms in the equilibrium equation of a cable element [79], 

the dynamic in-plane motion, 𝑤 𝑥, 𝑡 , of a damper-equipped cable is governed by the 

following partial integro-differential equation: 

 

Fig. 4-1. Mechanical model of a shallow-flexural cable equipped with a transverse 
viscous damper. 
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𝑚𝑤 𝑐𝑤 𝐸𝐼𝑤 𝐻𝑤′′ ℎ 𝑡 𝑧′′ 𝑓 𝑥, 𝑡 𝐹 𝑡 𝛿 𝑥 𝑥  (4-1) 

where ℎ 𝑡  is the additional cable tension due to its dynamic motion; 𝑓 𝑥, 𝑡  is the 

external distributed force applied at position 𝑥, at a given time 𝑡; 𝐹 𝑡  is the damper force; 

and 𝛿 ⋅  denotes the Dirac delta function. For this cable, the static displacement due to its 

self-weight, denoted as 𝑧 𝑥 , is governed by the following ordinary differential equation, 

which is obtained by dropping all the time-dependent terms in Eq. (4-1): 

𝐸𝐼
𝑑 𝑧
𝑑𝑥

𝐻
𝑑 𝑧
𝑑𝑥

𝑚𝑔 (4-2) 

By solving Eq. (4-2), 𝑧 𝑥  is obtained as: 

𝑧 𝑥 𝑐 𝑒 𝑐 𝑒 𝑐 𝑥 𝑐 𝑥 𝑐  (4-3) 

where coefficients 𝑐  to 𝑐  are functions of the cable characteristics 𝑎 𝑚𝑔/ 𝐸𝐼 , 𝑏

𝐻/ 𝐸𝐼  and 𝐿. Table 4-1 lists these coefficients for the hinged-hinged and the fixed-fixed 

boundary conditions. For the hinged-hinged case, Eq. (4-3) can be accurately approximated 

by the parabolic profile 𝑧 𝑥 𝑐 𝑥 𝑐 𝑥 𝑚𝑔𝐿/ 2𝐻 𝑥 𝑥/𝐿 1 , since 𝑐 𝑒

𝑐 𝑒 𝑐 0 for typical values of 𝐻 and 𝐸𝐼 in the case of full scale bridge stay cables. 

Therefore, this approximated parabolic self-weight profile will be used in the current study 

to evaluate the dynamic response of a damped hinged-hinged cable. On the other hand, the 

exponential terms 𝑐 𝑒 𝑐 𝑒  are essential to portray the self-weight profile of a fixed-

fixed cable and hence shall be considered in the formulation. 

The additional cable tension, ℎ 𝑡 , due to the dynamic motion is derived based on the 

geometric and elastic properties of the cable and is expressed to the first order as: 
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ℎ 𝑡 𝜆 𝐻/𝐿 / 𝑚𝑔 𝑧″𝑤 𝑥, 𝑡 𝑑𝑥 (4-4) 

where 𝜆  is the non-dimensional Irvine’s parameter defined as 𝜆 𝑚𝑔𝐿/𝐻 𝐿𝐸𝐴/

𝐻𝐿 , and 𝐿 1 𝑑𝑧/𝑑𝑥 / 𝑑𝑥 𝐿 is the cable stretched length [79]. Equations 

(4-3) and (4-4) are then substituted into Eq. (4-1) to form the governing partial integro-

differential equation of the cable. In the following sections, different approaches for 

solving this equation are discussed. 

4.2.2. Enhanced shape functions 

The Mode Superposition Method (MSM) is an efficient method for evaluating the dynamic 

response of continuous linear systems. In this method, the transverse cable displacement, 

𝑤 𝑥, 𝑡 , is approximated by the following finite series: 

𝑤 𝑥, 𝑡 𝜙 𝑥 𝑞 𝑡  (4-5) 

Table 4-1. Coefficients of the cable self-weight profile 𝑧 𝑥  in Eq. (4-3). 

Coefficient 
End condition 

hinged-hinged fixed-fixed 

𝑐  𝑎/ 𝑏 1 𝑒  * 𝑎𝐿/ 2𝑏 1 𝑒  

𝑐  𝑎/ 𝑏 1 𝑒  𝑎𝐿/ 2𝑏 1 𝑒  

𝑐  𝑎/ 2𝑏  𝑎/ 2𝑏  

𝑐  𝑎𝐿/ 2𝑏  𝑎𝐿/ 2𝑏  

𝑐  𝑎/𝑏  𝑎𝐿 𝑐𝑜𝑡ℎ 𝑏𝐿/2 / 2𝑏  

* 𝑎 𝑚𝑔/ 𝐸𝐼  ; 𝑏 𝐻/ 𝐸𝐼  
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where 𝜙 𝑥  𝑖 1 to 𝑛  are the shape functions that satisfy all the kinematic boundary 

conditions and are typically the mode shapes of the studied system; 𝑞 𝑡  𝑖 1 to 𝑛  are 

the generalized coordinates and 𝑛 is the number of considered shape function terms (or 

modes). Since only a limited number of vibrational modes are used in MSM, and the effect 

of the truncated higher modes on the system dynamic response is assumed to be negligible, 

the truncation induces error in the analysis results by MSM. However, this error can be 

compensated by introducing a static correction term into Eq. (4-5) [83]. 

Johnson et al. [57,95] adopted the static correction technique to improve the convergence 

rate of the MSM in determining the dynamic response of a damped hinged-hinged cable. 

The authors considered the static displacement profile of the cable, when subjected to a 

point load at the damper location, as one of the shape function terms (the static correction 

term). Results showed that by adding this term, the number of modes (𝑛) required to 

achieve a desired accuracy in the cable dynamic response would be substantially reduced. 

This static correction term not only accounts for the effect of the truncated higher modes, 

but also reflects the presence of the damper and thus substantially increases the 

convergence rate. In their study on a hinged-hinged cable, combining this static profile 

term with 20 sine terms, i.e. a total of 21 terms, Johnson et al. [57] showed that an accuracy 

comparable to the case of using several hundreds of sine-only terms can be achieved. The 

authors derived an approximate expression for the cable static displacement profile, the 

effect of such an approximation needs to be assessed. In the current study, the same 

methodology is utilized by deriving the exact static displacement profile of a cable in the 

form of analytical solution of the governing integro-differential equation. Furthermore, in 

the case of a fixed-fixed cable, the sine function terms would be modified to adapt to the 
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boundary conditions. The static correction term and the adapted sine function terms will 

be derived in the next subsections. 

4.2.2.1. Static correction term 

The static correction term used in the current study is the static displacement profile of a 

cable subjected to a point load at the damper location. Assume the cable in Fig. 4-1 is 

subjected to a point load, 𝑃, at the damper location 𝑥 𝑥 . By neglecting the temporal 

terms in Eq. (4-1), the resulted static displacement, 𝑣 𝑥 , is governed by the following 

ordinary integro-differential equation: 

𝐸𝐼
𝑑 𝑣
𝑑𝑥

𝐻
𝑑 𝑣
𝑑𝑥

𝛹
𝑑 𝑧
𝑑𝑥

𝑃𝛿 𝑥 𝑥  (4-6) 

where 𝛹 𝜆 𝐻/𝐿 / 𝑚𝑔 𝑧″𝑣 𝑥 𝑑𝑥  and 𝑧 𝑥  is the self-weight profile of the 

cable defined in Eq. (4-3). By dividing the cable into two parts on the left and right side of 

the point load (damper location), the general solution to Eq. (4-6) can be expressed by two 

terms for each side of the cable as follows: 

𝑣 𝑥 𝑐 𝑐 𝑥 𝑒 𝑐 𝑐 𝑥 𝑒 𝑐 𝑥 𝑐 𝑥 𝑐  (4-7a) 

𝑣 �̄� 𝑐 𝑐 �̄� 𝑒 ̄ 𝑐 𝑐 �̄� 𝑒 ̄ 𝑐 �̄� 𝑐 �̄�

𝑐  
(4-7b) 

where �̄� 𝐿 𝑥 and 𝑏 𝐻/ 𝐸𝐼 . The coefficients 𝑐  to 𝑐  (left side) and 𝑐  to 𝑐  

(right side) contain a total of eight unknowns and are functions of 𝑚, 𝐿, 𝐻, 𝜆 , 𝐸𝐼, 𝑥 , the 

magnitude of the applied load, 𝑃, and the boundary conditions. The coefficients are 

explicitly determined through the following steps: 
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1. Determine the coefficients (𝑐 𝑐  and 𝑐 𝑐 ) as a function of 𝛹 by applying 

the kinematic and equilibrium conditions to both cable parts. These conditions are 

summarized in Table 4-2. 

2. Substitute the coefficients determined in step 1 into Eqs. (4-7a) and (4-7b) to obtain 

𝑣 𝑥  and 𝑣 𝑥  as a function of 𝛹. Evaluate the expression 𝛹 𝜆 𝐻/𝐿 /

𝑚𝑔 𝑧″𝑣 𝑥 𝑑𝑥  and expand the integral, it yields: 

𝛹 𝜆 𝐻/𝐿 / 𝑚𝑔 𝑧″𝑣 𝑥 𝑑𝑥 𝑧″𝑣 �̄� 𝑑�̄�
̄

𝑓 𝛹  

3. Find 𝛹 by solving 𝑓 𝛹 𝛹 0. 

4. Substitute 𝛹 into the coefficients to determine their explicit expression. 

After determining all the coefficients in Eqs. (4-7a) and (4-7b) for a fixed-fixed or a hinged-

hinged cable, the exact static displacement profile is used to define the static correction 

term as follows: 

Table 4-2. Conditions of the static cable displacement profile. 

Condition type Expression 

Boundary condition 

𝑣 0 0 , 𝑣 0 0 

𝑣 ′ 0 0 , 𝑣 ′ 0 0 (fixed-fixed cable) 

𝑣″ 0 0 , 𝑣″ 0 0 (hinged-hinged cable) 

Compatibility condition 

𝑣 𝑥 𝑣 �̄�  

𝑣 ′ 𝑥 𝑣 ′ �̄�  

𝑣″ 𝑥 𝑣″ �̄�  

Equilibrium condition 𝐸𝐼 𝑣‴ 𝑥 𝑣‴ �̄� 𝑃 
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𝜙 𝑥
𝑣 𝑥
𝑣 𝐿 𝑥

   𝑥 𝑥
   𝑥 𝑥  (4-8) 

4.2.2.2. Adapted sinusoidal terms 

The conventional sinusoidal terms can be used as shape functions in the MSM for a hinged-

hinged cable since they satisfy the kinematic boundary condition. However, in the case of 

a fixed-fixed cable, each of the outer ends of the sine functions needs to be replaced with 

a proper polynomial to adapt to the end constraints. Therefore, the following set of shape 

functions is proposed: 

𝜙 𝑥
𝑖 1,2, …

�̃� 𝑥 �̃� 𝑥 �̃� 𝑥 �̃� 𝑥 �̃� 𝑥
sin 𝑎𝑥

1 �̃� �̄� �̃� �̄� �̃� �̄� �̃� �̄� �̃� �̄�
      

𝑥 �̰�
�̰� 𝑥 𝐿 �̰�
𝑥 𝐿 �̰�

 (4-9) 

where �̄� 𝐿 𝑥, 𝑎 𝑖 𝑖𝜋/𝐿, �̰� 𝑖 𝐿/ 2𝑖  and the polynomial coefficients are 

determined to maintain the consistency at the boundaries: 

�̃� �̰� 𝑎  36�̰� 𝑎  120 / 24�̰�  �̃� �̰� 𝑎 42�̰� 𝑎  144 / 6�̰�  

�̃� �̰� 𝑎 50�̰� 𝑎  180 / 4�̰�  �̃� �̰� 𝑎 60�̰� 𝑎  240 / 6�̰�  

�̃� �̰� 𝑎 72�̰� 𝑎 360 / 24�̰�    

In Eq. (4-9), the two outer boundaries of the sine function are substituted by polynomial 

functions that satisfy both the fixed-fixed boundary condition and the continuity condition 

at 𝑥 �̰� and 𝑥 𝐿 �̰�. For the hinged-hinged case, the conventional sine functions 

𝜙 𝑥 sin 𝑎𝑥  with 𝑖 1,2, . . .  can be directly used as shape functions without any 
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modification. The static correction term and the conventional/adapted sinusoidal terms are 

then combined to construct the final shape function vector which can be used in the 

alternative form of Eq. (4-5), as given below: 

𝜙 𝑥
𝜙 𝑥

static
correction

term

𝜙 𝑥   ⋯   𝜙 𝑥
conventional/adapted

sinusoidal
terms

 (4-10a) 

𝑤 𝑥, 𝑡 𝜙 𝑥 𝑞 𝑡  (4-10b) 

where 𝜙 𝑥  and 𝑞 𝑡  are the static correction term and its corresponding generalized 

coordinate, respectively. Figure 4-2 illustrates the proposed shape function, where the 

normalized static displacement profile 𝜙 𝑥  and the first two sine terms 𝜙 𝑥  and 𝜙 𝑥  

are shown for both the fixed-fixed and the hinged-hinged cases of a sample cable. 

 

Fig. 4-2. Proposed shape functions for a damped cable (f-f: fixed-fixed; h-h: hinged-
hinged). 
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4.2.3. Mode Superposition Method (MSM) for a damped cable 

The matrix form of the equation of motion is derived by substituting Eq. (4-5) into Eq. (4-

1), then multiplying all terms by 𝜙 𝑥  and integrating over the cable length:  

𝑴 𝑞 𝑪 𝑞 𝑲 𝑞 𝐹 𝐹 𝑡 𝜙 𝑥  (4-11) 

where 𝑴 𝑚 𝑚 𝜙 𝑥 𝜙 𝑥 𝑑𝑥  is the modal mass matrix; 𝑪 𝑐

𝑐/𝑚 𝑴 is the modal damping matrix; 𝑲 𝑲 𝑲 𝑲  is the modal stiffness matrix, 

which consists of three stiffness sources, namely 𝑲 𝑘

𝜆 𝐻/𝐿 𝑚𝑔⁄ 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥  as the contribution from the 

additional cable tension due to its sag, 𝑲 𝑘 𝐻 𝜙″ 𝑥 𝜙 𝑥 𝑑𝑥

𝐻 𝜙′ 𝑥 𝜙′ 𝑥 𝑑𝑥  as the contribution from the cable tension and 𝑲 𝑘

𝐸𝐼 𝜙 𝑥 𝜙 𝑥 𝑑𝑥 𝐸𝐼 𝜙″ 𝑥 𝜙″ 𝑥 𝑑𝑥  as the contribution from the cable 

bending stiffness; 𝐹 𝑓 𝑓 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥  is the generalized external 

force; 𝐹 𝑡  is the time-dependent force in the damper; 𝜙 𝑥 𝜙 𝑥  is the 

vector of shape function amplitudes at the damper location; and 𝑞 𝑞 , 𝑞

𝑞  and 𝑞 𝑞  are the generalized modal acceleration, velocity and 

displacement vectors, respectively. To maintain the symmetry of the stiffness matrix, the 

order of differentiation of the integrands in 𝑲  and 𝑲  have been equalized by integration 

by parts and application of the corresponding boundary conditions (i.e. 𝜙 0 𝜙 𝐿 0, 

𝜙′ 0 𝜙′ 𝐿 0 (fixed-fixed) and 𝜙″ 0 𝜙″ 𝐿 0 (hinged-hinged)). This ensures 

the convergence of the MSM [96]. 
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The dynamic response of a damped cable can be determined using different approaches, 

with the damper being treated either as an external control device, or as an inherent element 

of the cable-damper system. In the former, the focus would be on the behaviour of the cable 

itself, and the effect of the damper is represented by a concentrated force acting on the 

cable at the damper location, which is the second term on the right-hand side of Eq. (4-11). 

This approach is applicable to the semi-active control devices, as well as to passive 

dampers when not only the damping and stiffness properties but also other nonlinearities 

and complexities, such as the damper support stiffness, need to be considered in the 

analysis. On the other hand, the inherent damper approach integrates the cable and the 

damper into a full system. By considering the mechanical model shown in Fig. 4-1 for the 

damper and its support, the time-dependent force generated by the damper can be expressed 

as: 

𝐹 𝑡 𝑘 𝑤 𝑥 , 𝑡 𝑢 𝑡 𝑐 𝑤 𝑥 , 𝑡 𝑢 𝑡  (4-12) 

Also, it is noticed that: 

𝐹 𝑡 𝑘 𝑢 𝑡  (4-13) 

which gives 𝑢 𝑡 𝐹 𝑡 𝑘⁄  and 𝑢 𝑡 𝐹 𝑡 𝑘⁄ . Substituting these two expressions 

into Eq. (4-12) yields: 

𝐹 𝑡 𝑘 𝑤 𝑥 , 𝑡 �̃� 𝑤 𝑥 , 𝑡 𝛼𝐹 𝑡  (4-14) 

where 𝑘 𝑘 1 𝑘 𝑘⁄⁄  is the modified damper stiffness, �̃� 𝑐 1 𝑘 𝑘⁄⁄  is 

the modified damper size, and 𝛼 𝑐 𝑘 𝑘⁄  is the time constant of the damper force. 

It is evident that for a rigid damper support with 𝑘 → ∞, Eq. (4-14) reduces to the explicit 

force-displacement relationship for NSD, i.e. 𝐹 𝑡 𝑘 𝑤 𝑥 , 𝑡 𝑐 𝑤 𝑥 , 𝑡 .  
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The mode superposition method can be used to obtain 𝑤 𝑥, 𝑡  by utilizing a numerical 

time-domain differential equation solver and the modal damping ratio can be estimated 

based on the free vibration response time history. However, the calculated damping ratio 

depends on the type and location of the external load, the location of the cable response 

measurement since the damping ratio is amplitude-dependent, and the method used for 

filtering the cable response for a specific mode. To avoid these dependencies and accelerate 

the process, an eigenvalue problem that governs the free vibration of the studied cable-

damper system can be solved directly to find the modal damping ratio. However, this 

approach requires the damper force to be explicitly defined as a function of the 

displacement field and its derivatives, whereas the damper force given by Eq. (4-14) is 

implicit. To find an explicit expression for the damper force, the term 𝐹 𝑡  on the right-

hand side can be replaced by the time derivative of the equation itself. Therefore, Eq. (4-

14) can be rewritten as: 

𝐹 𝑡 𝑘 𝑤 𝑥 , 𝑡 �̃� 𝛼𝑘 𝑤 𝑥 , 𝑡 𝛼�̃� 𝑤 𝑥 , 𝑡 𝛼 𝐹 𝑡  (4-15) 

Based on the practical ranges of the damping coefficient and damper support stiffness 

values in passive dampers, the time constant 𝛼 𝑐 𝑘 𝑘⁄  would be relatively small. 

Consequently, the term 𝛼 𝐹 𝑡  would also become negligible as 𝐹 𝑡  is not expected to 

be too large. By substituting Eq. (4-10b) into Eq. (4-15) and dropping 𝛼 𝐹 𝑡 , an 

approximate explicit form of Eq. (4-15) can be expressed as: 

𝐹 𝑡 𝝓𝒅 𝑘 𝒒 �̃� 𝛼𝑘 𝒒 𝛼�̃� 𝒒  (4-16) 

The equation of motion of the cable-damper system can now be derived by substituting Eq. 

(4-16) into Eq. (4-11), which gives: 
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𝑴𝒒 𝑪𝒒 𝑲𝒒 𝒇 (4-17) 

where 𝑴 𝑚 𝑴 𝛼�̃� 𝜙 𝑥 𝜙 𝑥 , 𝑪 �̃� 𝑪 �̃�

𝛼𝑘 𝜙 𝑥 𝜙 𝑥 , and 𝑲 𝑘 𝑲 𝑘 𝜙 𝑥 𝜙 𝑥  are the effective mass, 

damping and stiffness matrices, respectively, and 𝒇 𝑓 𝑓 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥  is the 

vector of generalized external force. If the damper is mounted on a rigid support (i.e. 𝑘 →

∞), the effective matrices reduce to 𝑴 𝑴, 𝑪 𝑪 𝑐 𝜙 𝑥 𝜙 𝑥 , and 𝑲 𝑲

𝑘 𝜙 𝑥 𝜙 𝑥 . 

The modal damping ratio and the natural frequency of the damped cable can be determined 

by applying the logarithmic decrement method to the free vibration response of the damped 

cable. In this approach, the model can be numerically excited by a simple harmonic load 

at a frequency in the proximity of that of the cable mode of interest. Upon removal of the 

excitation force, the cable vibrates freely. The forced and then free vibration response of 

the damped cable can be determined from Eq. (4-10b) using the MSM, where the proposed 

new set of shape functions are implemented either in Eq. (4-11) or if applicable, Eq. (4-

12), to find the generalized modal vector 𝑞  at each time step, followed by the subsequent 

substitution of shape functions and 𝑞  into Eq. (4-10b). The logarithmic decrement 

method can then be utilized to calculate the modal parameters. However, the modal 

damping ratio obtained in this method depends slightly on the excitation frequency and the 

location of the applied harmonic load. The excitation frequency can be updated iteratively 

to match the calculated natural frequency of the target mode. 

An alternative approach to find the modal parameters of a cable-damper system governed 

by Eq. (4-12) is to solve a complex eigenvalue problem. A linearized state-space form of 
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the eigenvalue problem would be more convenient for finding the complex eigenvalues 

using available numerical procedures. Assume 𝑞 𝜑 𝑒  for the free vibration 

response and substitute into the homogeneous form of Eq. (4-12). It yields the following 

complex eigenvalue equation with 2𝑛 solutions [96]: 

𝜂𝑨 𝜅 𝑩 𝜅  (4-18a) 

𝑨 𝟎 𝑴
𝑴 𝑪

     𝑩 𝑴 𝟎
𝟎 𝑲

 (4-18b) 

where 𝜂 𝜁𝜔 𝑖𝜔 1 𝜁  is the complex eigenvalue pair and 𝜅

𝜂𝜑 𝜑  is the corresponding eigenvector. The modal frequency and the modal 

damping ratio of the cable-damper system can be obtained by directly solving the complex 

eigenvalue problem described by Eq. (4-18), which are 𝜔 |𝜂| and 𝜁 𝑅𝑒 𝜂 /|𝜂|, 

respectively. The application of the Cholesky decomposition is a common approach to 

obtain the system eigenvalues  [97]. 

4.2.4. Brief review of existing approaches for analyzing cable dynamics 

Several numerical and analytical approaches have been proposed for evaluating the 

dynamic behaviour of a damped stay cable. Among these, the finite difference formulation 

(FD) by Mehrabi and Tabatabai [73] and the generalized analytical solution by Fujino and 

Hoang [71], both of which include the cable bending stiffness and cable sag effects, have 

been selected in this study for comparison purposes and will be briefly reviewed in this 

section. 

4.2.4.1. Cable discretization using FD method 

Mehrabi and Tabatabai [73] developed a FD formulation for evaluating the modal 

properties of a damped cable considering the effects of cable sag and cable bending 



85 
 

stiffness. For a discretized cable with 𝑛 internal nodes and 𝑁 𝑛 1 segments, assume 

the nodal free vibration response is in the form of 𝑤 𝑢 𝑒  in the homogeneous form 

of Eq. (4-1). The matrix form of the discretized cable can be expressed as the following 

eigenvalue equation: 

𝑝 𝑴 𝑝𝑪 𝑲 𝑢 0  (4-19) 

where 𝑝 𝜁𝜔 𝑖𝜔 1 𝜁  is the complex eigenvalue pair and 𝑢  is the 

corresponding eigenvector. It should be noted that Eq. (4-19) is the original second-order 

form of the eigenvalue problem which was presented earlier in a linearized state-space 

form by Eq. (4-18). By assuming a parabolic self-weight profile and utilizing the central 

finite difference formulation, the stiffness matrix 𝑲 becomes: 

𝑲

⎣
⎢
⎢
⎢
⎢
⎡
𝑄 𝑈 𝑊 0

𝑆 𝑈 𝑊
𝑆 𝑈

𝑆 ⋯
sym ⋮ ⋱

𝑄 ⎦
⎥
⎥
⎥
⎥
⎤

𝜆 𝐻𝑙
𝐿

𝑱 (4-20) 

where 𝑄 7𝐸𝐼/𝑙 2𝐻/𝑙 for the fixed-fixed cable and 𝑄 5𝐸𝐼/𝑙 2𝐻/𝑙 for the 

hinged-hinged cable, 𝑈 4𝐸𝐼/𝑙 𝐻/𝑙, 𝑊 𝐸𝐼/𝑙 , 𝑆 6𝐸𝐼/𝑙 2𝐻/𝑙, 𝑙 𝐿/𝑁 

and 𝑱 1  is the all-ones matrix. The mass and damping matrices are defined as 𝑴

𝑑𝑖𝑎𝑔 𝑚 𝑙,⋯ ,𝑚 𝑙,⋯ ,𝑚 𝑙  and 𝑪 𝑑𝑖𝑎𝑔 𝑐 𝑙,⋯ , 𝑐 𝑙,⋯ , 𝑐 𝑙 , respectively, of which 

𝑚  is the mass per unit length at node 𝑖 , and 𝑐  is the damping coefficient of a damper 

attached to the 𝑖  node. The magnitude of the damping coefficient and the stiffness of a 

viscous damper attached to a specific cable node can also be respectively added to the 

diagonal elements of 𝑪 and 𝜥 matrices that correspond to that node. Equation (4-19) is a 

complex eigenvalue problem that can be solved to obtain the modal frequencies and 
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damping ratios of the cable-damper system. The accuracy and computational cost of the 

FD method highly depends on the spatial discretization size and will be investigated in 

Section 4.3. 

4.2.4.2. Analytical solution for free vibration 

Two analytical models for the dynamic response of a damped cable were presented in 

Chapter 3 by considering a fixed-fixed (Eq. 3-6) and a hinged-hinged (Eq. 3-11) boundary 

condition for the cable. These equations can be numerically solved to obtain the complex 

wave number 𝛽 𝜔 𝑚/𝐻 and subsequently, the modal damping ratio 𝜁

Imag 𝛽 /|𝛽 |. 

4.3. Evaluation of the proposed MSM framework 

In the previous section, the MSM based on an enhanced set of shape functions was 

proposed for a damped cable with fixed-fixed or hinged-hinged boundary conditions. 

These shape functions consist of two parts, the first being the static correction term defined 

as the static displacement profile of a cable under a point load at the damper location, and 

the second part being the conventional/adapted sine functions depending on the boundary 

conditions. The objective is to provide an efficient control-oriented model for the dynamic 

response of a damped cable, which is required for the design and evaluation of passive or 

semi-active/active control schemes. In order to evaluate the performance of the proposed 

shape functions and compare with the available methods, a numerical example is presented 

in this section. 

A sample full-scale cable which has a length of 𝐿 122 m, a unit mass of 𝑚

51.8 kg/m, a chord tension of 𝐻 3150 kN, a flexural stiffness property of 𝐸𝐼
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2 10  N ⋅ 𝑚  and an axial stiffness property of 𝐸𝐴 2.44 10  N is considered. A 

viscous damper which has a damping coefficient of 𝑐 50 kN ⋅ s/m is attached at 𝑥

0.05𝐿 6.1 m. It is also assumed that 𝑘 0 and 𝑘 → ∞ (rigid damper support). First, 

the effect of static correction term on the computational efficiency of the MSM is studied 

for both the fixed-fixed and hinged-hinged end conditions. Next, the performances of the 

three different solution techniques, namely the MSM, the FD and the analytical approach, 

are compared in terms of their accuracy and efficiency. 

4.3.1. Dynamic response based on the proposed shape functions 

4.3.1.1. Effect of static correction 

The effect of including the cable static displacement profile (static correction) on the 

computational efficiency of the proposed dynamic model is studied in this section. A 

convergence criterion is required to compare the efficiency of different computational 

models in terms of their convergence rate. The following criterion is defined based on the 

relative error between the current and the target response values: 

𝐸𝑟
|𝑌 𝑌 |

|𝑌 |
𝐸𝑟  (4-21) 

where 𝑌 is the response value at the current discretization size (the number of mode shapes 

or cable nodes considered in the simulation), 𝑌  is the asymptotic response value 

obtained from a sufficiently large discretization, 𝐸𝑟 is the relative error between the current 

and the asymptotic values and 𝐸𝑟  is the acceptable error limit. Equation (4-21) is 

defined on the basis that in the MSM, the measured response would converge to an 

asymptotic value as the number of modes (shape function terms) included in the analysis 

increases. The same trend is also observed in the FD method with an increased 
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discretization (i.e. more internal nodes). To observe more sizeable difference between the 

studied methods in terms of accuracy and computational cost, the error limit in the current 

example is taken as 𝐸𝑟 5 10 . 

The complex eigenvalue problem defined in Eq. (4-18) is solved using MATLAB to 

calculate the first modal damping ratio and the fundamental frequency of the sample 

damped cable with and without including the static correction. Figures 4-3 and 4-4 show 

the convergence rate of the fixed-fixed and the hinged-hinged cable, respectively. As 

illustrated in Fig. 4-3(a) and 4-3(b), for a fixed-fixed cable, when the static correction is 

included in the MSM, the required number of sine terms to meet the convergence criterion 

(𝐸𝑟 5 10 ) reduces from 128 to 23 terms for the first modal damping ratio and 

remains unchanged as 19 terms for the fundamental frequency. In this case, the target 

values of the first modal damping ratio and the fundamental frequency to the third decimal 

points are 1.923% and 1.045 Hz, respectively. 

Figure 4-4 shows the results obtained for the hinged-hinged cable, of which the target 

values of the first modal damping ratio and the fundamental frequency to the third decimal 

points are 2.340% and 1.036 Hz, respectively. It is observed that by considering the static 

correction, the required number of sine terms to satisfy the convergence criterion reduces 

from 113 to 3 terms for the first modal damping ratio and from 16 to 1 term for the 

fundamental frequency. Therefore, the static correction can substantially improve the 

convergence rate, especially in the case of the hinged-hinged cable. The number of 

considered shape function terms (or equivalently, the size of the system matrices, 𝑴, 𝑪 and 

𝑲) is a dominant factor for the computational efficiency of dynamic simulations. 
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4.3.1.2. Comparison between different solution techniques 

As discussed earlier, the dynamic behaviour of a damped cable can be evaluated by either 

applying the logarithmic decrement method to its free vibration time history, which is 

obtained from the MSM; or directly solving the complex eigenvalue problem associated 

 

(a) 

 

(b) 

Fig. 4-3. Effect of static correction term on the convergence rate of the first modal 
properties of a fixed-fixed cable. (a) Fundamental frequency, (b) First modal damping 

ratio. 
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with the cable-damper system. The accuracy and efficiency of these two different solution 

techniques are compared in this section. 

To generate the free vibration time history of the fixed-fixed sample cable, a harmonic load 

with an amplitude of 𝑃 1 kN and a frequency of 𝑓 1.05 Hz is applied at 𝐿/10 (𝐿 is 

 

(a) 

 

(b) 

Fig. 4-4. Effect of static correction term on the convergence rate of the first modal 
properties of a hinged-hinged cable. (a) Fundamental frequency, (b) First modal 

damping ratio. 
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the cable length) for 100 seconds and then removed. The subsequent cable free vibration 

response at mid-span is captured for 50 seconds. Since the excitation frequency of the 

harmonic load is chosen to be close to the first modal frequency of the fixed-fixed cable, 

the obtained modal parameters would pertain to the first mode. Figure 4-5 shows the 

response time history of a fixed-fixed damped cable. The simulation is performed in the 

MATLAB/Simulink environment using a fixed integration time step of 1 millisecond. The 

envelope of the free vibration response is obtained by fitting an exponential curve to the 

displacement peaks. The logarithmic decrement method is then applied to determine the 

damping ratio of the excited mode, and the corresponding modal frequency can be 

computed from the response time history. 

Figure 4-6 shows a scatter plot of the fundamental frequency and the first modal damping 

ratio obtained from the logarithmic decrement method (𝑥 𝑎𝑥𝑖𝑠) and the complex 

eigenvalue equation (𝑦 𝑎𝑥𝑖𝑠) for the studied fixed-fixed damped cable. The results show 

that as the number of shape function terms increases, the logarithmic decrement method 

yields a slightly higher first modal damping ratio since the points eventually fall slightly 

below the 45° line, possibly due to the presence of numerical damping and frequency 

distortion [98], while the fundamental frequencies calculated from these two methods are 

almost the same. This set of results suggest that both approaches can be used to determine 

the modal properties of the studied cable with the same level of accuracy. Thus, the 

selection of the solution technique would mainly depend on the mechanical model of the 

damper. If factors other than the damping property and stiffness of the damper need to be 

considered in describing the damper effect, such as the damper support stiffness, the MSM 

combined with the logarithmic decrement method would be preferred. Otherwise, solving 
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the complex eigenvalue problem would be a suitable choice, since it would be 

computationally more efficient without performing the full response time-history 

simulation. In addition, since there would be no need to introduce external excitations, the 

possible discrepancies in the predicted modal parameters due to differences in the 

excitation force characteristics could be avoided. Due to its closed-form nature, the 

eigenvalue solution is advantageous compared to the numerical integration as the latter 

may introduce approximation errors depending on the time step size. In the current 

example, if a total of 60 shape function terms are used in the analysis, the computation time 

would increase from 0.2 second to 14 second if the MSM plus the logarithmic decrement 

methods are used instead of the complex eigenvalue approach. Nonetheless, a time history 

simulation would be inevitable for the scenario of complicated passive damper models such 

as the one shown in Fig. 4-1 or in the case of semi-active/active dampers. 

 

Fig. 4-5. Response time history of a fixed-fixed damped cable excited by a harmonic 
load. 
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4.3.2. Comparison with existing methods 

Figure 4-7 depicts the numerical efficiency of different methods for evaluating the modal 

parameters of a fixed-fixed damped cable, including the MSM with the shape functions 

proposed in this study, the FD method by Mehrabi and Tabatabai [73] and the analytical 

 
(a) 

 
(b) 

Fig. 4-6. Comparison of the modal parameters of a fixed-fixed damped cable obtained 
from logarithmic decrement method and complex eigenvalue equation: (a) 

Fundamental frequency, (b) First modal damping ratio. 
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model by Fujino and Hoang [71]. In Fig. 4-7(a), the fundamental frequency obtained from 

the FD method converges to the analytical value when the cable is discretized by a 

relatively large number of nodes, i.e. 260 nodes. It should be noted that both the FD method 

and the analytical model assume a parabolic self-weight profile for the fixed-fixed cable. 

Thus, it is observed that the result obtained from the FD method would eventually coincide 

with the analytical value of 𝑓 1.0458 Hz after including sufficiently large number of 

nodes. On the other hand, the result of the MSM using the proposed shape functions 

converges with only 20 terms, as mentioned earlier in Section 4.3.1.1, to a slightly lower 

fundamental frequency of 𝑓 1.0454 Hz. This minor difference is believed to stem from 

the parabolic self-weight profile assumption adopted in the analytical model. To evaluate 

this assumption, the stiffness property of the cable can be considered. By substituting Eq. 

(4-4) into Eq. (4-1) and grouping the terms representing the cable stiffness, the total cable 

stiffness, 𝐾 , is defined as : 

𝐾 𝐸𝐼
𝑑 𝑤
𝑑𝑥

𝐻
𝑑 𝑤
𝑑𝑥

𝐸𝐴
𝐿

𝑧″𝑤𝑑𝑥 𝑧″ (4-22) 

In the case of a parabolic shape of the self-weight profile 𝑧 𝑥 , 𝑧″ 𝑥  would always be 

positive, whereas for the actual self-weight profile of a fixed-fixed profile, 𝑧″ 𝑥  would be 

negative near the cable supports and positive elsewhere. According to Eq. (4-22), the total 

stiffness property of the cable would be lower in the latter case and therefore, the modal 

frequency would be slightly lower. As can be observed from Fig. 4-7(a), the amount of 

such discrepancy is only 0.04%. Thus, the error induced by assuming a parabolic self-

weight profile is negligible. 
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Besides, it can also be seen from Fig. 4-7(a) that the convergence trend in the FD method 

and the MSM is different. The FD method converges ascendingly to the analytical value, 

whereas the MSM converges in a descending manner. This phenomenon is related to how 

the system mass matrix is defined and formed. If a lumped mass model is used, as in the 

case of the FD method, the obtained frequency tends to converge ascendingly; whereas if 

a consistent mass model is used, as in the case of the MSM, it converges in a descending 

mode. This phenomenon has been reported and investigated analytically by Meirovitch and 

Baruh [99] and Chan et al. [100]. 

Figure 4-7(b) depicts the convergence rate of the first modal damping ratio of the studied 

cable. It is observed that the results yielded from the FD method converges very slowly to 

the analytical result. If the analytical result is considered as the target value, the 

convergence criterion defined in Eq. (4-21) cannot be satisfied even for a discretization of 

2000 nodes. Furthermore, the difference between the first modal damping ratio determined 

by the MSM (1.923%) and the analytical approach (1.914%), which arises from the 

assumption of the parabolic self-weight profile in the latter, is about 0.45% of the analytical 

value. This suggests that the assumption of the parabolic self-weight profile made in the 

analytical model by Fujino and Hoang [71] is acceptable for design applications since it 

results in a slightly lower cable damping ratio and is thus conservative. 

Figure 4-8 shows the convergence rate of the modal parameters of a hinged-hinged damped 

cable based on the studied methods. The results show that the MSM using the proposed 

shape functions manifests a superior performance in determining both the fundamental 

frequency and the first modal damping ratio (𝜁 ) compared to the FD method. The 

fundamental frequency (𝑓 ) converges to the asymptotic value of 1.0363 Hz by using only 
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2 shape function terms in the MSM while the convergence criterion is satisfied with 60 

nodes in the FD method. Likewise, 𝜁  converges to its asymptotic value (2.340%) by using 

 

(a) 

 

(b) 

Fig. 4-7. Convergence rate of the modal parameters of a fixed-fixed damped cable 
based on different methods. (a) Fundamental frequency, (b) First modal damping 

ratio. 
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only 4 shape function terms in the MSM, whereas in the FD method, the convergence 

criterion would not be satisfied even for an extremely fine mesh (2500 nodes). 

 
(a) 

 
(b) 

Fig. 4-8. Convergence rate of the modal parameters of a hinged-hinged damped cable 
based on different methods: (a) Fundamental frequency (b) Damping ratio. 
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Tables 4-3 and 4-4 list the details of the numerical simulation performed in this section for 

the fixed-fixed and the hinged-hinged cables, respectively. The number of included 

terms/nodes, the critical time step, the simulation time and the level of accuracy obtained 

in each simulation case are given. The computational efficiency of the proposed shape 

functions and the FD method is evaluated based on the results of a forced vibration 

simulation, of which a harmonic force is applied to the studied cable at 𝐿/10 for 100 

seconds with an amplitude of 𝑃 1 kN and a frequency of 𝑓 1.05 Hz. As described in 

4.2.1.1, the acceptable error limit is defined as 𝐸𝑟 5 10 . The maximum 

allowable time step to prevent the instability of the computations (i.e. the critical time step) 

is listed in the second column of Tables 4-3 and 4-4. The critical time step decreases as the 

number of terms/nodes increases [101]. 

As can be seen from Table 4-3(a), for the studied fixed-fixed damped cable, the first modal 

damping ratio would satisfy the convergence criterion if 24 terms of the proposed shape 

Table 4-3. Computational efficiency of different methods for calculating the first 
modal damping ratio of a fixed-fixed damped cable. 

(a) Current study 

Number of 
terms 

Critical time 
step (second) 

Relative 
simulation time 

Damping 
ratio 𝜁  %  

𝐸𝑟 (%) 
[Eq. (4-21)] 

5 0.03 0.32 2.010 4.53 
10 0.01 0.64 1.940 0.91 
24 0.009 1 (0.35 second) 1.924 0.04 (conv.) 
60 0.002 6.8 1.923 0 

 

(b) FD method 

Number of 
nodes 

Critical time step 
(second) 

Relative simulation 
time 

Damping ratio 
𝜁  %  

𝐸𝑟 (%)  
[Eq. (4-21)] 

100 0.002 12 1.952 1.97 
180 0.0008 59 1.923 0.46 
380 0.0001 1943 1.912 0.12 
600 0.00008 9009 1.911 0.16 

2000 N/A N/A 1.913 0.08 
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functions are considered, and the simulation can be completed in 0.35 second. For a clearer 

comparison, the simulation time of the rest of the cases in Tables 4-3(a) and 4-3(b) are 

normalized to this reference computational time of 0.35 second, and shown in the third 

column of both tables as the “relative simulation time”. To calculate the relative error 

according to Eq. (4-21), which is given in the last column, the asymptotic first modal 

damping ratio is used as the target value. Table 4-3(b) lists the numerical simulation 

information of the FD method in five different discretization meshes. In this case, the target 

value is the damping ratio obtained from the analytical model. Based on these results, even 

for a space discretization of 2000 nodes the error is still higher than 5 10 . 

Table 4-4 presents a comparison of the simulation results for the hinged-hinged damped 

cable. The target value in both methods is the asymptotic value of the first modal damping 

ratio obtained from the MSM. Results show that only 4 terms of the proposed shape 

functions are needed in the MSM to achieve the convergence and the simulation took only 

Table 4-4. Computational efficiency of different methods for calculating the first 
modal damping ratio of a hinged-hinged damped cable. 

(a) Current study 

Number of 
terms 

Critical time step 
(second) 

Relative simulation 
time 

Damping ratio 
𝜁  %  

𝐸𝑟 (%)  
[Eq. (4-21)] 

2 0.05 0.84 2.349 0.39 
3 0.05 0.88 2.342 0.10 
4 0.04 1 (0.23 second) 2.340 0.02 (conv.) 

20 0.01 4 2.340 0 
 

(b) FD method 

Number of 
nodes 

Critical time step 
(second) 

Relative simulation 
time 

Damping ratio 
𝜁  %  

𝐸𝑟 (%)  
[Eq. (4-21)] 

100 0.002 35 2.288 2.24 
180 0.0008 131 2.313 1.13 
520 0.0001 6896 2.332 0.34 
600 0.00008 13804 2.333 0.29 

2500 N/A N/A 2.338 0.06 
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0.23 second. In the FD method, convergence did not occur even if 2500 nodes were used 

for cable discretization. By increasing the acceptable error margin to 𝐸𝑟 0.004, 𝜁  

would converge with only 2 terms of the proposed shape function in the MSM while it 

needs 460 nodes to converge in the FD method. 

Figures 4-9 and 4-10 portray the relation between the viscous damping coefficient, 𝑐, and 

the first modal damping ratio, 𝜁 , of a fixed-fixed damped cable and a hinged-hinged 

damped cable by different approaches, respectively. For the fixed-fixed case in Fig. 4-9, 

such a relation is predicted by three methods, i.e. the MSM with 24 terms of the shape 

functions proposed in the current study, the FD formulation by Mehrabi and Tabatabai [73] 

using 600 nodes in cable discretization, and the analytical approach by Fujino and Hoang 

[71]. It can be observed from Fig. 4-9 that the 𝜁 𝑐  curves obtained from these three 

different approaches agree well with each other, with 𝜁  predicted by the current study 

slightly higher than the other two. This is consistent with the finding in Fig. 4-7(b). In 

 

Fig. 4-9. Prediction of damper performance for a fixed-fixed damped cable. 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6
Current Study
FD [73]
Analytical [71]

1 1.2 1.4
0.47

0.48

0.49



101 
 

particular, the minor discrepancy between the current result and the analytical approach is 

believed to be attributed to the parabolic self-weight cable profile assumed in the latter. 

Further, it is noteworthy that the analytical method [71] can only be used to determine the 

modal damping ratios and the frequencies of the studied damped cable, but not its dynamic 

response. 

Similarly, Fig. 4-10 illustrates the 𝜁 𝑐  relation for a hinged-hinged cable determined 

by two different methodologies, namely the MSM and the FD method [73]. In the MSM, 

either 4 terms of the proposed shape functions or 100 terms of those introduced by Johnson 

et al. [57] were used, whereas 600 nodes were considered for cable discretization in the FD 

method. Results show that while the predictions by the current study and the FD method 

agree well, with the MSM results slightly higher than the FD’s, the 𝜁 𝑐 curve determined 

from the Johnson’s formulation deviates considerably from the other two in terms of the 

pattern and the magnitude. The maximum first modal damping ratio yielded by this 

method, i.e. 𝜁 , 5.13% at 𝑐 38.9 kN ⋅ s/m, is almost 1.9 times the value obtained 

 

Fig. 4-10. Prediction of damper performance for a hinged-hinged damped cable. 
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by the current study, which is 𝜁 , 2.75% and occurs at a smaller damping coefficient 

of 𝑐 86.4 kN ⋅ s/m. The formulation used in [57] ignores the effect of cable bending 

stiffness and it may explain this discrepancy. Besides, by comparing Fig. 4-10 with Fig. 4-

9, it is found that the maximum achievable first modal damping ratio of a hinged-hinged 

cable (𝜁 , 2.75%) is approximately 13% higher than its fixed-fixed counterpart 

(𝜁 , 2.44%). Experimental studies show that the behaviour of a real stay cable on 

site is generally more agreeable with that of a fixed-fixed cable [66]. Therefore, if no 

adequate information is available regarding the actual constraints at the cable anchorage, 

it is recommended to assume a fixed-fixed boundary condition when designing an external 

damper to suppress cable vibration in order to ensure a conservative and safe design. 

4.3.3. Application to semi-active/active control 

In this section, the performance of the proposed dynamic model for application in semi-

active/active control is examined. The case study in Section 4.3.2 is extended to design an 

optimal linear-quadratic regulator (LQR) for mitigating the vibrations of the sample 

hinged-hinged cable subjected to a harmonic excitation. The LQR scheme is an inherently 

stable closed-loop optimal gain which regulates the controlled plant based on full state 

 

Fig. 4-11. Block diagram of the LQR controller. 
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feedback. In this example, the 𝑸 and 𝑹 matrices of the LQR controller [68] are defined as 

𝑸 𝑑𝑖𝑎𝑔 𝑲 𝑴  and 𝑅 10 , where 𝑴 and 𝑲 are respectively the cable mass and 

stiffness matrices defined by Eq. (4-11), and the actuator is assumed to be ideal (i.e. able 

to exactly generate the required control force) and placed at 0.05𝐿 from the cable 

anchorage. Figure 4-11 shows the block diagram of the LQR controller. The effect of time 

delay is included in the control system by passing the control force through a unit step 

delay block, as shown in the figure. The hinged-hinged cable is subjected to a harmonic 

point load with an amplitude of 𝑃 1 kN and a frequency of 𝑓 1.02 Hz at 𝐿/10 for 20 

seconds. Then the load is released so that the cable vibrates freely for another 20 seconds. 

The logarithmic decrement method is then utilized to calculate the first modal damping 

ratio of the controlled cable, based on the free vibration time history. In addition, the 

integration time step of the simulations is limited to 1 millisecond to meet the requirements 

of digital control implementation [102]. Therefore, the above simulation with a time step 

of 1 millisecond would perform 40,000 loops of computation within 40 seconds. 

As before, the performance of the computational models can be assessed based on the 

accuracy of the first modal damping ratio obtained from each one, namely the MSM and 

the FD method. The convergence rate of the first modal damping ratio is evaluated similar 

to the previous section. The MSM runtime is selected as the normalization time reference, 

i.e. 𝑡 , 1.09 s 1 unit. It is found that the convergence (𝐸𝑟 5 10 ) is 

achieved by using 10 shape function terms in the MSM while each simulation loop takes 

relatively 𝑡 , 2.5 10  unit to complete. The maximum discretization size that 

can be defined in the FD method without violating the integration time step limit (0.001 

second), however, is 80. By using 80 nodes in the FD method, there would be a 1.3% error 
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in estimation of the first modal damping ratio and also, the time required to perform each 

simulation loop would increase to 𝑡 , 2.68 10  unit which is approximately 10 

times higher than the MSM. Figure 4-12 shows the time history of the cable displacement 

at the mid-span with and without the LQR control, where the results of both MSM and FD 

method are shown for the controlled response. It is observed that the control efficiency in 

the FD method is affected by a less accurate prediction of the cable states required for the 

LQR. 

4.4. Summary 

In this chapter, a control-oriented model for simulating the dynamic response of a stay 

cable equipped with a transverse damper/actuator has been developed based on the mode 

superposition method with enhanced shape functions. These shape functions deal with both 

the hinged-hinged and the fixed-fixed boundary condition and incorporate the effects of 

cable sag and cable bending stiffness. They consist of two parts: the static correction term, 

 

Fig. 4-12. Time history of cable displacement at the mid-span. 
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which is the static displacement of a cable subjected to a point load at the damper location 

and explicitly derived from the solution of the governing integro-differential equation; and 

sinusoidal terms which are modified for the fixed-fixed cable to adapt to the boundary 

conditions. The accuracy and computational efficiency of the proposed model have been 

evaluated through numerical examples for both passive and semi-active/active control 

schemes and compared to other existing approaches, namely the FD method by Mehrabi 

and Tabatabai [73], and the analytical approach by Fujino and Hoang [71]. The main 

findings of the current chapter are summarized as: 

1. The enhanced shape functions, which consist of the static correction term (the exact 

static displacement profile of the damped cable) and the adapted sinusoidal terms, 

significantly improve the accuracy and efficiency of the mode superposition 

method in determining the dynamic response of a damped cable with both the fixed-

fixed and hinged-hinged boundary conditions. 

2. The proposed computational model based on MSM does not require spatial 

discretization and is therefore, more efficient and robust in comparison with the FD 

method in terms of the necessary number of modes to achieve good convergence 

rate at a reduced computational cost. This superior performance is confirmed in 

both the passive and the semi-active/active control schemes. Results show that the 

MSM with enhanced shape functions is more adapted for the design of semi-active 

and active dampers. 

3. The modal properties of a damped/controlled cable can be found either by using the 

logarithmic decrement method or by solving the complex eigenvalue equation of 
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the system. It is found that both methods yield agreeable results and hence can be 

used accordingly based on their applicability. 

4. Compared to the exact self-weight profile, the parabolic profile assumption made 

for a fixed-fixed cable would result in a slightly higher modal frequency estimation 

but lower damping ratio. However, the discrepancies are negligible. Thus, the 

parabolic self-weight profile assumption is deemed acceptable for design purposes, 

even in the case of a fixed-fixed cable. 

5. It is recommended to consider a fixed-fixed end condition for predicting the 

damping of a damped/controlled cable when no reliable information is available 

regarding the level of rotational fixity in the cable anchorage, since the achievable 

damping ratio of a fixed-fixed cable is lower than its hinged-hinged counterpart. 
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Chapter 5 Passive Negative Stiffness Dampers 

 

5.1. Introduction 

The urgent need of efficient, robust and cost-effective passive damping devices has led to 

the recent development of negative stiffness dampers (NSD). As reviewed in Chapter 2, 

the beneficial effect brought by the negative stiffness was initially observed in building 

vibration control systems. In particular, the negative stiffness in the force-displacement 

response of the base isolators optimized by active controllers resulted in improved system 

behaviour [58]. Iemura and Pradono [103] demonstrated that the existence of pseudo-

negative stiffness in the hysteresis loop of variable-orifice dampers would enhance their 

effectiveness to mitigate seismic response of full-size cable-stayed bridges. The idea of 

negative stiffness damper was also adopted in stay cable vibration control systems. Li et 

al. [104] investigated the negative stiffness characteristics of active and semi-active cable 

control schemes both analytically and numerically by introducing a pseudo-viscoelastic (P-

VE) damper with negative stiffness attached to a taut cable. Weber and Distl [77] 

approximated the control force characteristics of a semi-active clipped linear-quadratic 

regulator (LQR) by using collocated viscous damping with negative stiffness (VDNS) for 

controlling multi-mode cable vibrations. In parallel, several passive NSD specimens were 

created for stay cable vibration control by using compressed springs [64,65] and a 

combination of static and moving magnets [63], where the efficiency of the latter was 

experimentally confirmed [66] and showed to be comparable to that of an active control 

scheme [68].  
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To improve the current understanding of NSD features and characteristics, this chapter will 

first provide a physical interpretation for the observed superior damping performance of 

NSD compared to conventional passive viscous dampers. Next, the problem of NSD 

stability will be investigated in more detail by extending the discussion presented in 

Chapter 3. Finally, analytical design relationships and practical design aids will be 

developed to optimize NSD for controlling single-mode cable vibrations and to design 

NSD for providing a specified modal damping ratio. In the current chapter, the discussion 

will be focused on the rigid damper support condition. The effect of the damper support 

stiffness on the performance of a NSD will be examined in more detail in the next chapter. 

5.2. NSD performance 

To better understand the superior performance of a negative stiffness damper, the 

characteristics of the control forces generated by a NSD and a PSD are compared. Figure 

5-1 illustrates the variation of the damper force, which consists of the dashpot force and 

the spring force, within one cable oscillation cycle and the corresponding hysteresis loops 

of a NSD and a PSD. The hysteresis loop of a ZSD is also shown in the figure for 

comparison. A complete vibration cycle of a cable can be divided into four zones (I to IV) 

based on the direction of the cable displacement and velocity at the damper location, 

namely 𝑢 𝑡  and 𝑢 𝑡 . In zones I and III, the cable moves away from the static equilibrium 

position, while in zones II and IV, it moves backwards toward its original position. Assume 

a rigid damper support, the direction of the dashpot and spring forces generated by the 

damper in each zone are given in Fig. 5-1. The dashpot force, 𝐹 , resists the cable motion 

and is thus always in the opposite direction of 𝑢 𝑡  for both the NSD and PSD. The 

direction of the spring force, 𝐹 , is the same as that of the cable displacement 𝑢 𝑡  for 
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NSD but opposite for PSD. The total resistive force, 𝐹 , is the resultant of the dashpot and 

spring forces. 

In zones I and III, the total NSD and PSD resisting forces are equal to 𝐹 𝐹 𝐹  

and 𝐹 𝐹 𝐹 , respectively, whereas in zones II and IV, the total NSD and PSD 

forces respectively become 𝐹 𝐹 𝐹  and 𝐹 𝐹 𝐹 . Thus, the NSD would 

produce less total resisting force in zones I and III during which the cable moves away 

from the static equilibrium position and therefore, allows the cable to move further away 

from this position. In contrast, the PSD would impose greater resistance to the cable motion 

in zones I and III due to a larger 𝐹  and thus results in a smaller cable displacement at the 

damper location than the NSD case. This behaviour can be observed in the hysteresis loop 

of the NSD and PSD. As shown in Fig. 5-1, the area enclosed by the NSD hysteresis loop 

is greater than those of the other two cases due to the increased cable displacement at the 

damper installation location (i.e. damper stroke). Therefore, a NSD is able to absorb more 

 

Fig. 5-1. Control force generated by typical positive and negative stiffness dampers 
during a cable vibration cycle. 
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kinetic energy from an oscillating cable and offer better control performance in comparison 

with a PSD and a ZSD. In the case of non-rigid damper support with finite stiffness, the 

impact of the support flexibility on the damper behaviour requires further investigation and 

will be discussed in Chapter 6. 

5.3. NSD stability 

An asymptotic design formula was derived in Chapter 3 (Eq. (3-15)) for estimating the 

modal damping ratio provided by a passive viscous damper attached to a stay cable. By 

assuming a rigid damper support, this equation can be rewritten by defining the auxiliary 

normalized parameters as follows: 

𝜎
1 𝛼 𝑞

𝜂
𝑅 𝑛𝜋𝜂 𝑋

𝑘 1 𝜂⁄ 𝑛𝜋𝜂 𝑋
 (5-1) 

where 𝜎 𝜁 𝑥 𝐿⁄⁄  is the normalized cable damping ratio of mode 𝑛; 𝑋

𝑥 𝐿⁄ 𝑐 √𝐻𝑚⁄  is the dimensionless damper size; 𝜂 1 𝑞 0.5 𝛼 𝑟𝑞  is the 

factor associated with cable bending stiffness, with 𝑞 1 𝑒 𝑟⁄ , 𝑟

𝑥 𝐿⁄ 𝐸𝐼 𝐻𝐿⁄⁄  and 𝛼  is the boundary condition factor defined by Eq. (3-35). 

According to Eq. (5-1), 𝜎  is not only a function of the mechanical and geometric 

characteristics of the cable, which includes mass, length, chord tension, inclination angle, 

flexural rigidity, and sag, but also that of the engineering parameters associated with the 

NSD, i.e. installation location, damper size, and damper stiffness. Therefore, for a given 

cable, the desired NSD performance can be achieved by properly selecting these NSD 

parameters. 
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Observing the term 𝑘 1 𝜂⁄  in the denominator of Eq. (5-1), it is clear that the 

damping ratio is a function of 𝑘  and would be considerably affected by its sign. When 𝑘  

is positive, the damping ratio would decrease if 𝑘  increases and therefore, a positive 

stiffness damper (PSD) would yield a lower damping ratio compared to a zero-stiffness 

damper (ZSD). In contrast, the presence of a negative 𝑘  would result in an increase in the 

damping ratio. The stronger the negative damper stiffness is, the more it would help to 

dissipate system energy, which is reflected by a higher damping ratio. This trend continues 

until 𝑘  reduces to 1 𝜂⁄ , of which the damping ratio would become a function of 1 𝑋⁄  

and approach to infinity when 𝑋 tends to zero, i.e. 𝑋 → 0. Based on the definition of the 

dimensionless damper size 𝑋 given by 𝑋 𝑥 𝐿⁄ 𝑐 /√𝐻𝑚, since the damper installation 

location 𝑥  cannot be zero, and the cable length 𝐿, the chord tension 𝐻, and the unit mass 

𝑚 all have definite values, 𝑋 would become zero only when the damper damping 

coefficient 𝑐  is zero. Physically, it indicates that the presence of negative damper stiffness 

tends to reduce the overall stiffness of the cable-damper system. If the stiffness of a NSD 

is selected to be 𝑘 1 𝜂⁄  and its damping capacity is fully removed (i.e. 𝑐 0), then 

the negative damper stiffness would fully counteract the inherent positive stiffness of the 

cable at the damper location and lead to an instability of the damped cable. In other words, 

the condition 𝑘 1 𝜂⁄  would cause a system instability only if 𝑐 0. Otherwise, it 

would result in a system with no damping (𝜁 0). Therefore, 𝑘 1 𝜂⁄  is a necessary 

condition for the occurrence of NSD instability and has been used to express the allowable 

negative stiffness of a NSD as [61,67]: 
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𝑘
1
𝜂

 (5-2) 

The NSD stability criterion defined by Eq. (5-2) takes into account the effect of the cable 

bending stiffness. Therefore, it can be considered as a generalized form of the theoretical 

NSD stability limit previously introduced by Li et al. [61] and revisited in [67,105] for the 

special case of a taut non-flexural cable. If we assume a case of taut cable, i.e. 𝜂 1, Eq. 

(5-2) would reduce to 𝑘 𝐻/𝑥 , which is equivalent to the criterion derived in [61]. 

For a given cable, the minimum allowable negative stiffness of a NSD depends on the 

damper installation location 𝑥 , the cable bending stiffness 𝐸𝐼, the cable length 𝐿 and the 

cable chord tension 𝐻. Here, "minimum" means the most negative value allowed for 

damper stiffness (i.e. farthest from zero on the negative side). 

5.4. NSD design for single-mode cable vibration control 

5.4.1. Three-dimensional damper performance surface 

The dynamic behaviour of a damped cable system has been studied in Chapter 3. It was 

shown that by assuming low cable bending stiffness and linear cable behaviour, the 𝑛 ℎ 

modal damping ratio of the damped cable, 𝜁 , is governed by Eqs. (3-15) and (3-33). These 

equations take into account the stiffness of the damper and can be used to either design a 

new NSD or to evaluate the efficiency of an existing one. When designing a NSD mounted 

on a rigid damper support, the modal damping ratio defined in Eq. (3-15) can be rewritten 

by isolating the sag effect in the following form: 

𝑌
𝑅 𝑛𝜋𝜂 𝑋

1 𝜏 𝑛𝜋𝜂 𝑋
 (5-3) 
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where 𝑌 𝜁 𝑥 𝐿⁄ 𝑅⁄  is the normalized 𝑛 ℎ cable modal damping ratio; 𝑋

𝜂 𝑥 𝐿⁄ 𝑐 √𝐻𝑚⁄  is the modified damping parameter; 𝑅 1 𝛼 𝑞 𝜂 ; and 𝜏

𝑘 𝑘⁄  is the NSD stiffness ratio; 𝑘  is the stiffness of a NSD; 𝑘 𝐻 𝑥 𝜂⁄  is 

the pole of the integrated stiffness coefficient, 𝐶 , and is the lowest negative stiffness of 

the NSD that defines its stability limit (Eq. (5-2)). In the case of a NSD, 𝜏 varies between 

0 (zero-stiffness damper) and 1 (stiffness of a NSD reaches its stability limit). 

In Fig. 5-2, the variation of the normalized cable modal damping ratio of an arbitrary mode 

𝑖, 𝑌 , as a function of the modified damping parameter, 𝑋, and the NSD stiffness ratio, 𝜏, is 

portrayed in the form of a three-dimensional damper performance surface. In this figure, 

the two horizontal axes 𝜏 and 𝑋 define the NSD design domain, which describes 

respectively the damper stiffness and the damper size; the vertical axis indicates the 

 
Fig. 5-2. Three-dimensional damper performance surface for an arbitrary mode. 
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damping capacity of a NSD. For small values of 𝑋 the damping ratio increases with 

increasing 𝜏 and approaches infinity at 𝜏 → 1. This suggests that although introducing more 

negative stiffness into a NSD would enhance its performance, when the stiffness reaches 

the stability limit 𝑘 , a NSD would manifest an unstable behaviour. As 𝑋 increases, the 

sensitivity of the modal damping ratio to the NSD stiffness ratio, 𝜏, would gradually 

decrease. Referring to Fig. 5-2, when 𝑋 0.6, the maximum achievable normalized 

damping ratio, 𝑌 , , is less than 0.5 independently of 𝜏. 

An interesting feature of the damper performance surface is its smoothness and continuity. 

The first derivatives of 𝑌  with respect to 𝑋 and 𝜏 are continuous in the design domain, 

except for the instability point at 𝜏 → 1 and 𝑋 → 0. This important property ensures the 

damper behaviour to be consistent and its optimization is feasible. Besides, the intersection 

of the damper performance surface with any 𝜏-plane would result in a curve defining the 

relation between the modified damping parameter and damping ratio of a NSD at a given 

stiffness ratio 𝜏; whereas, its intersection with any 𝑌 -plane would yield a curve describing 

the stiffness and size combination of a NSD to achieve a required damping ratio of 𝑌 . It is 

worth to note that these two types of curves have only one single extremum point. All these 

unique attributes associated with the damper performance surface allow the possibility to 

develop a systematic design approach for NSD to suppress single-mode cable vibrations. 

The NSD performance surface is illustrated in Fig. 5-2 for the 𝑖  mode over the ranges of 

0 𝑌 1.5, 0 𝜏 1 and 0 𝑋 1. This surface can be applied to two typical design 

scenarios of a damper. The first common design scenario is to choose the size of a damper 

to maximize the energy dissipation capacity of the damped cable when the NSD stiffness 

ratio, 𝜏, is determined by other factors such as the manufacturing requirements (point 𝑝 ). 
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The second scenario is to find a suitable damper (both damper size and damper stiffness) 

for a given cable to achieve the specified level of modal damping ratio (point 𝑝 ). A 

systematic approach to address these two design schemes based on the NSD performance 

surface will be illustrated in the following subsections. 

5.4.2. Design scenario 1: Given the damper stiffness, choose damper size 

When the NSD stiffness ratio 𝜏 is specified, the performance of a NSD in suppressing cable 

vibrations dominated by a specific mode 𝑖 can be described by a 𝑌 𝑋 curve resulted from 

the intersection of the 3D damper performance surface associated with this mode (Fig. 5-

2) and the corresponding 𝜏-plane (Fig. 5-3). 

As it can be seen from Fig. 5-3, for a specific NSD stiffness ratio 𝜏, there always exists one 

optimum damper size for a particular vibration mode, showed by point 𝑝 , which would 

yield the highest damping ratio in that mode for a given damper location. This approach is 

similar to the common practice for optimizing conventional positive stiffness (PSD) or zero 

stiffness dampers (ZSD) in controlling single-mode cable vibration [21–23, 26–28]. In 

 

Fig. 5-3. NSD performance on an arbitrary 𝜏-plane. 
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general, for the 𝑖 ℎ mode, this optimum design point can be determined by identifying the 

peak point on the 𝑌 𝑋 curve, i.e. 𝑑𝑌 𝑑𝑋⁄ 0, where 𝑌  is given by Eq. (5-3). This leads 

to: 

𝑋 ,
1 𝜏
𝑖𝜋𝜂

 (5-4a) 

𝑌 ,
𝑅

2 1 𝜏
 (5-4b) 

Equation (5-4) indicates that if a NSD needs to be used to suppress vibrations of a stay 

cable in its 𝑖 ℎ mode for a given NSD stiffness ratio, 𝜏, and if the damper is installed at 𝑥  

from one cable end, the optimum damper size can be determined by the following 

expression: 

𝑐
,

𝑋 , √𝐻𝑚

𝜂 𝑥 𝐿⁄
 (5-5a) 

and the corresponding maximum achievable 𝑛 ℎ cable modal damping ratio is: 

𝜁 , 𝑌 ,
𝑥
𝐿

𝑅  (5-5b) 

5.4.3. Design scenario 2: Given a required cable damping ratio, choose NSD stiffness 

and size 

This design scenario is often encountered in practice. Based on the loading condition on 

the site, especially the potential wind loads predicted from historical data, vulnerable cables 

and the respective dominant modes associated with these cables can be obtained from 

dynamic analyses. This information is then used to determine the required damping ratio 

to mitigate vibration of these cables. Therefore, in this design scenario, the damper is 

designed to achieve a target damping ratio in a single mode. 
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The damper curve 𝜏 𝑋 in an arbitrary 𝑌 -plane is illustrated in Fig. 5-4. The vertical axis 

is the NSD stiffness ratio and the horizontal axis is the normalized damping parameter of 

the NSD. They represent the stiffness and the size of a NSD, respectively. Thus, any point 

located on the 𝑖 ℎ modal damper property curve would give a NSD with the corresponding 

𝑘  and 𝑐  deduced from the 𝜏- and 𝑋-coordinates of the point, to allow the damped cable 

to achieve a normalized 𝑛 ℎ modal damping ratio of 𝑌 . As shown in Fig. 5-4, the 𝜏 𝑋 

curve for a particular cable mode has a concave shape. Among all the points located on the 

same damper property curve, the lowest point corresponds to a combination of 𝑘  and 𝑐  

with the smallest NSD stiffness ratio to achieve 𝑌 . This would yield a NSD design of the 

least amount of negative stiffness to satisfy the modal damping ratio requirement. Since 

the negative stiffness generation mechanism is an important component in a NSD, having 

less negative stiffness would not only enhance the stability of a NSD, but can also be 

beneficial to the manufacturing process and save cost. Therefore, this lowest point 𝑝  can 

 

Fig. 5-4. NSD performance on an arbitrary 𝑌 -plane. 
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be considered as the optimum damper design point for the 𝑖 ℎ mode in the second design 

scenario. 

The coordinates of the optimum design point 𝑝 , (𝑋 , , 𝜏 , ), can be derived by rewriting 

Eq. (5-3) and express 𝜏 as a function of 𝑋 (note that 𝑌  in this case is a predefined constant). 

By taking 𝑑𝑋 𝑑𝜏⁄ 0, it gives: 

𝑋 ,

𝑅
2𝑖𝜋𝜂 𝑌

 (5-6a) 

Substitute Eq. (5-6a) into Eq. (5-3), 𝜏 ,  can be determined, which is: 

𝜏 , 1
𝑅
2𝑌

 (5-6b) 

Therefore, the corresponding damper size can be determined from Eq. (5-5a), whereas the 

damper stiffness can be computed from: 

𝑘
,

𝜏 , 𝑘  (5-7) 

where 𝑘 𝐻 𝑥 𝜂⁄  is the NSD stability limit defined by Eq. (5-2). 

Equations (5-6a) and (5-6b) can be applied to design a NSD for a single-mode cable 

vibration control when the required modal damping ratio is given. 

5.5 Verification of the proposed NSD design equations 

5.5.1. Sample cables 

To verify the validity of the NSD design approach proposed in Section 5.4, the developed 

NSD design equations are applied to select a NSD for real bridge stay cables in this section. 

The effectiveness of the selected NSD in mitigating cable vibrations is then evaluated. 

Fifteen sample cables are used for this purpose. They are chosen from the stay cable 
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database compiled by Tabatabai et. al. [106], which contains engineering specifications of 

1406 stay cables on 16 cable-stayed bridges. The properties of the 15 sample cables are 

listed in Table 5-1. The boundary condition of these cables is assumed to be fixed-fixed. 

5.5.2. Applicability of the proposed NSD design equations 

The NSD design equations in Section 5.4 are developed based on the assumption of low 

cable bending stiffness and linear cable behaviour. To assess their applicability, they are 

applied to design NSD for each of the 15 sample cables by varying the NSD stiffness ratio, 

𝜏, from 0 to 0.9. For each specific 𝜏 value, the optimum damper size for suppressing cable 

vibrations dominated by mode 𝑖 (𝑖 1 4) and the corresponding maximum achievable 

modal damping ratio are predicted by Eqs. (5-4) and (5-5). Meanwhile, for each design 

Table 5-1. Properties of the sample stay cables used in numerical simulation. 

𝐿 (m) 𝜃 (deg.) 𝑚 (kg/m) 𝐻 (kN) 𝐸𝐼 (kN m ) 𝐸𝐴 (MN) 𝜆  𝐷 (m) 𝑓  (Hz) 

43.7 49.4 72.3 2240.2 1229.1 1282.0 0.05 0.18 2.10 

61.7 58.9 103.0 5738.0 2775.3 1974.8 0.01 0.20 1.97 

83.0 27.0 214.7 8554.9 17859.1 4733.6 0.18 0.24 1.27 

101.8 27.8 52.8 2813.0 555.1 1064.8 0.10 0.14 1.13 

135.9 24.4 89.2 5081.3 1702.5 1941.5 0.17 0.17 0.90 

168.7 25.5 167.1 8346.2 9497.0 3508.1 0.38 0.23 0.67 

200.5 25.3 136.3 7772.0 4013.8 2691.0 0.34 0.23 0.60 

245.0 23.6 188.3 9493.8 9010.2 3466.3 0.70 0.28 0.47 

276.6 35.2 94.8 5062.9 2411.3 2226.0 0.76 0.15 0.45 

293.0 33.7 100.7 5335.7 2712.9 2361.9 0.90 0.16 0.43 

327.1 34.4 94.8 4916.8 2411.3 2226.0 1.18 0.15 0.39 

363.0 26.9 89.3 4537.1 2231.1 2135.5 1.84 0.15 0.35 

401.6 25.0 93.0 4774.5 2411.3 2226.0 2.26 0.15 0.31 

421.1 24.1 98.6 4947.2 2712.9 2361.9 2.69 0.16 0.30 

460.1 22.6 118.9 6665.9 3983.3 2859.9 2.37 0.17 0.29 
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case a numerical simulation is conducted, of which the optimum damper determined by 

Eqs. (5-4a) and (5-5a) is attached to the cable at 𝑥 0.05𝐿. The cable is then excited by 

a harmonic point load applied at 𝑥 0.9𝐿 to trigger resonant cable vibration in the 𝑖  

mode 𝑖 1 4 . The load is removed after 80 seconds and the cable vibrates freely for 

another 80 seconds. The 𝑖 ℎ modal damping ratio of the damped cable is computed by 

fitting an exponential envelope to the free vibration time-history of the cable. This 

numerically obtained cable modal damping ratio is then compared with that calculated 

from Eqs. (5-4b) and (5-5b). 

The analytically and numerically obtained maximum normalized damping ratio 𝑌 ,  for 

the symmetric modes (mode 1 and mode 3) and the antisymmetric modes (mode 2 and 

mode 4) are shown respectively in Figs. 5-5(a) and 5-5(b). To eliminate the effect of mode 

number, in Fig. 5-5, the vertical axis in both subplots is defined as 𝑌 𝑌 , 𝑅⁄ . The 

maximum normalized modal damping ratio predicted by the proposed NSD design 

equations over the range of 𝜏 from 0 to 0.9 is shown as a solid line, whereas the numerical 

results for all 15 sample cables are portrayed as a shaded region. Results show that in the 

case of mode 1, the analytically predicted and numerically obtained 𝑌 𝜏 relation agree 

well in both pattern and magnitude till 𝜏 0.74. Beyond this point, the proposed equation 

would give an over-estimated maximum achievable damping ratio. Note that 𝜏 0.74 is 

determined based on the minimum envelope of the shaded region and defines the 

applicability limit of the proposed NSD design equations to ensure a safe design to suppress 

mode 1. Thus, this point is defined as the allowable NSD stiffness ratio, 𝜏 . Similarly, for 

modes 2, 3, and 4, the applicability limit can be identified from Figs. 5-5(a) and 5-5(b) as 

𝜏 0.73, 0.62, and 0.53, respectively. This clearly implies that with the increase of 



121 
 

mode number, the applicability of the proposed NSD design equations, in terms of the 

allowable NSD stiffness ratio 𝜏 , would decrease.  

Beyond the identified 𝜏 -limit, the optimum damper size predicted by Eqs. (5-4a) and (5-

5a) will no longer be valid and a full numerical calibration is necessary. In addition, unlike 

 
(a) 

 
(b) 

Fig. 5-5. Maximum damping ratio of an optimized negative stiffness damper. (a) 
Symmetric modes, and (b) Antisymmetric modes. 
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mode 1, of which both the analytical and numerical results show that the maximum modal 

damping ratio of a damped cable would increase with greater amount of negative stiffness 

in the NSD even beyond the applicable 𝜏-limit, for the other three modes, as soon as 𝜏 is 

beyond the applicability limit, a sudden change in the trend of the 𝑌 𝜏 relation can be 

observed from the numerical results where the maximum damping ratio decreases rapidly 

with the introduction of additional negative stiffness in the NSD. Due to the sensitivity of 

higher modes to 𝜏, therefore, more caution should be exercised when applying the proposed 

NSD design equations.  

The 𝜏  values shown in Fig. 5-5, though are obtained based on single-mode cable 

vibration control, are also applicable to NSD design for multi-mode cable vibration control. 

In this case, the NSD stiffness ratio, either designed or predetermined, shall be limited to 

𝜏  for all the modes contributing to the cable vibration (i.e. 𝜏 𝜏 ). 

5.6. Design example 

A fixed-fixed stay cable with a length of 122 m, a unit mass of 51.8 kg/m, a chord tension 

of 3150 kN, and a diameter of 119 mm was studied by Shi et al. [67], of which a NSD 

device was installed at 5% cable length from the lower end on a rigid damper support. The 

objective is to determine: (a) the minimum allowable negative stiffness of the NSD and the 

maximum 1st modal damping ratio for a factor of safety of 1.5, and (b) the NSD parameters 

for achieving a damping ratio of 5% in the second mode of cable vibration. 

5.6.1. Design scenario (a): Select damper size 

By assuming an elastic modulus 𝐸 200 GPa and an inclination angle 𝜃 0∘ (horizontal 

cable), the sag and the bending stiffness parameters of this cable are determined as 𝜆
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0.274 and 𝜀 4.2 10 , respectively. The modification and reduction factors due to 

cable bending stiffness and cable sag are then determined as 𝜂  0.806, 𝜂 1.01, 

𝑅 0.940, 𝑅 𝑅  and 𝑅 0.97, respectively. 

The minimum allowable negative stiffness of the damper that would ensure its stability can 

be obtained using Eq. (5-2), i.e. 

𝑘
1
𝜂

1.241 

which leads to the minimum allowable negative stiffness equal to 𝑘 640.9 kN/m. 

By considering a factor of safety of 1.5 is applied to the above theoretical stability limit, 

the practical negative damper stiffness would be 𝑘 , 640.9/1.5 427.3 kN/m 

(𝑘 , 0.827). 

The optimum non-dimensional NSD damper size and the corresponding maximum 1st 

modal damping ratio are determined using Eqs. (5-4) by substituting 𝜏 427.3/

640.9 0.67: 

𝑋 ,
1 𝜏
1 𝜋𝜂

1 0.67
1 𝜋 1.01

0.104 

𝑌 ,
𝑅

2 1 𝜏
0.97

2 1 0.67
1.47 

The values of the optimum damper size and maximum damping ratio are obtained from 

Eq. (5-5) as: 

𝑐
,

𝑋 , √𝐻𝑚
𝜂 𝑥 𝐿⁄

0.104√3150 10 51.8
0.806 0.05

33.0 kN ∙ s/m 
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𝜁 , 𝑌 , 𝑥 𝐿⁄ 𝑅 1.47 0.05 0.94 0.069 6.9% 

Figure 5-6 illustrates the variation of the first modal damping ratio 𝜁  with respect to the 

damping coefficient 𝑐  determined from three different approaches, including the work of 

Shi et. al. [67], the design Eq. (5-3) and the numerical simulation, for the rigid support case. 

It is noteworthy to mention that Shi et. al. [67] have neglected the effects of cable sag and 

cable bending stiffness. Therefore, their model over-estimates the damping capacity of the 

system. It can be seen from the figure that the asymptotic solution is in good agreement 

with the numerical one. In addition, the asymptotic solution gives a slightly conservative 

prediction of the optimum performance of the NSD and therefore, it leads to safe design in 

practical applications. The maximum achievable first modal damping ratio obtained by Eq. 

(5-3) is 𝜁 6.9%; which shows an error of 5.1% when compared to the numerical 

value 𝜁 7.2%. The higher maximum damping ratio reported in [67], i.e. 𝜁

14.5%, is believed to be mainly caused by ignoring the effects of cable sag and bending 

 
Fig. 5-6. NSD performance prediction by different methods. 
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stiffness in the analytical model. Therefore, the consideration of cable sag and bending 

stiffness effects would be crucial in designing cable-NSD systems. 

In order to investigate the effect of cable sag and bending stiffness on the damping ratios 

of higher modes, 𝜁  and 𝜁  are also computed for the current example by considering 

four scenarios, namely, the actual cable, the sagged non-flexural cable, the flexural non-

sagged cable and the taut cable, as summarized in Table 5-2. It can be concluded that the 

1st modal damping ratio is affected by both the cable bending stiffness and the cable sag 

effects, while the influence of the cable sag on the damping ratio is negligible in the higher 

modes (namely the 2nd and the 3rd modes) and they are only sensitive to the cable bending 

stiffness effect. 

5.6.2. Design scenario (b): Select damper size and damper stiffness 

In this section, the NSD design parameters, 𝑐  and 𝑘 , for achieving a damping ratio of 5% 

in the second mode of cable vibration are determined. It should be noted that the sag-related 

parameters are equal to one in the 2nd mode. For achieving a normalized second modal 

Table 5-2. Effect of cable sag and bending stiffness on higher modal damping ratios 

Cable model 
First mode Second mode Third mode 

𝜁  𝑐 ,  𝜁  𝑐 ,  𝜁  𝑐 ,  

Current cable 6.9 33.3 7.1 22.4 7.1 20.2 

Flexural non-sagged 7.1 33.6 7.1 22.4 7.1 20.2 

Sagged non-flexural 14.1 13.9 14.5 9.4 14.5 8.4 

Taut 14.5 14 14.5 9.4 14.5 8.4 
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damping ratio of 𝑌 𝜁 𝑥 𝐿⁄ 𝑅 0.05/ 0.05 0.94 1.06⁄ , the non-

dimensional NSD parameters are obtained from Eq. (5-6) as (𝑖 2 : 

𝑋 ,

𝑅
2𝑖𝜋𝜂 𝑌

1
2 2 𝜋 1 1.06

0.075 

𝜏 , 1
𝑅
2𝑌

1
1

2 1.06
0.528 

which are then converted to the dimensional form as: 

𝑐
,

𝑋 , √𝐻𝑚

𝜂 𝑥 𝐿⁄
0.075√3150 10 51.8

0.806 0.05
23.8 kN ∙ s/m 

𝑘
,

𝜏 , 𝑘 0.528 640.9 338.4 kN/m 

Since the NSD stiffness ratio is smaller than the allowable limit given in Fig. 5-5(b), i.e. 

𝜏 0.528 𝜏 0.73, the design is acceptable. 

5.7. Summary 

In this chapter, a physical explanation for the superior damping performance of NSD 

compared to conventional passive viscous dampers, with either zero or positive damper 

stiffness, is presented. It is shown that a reduced total resisting force in NSD against the 

cable moving away from its neutral position allows a higher damper stroke and 

consequently, causes a higher capability in absorbing the kinetic energy. This phenomenon 

increases the damping ratio at the cost of an increased cable displacement, especially at the 

damper installation location. The issue of NSD stability is then investigated in detail. Based 

on the analytical model developed in previous chapters, theoretical and practical NSD 

stability limits are obtained. It is observed that for a given cable, the minimum allowable 
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negative stiffness of a NSD depends on the damper installation location, the cable bending 

stiffness, the cable length and the cable chord tension. 

Next, an innovative approach for designing NSDs to control single-mode stay cable 

vibration is proposed based on the three-dimensional NSD performance surface. Two 

design scenarios are considered. In the first scenario, the NSD negative damper stiffness is 

given and the optimum damper size needs to be selected to achieve the maximum damping 

ratio; whereas in the second scheme, both the size and the negative damper stiffness of the 

NSD are optimized to satisfy the damping requirement for the target cable mode. The 

applicability of the proposed NSD design equations is verified by conducting an extensive 

numerical study on fifteen representative full-size stay cables. The allowable limits of the 

NSD stiffness ratio for different cable modes are identified. The effectiveness of the 

proposed NSD design approach is evaluated by presenting two design examples whereby 

a NSD is designed to suppress vibration of a 122 m long stay cable. It is shown that the 

design equations can efficiently determine the NSD parameters in both scenarios. It is 

concluded that while the damping ratio in the first mode is affected by both the cable 

bending stiffness and the cable sag effects, the influence of cable sag on the damping ratio 

is negligible for the higher modes (namely modes 2 and 3), both of which are only sensitive 

to the effect of cable bending stiffness. 
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Chapter 6 Impact of Support Stiffness on the NSD Performance 

 

6.1. Introduction 

In this chapter, the impact of damper support stiffness on the NSD performance in 

controlling cable vibration is investigated. The numerical and analytical approaches for 

evaluating the performance of a NSD when mounted on a flexible damper support are 

presented first. By utilizing existing analytical damper design formula, the NSD design for 

a target damping ratio is addressed in three typical design scenarios. The first scenario 

considers the NSD design for a given support condition. The second scenario deals with 

the design of the damper support by optimizing the support stiffness for a given NSD. The 

third scenario addresses the design of the entire NSD-support system by proposing an 

algorithm to identify the optimum combination of NSD parameters (damper size and 

stiffness) and damper support stiffness. In parallel, the NSD design is refined iteratively to 

minimize the influence of the assumptions considered in developing the analytical damper 

design formulation and improve the accuracy of the design. To evaluate the effectiveness 

of the proposed design schemes for a NSD mounted on rigid or flexible supports, a 

numerical example is conducted on a 325 m long stay cable installed on the Tatara bridge 

in Japan. The cable is equipped with an optimized NSD and subjected to harmonic 

excitation. The dynamic behaviour of the damped cable and the control performance of the 

optimized NSD are evaluated based on the displacement time-history at certain locations 

on the cable. To assess the performance of the NSD optimized for a flexible support, its 
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control effectiveness is compared with that of an optimal active linear-quadratic regulator 

(LQR) controller which is considered as the reference for cable vibration control. 

6.2. Dynamic response of a damped cable 

6.2.1. Formulation of the equation of motion 

Figure 6-1 shows the mechanical model of a cable-damper system. The cable chord 

direction and the in-plane transverse direction are along the 𝑥- and 𝑦-axes, respectively. 

The static cable profile due to its self-weight and the dynamic in-plane transverse cable 

displacement caused by an arbitrary external force 𝑓 𝑥, 𝑡  are denoted by 𝑧 𝑥  and 

𝑤 𝑥, 𝑡 , respectively. The cable is inclined at an angle 𝜃 with respect to the horizontal axis 

and has a chord length 𝐿, a mass per unit length 𝑚, a chord tension 𝐻, a finite flexural 

rigidity 𝐸𝐼 and an axial rigidity 𝐸𝐴. A transverse NSD is installed at the position 𝑥 𝑥  

from the lower end of the cable and is modeled by a linear dashpot with size 𝑐  and a linear 

spring with stiffness 𝑘  connected in parallel. The flexibility of the damper support is 

represented by a linear spring with stiffness 𝑘  connected between the damper and the fixed 

base. In Fig. 6-1, 𝑢 𝑡  denotes the displacement at the top of the damper support spring.  

By neglecting the inherent damping of the cable, its in-plane transverse dynamic response 

𝑤 𝑥, 𝑡  is governed by the following integro-differential equation [79]: 

𝑚𝑤 𝐸𝐼𝑤 𝐻𝑤
𝐸𝐴
𝐿

𝑧 𝑧 𝑤 𝑑𝑥 𝑓 𝐹 𝛿 𝑥 𝑥  (6-1) 

where 𝐿 1 𝑧 ′ 𝑥 ⁄ 𝑑𝑥 𝐿 1 8𝑚𝑔𝐿 𝑐𝑜𝑠 𝜃 𝐻⁄  is the effective cable 

length, 𝐹 𝑡  is the damper force, and 𝛿 ⋅  is the Dirac delta function.  
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6.2.2. Damping ratio of a cable equipped with a NSD mounted on a damper support 

Analytical and numerical approaches are available to determine the damping ratio of a 

NSD-equipped cable based on Eq. (6-1). In the analytical approach, the free vibration 

response of the cable-damper system is derived as a function of the system complex modal 

frequency and the modal damping ratio is then extracted from this solution. Using a 

numerical technique, the free vibration displacement time-history of the damped cable is 

calculated from standard numerical methods (such as the mode superposition method 

(MSM)); the modal damping ratio is obtained by applying the logarithmic decrement 

method to the cable displacement time-history. Alternatively, the damping ratio can also 

be calculated numerically from system complex eigenvalues. This approach allows the 

independence of the evaluated cable damping ratio on the loading characteristics and the 

response measurement location. Furthermore, this approach can replace the time-

consuming time-domain analysis for control implementation purposes and is 

 

Fig. 6-1. Mechanical model of a cable-damper system. 
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computationally more efficient. Both analytical and numerical approaches will be reviewed 

in this section to provide a framework for investigating the effect of damper support 

stiffness on the NSD performance . 

6.2.2.1. Analytical approach 

A refined asymptotic expression was developed in Chapter 3 for the modal damping ratio 

of a cable equipped with a passive damper by using the NSD mechanical model shown in 

Fig. 6-1. First, by assuming 𝑤 𝑥, 𝑡 �̄� 𝑥 𝑒  and 𝐹 𝑡 𝐹 𝑒  in Eq. (6-1), a 

transcendental equation was obtained to represent the free vibration response of the cable 

as a function of the complex modal frequency, 𝜔. Next, an asymptotic solution to the 

transcendental equation was derived and further simplified to express the modal damping 

ratio of the damped cable as 

𝜎
1 𝛼 𝑞

𝜂
𝑅 𝑛𝜋𝜂 𝑋

𝑘 1 𝜂⁄ 𝑛𝜋𝜂 𝑋
 (6-2) 

where 𝜎 𝜁 𝑥 𝐿⁄⁄  is the normalized cable damping ratio of mode 𝑛; 𝑋

𝑥 𝐿⁄ 𝑐 √𝐻𝑚⁄  is the dimensionless damper size, and 𝜂 𝜂 1/𝑘 . The rest of the 

parameters have been defined in Section 3.3. 

Equation (6-2) reveals that when a NSD is attached to a given cable at a specified location, 

the damping ratio achieved by the damped cable is a function of the damping coefficient 

𝑐 , the stiffness 𝑘  of the damper, as well as the support stiffness 𝑘 . For a given damper 

location of 0.02𝐿, Fig. 6-2(a) portrays the relationship between the normalized damping 

ratio 𝜎  of a damped cable and these three damper parameters in their dimensionless form, 

with the non-dimensional damping coefficient 𝑋, the non-dimensional damper stiffness 𝑘 , 
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and the non-dimensional damper support stiffness 𝑘  represented respectively by the three 

axes, while the magnitude of the normalized damping ratio 𝜎  by the color defined in the 

color map. This non-dimensional plot is constructed based on a typical full-size stay cable 

in the cable database compiled by Tabatabai et al. [106]. The cable has a unit mass 𝑚

 

Fig. 6-2. Effect of non-dimensional damper size 𝑋, damper stiffness 𝑘  and support 

stiffness 𝑘  on the normalized damping ratio of a NSD. (a) Simultaneous effects of 𝑋, 

𝑘  and 𝑘 , (b) Effects of 𝑘  and 𝑘  for a given 𝑋 0.05, (c) Effects of 𝑋 and 𝑘  for a 

given 𝑘 30, and (d) Effects of 𝑋 and 𝑘  for a given 𝑘 5. 
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52.8 kg/m, a length 𝐿 101.8 m, a pre-tension 𝐻 2813 kN, a bending stiffness 𝐸𝐼

555.1 kN ∙ m , an axial stiffness 𝐸𝐴 1064.8 MN, and is inclined at 𝜃 27.8° with 

respect to the horizontal. It can be observed from Fig. 6-2(a) that larger 𝜎  values occur at 

the anterior corner of the plot where 𝑋 approaches the minimum value of 0.05 considered 

in the plot, and the combination of 𝑘  and 𝑘  advances toward the NSD stability limit 

governed by Eq. (5-2). 

Figure 6-2(b) illustrates the variation of 𝜎  with respect to 𝑘  and 𝑘  when 𝑋 0.05. In 

particular, the contours of 𝜎 0.5, 1, 2, 4, 6, and 7.5 are illustrated in the figure, of which 

𝜎 0.5 corresponds to the maximum possible normalized damping ratio provided by an 

ideal ZSD [70], whereas 𝜎 7.5 represents the stability limit of a NSD at 𝑋 0.05. The 

region between the contours of 𝜎 0.5 and 𝜎 7.5 describes the performance of a 

stable NSD under different combinations of damper stiffness and support stiffness when 

𝑋 0.05. The pattern of the 𝜎  contours suggests that for a given NSD, i.e. both 𝑋 and 𝑘  

are known constants, choosing a more flexible damper support would increase the damping 

ratio of the cable. This trend is reflected by arrow 1 in Fig. 6-2(b), which indicates a lower 

𝑘  value would lead to a larger 𝜎 . On the other hand, arrow 2 in the figure shows that 

when the support stiffness and the damper size of a NSD are given, introducing stronger 

negative stiffness into the damper would be more effective in dissipating the energy. In the 

case that the required damping ratio and damper size are specified, i.e. 𝜎  and 𝑋 are 

constants, the choice of a more flexible damper support would reduce the demand on the 

negative damper stiffness. This phenomenon can be clearly seen by following arrow 3 in 

Fig. 6-2(b). 



134 
 

Figures 6-2(c) and 6-2(d) depict the influence of the non-dimensional damper size 𝑋 and 

the non-dimensional damper stiffness 𝑘  on the normalized damping ratio 𝜎  of a damped 

cable when the non-dimensional damper support stiffness 𝑘  equals to 30 and 5, 

respectively. These two 𝑘  values represent respectively a relatively rigid or a relatively 

flexible damper support conditions. Based on Eq. (5-2), the stability requirement of the 

NSD for these two stiffness values are 𝑘 1.41 and 1.14, respectively, which are 

shown as horizontal lines at the bottom of Figs. 6-2(c) and 6-2(d). The variation pattern of 

𝜎  in both plots show that a higher damping ratio can be achieved if 𝑘  and 𝑋 become 

smaller, as indicated by arrow 4 in Fig. 6-2(c). The maximum damping ratio is achieved 

when both 𝑘  and 𝑋 reach their minimum allowable values, which is reflected by the 

darkest color at the lower-left corner of Figs. 6-2(c) and 6-2(d). Further, it can be seen from 

these two plots that for a given damper support stiffness, various combinations of damper 

size and stiffness are possible to satisfy a specific damping ratio requirement. This 

observed feature will be exploited to optimize the NSD design, as will be discussed further 

in Section 6.3. 

The effect of the damper support stiffness on the NSD performance is further evaluated by 

referring to the design points A, B, C, and D in Figs. 6-2(c) and 6-2(d). Points A and C 

represent the performance of a NSD with a non-dimensional damper size 𝑋 0.1 and a 

negative damper stiffness 𝑘 1 when mounted respectively on a damper support 

having non-dimensional stiffness 𝑘  of 30 and 5. The normalized damping ratio that 

corresponds to these two cases are 1.5 and 2.1, respectively, which implies that for such a 

case installing a NSD on a more flexible damper support would be beneficial for its 

performance. Nevertheless, if the damper stiffness of the NSD remains the same at 𝑘
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1, but the non-dimensional damper size increases to modify 𝑋 0.1 to 𝑋 0.3, the same 

reduction of 𝑘  from 30 to 5 would result in a decrease in the normalized damping ratio 

from 1.1 to 0.8 and thus has an adverse effect on the damper performance. This suggests 

that the effect of damper support stiffness depends on the damper size. This feature will be 

discussed in detail in Section 6.3.2. 

As indicated in the previous studies (e.g. [71]), it is expected that the damping ratio 

determined by Eq. (6-2) would be slightly conservative due to the assumptions made in its 

derivation, i.e. 𝑥 ≪ 𝐿 and 4𝐸𝐼 𝛽 𝐻⁄ ≪ 1. On the other hand, a numerical method can 

also be used to calculate the damping ratio of the studied cable-damper system. Since such 

assumptions are not needed in the numerical approach, it is expected to yield more accurate 

results, and could, therefore, be used to refine a NSD designed in accordance with Eq. (6-

2). 

6.2.2.2. Numerical approach 

The damping ratio of a cable-damper system can be predicted from the decay rate of the 

cable dynamic displacement time-history. Equation (6-1), which governs the in-plane 

transverse dynamic response of the cable, can be solved by the mode superposition method 

(MSM). The cable displacement, 𝑤 𝑥, 𝑡 , is approximated by the following finite series 

𝑤 𝑥, 𝑡 𝜙 𝑥 𝑞 𝑡  (6-3) 

where 𝜙 𝑥  is the 𝑖 ℎ mode shape function, 𝑞 𝑡  is the 𝑖 ℎ mode generalized coordinate, 

and 𝑛 is the number of considered modes. Referring to Section 4.2.3, the matrix form of 

the equation of motion of a damped cable can be expressed as: 
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𝑴𝒒 𝑲𝒒 𝒇 𝝓𝒅𝐹 𝑡  (6-4) 

where 𝒒 𝑞 𝑡  is the generalized displacement vector, 𝑴 𝑚

𝑚 𝜙 𝑥 𝜙 𝑥 𝑑𝑥  is the modal mass matrix, 𝑲 𝑘 𝐻 𝜙′ 𝑥 𝜙′ 𝑥 𝑑𝑥

𝐸𝐼 𝜙″ 𝑥 𝜙″ 𝑥 𝑑𝑥 𝐸𝐴 𝐿⁄ 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥  is the modal 

stiffness matrix, 𝑧 𝑥  is the static cable profile due to its self-weight, 𝒇 𝑓

𝑓 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥  is the generalized external force vector, 𝝓𝒅 𝜙 𝑥  is the 

shape function vector at the damper location, 𝐹 𝑡  is the time-dependent force in the 

damper defined in Section 4.2.3, and 𝑗 1,2, … ,𝑛. Based on the mechanical model 

considered in Fig. 6-1 for the NSD, a slightly approximate linearized form of Eq. (6-4) can 

be derived as: 

𝑴𝒒 𝑪𝒒 𝑲𝒒 𝒇 (6-5) 

where 𝑴 𝑚 𝑴 𝛼�̃� 𝜙 𝑥 𝜙 𝑥 , 𝑪 �̃� �̃� 𝛼𝑘 𝜙 𝑥 𝜙 𝑥 , 

and 𝑲 𝑘 𝑲 𝑘 𝜙 𝑥 𝜙 𝑥  are the effective mass, damping and stiffness 

matrices, respectively, 𝑘 𝑘 1 𝑘 𝑘⁄⁄  is the modified damper stiffness, �̃�

𝑐 1 𝑘 𝑘⁄⁄  is the modified damper size, 𝛼 𝑐 𝑘 𝑘⁄  is the time constant of the 

damper force, and 𝒇 𝑓 𝑓 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥  is the vector of generalized external 

force. The subsequent steps for calculating the modal damping ratio from the complex 

eigenvalues of the homogenous form of Eq. (6-5) have already been presented in Section 

4.2.3. 
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6.2.3. NSD stability 

The NSD stability issue was addressed in Section 5.3 for a NSD installed on a rigid damper 

support. In a more general case where the damper is supported by a flexible base, the 

stability limit defined by Eq. (5-2) would no longer be valid. In this case, and referring to 

the term 𝑘 1 𝜂⁄  in the denominator of Eq. (6-2), the NSD stability criterion can be 

extended to a more general form by including the effect of damper support stiffness to 

define the damper stiffness limit as: 

𝑘
1
𝜂

 (6-6) 

where 𝜂 𝜂 1/𝑘 . Equation (6-6) takes into account the effects of damper support 

stiffness and cable bending stiffness, it can be considered as the generalized form of the 

theoretical NSD stability limit previously introduced by Eq. (5-2). The NSD instability 

phenomenon was first observed in Fig. 3-4 where the integrated stiffness coefficient 𝐶

𝛹/ 1 𝛹  approaches to positive infinity as 𝛹 1 𝑘 𝜂⁄  tends toward to -1. In 

practical applications, it is recommended to consider a safety margin when determining the 

minimum allowable negative damper stiffness, 𝑘 , in order to prevent possible damage to 

the cable and/or the NSD, i.e.𝛹 1 𝛺 , where 𝛺 1 is the factor of safety which 

may be chosen based on engineering judgement. In addition, it was observed in Sections 

3.4 and 3.5 that the efficiency of a NSD would be better than that of the ZSD with the same 

damper size when 𝛹 1 𝑘 𝜂 . By considering both conditions, the practical range 

for the negative stiffness of a NSD device can be expressed as: 

1
𝜂

1
𝛺

𝑘 ,
1

𝑘 𝜂
 (6-7) 
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The stability requirement of a NSD under different installation conditions is studied in Fig. 

6.3. The damper installation conditions include properties of the attached cable and the 

damper location, which can be described by 𝑥 𝜂 /𝐻. The relation between the minimum 

allowable negative damper stiffness, 𝑘 , and the damper support stiffness, 𝑘 , under 

𝑥 𝜂 /𝐻 10 , 10 , 10 , 10  and 10  are portrayed in this figure, with each curve 

corresponds to one specific installation condition. For each installation condition, the stable 

performance of a NSD can be ensured should its stiffness falls within the zone above the 

𝑘 𝑘  curve. The NSD would lose its stability if the negative damper stiffness is less 

than the limit defined by the curve. As an example, the stable and unstable zones associated 

with the installation condition of 𝑥 𝜂 /𝐻 10  are shown in Fig. 6-3, of which the 

former is defined by the shaded area above the 𝑘 𝑘  curve. In addition, it can be 

observed from Fig. 6-3 that as the damper support becomes stiff enough, the threshold of 

  

Fig. 6-3. Stability limit of NSD mounted on a flexible support. 
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minimum allowable negative damper stiffness to ensure stable performance of a NSD 

approaches to a constant value of 1/𝜂 . 

Figures 6-4(a) and 6-4(b) show the variation of 𝐶  and 𝛹 with respect to the non-

dimensional damper stiffness 𝑘 , respectively. Three levels of damper support stiffness 𝑘 , 

i.e. 𝑘 25, 5 and 1, and two 𝜂  values of 0.95 and 0.65 are considered. Based on Fig. 6-

 
(a) 

 
(b) 

Fig. 6-4. Variation of 𝐶  and 𝛹 with respect to the nondimensional damper stiffness 

𝑘  for different values of 𝑘  and 𝜂 . 
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4(a), for a constant negative value of 𝑘 , 𝐶  will increase when the damper support 

becomes more flexible. This phenomenon agrees with the observations made from Figs. 3-

7(a) and 3-7(b), and is also confirmed by the results in Fig. 6-3, where the minimum 

permissible negative damper stiffness increases when 𝑘  is reduced. In other words, if the 

damper stiffness of a NSD remains constant, as the support becomes more flexible, it will 

approach to the stability limit and therefore 𝐶  will increase. As illustrated in figure 6-4(a), 

for a stable NSD with constant damper stiffness and support conditions, the integrated 

stiffness coefficient 𝐶  increases with an increase in 𝜂 . Therefore, it is concluded that 

placing the damper further from the cable anchorage and/or lowering the flexural rigidity 

will increase both 𝜂  and 𝐶  for NSD (see also Fig. 3-3(a)). Results in Fig. 6-4(b) reveal 

that an increase in 𝑘  or a reduction in 𝜂  would increase 𝛹 for a PSD device with constant 

𝑘 . Based on Eq. (3-17), this would lead to an increase in 𝐶 , as already been observed in 

Fig. 6-4(a). On the other hand, in the case of NSD, the pattern is opposite. For a given 

NSD, 𝛹 would increase for smaller 𝑘  and/or larger 𝜂 . 

6.3. Impact of damper support stiffness on NSD design 

It can be seen from Eq. (6-2) that the normalized damping ratio of a cable equipped with a 

NSD can be influenced by various factors, some of which are associated with the cable, 

while others are related to the NSD and its support. Therefore, if a NSD is needed to 

suppress excessive vibrations of a particular cable and the damper installation location has 

been specified, then the NSD design would typically include the design of the entire NSD 

system, i.e. the NSD itself and the support, or part of the system such as the damper or the 

support if other features of the NSD system have already been selected. How the damper 
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support stiffness would affect the NSD design in these typical scenarios will be discussed 

in the following sub-sections. 

6.3.1. Design scenario 1: Damper design 

In the first scenario, it is assumed that the damper installation location, 𝑥 , has been 

determined and the damper support has been fabricated, i.e. the support stiffness, 𝑘 , is 

known. The design objective is to select the size and the stiffness of a NSD to achieve the 

desired damping ratio for a particular mode. It has been observed in Figs. 6-2(c) and 6-2(d) 

that for a given support stiffness, various combinations of 𝑐  and 𝑘  are possible for a NSD 

to achieve the same damping ratio. These combinations form a damping ratio contour 

which is concave downward and has a peak point representing a NSD with the least amount 

of negative stiffness to satisfy the specified damping requirement. Since among all the 

design points on the same damping ratio contour line, the peak point corresponds to the 

NSD design that is the farthest from the NSD stability limit, it is considered as the optimum 

design in this scenario. 

The 𝑐  and 𝑘  values corresponding to the above design point can be obtained for an 

arbitrary 𝑘  based on Eq. (6-2). The equation is first rewritten in the form of 𝑘 𝑓 𝑋 . 

Then, by solving for the extremum, 𝜕𝑓 𝑋 𝜕𝑋⁄ 0, and substituting the root back into 

𝑘 𝑓 𝑋 , the optimum non-dimensional damper size and damper stiffness that provide 

the 𝑛  modal damping ratio of 𝜁  can be obtained as follows: 

𝑋
𝑅

2𝑛𝜋𝜂 𝑌
 (6-8) 

𝑘
𝑅
2𝑌

1
𝜂

 (6-9) 
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where 𝑌 𝜁 𝑥 𝐿⁄ 1 𝑞 𝜂⁄⁄  is an auxiliary damping ratio parameter. The 

following expressions can then be used to determine the optimum damper size and damper 

stiffness values, which are: 

𝑐
𝑋 √𝐻𝑚
𝑥 𝐿⁄

 (6-10) 

𝑘
𝑘 𝐻
𝑥

 (6-11) 

The impact of support stiffness on the optimum NSD design parameters 𝑐  and 𝑘  is 

investigated in Fig. 6-5. In this figure, the variation of the normalized damping ratio 𝜎  

with 𝑋 and 𝑘  is illustrated for three damper support stiffness cases, namely 𝑘 ∞, 10 

and 3. Figure 6-5(a) shows the three-dimensional damping ratio surfaces and their 

intersection with the plane of 𝜎 2. In this plane, the NSD design curves can be identified 

for achieving a constant damping ratio of 𝜁 2 𝑥 𝐿⁄ . Figure 6-5(b) depicts the NSD 

design curves corresponding to the three studied support stiffness cases in the plane of 

𝜎 2, as well as the optimal design points 𝑝 , 𝑝  and 𝑝  in each case. The respective 

NSD stability limits are also shown in Fig. 6-5(b) as dashed lines. To achieve the same 

damping requirement, the change in the design points while the support stiffness reduces 

can be clearly observed from the three 𝑘 𝑋 curves in the figure, i.e. both the damper 

size and the absolute value of the damper stiffness decreases as the support becomes more 

flexible. Therefore, by considering the manufacturing and maintenance costs of a NSD, 

using more flexible damper support would also help to improve its cost-efficiency. 
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6.3.2. Design scenario 2: Damper support design 

In this scenario, the damper installation location has been specified and both the size 𝑐  

and the stiffness, 𝑘 , of the NSD have been selected in advance. The goal is to choose an 

 
(a) 

 
(b) 

Fig. 6-5. NSD design for single-mode cable vibration control. (a) Effects of 𝑋 and 𝑘  

on the normalized damping ratio of NSD for three given values of 𝑘 ∞, 10 and 3. 
(b) Impact of damper support stiffness on the NSD design points. 
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optimum damper support stiffness to attain the best vibration control performance, i.e. to 

maximize the damping ratio of the damped cable.  

The optimum value of the normalized damper support stiffness, 𝑘 , can be found by 

solving 𝜕𝜎 𝜕𝑘⁄ 0 based on Eq. (6-2). The solution is a function of 𝑘  and 𝑋, which 

can be expressed as: 

𝑘
1

𝜂 1
𝑘 𝑛𝜋𝜂 𝑋 𝑘⁄

 
(6-12) 

On the other hand, the minimum allowable support stiffness can be determined from the 

NSD stability limit (Eq. (6-6)) and expressed as: 

𝑘
1

𝜂 1 𝑘⁄
 (6-13) 

For an optimum support stiffness to exist, the 𝑘  value obtained from Eq. (6-12) must be 

greater than the minimum allowable support stiffness. Compare Eq. (6-13) with Eq. (6-12), 

it can be observed that for a NSD which has negative damper stiffness, the condition 

𝑘 𝑘  always holds. It should be noted that 𝑘  is the minimum support stiffness 

needed to prevent NSD instability and 𝑘  is the optimum support stiffness that would 

allow an existing NSD to achieve its best performance. According to Eq. (6-13), the 

minimum allowable support stiffness, 𝑘 , can be either positive or negative. The positive 

𝑘  occurs when 𝑘 1/𝜂  and 𝑘 0, while the negative 𝑘  requires either 𝑘

0 (i.e. PSD) or 𝑘 1 𝜂⁄ . Hence, the negative 𝑘  would result in a NSD with a 

stronger negative damper stiffness compared to the positive 𝑘  case. Since a stronger 

negative damper stiffness is not a preferable choice in terms of not only the fabrication and 
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cost, but also in terms of system stability, a positive 𝑘  should be used. Hence, by 

combining the above two conditions of 𝑘 𝑘  and 𝑘 0, it is concluded that the 

optimum damper support stiffness 𝑘  should also be positive. This condition can be 

satisfied when the denominator of the term on the right-hand side of Eq. (6-12) is negative. 

Therefore, any combination of 𝑋 and 𝑘  that can yield 𝜂 1 𝑘 𝑛𝜋𝜂 𝑋 𝑘⁄⁄

0 would meet this requirement. The critical non-dimensional damper size required to 

ensure the presence of a positive 𝑘  can thus be derived as: 

𝑋
𝑘 𝑘 1 𝜂⁄

𝑛𝜋𝜂
 

(6-14) 

Therefore, 𝑐 𝑋 √𝐻𝑚/ 𝑥 𝐿⁄  would be a sufficient condition to ensure a positive 𝑘  

exists. Otherwise, a reduction in 𝑘  would not help to increase the NSD damping ratio. By 

substituting Eq. (6-12) into Eq. (6-2), the maximum achievable damping ratio of a NSD 

after optimizing its support stiffness can be derived as: 

𝜎
1 𝑞 𝑅 𝑘 𝑛𝜋𝜂 𝑋

𝑛𝜋𝜂 𝑋
 (6-15a) 

or 

𝜁
𝑥
𝐿
𝜎  (6-15b) 

Figure 6-6 illustrates the effect of the damper support stiffness on the modal damping ratio 

in three different damper size cases, i.e. 𝑋 𝑋 , 𝑋 𝑋  and 𝑋 𝑋 . It can be observed 

that when 𝑋 𝑋 , a reduction in 𝑘  would enhance the damping ratio until it reaches the 

maximum value 𝜎  at 𝑘  (Eq. (6-15)). However, in the latter two cases, the usage of 
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a flexible support for a NSD has no advantage since the damping ratio of the damped cable 

would decrease monotonically with the reduction of 𝑘 . 

6.3.3. Design scenario 3: Design of the entire NSD system (damper and support) 

The design of an entire NSD system for a given damper location to satisfy a specified cable 

damping requirement is also a commonly encountered scenario. The purpose of such 

design is to determine the optimum combination of 𝑐 , 𝑘  and 𝑘  for a given 𝜁  and 𝑥 . 

As shown in Fig. 6-6, the damping ratio increases with the decrease of the support stiffness 

to reach its maximum value at 𝑘  provided that 𝑋 𝑋 . Besides, it has been shown in 

the previous section that the optimized damper support stiffness would always be larger 

than the positive minimum allowable support stiffness, i.e. 𝑘 𝑘 0. Although in 

theory, the choice of 𝑘  as the NSD support stiffness seems to be an obvious solution, 

the stiffness of the NSD support must be sufficiently larger than 𝑘  to avoid instability 

 

Fig. 6-6. Impact of damper support stiffness on the modal damping ratio of a NSD-
equipped cable. 
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of the cable-damper system. It is then necessary to find an appropriate support stiffness 

that is as close as possible to 𝑘  and at the same time, sufficiently larger than 𝑘 . For 

this purpose, a safety factor, 𝑆𝐹 1, is introduced to ensure the selected damper support 

stiffness satisfies 𝑘 𝑘 𝑆𝐹. Based on these considerations, an algorithm for 

obtaining an optimum combination of damper size, damper stiffness, and damper support 

stiffness is proposed as follows: 

1. Initialize the design by setting a counter for the iteration number as 𝑖 1 and 

assuming a rigid damper support condition (a large 𝑘 ,  value such as 𝑘 , 1000 

can be used to represent rigid support).  

2. Use 𝑘 ,  to determine the non-dimensional damper size 𝑋  and damper stiffness 𝑘 ,  

in accordance with Scenario 1 for the given cable parameters, damper location and 

the required damping ratio (Eqs. (6-10) and (6-11)). 

3. Based on the NSD parameters obtained in Step 2, calculate 𝑘 , , 𝑘 ,  and 𝑋  

using Eqs. (6-12) to (6-14). 

4. If 𝑋  𝑋 , calculate 𝑘 , 𝑘 , 𝑘 , /2 where 𝑘 ,  is the support stiffness 

used in Step 2. Otherwise, continue with Step 6. 

5. If 𝑘 , 𝑘 , 𝑆𝐹, increase the counter 𝑖 by 1, update 𝑘 ,  as 𝑘 , 𝑘 ,  and 

go back to Step 2. 

6. Calculate the dimensional values of the damper size, damper stiffness and damper 

support stiffness obtained in Step 2 (𝑐 , , 𝑘 ,  and 𝑘 , ) and report them as the final 

design parameters of NSD and its support. 
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The above optimization algorithm for NSD system design is summarized in the flowchart 

shown in Fig. 6-7. Based on this algorithm, the selected damper support stiffness would be 

as close to 𝑘  as possible to maximize the NSD control efficiency and also sufficiently 

larger than 𝑘  to ensure the stability of the NSD. Since 𝑘  decreases monotonically 

towards 𝑘  and both 𝑘  and 𝑘 values are always positive, the proposed algorithm is 

robust and will converge after a few iterations. 

6.4. Refinement of NSD design 

It was indicated earlier that Eq. (6-2) is derived for a damped cable under the assumptions 

of a fixed-fixed boundary conditions, and small values of 𝑥 /𝐿 and 4𝐸𝐼 𝛽 𝐻⁄ . As 

detailed in Chapter 3 for PSD- and NSD-controlled cables and reported in [71] for ZSD-

controlled cables, these assumptions would cause Eq. (6-2) to underestimate the attainable 

damping ratio of a damped cable. Although Eq. (6-2) provides a conservative damper 

design in all cases which is safe, the underestimation of the actual achievable damping ratio 

would be more considerable for longer cables. This stems from the fact that due to the high 

in-plane flexibility of a longer stay cable (𝐿 250 𝑚), its end anchorage condition is more 

agreeable with a hinged-hinged boundary condition rather than a fixed-fixed condition 

[90]. Therefore, the actual energy dissipation capability is greater than that predicted by 

the asymptotic damping ratio equation, Eq. (6-2). On the other hand, accurate numerical 

models are available to analyze the dynamic response of a cable-damper system, such as 

the MSM-based control-oriented model proposed in Chapter 4. This model relaxes the 

aforementioned assumptions and can thus accurately evaluate the NSD performance. 

Hence, it is possible to refine the NSD design by combining the analytical and the 

numerical approaches. The numerical model is adopted to calculate the damping ratio of 
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the cable equipped with an analytically designed NSD. Then, the numerically-calculated 

damping ratio is compared with the required damping ratio. Based on the observed 

discrepancy between the numerical and the target damping ratio, the NSD design process 

is repeated with the modified design input. The accuracy of the refinement is controlled by 

  

Fig. 6-7. Design optimization of a NSD system for cable vibration control in design 
scenario 3. 
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the tolerance parameter, 𝑒 , which shall be selected sufficiently small to minimize the 

error in the design. The proposed refinement algorithm is as follows: 

1. The process is initialized by defining 𝜁 𝜁 , where 𝜁  is the design damping ratio 

used in the analytical design formulas to determine the NSD parameters, and 𝜁  is 

the specified target damping ratio to be provided by the NSD. 

2. For the given cable properties and damper installation location, the unknown 

parameters of the NSD and its support are determined analytically for the design 

damping ratio, 𝜁 , by using the design procedures presented in Section 6.3.  

3. The obtained NSD parameters are taken as input to the numerical model (Section 

6.2.2.2) to construct the modal matrices of the cable-damper system. The modal 

damping ratio, 𝜁 , is calculated numerically by finding the complex eigenvalues of 

the damped cable. The numerically-obtained damping ratio is expected to be larger 

than the input damping ratio, i.e. 𝜁 𝜁 . 

4. Compare 𝜁  with 𝜁  and calculate the error 𝑒 𝜁 𝜁 /𝜁 . If |𝑒| 𝑒 , the 

refinement process of the NSD design is completed and the resulted NSD would 

provide the required damping ratio accurately. Otherwise, multiply the design 

damping ratio by 1/ 1 𝑒  and return to Step 2 to redesign the NSD for the 

updated design damping ratio of 𝜁 / 1 𝑒 . 

6.5. Numerical example 

In this section, a numerical example is presented to illustrate the NSD design procedures 

outlined in Sections 6.3 and 6.4 and evaluate the impact of the damper support stiffness on 
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the NSD performance. The dynamic behaviour of a full-size cable equipped with a NSD 

mounted on either a rigid or a flexible damper support is studied. The effectiveness of the 

NSD yielded from the refined and non-refined design will be compared. Finally, the 

performance of a NSD system, with its parameters optimized by the proposed approach, is 

compared with that of an optimal LQR controller. 

6.5.1. Problem description 

A 324.9-meter long stay cable is selected from the cable database compiled by Tabatabai 

et al. [106] for the numerical example. The mechanical and geometric properties of this 

cable are listed in Table 6-1. It is required to design a damper system which can provide a 

damping ratio of 4% in the first mode to suppress potential cable vibrations. The damper 

is restricted to be installed at 2% of the cable length from the cable-deck anchorage. The 

objective is to determine the parameters of the damper and its support for the prescribed 

conditions (design scenario 3). It is worth noting that for the specified damper location, 

should an ideal passive ZSD be used, it could provide a maximum damping ratio of 

0.5 𝑥 𝐿⁄ 1% [70]. Hence, to satisfy the design requirement, a NSD system will be 

designed following the algorithm for design scenario 3 presented in Section 6.3.3. 

6.5.2. Design of the NSD system 

The detailed design of the NSD system is illustrated below. The safety factor 𝑆𝐹 is taken 

as 3. The optimum non-dimensional damper size and stiffness of the NSD are first 

Table 6-1. Properties of the cable used in the numerical example. 

𝐿 m  
𝑚  

kg/m  
𝐷 m  𝜃 deg.  𝐻 kN  𝐸𝐼 kN m  𝐸𝐴 MN  𝑓  Hz  𝜆  

324.9 83.9 0.145 29.3 4175.1 2011.2 1999.7 0.378 1.49 
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estimated using Eqs. (6-8) and (6-9) based on the assumption of rigid damper support, i.e. 

𝑘 1000 (𝑘 642 MN/m . 

1. The cable-related parameters are calculated as: 𝑅 0.842, 𝜂 1.059, 𝜂

0.84, 𝑞 0.107, and 𝜂 𝜂 0.84. 

2. For the required damping ratio of 4% and the specified damper location of 2%. The 

corresponding auxiliary damping ratio parameter is calculated as 𝑌

0.04 0.02⁄ 1 0.107 0.84⁄⁄ 1.77. 

𝑋
𝑅

2 1 𝜋𝜂 𝑌
0.842

2 1 𝜋 1.059 1.77
0.0715 

𝑘
𝑅
2𝑌

1
𝜂

0.842
2 1.77

1
0.84

0.953 

The optimum damper size and damper stiffness are then calculated using Eqs. (6-

10) and (6-11), which are: 

𝑐
𝑋 √𝐻𝑚
𝑥 𝐿⁄

0.0715√4175.1 10 83.9
0.02

66.9 kN ⋅ s/m 

𝑘
𝑘 𝐻
𝑥

0.953 4175.1 10
0.02 324.9

612.2 kN/m 

3. To determine the possibility of optimizing the damper support stiffness, the non-

dimensional optimum and minimum support stiffness, as well as the critical non-

dimensional damper size are first calculated using Eqs. (6-12) to (6-14): 

𝑘
1

0.84 1 0.953 𝜋 1.059 0.0715 0.953⁄⁄
6.8 
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𝑘
1

0.84 1 0.953⁄
4.77 

𝑋
0.953 0.953 1 0.84⁄

𝜋 1.059
0.143 

4. The conditions required for a possible optimization of the damper support stiffness 

are checked as below 

a) 𝑋 0.0715 (Step 2) and 𝑋 0.143 (Step 3). Therefore, the condition 𝑋

𝑋  holds which ensures a reduction in the damper support stiffness can 

improve the maximum achievable damping ratio. 

b) 𝑘 , 1000 (initial assumption for a rigid support, 𝑘 642.5 MN/m), 

𝑘 , 6.8 (Step 3), 𝑘 , 4.77 (Step 3) and 𝑆𝐹 3. Hence, 

Table 6-2. Optimization of the NSD and its support in the numerical example. 

Iteration 
𝑘  
(a) 

𝑋 
(b) 

𝑘  
(c) 

𝑋  
(d) 

𝑘  
(e) 

𝑘  
(f) 

𝑘 𝑘
2

 

(g) 

𝑘 𝑆𝐹 
(h) 

Check 
(b) < (d)? 

Check 
(g) > (h)? 

1 1000 0.071 -0.953 0.143 4.8 6.8 503.4 14.4 True True 

2 503.4 0.071 -0.951 0.143 4.7 6.7 255.0 14.2 True True 

3 255.0 0.071 -0.949 0.144 4.7 6.6 130.8 14.0 True True 

4 130.8 0.070 -0.946 0.145 4.6 6.4 68.6 13.8 True True 

5 68.6 0.069 -0.940 0.146 4.5 6.1 37.4 13.4 True True 

6 37.4 0.067 -0.930 0.148 4.3 5.7 21.5 12.8 True True 

7 21.5 0.064 -0.915 0.151 3.9 5.1 13.3 11.8 True True 

8 13.3a 0.060b -0.892c 0.155 3.6 4.4 8.8 10.7 True False 

9 8.8 0.056 -0.865 0.160 3.2 3.8 6.3 9.5 True False 
a 𝑘 8542 kN m⁄ ;  
b 𝑐 56.4 kN ∙ s m⁄ ;  
c 𝑘 573.4 kN m⁄ . 
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𝑘 , 𝑘 , 𝑘 , 2⁄ 503.4, 𝑘 , 𝑆𝐹 14.4, and the condition 

𝑘 , 𝑘 , 𝑆𝐹 is also satisfied. 

5. Steps 1 to 4 are repeated with the updated non-dimensional support stiffness of 

𝑘 , 𝑘 , 503.4. The iteration continues until either the condition of 𝑋

𝑋  or 𝑘 , 𝑘 , 2⁄ 𝑘 , 𝑆𝐹 cannot be satisfied. In this case, the latest 𝑐 , , 

𝑘 , , and 𝑘 ,  values will be the selected values for the NSD system. Table 6-2 

summarizes the iterations of optimizing the design of the NSD system. The final 

design is concluded in eight iterations which yields 𝑐 56.4 kN ⋅ s/m, 𝑘

573.4 kN/m, and 𝑘 8542.7 kN/m. It can be seen from this table that 

compared to the case of rigid damper support, the size and the absolute value of the 

stiffness of the NSD have been respectively reduced by 15.6% and 6.3% when an 

optimized support stiffness is determined based on the proposed approach. 

6.5.3. Refinement of the NSD design 

As mentioned earlier, Eq. (6-2) leads to a conservative NSD design, especially for longer 

cables. Considering the length of the stay cable studied in this example (𝐿 324.9 m) and 

the values of 𝑥 /𝐿 0.02 and 4𝐸𝐼 𝛽 𝐻⁄ 0.0002, the NSD design refinement 

would be suggested. The refinement algorithm proposed in Section 6.4 is applied herein 

with a tolerance of 𝑒 0.1% to improve the NSD system designed in Section 6.5.2. As 

illustrated in Section 6.3.3, the support stiffness optimization in design scenario 3 is an 

iterative process, where, in each iteration, the size and stiffness of a NSD are determined 

for a given 𝑘 . The design refinement described in Section 6.4 can be applied either at the 

end of each iteration step or when the entire optimization process is completed. In this 

example, the latter approach is used. 
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The first modal damping ratio of the studied cable equipped with the NSD system 

optimized in the 8th iteration of Table 6-2, i.e. 𝑐 56.4 kN ⋅ s/m, 𝑘 573.4 kN/m, 

and 𝑘 8542.7 kN/m, can be numerically calculated from the first complex eigenvalue 

of Eq. (6-5), i.e. 𝜆 0.117 2.224𝑖. In this case, 𝜁 Imag 𝜆 |𝜆 |⁄

0.117 0.117 2.224⁄  5.25%. Hence, the error between 𝜁  and the target first 

modal damping ratio 𝜁 4% is 𝑒 5.25 4 /4 31.2%. In the second iteration, the 

design of the NSD system is optimized for the damping ratio of 𝜁 1 𝑒⁄

4% 1 0.312⁄ 3.05%, which yields 𝑐 73.4 kN ⋅ s/m, 𝑘 531.5 kN/m, and 

𝑘 8096.2 kN/m. By attaching this updated NSD system to the studied cable, the 

numerically obtained first modal damping ratio of the damped cable is obtained as 𝜁

3.85% and the error between the achieved and the required damping ratio becomes 𝑒

3.87%. The refinement continues until the tolerance 𝑒 0.1% is satisfied after four 

iterations. Table 6-3 gives a summary of the refinement process. The parameters of the 

refined NSD system are determined to be 𝑐 70.9 kN ⋅ s/m, 𝑘 537.3 kN/m, and 

𝑘 8134.2 kN/m, of which the first modal damping ratio of the damped cable is 3.997%. 

The rate of convergence of the proposed refinement algorithm is shown in Fig. 6-8. It can 

Table 6-3. Refinement of the NSD design in the numerical example (𝑒 0.1%). 

Iteration 
𝑘  

kN m⁄  
𝑐  

kN ∙ s m⁄  
𝑘  

kN m⁄  
𝜁  𝜁  𝑒 

𝜁
1 𝑒

 |𝑒| 𝑒  

1 8542.7 56.4 -573.4 4.000% 5.249% 31.23% 3.048% False 

2 8096.2 73.4 -531.5 3.048% 3.845% -3.87% 3.171% False 

3 8140.4 70.6 -538.2 3.171% 4.020% 0.51% 3.155% False 

4 8134.2 70.9 -537.3 3.155% 3.997% -0.07% 3.157% True 

5 8135.0 70.9 -537.4 3.157% 4.000% 0.01% 3.156% True 
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be observed that the error between the achieved and the required damping ratio reduces 

substantially in only one iteration and the NSD design parameters rapidly converge to their 

refined values. It is worth mentioning that if the refinement is applied at the end of each 

iteration in the optimization process of the NSD design, the results will be almost identical 

(𝑐 70.9 kN ⋅ s/m, 𝑘 537.3 kN/m, and 𝑘 8137.6 kN/m). This demonstrates 

the robustness and stability of the proposed refinement algorithm. However, applying 

refinement at the end of each iteration is not advantageous in terms of computational 

efficiency. 

A numerical simulation is conducted by solving Eq. (6-4) to evaluate the control 

performance of the designed NSD. In this simulation, the cable-damper system is subjected 

to a uniformly distributed harmonic load with a frequency of 𝑓 0.36 Hz for 50 seconds. 

 

Fig. 6-8. Convergence of the NSD design refinement algorithm. 
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The excitation is then removed to allow the cable to vibrate freely for another 50 seconds. 

To excite the damped cable in the first mode, the frequency of the harmonic excitation is 

selected to be the same as the first modal frequency of the cable-damper system. A static 

load component is also added to the dynamic excitation to simulate the effect of the mean 

wind load and generate a more realistic wind effect on the stay cable. 

To evaluate the effect of NSD design refinement on the performance of a cable-NSD 

system, the free vibration response of the studied cable equipped respectively with a non-

refined NSD (row 1 in Table 6-3) and a refined NSD (row 4 in Table 6-3) are examined. 

The modal damping ratio of the damped cable is obtained by fitting an exponential curve 

to its free vibration displacement time history. In Fig. 6-9, the displacement time history of 

the damped cable at its mid-span is considered for calculating its first modal damping ratio 

based on the exponential envelope of the peak displacement. As can be observed in this 

figure, the maximum free vibration response at the cable mid-span for the non-refined NSD 

(𝑤 0.92𝐷) is 15.2% larger than that of the refined NSD (𝑤 0.8𝐷). This 

increased cable displacement is due to the presence of greater negative stiffness in the non-

refined NSD. Besides, the maximum cable displacement at the damper location is increased 

by 33% (from 0.27𝐷 to 0.36𝐷) when the NSD design refinement is not applied. On the 

other hand, the first modal damping ratio provided by the refined and the non-refined NSD 

systems are 𝜁 4% and 5.3%, respectively. Therefore, the non-refined NSD can provide 

an additional 1.3% damping ratio at the cost of increasing the cable displacement. Hence, 

it is necessary to refine the NSD design to prevent an unnecessary, yet significant, increase 

in the cable response. 
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6.5.4. Effect of damper support flexibility 

To investigate the impact of damper support flexibility on the NSD performance, three 

cases are considered for the same cable and damper design requirements discussed in 

Section 6.5.1 (i.e. provide a damping ratio of 4% in the 1st mode). These NSD design cases 

are: 

Case 1) NSD-R: The damper is designed and refined for a rigid support. The selected NSD 

parameters are 𝑐 84.5 kN ⋅ s/m and 𝑘 572.2 kN/m. 

Case 2) NSD-RF: The damper designed in Case 1 (NSD-R), which is optimized for a rigid 

support, is mounted on a flexible support with 𝑘 8134.2 kN/m (4th iteration in Table 

6-3). 

 

Fig. 6-9. Free vibration displacement time history of the studied cable at the mid-span 
and the corresponding 1st modal damping ratio when equipped respectively with a 

refined and a non-refined NSD. 
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Case 3) NSD-F: The damper is optimized and refined for a flexible support. The NSD 

parameters are 𝑐 70.9 kN ⋅ s/m, 𝑘 537.3 kN/m, and 𝑘 8134.2 kN/m (4th 

iteration in Table 6-3). 

In three separate simulations, the studied cable is equipped with one of the above NSD 

systems and subjected to a uniformly distributed load with a load intensity of 𝑓 𝑡

15.4 0.31 sin 0.72𝜋𝑡 N/m for 50 seconds. The loading parameters are selected to 

generate a predefined response amplitude in the uncontrolled cable. The excitation is then 

removed to capture the free vibration of the cable for another 50 seconds. The time-history 

of the cable response at the damper location and the NSD hysteresis loop is shown in Fig. 

6-10 for the three NSD systems defined above. As can be observed in Fig. 6-10(a), using 

the NSD-RF would increase the cable displacement amplification at the damper location 

during the forced vibration phase as compared to the case where the NSD-R is used. The 

hysteresis loop of the NSD-RF shown in Fig. 6-10(b) has a higher negative slope than the 

NSD-R. In other words, mounting a NSD on a flexible support is equivalent to a decrease 

in the negative damper stiffness. In this case, the NSD-RF could generate a control force 

21.7% larger than that by the NSD-R, and the attached cable would undergo a displacement 

13.8% larger at the damper location. As a result, mounting a NSD optimized for a rigid 

support on a flexible support would provide a higher damping ratio (𝜁 4.6%) than the 

target value at the cost of amplifying the cable response during the forced vibration phase. 

In the case of NSD-F, the dynamic behaviour of the cable-damper system is similar to the 

NSD-R and both dampers provide the required damping ratio (𝜁 4%). It should be noted 

that the NSD-F is designed with smaller damper size and less strong negative stiffness than 

the NSD-R. The optimized and refined NSD-F can effectively mitigate cable vibrations 
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when installed on a flexible support. This design is also cost-efficient as it leads to smaller 

damper size, 𝑐 , and less negative damper stiffness. 𝑘 . 

6.5.5. Performance comparison between NSD and LQR 

To further evaluate the performance of a NSD, the control efficiency of the damper 

designed in Case 3, i.e. NSD-F, is compared with that of an optimal LQR controller. The 

loading condition of the damped cable is similar to the preceding sections. An LQR 

controller has been adopted by Shi et al. [68] for mitigating stay cable vibration. The 

classical 𝑸 matrix in the LQR controller is defined as: 

𝑸 𝑲 0
0 𝑴

 (6-16) 

Fig. 6-10. Impact of damper support stiffness on the performance of NSD. (a) Cable 
displacement at the damper location controlled by NSD-R and NSD-RF, (b) 

Hysteresis loop of NSD-R and NSD-RF, (c) Cable displacement at the damper 
location controlled by NSD-R and NSD-F, (d) Hysteresis loop of NSD-R and NSD-F. 
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where 𝑴 and 𝑲 are the modal mass and stiffness matrices of the cable, respectively (in 

accordance with Section 6.2.2.2), and the R parameter in the LQR controller is selected as 

1.8 10  to ensure the peak control force generated by the LQR is comparable to that by 

the NSD-F. To evaluate the overall vibration control effectiveness of the NSD-F along the 

cable length and take into account the local response amplification near the damper location 

due to the negative damper stiffness, the RMS cable response in the uncontrolled and 

controlled state will be compared. For this purpose, the mean square of the cable 

displacement integrated along the cable length (IMS) can be used to capture the overall 

NSD-F and LQR control performance as well as the localized effect of NSD-F near the 

damper installation location. The IMS is defined as: 

IMS mean 𝑤 𝑥, 𝑡 𝑑𝑥  (6-17) 

where mean ∙  denotes the arithmetic mean over time. The IMS for the uncontrolled and 

controlled cable is calculated for the forced and the free vibration phases of the damped 

cable when equipped with the NSD-F and the LQR. The evaluation criteria are defined as 

follows: 

𝛿
IMS
IMS

 (6-18) 

𝛿
IMS
IMS

 (6-19) 

where 𝛿  and 𝛿  are the displacement reduction indices of the forced and the free vibration 

phases, respectively; IMS  and IMS  are the IMS of the controlled and the uncontrolled 

cable, respectively.  
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Table 6-4 presents the numerical simulation results of the control efficiency provided by 

the NSD-F and the LQR. The NSD-F optimized and refined by the proposed design 

approach has successfully provided the target damping ratio of 4% by generating a 

maximum control force of 39.6 kN, while the LQR produced a damping ratio of 8.6% with 

the same level of control force. The displacement reduction indices of the forced and the 

free vibration phases are also provided in the table. During the forced vibration stage, the 

IMS has been reduced by 32.4% when the cable is equipped with the NSD-F. Also, the 

LQR controller can reduce IMS more effectively and its displacement reduction index 

during the forced vibration is 𝛿 58.8%. On the other hand, both control schemes are 

substantially effective in suppressing free vibration, with the optimized NSD (NSD-F) and 

the LQR controller offer respectively a 97.4% and 98.3% reduction in the IMS during the 

free vibration phase. 

Figure 6-11 shows the displacement time history of the cable at its mid-span when 

equipped with the NSD-F or the LQR. As can be seen in this figure, the effectiveness of 

the NSD-F in reducing cable displacement is satisfactory as the peak cable displacement 

at the mid-span is reduced by 55% in the free vibration phase. The NSD-controlled and 

uncontrolled cable response at the cable mid-span are respectively 𝑤 2.2𝐷 and 

𝑤 3.1𝐷 in the forced vibration phase, and 𝑤 0.86𝐷 and 𝑤 1.9𝐷 in the 

Table 6-4. Comparison of the performance of NSD-F and LQR in cable vibration 
control. 

Controller 
𝑐   

kN ∙ s m⁄  
𝑘   

kN m⁄  
𝑘   

kN m⁄  
𝜁  𝛿  𝛿  

𝐹  
kN  

NSD-F 70.9 -537.3 8134.2 4.0% 67.6% 2.6%  39.6  

LQR N/A N/A   8.6% 58.8% 1.7%  39.3 
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free vibration phase. It can also be seen that the LQR performs better in both vibration 

phases. However, if LQR would be used to offer such a control efficiency, it would require 

full system identification and availability of the system states at any time during the cable 

vibration, both of which are challenging for practical application. Figure 6-12 shows the 

displacement of the NSD-equipped cable along three cable segments of 0.9𝐿 𝑥 𝐿, 

0.4𝐿 𝑥 0.6𝐿 and 0 𝑥 0.1𝐿, where the last segment includes the damper 

installation location. By comparing the cable response in the two boundary zones, namely 

0.9𝐿 𝑥 𝐿 and 0 𝑥 0.1𝐿, the effect of negative damper stiffness on the cable 

displacement is portrayed. Besides, the overall NSD performance will be reflected in the 

cable mid-region, 0.4𝐿 𝑥 0.6𝐿, where the largest displacement occurs in the first 

mode of cable vibration. As can be seen in Figs. 6-12(a) and 6-12(c), the cable undergoes 

larger displacements in the left end where NSD is installed (i.e. 0 𝑥 0.1𝐿) as compared 

to the right boundary region. The maximum cable displacement in these two zones are 

respectively 𝑤 1.1𝐷 and 𝑤 0.75𝐷. Therefore, there is a 47% increase in the 

maximum cable response in the cable boundary zones as a result of NSD attachment. 

Besides, Fig. 6-12(b) shows that the maximum controlled cable displacement at the cable 

 

Fig. 6-11. Uncontrolled and controlled cable displacement at the mid-span when the 
cable is equipped with NSD-F and LQR. 
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mid-span is 𝑤 2.2𝐷. It is effectively suppressed by the optimized and refined NSD 

system. By comparing the performance of NSD-F and LQR in this section, it was found 

that the negative stiffness damper can effectively control the cable displacement in both 

free and forced vibration phases and provide the required damping ratio when installed on 

a flexible support. However, due to the presence of negative stiffness in the damper, the 

cable displacement is amplified near the damper installation location. The amount of such 

cable response amplification can be limited by applying the proposed optimization and 

refinement algorithms in the NSD design process. 

6.6. Summary 

The impact of damper support stiffness on the NSD performance in controlling stay cable 

vibrations has been investigated in this chapter. The existing analytical and numerical 

approaches for evaluating the control performance of a NSD mounted on a flexible support 

have been reviewed. The NSD stability limit has been extended to the case of flexible 

support condition and a practical value for the allowable negative damper stiffness is 

recommended by introducing a safety factor. Three typical NSD design scenarios have 

been addressed, which target respectively the NSD design for a given support condition, 

the support design for a given NSD, and the design of the entire NSD-support system. The 

last scenario was tackled by proposing an optimization algorithm to identify the optimum 

combination of NSD parameters (damper size and stiffness) and damper support stiffness. 

In parallel, to minimize the impact of the assumptions made in the analytical damper design 

formulation and improve the accuracy of the NSD design, refinement of the NSD design 

has been proposed. To further evaluate the effectiveness of the proposed design scheme for 

a NSD mounted on a flexible support, a numerical example has been presented, of which 
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the dynamic response of a 324.9 m long stay cable was analyzed when it was equipped 

with an optimized and refined NSD and subjected to harmonic excitation. First, the effect 

of damper support stiffness on the NSD performance has been evaluated by comparing 

three NSD design cases with different support conditions and design approaches. Then, the 

control effectiveness of the optimized and refined NSD has been compared with an optimal 

LQR controller. Besides, the problem of cable response amplification near the damper 

 

Fig. 6-12. Displacement of the cable equipped with NSD-F at (a) 0.9𝐿 𝑥 𝐿, (b) 
0.4𝐿 𝑥 0.6𝐿, and (c) 0 𝑥 0.1𝐿. 
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installation location due to the presence of negative damper stiffness has also been 

investigated. The main findings of the current study are summarized as follows: 

1. Depending on the damper size of a NSD, mounting it on a flexible damper support 

can have different effects on its control performance. A critical damper size has 

been identified such that if the damper size is smaller than this critical value, using 

a more flexible damper support would enhance the performance of the NSD by 

increasing the damping ratio of the cable-NSD system. Otherwise, depending on 

the stiffness of the damper support, using a flexible support would have either a 

negative or neutral impact on the effectiveness of a NSD. 

2. If the damper size of a NSD is smaller than the identified critical value, an optimum 

damper support stiffness exists which would allow a given NSD to achieve the best 

vibration control effect. 

3. For a given negative stiffness damper, there exists a minimum damper support 

stiffness which ensures the stability of the entire cable-NSD system. At this 

minimum support stiffness, if the damping coefficient of the NSD is zero, the 

negative damper stiffness would fully offset the inherent positive stiffness of the 

cable at the damper location and lead to instability of the damped cable. It has been 

found that this minimum damper support stiffness must be positive and is always 

smaller than the optimum support stiffness. 

4. By optimizing a NSD for a flexible support condition, it is possible to reduce the 

damper size and the amount of negative damper stiffness to achieve the desired 

control performance. This would reduce the fabrication and maintenance cost of 

the NSD. In addition, the optimization would reduce the amplification of cable 
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response, in particular, at the damper installation location, which is a main 

drawback in the NSD application. 

5. The control effectiveness of an optimized and refined NSD mounted on a flexible 

support is comparable to that of an optimal LQR controller and hence, NSD can be 

considered as a feasible alternative to the more complicated active and semi-active 

control schemes. 

6. The proposed NSD design optimization and refinement algorithms are robust and 

computationally efficient. This feature ensures that their application would 

practicably improve the accuracy and efficiency of the NSD design. 
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Chapter 7 Multi-mode Vibration Control of Cables Using Optimized 

NSD 

 

7.1. Introduction 

As discussed in previous chapters, all the existing NSD design methods target damper 

optimization for controlling cable vibration dominated by a specific mode. However, on-

site records show that vibrations of stay cables are usually influenced by more than a single 

mode. For example, it was observed that under rain-wind induced vibration the first few 

cable modes are often excited [10,38,49]. On the other hand, the dominant cable modes 

during a vibration incidence highly depend on the excitation source and may vary. Hence, 

using a single-mode-based approaches to optimize passive viscous damper design, 

including NSDs, may result in suboptimal damper performance. In order to address this 

concern, multi-mode vibration control techniques have been studied by a number of 

researchers for both passive and semi-active dampers of linear or nonlinear nature. Wang 

et al. [75] proposed a method to optimize the performance of viscous dampers in mitigating 

multi-mode cable vibrations. Weber et al. [48] developed an analytical method for the 

optimization of linear viscous dampers. Hoang and Fujino [76] studied the behaviour of 

nonlinear dampers and obtained their equivalent damping ratio by using energy-based 

arguments. More recently, Weber and Distl [77] introduced a semi-active control scheme 

for multi-mode cable vibration mitigation. On the other hand, the passive NSD has shown 

high damping capability which is comparable to smart semi-active systems. As a linear 

passive device, NSD would be a better choice for designing a less-complicated and 
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measurement-free controller. However, existing NSD design tools only address single-

mode cable vibration control and the potential of NSD in mitigating multi-mode cable 

vibrations is still unknown. 

In this chapter, a novel approach for optimizing NSD for controlling multi-mode stay cable 

vibrations is proposed. An asymptotic design formula which includes the effect of damper 

stiffness is adopted to develop NSD design equations for controlling not only a single-

mode, but also multi-mode cable vibrations. The validity of the proposed NSD design 

approach for multi-mode cable vibration control is verified by the dynamic response of a 

group of representative real stay cables which undergo multi-mode vibrations when 

equipped with NSD designed based on the proposed approach. To further evaluate the 

effectiveness of the proposed NSD design scheme for multi-mode vibration control, a 

numerical example is conducted on a 460 m long stay cable subjected to wind excitation 

and equipped with a NSD designed by the proposed approach. The performance of the 

NSD is also compared with an optimal LQR controller. 

7.2. Formulation of NSD design approach to suppress multi-mode cable vibrations 

7.2.1. In-plane dynamic response of a damped cable 

Figure 7-1 shows the mechanical model of a stay cable with a transverse damper installed 

near its lower end on a flexible support. The 𝑥- and 𝑦-axes represent the cable chord 

direction and the transverse (in-plane) direction, respectively. The cable is subjected to an 

external load 𝑓 𝑥, 𝑡  and undergoes an in-plane dynamic displacement 𝑤 𝑥, 𝑡  at 

location 𝑥 and time instant 𝑡. In this model, 𝑚 is the cable mass per unit length, 𝐿 is the 

cable length, 𝐻 is the cable tension in the direction of its chord, 𝐸𝐼 and 𝐸𝐴 represent the 

cable flexural and axial rigidity, respectively, 𝜃 is the inclination angle, and 𝑧 𝑥  is the 
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static cable displacement due to its self-weight. The cable is equipped with a viscous 

damper of size 𝑐  located at a distance 𝑥  from the lower end. In the damper model, the 

damper stiffness, 𝑘 , is simulated by a linear spring parallel to the dashpot. The flexibility 

of the damper support is represented by a linear spring with stiffness 𝑘  connected between 

the damper and the fixed base. 

By adopting the mode superposition method, it is possible to approximate the in-plane 

dynamic displacement of the cable, 𝑤 𝑥, 𝑡 , by the following finite series: 

𝑤 𝑥, 𝑡 𝜙 𝑥 𝑞 𝑡  (7-1) 

where 𝜙 𝑥  and 𝑞 𝑡  are the shape function and the generalized coordinate of the 𝑖 ℎ 

mode, respectively; and 𝑛 is the number of modes considered in the approximation. The 

accuracy of this approximation will, obviously, depend on how well the shape functions 

could represent the actual dynamic behaviour of the damped cable and the number of the 

 

Fig. 7-1. Sagged-flexural stay cable equipped with a transverse damper. 
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modes included. A conventional approach to enhance the performance of the mode 

superposition method is to include a static correction in the mode shapes [57]. It was shown 

in Chapter 4 that the accuracy and computational efficiency can be greatly improved by 

considering the static displacement of the cable under a point load at the damper location 

as one of the shape functions. Thus, in the current discussion, the shape function vector is 

defined as: 

Φ 𝑥
𝜙 𝑥

  

𝜙 𝑥 …𝜙 𝑥
  

 (7-2) 

By ignoring the inherent cable damping, the equation of motion of a damped cable based 

on the generalized coordinates can be expressed as: 

𝐌 𝑞 𝑡 𝐊 𝑞 𝑡 𝐹 𝑡 𝐹 𝑡 ϕ 𝑥  (7-3) 

where 𝑴 𝑚 𝑚 𝜙 𝑥 𝜙 𝑥 𝑑𝑥 is the modal mass matrix; 𝑲 𝑲𝒔 𝑲𝒕 𝑲𝒃 is 

the modal stiffness matrix which consists of three parts and each represents a distinct 

source of stiffness in the system, i.e. 𝑲𝒔 𝑘

𝐸𝐴 𝐿⁄ 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥 𝑧″ 𝑥 𝜙 𝑥 𝑑𝑥 is the stiffness due to the additional dynamic 

cable tension which is governed by the cable sag and 𝑧 𝑥  is the displacement of the cable 

under its own weight; 𝑲 𝑘 𝐻 𝜙′ 𝑥 𝜙′ 𝑥 𝑑𝑥 is the stiffness due to the static 

cable tension; and finally, 𝑲 𝑘 𝐸𝐼 𝜙″ 𝑥 𝜙″ 𝑥 𝑑𝑥 results from the cable 

flexural rigidity; 𝐹 𝑡 𝑓 𝑓 𝑥, 𝑡 𝜙 𝑥 𝑑𝑥  is the generalized external 

force; 𝐹 𝑡  is the time-dependent damper force; and 𝑞 𝑡  and 𝑞 𝑡  are the vectors of 

generalized modal acceleration and displacement, respectively. Based on Eq. (7-3), the in-
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plane dynamic response of a damped cable subjected to an arbitrary external load can be 

obtained numerically. 

7.2.2. Design optimization of a NSD 

As an extension to Fig. 5-5, Fig. 7-2 illustrates the damping ratio surfaces for three 

successive modes 𝑖, 𝑗, and 𝑘 (𝑖 𝑗 𝑘) over the ranges of 0 𝑌 1, 0 𝜏 1 and 

0 𝑋 0.6. It is worth to point out that modes 𝑖, 𝑗, and 𝑘 do not need to be consecutive. 

Figure 7-2 can be applied to two typical design scenarios of a damper. The first common 

design scenario is to choose the size of a damper to maximize the energy dissipation 

capacity of the damped cable when the NSD stiffness ratio, 𝜏, is determined by other factors 

such as manufacturing requirements. Whereas the second scenario is to find a suitable 

damper (both damper size and damper stiffness) for a given cable to achieve the specified 

level of modal damping ratio. A systematic approach to address these two design issues 

based on the damper performance surfaces shown in Fig. 7-2 will be illustrated in the 

following sub-sections. 

7.2.2.1. Design scenario 1: Given the damper stiffness, choose damper size 

The NSD optimization for controlling single-mode cable vibration was addressed in 

Section 5.4 where practical analytical formulation was derived for a similar design scenario 

in Section 5.4.2. The NSD design point for single-mode cable vibration control in this 

scenario (point 𝑝 ) was shown in Fig. 5-5 for an arbitrary mode. Similar design points are 

illustrated in Fig. 7-2 for two successive modes 𝑖 and 𝑗, namely points 𝑖′ and 𝑗′. It can be 

observed from this figure that the optimum damper size for a particular cable mode would 

not be the most effective one for the other modes. Therefore, when the cable motion is 

dominated by more than one mode, Eq. (5-5) will not lead to an optimum design for NSD 
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and a method is required to optimize it for all the governing modes. Figure 7-3 shows a 

generalized form of Fig. 5-6 by including additional design points that correspond to the 

case of multi-mode cable vibration. 

Take two arbitrary cable modes 𝑖 and 𝑘 as an example and assume, for design purpose, that 

they are the dominant modes of cable vibration. It can be seen from Fig. 7-3(a) that the 

performance curves of these two modes intersect at point 𝑖𝑘 ′. If the size of the NSD is 

chosen based on 𝑋 , , it would allow the damped cable to achieve the same modal 

damping ratio in the 𝑖 ℎ and the 𝑘 ℎ modes, i.e. 𝑌 , . Although such a damper would not 

be optimum for either modes as compared to a damper design targeting for only the 𝑖 ℎ or 

the 𝑘 ℎ mode, this damper would have a better performance in mitigating both modes 

 

Fig. 7-2. Three-dimensional damper performance surfaces for three successive modes 
𝑖, 𝑗, and 𝑘. 
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simultaneously. By applying Eq. (5-4) respectively to the 𝑖 ℎ and the 𝑘 ℎ modes, and setting 

𝑌 𝑌 , it yields: 

𝑋 ,
1 𝜏
𝜋

𝑘𝑅 𝜂 𝑖𝑅 𝜂
𝑖𝑘𝜂 𝜂 𝑘𝑅 𝜂 𝑖𝑅 𝜂

 (7-4a) 

 
(a) 

 
(b) 

Fig. 7-3. NSD performance on arbitrary 𝜏-planes. (a) An arbitrary 𝜏-plane, (b) planes 
𝜏 0 and 𝜏 0.45. 
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where 𝜏 𝑘 𝑘⁄  is the NSD stiffness ratio; 𝑘  is the stiffness of a NSD; 𝑘

𝐻 𝑥 𝜂⁄  is the lowest negative stiffness of the NSD that ensures its stability. Further, 

by substituting Eq. (7-4a) into Eq. (5-4), we can obtain: 

𝑌 ,
𝑖𝑘𝜂 𝜂 𝑖𝑅 𝜂 𝑘𝑅 𝜂 𝑖𝑅 𝜂 𝑘𝑅 𝜂

1 𝜏 𝑘𝜂 𝑖𝜂 𝑘𝜂 𝑖𝜂
 (7-4b) 

Therefore, for a given NSD stiffness ratio, 𝜏, and damper installation location, 𝑥 , the 

damper size selected based on Eq. (7-4a) would be most effective in controlling cable 

motions dominated by both modes 𝑖 and 𝑘. The optimal damper size can be obtained from: 

𝑐
,

𝑋 , √𝐻𝑚

𝜂 𝑥 𝐿⁄
 (7-5a) 

whereas the corresponding cable damping ratio is: 

𝜁 , 𝑌 , 𝑥 𝐿⁄ 𝑅  (7-5b) 

where 𝑅 1 𝛼 𝑞 𝜂⁄ . Besides, Fig. 7-3(a) suggests that if the two targeted modes 

𝑖 and 𝑘 are not consecutive, then the damper size determined by Eq. (7-5a) would also 

perform satisfactorily in suppressing cable modes between 𝑖 and 𝑘. For instance, it can be 

seen from Fig. 7-3(a) that for any mode 𝑗 lying between mode 𝑖 and mode 𝑘, the optimum 

damper size for controlling both modes 𝑖 and 𝑘, 𝑋 , , would allow to achieve a 𝑗 ℎ modal 

damping ratio higher than the optimized value for the two target modes, i.e. 𝑌 𝑌 , . 

On the other hand, the damper size selected to optimize the controlling effect for the two 

target modes would be suboptimal for any mode that is beyond that range. For the three 

successive modes shown in Fig. 7-3(a), i.e. 𝑖 𝑗 𝑘, if mode 𝑖 and mode 𝑗 are the two 

target modes, the optimum design point would be 𝑖𝑗 ′ and the optimum damper size could 
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be deduced from 𝑋 , . However, if such a damper is installed, the 𝑘 ℎ modal damping 

ratio of the damped cable , namely 𝑌 , would be less than the optimum damping ratio of 

the two target modes, 𝑌 , . This implies that to design a NSD which could most 

efficiently suppress cable vibrations dominated by a number of modes for a given NSD 

stiffness ratio 𝜏, the designer only needs to choose the lowest and the highest dominating 

modes as the two target modes, then determine the optimum modified damping parameter 

for these two modes using Eq. (7-4a). If the damper installation location is also specified, 

the optimum damper size can be obtained from Eq. (7-5a). By using this damper, the modal 

damping ratio for the intermediate modes would be higher than that of the two target modes 

predicted from Eqs. (7-4b) and (7-5b). Similar phenomenon was reported by Weber et al. 

[48] when optimizing linear viscous damper for multi-mode cable vibration control. A 

formal theoretical proof of this finding is presented as follows. 

First, consider design scenario 1 for three successive modes 𝑖, 𝑗 and 𝑘. For a given negative 

stiffness ratio, use Eq. (7-4a) to optimize a NSD based on modes 𝑖 and 𝑘, i.e. 𝑌 𝑌 . The 

optimum damper size, 𝑋 , , is then substituted into Eq. (5-4) to obtain the normalized 

damping ratio in mode 𝑗. Two cases can be considered: 

1. Modes 𝑖, 𝑗 and 𝑘 with 𝑖 1. In this case, the sag effect in these three modes is 

minor. Thus, 𝜂 𝜂 𝜂 1, 𝑅 𝑅 𝑅 1, and Eq. (5-4) will yield: 

𝑌 𝑌
𝑖𝑘 𝑗 𝑖 𝑘 𝑗 1 𝑖𝑘⁄

1 𝜏 𝑖 𝑘 𝑖𝑘 𝑗
 (7-6) 
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It is evident that the right-hand side of Eq. (7-6) is positive. Therefore, 𝑌 𝑌 0, 

which suggests that the damping ratio of the 𝑗 ℎ mode is higher than the target 

damping ratio in modes 𝑖 and 𝑘. 

2. Modes 𝑖, 𝑗, and k with 𝑖 1. In this case, the values of 𝜂  and 𝑅  will be functions 

of 𝜆  and it can be shown that for 𝜆 8, 𝑌 𝑌 0 holds. This 𝜆  requirement 

is met for majority of the stay cables on cable-stayed bridges, for which the 𝜆  is 

typically less than 1. 

Another noteworthy phenomenon is the effect of NSD stiffness ratio in the multi-mode 

cable vibration mitigation. By reducing the stiffness of a NSD, the stiffness ratio 𝜏 would 

increase, which would subsequently lead to a smaller damper size and larger achievable 

damping ratio, as reflected respectively in Eqs. (7-4a) and (7-4b). This phenomenon is also 

shown in Fig. 7-3(b) where the damper performance curves of the two target modes, 

namely 𝑖 and 𝑗, in the planes of 𝜏 0 (solid line) and 𝜏 0.45 (dashed line) are shown 

together in terms of their projection on an arbitrary 𝜏-plane. By comparing the optimum 

damper design for these two NSD stiffness ratio cases, it can be clearly seen that 𝑋 ,
.

𝑋 , , i.e. when the damper installation location remains the same, increasing 𝜏 would 

help reducing the optimum size of NSD to most effectively suppress cable vibration 

dominated by mode 𝑖 and mode 𝑗; whereas 𝑌 ,
. 𝑌 ,  indicates that if the installation 

location and the size of a NSD remains the same, using a larger damper stiffness ratio in 

the design would increase the maximum achievable damping ratio for all the target modes, 

and thus enhance the performance of the NSD in the multi-mode cable vibration control. 
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7.2.2.2. Design scenario 2: Given a required damping ratio, choose NSD stiffness and size 

The damper property curves 𝜏 𝑋 associated with three successive modes 𝑖, 𝑗, and 𝑘 

(where 𝑖 𝑗 𝑘 and they are not necessarily consecutive) are illustrated in Fig. 7-4. When 

there are more than one dominant modes, optimizing NSD design for multiple modes is 

necessary to ensure the modal damping ratio of all these modes satisfy the design 

 
(a) 

 
(b) 

Fig. 7-4. NSD performance on arbitrary 𝑌 -planes. (a) An arbitrary 𝑌 -plane, (b) 
planes 𝑌 1 and 𝑌 0.7 and 𝑌 0.6. 
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requirement. Take mode 𝑖 and mode 𝑘 as an example. As can be seen from Fig. 7-4(a), the 

intersection point of the damper property curves for mode 𝑖 and mode 𝑘, i.e. point 𝑖𝑘, would 

correspond to a NSD design which allows the modal damping ratio of both target modes 

reach the specified damping level. Noticing that point 𝑖𝑘 is above the damper property 

curve associated with mode 𝑗, which, based on the slope of the damper performance 

surfaces shown in Fig. 7-2, indicates that a NSD with the size and stiffness determined 

respectively from 𝑋 ,  and 𝜏 ,  would yield a higher 𝑗 ℎ modal damping ratio than the 

specified value for modes 𝑖 and 𝑘. This implies that designing a NSD to satisfy a specific 

damping requirement for a number of dominant modes, the designer only needs to find the 

optimum damper design for the lowest and the highest order dominant modes, and the so 

selected NSD would ensure the damping ratio of other dominant modes within this range 

to be higher than the specified design value. This observation is an important feature of the 

NSD multi-mode design. A formal proof of this finding will be presented later.  

Since the required damping ratio of different vibrational modes may not be required to be 

the same, a more general NSD optimization task could be to specify different damping 

requirement for each of the dominant modes. Here, assume the three target cable modes 

being 𝑖, 𝑗 and 𝑘 (𝑖 𝑗 𝑘 and they are not necessarily consecutive), and the specified 

damping ratio requirement represented respectively by 𝑌 , 𝑌  and 𝑌  (𝑌 𝑌 𝑌 ). The 

damper performance curves corresponding to these three modes on the planes of 𝑌 1, 

𝑌 0.7 and 𝑌 0.6 are portrayed together in Fig. 7-4(b), in the form of their projection 

on an arbitrary 𝑌 -plane. It can be observed from Fig. 7-4(b) that point 𝑖𝑘  is the 

intersection point of the projected 𝜏 𝑋 curve of mode 𝑖 on plane 𝑌 1 and that of mode 
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𝑘 on plane 𝑌 0.6. The coordinates of this point can be derived by rewriting Eq. (5-4) 

respectively for mode 𝑖 and mode 𝑘, i.e. 

1 𝜏
𝑅 𝑖𝜋𝜂 𝑋

𝑌
𝑖𝜋𝜂  (7-7a) 

1 𝜏
𝑅 𝑘𝜋𝜂 𝑋

𝑌
𝑘𝜋𝜂 𝑋  (7-7b) 

Equate the right-hand side of Eqs. (7-7a) and (7-7b), it yields: 

𝑋 ,
, 𝑘𝑅 𝜂 𝑌 𝑖𝑅 𝜂 𝑌

𝑌𝑌 𝜋 𝑘𝜂 𝑖𝜂 𝑘𝜂 𝑖𝜂
 (7-8a) 

Then substitute Eq. (7-8a) into Eq. (7-7a) to obtain: 

𝜏 ,
, 1

𝑖𝜋𝑅 𝜂 𝑋 ,
,

𝑌
𝑖𝜋𝜂 𝑋 ,

,  (7-8b) 

Finally, the damper size and damper stiffness corresponding to this optimum design point 

𝑖𝑘  can be computed based on Eqs. (7-5a) and (5-8), respectively. From Fig. 7-4(b), we 

observe that the optimum NSD design point 𝑖𝑘  is located above the projection of the 𝑗 ℎ 

mode damper property curve. Based on the slope of the damper performance surface of the 

𝑗 ℎ mode shown in Fig. 7-2, the NSD designed to optimize the vibration suppression for 

modes 𝑖 and 𝑘 will results in a 𝑌  value greater than the specified value of 0.7. Therefore, 

if different damping requirements are specified for each of the dominant cable mode in the 

NSD design, it is recommended to choose the size and stiffness of an optimum NSD based 

on the respective control requirement of the lowest and the highest order dominant modes. 

The resulted NSD is expected to effectively mitigate all other dominant modes within this 

range. 



181 
 

The optimum NSD for achieving a damping ratio of 𝑌 in modes 𝑖 and 𝑘 can be calculated 

using Eq. (7-8), i.e. 𝑌 𝑌 𝑌. The optimum modified damping parameter, 𝑋 , , and 

the optimum NSD stiffness ratio, 𝜏 , , are substituted into Eq. (5-4) to obtain normalized 

damping ratio of mode 𝑗. Again, two cases can be considered: 

1. Modes 𝑖, 𝑗, and 𝑘 with 𝑖 1. In this case, 𝜂 𝜂 𝜂 1, 𝑅 𝑅 𝑅

1, and Eq. (5-4) will yield: 

𝑌 𝑌
𝑗 𝑖 𝑘 𝑗 𝑌

𝑖𝑘 𝑗
 (7-9) 

Since the right-hand side of Eq. (7-9) is greater than 0, so 𝑌 𝑌 0, which 

suggests the damping ratio of the 𝑗 ℎ mode is higher than the target damping ratio 

in modes 𝑖 and 𝑘, namely 𝑌 𝑌. 

2. Modes 𝑖, 𝑗, and 𝑘 with 𝑖 1. In this case, 𝜂  and 𝑅  depend on the value of 𝜆 . 

It can be shown that for 𝜆 39, 𝑌 𝑌 0. Since majority of the stay cables 

have 𝜆 1, so 𝑌 𝑌 . 

Nevertheless, it is worthy to note that optimizing the design of a NSD to suppress a wider 

range of modes would lead to a higher value of negative stiffness ratio 𝜏, i.e. a NSD with 

a greater amount of negative stiffness. This would not be a preferred choice due to safety 

concerns related to its stability and cost efficiency. The proposed NSD design 

optimizations for single-mode (Chapter 5) and multi-mode cable vibration control have 

been summarized in the flowchart shown in Fig. 7-5. 
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7.3. Verification of proposed NSD design equations 

7.3.1. Sample cables 

To verify the validity of the NSD design approach proposed in Section 7.2.2, the developed 

NSD design equations will be applied to select a NSD for real bridge stay cables. The 

effectiveness of the selected NSD in mitigating cable vibrations is then evaluated. Fifteen 

 

Fig. 7-5. Negative stiffness damper design optimization for single-mode and multimode 
stay cable vibration control. 
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sample cables which have been previously introduced in Section 5.5.1, are adopted herein 

for verification purposes. The properties of these cables are listed in Table 5-1. 

7.3.2. Verification of NSD design equations for design scenario 1 

In the design scenario 1, the size of the NSD needs to be determined based on the given 

damper stiffness. Equations (5-5) and (5-6) are developed to design NSD for single-mode 

vibration control, whereas Eqs. (7-4) and (7-5) for multi-mode vibration control. 

To verify their validity and effectiveness, in particular the NSD design equations for multi-

mode vibration control, NSD’s are designed for the 15 selected sample cables for a given 

stiffness ratio of 𝜏 0.3 to suppress vibrations dominated respectively by their first four 

modes. Three different NSD’s are designed for each cable, with the first two dampers 

designed to control respectively only the 1st or the 4th mode, and the third NSD designed 

to control both the 1st and the 4th modes. These three dampers are denoted as d1, d4, and 

d14, respectively. Each damper is then attached to the cable at a location 0.05𝐿 and the 

cable is subjected to a harmonic load with the same frequency as the first four cable modes 

for 80 seconds and then removed. The damped cable continues with free vibration for 

another 80 seconds. The damping ratio of the damped cable is computed using the free 

vibration displacement time-history. 

Figure 7-6 shows the box-whisker plot of the first four modal damping ratios of the 15 

sample cables when equipped respectively with d1, d4, and d14, with the median marked 

by a horizontal line in the box. It can be observed from Fig. 7-6 that compared to d4 and 

d14, d1 has the best performance in suppressing mode 1. However, its effectiveness 

gradually degrades in the control of higher order modes. The median modal damping ratio 

decreases from 3.6% for mode 1 to 1.8% for mode 4. Similarly, in the case of d4, the 
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damper out-performs d1 and d14 in mitigating mode 4, but becomes less effective in 

suppressing lower order modes. This clearly reflects the limitation of damper design based 

on single-mode vibration control. On the other hand, for d14, which is designed based on 

multi-mode vibration control, although it is not as effective as d1 in suppressing mode 1 

and d4 in suppressing mode 4, it out-performs d1 in controlling mode 2, 3, and 4, and has 

a better performance than d4 in mitigating modes 1, 2, and 3. This phenomenon was also 

reflected in Fig. 7-3(a). The results presented in Fig. 7-6 clearly demonstrates the validity 

and effectiveness of the proposed NSD design equations for multi-mode cable vibration 

control in design scenario 1. 

7.3.3. Verification of NSD design equations for design scenario 2 

Design scenario 2 aims at selecting the proper size and stiffness for a NSD to satisfy the 

specified damping requirement of a cable. Equations (5-7) and (7-8) can be used to address 

 

Fig. 7-6. Statistical performance of the negative stiffness damper designed with 𝜏
 0.3 for modes 1 and 4. 
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single-mode and multi-mode cable vibration control, respectively. To verify these two sets 

NSD design equations, three dampers are designed for each of the 15 sample cables. The 

first two dampers are required to supplement respectively the modal damping ratio of mode 

1 or mode 3 to at least 3%, whereas the third damper is expected to increase the modal ratio 

of both mode 1 and mode 3 to at least 3%. They are denoted as d1-3, d3-3, and d13-3, 

respectively. Dampers d1-3 and d3-3 are designed for a single-mode vibration control, of 

which the size and stiffness of the damper can be determined respectively from Eqs. (5-7a) 

and (5-7b). The design of damper d13-3 should follow the multi-mode vibration control 

approach, i.e. using Eqs. (7-8a) and (7-8b) to select its size and stiffness. Numerical 

simulations are then conducted, of which each of the 15 sample cables is equipped 

respectively with the three designed dampers at 𝑥 0.05𝐿. These cables are excited 

respectively by a harmonic load of the same frequency as the modal frequency of its 1st to 

4th modes for 80 seconds in four separate simulations. Upon removal of the harmonic load, 

the cable undergoes 80 seconds of free vibration. The damping ratio of the damped cable 

is determined from the free vibration displacement time history. 

The numerically obtained 1st to 4th modal damping ratio of all 15 sample cables are 

presented in Fig. 7-7. in the form of a box-whisker plot. The required minimum damping 

ratio of 3% is shown as a horizontal dotted line. Results clearly show that d1-3 and d3-3, 

which are designed based on the single-mode vibration control respectively for mode 1 and 

mode 3, all ensure the median of the modal damping ratio of the targeted mode reaches 

3%. In this case, d1-3 is more effective than d13-3 and d3-3 for the 1st mode and d3-3 

shows a better performance compared to d1-3 and d13-3 for the 3rd mode. However, these 

dampers would lose efficiency in mitigating other higher or lower order modes. For 
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example, when d1-3 is installed to suppress cable vibration, the median of the modal 

damping ratio of the 15 sample cables gradually decreases from 3.0% for mode 1 to 1.7% 

for mode 4. Similar phenomenon is observed in d3-3, of which the median of the modal 

damping ratio for mode 3 is 3.8%, but drops to 3.1% for mode 2 and 1.7% for mode 1. This 

behaviour is expected for the damper designed for single-mode vibration control, i.e. it 

would have an optimum performance for the targeted mode, but show suboptimal 

performance in mitigating other modes. This drawback can be addressed by d13-3, which 

is designed to control simultaneously mode 1 and mode 3. It can be observed from Fig. 7-

7 that by installing d13-3, the median of both the 1st and 3rd modal damping ratio of all 15 

sample cables can satisfy the specified 3% requirement, which compensates the inadequacy 

of d1-3 in mode 3 and d3-3 in mode 1. Further, d13-3 out-performs d1-3 and d3-3 in 

controlling the intermediate mode, mode 2, with the median of the modal damping ratio 

reaching 4.1%, i.e. a NSD which is designed for the lowest and highest order modes in a 

 

Fig. 7-7. Statistical performance of the negative stiffness damper designed for a target 
damping ratio of 3% for modes 1 and 3. 
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group of dominant modes can also effectively control vibrations of all the intermediate 

modes. This confirms the same phenomenon that has been observed earlier in Fig. 7-4. 

Interestingly, it is found in Fig. 7-7 that mode 4, which is beyond the range of the targeted 

modes, can also be effectively mitigated by d13-3 with the median of the modal damping 

ratio being 3.1%. Therefore, the validity of using the proposed NSD design equations for 

multi-mode cable vibration control to address design scenario 2 can be verified. 

7.4. Numerical example 

7.4.1. Problem definition 

In this section, a numerical example is presented to illustrate the application of the proposed 

NSD design approach to a wind-induced multi-mode vibration control of a real bridge stay 

cable. The performance of the selected NSD is then compared with an optimal active 

controller. 

The longest cable among the 15 samples is used in this example as it is vulnerable to multi-

mode rain-wind induced vibration due to its very low fundamental frequency. This cable 

has a length of 460.1 m and is the longest one on the Tatara Bridge. The main parameters 

of this cable are given in Table 7-1. In this numerical example, a NSD is designed for this 

cable to resist wind-induced cable vibrations. It is required that the dominant cable modes 

should all reach a modal damping ratio of 2%. The damper is assumed to be installed at 

 

Table 7-1. Properties of the sample stay cables used in numerical simulation. 

𝐿 (m) 𝜃 deg.  𝑚 (kg/m) 𝐻 (kN) 𝐸𝐼 (kN m ) 𝐸𝐴 (MN) 𝜆  𝐷 (m) 𝑓  (Hz) 

460.1 22.6 118.9 6665.9 3983.3 2859.9 2.37 0.17 0.29 
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2% of the cable length from its cable-deck anchorage and mounted on a rigid damper 

support. 

7.4.2. Wind load 

Wind is turbulent in nature. It varies randomly both in time and space. In engineering 

practice, wind in the atmospheric boundary layer is often characterized by the mean wind 

velocity profile and an additional turbulence. Figure 7-8 depicts the wind-induced load 

acting on a stay cable with a length 𝐿, a diameter 𝐷 and an inclination angle 𝜃. A global 

and a local coordinate system are introduced to define the wind direction and the cable 

orientation, respectively. In the global coordinate system 𝑋𝑍, the mean wind velocity is 

along the 𝑋-axis and the vertical direction is along the 𝑍-axis; whereas in the local 

coordinate system 𝑥𝑦, the cable chord is along the 𝑥-axis and in-plane transverse direction 

is along the 𝑦-axis. The along-wind velocity component at a specific time instant 𝑡 and 

location 𝑋,𝑍  can be described as: 

 

Fig. 7-8. Uniform transverse wind load acting on the 𝑖 ℎ node of the discretized cable. 
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𝑈 𝑋,𝑍, 𝑡 𝑈 𝑍 𝑢 𝑋,𝑍, 𝑡  (7-10) 

where the mean wind velocity 𝑈 is only a function of the height 𝑍 above the ground, and 

𝑢 is the along-wind turbulence component, which is assumed as a stationary, stochastic 

process with a zero mean value. In the present study, 𝑈 is modeled by the power law wind 

profile [107], whereas 𝑢 is simulated by the spectral representation method (SRM) [108]. 

The cable is discretized into a number of elements and the adjacent elements are connected 

by nodes. Three consecutive nodes, namely 𝑖 1, 𝑖 and 𝑖 1, are shown in Fig. 7-8 

whereas node 𝑖 is at a distance 𝑥  from the lower cable end and connects elements 𝐼 1  

and 𝐼. The coordinates of the 𝑖 ℎ node in the global coordinate system, 𝑋 ,𝑍 , can be 

expressed as: 

𝑋 𝑥 𝑐𝑜𝑠 𝜃 (7-11a) 

𝑍 𝑍 𝑥 𝑠𝑖𝑛 𝜃 (7-11b) 

where 𝑍  is the deck height above the ground and is assumed to be 44.5 m in this example. 

At an arbitrary time instant 𝑡, the along-wind velocity component at the 𝑖 ℎ node can be 

expressed as: 

𝑈 𝑋 ,𝑍 , 𝑡 𝑈 𝑍 𝑢 𝑋 ,𝑍 , 𝑡  (7-12a) 

𝑈 𝑍 𝑈
𝑍

𝑍
 (7-12b) 

where 𝑈  is the wind speed at the deck level and is assumed to be 20 m/s; 𝛼 is the power 

law exponent which depends on the terrain condition and is selected as 0.143 to represent 

an open terrain condition [109]; and 𝑢 is obtained based on the spectral representation 

method [108] in accordance with the Kaimal model [110] and the Davenport model [111]. 
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The transverse component of the along-wind load intensity at the 𝑖 ℎ cable node, 𝑓 𝑡 , can 

be computed from: 

𝑓 𝑡
1
2
𝜌𝐶 𝐷𝑈 𝑋 ,𝑍 , 𝑡 𝑠𝑖𝑛 𝜃  (7-13) 

where 𝐶  is the drag coefficient and is assumed to be 1.2 [93], 𝐷 is the cable outer diameter, 

and 𝜌 1.25 kg/m  is the air density. It is assumed that half of the load acting respectively 

on elements 𝐼 1  and 𝐼 is imposed on node 𝑖 with a uniform load intensity, 𝑓 𝑡 . Thus, 

the total amount of wind load acting on node 𝑖 is 𝑓 𝑡  times the distribution length. The 

stochastic wind field is simulated for a duration of 80 seconds. Figure 7-9 illustrates the 

spatial and temporal distribution of the simulated wind velocity along the cable. As an 

example, the time-history of the wind speed at 𝑥 0.1𝐿, 𝑥 0.5𝐿, and 𝑥 0.9𝐿 are 

shown in Fig. 7-9(b). It can be seen that the wind speed gradually increases toward the 

cable upper end (relative length of 1). This is due to an increase of the mean wind velocity 

along the height resulted from the atmospheric boundary layer effect. 

7.4.3. Wind-induced response of the uncontrolled cable 

The 80-second wind velocity time-history simulated in Section 7.4.2 is applied to all the 

nodes of the discretized cable model. Afterwards, the cable vibrates freely for another 80 

seconds. The dominant modes of wind-induced cable vibration are identified by conducting 

a power spectrum analysis for the free vibration displacement time-history of the 

uncontrolled cable at 𝑥 0.15𝐿, as portrayed in Fig. 7-10. Since this point is not associated 

Table 7-2. NSD design parameters. 

𝑅  𝜂  𝑅  𝜂  𝑅  𝜂  𝜂  𝑘  (kN/m) 

0.765 1.093 1 1 0.960 0.874 0.874 -828.8 
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with any modal node, analyzing cable free vibration response at this point would ensure to 

represent all the excited modes. Results show that the dominant modes are mode 1 and 

mode 2. Thus, a NSD will be designed to achieve a target modal damping ratio of 2% for 

these two modes. 

 

(a) 

 

(b) 

Fig. 7-9. Stochastic wind field simulated for 80 seconds along the cable. 
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7.4.4. NSD design 

Since the current design problem belongs to design scenario 2, Eq. (7-8) is applied to 

choose the NSD size and stiffness. The associated modification and reduction factors are 

computed first and listed in Table 7-2. It should be noted that the sag-dependent factors, 

namely 𝜂  and 𝑅 , are both equal to one for the 2nd mode due to its antisymmetric nature. 

By following the NSD design procedures outlined in Fig. 7-5 and applying Eq. (7-8), the 

optimum damper size and damper stiffness for the NSD to suppress the two dominant cable 

modes, i.e., mode 1 and mode 2, are determined to be 𝑐 204.5 kN ⋅ s/m and 𝑘

529.6 kN/m. The detailed design calculations are presented below: 

Calculate the normalized damping ratio parameter for each target mode (Eq. (7-5b)): 

𝑌 𝑌
𝜁

𝑥 𝐿⁄ 𝑅
0.02

0.02 0.960
1.042 

Determine the optimized modified damping parameter for the target modes (Eq. (7-8a)):  

𝑋 ,
, 𝑘𝑅 𝜂 𝑌 𝑖𝑅 𝜂 𝑌

𝑌𝑌 𝜋 𝑘𝜂 𝑖𝜂 𝑘𝜂 𝑖𝜂
 

         
2 1 1 1.042 1 0.765 1.093 1.042

1.042 𝜋 2 1 1 1.093 2 1 1 1.093
 

         0.127 

Determine the optimized NSD stiffness ratio for the target modes (Eq. (7-8b)): 

𝜏 ,
, 1

𝑖𝜋𝑅 𝜂 𝑋 ,
,

𝑌
𝑖𝜋𝜂 𝑋 ,

,  

        1
1 𝜋 1.093 0.765 0.127

1.042
1 𝜋 1.093 0.127 0.639 
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This optimum NSD stiffness ratio is less than the allowable limits proposed in Section 

5.5.2, i.e. 𝜏 0.74 for mode 1 and 𝜏 0.73 for mode 2, and is therefore acceptable. 

Calculate the damping coefficient and damper stiffness of the NSD (Eqs. (7-5a) and (5-8)):  

𝑐
𝑋 ,

, √𝐻𝑚

𝜂 𝑥 𝐿⁄
0.127 6665.9 10 118.9

0.874 0.02
204.5 kN ⋅ s/m 

𝑘 𝜏 ,
, 𝑘  kN/m 

This NSD is attached to the studied cable at 𝑥 0.02𝐿. Its performance in mitigating 

mode 1 and mode 2 of the sample cable is evaluated in the next section. 

7.4.5. Design evaluation 

7.4.5.1. Evaluation criteria 

To evaluate the effectiveness of the selected NSD, it is reasonable to compare the 

uncontrolled cable response with the controlled one. The mean square of the cable 

 

Fig. 7-10. Identification of the dominant modes of wind-induced cable vibration. 
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displacement integrated along the cable length [57] would not only reflect the dynamic 

response of the entire cable but also considers the localized impact of the control device on 

the cable behaviour. This parameter, which was first defined by Eq. (6-15), is expressed 

as: 

IMS mean 𝑤 𝑥, 𝑡 𝑑𝑥  (7-14) 

where mean ⋅  denotes the arithmetic mean over time. The integrated mean square of the 

cable displacement can be applied to the uncontrolled and controlled cable response during 

the forced and free vibration phases. Hence, the following evaluation criteria, first defined 

in Section 6.5.5, can be defined: 

𝛿
IMS
IMS

 (7-15a) 

𝛿
IMS
IMS

 (7-15b) 

where 𝛿  and 𝛿  are the response reduction index of the forced and free vibration phase, 

respectively; IMS  is the integrated mean square displacement of the controlled cable; and 

IMS  is the integrated mean square displacement of the uncontrolled cable. It is obvious 

that the lower the values of 𝛿  and 𝛿 , the higher the performance of the control device is. 

7.4.5.2. Effectiveness of the designed NSD 

Numerical simulations are conducted to evaluate the dynamic response of the cable with a 

NSD attached at 𝑥 0.02𝐿 subjected to multi-mode wind-induced vibration. The 

simulation is continued for 160 seconds in two phases, the first phase includes 80 seconds 

of wind-induced vibration and the second phase is 80 seconds of cable free vibration. Table 
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7-3 presents the numerical simulation results in terms of the modal damping ratio, the 

response reduction indices, and the maximum control force of the NSD. First, it can be 

observed that the designed NSD can provide a damping ratio of more than 2% for both the 

first and the second modes and hence, satisfies the design requirement. In this case, the 1st 

and the 2nd modal damping ratios are 2.44% and 3.74%, respectively. In terms of the 

response reduction indices, the values of 𝛿  and 𝛿  are respectively 79.3% and 45.9%. The 

fact that both response reduction indices are less than 1 indicates that the cable 

displacement in both the forced and free vibration stages has been effectively controlled. 

The maximum control force generated in the NSD is 32.3 kN. 

Figures 7-11(a) to 7-11(c) illustrate the time-history of the cable displacement at 𝑥 0.02𝐿 

(i.e. the damper location), 𝑥 0.25𝐿, and 𝑥 0.5𝐿, respectively. A deviation of the cable 

displacement from its static equilibrium position during the forced-vibration phase can be 

observed in these three subplots. This deviation is caused by the wind load from the mean 

wind speed component 𝑈 𝑧 . At the onset of free vibration, however, the cable returns 

back to the neutral position and vibrates around the static equilibrium point. From Fig. 7-

11(a), it can be seen that the installation of NSD has amplified the cable displacement at 

the damper location during the wind excitation. This phenomenon is due to the presence of 

negative stiffness in the damper. From the frequency response of the free vibration, it can 

Table 7-3. Control performance of NSD and LQR schemes. 

Control 
device 

𝜁  𝜁  𝜁  𝑓  Hz  𝑓  Hz  𝑓  Hz  𝛿  𝛿  𝐹  kN  

NSD 2.44% 3.74% 1.58% 0.290 0.523 0.802 79.33% 45.91% 32.3 

LQR 6.03% 4.64% 2.76% 0.290 0.529 0.794 70.39% 22.23% 33.3 
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be observed that the 2nd and higher modes are effectively controlled by the NSD. Figure 7-

11(b) shows the cable response at 𝑥 0.25𝐿 where the cable vibration is mainly governed 

by the 1st and the 2nd modes and to a lower degree, by the 3rd mode. The 2nd modal damping 

ratio (𝜁 3.74%) is calculated by applying a band-pass filter at the 2nd modal frequency, 

i.e. 0.51 Hz, to the free vibration response. The frequency response of the free vibration 

 

 
                                       (a)                                                             (b) 

 
                                       (c)                                                            (d) 

Fig. 7-11. Effectiveness of NSD in controlling wind-induced cable vibrations. (a) 
Time-history and FFT amplitude of cable displacement at 𝑥 𝑥 0.02𝐿; (b) Time-
history and FFT amplitude of cable displacement at 𝑥 0.25𝐿; (c) Time-history and 
FFT amplitude of cable displacement at 𝑥 0.5𝐿; (d) Hysteresis loop of the control 

devices. 
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shows that the optimized NSD is able to mitigate the cable displacement dominated by the 

first three modes. The FFT amplitude corresponding to the first three modal frequencies 

(i.e. 0.29, 0.51 and 0.78 Hz) are reduced by 45%, 87% and 79%, respectively. The cable 

response at the mid-span is illustrated in Fig. 7-11(c). At this location, the NSD controlling 

effect in both forced and free vibration phases is significant. The FFT amplitude at the first 

and the third modal frequencies is reduced respectively by 46% and 78% after installing 

the NSD. Figure 7-11(d) provides the hysteresis loop of the NSD. The figure shows that 

the maximum damper force is generated when the cable displacement is 5.3 cm below the 

static equilibrium profile at the damper location. From this figure, it is observed that the 

NSD oscillates around two points 𝑝  and 𝑝 , which correspond respectively to the forced 

and the free vibration phases. These two points are connected by the line 𝐹 5.296𝑤 , 

the slope of which denotes the negative stiffness of the damper, i.e. 𝑘 529.6 kN/m. 

7.4.5.3. Comparison with active control 

To compare the performance of the designed NSD with other vibration control schemes 

for long stay cables, the optimal LQR controller introduced by Shi et al. [68] is adopted. 

LQR requires the full system states to generate the control force and is considered to be an 

ideal reference control solution. The 𝐐 matrix of the LQR controller is selected as: 

𝑸 𝑲 0
0 𝑴

 (7-16) 

where 𝐌 and 𝐊 are the mass and stiffness matrix of the cable obtained from Eq. (7-3). The 

R parameter of the LQR controller defines the intensity of the control action and can be 

selected to generate the desired control force. In this example, the R parameter is selected 

in such a way that both the NSD and LQR would generate similar peak for the control 
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force. The peak of the control force provided by NSD is 32.3 kN. It was found by trial and 

error that for a R value of 6 10 , the LQR would generate a peak control force of 

33.3 kN. Thus, R  6 10  will be used in this example. 

Table 7-3 also lists the main performance parameters of the LQR controller. The modal 

damping ratio for the first three cable modes are 6.03%, 4.64%, and 2.76%, respectively. 

They are higher than those of the NSD case. With a similar control force peak as that of 

the NSD, by installing the LQR, the first modal damping ratio of the damped cable would 

be 2.5 times that of the NSD case. In the case of the LQR, the response reduction indices 

𝛿  and 𝛿  are respectively 52% and 11% lower than those of the NSD case. Thus, with a 

similar control force peak, the LQR is more effective than the NSD in suppressing both 

free and forced cable vibrations. 

The performance of the NSD and the LQR can be further compared in Fig. 7-11. Figure 7-

11(a) shows the cable response at the installation location of the controller. It is observed 

from the figure that the LQR case has larger cable displacement at the controller installation 

location during the early stage of both the forced and free vibration phases. The maximum 

peak-to-peak cable displacement at the LQR installation location are respectively 15.3% 

and 30% larger than that of the NSD case during forced and free vibration phases. In this 

regard, the NSD performs better than the LQR. Comparisons of the LQR and NSD 

performance in suppressing cable vibrations at the quarter- and mid-span are shown in Figs. 

7-11(b) and 7-10(c), respectively, of which the LQR manifests superior vibration control 

efficiency. Based on the hysteresis loops of the NSD and the LQR shown in Fig. 7-11(d), 

both controllers produce pseudo-negative stiffness and result in higher positive cable 

displacements at the installation location.  
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As discussed earlier, the main drawback of the NSD is that it would amplify the cable 

displacement around the damper installation location. This behaviour is further 

investigated in Fig. 7-12. In this figure, the ratio between the maximum controlled cable 

displacement, |w | , and the maximum uncontrolled cable displacement, |w | , is 

illustrated along the cable for both the NSD and the LQR cases. The horizontal line at 

|w | |w | 1⁄  represents the uncontrolled cable response. The effect of the 

NSD on the cable response can be characterized by two key parameters: the displacement 

amplification factor and the affected length of the cable. It can be observed in Fig. 7-12 

that the amplification of the cable response due to the NSD covers about 17.5% of the cable 

length from the lower anchorage with the maximum amplification factor being 2.06. At the 

damper location, the maximum controlled and uncontrolled cable response are 0.33𝐷 and 

0.16𝐷, respectively, where 𝐷 is the cable outer diameter. In the case of the LQR, the 

displacement amplification covers 10% of the cable length with the maximum 

amplification factor being 2.19. Therefore, under the condition of similar peak control 

 

Fig. 7-12. NSD-induced amplification of the cable response. 
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force, although the LQR can provide a higher damping ratio to the attached cable than the 

NSD, it would induce larger cable displacement at the its installation location.  

For the sample cable considered in this example, if an ideal conventional passive damper 

(no reduction due to cable sag, cable bending stiffness, and damper stiffness) is used 

instead, then the maximum achievable damping ratio can be obtained from Eqs. (5-5b) and 

(5-6b), which is 𝜁 0.5 𝑥 𝐿⁄ 0.5 0.02 0.01. Therefore, it cannot reach the 

required level of damping ratio, i.e. 2%. In other words, the NSD is able to achieve the 

same control level as the LQR and can suppress multi-mode cable vibrations more 

effectively than other conventional passive dampers such as PSD and ZSD. 

7.5. Summary 

A novel NSD optimization approach for multi-mode stay cable vibration control has been 

proposed based on the three-dimensional NSD performance surface. Two design scenarios 

have been considered. In the first scenario, the NSD negative stiffness is predetermined 

and the optimum damper size is selected to reach the maximum damping ratio; whereas in 

the second one, both the size and negative stiffness of the NSD are optimized to satisfy the 

damping requirement for the targeted dominant modes. The applicability of the proposed 

NSD design equations has been verified using 15 sample representative real stay cables. 

To further assess the effectiveness of the proposed NSD design approach, a design example 

has been presented, of which a NSD has been designed based on the proposed approach to 

suppress wind-induced multi-mode cable vibration of a 460.1 m stay cable. The 

performance of the designed NSD has been evaluated and compared to the optimal linear-

quadratic regulator (LQR) control. The main findings of the current chapter can be 

summarized as follows: 
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1- The proposed NSD optimization approach can be used for designing a NSD to 

effectively control both single-mode and multi-mode cable vibrations and provide 

required damping ratio for the targeted dominant mode(s). 

2- The NSD designed using the proposed optimization approach is found not only to 

have superior performance than conventional PSD and ZSD, but also have better 

performance than the LQR, having comparable peak control force at the installation 

location.  

3- When there exist more than two dominant modes in vibration, designing a NSD for 

the lowest and the highest dominant modes would also adequately control the mid-

range modes. This unique feature can greatly facilitate NSD design in more 

complex loading conditions and/or cable behaviour. 

4- Compared to other cable vibration control schemes, the main drawback of using a 

NSD is the localized amplification of cable response around the damper location. 
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Chapter 8 Conclusions and Recommendations 

 

Different aspects of controlling the vibrations of bridge stay cables using passive negative 

stiffness dampers have been studied comprehensively in the present work. This chapter 

provides a summary of the main contributions and conclusions of this study. In addition, 

recommendations are made to extend the research in the future. 

8.1. Conclusions 

The performance and safety of cable-stayed bridges are adversely affected by the frequent 

and sometimes excessive vibrations of stay cables. Therefore, it is necessary to provide an 

effective method to control these harmful oscillations. Among various existing 

countermeasures, the passive cable vibration control using NSD is the focus of this study 

due to its high control performance and cost efficiency.  

An extensive literature review was conducted in Chapter 2 not only to understand the 

theoretical background of the cable vibration problem, but also to investigate the recent 

advances in the field of cable vibration control and identify the areas that need further 

development. By reviewing the recently emerged cable vibration control schemes, it was 

found that passive NSD had attracted much attention due to their high damping 

performance. However, the knowledge associated with the dynamic behaviour of a cable-

NSD system and its design requirements were still limited. Furthermore, the literature 

review indicated that the combined effects of cable sag, cable bending stiffness, damper 

stiffness, and damper support stiffness could significantly affect the damping capacity of a 



203 
 

cable-damper system. Therefore, existing analytical and numerical models were required 

to be further refined to reflect these effects. 

Chapter 3 presented an analytical study to refine an existing viscous damper design 

formula, developed by Fujino and Hoang [71], by including the effect of damper stiffness 

in the mechanical model of a clamped or pinned cable-damper system. This will generalize 

Fujino and Hoang’s model to address the behaviour of a cable equipped with a passive 

viscous damper having either zero (ZSD), positive (PSD) or negative stiffness (NSD). The 

latter is of particular importance to study the performance of a NSD. The refined design 

formula was obtained by finding an asymptotic solution to the governing transcendental 

equation and validated by the results of an existing experimental study [46]. The superior 

performance of the NSD compared to zero- and positive stiffness dampers was confirmed. 

A threshold for the negative stiffness was identified in NSD which ensured the stability of 

the system. 

In Chapter 4, a control-oriented numerical framework was developed based on the mode 

superposition method (MSM) to analyze the dynamic response of a damped stay cable. The 

efficiency of the MSM-based framework was substantially improved by applying the static 

correction technique, in which a special shape function is introduced to reflect the damper 

presence. The static shape function was defined as the cable’s static displacement when 

subjected to an arbitrary point load at the damper location and was explicitly derived by 

solving the associated governing integro-differential equation. Furthermore, the other 

shape functions were conventional sinusoidal terms which were modified to be consistent 

with the boundary conditions of a clamped cable.  
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With the development of analytical and numerical models capable of explaining the 

behaviour of a cable equipped with a negative stiffness damper, Chapter 5 was devoted to 

investigate and evaluate the control performance of a NSD when mounted on a rigid 

damper support. The superior damping performance of NSD compared to conventional 

ZSD and PSD was explained based on the damper’s force generation mechanism. The issue 

of NSD stability was revisited and a stability limit was formulated based on the asymptotic 

damper design formula. An innovative approach for designing a NSD to control single-

mode stay cable vibration was proposed based on the three-dimensional NSD performance 

surface obtained from the asymptotic design formula. This surface represents the modal 

damping ratio of a cable-NSD system as a function of damper size and damper stiffness. 

In practice, the damping ratio of a cable equipped with a passive viscous damper can be 

increased by mounting the damper on a non-rigid support to move its installation location 

towards the cable mid-span. Therefore, the assumption of rigid damper support is released 

in Chapter 6 to study the impact of damper support flexibility on the NSD control 

performance. The NSD stability limit derived in Chapter 3 was extended to be applicable 

to the flexible support condition. In Chapter 6, different NSD design scenarios were 

considered and an optimization algorithm was proposed to identify the optimum 

combination of NSD parameters (i.e. damper size and stiffness) and damper support 

stiffness. In parallel, the NSD design was refined to minimize the difference between the 

damping ratio predictions obtained from the analytical and numerical frameworks. 

An innovative approach for optimizing a NSD to control multi-mode stay cable vibrations 

was proposed in Chapter 7. Analytical design relationships were developed to determine 

NSD parameters which allow the cable-NSD system to satisfy the damping requirement 
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for the targeted dominant modes. We have provided evidence that the proposed design 

approach was not only able to target the two dominant modes but also to control all the 

intermediate modes between the lowest and the highest modes for which the design is 

based.  

Based on the above summary of various aspects that have been addressed in the 

dissertation, the key findings and conclusions drawn from this study are presented in the 

following main categories: 

8.1.1. NSD behaviour and design 

1- The superior control performance of NSD is due to a reduced total resisting force 

in NSD against the cable motion when it moves away from the neutral position. 

This would increase the cable displacement and thus, enhance the capacity of NSD 

in absorbing kinetic energy. The higher damping ratio of a NSD comes at the cost 

of increased cable displacement, especially at the damper installation location. 

2- The NSD stability limit defines the minimum allowable negative damper stiffness 

and depends on the various design parameters including damper installation 

location, the cable bending stiffness, cable length, cable chord tension and damper 

support stiffness. At the stability limit, when damping in a NSD is absent, the 

negative damper stiffness would fully counteract the inherent positive stiffness of 

the cable at the damper location and lead to an instability of the damped cable. 

3- The negative damper stiffness ratio, 𝜏, is defined as 𝑘 /𝑘  . Beyond an identified 

limit of 𝜏, denoted as 𝜏 , the analytical design equation overestimates the modal 

damping ratio for a group of full-size NSD-equipped cables. Hence, a safe NSD 
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design requires the negative damper stiffness to satisfy 𝜏 𝜏  for all the targeted 

modes. 

4- The first modal damping ratio of a NSD-equipped cable is affected by both the 

cable bending stiffness and the cable sag. However, the damping ratio in the higher 

modes is only sensitive to the effect of cable bending stiffness but the influence of 

cable sag is negligible. 

5-  The impact of damper support stiffness on the NSD control performance depends 

on the damper size. If the damper size is smaller than an identified critical value, a 

more flexible damper support can raise the damping ratio of a NSD-equipped cable. 

Otherwise, using a more flexible support would not have a beneficial effect on the 

NSD performance. Optimizing the damper support stiffness by using the proposed 

algorithms not only reduces the size and the stiffness of a NSD but also mitigates 

the cable response amplification along its length. This would reduce the fabrication 

and maintenance costs of the NSD. The control effectiveness of an 

optimized/refined NSD mounted on a flexible support is comparable to that of an 

optimal LQR controller. Hence, NSD is a feasible alternative to the active and semi-

active control schemes for mitigating cable vibrations. 

6- Using the proposed analytical equations, a NSD can be designed to effectively 

control multi-mode cable vibrations by providing the required damping ratio in two 

dominant modes. Besides, the NSD can be optimized for a given negative damper 

stiffness to provide equal damping ratio in two modes. A cable vibration with more 

than two dominant modes can be controlled by designing a NSD for the lowest and 

the highest target modes. The analytical design equations are validated by 
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conducting a numerical study on a large set of representative full-size cables. The 

control performance of NSD in mitigating multi-mode cable vibrations is 

comparable to that of an optimal LQR controller having a similar peak control 

force. 

8.1.2. Damping ratio of a damped cable 

1- The effect of the damper stiffness on the damping ratio of a cable-damper system 

is integrated with the cable flexural rigidity and the damper support stiffness. 

2- The proposed asymptotic design relationships for the fixed-fixed and the hinged-

hinged cables are found to have the same form. The effect of the cable boundary 

condition can be represented by a coefficient 𝛼  in the factors related to the cable 

bending stiffness, namely 𝜂  and 𝑅 . 

3- The asymptotic design formula tends to provide a conservative estimation of the 

maximum achievable damping ratio of a cable-damper system. Therefore, this 

approximation would yield a safe damper design in practice and is deemed 

acceptable.  

4- In the absence of reliable information on the level of rotational rigidity in the cable 

anchorage, it is recommended to assume a fixed-fixed boundary condition to 

achieve a conservative damper design. However, a hinged-hinged assumption 

would generally lead to a more realistic design for long stay cables with length 𝐿 

 250 𝑚. 

8.1.3. Dynamic analysis of a damped cable  

1- By including the static correction term for both the fixed-fixed and the hinged-

hinged cables and modifying the sinusoidal terms for the fixed-fixed cable, the 
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number of modes required for convergence is substantially reduced in the MSM. 

This correction improves the computational efficiency of the proposed numerical 

framework by reducing the size of the modal matrix equations which need to be 

solved numerically in the time domain.  

2- It is deemed acceptable to assume a parabolic self-weight profile for a damped 

cable. The error in the modal parameters resulted from this assumption is found to 

be negligible for both the fixed-fixed and hinged-hinged cases. 

3- The modal frequency tends to converge ascendingly to the analytical value in the 

Finite Difference method which uses a lumped mass model. However, it converges 

in a descending mode in the MSM which is based on a consistent mass model. 

8.2. Recommendations 

This study has deepened the understanding of the behaviour and control performance of 

negative stiffness dampers by developing adapted analytical and numerical solutions in 

cable dynamics. However, a few issues in this field still deserve close attention and they 

are recommended for future research as follows: 

8.2.1. Cable boundary conditions 

In this study, idealized fixed-fixed or hinged-hinged boundary conditions were considered 

in the analytical model. However, the actual boundary condition for a real stay cable lies 

between these two extreme cases. Thus, it is recommended to obtain a more realistic 

prediction of the cable dynamic response by conducting an analytical study in which the 

cable end conditions are modeled as rotational springs, with the spring stiffness 

representing the fixity of the cable-deck and the cable-pylon anchorages. 
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8.2.2. Three-dimensional cable motion 

In the current study, only the in-plane motion of the cable is considered. However, the 

actual motion of the cables might include both in-plane and out-of-plane components. 

Therefore, it is recommended for future research to consider the interaction between both 

in-plane and out-of-plane motions in the analytical model and study the damper 

performance in suppressing coupled cable motions along those two directions. 

8.2.3. Mechanical model of a damper 

In this study, both the springs and the dashpot were assumed to behave linearly in the 

mechanical model of a NSD. It is recommended to include the effect of possible 

nonlinearity in the mechanical representation of a NSD and derive new design relationships 

accordingly to ensure the applicability of the design tools under nonlinear damper 

behaviour. 
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