
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-7-2020

Spiking Neural Networks: Modification and Digital Implementation Spiking Neural Networks: Modification and Digital Implementation

Moslem Heidarpur
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Heidarpur, Moslem, "Spiking Neural Networks: Modification and Digital Implementation" (2020). Electronic
Theses and Dissertations. 8367.
https://scholar.uwindsor.ca/etd/8367

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8367?utm_source=scholar.uwindsor.ca%2Fetd%2F8367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

SPIKING NEURAL NETWORKS: MODIFICATION AND DIGITAL

IMPLEMENTATION

by

Moslem Heidarpur

A Dissertation

Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

2020

© 2020 Moslem Heidarpur

All Rights Reserved. No Part of this document may be reproduced, stored or oth-

erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Spiking Neural Networks: Modification and Digital Implementation

by

Moslem Heidarpur

APPROVED BY:

N. Dimopoulos, External Examiner

University of Victoria

R. Riahi

Department of Mechanical, Automotive and Materials Engineering

R. Rashidzadeh

Department of Electrical and Computer Engineering

M. Khalid

Department of Electrical and Computer Engineering

A. Ahmadi, Co-Advisor

Department of Electrical and Computer Engineering

M. Ahmadi, Co-Advisor

Department of Electrical and Computer Engineering

May 1, 2020

Declaration of Co-Authorship /

Previous Publication

I hereby declare that this thesis incorporates material that is result of joint research,

as follows:

Chapter 2 of this thesis was co-authored with Dr. Mostafa Rahimi Azghadi, Dr.

Arash Ahmadi, and Prof. Majid Ahmadi. The design, simulation, implementation,

analysis of results and writing the manuscript were performed by the author whereas

Dr. Mostafa Rahimi edited the manuscript, Dr. Arash Ahmadi and Prof. Majid

Ahmadi supervised the research.

Chapter 3 of this thesis was co-authored with Dr. Parvin Khosravifar, Dr. Arash

Ahmadi, and Prof. Majid Ahmadi. In all cases, the design, simulation, implemen-

tation, analysis of results and writing the manuscript were performed by the author

while Dr. Parvin Khosravifar provided medical consultant, Dr. Arash Ahmadi and

Prof. Majid Ahmadi supervised the research.

Chapter 4 of this thesis was co-authored with Dr. Arash Ahmadi, and Prof. Majid

Ahmadi. The circuit designed, simulated and analyzed in term of performance and

resources by the author while Dr. Arash Ahmadi, and Prof. Majid Ahmadi provided

supervision and edited the manuscript.

Chapter 5 of this thesis was co-authored with Dr. Arash Ahmadi, and Prof. Majid

Ahmadi. The design, simulation, implementation, analysis of results and writing were

iv

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

performed by the author. The contribution of Dr. Arash Ahmadi and Prof. Majid

Ahmadi was to oversee the research, provide feedback and give comments to improve

the manuscript.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-authors to include the

above materials in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

This thesis includes 4 original papers that have been previously published/accepted

in peer reviewed journals and conferences, as follows:

Thesis Chapter Publication Title Publication status

Chapter 2 M. Heidarpur, A. Ahmadi, M. Azghadi and M. Ahmadi,

“CORDIC-SNN: On-FPGA STDP Learning and Izhikevich Neuron

Model,” in IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 66, no. 7, pp. 2651-2661, Jul. 2019

Published

Chapter 3 M. Heidarpur, P. Khosravifar, A. Ahmadi and M. Ahmadi,

“CORDIC-Astrocyte: A Tripartite Glutamate-IP3-Ca2+ Interac-

tion Dynamics on FPGA,” in IEEE Transactions on Biomedical

Circuits and Systems, vol. 14, no. 1, pp. 36-47, Feb. 2020

Published

Chapter 4 M. Heidarpur, A. Ahmadi and M. Ahmadi, “An efficient digital

implementation of a detailed biological model of astrocyte , in Ad-

vances in Computational Intelligence, Springer International Pub-

lishing, Switzerland, Cham, 2019, pp. 857-868.

Published

Chapter 5 M. Heidarpur, A. Ahmadi, M. Ahmadi, “Time step impact on per-

formance and accuracy of izhikevich neuron: Software simulation

and hardware implementation,”2020 IEEE International Sympo-

sium on Circuits & Systems (ISCAS)

Accepted

I certify that I have obtained a written permission from the copyright owners to

include the above published materials in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the University

of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

v

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owners to include such materials in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

vi

Abstract

Real-time large-scale simulation of biological systems is a challenging task due to

nonlinear functions describing biochemical reactions in the cells. Being fast, cost and

power efficient alongside of capability to work in parallel have made hardware an

attractive choice for simulation platform.

This thesis proposes a neuromorphic platform for online Spike Timing Dependant

Plasticity (STDP) learning, based on the COordinate Rotation DIgital Computer

(CORDIC) algorithms. The implemented platform comprises two main components.

First, the Izhikevich neuron model is modified for implementation using the CORDIC

algorithm and simulated to ensure the model accuracy. Afterwards, the model was

described as hardware and implemented on Field Programmable Gate Array (FPGA).

Second, the STDP learning algorithm is adapted and optimized using the CORDIC

method, synthesized for hardware, and implemented to perform on-FPGA online

learning on a network of CORDIC Izhikevich neurons to demonstrate competitive

Hebbian learning.

The implementation results are compared with the original model and state-of-

the-art to verify accuracy, effectiveness, and higher speed of the system. These com-

parisons confirm that the proposed neuromorphic system offers better performance

and higher accuracy while being straightforward to implement and suitable to scale.

New findings show that astrocytes are important parts of the information process-

ing in brain and believed to be responsible for some brain diseases such as Alzheimer

vii

ABSTRACT

and Epilepsy. Astrocytes generate Ca2+ waves and release neuro-transmitters over

a large area. To study astrcoytes, one need to simulate large number of biologically

realistic models of these cells alongside neuron models. Software simulation is flexible

but slow.

This thesis proposes a high-speed and low-cost digital hardware to replicate biological-

plausible astrocyte and glutamate release mechanism. The nonlinear terms of these

models were calculated using high-precision and cost-efficient algorithms. Subse-

quently, the modified models were simulated to study and validate their functions.

Several hardware were developed by setting different constraints to investigate trade-

offs and achieve best possible design. As proof of concept, the design was implemented

on a FPGA device. Hardware implementation results confirmed the ability of the de-

sign to replicate biological cells in detail with high accuracy. As for performance, the

proposed design turned out to be far more faster and area efficient than previously

published works that targeted digital hardware for biological-plausible astrocytes.

Spiking neurons, the models that mimic the biological cells in the brain, are de-

scribed using ordinary differential equations. A common method to numerically solve

these equations is Euler’s method. An important factor that has a significant impact

on the performance and cost of the hardware implementation or software simulation

of spiking neural networks and yet its importance has been neglected in the published

literature, is the time step in Euler’s method. In this thesis, first the Izhikevich neu-

ron’s accuracy as a function of the time step was measured. It was uncovered that

the threshold time step that Izhikevich neuron becomes unstable is an exponential

function of the input current.

Software simulation performance, including total computational time and memory

usage were compared for different time steps. Afterwards, the model was synthesized

and implemented on the FPGA. Hardware performance metrics such as speed, area

and power consumption were measured for each time step. Results indicated that

time step has a negative linear effect on the performance. It was concluded that by

determining maximum input current to the neuron, larger time steps comparable to

those used in the previous works could be employed.

viii

Lovingly dedicated to

my wife Parvin,

for her love, support and faith

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisor Professor Majid

Ahmadi for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study.

My deep gratitude also goes to my co-advisor, Doctor Arash Ahamdi for providing

me with invaluable guidance throughout this research. His dynamism, vision, sincerity

and motivation have deeply inspired me.

Moreover, I would like to thank the rest of my thesis committee: Doctor Rashid

Rashidzadeh, Doctor Mohammed Khalid and Doctor Reza Riahi for their encourage-

ment and insightful comments. I am extending my thanks to students of Research

Centre for Integrated Microsystems (RCIM) for their support during my research

work.

Last but not the least, I would like to thank my parents for their unconditional

love, support and spiritual guidance.

x

Contents

Declaration of Co-Authorship / Previous Publication iv

Abstract vii

Dedication ix

Acknowledgment x

List of Figures xv

List of Tables xxiii

List of Abbreviations xxv

Introduction 1

1.1 Background . 1

1.1.1 Neuromorphic Systems . 1

1.1.2 Spiking Neural Network . 2

1.2 Problem Statement . 4

1.2.1 The Challenge . 4

1.2.2 Implementation Platforms . 4

1.2.3 ASICs Versus FPGAs . 6

xi

LIST OF TABLES

1.2.4 Objectives . 6

1.3 Proposed Solutions . 6

1.3.1 Linearization . 7

1.3.2 CORDIC . 7

1.4 Outline of disseration and list of the contributes 7

References 10

CORDIC-SNN: On-FPGA STDP Learning with Izhikevich Neurons 17

2.1 Introduction . 17

2.2 CORDIC neuron . 20

2.2.1 Izhikevich neuron . 20

2.2.2 CORDIC Izhikevich . 21

2.2.3 Simulation Results . 22

2.3 Network and STDP rule . 27

2.3.1 Models Numerical Analysis 27

2.3.2 Network Topology . 30

2.3.3 STDP Learning . 30

2.3.4 CORDIC STDP . 31

2.4 FPGA implementation . 35

2.4.1 Architecture of Izhikevich neuron 35

2.4.2 Architecture of Network and STDP rule 37

2.4.3 FPGA Implementation . 40

2.5 Results and Discussion . 46

2.6 Conclusion . 48

References 50

CORDIC-Astrocyte: A Tripartite Glutamate-IP3-Ca2+ Interaction Dy-

namics on FPGA 56

3.1 Introduction . 56

3.2 Background . 60

xii

LIST OF TABLES

3.2.1 Pre and Post-Synaptic Neurons 60

3.2.2 Astrocyte Ca2+ Oscillation . 61

3.2.3 Astrocyte Glutamate Production 63

3.3 CORDIC Astrocyte Model . 64

3.3.1 CORDIC Based Astrocyte and Glutamate Release 65

3.3.2 Simulation Results . 68

3.4 Hardware Implementation . 70

3.4.1 Hardware Design . 70

3.4.2 FPGA Implementation . 71

3.5 Results and Discussion . 72

3.6 Conclusion . 77

References 83

Digital Implementation of a Biological-Plausible Model For Astrocyte

Ca2+ Oscillations 89

4.1 Introduction . 89

4.2 Background . 91

4.3 Modified Model . 93

4.4 Hardware Implementation . 96

4.5 Implementation Results . 98

4.6 Conclusion . 102

References 103

Time Step Impact on Performance and Accuracy of Izhikevich Neuron:

Software Simulation and Hardware Implementation 107

5.1 Introduction . 107

5.2 Accuracy Analysis . 109

5.2.1 Impact on Software Simulation 109

5.2.2 Impact on Hardware Implementation 114

5.3 Performance analysis . 116

xiii

LIST OF TABLES

5.3.1 Impact on Software Simulation 116

5.3.2 Impact on Hardware Implementation 117

5.4 Discussion . 118

5.5 Conclusion . 118

References 119

Conclusion and Future Work 123

6.1 Summary . 123

6.2 Conclusion . 124

6.3 Suggested Future Work . 126

VITA AUCTORIS 127

xiv

List of Figures

2.1 The CORDIC code for calculation of square function. 22

2.2 Computer simulation of multiplication and CORDIC-based square func-

tion. Here, black and red lines show multiplication, and CORDIC

square functions, respectively. The difference between two lines is only

visible by zooming in a small range. 23

2.3 Computer simulation of the original and the proposed modified CORDIC

models for different neuronal behaviors. The black and green lines show

membrane potential and recovery variable respectively. The applied

current is illustrated by the blue line. 24

2.4 Nullclines of original and CORDIC model. In the first row, similar to

the original model, CORDIC model has two interaction points for low

injected current; the second row shows the state of models for higher

injected current where those intersection points merged and annihilated. 25

2.5 The spike raster for a population of 1000 tonic bursting neurons which

are coupled randomly. The utilized neuron models are (a) original

Izhikevich and (b) proposed CORDIC. 26

2.6 ERRT: The difference of time interval between two spikes in the original

and CORDIC model obtained from computer simulations [50] 28

2.7 The topology of the utilized spiking neural network. 31

xv

LIST OF FIGURES

2.8 Weight distribution after STDP learning in the network of (a) origi-

nal, (b) CORDIC, and (c) 2x-based approximation model. All the 20

synaptic weights are initially set to 96 as shown in the first row. The

second row displays weight distribution and their frequency after half

of the simulation time. Finally, the third row depicts the weight distri-

bution at the end of simulation, where the weights have mostly evolved

to be either zero or the maximum possible value of Wmax = 192. . . 32

2.9 The pseudo code of CORDIC exponential. 33

2.10 Software simulation of: exponential function (blue line) and the one

calculated by CORDIC algorithm (red line) for n=8 indicating the

resemblance of both functions. 34

2.11 Control data flow graph for Spartan-6 XC6LX75 FPGA implemen-

tation of CORDIC Izhikevich neuron. First, block (a) calculates the

square function as per the pseudo code in Fig. 2.1 . The counter which

is showed at the top of this block, counts from -6 to 5, enabling this

block for 12 iterations. In each iteration, 2(−i) is added or subtracted

from x register based on the sign of x. Eventually, this register’s value

tends to zero as iterations continues. The same scenario applies to the

z register. The value of 2(−i)∗v[n] will be added or subtracted from the

z register depending on the sign of z. After 12 iterations, the multipli-

cation result is ready and the (b) block is enabled. This block solves

the Euler method in the eq. 2.10 and 2.11. At the last stage of this

block, v is compared with the threshold value of 30. If v is grater than

this threshold, the multiplexers reset the v and u according to eq. 2.3.

The plain lines show the flow of data and the dashed lines indicate the

jumps and decision signals. 36

xvi

LIST OF FIGURES

2.12 Control data flow graph for digital implementation of the exponential

function for the range of -1 ¡x ¡0 according the pseudo code shown in

the Fig 2.9. Since the value of the input x is always smaller than one,

the word length of this architecture was considered as total number of

fraction bits. The calculations complete in 6 iterations as the counter

at the top of the figure counts from 1 to 6. In each iteration, float reg-

ister is compared with the 2−i. If it is greater, the register is subtracted

from 2−i. Moreover, expx register, which it’s initial value is 1, is multi-

plied by constant a(i) with performing shift and add operations. Upon

completion of iterations, the counter enables the out signal. 38

2.13 Control data flow graph for digital implementation of STDP algorithm.

Block (a) is the hardware presented for the network in Fig. 2.7 and

recording spike times. Block (b) implements STDP to calculate weight

changes and update weights. In this block, either of Exp CORDIC or

2x̂ blocks could be used for approximating the STDP exponential term. 39

2.14 The method of transferring on-FPGA spiking neuron outputs to PC

for analysis. 40

2.15 Spartan-6 XC6LX75 FPGA Implementation of CORDIC Izhikevich

(red) and computer simulation of Izhikevich model (black). The FPGA

Data was transferred to PC via UART-USB port. (A) Tonic Spiking

and (B) Regular Bursting. Please note that the implementation data is

scaled and an offset was added to it for closer behavior to the simulation. 42

2.16 Linear Feedback Shift Register (LFSR) technique was used to generate

semi-random input currents to feed the SNN input neurons. 43

2.17 Bi-modal weight distribution reached after execution of the online on-

FPGA STDP learning on a network of Izhikevich neurons. 43

xvii

LIST OF FIGURES

3.1 Arriving an action potential in the pre-synaptic terminal increases

Ca2+ in the pre-synaptic bouton. This will activate the release of

the glutamate into synaptic cleft. The glutamate in the synaptic cleft

binds to the post-synaptic terminal receptors which may contribute

to a spiking post-synaptic neuron. The glutamate could also bind to

astrocyte receptors and modulations of Ca2+ dynamics in the asrto-

cyte. In a similar mechanism to pre-synaptic bouton, increasing Ca2+

concentration will result in extra glutamate release by astrocyte. Such

release will affect the pre-synaptic bouton Ca2+ dynamics and regulates

the synaptic transmission. 60

3.2 Binding glutamate to the astrocyte receptors activates IP3 production

mechanism. Increasing IP3 opens the IP3 controlled calcium channels

which results in flowing Ca2+ from ER into cytoplasm. More Ca2+

ions, leads to even more IP3 production. The cycle continues until

the action of Ca2+ release, reverses at high Ca2+ concentration where

SERCA pump quickly draws back the excess cytoplasmic Ca2+ into

ER. Subsequently, extra IP3 will also be removed by IP3 degradation

mechanisms. If glutamate stimulation remains high enough, this pro-

cess repeats and results in Ca2+ and IP3 oscillation in the astrocyte.

. 61

3.3 Simulation of the astrocyte and glutamate production mechanism of

the original and CORDIC models. First column shows the simulation

result for the original model, second column CAST14, third column

CAST16 and last column CAST18 . As it can be seen from this figures,

CAST14 does not follow the original model while CAST16 has closer

behaviour. Finally, CAST18 has exact output waveform as the original

astrocyte model. The glutamate stimulation that applied to all models

is shown in (m). 62

xviii

LIST OF FIGURES

3.4 Ca2+ oscillation’s period, amplitude and the ratio of these two for AM

CORDIC astrocyte (dots-solid lines) and original (circles-dashed lines)

models are shown in this figure. The first row is corresponding to data

for CAST14, the second is for CAST16 and the last CAST18. As it is

evident from the figure, CAST18 follows the original model with high

accuracy while other models have deviations. 66

3.5 Ca2+ oscillation’s period, amplitude and the ratio of these two for FM

CORDIC astrocyte (dots-solid lines) and original (circles-dashed lines)

models are shown in this figure. The first row is corresponding to data

for CAST14, the second is for CAST16 and the last CAST18. As it is

evident from the figure, CAST18 follows the original model with high

accuracy while other models have deviations. 67

3.6 Ca2+, IP3 and gating variable as function of a triangle wave of gluta-

mate in AM astrocyte. The first row shows the result for the original

and the second row for CAST18 model. The glutamate input is depicted

in the (g). As this figure indicates, amplitude of Ca2+ oscillation is

modulated by level of glutamate in the synaptic cleft. The result of

the second row also verifies that CAST18 closely follows the original

model. 78

3.7 Ca2+, IP3 and gating variable as function of a triangle wave of gluta-

mate in FM astrocyte. The first row shows the result for the original

and the second row for CAST18 model. The glutamate input is as de-

picted in the Fig. 3.7 (g). As this figure indicates, frequency of Ca2+

oscillation is modulated by level of glutamate in the synaptic cleft. The

result of the second row also verifies that CAST18 closely follows the

original model. 79

xix

LIST OF FIGURES

3.8 (a) Scheduling diagram for digital implementation of ASTRO5 model.

With three multipliers and two dividers in each step, the diagram

takes 8 steps to execute which is also number of steps of critical path.

The input of system is glutamate, shown in the diagram as Glu and

con1=d2×(d1-d3)/d3. (b) Hardware implementation of CORDIC di-

vision and multiplication. At start, register x,y,z will be loaded with

operand 1, operand 2 and zero, respectively. In addition, counter will

be loaded with number of iterations (n) and the shift register with

26. At each iteration, the counter decreases by one and if it is not

zero, it activates shift Right signal. The mode of operation (division

or multiplication) can be changed with SL. 80

3.9 Oscilloscope photos of the on-FPGA Ca2+, IP3 and gating variables

oscillations against the glutamate input for C ASTRO5. First row shows

the amplitude modulation of Ca2+ with level of glutamate. Second row

implies the frequency modulation with glutamate. Data were converted

to analog using digital to analog converter of the VGA port. 81

3.10 The CORDIC and DSP based astrocyte on-FPGA data, were trans-

ferred to PC through UART-USB port and plotted versus computer

simulation results. For the same glutamate input, the Ca2+ spike of

CORDIC model is very closer to the computer simulation results. . . 82

4.1 Mechanism of glial regulation of synaptic transmission. (1-) Release of

glutamate (Glu) from pre-synaptic terminal activates astrocyte recep-

tors (2-) evoking an increase in IP3 and consequently Ca2+ levels (3-)

and release of glutamate from glia. 92

4.2 Computer simulation of the term vER∗C2
a/(C

2
a+K2

ER) (red line) and it’s

linear equivalent term (black line) as described in eq. 4.11, calculated

with ε = 0.02 . 93

xx

LIST OF FIGURES

4.3 Computer simulation of the nonlinear and their linear equivalent term

as described in eq. 4.14 and 4.15, obtained with ε = 0.02. (a) Simu-

lation of the term d2 ∗ (I + d1)/(I + d3) ∗ (1 − ha) and (b) it’s linear

substitute. (c) Simulation of the term v3kHill(4, Ca, kD)Hill(1, I, k3)

and (d) it’s linear substitute. 95

4.4 Computer simulation of the calcium and Ip3 oscillations in original

(first row) and linearized (second row) models, correspond to different

values of glutamate: (a,b) calcium oscillations for FM mode and gluta-

mate=0.05, (c,d) calcium oscillations for FM mode and glutamate=1.5,

(e,f) calcium oscillations for AM mode and glutamate=0.15, (g,h) cal-

cium oscillations for AM mode and glutamate=1.5, (i,j) Ip3 oscillations

for FM mode and glutamate=0.15. 97

4.5 As Soon As Possible (ASAP) scheduling diagram for the implementa-

tion of the linearized model. 99

4.6 The logic unit for selecting α, β and δ based on the value of ca, Ip3

for each linear segment. 100

4.7 Oscilloscope photos of Spartan-6 XC6LX75 on-FPGA Ca2+ oscillation

in astrocyte for different modes and values of glutamate. (a) FM,

glutamate=0.2. (b) FM, glutamate=2 (c) AM, glutamate=0.2. (c)

AM, glutamate=2. 101

5.1 Simulation of the Izhikevich neuron for different time steps. First and

second row show the result for case of tonic spiking and tonic bursting

respectively. Input current is specified with a red color. 110

5.2 NRMSD error between waveform of the Izhikevich neuron with refer-

ence time step (0.001) and those of with larger time steps. 111

5.3 Threshold time steps that dumped oscillation starts in Izhikevich neu-

ron and thresholds that it becomes unstable for two models of tonic

spiking and tonic bursting. 112

5.4 Control data flow graph for neuron’s hardware. (Figure is taken from

[32]) . 113

xxi

LIST OF FIGURES

5.5 Oscilloscope photos of FPGA implementation of a tonic spiking Izhike-

vich neuron for various time steps. The input current for tonic spiking

neuron is 12. 114

5.6 Oscilloscope photos of FPGA implementation of a tonic bursting Izhike-

vich neuron for various time steps. The input current for tonic bursting

neuron is 6. 115

5.7 The ratio of computational time for larger time steps to that for 0.001.

The results are obtained for 2 seconds Matlab simulation of this neuron.116

xxii

List of Tables

2.1 ERRT and NRMSD for tonic spiking and regular bursting. 29

2.2 NRMSD and ERRT for different values of input current 29

2.3 NRMSD for different number of consecutive spikes 30

2.4 Resources used to implement different proposed CORDIC based Izhike-

vich models on Spartan-6 XC6LX75. 39

2.5 Comparison between proposed method and previously published works 41

2.6 Total number and highest speed of CORDIC-based and original (im-

plemented using DSP 36-bit multipliers) Izhikevich neurons that can

be implemented on various FPGA devices. 43

2.7 Utilized resources to implement the CORDIC (IZHCOR6) and original

Izhikevich neuron on Spartan-6 XC6LX75 44

2.8 CORDIC and original neuron model on-FPGA power (reported by

XILINX XPower Analyzer for the same frequency) 44

2.9 Total Spartan-6 XC6LX75 FPGA utilization for implementation of

CORDIC and 2x online STDP on a network of CORDIC (IZHCOR8)

Izhikevich neurons with topology of Fig. 2.7. These results includes

semi-random input generator mechanism as well. 45

3.1 The parameters used for simulation of astrocyte. The original param-

eters are scaled for simulation and hardware implementation. 65

xxiii

LIST OF TABLES

3.2 The parameters used for simulation of equations describing glutamate

release (Eq. 3.10 to 3.15). The parameters are scaled for simulation

and hardware implementation. 65

3.3 MD and NRMSD errors to measure difference between CORDIC and

original multiplication and division. 69

3.4 Resource utilization and speed for FPGA implementation of CORDIC

models (C ASTRO, C GASTRO) and DSP based models (D ASTRO,

D GASTRO) multipliers and dividers. 73

3.5 Number of ASTRO and GASTRO models that can be implemented in

different FPGA devices . 74

3.6 Reported device utilization and spreed for some of recent published

works that implemented similar astrocyte model on FPGA 75

4.1 NRMSE calculation of nonlinear terms in equations 4.14, 4.15 and their

corresponding linear term. 96

4.2 Device utilization of the XILINX Spartan 6 Lx75 100

5.1 Reported time step (ms) in some of published works that implemented

spiking neurons and astrocytes on FPGA. 108

5.2 Total memory required for 2 second simulation of Izhikevich neuron on

Matlab software for different time steps. 114

5.3 FPGA frequency and resource utilization for the Izhikevich neuron

with different time steps. 116

5.4 On FPGA power and total number of clock cycles required for each

design to generate 5 spikes. 117

xxiv

List of Abbreviations

AER Address Event Representation

AFM Amplitude Frequency Modulation

AM Amplitude Modulation

ANN Artifical Neural Network

ASIC Application Specific Integrated Circuit

CCF Computaional Cost Factor

CORDIC COordinate Rotation DIgital Computer

EIF Exponential Integrate and Fire

ER Endoplasmic Reticulum

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPF Global Performance Factor

GPU Graphics Processing Unit

xxv

LIST OF ABBREVIATIONS

HDL Hardware Description Language

IF Integrate and Fire

IP3 Inositol trisPhosphate

LUT Look Up Table

MD Maximum Deviation

NRMSD Root Mean Square Deviation

NRMSE Root Mean Square Error

ODE Ordinary Differential Equation

PWL Piece-Wise Linear

SNN Spiking Neural Network

STDP Spike Time Dependent Plasticity

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VHDL Very high speed integrated circuits Hardware Description Language

VLSI Very Large Scale Integration

mGluRs metabotropic Glutamate Receptors

xxvi

Introduction

First Section of this Chapter presents a brief summary of Neuromorphic systems and

their properties and applications, introduces Spiking Neural Network (SNN) as the

third generation of neural networks and its comparison with previous generations.

The second Section discuses the current challenges and problems in the field of neu-

romorphic engineering and SNNs and a literature review for state-of-the-art solutions.

Finally, Section 1.3 presents the proposed solutions.

1.1 Background

1.1.1 Neuromorphic Systems

During the last decades, researchers have been trying to replicate and study brain

for both medical and information processing applications. Some medical objectives

include understanding neurological psychiatric diseases [1, 2], simulating drug treat-

ment [3] alongside designing brain computer interfaces for the people with sensory,

motor and cognitive disabilities [4, 5]. However, this study is most important from

information processing point of view, where it can eventually lead to a new generation

of computational devices [6]. Resembling to brain, such processors expected to be

intelligent, low power and fast [7, 8, 9, 10]. Nevertheless, contrary to nowadays com-

puters, brain inspired systems are tolerant to both hardware and data failures [11].

1

INTRODUCTION

These neuromorphic systems include a large number of neurons, synapses and

their interconnecting structure on hardware [12]. Highly parallel, energy efficient,

fault tolerant, and compact, these systems promise alternative devices for solving

engineering problems [13] and powerful tools to understand properties of biological

neural networks [14]. Several such systems have already been introduced and used [15,

16, 17, 18, 19] for various applications such as pattern recognition, signal processing,

and autonomous robots [20, 21, 22, 23, 24, 25].

1.1.2 Spiking Neural Network

Artificial Neural Networks (ANNs) are simplified imitations of biological neurons

replicating basic elements of the nervous system. Based on the in/out signal types,

there are three classes of neural networks. The first one represents neurons as percep-

trons, which are composed of two parts: sum and threshold. If the sum of weighted

inputs reaches a threshold, the output will be one, otherwise it will be zero. This is

useful for Boolean function implementation. In the second class, neurons activation

functions are Sigmoids. This type also consists of two parts: sum and sigmoid eval-

uator. In addition to digital functions, this vlass is also capable of approximating

analog functions as well.

Spiking neural networks are the third generation of neural networks where neuron

models communicate by sequences of spikes. SNNs use more biologically meaningful

neuron models and incorporates spikes and spatiotemporal data processing schemes

[26, 27, 28]. The neurons of this class have three computational stages: sum of inputs,

integrate the sum over time, and a threshold. In this model, when the membrane

potential reaches the threshold, the neuron fires a spike and resets its potential.

In general, these types of spiking neuron models are mathematically described by

Ordinary Differential Equations (ODEs). The normalized firing rate in a period of

time, also called the rate coding, determines the output of the network [29].

Although it is considered a strong computational model, there are other processes

in the brain, such as classifying visual objects, that are too fast to be explained using

only rate coding algorithms [30]. Both experimental and theoretical research suggests

2

INTRODUCTION

that sequence timing of the signals must be considered as another essential parameter

of neural coding [31, 32].

SNNs have become an interesting subject for a variety of research fields including

computational neuroscience, cognitive computing, artificial intelligence, and neuro-

morphic. There is a wide range of applications related to this topic such as pattern

recognition, data processing, medical diagnoses, autonomous robotics, game playing,

etc [33].

Current neuromorphic research has led to the development of a plethora of mod-

els to mimic real neurons with different levels of abstraction in biological details.

Biologically-plausible models, such as Hodgkin Huxley [34] describe cellular phenom-

ena and properties of the individual biological components. Such low-level models,

impose more computation cost, making it difficult to simulate large-scale networks.

On the other hand, biologically-inspired models such as Izhikevich [35] and models

in [36, 37, 38, 39, 40], aim to mimic the biological neurons to the best degree of

accuracy. Such models can reproduce most of the firing patterns of real neurons and

are easier to couple to other spike-oriented units.

Moreover, high-level Integrate and Fire (IF) [41] is another computationally effi-

cient neural model, but cannot exhibit many essential features of the biological neu-

rons as observed in experiments [42]. As far as neuromorphic computing is concerned,

simpler models are cheaper, faster, and more energy efficient. Nevertheless, the choice

of models depends on the application of the device to be designed. To perform com-

putations with SNNs only a simple IF or Exponential IF (EIF) may be enough to act

as a thresholding box. However, for research in neuroscience, biologically plausible

models have higher flexibility in mimicking biology.

After selecting the neuron model, a proper spiking neural network topology should

be chosen. This depends on a number of factors such as the level of abstraction, the

targeted application, available hardware, and the learning algorithm. A variety of

spiking network topologies have been used in neuromorphic systems such as recur-

rent [43], feed-forward [44], winner-take-all [45], and probabilistic [46]. Subsequently,

the SNN learning method should be selected based on factors such as network topol-

3

INTRODUCTION

ogy, whether the learning should be on-chip or off-chip, be supervised or unsupervised,

etc.

1.2 Problem Statement

1.2.1 The Challenge

One approach to brain study is dividing it into two hierarchical sub levels of com-

ponents and architectural. Components level, which is the lowest, concerns studying

and mathematically modelling properties of cells and the way they are interconnected

and interact with each other.

In architectural level, brain cells are connected together through their different

interaction mechanisms and their systematic behaviour is analyzed. This is useful

both to study biological functions and disorders as well as discovering computational

algorithms underlying information processing, learning, memory, etc.

However, high complexity of such systems, due to large number of cells [47] and

numerous communication pathways, make such simulation a difficult task. The per-

formance of such systems at a higher level depends on the neuron, synapse and

learning models and at a lower level on the circuits realizing such units. Therefore,

optimization of SNN is important to increase performance and reduce cost of imple-

mentation.

1.2.2 Implementation Platforms

Neuron models could be either implemented in Very Large Scale Integration (VLSI)

systems or simulated by computer (software) codes. Computer simulations have the

advantage of flexibility, full control over model parameters, could be clock driven

(synchronous) or event driven (asynchronous), and is capable of simulating and con-

necting different neuron models, but even for medium scale networks it falls behind

the real time simulation [48]. Since the real power of the brain is believed to stem from

massive parallelism, the classic fetch and decode computers do not seem like a very

4

INTRODUCTION

good choice. Many projects have been simulating neural networks on supercomputers

[49, 50, 51] or in some cases software has been developed for PCs [52, 53, 54], although

supercomputers are expensive and are not available for the majority of researchers.

Unlike general purpose architectures, hardware simulators include well developed

and dedicated functional units for simulation capable of working in parallel, which

is very desirable in the simulations of SNNs. Such hardware could be categorized

into analog and digital neuromorphic systems. Analog systems, in general, are: more

energy efficient, use smaller die area, continuous in time and therefore have a higher

speed, could easily communicate with real world signals taking advantage of the fact

that actual neurons are analog. Having said that, analog implementations generally

suffer from some limitations: analog design is not very straightforward and any change

in a parameter of the model may leads to redesigning the whole hardware. They are

also very sensitive to process variability and suffer from noise. Furthermore, analog

spiking neurons require rather large capacitance, could have a limited number of post-

synaptic connections due to circuit fan-out constraints, are not sufficiently reliable

[55], and mostly rely on digital parts for full functionality [56]. Some of these analog

implementations could be find in the references: [57, 58, 59, 60, 61, 62, 63].

Digital systems, on the other hand, are more power consuming, require larger

silicon area, discrete in the time, and rather slower; but, they are highly flexible,

straightforward to design, can simulate multiple neuron models, not sensitive to pro-

cess variability and noise, stable, and can benefit from micro electronic technology

scalability. The combination of these two techniques, have also been used in some

projects that uses digital system for the connections and analog neuron components.

Among the learning rules for SNNs, Spike-Timing Dependent Plasticity (STDP)

is the most favored for unsupervised online training of feed-forward networks which

is believed to be closer to biology [64]. As a result, many neuromorphic architectures

have used various techniques to implement STDP-based spiking networks [65, 66, 67,

68, 69, 70].

5

INTRODUCTION

1.2.3 ASICs Versus FPGAs

Two classes of digital systems are Field Programmable Gate Arrays (FPGAs) and

Application Specified Integrated Circuits (ASICs). Comparing these two classes, logic

components in FPGA devices could easily change with a configuration bitstream re-

sult from HDL synthesizers providing a cheap and flexible platform. In ASIC devices,

on the other hand, a simple change in design could result in a new development cycle,

which is expensive and prolonged. However, when using FPGAs as the implementa-

tion platform, one should take into consideration the limited FPGAs resources, which

makes it crucial to employ them effectively for the best performance and the lowest

cost.

1.2.4 Objectives

Neuromorphic systems are comprises of large number of neurons, synapses and chal-

lenges. Therefore, it is essential to design an effective hardware for these building

block to make the system more efficient. The obkective of this dissertation is use the

state-of-art techniques to design effective hardware in the terms of area and power

consumtion and yet fast to for digital implementation of spiking neural networks.

1.3 Proposed Solutions

One of the factors that makes implementation of biological systems a challenging

task, is nonlinear functions describing biochemical reactions in the cells. Such non-

linear functions includes division, non-integer roots, multiplication, quadratic, cubic,

quartic etc. Implementing and calculating these terms requires extensive use of re-

sources which are limited in the target implementation platform: FPGA. Besides,

calculating such terms will greatly affect the speed and throughput of the system.

In this disseration, to overcome this problem, the nonlinear terms were calculated

in a way that both reduce the implementation resources and increase the speed of

the hardware. These methods are as follows: Linearization and COordinate Rotation

DIgital Computer (CORDIC)

6

INTRODUCTION

1.3.1 Linearization

In this technique nonlinear terms were replaced with a sequence of linear terms. This

would results in a small error and deviation from the original term but considerably

improves the efficiency of the hardware. The number of the linear segments is a

trade-off between complexity and accuracy. More number of nonlinear terms results

in higher accuracy and lower error but impose more hardware resources. On the other

hand, designs with fewer segments are faster and require less area but have higher

error. To compare the results several hardware were developed by setting different

constraints to investigate trade-offs and achieve best possible design.

1.3.2 CORDIC

CORDIC is an iterative algorithm originally developed in [71] and thereafter general-

ized for calculation of hyperbolic and exponential functions, multiplications, divisions

and square roots. CORDIC only requires simple shift and addition operations, which

can be cheaply implemented on hardware hence making it an appropriate choice for

fast and low-cost hardware implementations.

Comparing with the previous method of linearization which induces errors and

deviations, this algorithm has a very high precision while it is very well suited for

hardware implementation. This algorithm was used to calculate nonlinear terms in

the differential equations describing spiking neural networks.

1.4 Outline of disseration and list of the contributes

In this dissertation, several hardware were designed to efficient implement spiking

neural networks:

• Chapter 2 proposes a neuromorphic platform for on-FPGA online STDP learn-

ing, based on the CORDIC algorithm. The implemented platform comprises of

two main components. First, the Izhikevich neuron model is modified for im-

plementation using the CORDIC algorithm, simulated to ensure the model ac-

7

INTRODUCTION

curacy, described as hardware, and implemented on FPGA. Second, the STDP

learning algorithm is adapted and optimized using the CORDIC method, syn-

thesized for hardware, and implemented to perform on-FPGA online learning on

a network of CORDIC Izhikevich neurons to demonstrate competitive Hebbian

learning. The implementation results are compared with the original model and

state-of-the-art to verify accuracy, effectiveness, and higher speed of the system.

These comparisons confirm that the proposed neuromorphic system offers bet-

ter performance and higher accuracy while being straightforward to implement

and suitable to scale.

• Chapter 3 proposes a high-speed and low-cost digital hardware to replicate

biological-plausible astrocyte and glutamate release mechanism. The nonlinear

terms of these models were calculated using a high-precision and cost-efficient

algorithm. Subsequently, the modified models were simulated to study and

validate their functions. Several hardware were developed by setting different

constraints to investigate trade-offs and achieve best possible design. Hardware

implementation results confirmed the ability of the design to replicate biological

cells in detail with high accuracy. As for performance, the proposed design

turned out to be far more faster and area efficient than previously published

works that targeted digital hardware for biological-plausible astrocytes.

• Chapter 4 presents a digital hardware which can effectively implement nonlinear

differential equations of astrocyte by modifying the model for implementation

purpose. Further, the modified models were simulated to ensure its accuracy

and proper functioning . The main difficulty for the circuit implementation of

the astrocyte model lies in nonlinearity of the expressions which describe the

biochemical reactions. As proof of concept, the design implemented on a FPGA

device. As the results indicated, proposed hardware was capable of replicating

the astrocyte in cellular level.

• Chapter 5 Izhikevich neuron’s accuracy as a function of the time step was mea-

sured. It was uncovered that the threshold time step that Izhikevich neuron

8

INTRODUCTION

becomes unstable is an exponential function of the input current. Software

simulation performance, including total computational time and memory usage

were compared for different time steps. Afterwards, the model was synthesized

and implemented on the FPGA. Hardware performance metrics such as speed,

area and power consumption were measured for each time step. Results indi-

cated that time step has a negative linear effect on the performance. It was

concluded that by determining maximum input current to the neuron, larger

time steps comparable to those used in the previous works could be employed.

9

References

[1] E. Capecci, F. C. Morabito, M. Campolo, N. Mammone, D. Labate, and
N. Kasabov, A Feasibility Study of Using the NeuCube Spiking Neural Network
Architecture for Modelling Alzheimer’s Disease EEG Data. Cham: Springer In-
ternational Publishing, 2015, pp. 159–172.

[2] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm for mul-
tiple spiking neural networks with application in epilepsy and seizure detection,”
Neural Networks, vol. 22, no. 10, pp. 1419–1431, Dec 2009.

[3] I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: A deep convolutional neural
network for bioactivity prediction in structure-based drug discovery,” CoRR, vol.
abs/1510.02855, Oct 2015.

[4] Y. Li and C. S. Nam, “Collaborative brain-computer interface for people with
motor disabilities,” IEEE Computational Intelligence Magazine, vol. 11, no. 3,
pp. 56–66, Aug 2016.

[5] F. O. Carreon, J. G. G. Serna, A. M. Rendon, N. G. Franco, A. M. P. Jimenez, and
J. H. Gomez, “Induction of emotional states in people with disabilities through
film clips using brain computer interfaces,” IEEE Latin America Transactions,
vol. 14, no. 2, pp. 563–568, Feb 2016.

[6] X. Zeng, T. Song, X. Zhang, and L. Pan, “Performing four basic arithmetic op-
erations with spiking neural p systems,” IEEE Transactions on NanoBioscience,
vol. 11, no. 4, pp. 366–374, Dec 2012.

[7] K. E. Friedl, A. R. Voelker, A. Peer, and C. Eliasmith, “Human-inspired neu-
rorobotic system for classifying surface textures by touch,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 516–523, Jan 2016.

[8] J. A. Wall, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “Spiking neural
network model of sound localization using the interaural intensity difference,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 4, pp.
574–586, Apr 2012.

10

REFERENCES

[9] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C. W. Shin, H. Ryu, and B. C.
Kang, “Real-time gesture interface based on event-driven processing from stereo
silicon retinas,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 12, pp. 2250–2263, Dec 2014.

[10] N. Srinivasa and Y. Cho, “Self-organizing spiking neural model for learning fault-
tolerant spatio-motor transformations,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 23, no. 10, pp. 1526–1538, Oct 2012.

[11] M. Samie, G. Dragffy, A. M. Tyrrell, T. Pipe, and P. Bremner, “Novel bio-
inspired approach for fault-tolerant vlsi systems,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 10, pp. 1878–1891, Oct 2013.

[12] M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott, “Spike-
based synaptic plasticity in silicon: design, implementation, application, and chal-
lenges,” Proceedings of the IEEE, vol. 102, no. 5, pp. 717–737, 2014.

[13] K. Boahen, “A neuromorph’s prospectus,” Computing in Science and Engg.,
vol. 19, no. 2, pp. 14–28, Mar. 2017.

[14] L. A. Pastur-Romay, F. Cedron, A. Pazos, and A. B. Porto-Pazos, “Deep artificial
neural networks and neuromorphic chips for big data analysis: Pharmaceutical
and bioinformatics applications,” International Journal of Molecular Sciences,
vol. 17, no. 8, 2016.

[15] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen,
“Neurogrid: A mixed-analog-digital multichip system for large-scale neural simu-
lations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

[16] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A
digital neurosynaptic core using embedded crossbar memory with 45pj per spike
in 45nm,” in 2011 IEEE Custom Integrated Circuits Conference (CICC), Sept
2011, pp. 1–4.

[17] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[18] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A
wafer-scale neuromorphic hardware system for large-scale neural modeling,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems, May
2010, pp. 1947–1950.

11

REFERENCES

[19] R. Wang, C. S. Thakur, G. Cohen, T. J. Hamilton, J. Tapson, and A. van Schaik,
“Neuromorphic hardware architecture using the neural engineering framework for
pattern recognition,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 11, no. 3, pp. 574–584, June 2017.

[20] C. S. Thakur, J. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao,
J. Schemmel, R. Wang, E. Chicca, J. O. Hasler et al., “Large-scale neuromor-
phic spiking array processors: A quest to mimic the brain,” arXiv preprint
arXiv:1805.08932, 2018.

[21] B. Sen-Bhattacharya, S. James, O. Rhodes, I. Sugiarto, A. Rowley, A. B. Stokes,
K. Gurney, and S. B. Furber, “Building a spiking neural network model of the
basal ganglia on spinnaker,” IEEE Transactions on Cognitive and Developmental
Systems, pp. 1–1, 2018.

[22] J. P. Dominguez-Morales, A. Rios-Navarro, D. Gutierrez-Galan, R. Tapiador-
Morales, A. Jimenez-Fernandez, E. Cerezuela-Escudero, M. Dominguez-Morales,
and A. Linares-Barranco, “Multilayer spiking neural network for audio samples
classification using spinnaker,” in 2017 IEEE International Symposium on Circuits
and Systems (ISCAS), May 2017, pp. 1–1.

[23] D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G.
Malliaras, and G. Buzsáki, “Neurogrid: recording action potentials from the sur-
face of the brain,” Nature neuroscience, vol. 18, no. 2, p. 310, 2015.

[24] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny, “A 32 gbit/s communication
soc for a waferscale neuromorphic system,” INTEGRATION, the VLSI journal,
vol. 45, no. 1, pp. 61–75, 2012.

[25] M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G. Lee,
“Neuromorphic hardware system for visual pattern recognition with memristor
array and cmos neuron,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 4, pp. 2410–2419, April 2015.

[26] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks: Informa-
tion processing, learning and applications,” Acta neurobiologiae experimentalis,
vol. 71, no. 4, pp. 409–433, 2011.

[27] A. Grüning and S. M. Bohte, “Spiking neural networks: Principles and chal-
lenges,” in In: ESANN 2014. 22nd European symposium on artificial neural net-
works, computational intelligence and machine learning, Oct 2014, pp. 1–10.

12

REFERENCES

[28] J. Vreeken, Spiking Neural Networks: An Introduction, Artificial Intelligence
laboratory, Intelligent Systems Group, Univ. Utrecht, 2003.

[29] W. Maass, G. Schnitger, and E. Sontag, “On the computational power of sigmoid
versus boolean threshold circuits,” in Foundations of Computer Science, 1991.
Proceedings., 32nd Annual Symposium on, Oct 1991, pp. 767–776.

[30] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal
learning rule for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595, pp.
76–78, 1996.

[31] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. Re-
itboeck, “Coherent oscillations: A mechanism of feature linking in the visual
cortex?” Biological Cybernetics, vol. 60, no. 2, pp. 121–130, 1988.

[32] C. von der Malsburg and W. Schneider, “A neural cocktail-party processor,”
Biological Cybernetics, vol. 54, no. 1, pp. 29–40, 1986.

[33] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239 – 255, 2010.

[34] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, p. 500, 1952.

[35] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[36] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity,” Journal of neurophysiology, vol. 94,
no. 5, pp. 3637–3642, 2005.

[37] R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve
Membrane,” Biophysical Journal, vol. 1, pp. 445–466, jul 1961.

[38] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,”
Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981.

[39] H. R. WILSON, “Simplified dynamics of human and mammalian neocortical
neurons,” Journal of Theoretical Biology, vol. 200, no. 4, pp. 375–388, 1999.

[40] R. M. Rose and J. L. Hindmarsh, “The assembly of ionic currents in a thala-
mic neuron i. the three-dimensional model,” Proceedings of the Royal Society B:
Biological Sciences, vol. 237, no. 1288, pp. 267–288, 1989.

13

REFERENCES

[41] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, popu-
lations, plasticity. Cambridge university press, 2002.

[42] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University
Press, 2014.

[43] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Conversion
of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware,” in 2016 IEEE International Conference on Rebooting
Computing (ICRC), Oct 2016, pp. 1–8.

[44] D. Mart́ı, M. Rigotti, M. Seok, and S. Fusi, “Energy-efficient neuromorphic clas-
sifiers,” Neural computation, vol. 28, no. 10, pp. 2011–2044, 2016.

[45] R. Kreiser, T. Moraitis, Y. Sandamirskaya, and G. Indiveri, “On-chip unsu-
pervised learning in winner-take-all networks of spiking neurons,” in 2017 IEEE
Biomedical Circuits and Systems Conference (BioCAS), Oct 2017, pp. 1–4.

[46] H. Y. Hsieh, P. Y. Li, C. H. Yang, and K. T. Tang, “A high learning capability
probabilistic spiking neural network chip,” in 2018 International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), April 2018, pp. 1–4.

[47] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E.
Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers of neuronal
and nonneuronal cells make the human brain an isometrically scaled-up primate
brain,” The Journal of Comparative Neurology, vol. 513, no. 5, pp. 532–541, Apr
2009.

[48] S. Davies, “Learning in the spiking neural networks,” Ph.D. dissertation, Univ.
of Manchester, Manchester, 2012.

[49] “The human brain project,” 2016. [Online]. Available: https://www.
humanbrainproject.eu

[50] “Bluebrain — epfl,” 2016, last visited 2012-03-18. [Online]. Available:
http://bluebrain.epfl.ch

[51] “Cognitive computation project,” 2016. [Online]. Available: http://ibm.com

[52] “Nest simulator — the neural simulation tool,” 2016. [Online]. Available:
http://www.nest-simulator.org/

[53] “The brain spiking neural network simulator,” 2016. [Online]. Available:
http://briansimulator.org/

14

https://www.humanbrainproject.eu
https://www.humanbrainproject.eu
http://bluebrain.epfl.ch
http://ibm.com
http://www.nest-simulator.org/
http://briansimulator.org/

REFERENCES

[54] “Nemo,” 2016. [Online]. Available: http://nemosim.sourceforge.net/

[55] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking neurons
design: Analog or digital?” in Neural Networks (IJCNN), The 2012 International
Joint Conference on, June 2012, pp. 1–5.

[56] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains in the
nano-cmos era: Spiking neurons, learning synapses and neural architecture opti-
mization,” Neural Networks, vol. 45, pp. 4 – 26, 2013, neuromorphic Engineering:
From Neural Systems to Brain-Like Engineered Systems.

[57] O. Sharifipoor and A. Ahmadi, “An analog implementation of biologically plau-
sible neurons using {CCII} building blocks,” Neural Networks, vol. 36, pp. 129 –
135, 2012.

[58] S. Millner, A. Grübl, K. Meier, J. Schemmel, and M. olivier Schwartz, “A vlsi
implementation of the adaptive exponential integrate-and-fire neuron model,” in
Advances in Neural Information Processing Systems 23, J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010,
pp. 1642–1650.

[59] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. Wunderlich, A. Basu, and
B. Degnan, “A learning-enabled neuron array ic based upon transistor channel
models of biological phenomena,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 7, no. 1, pp. 71–81, Feb 2013.

[60] Y. Yamashita and H. Torikai, “A novel pwc spiking neuron model: Neuron-like
bifurcation scenarios and responses,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 59, no. 11, pp. 2678–2691, Nov 2012.

[61] J. A. Starzyk and Basawaraj, “Memristor crossbar architecture for synchronous
neural networks,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 61, no. 8, pp. 2390–2401, Aug 2014.

[62] Y. Wang and S. C. Liu, “A two-dimensional configurable active silicon dendritic
neuron array,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 9, pp. 2159–2171, Sept 2011.

[63] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-
Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel,
G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. SAÏGHI, T. Serrano-
Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neu-
ron circuits,” Frontiers in Neuroscience, vol. 5, no. 73, 2011.

15

http://nemosim.sourceforge.net/

REFERENCES

[64] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models of
synaptic plasticity based on spike timing,” Biological cybernetics, vol. 98, no. 6,
pp. 459–478, 2008.

[65] E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, “Synaptic potentiation and de-
pression in al: Hfo2-based memristor,” Microelectronic Engineering, vol. 147, pp.
41–44, 2015.

[66] M. R. Azghadi, S. Moradi, D. B. Fasnacht, M. S. Ozdas, and G. Indiveri, “Pro-
grammable spike-timing-dependent plasticity learning circuits in neuromorphic
vlsi architectures,” ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), vol. 12, no. 2, p. 17, 2015.

[67] C. Mayr, J. Partzsch, M. Noack, S. Hanzsche, S. Scholze, S. Hoppner, G. Ellguth,
and R. Schuffny, “A biological-realtime neuromorphic system in 28 nm cmos using
low-leakage switched capacitor circuits,” IEEE transactions on biomedical circuits
and systems, vol. 10, no. 1, pp. 243–254, 2016.

[68] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A mixed-signal
implementation of a polychronous spiking neural network with delay adaptation,”
Frontiers in neuroscience, vol. 8, p. 51, 2014.

[69] S. Yang, J. Wang, B. Deng, C. Liu, H. Li, C. Fietkiewicz, and K. A. Loparo,
“Real-time neuromorphic system for large-scale conductance-based spiking neural
networks,” IEEE Transactions on Cybernetics, pp. 1–14, 2018.

[70] K. Isobe and H. Torikai, “A novel hardware-efficient asynchronous cellular au-
tomaton model of spike-timing-dependent synaptic plasticity,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 63, no. 6, pp. 603–607, June 2016.

[71] J. E. Volder, “The cordic trigonometric computing technique,” Electronic Com-
puters, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, Sept 1959.

16

CORDIC-SNN: On-FPGA STDP

Learning with Izhikevich Neurons

2.1 Introduction

Highly parallel, energy efficient, fault tolerant, and compact neuromorphic learning

systems promise alternative devices for solving engineering problems [1] and powerful

tools to understand properties of biological neural networks [2]. Several such systems

have already been introduced and used [3, 4, 5, 6, 7] for various applications such as

pattern cognition, signal processing, and autonomous robots [8, 9, 10, 11, 12, 13].

These neuromorphic systems typically include a large number of neurons, synapses

and their interconnecting structure on hardware. They provide real-time simulation,

regardless of the size of the network, are parallel, and energy efficient [14]. The

performance of such systems at a higher level depends on the neuron, synapse and

learning models and at a lower level on the circuits realizing such units [15].

Current neuromorphic research has led to the development of a plethora of mod-

els to mimic real neurons with different levels of abstraction in biological details.

Biologically-plausible models, such as Hodgkin Huxley [16] describe cellular phenom-

ena and properties of the individual biological components. Such low-level models,

impose more computation cost, making it difficult to simulate large-scale networks.

On the other hand, biologically-inspired models such as Izhikevich [17] and models

17

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

in [18, 19, 20, 21, 22], aim to mimic the biological neurons to the best degree of

accuracy. Such models can reproduce most of the firing patterns of real neurons and

are easier to couple to other spike-oriented units. Moreover, high-level Integrate and

Fire (IF) [23] is another computationally efficient neural model, but cannot exhibit

many essential features of the biological neurons as observed in experiments [24]. As

far as neuromorphic computing is concerned, simpler models are cheaper, faster, and

more energy efficient. Nevertheless, the choice of models depends on the application

of the device to be designed. To perform computations with SNNs only a simple

IF or Exponential IF (EIF) may be enough to act as a thresholding box. However,

for research in neuroscience, biologically plausible models have higher flexibility in

mimicking biology. Here, we have chosen the Izhikevich neuron for simulation and

Field Programmable Gate Array (FPGA) implementation, because while being com-

putationally efficient, it produces biologically plausible firing patterns.

After selecting the neuron model, a proper Spiking Neural Network (SNN) topol-

ogy should be chosen. This depends on a number of factors such as the level of

abstraction, the targeted application, available hardware, and the learning algorithm.

A variety of spiking network topologies have been used in neuromorphic systems

such as recurrent [25], feed-forward [26], winner-take-all [27], and probabilistic [28].

Subsequently, the SNN learning method should be selected based on factors such

as network topology, whether the learning should be on-chip or off-chip, be super-

vised or unsupervised, etc. Previous hardware implementations of SNN adopt many

of these approaches [29, 30, 31, 32]. Among them, Spike-Timing Dependent Plas-

ticity (STDP) is the most favored for unsupervised online training of feed-forward

networks which is believed to be closer to biology [33]. As a result, many neuromor-

phic architectures have used various techniques to implement STDP-based spiking

networks [34, 35, 36, 37, 38, 39]. Similarly, this paper uses a novel technique based on

CORDIC algorithm, described in the following sections, to realize an online STDP-

learning architecture in hardware.

Considering hardware implementation platforms, they could be divided into three

major categories as analog [6, 34, 36, 40, 41], digital [4, 7, 42] or mixed analog-

18

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

digital [3, 37, 35] systems, each with its advantages and disadvantages. Two classes

of digital systems are FPGAs and Application Specified Integrated Circuits (ASICs).

Comparing these two classes, logic components in FPGA devices could easily change

with a configuration bitstream result from Hardware Description Language (HDL)

synthesizers providing a cheap and flexible platform. In ASIC devices, on the other

hand, a simple change in design could result in a new development cycle, which

is expensive and prolonged. However, when using FPGAs as the implementation

platform, one should take into consideration the limited FPGAs resources, which

makes it crucial to employ them effectively for the best performance and the lowest

cost.

To that end, the first challenge is to implement the neuron model as efficient

and fast as possible. This paper utilizes CORDIC to calculate Izhikevich neuron

differential equations. CORDIC is used to exclude the use of multipliers which are

area-intensive and slow arithmetic operators in FPGAs. In order to increase the per-

formance and size of the network, several techniques have been previously utilized to

decrease the multiplication cost. These include bit serial and reduced range preci-

sion multipliers, stochastic-based neurons, replacing multiplication with add & shift

operations, and Look Up Tables (LUTs) [43].

A number of FPGA implementations of Izhikevich neuron are available in liter-

ature. In [44], a rotate-and-fire digital spiking neuron model has been implemented

that can reproduce five type of inhibitory responses as an asynchronous sequential

logic circuit. In [45], an asynchronous cellular automata-based neuron model is pre-

sented. In [46], the continuous nullclines are approximated to cellular space for a

low-cost neuron implementation. Reference [47] presents a piece-wise linear approx-

imation [48] of the Izhikevich model to achieve multiplier-less hardware for lower

cost and higher speed. Further, reference [49] utilizes CORDIC algorithm to design

a low power digital circuit for this neuron. Compared with previous works, the

CORDIC-based method presented here results in neurons requiring fewer resources

and operating at a higher frequency.

In addition, to implement the STDP algorithm, the CORDIC exponential core

19

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

in [50] was adopted to compute STDP function with high precision while requiring

low resources.

Different method have been used by researchers to implement STDP algorithm.

One of the common methods is to use Address-Event Representation (AER) data

protocol [35]. Reference [51] utilizes piece-wise linear approximation (PWL) technique

to implement the exponential term in STDP and a counter to store spike events.

Moreover, a dedicated plasticity processor was used in [52]. In another paper, authors

used a simplified multiplier to reduce the STDP implementation cost[53]. In this

work, to implement the STDP algorithm, the CORDIC exponential core in [50] was

adopted to compute STDP function with high precision while requiring low resources.

To account for the spike timings required for STDP, a shift register was utilized to

store the firing times of pre and post-synaptic neurons in order to determine the time

differences and calculate synaptic weight updates. This is a novel technique that

exploits a distributed memory to realize biological networks.

The rest of this Chapter is organized as follows. Section 2.2 and 2.3 review the

Izhikevich neuron and STDP learning algorithm and further presents CORDIC modi-

fied models, computer simulations, and investigation of accuracy through errors anal-

ysis and studying the network behaviors. Section 2.4 and 2.5 discuss FPGA im-

plementation procedure and compare achieved result with previous works. Finally,

Section 2.6 concludes the paper.

2.2 CORDIC neuron

2.2.1 Izhikevich neuron

Izhikevich neuron is a two-dimensional model, which consists of two coupled Ordinary

Differential Equations (ODEs) as:

dv

dt
= 0.04v2 + 5v + 140− u+ I (2.1)

du

dt
= a(bv − u) (2.2)

20

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

and a reset condition as:

if v > 30mv then

{
v → vr

u→ ur = u+ d.
(2.3)

Here, Eqs. 2.1 and 2.2 describe membrane potential v, recovery variable u and

applied current I. Other dimensionless parameters are:

• a: Time scale of the recovery variable;

• b: Sensitivity of the u to v;

• c: After-spike reset value of v;

• d: After-spike reset value of u;

With adjustment of these variables, Izhikevich model is capable of replicating sev-

eral firing patterns exhibited by biological neurons such as tonic spiking, adaptation,

initial or regular bursting, transient spiking, and irregular spiking [54].

2.2.2 CORDIC Izhikevich

CORDIC is an iterative algorithm originally developed in [55] and thereafter general-

ized for calculation of hyperbolic and exponential functions, multiplications, divisions

and square roots. CORDIC only requires simple shift and addition operations, which

can be cheaply implemented on hardware hence making it an appropriate choice for

fast and low-cost hardware implementations.

The algorithm for CORDIC calculation of square term in Eq. 2.1 is shown in

Fig. 2.1. The FOR loop in line 4 calculates the square(x) to the n bit precision.

The x register keeps track of rotation direction in each iteration where z accumulates

the result. In this approach, calculating to k + n bit precision is equal to rounding

of multiplication to k + n bit without calculating unnecessary bits. Choosing n is

a trade-off between computation complexity and precision where k depends on the

domain of the square function. Since the membrane potential of the neuron ranges

between -100 and 30, k is set to 6 so that its two’s power (26 = 64) is greater than

21

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

1 square(x)

2 y=x;

3 z=0;

4 for i=-k:n

5 {

6 if (x > 0)

7 {

8 x = x - 2^(-i);

9 z = z + y*2^(-i);

10 }

11 else

12 {

13 x = x + 2^(-i);

14 z = z - y*2^(-i);

15 }

16 }

17 return z;

Figure 2.1: The CORDIC code for calculation of square function.

100/2 = 50 and therefore the algorithm can keep up splitting the v to reach the

value of v2. To further evaluate the effect of n on the neuron behavior, we define

four models with n=6, n=8, n=10 and n=12, naming them IzhCOR6, IzhCOR8,

IzhCOR10, and IzhCOR12, respectively. This will help to compare simulation and

implementation results in terms of deviation from the original model and hardware

cost. The indicated code is most useful for a fixed point hardware but it can be

modified to make it applicable to floating point hardware as well.

2.2.3 Simulation Results

Fig. 2.2 compares computer simulation of multiplication and CORDIC-based square

functions. As this figure shows, two graphs are very close and only by zooming in

small range the difference is visible (Error analysis is further presented in the next

Section). Fig. 2.3 shows the computer simulation of Izhikevich and modified CORDIC

model for different neuronal behaviors. For an identical applied current, responses

are very similar and there is no distinctive difference. However, these results only

indicate resemblance of models for one specified value of applied current. Therefore,

the resemblance of models for a wide range and different random values of stimulation

22

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

−100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
q
u
a
r
e
(x
)

x

65.7465.7665.78 65.8 65.82

4325

4325

4326

4327

4328

4329

4330

4331

Figure 2.2: Computer simulation of multiplication and CORDIC-based square func-

tion. Here, black and red lines show multiplication, and CORDIC square functions,

respectively. The difference between two lines is only visible by zooming in a small

range.

23

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

currents are investigated as follows. First, ODEs in both modified and original models

Tonic Spiking-Original Model Tonic Spiking-Proposed Model

Tonic Bursting-Original Model Tonic Bursting-Proposed Model

Mixed Mode-Original Model Mixed-Proposed Model

Class II Excitability-Original Model Class II Excitability-Proposed Model

Figure 2.3: Computer simulation of the original and the proposed modified CORDIC

models for different neuronal behaviors. The black and green lines show membrane

potential and recovery variable respectively. The applied current is illustrated by the

blue line.

24

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

was set equal to zero as
dv

dt
= 0 and

du

dt
= 0, (2.4)

to depict nullclines in the phase planes of the systems. The result is displayed in

Fig. 2.4, where the first row (a and c) shows nullclines for low values of stimulation

where there are two fixed points. The second row (b and d), on the other hand, shows

the responses of the models for higher stimulation current where those fixed points

merge and annihilate simultaneously in both CORDIC and Izhikevich model phase

plane.

Original Model CORDIC

− 140 − 120 − 100 − 80 − 60 − 40 − 20 0

−60

−40

−20

0

20

40

60

80

100

120

140

V

W

−140 −120 −100 −80 −60 −40 −20 0

−60

−40

−20

0

20

40

60

80

100

120

140

V

W

(a) (c)

−140 −120 −100 −80 −60 −40 −20 0

−

−

−

60

40

20

0

20

40

60

80

100

120

140

V

W

−140 −120 −100 −80 −60 −40 −20 0

−60

−40

−20

0

20

40

60

80

100

120

140

V

W

(b) (d)

Figure 2.4: Nullclines of original and CORDIC model. In the first row, similar to the

original model, CORDIC model has two interaction points for low injected current;

the second row shows the state of models for higher injected current where those

intersection points merged and annihilated.

Second, Fig. 2.5 compares the raster diagram of 1000 randomly coupled instances

25

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Time

U
n

it
#

(a)

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Time

U
n

it
#

(b)

Figure 2.5: The spike raster for a population of 1000 tonic bursting neurons which

are coupled randomly. The utilized neuron models are (a) original Izhikevich and (b)

proposed CORDIC.

26

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

of original Izhzikevich (a) and the proposed CORDIC neuron models. Here, each dot

represents a specific neuron spiking at a specific time. Despite the differences in the

details of the two models used, in general they are very much alike. Both Figures 2.4

and 2.5 demonstrate that the proposed CORDIC implementation of Izhikevich neuron

can show qualitatively similar behavior to the original model. Further quantitative

error analysis is presented in the following subsection.

2.3 Network and STDP rule

2.3.1 Models Numerical Analysis

To investigate the accuracy of the proposed model in generating Izhikevich behavior,

two types of time domain errors were examined as follows.

ERRT: Modification in the neuron model may cause difference in spike timing and lag

in the spike train of the modified model compared to the original one. For quantitative

measuring of this error, first, two spike trains were synced and then time to next spike

for original and CORDIC models was considered for the calculation of a timing error

(named ERRT) as shown in Fig. 2.6. Here,

ERRT =

∣∣∣∣∆tc −∆to
∆to

∣∣∣∣× 100,

∆t = ts2 − ts1,
(2.5)

where ∆tc, and ∆to are time intervals between the second (ts2) and first spike (ts1),

for CORDIC and original model, respectively.

NRMSD: The Normalized Root Mean Square Deviation (NRMSD) [56] error is also

used to measure the similarity of spike shapes in CORDIC and the original model.

Low values for this error indicate more resemblance of output spikes. This error is

defined as

RMSD =

√√√√ n∑
i=1

(vc(n)− vo(n))2

n
, (2.6)

and normalized as

NRMSD =
RMSD

vmax − vmin
, (2.7)

27

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Δtc

Δto

ts1 ts2

Synched spikes

(t
s
2
-t
s
1
)/
2

CORDIC model
Original model

Figure 2.6: ERRT: The difference of time interval between two spikes in the original

and CORDIC model obtained from computer simulations [50]

where Vc and Vo are the wave forms of the CORDIC and Izhikevich model, respec-

tively. Here, Vmax and Vmin are the maximum and minimum values of Vo in its domain.

For instance, for the curve in Fig. 2.2 at the range of [-100 100], NRMSD was calcu-

lated as 5.2177×10−5, confirming a very small error between CORDIC squaring and

squaring using normal multiplication operation. To measure the similarity of output

spikes, first two spikes were synced as shown in Fig. 2.6 and thereafter NRMSD was

evaluated for the half of time interval between these two spikes. Table 2.1 presents

values of ERRT and NRMSD for computer simulation of modified CORDIC models.

As expected, a higher value of n will result in smaller error values, where the IZH-

COR12 has a negligible deviation from the Izhikevich neuron. It is worth noting that

these errors were calculated for a value of input current and only between two spikes

of the original and proposed neuron. To compare results, the value of NRMSD and

ERRT error were calculated for different values of the input current and presented

in Table 2.2 As data in this table indicates, the NRMSD error is higher for larger

input cuurent. Hwoever, ERRT is decling since higher input currenr results in higher

frequency and therefore shorter spike period.

Furthermore, the value of error was calculated for several consecutive spikes.The

28

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Table 2.1: ERRT and NRMSD for tonic spiking and regular bursting.

Model Error Type Ton. Spiking Reg. Bursting

Computer simulation IZHCOR6 Errt %0.2549 %0.0000

NRMSD %0.0034 %0.0705

IZHCOR8 Errt %0.2049 %0.0000

NRMSD %0.0006 %0.0136

IZHCOR10 Errt %0.1025 %0.0000

NRMSD %0.0001 %0.0082

IZHCOR12 Errt %0.0000 %0.0000

NRMSD %0.0000 %0.0063

FPGA implementation IZHCOR6 Errt %0.0191 %0.0000

NRMSD %0.3951 %2.0631

Table 2.2: NRMSD and ERRT for different values of input current

I=4mA I=16mA I==16mA I=32mA

IZHCOR6 NRMSD% 13.34 10−4 49.4 10−4 64.25 10−4 85.33 10−4

ERRT% 0.2159 0.0000 0.0000 0.0000

IZHCOR8 NRMSD% 2.68 10−4 3.26 10−4 18.80 10−4 36.40 10−4

ERRT% 0.0000 0.0000 0.0000 0.0000

29

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Table 2.3: NRMSD for different number of consecutive spikes

Number of consecutove spikes 1 5 10 15

NRMSD% 0.0041 0.0050 0.0066 0.054

mean value of NRMSD for different number of consecutive spikes are presented in

Table 2.3. As data in this table indictes, the value of error slightly changes for

different number of sequences but it remain almost steady.

2.3.2 Network Topology

In this study, a two-layer spiking neural network as shown in Fig. 2.7 was formed.

The first layer consisting of 20 neurons acts as an input layer while the second one

with a single neuron is the output. A uniform random spike train input, with the

mean firing rate of 7 Hz, was applied to each input neuron, which made them fire

(defined as the state where membrane potential become greater than 30mv). For the

output neuron, the input current is considered to be the sum of the currents received

from the input layer spiking neurons as

Io =
20∑
i=1

w(i, 1)f(i) (2.8)

where w(i, 1), which was initially set to 96 (by trial and error), is the synaptic weight

connecting the input layer i to the output neuron. The value of f(i) is 1 if the

corresponding neuron fires and is 0 otherwise.

2.3.3 STDP Learning

In STDP, analogous to biology, the synaptic weight changes when a pre-synaptic

neuron fires in a short time before or after the post-synaptic neuron, strengthening

or weakening the neuron connection accordingly. Such a change is determined as an

exponential of the time difference between two events and is formulated as{
wi(∆t) = A+ e

−∆t/τ+ if ∆t > 0

wi(∆t) = −A− e∆t/τ− if ∆t ≤ 0,
(2.9)

30

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Input Layer

Output Layer

w
(i
,1

)

Random Input Current

Figure 2.7: The topology of the utilized spiking neural network.

where ∆t = tpost− tpre is the time span between pre- and post-synaptic spikes. Here,

τ+ and τ− are STDP learning windows, which determine any time differences greater

than them is considered to have a small effect on the synaptic weights and could

be disregarded. These windows were set to τ+ = τ− = 20ms in our experiments.

In addition, A+ and A− are gain parameters set to 2 and 4 respectively considering

the fact that in biology too, synapses tend to be more depressed than potentiated.

Overall, these five parameters determine the magnitude of weight change.

Furthermore, as in biological synapses, the weight should be confined between

wmin < w < wmax. The STDP mechanism of weakening and strengthening of synapses

will eventually lead to a bi-modal distribution of weights, which is a result of com-

petitive Hebbian learning [57]. This rule applies to the utilized network in Fig. 2.7 as

well. STDP learning in this two-layer network leads to a bi-modal weight distribution

as shown in Fig. 2.8. This figure depicts the evolving of network weights over the

simulation time to distribute into two extreme weight values of 0 and 200.

2.3.4 CORDIC STDP

The main challenges in implementing STDP are its exponential terms and the mem-

ory required to store and retrieve spike timing. Here we implemented the exponential

function required for STDP, using a modified version of the CORDIC algorithm pre-

sented in [50]. The algorithm for calculating the exponential of x (ex) is shown in

Fig. 2.9. Here, variables x and expx are used to store input and output values, re-

31

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

(c
)

(a
)

(b
)

Figure 2.8: Weight distribution after STDP learning in the network of (a) original,

(b) CORDIC, and (c) 2x-based approximation model. All the 20 synaptic weights

are initially set to 96 as shown in the first row. The second row displays weight

distribution and their frequency after half of the simulation time. Finally, the third

row depicts the weight distribution at the end of simulation, where the weights have

mostly evolved to be either zero or the maximum possible value of Wmax = 192.

32

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

spectively. As part of the algorithm, the pre-calculated values of e(1
2

), e(1
4

), · · · , e(1
n

)

1 //assign initial values
2 z=fraction(x);poweroftwo=0.5;
3 expx=1;
4 //pre-calculated a elements
5 a=[exp((1/2)*(1:n))]
6 //Determine the weights
7 //and calculate products
8 for i from 0 to n do
9 {
10 if (poweroftwo < z)
11 {
12 z=z-poweroftwo;
13 expx = expx * a(i);
14 }
15 poweroftwo=poweroftwo/2;
16 }

Figure 2.9: The pseudo code of CORDIC exponential.

are stored in an array, as shown in line 5. The FOR loop in line 8 calculates the expo-

nential function for the fraction part of x with e−n precision. In this work, n is set to

8, but higher values of n could be selected in the case of the need for higher precision

exponential function. However, this will in turn slightly increases implementation

cost. Our proposed algorithm is simpler than that of [50], because the range of x, for

which we need to calculate the exponential function, is between -1 and 0. Fig. 2.10

demonstrates the very good approximation in implementing the exponential function

achieved using our proposed CORDIC algorithm. In this figure, the blue curve shows

the computer simulation of exponential function, while the red curve is the expo-

nential approximation using CORDIC. The NRMSD error calculated for these curve

was 2.38 × 10−3, which further verify the high accuracy of the proposed CORDIC

algorithm. To further verify the effectiveness of the proposed CORDIC algorithm in

replicating the STDP model, the simple 2x function was used as another method to

approximate exponential function, because the value of x is always negative and in

the range of -1 and 0. Such a term could be cheaply implemented on hardware using

shift registers.

To test the accuracy of the approximated STDP models compared to the original

33

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

−1 −0.8 −0.6 −0.4 −0.2 0

0.4

0.5

0.6

0.7

0.8

0.9

1

e
x
p

 v
s
 C

O
R

D
IC

 e
x
p

�0.45�0.44�0.43�0.42�0.41�0.4

0.635

0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

x

Figure 2.10: Software simulation of: exponential function (blue line) and the one

calculated by CORDIC algorithm (red line) for n=8 indicating the resemblance of

both functions.

model, two networks with the topology shown in Fig. 2.7 were formed. The first

network consisted of original Izhikevich neurons and original STDP rule, while the

second one used CORDIC STDP to connect CORDIC (IZHCOR8) neurons. Next, the

same random current was applied to the input layer of both networks. Fig. 2.8(a) and

(b) show the evolution of weight for the original and CORDIC networks, respectively.

Due to the high precision of the CORDIC algorithm, the resulted weight distributions

are very similar to the network implementing original STDP and Izhikevich models.

Furthermore, Fig. 2.8(c) is the weight distribution achieved using the 2x function

instead of the exponential functions. As seen, the weight distribution is different

from the original and CORDIC models but a similar bi-modal distribution could be

observed.

34

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

2.4 FPGA implementation

2.4.1 Architecture of Izhikevich neuron

This section presents FPGA implementation of the proposed CORDIC Izhikevich

neuron. Since the primary objective of this paper is to reduce the implementation cost

and improve hardware speed, fixed-point arithmetic was used in our implementations.

For solving the Izhikevich Ordinary Differential Equations (ODEs) shown in Eq. 2.1,

and 2.2, they were discretized and simple Euler method was used that resulted in the

following Equations.

v[n+ 1] = (0.04 CORDIC Mul(v[n]) + 5v[n]...

+ 140− u[n] + I[n])dt+ v[n],
(2.10)

u[n+ 1] = a(bv[n]− u[n])dt+ u[u]. (2.11)

By choosing small step sizes and with the help of the reset equation, which keeps v

bounded to help the stability of Euler method, this method produced stable outputs.

In addition, multiplications by constant numbers were approximated to the closest

possible values with the sum of a series of power of two numbers (
∑k
−l 2

n), thereby

reducing multiplications to simple shifts and adds. Obviously, a higher value of k+ l

increases the multiplication precision but it also requires more shift registers and

adders leading to a higher hardware resource requirement. The Control Data Flow

Graph (CDFG) [58] of the Izhikevich CORDIC model is shown in Fig. 2.11. In

this figure, operation blocks and registers are represented with circles and rectangles,

respectively. In this graph, block A calculates the square function while block B

solves the Euler method presented in Eq. 2.10 and 2.11. Arithmetic shift operations

are shown by “¿¿” and “x¡¡” means shift by “x” position while adding the results,

which implements
∑k
−l 2

n.

For the model to work properly, optimum word length for the architecture should

be determined. This can be specified when considering the minimum number of

integer bits to correctly represent the range of variables, and the number of fraction

bits for the minimum required precision. In addition, extra bits are required to

35

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

i=
-1
2

-
1

>

0

-
True

False

x

M
u
x

1/2

>

0 True

+

-

>>

1

z

M
u
x

v[n]

+

-

>>

1

+
V[n]

I[n]

u[n]

+

+

140

+

u[n]

M
u
x

+

W[n]

V[n]

M
u
x

+
u[n]

Vr

d

>

30

u[n+1

V[n+1
V[n]
u[n]
I[n]

5 >>

0.04 >>

-

b>>

- a>>

(a)
(b)

Figure 2.11: Control data flow graph for Spartan-6 XC6LX75 FPGA implementation

of CORDIC Izhikevich neuron. First, block (a) calculates the square function as per

the pseudo code in Fig. 2.1 . The counter which is showed at the top of this block,

counts from -6 to 5, enabling this block for 12 iterations. In each iteration, 2(−i) is

added or subtracted from x register based on the sign of x. Eventually, this register’s

value tends to zero as iterations continues. The same scenario applies to the z register.

The value of 2(−i) ∗ v[n] will be added or subtracted from the z register depending on

the sign of z. After 12 iterations, the multiplication result is ready and the (b) block

is enabled. This block solves the Euler method in the eq. 2.10 and 2.11. At the last

stage of this block, v is compared with the threshold value of 30. If v is grater than

this threshold, the multiplexers reset the v and u according to eq. 2.3. The plain lines

show the flow of data and the dashed lines indicate the jumps and decision signals.

36

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

prevent from over and under flow in the shift&add operations. Considering all the

requirements, and to avoid overflow and precision loss, 14 and 16 bits were dedicated

for the fraction and integer parts, respectively.

2.4.2 Architecture of Network and STDP rule

Similar to the neuron, the Euler method was used to solve the discretized version of

Eq. 2.9 to implement STDP. The CDFG for calculating the exponential term in this

equation is presented in Fig. 2.12. Comparing to the flow graph used for calculating

exponentials in [50], this one is simpler because here x is in the range of -1 and 0,

and therefore no shift by e is needed. Nonetheless, this design also only uses shift &

add operations, so it is hardware friendly.

The flow graph for implementation of the spiking network with STDP learning

is shown in Fig. 2.13. The post-synaptic input current is the sum of the synaptic

weights of all the pre-synaptic neurons that fire. As shown in the block (a) of the

figure, a 41-bit shift register is used to record the spike timing of pre- and post-

synaptic neurons. Every time a neuron fires or is silent, the register shifts to left

and the least significant bit updates with 1 (spike) or 0 (silence), accordingly. Here,

sampling time is controlled by a counter to act as enable signal for the shift register.

Online STDP learning rule is implemented in block (b) of Fig. 2.13. Here, the

middle bit (Reg[20]) of the 41-bit shift register that records pre-synaptic spike times,

enables STDP mechanism. This is to account for, and enable STDP, in response

to future (Reg[19:0]) and past (Reg[40:21]) spike events. If a pre-synaptic neuron

spikes, the time of that spike is compared to the time of post-synaptic spikes and the

difference will be divided by τ (using shift operations) and passed to the exponential

CORDIC calculator unit. Next, based on the sign of the time difference, the new

weight will be determined and compared to the boundaries. The same approach could

be used for calculating STDP but using the 2x model. That way, the exp cordic unit

(in Fig. 2.13(b)), should be replaced with a 2x calculator.

37

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

exp(x)
x

B

F
l

e
x
p
x

R

Figure 2.12: Control data flow graph for digital implementation of the exponential

function for the range of -1 ¡x ¡0 according the pseudo code shown in the Fig 2.9. Since

the value of the input x is always smaller than one, the word length of this architecture

was considered as total number of fraction bits. The calculations complete in 6

iterations as the counter at the top of the figure counts from 1 to 6. In each iteration,

float register is compared with the 2−i. If it is greater, the register is subtracted from

2−i. Moreover, expx register, which it’s initial value is 1, is multiplied by constant

a(i) with performing shift and add operations. Upon completion of iterations, the

counter enables the out signal.

38

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

41 bit shift register

spike?

+

0

1M
u

x

41 bit shift register

spike?

PS

Neu.

41 bit

0

1M
u

x

41 bit shift register

spike?

M
u

x

w

0

PR

Neu.

PR

Neu.

PR

Neu.

.

.

.

.

.

.

Enable

k=41

1

Reg[i]=1

20

<<T
Exp_CORDIC

M
u

x
<<A-

<<A+

M
u

x

wmin

M
u

x

wmax
0

>0
ـ

0 ـ +
>0

ـ
True

>0
>wmax

0 0

(a)

(b)

counter

0

1M
u

x M
u

x

w

0

countercounter

bit(20)

countercounter

2^x

Ri1

Ri20

Ro

Figure 2.13: Control data flow graph for digital implementation of STDP algorithm.

Block (a) is the hardware presented for the network in Fig. 2.7 and recording spike

times. Block (b) implements STDP to calculate weight changes and update weights.

In this block, either of Exp CORDIC or 2x̂ blocks could be used for approximating

the STDP exponential term.

Table 2.4: Resources used to implement different proposed CORDIC based Izhikevich

models on Spartan-6 XC6LX75.

Model Slice Registers Slice LUT’s Max Speed (MHz)

IZHCOR6 229 410 183.4

IZHCOR8 232 413 182.7

IZHCOR10 234 418 181.4

IZHCOR12 236 421 180.1

39

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

FPGA(Spartan 6 XC6LX75)

Pro

Linux Machine

32 bit v[n]

8 bit Data

8 bit Data Frequency

Divider8 bit Data

8 bit Data

Counter Counter
Pro

Figure 2.14: The method of transferring on-FPGA spiking neuron outputs to PC for

analysis.

2.4.3 FPGA Implementation

Data flow graphs in Fig. 2.11 to 2.13 were described with VHDL hardware description

language using Finite State Machines (FSMs). Further, the developed codes were first

simulated using Modelsim for validation. Afterwards, the codes were synthesized by

XILINX ISE XST synthesizer and implemented on the 45nm technology XILINX

Spartan-6 XC6SLX75 FPGA.

Since the utilized FPGA only supports Universal Asynchronous Receiver Trans-

mitter (UART) port, a Prolific 2303HX chip and its driver were used to create virtual

UART port in PC, through Universal Serial Bus (USB) port, to transfer the data from

FPGA to PC for analysis. Furthermore, a UART transmitter and receiver module was

added to the neuron VHDL code and implemented on FPGA as shown in Fig. 2.14. A

counter was used to divide FPGA operation frequency to the chosen baud rate of the

UART port (9600 bps). Data stream was structured as one start bit, eight data bits,

one stop bit, and no parity. An additional counter was used to break the thirty-bit

data in register V[n] into four bytes and send to UART port. Further, software was

developed to receive and recover data from virtual UART port on Linux PC. Fig. 2.15

demonstrates the FPGA implementation and simulation results for two cases of tonic

spiking and regular bursting of IZHCOR6. As it can be seen from the figure the

FPGA implementation results well resemble the computer simulation results of the

original Izhikevich model. To have a better comparison between the simulation and

40

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Table 2.5: Comparison between proposed method and previously published works

R
efren

ce
S

lice
R

eg
isters

S
lice

L
U

T
’s

S
p

eed
(M

H
z)

D
S

P
s

N
R

M
S

D
%

E
rrt%

D
ev

ice

S
o
leim

a
n

i
et

a
l

[4
6
].

4
9
3

6
1
7

2
4
1
.9

0
-

1
.5

4
V

irtex
-II

P
ro

X
C

2
V

P
3
0

G
o
m

a
r

et
a
l.

[5
9
]

3
8
8

1
2
7
9

1
9
0

0
4
.0

2
-

V
irtex

-II
P

ro
X

C
2
V

P
3
0

H
a
y
a
ti

et
a
l.

[6
0
]

4
7
6

8
5
6

1
3
5

0
3
.7

-
V

irtex
-II

P
ro

X
C

2
V

P
3
0

G
ra

ssia
et

a
l.

[6
1
]

6
4
6

1
0
4
8

1
0
5

2
2

-
-

V
irtex

-5
X

C
5
V

L
X

5
0

H
eid

a
rp

u
r

et
a
l.

[5
0
]

8
2
9

1
2
2
1

1
3
4
.3

0
0
.0

4
0
.3

9
S

p
a
rta

n
-6

X
C

6
S

L
X

9

S
h

im
a
d

a
et

a
l.

[6
2
]

3
5
7

1
7
7
6

A
sy

n
ch

ro
n

o
u

s
-

-
-

Z
y
n

c-7
0
0
0

X
C

7
Z

0
2
0

IZ
H

C
O

R
6

(A
rea

o
p

t.)
2
2
9

4
1
0

1
8
3
.4

0
0
.0

0
3

0
.2

6
S

p
a
rta

n
-6

X
C

6
S

L
X

7
5

IZ
H

C
O

R
6

(S
p

eed
o
p

t.)
2
8
0

4
6
9

2
1
2
.8

0
0
.0

0
3

0
.2

6
S

p
a
rta

n
-6

X
C

6
S

L
X

7
5

41

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

0 0.5 1 1.5 2 2.5

x 10
4

−80

−60

−40

−20

0

20

40

(A)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−80

−60

−40

−20

0

20

40

(B)

Figure 2.15: Spartan-6 XC6LX75 FPGA Implementation of CORDIC Izhikevich (red)

and computer simulation of Izhikevich model (black). The FPGA Data was trans-

ferred to PC via UART-USB port. (A) Tonic Spiking and (B) Regular Bursting.

Please note that the implementation data is scaled and an offset was added to it for

closer behavior to the simulation.

42

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

1 0511

Figure 2.16: Linear Feedback Shift Register (LFSR) technique was used to generate

semi-random input currents to feed the SNN input neurons.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

Weight

F
re

q
u
e
n
c
y

Figure 2.17: Bi-modal weight distribution reached after execution of the online on-

FPGA STDP learning on a network of Izhikevich neurons.

Table 2.6: Total number and highest speed of CORDIC-based and original (imple-

mented using DSP 36-bit multipliers) Izhikevich neurons that can be implemented on

various FPGA devices.

Device CORDIC DSP Multiplier

Number Speed Number Speed

Spartan-6 XC6LX75 110 183 MHz 22 44 MHz

Virtex-5 XC5VSX240T 365 220 MHz 176 102 MHz

Virtex-6 XC6VLX550T 835 332 MHz 144 111 MHz

Virtex-7 XC7VX980T 1490 370 MHz 600 130 MHz

43

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Table 2.7: Utilized resources to implement the CORDIC (IZHCOR6) and original

Izhikevich neuron on Spartan-6 XC6LX75

Resource CORDIC Original

Slice LUTs 410 370

Slice Registers 229 211

DSPs 0 6

Table 2.8: CORDIC and original neuron model on-FPGA power (reported by XIL-

INX XPower Analyzer for the same frequency)

CORDIC neuron Original Model

On-FPGA power 71 mW 73 mW

the FPGA outputs, NRMSD and ERRT were calculated as shown in Table 2.1. These

errors further confirm that the digital implemented CORDIC neuron has a similar

behavior to the original model. The value of error is different from simulation results

since the word length of fixed point hardware is 30 bit but computer simulations

are performaed with single precision floating point numbers which has considerably

higher precision.

To implement the spiking neural network with STDP learning and demonstrate

its bi-modal behavior on FPGA, first, a Linear-Feedback Shift Register (LFSR) unit

was designed to generate semi-random input spikes for the first layer neurons in the

network shown in Fig. 2.7. The implemented LFSR is shown in Fig. 2.16. It is worth

noting that, for other applications, the LFSR that generates random currents could

be replaced with the spiking output of event-based sensors such as a silicon retina or

cochlea. Fig. 2.17 demonstrates the bi-modal behavior reached after stimulating the

implemented SNN on FPGA, with randomly generated input spikes generated using

the on-FPGA LFSRs.

44

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

Table 2.9: Total Spartan-6 XC6LX75 FPGA utilization for implementation of

CORDIC and 2x online STDP on a network of CORDIC (IZHCOR8) Izhikevich neu-

rons with topology of Fig. 2.7. These results includes semi-random input generator

mechanism as well.

S
lice

R
egisters

U
tiliza

tio
n
P
erc.

S
lice

L
U
T
’s

U
tilization

P
erc.

M
ax

S
p
eed

(M
H
z)

C
O
R
D
IC

S
T
D
P

7,088
7
%

1
0
,376

22%
84.1

2
x
S
T
D
P

7,047
7
%

1
0
,234

21%
84.5

45

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

2.5 Results and Discussion

Table 2.4 shows the amount of resources used to implement different CORDIC models

of the Izhikevich neuron and the maximum speed reached using each of these models.

As can be seen in this table, the resource usages of the four different implementations

are close but for each higher precision model, extra time is needed to produce the

new value of v. This delay can be calculated as:

T =
1

frequency
∗ n (2.12)

Where T is the total time required to calculate the CORDIC square function and n

is the number of the iterations. Considering the IZHCOR6 model (Area optimization

goal) and frequency of device as 184 Mhz, total delay to calculate the result will be

6 ∗ 5.5ns = 33ns. DSP multiplier on the other side, operate at lower frequency of 44

Mhz but it need one clock to complete the results. DSP’s total time can be calculated

as 1 ∗ 22.7ns = 22.7ns. Still, the total delay is less than CORCID method. However,

the architecture presented in this paper is not only consisted of the neurons, but

also include the hardware to store the the spike times and the STDP algorithm to

calculate and update the synaptic weights. The DSP multiplier reduces the frequency

of the FPGA, resulting in other units to perform much slower. This in turn, increases

total delay and reduces the throughput of the system.

In addition, in Table 2.5, the device utilization, speed, NRMSD, and ERRT are

compared with some previously published works where a single neuron model is imple-

mented on FPGA. Since the FPGA devices and synthesizer used are different in these

works, this table results should be considered relatively. However, it can be seen that

the proposed Izhikevich device consumes fewer resources while having higher speed

compared to previous works.

Furthermore, Table 2.6 shows the number of CORDIC and original Izhikevich

neurons that could be implemented on some FPGAs devices and compares the speed

of both methods. The resources utilized for implementation of the CORDIC and

DSP based neuron is presented in the Table 2.7. In implementation of CORDIC

model, the number of neurons is limited by available LUTs in FPGA. Total number

46

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

of LUTs in Spartan-6 XC6LX75 is 46648. Therefore, the number of neurons was

calculated as:

N =
Available LUTs

Utilized LUTs
=

46648

410
≈ 110 (2.13)

In the case of DSP based implementation, the number of neurons is limited by avail-

able DSPs. In Spartan-6 XC6LX75, there are 132 DSP slices available. Thus, dividing

132 to the number of utilized DSP slices which is 6, gives maximum number of neu-

rons.

N =
Available DSPs

Utilized DSPs
=

132

6
= 22 (2.14)

To implement the original model on FPGAs, 36-bit DSP multipliers were used and

the results were truncated to 36 bits. However, multiplication in constants were still

performed with shift and add operations, the same way as performed in the proposed

CORDIC device. Despite this simplification in the original model, the proposed

CORDIC method allowed a higher number of faster neurons to be implemented on

all FPGAs.

Power consumption and density is another important concern when designing

hardware. It is also, one of major issues that need to be resolved for massive large

scale implementation of neuromorphic systems considering that building such systems

has been one of the main motivations of this work. To measure the on-FPGA power,

first we generated a value change dump file and then the XILINX XPower Analyzer

was used to determine the circuits power. For the fair comparison, it is presumed

that both circuits work at the same frequency (40 MHz). As it is shown in this table

2.8, the CORDIC neuron consumes slightly less power than the original neuron model

implementation.

To evaluate the cost of the total SNN with STDP learning and random input

spike generation, the network with the topology of Fig. 2.7 consisting of CORDIC

Izhikevich neurons (Fig. 2.11), semi-random input generators (Fig. 2.16), and STDP

learning synapses (Fig. 2.13 and Fig. 2.12), was implemented on FPGA. This is the

same network that was used to successfully generate the bi-modal weight distribution

due to competitive Hebbian Learning of STDP synapses. Table 2.9 reports the total

resources and speed of the implemented network. As the table indicates, this STDP

47

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

learning spiking network only consumes around 29% of available FPGA resources

and could therefore be scaled almost 3.5 times on a fairly cheap device like Spartan

XA6SLX75.

In addition, the second row in Table 2.9 presents implementation result for 2x

method, which uses lower resources and has higher speed in comparison with the

previous methods. However, as discussed earlier, the accuracy of this model is lower

than the proposed CORDIC model.

Overall, the above results confirm the reliable functionality of the proposed CORDIC-

based SNN with STDP Learning. These results also show that the proposed design

can lead to more efficient and faster FPGA-based SNNs compared to the literature. It

can therefore contribute to the design and implementation of low-cost and high-speed

large-scale digital neuromorphic systems exploring unsupervised STDP learning. It

is important to note that FPGA devices utilize more resources for hardware imple-

mentation than that of ASICs. Implementing such hardware on silicon will have

considerably less cost and have better performance.

2.6 Conclusion

In this paper, a novel hardware was presented based on the CORDIC method for on-

FPGA online STDP learning. This hardware proved to be accurate while requiring

less FPGA resources and having higher speed compared to the original models and

state-of-the-art designs. The CORDIC method was utilized because of the simplicity

of its structure, since it only uses add and shift operations which could be cheaply

implemented on hardware. In order to implement the proposed learning system, first,

the CORDIC method was used to implement Izhikevich neurons and its accuracy was

analyzed. Second, the STDP algorithm was adopted for online learning and modified

using the CORDIC algorithm to improve hardware efficiency. Furthermore, error

analysis was performed on computer simulation data to ensure the accuracy of the

implemented CORDIC models. Consequently, hardware was designed, described in

VHDL, and simulated for both neuron and learning mechanism. Finally, the models

48

CORDIC-SNN: ON-FPGA STDP LEARNING WITH IZHIKEVICH NEURONS

were implemented on FPGA to form a spiking neural network composed of Izhikevich

neurons and STDP synapses to demonstrate competitive Hebbian learning. The

proposed CORDIC-based FPGA spiking network with STDP learning is a step toward

simpler and more efficient hardware design for SNN with unsupervized STDP learning

implemented on FPGAs and digital platforms.

49

References

[1] K. Boahen, “A neuromorph’s prospectus,” Computing in Science and Engg.,
vol. 19, no. 2, pp. 14–28, Mar. 2017.

[2] L. A. Pastur-Romay, F. Cedron, A. Pazos, and A. B. Porto-Pazos, “Deep artificial
neural networks and neuromorphic chips for big data analysis: Pharmaceutical
and bioinformatics applications,” International Journal of Molecular Sciences,
vol. 17, no. 8, 2016.

[3] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen,
“Neurogrid: A mixed-analog-digital multichip system for large-scale neural sim-
ulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

[4] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A
digital neurosynaptic core using embedded crossbar memory with 45pj per spike
in 45nm,” in 2011 IEEE Custom Integrated Circuits Conference (CICC), Sept
2011, pp. 1–4.

[5] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[6] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A
wafer-scale neuromorphic hardware system for large-scale neural modeling,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
May 2010, pp. 1947–1950.

[7] R. Wang, C. S. Thakur, G. Cohen, T. J. Hamilton, J. Tapson, and A. van Schaik,
“Neuromorphic hardware architecture using the neural engineering framework for
pattern recognition,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 11, no. 3, pp. 574–584, June 2017.

[8] C. S. Thakur, J. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao,
J. Schemmel, R. Wang, E. Chicca, J. O. Hasler et al., “Large-scale neuromor-

50

REFERENCES

phic spiking array processors: A quest to mimic the brain,” arXiv preprint
arXiv:1805.08932, 2018.

[9] B. Sen-Bhattacharya, S. James, O. Rhodes, I. Sugiarto, A. Rowley, A. B. Stokes,
K. Gurney, and S. B. Furber, “Building a spiking neural network model of the
basal ganglia on spinnaker,” IEEE Transactions on Cognitive and Developmental
Systems, pp. 1–1, 2018.

[10] J. P. Dominguez-Morales, A. Rios-Navarro, D. Gutierrez-Galan, R. Tapiador-
Morales, A. Jimenez-Fernandez, E. Cerezuela-Escudero, M. Dominguez-Morales,
and A. Linares-Barranco, “Multilayer spiking neural network for audio samples
classification using spinnaker,” in 2017 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), May 2017, pp. 1–1.

[11] D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G.
Malliaras, and G. Buzsáki, “Neurogrid: recording action potentials from the
surface of the brain,” Nature neuroscience, vol. 18, no. 2, p. 310, 2015.

[12] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny, “A 32 gbit/s communi-
cation soc for a waferscale neuromorphic system,” INTEGRATION, the VLSI
journal, vol. 45, no. 1, pp. 61–75, 2012.

[13] M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G. Lee,
“Neuromorphic hardware system for visual pattern recognition with memristor
array and cmos neuron,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 4, pp. 2410–2419, April 2015.

[14] S. Davies, “Learning in the spiking neural networks,” Ph.D. dissertation, Univ.
of Manchester, Manchester, 2012.

[15] M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott, “Spike-
based synaptic plasticity in silicon: design, implementation, application, and
challenges,” Proceedings of the IEEE, vol. 102, no. 5, pp. 717–737, 2014.

[16] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, p. 500, 1952.

[17] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[18] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity,” Journal of neurophysiology, vol. 94,
no. 5, pp. 3637–3642, 2005.

51

REFERENCES

[19] R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve
Membrane,” Biophysical Journal, vol. 1, pp. 445–466, jul 1961.

[20] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,”
Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981.

[21] H. R. WILSON, “Simplified dynamics of human and mammalian neocortical
neurons,” Journal of Theoretical Biology, vol. 200, no. 4, pp. 375–388, 1999.

[22] R. M. Rose and J. L. Hindmarsh, “The assembly of ionic currents in a thala-
mic neuron i. the three-dimensional model,” Proceedings of the Royal Society B:
Biological Sciences, vol. 237, no. 1288, pp. 267–288, 1989.

[23] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, popu-
lations, plasticity. Cambridge university press, 2002.

[24] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University
Press, 2014.

[25] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Conversion
of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware,” in 2016 IEEE International Conference on Rebooting
Computing (ICRC), Oct 2016, pp. 1–8.

[26] D. Mart́ı, M. Rigotti, M. Seok, and S. Fusi, “Energy-efficient neuromorphic clas-
sifiers,” Neural computation, vol. 28, no. 10, pp. 2011–2044, 2016.

[27] R. Kreiser, T. Moraitis, Y. Sandamirskaya, and G. Indiveri, “On-chip unsuper-
vised learning in winner-take-all networks of spiking neurons,” in 2017 IEEE
Biomedical Circuits and Systems Conference (BioCAS), Oct 2017, pp. 1–4.

[28] H. Y. Hsieh, P. Y. Li, C. H. Yang, and K. T. Tang, “A high learning capability
probabilistic spiking neural network chip,” in 2018 International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), April 2018, pp. 1–4.

[29] J. s. Kim and S. Jung, “Implementation of the rbf neural chip with the on-line
learning back-propagation algorithm,” in 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on Computational Intelligence),
June 2008, pp. 377–383.

[30] E. Stromatias and J. S. Marsland, “Supervised learning in spiking neural net-
works with limited precision: Snn/lp,” in 2015 International Joint Conference
on Neural Networks (IJCNN), July 2015, pp. 1–7.

52

REFERENCES

[31] A. M. Sheri, A. Rafique, W. Pedrycz, and M. Jeon, “Contrastive divergence
for memristor-based restricted boltzmann machine,” Engineering Applications
of Artificial Intelligence, vol. 37, pp. 336 – 342, 2015.

[32] F. Grassia, L. Buhry, T. Levi, J. Tomas, A. Destexhe, and S. Saighi, “Tunable
neuromimetic integrated system for emulating cortical neuron models,” Frontiers
in NEUROSCIENCE, vol. 5, p. 134, 2011.

[33] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models of
synaptic plasticity based on spike timing,” Biological cybernetics, vol. 98, no. 6,
pp. 459–478, 2008.

[34] E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, “Synaptic potentiation and de-
pression in al: Hfo2-based memristor,” Microelectronic Engineering, vol. 147, pp.
41–44, 2015.

[35] M. R. Azghadi, S. Moradi, D. B. Fasnacht, M. S. Ozdas, and G. Indiveri, “Pro-
grammable spike-timing-dependent plasticity learning circuits in neuromorphic
vlsi architectures,” ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), vol. 12, no. 2, p. 17, 2015.

[36] C. Mayr, J. Partzsch, M. Noack, S. Hanzsche, S. Scholze, S. Hoppner, G. Ellguth,
and R. Schuffny, “A biological-realtime neuromorphic system in 28 nm cmos
using low-leakage switched capacitor circuits,” IEEE transactions on biomedical
circuits and systems, vol. 10, no. 1, pp. 243–254, 2016.

[37] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A mixed-signal im-
plementation of a polychronous spiking neural network with delay adaptation,”
Frontiers in neuroscience, vol. 8, p. 51, 2014.

[38] S. Yang, J. Wang, B. Deng, C. Liu, H. Li, C. Fietkiewicz, and K. A. Loparo,
“Real-time neuromorphic system for large-scale conductance-based spiking neu-
ral networks,” IEEE Transactions on Cybernetics, pp. 1–14, 2018.

[39] K. Isobe and H. Torikai, “A novel hardware-efficient asynchronous cellular au-
tomaton model of spike-timing-dependent synaptic plasticity,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 63, no. 6, pp. 603–607,
June 2016.

[40] M. R. Azghadi, S. Al-Sarawi, D. Abbott, and N. Iannella, “A neuromorphic VLSI
design for spike timing and rate based synaptic plasticity,” Neural Networks,
vol. 45, pp. 70–82, 2013.

53

REFERENCES

[41] M. R. Azghadi, S. Al-Sarawi, N. Iannella, and D. Abbott, “Tunable low energy,
compact and high performance neuromorphic circuit for spike-based synaptic
plasticity,” PLoS ONE, vol. 9, no. 2, p. art. no. e88326, 2014.

[42] C. Lammie, T. Hamilton, and M. R. Azghadi, “Unsupervised character recogni-
tion with a simplified fpga neuromorphic system,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018.

[43] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and
J. Harkin, “Challenges for large-scale implementations of spiking neural networks
on fpgas,” Neurocomputing, vol. 71, no. 1, pp. 13–29, 2007.

[44] T. Matsubara, H. Torikai, and T. Hishiki, “A generalized rotate-and-fire digital
spiking neuron model and its on-fpga learning,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 10, pp. 677–681, Oct 2011.

[45] N. Shimada and H. Torikai, “A novel asynchronous cellular automaton multi-
compartment neuron model,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 62, no. 8, pp. 776–780, 2015.

[46] H. Soleimani and E. M. Drakakis, “An efficient and reconfigurable synchronous
neuron model,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. PP, no. 99, pp. 1–1, 2017.

[47] H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired spiking
neurons: Piecewise linear models and digital implementation,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2991–3004,
Dec 2012.

[48] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation of 2d
hindmarsh–rose neuron,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2259–2272,
Aug 2017.

[49] A. Elnabawy, H. Abdelmohsen, M. Moustafa, M. Elbediwy, A. Helmy, and
H. Mostafa, “A low power cordic-based hardware implementation of izhikevich
neuron model,” in 2018 16th IEEE International New Circuits and Systems Con-
ference (NEWCAS). IEEE, 2018, pp. 130–133.

[50] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hard-
ware for adaptive exponential integrate and fire neuron,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986–1996, Nov 2016.

[51] S. Gomar and M. Ahmadi, “Digital realization of pstdp and tstdp learning,”
in 2018 International Joint Conference on Neural Networks (IJCNN). IEEE,
2018, pp. 1–5.

54

REFERENCES

[52] B. Belhadj, J. Tomas, O. Malot, G. N’Kaoua, Y. Bornat, and S. Renaud, “Fpga-
based architecture for real-time synaptic plasticity computation,” in 2008 15th
IEEE International Conference on Electronics, Circuits and Systems, Aug 2008,
pp. 93–96.

[53] C. Lammie, T. J. Hamilton, A. van Schaik, and M. R. Azghadi, “Efficient fpga
implementations of pair and triplet-based stdp for neuromorphic architectures,”
IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1–13, 2018.

[54] E. M. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE
transactions on neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[55] J. E. Volder, “The cordic trigonometric computing technique,” Electronic Com-
puters, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, Sept 1959.

[56] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accu-
racy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, 2006.

[57] C. Borgers, Spike Timing-Dependent Plasticity (STDP). Cham: Springer In-
ternational Publishing, 2017, pp. 349–359.

[58] S. P. Mohanty, Low-power high-level synthesis for nanoscale CMOS circuits.
Springer, 2008.

[59] S. Gomar and A. Ahmadi, “Digital multiplierless implementation of biological
adaptive-exponential neuron model,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 61, no. 4, pp. 1206–1219, April 2014.

[60] M. Hayati, M. Nouri, S. Haghiri, and D. Abbott, “Digital multiplierless realiza-
tion of two coupled biological morris-lecar neuron model,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 62, no. 7, pp. 1805–1814, July
2015.

[61] F. Grassia, T. Levi, T. Kohno, and S. Säıghi, “Silicon neuron: digital hardware
implementation of the quartic model,” Artif Life Robotics, vol. 19, no. 3, pp.
215–219, 2014.

[62] N. Shimada and H. Torikai, “A novel asynchronous cellular automaton multi-
compartment neuron model,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 62, no. 8, pp. 776–780, Aug 2015.

55

CORDIC-Astrocyte: A Tripartite

Glutamate-IP3-Ca2+ Interaction

Dynamics on FPGA

3.1 Introduction

During the last decades, researchers have been trying to replicate and study brain

for both medical and information processing applications. Some medical objectives

include understanding neurological psychiatric diseases [1, 2], simulating drug treat-

ment [3] alongside designing brain computer interfaces for the people with sensory,

motor and cognitive disabilities [4, 5]. However, this study is most important from

information processing point of view, where it can eventually lead to a new generation

of computational devices [6]. Resembling to brain, such processors expected to be

intelligent, low power and fast [7, 8, 9, 10]. Nevertheless, contrary to nowadays com-

puters, brain inspired systems are tolerant to both hardware and data failures [11].

One approach to brain study is dividing it into two hierarchical sub levels of com-

ponents and architectural. Components level, which is the lowest, concerns studying

and mathematically modelling properties of cells and the way they are interconnected

and interact with each other. The architectural level, however, deals with complex

behaviours that arise when large number of these components are connected which

56

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

include learning and information processing algorithms in the brain.

At the cell level, this work concentrates on the astrocyte cells. As the new re-

searches revealed, beside physiological roles, astrocytes also are active partners of

the neurons in the processing of the information in the brain. Astrocytes sense and

respond to synaptic activity by releasing glio-transmitters and activation of different

receptors and transporters. Thereby, they effect and regulate synaptic transmission

and neuronal plasticity [12, 13, 14, 15]. Considering astrocyte as the third partner,

the new synapse, called triparitie synapse, now consists of the post-synpatic neuron,

pre-synpatic neuron and astrocyte [16]. Each astrocyte cell can potentially regulate

function of not only one, but several neighbouring synapses [17]. Moreover, astrocytes

are connected to each other through gap junctions, forming their own astrocytic net-

work. Such connectivity is believed to be associated with processes leading to epilepsy

disease [18]. Astrocytes are also involved in, and considered as a target for therapies

of neurodegenerative disorders such as Alzheimer [19] and motor neuron diseases [20].

Additionally, experimental results suggest that astrocytes are associated with sleep

development and functions, where impact of a astrocyte on a synapse could transform

into large scale neural modulations [21]. Furthermore, neural networks that include

astrocytes alongside neurons, are shown to exhibit self-detection of faults and self-

repairing capability [22]. Given all the mentioned roles, astrocytes are important

players and need to be incorporated for studies of biological neural networks.

Several models presented to describe astrocytes [23, 24, 25, 26, 27, 28]. In [23],

a generalized and simplified model for astrocyte and neural-astrocyte interactions is

presented. Postnov model is helpful to study the way astrocytes affect responses and

the dynamical patterns in a network of simplified two-dimensional neurons. Examples

of these neurons are models in [29, 30]. On the other hand, there are biologically-

plausible astrocyte models with biophysical parameters that describe cellular phe-

nomena and cell processes. Recently, these models are gaining more attention by

researchers. For instance, they used such models to evaluate role of calcium dynam-

ics in brain [31] [32].

In this work, the biological-plausible model in [25] was adopted for simulation

57

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

and hardware implementation for following reasons: First, astrocytes do not gen-

erate action potentials the way neurons do, but propagate Ca2+ waves and release

transmitters in response to stimulation. Therefore, they require a mathematical de-

scription to account for ion concentrations variations, conductance of cell for ion

inward and outward, steady state activation/inactivation and properties of the indi-

vidual components and their effects of the cells. Second, it is among the few models

that incorporates the glutamate regulation of Inositol triphosphate (IP3) and Ca2+

dynamics. Third, by changing biophysical parameters in this model, glutamate stim-

ulation can act as Frequency Modulator (FM), Amplitude Modulator (AM) or both

Frequency-Amplitude Modulator (AFM) of the Ca2+ oscillation. Overall, the simula-

tion objectives and computational resources determine what models with what level

of biological details are needed.

In architectural level, brain cells are connected together through their different

interaction mechanisms and their systematic behaviour is analyzed. This is useful

both to study biological functions and disorders as well as discovering computational

algorithms underlying information processing, learning, memory, etc. However, high

complexity of such systems, due to large number of cells [33] and numerous communi-

cation pathways, make such simulation a difficult task. For the simulation platform,

computers are flexible and the best choice for small networks [34]. However, for large

networks, supercomputers, which are not available to everyone, must be utilized [35]

to run the simulation in a practical time span. Moreover, some computers are mod-

ified for efficient simulation of neural networks [36]. Researchers also used Graphics

Processing Unit (GPU) to run and simulate spiking neural networks [37].

Another platform is dedicated Application Specified Integrated Circuit (ASIC)

hardware which have several advantages over the computers. First, they are faster

and, unlike fetch and decode computers, all processing units (cells) operate in parallel

analogous to biological networks. ASICs are more efficient in the term of the power

and cost comparing to super computers but still the design process requires a lot

of engineering work and time. Besides, once the design fabricated, it would not

be possible to update or change the design. As another alternative, re-configurable

58

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

digital platforms, i.e. Field Programmable Gate Arrays (FPGA), are widely used

because they provide a re-configurable, easy to work with, cheap and reliable platform.

However, resource limitation is one of main challenges of large scale neural network

FPGA implementations [38]. The number of neural elements and size of the network

could be limited by available resources like the slice registers, LUTs, block RAMs or

DSPs depending on the design [39].

Several analog, digital and hybrid VLSI neuromorphic hardware [40, 41, 42, 43]

are available with different type and number of neurons. However, the gap is, glia

cells (almost half of brain) are missing in such hardware and no project includes

them in a neuromorphic chip. To pave the way, researchers have proposed different

analog [44, 45, 46] and digital [47, 48, 49, 50, 51, 52] circuits for astrocyte hardware

implementation.

Liu et al. [47] propose hierarchical network-on-chip structure of neurons and as-

trocytes cells based on work in the [48] where FPGA implementation cost is reduced

by sampling the constituent nonlinear curves. Karim et al. [50] implemented the

biological-plausible model in FPGA using reduced bit precision. Reference [52] im-

plemented the Postnov model [23] using Piece Wise Liner approximation (PWL) [53]

technique to approximate the nonlinear terms in the astrocyte equations. Some of

the problems associated with this method is outlined in the [54]. Beside those, the

model proposed by Postnov is a high-level model, where biological reactions and func-

tions are simplified. This work presents a COordinate Rotation Digital Computer

(CORDIC) [55] based digital implementation of a biologically plausible astrocyte and

glutamate release mechanism. This method can calculate the nonlinear functions with

very high precision while it is very well suited for digital hardware implementation.

The rest of this Chapter is organized as follows. The biological-plausible model

for astrocyte and glutamate release is introduced in Section 3.2. Section 3.3 presents

CORDIC based models and evaluates the accuracy of the model through simulations.

Hardware design and FPGA implementation are discussed in Section 3.4 and 3.5.

The chapter concludes in Section 3.6.

59

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

3.2 Background

In the following sections, synaptic transmission mechanism and the way it is affected

by astrocyte is briefly explained.

3.2.1 Pre and Post-Synaptic Neurons

When a pre-synaptic neuron fires an action potential, Ca2+ in the pre-synaptic bou-

ton will increase through fast and slow pathways. This increase, activates gluta-

mate release from the bouton to synaptic cleft. Subsequently, this glutamate binds

to the post-synaptic terminal receptors which may result in depolarization of the

post-synaptic terminal and eventually, in a excitatory post-synaptic action potential.

These processes are illustrated in the Fig. 3.1.

Neuron
Bouton Ca

Dynamics

Glutamate

Release

Dynamics

Synaptic

Glutamate

Dynamics

Astrocyte Ca

Dynamics

Astrocyte

Glutamate

Dynamics

Extra Synaptic

Glutamate

Dynamics

Post-Synaptic

Dendrite

Pre-Synaptic Neuron Synaptic Cleft Post-synaptic Dendrite

Astrocyte

Glutamate by Neuron

Glutamate by Astrocyte

Figure 3.1: Arriving an action potential in the pre-synaptic terminal increases Ca2+ in

the pre-synaptic bouton. This will activate the release of the glutamate into synaptic

cleft. The glutamate in the synaptic cleft binds to the post-synaptic terminal recep-

tors which may contribute to a spiking post-synaptic neuron. The glutamate could

also bind to astrocyte receptors and modulations of Ca2+ dynamics in the asrtocyte.

In a similar mechanism to pre-synaptic bouton, increasing Ca2+ concentration will re-

sult in extra glutamate release by astrocyte. Such release will affect the pre-synaptic

bouton Ca2+ dynamics and regulates the synaptic transmission.

60

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

IP3 ER

SERCA

pump
Ca

IP3

degradation

mechanism

IP3

Ca

Glutamate.

receptors

Astrocyte Ca and IP3 dynamics

Glutamate

Cytoplasm

IP3 controlled Ca channelsIP3 production

mechanism

Figure 3.2: Binding glutamate to the astrocyte receptors activates IP3 production

mechanism. Increasing IP3 opens the IP3 controlled calcium channels which results

in flowing Ca2+ from ER into cytoplasm. More Ca2+ ions, leads to even more IP3

production. The cycle continues until the action of Ca2+ release, reverses at high

Ca2+ concentration where SERCA pump quickly draws back the excess cytoplasmic

Ca2+ into ER. Subsequently, extra IP3 will also be removed by IP3 degradation

mechanisms. If glutamate stimulation remains high enough, this process repeats and

results in Ca2+ and IP3 oscillation in the astrocyte.

3.2.2 Astrocyte Ca2+ Oscillation

The glutamate in synaptic cleft may also spread and bind to receptors in processes of

neighbouring astrocytes. With activation of these receptors, cytosolic IP3 concentra-

tion in astrocyte slightly increases. In turn, this increase, triggers a rise in the level of

Ca2+ in the cell cytoplasm. More Ca2+ ions, will result in even more IP3 production.

The cycle continues until action of Ca2+ release, reverses at high Ca2+ concentration.

At this point, IP3 production is deactivated and SERCA pump quickly draws back

the excess cytoplasmic Ca2+ into Endoplasmic Reticulum (ER).

The intracellular Ca2+ concentration consequently recovers toward basal value

and suppresses IP3 production. If glutamate stimulation continues, intracellular IP3

remains high enough to repeat the cycle into oscillations of Ca2+ and IP3 ions. This

process is depicted in the Fig. 3.2. The mathematical equations that describe Ca2+

and IP3 dynamics in astrocyte are presented in Eq. 3.1 to 3.8. The parameters values

for these equations for both AM and FM cases are presented in the Table 3.1. For

61

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

O
rig

in
a
l

C
A

S
T

1
4

C
A

S
T

1
6

C
A

S
T

1
8

(a
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.4

0
.6

0
.8

Ca

(d
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.4

0
.6

0
.8

Ca 1

(g
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.4

0
.6

0
.8

Ca

(g
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.4

0
.6

0
.8

Ca

(b
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.3

0
.4

Ip30
.1

0
.5

0
.6

(e
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.3

0
.4

Ip30
.1

0
.5

0
.60

(h
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.3

0
.4

Ip30
.1

0
.5

0
.60

(k
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0
T
im

e

0
.2

0
.3

0
.4

Ip30
.1

0
.5

0
.60

(c
)

5
1
0

1
5

2
0

2
5

3
0

3
5

0

T
im

e

5
0

1
0
0

1
5
0

2
0
0

Glu 2
5
0

(f)
5

1
0

1
5

2
0

2
5

3
0

3
5

0

T
im

e

5
0

1
0
0

1
5
0

2
0
0

Glu

(i)
5

1
0

1
5

2
0

2
5

3
0

3
5

0

T
im

e

5
0

1
0
0

1
5
0

2
0
0

Glu 2
5
0

(l)
5

1
0

1
5

2
0

2
5

3
0

0

T
im

e

5
0

1
0
0

1
5
0

2
0
0

Glu

(m
)

5
1

0
1

5
2

0
2

5
3
0

0
T
im

e

0
.2

0
.4

0
.6

0
.8

3
5

Glu in synaptic cleft10

Figure 3.3: Simulation of the astrocyte and glutamate production mechanism of

the original and CORDIC models. First column shows the simulation result for the

original model, second column CAST14, third column CAST16 and last column CAST18

. As it can be seen from this figures, CAST14 does not follow the original model while

CAST16 has closer behaviour. Finally, CAST18 has exact output waveform as the

original astrocyte model. The glutamate stimulation that applied to all models is

shown in (m).

62

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

more details and description of parameters, please refer to [25].

dIp3
dt

= νβHill(1, γ,KR(1 +
Kp

Kr
Hill(1, Ca,Kπ)))

+
νδ

1 +
Ip3
kδ

Hill(2, Ca,KPLCδ)

− ν3KHill(4, Ca,KD)Hill(1, Ip3,K3)− r5P Ip3

(3.1)

dCa

dt
= (rCm

3
∞n

3
∞h(i)

3 + rL)(CER − Ca)

− νERHill(2, Ca,KER)

(3.2)

dh

dt
=

(h∞ − h(i))
τh

(3.3) τh =
1

α2(Q2 + Ca)
(3.4)

Q =
(d2I + d1)

(I + d3)
(3.5) h∞ =

Q

(Q2 + Ca)
(3.6)

m∞ = Hill(1, I, d1) (3.7) n∞ = Hill(1, Ca, d5) (3.8)

where Ca and Ip3 are the concentration of Ca2+ and IP3 in the astrocyte cytoplasm,

respectively. The Hill equation [56] is one of the common and useful equations in

biochemistry which is given by:

Hill(n, x, y) =
xn

xn + yn
(3.9)

The power of the first Hill function in IP3 original model was 0.7 but here for sim-

plifying power 1 was used.

3.2.3 Astrocyte Glutamate Production

There is a debate over the exact mechanism of transmitter release in astrocyte. How-

ever, it is widely believed that glio-transmitter release is similar to that of neuro-

transmitters in neurons. The mathematical model for glutamate release is given in

63

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

Eq. 3.10 to 3.15. To read more about these equations and their parameters please

refer to [57]. The Ca2+ ions must bind to three independent gates (O1, O2 and O3)

for possible transmitter release.

dO1

dt
= k+

1 Ca− (k+
1 Ca+ k−1)O1 (3.10)

dO2

dt
= k+

2 Ca− (k+
2 Ca+ k−2)O2 (3.11)

dO3

dt
= k+

3 Ca− (k+
3 Ca+ k−3)O3 (3.12)

dRa
dt

=
Ia
τarec
−H(Ca− Cath)farRa (3.13)

dRa
dt

= − Ea
τainc
−H(Ca− Cath)farRa (3.14)

dGa
dt

= nVa g
V
a Ea − gCa Ga (3.15)

far = O1O2O3 (3.16) Ia = 1−Ra − Ea

(3.17)
where H is Heaviside function defined as:

H(x) =

1, if x ≥ 0.

0, otherwise.
(3.18)

and Ga is glutamate released by astrocyte in the synaptic cleft. The values for these

equations parameters are presented in the Table 3.2.

3.3 CORDIC Astrocyte Model

In this section, astrocyte and glutamate release equations are modified for efficient

digital implementation. Afterwards, the proper function and accuracy of the modified

model is investigated through computer simulations.

64

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

Table 3.1: The parameters used for simulation of astrocyte. The original parameters

are scaled for simulation and hardware implementation.

Parameter Value Parameter Value

rC 6 a2 0.2

rL 0.11 vδ AM=0.02 FM=0.05

C0 2 KPLCδ 0.1

c1 0.185 kδ 1.5

vER 0.9 Kπ 0.6

kER AM=0.1 FM=0.05 r5p AM=0.04 FM=0.05

d1 0.13 v3k 2

d2 1.049 KD 0.7

d3 0.9434 K3 1

d5 0.08234 vβ AM=0.2 FM=0.5

KR 1.3 Kp 10

Table 3.2: The parameters used for simulation of equations describing glutamate

release (Eq. 3.10 to 3.15). The parameters are scaled for simulation and hardware

implementation.

Parameter Value Parameter Value Parameter Value

k+1 0.0375 k+2 0.0250 k+3 0.125

k−1 0.0040 k−2 0.01 k+3 0.1

τarec 80 Cath 0.1967 gva 20

τainc 0.3 nva 12 gca 100

3.3.1 CORDIC Based Astrocyte and Glutamate Release

What make hardware implementation of biological systems challenging and cost ex-

pensive are nonlinear terms describing the biochemical reactions in the cells. For

instance, calculation of Hill function in Eq. 3.9 requires 2n times multiplication and

also a division. Computation of a new value for Ca2+, IP3 and gating variables (Eq.

3.1 to 3.8 and Eq. 3.10 to 3.15) involve several times calculation of Hill and other

nonlinear functions.

To overcome this problem, CORDIC algorithm was used to compute these non-

65

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

0
0.5

1
1.5

2

G
lutam

ate

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Amplitude of Ca oscil.

O
riginal m

odel

C
O

R
D

IC
 m

odel

0
0.5

1
1.5

2

G
lutam

ate

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Amplitude of Ca oscil.

0
0.5

1
1.5

2

G
lutam

ate

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Amplitude of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

8 9

1
0

1
1

1
2

Period of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

8 9

1
0

1
1

1
2

Period of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

8 9

1
0

1
1

1
2

Period of Ca oscil.

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6

A
m

plitude of C
a oscil.

8 9

10 11 12

Period of Ca oscil.

O
riginal m

odel

C
O

R
D

IC
 m

odel

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6

A
m

plitude of C
a oscil.

8 9

10 11 12

Period of Ca oscil.

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6

A
m

plitude of C
a oscil.

8 9

10 11 12

Period of Ca oscil.

Figure 3.4: Ca2+ oscillation’s period, amplitude and the ratio of these two for AM

CORDIC astrocyte (dots-solid lines) and original (circles-dashed lines) models are

shown in this figure. The first row is corresponding to data for CAST14, the second is

for CAST16 and the last CAST18. As it is evident from the figure, CAST18 follows the

original model with high accuracy while other models have deviations.

66

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

0
0.5

1
1.5

2

G
lutam

ate

0.85

0.9

0.95 1

1.05

1.1

1.15

Amplitude of Ca oscil.

O
riginal m

odel

C
O

R
D

IC
 m

odel

0
0.5

1
1.5

2

G
lutam

ate

0.85

0.9

0.95 1

1.05

1.1

1.15

Amplitude of Ca oscil.

0
0.5

1
1.5

2

G
lutam

ate

0.85

0.9

0.95 1

1.05

1.1

1.15
Amplitude of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

1
0

2
0

3
0

4
0

Period of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

1
0

2
0

3
0

4
0

Period of Ca oscil.

0
0

.5
1

1
.5

2

G
lu

ta
m

a
te

1
0

2
0

3
0

4
0

Period of Ca oscil.

0.85
0.9

0.95
1

1.05
1.1

1.15

A
m

plitude of C
a oscil.

10

Period of Ca oscil.

O
riginal m

odel

C
O

R
D

IC
 m

odel

0.85
0.9

0.95
1

1.05
1.1

1.15

A
m

plitude of C
a oscil.

10

Period of Ca oscil.

0.85
0.9

0.95
1

1.05
1.1

1.15

A
m

plitude of C
a oscil.

10

Period of Ca oscil.

Figure 3.5: Ca2+ oscillation’s period, amplitude and the ratio of these two for FM

CORDIC astrocyte (dots-solid lines) and original (circles-dashed lines) models are

shown in this figure. The first row is corresponding to data for CAST14, the second is

for CAST16 and the last CAST18. As it is evident from the figure, CAST18 follows the

original model with high accuracy while other models have deviations.

67

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

linear terms. This method was preferred and selected primarily for three reasons.

First, this technique can be used for calculation of many nonlinear functions such as

trigonometric, exponential, square roots, etc. Second, since it only requires shift and

addition operations, could be effectively implemented on hardware. Third, CORDIC

has a very high precision comparing to other methods such as PWL. Considering

those, a CORDIC core was developed to perform nonlinear terms including Hill func-

tion. Comparing with conventional calculation of these operations, CORDIC core

generates n-bit result for a given two n-bit inputs, instead of first calculating 2×n-bit

and thereafter truncating results to n-bit. Thereby, it decreases the implementation

cost to half. As for precision, experimental results show that, despite having simpler

structure, CORDIC core has considerably low error from floating-point results.

CORDIC is an iterative algorithm and n is presumed to be number of iterations

required to calculate nonlinear functions. More number of iterations, reduces the

error from floating-point results but it also increases the total computational time.

Therefore, choosing n is a trade-off between computation complexity and precision.

To investigate this trade-off, we used three different values of n = 14, n = 16 and

n = 18 to calculate astrocyte equations. This contributes to comparing results in the

terms of variance from original model and also hardware cost and speed. We refer

to these models as CAST14, CAST16 and CAST18 according to the number of their

iterations.

3.3.2 Simulation Results

In this section, the accuracy of CORDIC based models are investigated through com-

puter simulations. For this purpose, first, Maximum Deviation (MD) and Normalized

Root Mean Square Deviation (NRMSD) errors were calculated to measure differences

between the results of CORDIC and original operations. These errors are defined as:

MD =Max(|COR(x, y)−OR(x, y)|) (3.19)

RMSD =

√√√√√ n∑
k=1

(COR(x, y)−OR(x, y))2

n

(3.20)

68

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

For 0.01 ≤ x, y ≤ 20, these errors were calculated and presented in Table 3.3. It

Table 3.3: MD and NRMSD errors to measure difference between CORDIC and

original multiplication and division.

Iterations Error Multiplication Division

n=14 RMSD 13× 10−3 11× 10−4

MD 15× 10−4 38× 10−7

n=16 RMSD 33× 10−4 28× 10−5

MD 95× 10−6 23× 10−8

n=18 RMSD 81× 10−5 8870× 10−6

MD 59× 10−7 2314× 10−9

is evident from the table data that CORDIC units have a very high precision. Next,

new astrocyte differential equation was formed using CORDIC units. To evaluate

similarity of CORDIC to original astrocyte model, both were stimulated with same

glutamate input and Ca2+ oscillation were observed. The input was taken from

simulation of glutamate in the synaptic cleft. Fig. 3.3 shows Ca2+ and IP3 oscillations

alongside released glutamate by astrocyte for the proposed and original model. As

this figure indicates, CAST14 model does not follow the original model while CAST16

has closer behaviour. However, CAST18 has a output waveform exactly the same as

the original astrcoyte model.

To further study the behaviour of the CORIDC model, for both AM and FM

cases, period and amplitude of Ca2+ oscillation are plotted against different values of

the glutamate in the Fig. 3.4 and 3.5. For the AM case (Fig. 3.4), the amplitude

and frequency change diagrams of CAST14 and CAST16 differs from that of the

original model. On the other hand, those for CAST18 are identical to original model

diagrams. The similar behaviour also was observed for the FM case as shown in the

Fig. 3.5. Considering results of these simulations, CAST18 model was selected for

digital implementation. Nevertheless, depending on the application, one can choose

smaller number of iterations to increase the speed of the hardware or choose larger

number to achieve higher precision.

Lastly, to verify the accuracy of CORDIC astrocyte model and also studying the

69

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

astrocyte behaviour, a triangle wave of glutamate were applied to the both original

and CORDIC models. Fig. 3.6 shows Ca2+, IP3 and gating variable in the AM

astrocyte as function of glutamate in the synaptic cleft. As it can be seen from this

figure, the amplitude of Ca2+ oscillations increases with the amount of the glutamate,

indicating the amplitude modulation. Moreover, Fig. 3.7 shows how frequency of

Ca2+ oscillations is modulated with glutamate. It worth noting that in either cases,

both AM and FM exist simultaneously and modulation is rather FAM. However,

effect of one of these two is more prevalent. The results of these simulations also

confirm that CORDIC model closely follows the original astrocyte model.

3.4 Hardware Implementation

This section presents hardware design and FPGA implementation of CORDIC and

DSP based models.

3.4.1 Hardware Design

As the first step, astrocyte and glutamate release differential equations (3.1-3.6 and

3.10-3.17) were discretized using Euler method. As discussed before, numerical calcu-

lation of these equations require a large number of multiplication and division opera-

tions. In order to design the hardware, these operations must be properly scheduled

in time for the hardware to use minimum number of these units while having short-

est possible delay. This makes the scheduling of these operations crucial. Selecting

number of steps and arithmetic units is a trade off between delay and area. More

number of steps results in lower cost but at the same time, it increases the total delay

and vise versa. Here, similar to previous section, we put different constraints on the

number of multiplication and division in each step and developed three models to

compare the results:

• ASTRO2 : One multiplication and one division in a step

• ASTRO3 : Two multiplications and one division in a step

70

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

• ASTRO5 : Three multiplications and two divisions in a step

Considering those constraints, we tried to decrease number of steps as much as possi-

ble. The scheduling diagram for implementation of ASTRO5 is shown in the Fig. 3.8

(a). The CORDIC multiplication and division are shown as c∗ and c/, respectively.

To further optimize the design, where it was accurate and efficient, multiplication in,

or division to constants were performed with shift and add operations. To do this,

the constants were broken into sum of powers of two as c =
∑m
−n 2i. Thereafter,

multiplication performed as:

c ∗ x =

m∑
−n

x2i (3.21)

This operation is shown in the Fig. 3.8 (a) with “<<” symbol. Fig. 3.8 (b) presents

the hardware for implementation of CORDIC division and multiplication. As can be

seen from the figure, hardware has simple structure. Nevertheless, it could perform

division and multiplication fast with high precision. The operation mode can change

with SL signal.

Considering the fact that reducing the hardware area and improving its speed

was the primary goal of this work, the fixed-point arithmetic was used in the design.

Next, the word length of the design was specified considering the range and resolution

of the variables. Moreover, reserve bits added to to prevent underflow and overflow

during the shift operations. Taking into account these requirements, 13 and 17 bits

were dedicated for the fraction and integer parts, respectively.

Similar method was also used for discretization and scheduling of glutamate release

equations. However, number of multiplication and division operations is smaller than

that of the astrocyte and, therefore, it was scheduled in six steps with one multiplier

and one divider in each step. Further in this paper, we refer to combined astrocyte

and glutamate release mechanism as GASTRO.

3.4.2 FPGA Implementation

To implement the designs, Finite State Machines (FSM) were developed and de-

scribed using VHDL hardware description language. After that, developed VHDL

71

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

codes were simulated in Modelsim software to check their validity and thereafter syn-

thesized by Xilinx ISE XST and downloaded into Zynq-XC7Z020-CLG484 FPGA

on the Zedboard development board. The on-FPGA data were converted to ana-

log using digital to analog converter of the VGA port. Fig. 3.9 shows Oscilloscope

photos of the on-FPGA Ca2+, IP3 and gating variable oscillation with glutamate

input of ASTRO5 for both AM and FM. As this figure shows, CORDIC astrocyte

model implemented on FPGA well resembles the computer simulation results. For

better measurement of difference between the implementation and computer simu-

lation results, a UART transmitter and receiver core was implemented on FPGA.

Furthermore, using UART to USB bridge, data were transferred to PC through USB

port and recovered. Fig. 3.10 compares a Ca2+ spike from computer simulation with

first, a spike from CORDIC and then, with one from DSP based implementation. As

it can be seen from the figure, for the same amount of the glutamate input, the Ca2+

spike of CORDIC model is very closer to computer simulation comparing to DSP

based implementation. Since both designs are identical except for CORDIC and DSP

units, this error is probably induced by truncation of the results.

3.5 Results and Discussion

In this section, to evaluate performance of CORDIC units, and also comparing area

and latency of different scheduling strategies, all three models of GASTRO2, GASTRO3

and GASTRO5 were implemented on FPGA, first using CORDIC units (C GASTRO)

and thereafter with FPGA embedded DSP multipliers and dividers (D GASTRO).

The results are discussed in following:

Area: Table 3.4 presents the resources used to implement these models alongside their

corresponding speed. As it can be seen from data, the amount of slice LUTs that is

needed for the implementation of C ASTRO2 is almost double compared to that of

D ASTRO2. Beside that, D ASTRO2 uses 4 DSP units of FPGA while C ASTRO2

uses none. The amount of resources needed for the implementation of C GASTRO,

D GASTRO is also compared in this table. With more number of the multipliers and

72

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

Table 3.4: Resource utilization and speed for FPGA implementation of CORDIC

models (C ASTRO, C GASTRO) and DSP based models (D ASTRO, D GASTRO)

multipliers and dividers.

M
o
d

el
S

lice
R

eg
isters

S
lice

L
U

T
s

D
S

P
s

M
R

U
P

F
req

u
en

cy
(M

H
z)

D
ela

y
(µ

s)
T

h
ro

u
g
h

p
u

t(M
b

/
s)

C
A
S
T
R
O
2

1
3
1
8

1
1
5
6

0
%

2
.1

7
3
4
2

1
.0

2
2
9
.6

C
A
S
T
R
O
3

1
4
9
8

1
2
9
3

0
%

2
.4

3
3
4
2

0
.6

6
4
5
.2

C
A
S
T
R
O
5

1
8
7
6

1
4
5
5

0
%

2
.7

3
3
8
5

0
.3

3
9
0
.1

C
G
A
S
T
R
O
5

3
1
2
4

2
5
4
0

0
%

4
.7

7
3
8
5

1
.3

3
2
2
.5

D
A
S
T
R
O
2

1
0
6
4

2
1
8
8

4
%

4
.1

1
2
2

2
.6

3
1
1
.4

D
A
S
T
R
O
3

1
1
7
1

2
2
2
0

8
%

4
.1

7
2
2

1
.8

1
1
6
.5

C
A
S
T
R
O
5

1
4
4
6

3
4
5
4

1
2

%
6
.4

9
2
2

1
.8

1
1
6
.5

D
G
A
S
T
R
O
5

2
3
2
0

4
1
0
4

2
0

%
9
.0

9
2
2

5
.2

5
.8

73

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

dividers in each step, the utilization of FPGA resources increases, both for CORDIC

and DSP based models. However, such increase for DSP based models is much higher.

Table 3.5: Number of ASTRO and GASTRO models that can be implemented in

different FPGA devices

Model Spartan 6 XC6lx75 Virtex 6 XC6VHX380T Artix 7 XC7A200T

C GASTRO5 18 94 52

D GASTRO5 6 58 32

Model Kinetix 7 XC7K160T Virtex 7 XC7VX980T

C GASTRO5 39 240

D GASTRO5 24 149

The number of GASTRO models that could be implemented on FPGA is limited by

amount of available slice registers, slice LUTs or in the case of D GASTRO models,

by number of DSP blocks. Regarding this, we calculated the Resource Utilization

Percentage (RUP) for each resource as:

%RUP =
Utilized Resources

Available Resources
× 100 (3.22)

Afterwards, we determined the Maximum Resource Utilization Percentage (MRUP)

as:

MRUP =Max RUP of{DSPs, LUTs, Registers} (3.23)

Having MRUP, one can easily calculate how many number of GASTRO models can be

implemented on FPGA. These numbers for C GASTR5 and D GASTRO for different

FPGA devices are presented in the Table 3.5. As data indicate, number of C GASTRO

models that could be implemented on FPGA, is higher than that of D GASTRO mod-

els. Despite FPGAs that DSP blocks are already part of device whether one use them

or not, when it comes to ASIC design, cost of adding a multiplier or divider will be

considerable in the term of area, power and delay. Therefore, this ratio for the same

die area in a ASIC hardware is expected to be much higher.

Speed: Using the DSP embedded multipliers and dividers considerably reduces

the frequency of the hardware on FPGA. The corresponding data are presented in

74

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

Table 3.6: Reported device utilization and spreed for some of recent published works

that implemented similar astrocyte model on FPGA

R
eferen

ce
S
lice

R
egisters

S
lice

L
U
T
s

D
S
P
s

F
req

u
en
cy

(M
H
z)

K
arim

et
a
l
[50]

-
2
1
0
0
0

230
-

M
a
rtin

et
al

[51]
16305

1
6
1
8
2

-
-

L
u
i
et

al
[2
2]

11666
1
1
3
9
4

42
200

D
elay

(µ
s)

T
h
rou

g
h
p
u
t(M

b
/
s)

D
ev
ice

-
-

A
ltera

E
P
4S

G
X
530K

H
40C

2

-
-

V
irtex

-7
X
C
7V

X
485T

12.5
-

V
irtex

-7
X
C
7V

X
485T

75

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

the Table 3.4. FPGA frequency for CORDIC based models is much higher. However,

CORDIC is an iterative algorithm and requires several clock cycles to be completed.

Total delay to calculate CORDIC multiplications or division operations could be cal-

culated as:

Dmd =
1

f
× (n+ 1) (3.24)

Where n is the number of iterations (As discussed in section II) and f is frequency of

the hardware. One extra clock was considered to transfer data between registers in

FPGA. Furthermore, additional 7 clock cycles are required in the design to perform

addition and shift operations. The total delay to calculate C ASTRO could be defined

as:

D = ns ×Dmd + 1/f × 7 (3.25)

Using a similar method, the delay of the astrocyte model with DSP units could be

determined by considering Dmd = 2. Since the word length of design is 30 bits, the

throughput calculated as:

Throughput =
30

D
(3.26)

The throughput and delay for the different astrocyte models implemented using

CORDIC and DSP units are presented and compared in the Table 3.4. As it is

evident from data, the astrocyte models implemented using CORDIC units perform

approximately 4 times faster than the astrocyte model with DSP multipliers.

Furthermore, Table 3.6 presents reported device utilization and speed in works

that implemented biological-plausible astrocyte models on FPGA. As it is evident

from the table, the proposed models are far more faster and area efficient. It is also

worth noting that implementing the same design on different FPGAs, will result in

different area utilization and speeds. Therefore, on high end devices, the proposed

design will run faster. Besides, higher number than that reported in the Table 3.5,

could be implemented on these FPGAs.

76

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

3.6 Conclusion

In this paper, a digital hardware was proposed to implement biological-plausible mod-

els of astrocyte and glutamate release mechanism. The design demonstrated high

accuracy in replicating the behaviour of aforementioned biological cells in hardware.

Furthermore, implementation results indicated that the design is much more area

efficient and faster comparing to recently published works. This new design, allows

researchers to implement large number of these biological-plausible cells on FPGAs.

This is most important because, unlike high level models, simulation of these models

due to high biological details requires long time and computational power and will

fall behind the real time easily. This hardware is most useful to replicate the tripar-

tite synapse and its components. Such hardware could also be scaled to study brain

diseases and information processing algorithms.

77

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

O
rigin

a
l

M
o
d
el

(A
M
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0

0
.2

0
.4

Ca

(a
)

0
200

400
600

T
im

e

0.1

0.2

0.3

0.4

Ip3

(b
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0
.6

0
.7

0
.8

h

(c)

C
A
S
T
1
8

(A
M
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0

0
.2

0
.4

Ca

(d
)

0
200

400
600

T
im

e

0.1

0.2

0.3

0.4

Ip3

(e
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0
.6

0
.7

0
.8

h

(f)

G
lu
ta
m
ate

In
p
u
t

0
2
0
0

4
0
0

6
0
0

T
im

e

0

0
.1

0
.2

0
.3

Glutamate

(g
)

Figure 3.6: Ca2+, IP3 and gating variable as function of a triangle wave of glutamate

in AM astrocyte. The first row shows the result for the original and the second row for

CAST18 model. The glutamate input is depicted in the (g). As this figure indicates,

amplitude of Ca2+ oscillation is modulated by level of glutamate in the synaptic cleft.

The result of the second row also verifies that CAST18 closely follows the original

model.

78

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

O
rig

in
al

M
o
d
el

(F
M
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0

0
.5 1

Ca

(a)
0

200
400

600

Tim
e

0

0.5 1

Ip3

(b)
0

2
0
0

4
0
0

6
0
0

T
im

e

0
.6

0
.7

0
.8

0
.9

h

(c)

C
A
S
T
1
8

(F
M
)

0
2
0
0

4
0
0

6
0
0

T
im

e

0

0
.5 1

Ca

(d)
0

200
400

600

Tim
e

0

0.5 1

Ip3

(e)
0

2
0
0

4
0
0

6
0
0

T
im

e

0
.6

0
.7

0
.8

0
.9

h

(f)

Figure 3.7: Ca2+, IP3 and gating variable as function of a triangle wave of glutamate

in FM astrocyte. The first row shows the result for the original and the second row

for CAST18 model. The glutamate input is as depicted in the Fig. 3.7 (g). As this

figure indicates, frequency of Ca2+ oscillation is modulated by level of glutamate in

the synaptic cleft. The result of the second row also verifies that CAST18 closely

follows the original model.

79

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

ca[n]

d5

I[n]

K

I[n]

K3

h[n]

ca[n]

K

kER

r5p

I[n]

kP<<

kD

ca[n]

vER

KPLC

Glu

h[n]

ca[n]

rc<<

rL

h[n]

dt<<

I[n]

d3
d2

con1<<

kR

h[n+1]

v3k<<

ca[n]

c0
c1<<

I[n]
I[n+1]

ca[n]
ca[n+1]

I[n]

d1

ca[n]

ca[n]

2

4

dt<<

dt<<

c/

c*

(a)

ADD/SUB ADD/SUB

Y 2
6

X Z

MUX MUX

A/S

(X[29])

Shift-Right

SL SL

= 0
?

n

COUNTER

SL: MUL/DIV

DONE!

(b)

Figure 3.8: (a) Scheduling diagram for digital implementation of ASTRO5 model.

With three multipliers and two dividers in each step, the diagram takes 8 steps

to execute which is also number of steps of critical path. The input of system is

glutamate, shown in the diagram as Glu and con1=d2×(d1-d3)/d3. (b) Hardware

implementation of CORDIC division and multiplication. At start, register x,y,z will

be loaded with operand 1, operand 2 and zero, respectively. In addition, counter

will be loaded with number of iterations (n) and the shift register with 26. At each

iteration, the counter decreases by one and if it is not zero, it activates shift Right

signal. The mode of operation (division or multiplication) can be changed with SL.

80

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

A
M

A
stro

cy
te

(a)
C

a
2
+

(b
)

IP
3

(c)
h

F
M

A
stro

cy
te

(d
)

C
a

2
+

(e)
IP

3
(f)

h

In
p
u
t

(g)
G

lu
tam

ate

Figure 3.9: Oscilloscope photos of the on-FPGA Ca2+, IP3 and gating variables

oscillations against the glutamate input for C ASTRO5. First row shows the ampli-

tude modulation of Ca2+ with level of glutamate. Second row implies the frequency

modulation with glutamate. Data were converted to analog using digital to analog

converter of the VGA port.

81

CORDIC-ASTROCYTE: A TRIPARTITE GLUTAMATE-IP3-CA2+ INTERACTION...

0 0.5 1 1.5 2

Time

0

0.2

0.4

0.6

0.8

1

1.2

C
a

Computer simulation DSP based hardware

0 0.5 1 1.5 2

Time

0

0.2

0.4

0.6

0.8

1

1.2
C

a
Computer simulation CORDIC based hardware

Figure 3.10: The CORDIC and DSP based astrocyte on-FPGA data, were transferred

to PC through UART-USB port and plotted versus computer simulation results. For

the same glutamate input, the Ca2+ spike of CORDIC model is very closer to the

computer simulation results.

82

References

[1] E. Capecci, F. C. Morabito, M. Campolo, N. Mammone, D. Labate, and
N. Kasabov, A Feasibility Study of Using the NeuCube Spiking Neural Network
Architecture for Modelling Alzheimer’s Disease EEG Data. Cham: Springer
International Publishing, 2015, pp. 159–172.

[2] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm for mul-
tiple spiking neural networks with application in epilepsy and seizure detection,”
Neural Networks, vol. 22, no. 10, pp. 1419–1431, Dec 2009.

[3] I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: A deep convolutional neural
network for bioactivity prediction in structure-based drug discovery,” CoRR, vol.
abs/1510.02855, Oct 2015.

[4] Y. Li and C. S. Nam, “Collaborative brain-computer interface for people with
motor disabilities,” IEEE Computational Intelligence Magazine, vol. 11, no. 3,
pp. 56–66, Aug 2016.

[5] F. O. Carreon, J. G. G. Serna, A. M. Rendon, N. G. Franco, A. M. P. Jimenez,
and J. H. Gomez, “Induction of emotional states in people with disabilities
through film clips using brain computer interfaces,” IEEE Latin America Trans-
actions, vol. 14, no. 2, pp. 563–568, Feb 2016.

[6] X. Zeng, T. Song, X. Zhang, and L. Pan, “Performing four basic arithmetic op-
erations with spiking neural p systems,” IEEE Transactions on NanoBioscience,
vol. 11, no. 4, pp. 366–374, Dec 2012.

[7] K. E. Friedl, A. R. Voelker, A. Peer, and C. Eliasmith, “Human-inspired neu-
rorobotic system for classifying surface textures by touch,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 516–523, Jan 2016.

[8] J. A. Wall, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “Spiking neural
network model of sound localization using the interaural intensity difference,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 4,
pp. 574–586, Apr 2012.

83

REFERENCES

[9] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C. W. Shin, H. Ryu, and B. C.
Kang, “Real-time gesture interface based on event-driven processing from stereo
silicon retinas,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 12, pp. 2250–2263, Dec 2014.

[10] N. Srinivasa and Y. Cho, “Self-organizing spiking neural model for learning fault-
tolerant spatio-motor transformations,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 23, no. 10, pp. 1526–1538, Oct 2012.

[11] M. Samie, G. Dragffy, A. M. Tyrrell, T. Pipe, and P. Bremner, “Novel bio-
inspired approach for fault-tolerant vlsi systems,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 10, pp. 1878–1891, Oct 2013.

[12] M. D. Pittà, N. Brunel, and A. Volterra, “Astrocytes: Orchestrating synaptic
plasticity?” Neuroscience, vol. 323, pp. 43–61, May 2016.

[13] M. De Pittà and N. Brunel, “Modulation of synaptic plasticity by glutamatergic
gliotransmission: a modeling study,” Neural plasticity, vol. 2016, Feb 2016.

[14] S. Nadkarni and P. Jung, “Modeling synaptic transmission of the tripartite
synapse,” Physical biology, vol. 4, no. 1, pp. 1–9, Jan 2007.

[15] V. Volman, E. Ben-Jacob, and H. Levine, “The astrocyte as a gatekeeper of
synaptic information transfer,” Neural computation, vol. 19, no. 2, pp. 303–326,
Feb 2007.

[16] G. Perea, M. Navarrete, and A. Araque, “Tripartite synapses: astrocytes process
and control synaptic information,” Trends in Neurosciences, vol. 32, pp. 421–431,
Jul 2009.

[17] M. M. Halassa, T. Fellin, H. Takano, J.-H. Dong, and P. G. Haydon, “Synaptic
islands defined by the territory of a single astrocyte,” Journal of Neuroscience,
vol. 27, no. 24, pp. 6473–6477, Jun 2007.

[18] C. Steinhäuser, M. Grunnet, and G. Carmignoto, “Crucial role of astrocytes in
temporal lobe epilepsy,” Neuroscience, vol. 323, pp. 157–169, May 2016.

[19] J. Rodŕıguez-Arellano, V. Parpura, R. Zorec, and A. Verkhratsky, “Astrocytes in
physiological aging and alzheimer’s disease,” Neuroscience, vol. 323, pp. 170–182,
May 2016.

[20] D. Do-Ha, Y. Buskila, and L. Ooi, “Impairments in motor neurons, interneurons
and astrocytes contribute to hyperexcitability in als: Underlying mechanisms
and paths to therapy,” Molecular Neurobiology, vol. 55, no. 2, pp. 1410–1418,
Feb 2018.

84

REFERENCES

[21] T. Fellin, J. Ellenbogen, M. De Pittà, E. Ben-Jacob, and M. Halassa, “Astrocyte
regulation of sleep circuits: experimental and modeling perspectives,” Frontiers
in Computational Neuroscience, vol. 6, p. 65, Aug 2012.

[22] J. Liu, J. Harkin, L. McDaid, D. M. Halliday, A. M. Tyrrell, and J. Timmis,
“Self-repairing mobile robotic car using astrocyte-neuron networks,” in 2016
International Joint Conference on Neural Networks (IJCNN), July 2016, pp.
1379–1386.

[23] D. Postnov, L. Ryazanova, and O. Sosnovtseva, “Functional modeling of neu-
ral–glial interaction,” Biosystems, vol. 89, no. 1–3, pp. 84–91, May 2007.

[24] S. Nadkarni and P. Jung, “Modeling synaptic transmission of the tripartite
synapse,” Physical Biology, vol. 4, no. 1, p. 1, Jan 2007.

[25] M. De Pittà, M. Goldberg, V. Volman, H. Berry, and E. Ben-Jacob, “Glutamate
regulation of calcium and ip3 oscillating and pulsating dynamics in astrocytes,”
Journal of Biological Physics, vol. 35, no. 4, pp. 383–411, Oct 2009.

[26] V. Volman, E. Ben-Jacob, and H. Levine, “The astrocyte as a gatekeeper of
synaptic information transfer,” Neural Comput., vol. 19, no. 2, pp. 303–326, Feb
2007.

[27] J. J. Wade, L. J. McDaid, J. Harkin, V. Crunelli, and J. A. S. Kelso, “Bidirec-
tional coupling between astrocytes and neurons mediates learning and dynamic
coordination in the brain: A multiple modeling approach,” PLOS ONE, vol. 6,
no. 12, pp. 1–24, Dec 2011.

[28] M. De Pittà, V. Volman, H. Levine, and E. Ben-Jacob, “Multimodal encoding
in a simplified model of intracellular calcium signaling,” Cognitive Processing,
vol. 10, no. 1, p. 55, Nov 2008.

[29] R. Brette, “Adaptive exponential integrate-and-fire model as an effective de-
scription of neuronal activity,” Journal of Neurophysiology, vol. 94, no. 5, pp.
3637–3642, Nov 2005.

[30] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
Neural Networks, vol. 14, no. 6, pp. 1569–1572, Nov 2003.

[31] M. Graupner and N. Brunel, “Calcium-based plasticity model explains sensitivity
of synaptic changes to spike pattern, rate, and dendritic location,” Proceedings
of the National Academy of Sciences, vol. 109, no. 10, pp. 3991–3996, Mar 2012.

85

REFERENCES

[32] E. Jokar and H. Soleimani, “Digital multiplierless realization of a calcium-based
plasticity model,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 64, no. 7, pp. 832–836, July 2017.

[33] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti,
R. E. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers of
neuronal and nonneuronal cells make the human brain an isometrically scaled-
up primate brain,” The Journal of Comparative Neurology, vol. 513, no. 5, pp.
532–541, Apr 2009.

[34] “Nest simulator — the neural simulation tool,” 2019. [Online]. Available:
http://www.nest-simulator.org

[35] “The human brain project,” 2019. [Online]. Available: https://www.
humanbrainproject.eu

[36] K. Cheung, S. R. Schultz, and W. Luk, “Neuroflow: A general purpose spiking
neural network simulation platform using customizable processors,” Frontiers in
Neuroscience, vol. 9, p. 516, Jan 2016.

[37] R. Brette and D. F. M. Goodman, “Simulating spiking neural networks on gpu,”
Network: Computation in Neural Systems, vol. 23, no. 4, pp. 167–182, Dec 2012.

[38] L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin,
“Challenges for large-scale implementations of spiking neural networks on fpgas,”
Neurocomputing, vol. 71, no. 1, pp. 13–29, Dec 2007.

[39] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains in
the nano-cmos era: Spiking neurons, learning synapses and neural architecture
optimization,” Neural Networks, vol. 45, pp. 4–26, Sep 2013.

[40] “Brainscales,” 2019. [Online]. Available: https://brainscales.kip.uni-heidelberg.
de/

[41] “Spinnaker,” 2019. [Online]. Available: http://apt.cs.manchester.ac.uk/
projects/SpiNNaker/

[42] “Ibm truenorth,” 2019. [Online]. Available: http://bluebrain.epfl.ch

[43] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen,
“Neurogrid: A mixed-analog-digital multichip system for large-scale neural sim-
ulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

86

http://www.nest-simulator.org
https://www.humanbrainproject.eu
https://www.humanbrainproject.eu
https://brainscales.kip.uni-heidelberg.de/
https://brainscales.kip.uni-heidelberg.de/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://bluebrain.epfl.ch

REFERENCES

[44] R. K. Lee and A. C. Parker, “A cmos circuit implementation of retrograde sig-
naling in astrocyte-neuron networks,” in 2016 IEEE Biomedical Circuits and
Systems Conference (BioCAS), Oct 2016, pp. 588–591.

[45] A. Ahmadi and M. Heidarpur, “An integrated astrocyte-adaptive exponential
(aadex) neuron and circuit implementation,” in 2016 24th Iranian Conference
on Electrical Engineering (ICEE), May 2016, pp. 1545–1550.

[46] Y. Irizarry-Valle, A. C. Parker, and J. Joshi, “A cmos neuromorphic approach
to emulate neuro-astrocyte interactions,” in The 2013 International Joint Con-
ference on Neural Networks (IJCNN), Aug 2013, pp. 1–7.

[47] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, J. J. Wade, and G. Martin,
“Scalable networks-on-chip interconnected architecture for astrocyte-neuron net-
works,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 12, pp. 2290–2303, Dec 2016.

[48] A. P. Johnson, D. M. Halliday, A. G. Millard, A. M. Tyrrell, J. Timmis, J. Liu,
J. Harkin, L. McDaid, and S. Karim, “An fpga-based hardware-efficient fault-
tolerant astrocyte-neuron network,” in 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI), Dec 2016, pp. 1–8.

[49] J. Liu, J. Harkin, L. Maguire, L. McDaid, J. Wade, and M. McElholm, “Self-
repairing hardware with astrocyte-neuron networks,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2016, pp. 1350–1353.

[50] S. Karim, J. Harkin, L. McDaid, B. Gardiner, J. Liu, D. M. Halliday, A. M.
Tyrrell, J. Timmis, A. Millard, and A. Johnson, “Assessing self-repair on fpgas
with biologically realistic astrocyte-neuron networks,” in 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2017, pp. 421–426.

[51] G. Martin, J. Harkin, L. J. McDaid, J. J. Wade, J. Liu, and F. Morgan, “Astro-
cyte to spiking neuron communication using networks-on-chip ring topology,” in
2016 IEEE Symposium Series on Computational Intelligence (SSCI), Dec 2016,
pp. 1–8.

[52] H. Soleimani, M. Bavandpour, A. Ahmadi, and D. Abbott, “Digital implemen-
tation of a biological astrocyte model and its application,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 1, pp. 127–139, Jan 2015.

[53] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation of 2d
hindmarsh–rose neuron,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2259–2272,
Aug 2017.

87

REFERENCES

[54] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hard-
ware for adaptive exponential integrate and fire neuron,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986–1996, Nov 2016.

[55] J. E. Volder, “The cordic trigonometric computing technique,” Electronic Com-
puters, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, Sep 1959.

[56] S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher,
and P. Maire, “The hill equation: a review of its capabilities in pharmacological
modelling,” Fundamental and Clinical Pharmacology, vol. 22, no. 6, pp. 633–648,
Dec 2008.

[57] S. G. Tewari and K. K. Majumdar, “A mathematical model of the tripartite
synapse: astrocyte-induced synaptic plasticity,” Journal of biological physics,
vol. 38, no. 3, pp. 465–496, May 2012.

88

Digital Implementation of a

Biological-Plausible Model For

Astrocyte Ca2+ Oscillations

4.1 Introduction

Understanding the information processing algorithms in the brain can help to develop

more intelligent, efficient, fault tolerant and much faster computing devices [1, 2, 3].

Moreover, studying biological reactions in the brain, plays a key role to find the

mechanisms underlying neurological and psychiatric diseases [4, 5]. Additionally,

it could be the initial step toward building a platform to test the drugs made for

brain diseases prior to test on live animals [6]. To study brain, first, we need to

replicate its components and the way they are interconnected and interact with each

other. However, the complexity of the brain ,due to the large number of cells [7] and

their communication pathways, make this a challenging task. The path to this goal

commences by proper modelling and building a simulation platform.

This work focuses on the astrocytes, a type of glial cells which were believed

to have only nutritional and supportive roles for neurons. New experimental results

,however, shows that astrocytes participate in neuronal plasticity [8, 9, 10, 11, 12, 13],

development of neuronal pathologies [4, 5], sleep functions [14] and brain self-repair

89

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

ability [15]. Although, astrocytes do not generate action potentials the way neurons

do but instead, propagate Ca2+ waves and release transmitters over a large area and

long time span.

Several mathematical models are presented for astrocytes [8, 9, 16, 17, 10]. All of

these models (except the model in [8] where a high level mathematical specifications

are utilized) are biologically-plausible models which describe cellular phenomena and

physiological parameters. Comparing these two types of models, the abstract models

are simpler to understand and cheaper to simulate whereas they can not investigate

dynamics, complexity and emergent nonlinear coherence that arise when large number

of neurons and glial cells are coupled [18]. But in general, the choice of the model

depends on the scale, purpose and cost of the simulation.

As for simulation platform, it could be computer based or Very Large Scale In-

tegration (VLSI) dedicated hardware. Computers are flexible and available for every

one which make them best choice for small networks. But for large networks, VLSI

systems are more efficient and affordable in comparison with supercomputers. Field

Programmable Gate Arrays (FPGA) provide a viable platform to simulate neural

networks [19, 20, 21, 22]. However, limited resources is one of main challenges of

large scale neural network FPGA implementations [23].

This work presents an approach to simulate the biologically-plausible astrocyte

model presented in the [9] on FPGA. The advantage of this model is incorporation of

glutamate regulation of Ca2+ waves. The model equations include nonlinear terms as

division, non-integer roots, multiplication, quadratic, cubic, quartic etc which make

the FPGA implementation difficult. This work uses linearization techniques to design

a hardware capable of replicating the behavior of astrcocyte on FPGA. In designing

process, search algorithms were utilized to find the most efficient parameters for

linearization that both reduce the implementation cost and maintain the accuracy of

the model.

Researchers already presented circuits for simplified and abstract models of as-

trocytes [24, 25] while this on-FPGA hardware is capable of simulating the astrocyte

down to ions levels. This is very useful to study calcium dynamics and calcium-based

90

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

learning algorithms that are getting a a lot of attentions recently [13, 26, 27, 28].

The FPGA implementation results is further compared with another work that also

implemented a biological realistic model on FPGA [29].

The rest of this Chapter is organized as follows. The astrocyte model is described

in Section 4.2. Section 4.3 presents linearized models and evaluation of the accuracy

of proposed models. Design and hardware implementation are discussed in Section

4.4 and 4.5. The paper concludes in Section 4.6.

4.2 Background

In general, when an action potential arrives at the pre-synaptic terminal, neurotrans-

mitters release into synaptic cleft as shown in Fig. 4.1. Among them, glutamate is the

major excitatory neurotransmitter in the nervous system and is critically involved in

many functions [30]. Glutamate in the synaptic cleft quickly binds to glutamate re-

ceptors on the post-synaptic terminal. Activation of these glutamate receptors leads

to the depolarization of the post-synaptic terminal and eventually could result in

the excitatory post-synaptic potential. The released glutamate may spill over the

synaptic cleft and bind to the extra-cellular part of astrocytic Metabotropic GLU-

tamate Receptors (mGluRs). Binding of glutamate to mGluRs promotes opening of

a few Inositol Trisphosphate (IP3) channels. As a consequence, intracellular Ca2+

slightly increases. Since the opening probability of IP3 channels nonlinearly increases

with Ca2+ concentration, such an initial amount boosts the opening probability of

neighboring channels which In turn, leads to a further increase of Ca2+.

Action of Ca2+ release, reverses at high cytoplasmic Ca2+ concentrations, when

inactivation of IP3R channels takes place and SERCA pumps, which its activity

increases with cytoplasmic Ca2+, quickly pumps back excess cytoplasmic Ca2+ into

the Endoplasmic Reticulum (ER). The intracellular Ca2+ concentration consequently

recovers toward basal value which suppresses IP3 channels activation. If the glutamate

stimulation continues, intracellular IP3 level remains high enough to repeat the cycle

into oscillations of Ca2+ and IP3 ions.

91

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

Astrocyte

Pre-synaptic

Neuron

Post-synaptic

Neuron

Glutamate by

rca

mp

Cytoplasm

Glutamate By

Astrocyte

Synaptic Cleft

Pre-Syn. Neuron

{
Figure 4.1: Mechanism of glial regulation of synaptic transmission. (1-) Release of

glutamate (Glu) from pre-synaptic terminal activates astrocyte receptors (2-) evoking

an increase in IP3 and consequently Ca2+ levels (3-) and release of glutamate from

glia.

Glutamate in astrocyte, acts as modulator of the calcium oscillations which mod-

ulates the frequency (FM), amplitude (AM) or combination of both (AFM) [9]. Such

oscillations further trigger the release of glutamate by astrocyte which effect the same

or other synapses considering it’s comparatively larger size. The G-ChI model that

describe calcium and IP3 dynamics is shown in equations 4.1 to 4.8. The parameters

values and descriptions are available in [9].

dI

dt
=νβHill(0.7, γ,KR(1 +

Kp

Kr
Hill(1, Ca,Kπ)))

νδ

1 + I
kδ

Hill(2, Ca,KPLCδ)

− ν3KHill(4, Ca,KD)Hill(1, I,K3)− r5P I

(4.1)

dCa

dt
=(rCm

3
∞n

3
∞h(i)

3 + rL)(CER − Ca)− νER.Hill(2, Ca,KER) (4.2)

dh

dt
=
h∞ − h(i)

τh
(4.3)

τh =
1

α2(Q2 + Ca)
(4.4)

n∞ = hill(1, Ca, d5) (4.5)

92

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Ca

Figure 4.2: Computer simulation of the term vER ∗C2
a/(C

2
a +K2

ER) (red line) and it’s

linear equivalent term (black line) as described in eq. 4.11, calculated with ε = 0.02 .

m∞ = hill(1, I, d1) (4.6)

Q =
(d2I + d1)

(I + d3)
(4.7)

h∞ =
Q

(Q2 + Ca)
(4.8)

The Hill equation [31] is one of common and useful equations in bio-chemistry which

is given by:

Hill(n, x, y) =
xn

xn + yn
(4.9)

4.3 Modified Model

In this section, the astrocyte model is modified for digital hardware implementation

and simulated to ensure its accuracy. The main difficulty for the circuit implemen-

tation of the G-ChI model lies in nonlinearity of the expressions which describe the

biochemical reactions. To bypass the problem, these nonlinearities were substituted

with equivalent linear terms. The objective is to find a sequence of linear functions,

L, so that for domain of nonlinear function N :

|L−N | ≤ ε (4.10)

93

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

where ε is maximum acceptable error. For one variable function N , L functions is

as follows:

L = αx+ β (4.11)

and for two variable function L is:

L = αx+ βy + δ (4.12)

The algorithm for finding α, β and δ for each segment of two variable L described

in follows:

For given numbers of {ε, f(0, 0), f(0, 1), f(0, 1), ...} find real numbers

α, β, δ,m, n such that:

|f(i, j)− (αi+ βj + δ)| ≤ ε for 0 ≤ i ≤ m and 0 ≤ j ≤ n (4.13)

and n ∗m is maximal.

The similar algorithm was used for one variable L. The algorithm begins by selecting

the largest possible restricted plate (longest possible single line) which satisfies the

error restriction and repeats the process by selecting restricted plates (lines) of the

maximum area (length) from the left-hand sides (side) towards remaining of the

function to be approximated. The number of linear segments depends on the value of

maximum tolerable error ε. For the larger values, there are less number of segments

which results in more deviation from the original term and vice versa. To compare

the results, the nonlinear equations were linearized using three values of ε=0.04, 0.03

and 0.02. Fig. 4.2 and shows the simulation of one variable term:

N1 =
vER C

2
a

C2
a +K2

ER

(4.14)

and Fig. 4.3 displays simulation of the nonlinear terms:
N2 =

d2 (I + d1) (1− h)
(I + d3)

N3 =
v3k C

4
a I

(C4
a + k4

D) (I + k3)

(4.15)

94

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

0.5

0.6

0.7

0.8

0.9

1
0

0.5
1

1.5
2

2.5 3
3.5

0

0.2

0.4

0.6

0.8

(a)

0.5

0.6

0.7

0.8

0.9

1
0 0.5 1

1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

(b)

0

0.5

1

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

(c)
0

0.5

1

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

(d)

Figure 4.3: Computer simulation of the nonlinear and their linear equivalent term as

described in eq. 4.14 and 4.15, obtained with ε = 0.02. (a) Simulation of the term

d2 ∗ (I + d1)/(I + d3) ∗ (1 − ha) and (b) it’s linear substitute. (c) Simulation of the

term v3kHill(4, Ca, kD)Hill(1, I, k3) and (d) it’s linear substitute.

95

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

Table 4.1: NRMSE calculation of nonlinear terms in equations 4.14, 4.15 and their

corresponding linear term.

ε = 0.02 ε = 0.03 ε = 0.04

no. l.s. NRMSE no. of l.s. NRMSE no. of l.s. NRMSE

N1 5 0.008 4 0.033 3 0.039

N2 9 0.006 6 0.009 4 0.011

N3 16 0.0080 11 0.0122 8 0.0213

no. of l.s. : number of the linear segments

and their respected linearized equivalent for ε = 0.02. As these figures indicate,

despite using much simpler computational units, the linearized equivalent terms follow

their respected nonlinear equations closely. For a quantitative comparison, normalized

Root Mean Square Deviation (NRMSE) error[32] was calculated for the nonlinear

term N and linearized term L as:

NRMSE =

√∑n
i=0(L−N)2

n
Nmax −Nmin

(4.16)

where Nmax and Nmin are minimum and maximum of the N and n is number of

points that this error is calculated. Table 4.1 presents the values of this error for

nonlinear terms in equations 4.14 and 4.15. The small values denote the resemblance

of the suggested linear substitute terms. Furthermore, the nonlinear terms in the

equations 4.1 to 4.8 were substituted by their respective linear terms to develop a

linearized model for astrocyte. Fig. 4.4 shows the simulation of the proposed and the

original model for different modes and values of glutamate. As it can be seen in the

figure, the responses of the models are very similar.

4.4 Hardware Implementation

The linearized model presented in the previous section, make it possible to implement

the nonlinear astrocyte differential equations on FPGA. In this section an efficient

fixed point hardware for astrocyte is designed and physically implemented. The

96

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

1.3

150Time

Ca

(a)

1.3

150Time

Ca

(c)

0.8

150Time

Ca

(e)

0.8

150Time

Ca

(g)

0.6

150Time

Ip3

2

(i)

1.3

150Time

Ca

(b)

1.3

150Time

Ca

(d)

0.8

150Time

Ca

(f)

0.8

150Time

Ca

(h)

2

150Time

Ip3

(j)

Figure 4.4: Computer simulation of the calcium and Ip3 oscillations in original (first

row) and linearized (second row) models, correspond to different values of glutamate:

(a,b) calcium oscillations for FM mode and glutamate=0.05, (c,d) calcium oscilla-

tions for FM mode and glutamate=1.5, (e,f) calcium oscillations for AM mode and

glutamate=0.15, (g,h) calcium oscillations for AM mode and glutamate=1.5, (i,j) Ip3

oscillations for FM mode and glutamate=0.15.

97

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

reason that we use a fixed point instead of a floating point hardware, is that despite

lower range and precision, it is in general faster and cheaper.

To design the hardware, in the first step, the Eulers method was used to numer-

ically solve the equations 4.1 to 4.8. Small step size (1/256) was selected to ensure

minimum error in the method. The scheduling diagram for execution of this oper-

ations are shown in Fig. 4.5. Since nonlinear terms was already linearized, the op-

erations that hardware will perform only includes addition, subtraction, comparison

and arithmetic shifts. There are three major blocks correspond to three differential

equations 4.1, 4.2 and 4.3. The α, β and δ are parameters of the linear segments in

equation 4.11 and 4.12 for ε = 0.02. Multiplication in these and other constants, was

performed with shift and add operations. To do this, first, constants were represented

with sequence of +, − and 0 symbols (+-0) which each position representing and ad-

dition or subtraction. For instance, multiplication in 15 was performed by 23 ∗ x− x,

which in hardware computed with three arithmetic right shift x minus x.

Since each nonlinear term was replaced by a sequence of linear terms, α, β and

δ change with the range of the function. Therefore, a control unit is required to

coordinate these parameters with range of ca, Ip3 and h. This unit for α1, β1

and δ1 is shown in the Fig 4.6. In this figure, based on the current value of ca

and Ip3, the comparators generate the address for selecting the α1, β1 and δ1 from

the memory M1. These values will further be decoded into addition/subtraction

operations. Further, word size of the functional units was determined to prevent

over/under flow and preserving the precision. For this purpose, factors such as range

of variables and coefficients as well as number of right/left shift operations were taken

into account. With those concerns, 34 word size was selected, 24 bit for the fraction

and 10 bit for the integer part.

4.5 Implementation Results

To prove validation of the proposed architecture, it was first described as a Hardware

Description Language (HDL) code (Verilog) using a Finite State Machine (FSM).

98

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

+

+

I[n
]

c
a
[n
]

αβ

g
[n
]

c
a
[n
]

α β

I[n
]

β
4

c
a
[n
]

β
5

αα

I[n
]

β
9

c
a
[n
]

α
9

α
1

β
1
0

Figure 4.5: As Soon As Possible (ASAP) scheduling diagram for the implementation

of the linearized model.

99

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

c1mn1

1

1

1

11 11 11
c1mx1

c1mn2

c1mx2

c1mnk

c1mxk

12 12 12

13 13 13

1k 1k 1k

ca[n]

I1mn1 <
<

<
<

<
<

<
<

<
<

<
<

I1mx1

I1mn2

I1mx2

I1mnk

I1mxk

I[n]

k
k

......

......
.
.
.

.

.

.

Figure 4.6: The logic unit for selecting α, β and δ based on the value of ca, Ip3 for

each linear segment.

Table 4.2: Device utilization of the XILINX Spartan 6 Lx75

4In.LUT Frequency DSPs

[29] ≈ 1400 NA ≈ 180

This work(FM) 13667 89.35 MHz 0

This work(AM) 13119 88.62 MHz 0

Moreover, Verilog code was simulated and then implemented on the Spartan-6 XC6SLX75T

FPGA. The on-FPGA values of ca, Ip3 and h were converted to analog and observed

on oscilloscope which for Ca2+ oscillation is shown in the Fig. 4.7. Further, table 4.2

compares implementation resources and operation frequency of the proposed hard-

ware with another work that implements a biological realistic astrocyte model. In this

work no DSP multiplier is used while [29] reports extensive use of that units. Being

multiplier-less gives this work two advantages. First is higher speed and throughput.

Multiplication is a slow arithmetic operation. Using such number of multipliers sig-

nificantly degrade the operation frequency and throughput of the system. However,

comparing with this work, the proposed method in [29] will have lower error and

deviation from the software floating point simulation.

100

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

(a) v.sc.=0.1v, t.sc=0.2 ms (b) v.sc.=0.1v, t.sc=0.2 ms

(c) v.sc.=50mv, t.sc.=0.2 ms (d) v.sc.=50mv, t.sc=0.2 ms

Figure 4.7: Oscilloscope photos of Spartan-6 XC6LX75 on-FPGA Ca2+ oscillation in

astrocyte for different modes and values of glutamate. (a) FM, glutamate=0.2. (b)

FM, glutamate=2 (c) AM, glutamate=0.2. (c) AM, glutamate=2.

101

DIGITAL IMPLEMENTATION OF A BIOLOGICAL-PLAUSIBLE MODEL...

Second advantage is area efficiency. Number of DSP multipliers are limited in

FPGAs. For instance, the FPGA that we used in this work has 132 DSP fast mul-

tipliers. As result, not even one DSP based implementation can be fitted into this

FPGA. Nevertheless, in the proposed design, almost %28 of the FPGA LUTs is used

and more number could be implemented on the high-end FPGAs.

The benefit of a multiplier-less design relative to the one presented in [29] will show

more on ASIC implementation. As FPGA is a already fabricated device with a num-

ber of multipliers. Implementing proposed hardware on silicon will have considerably

less cost and have better performance.

4.6 Conclusion

A biological G-ChI astrocyte model for Ca2+ oscillation was modified for hardware

implementation. Simulation data reveals that this models follow the original model

with an acceptable accuracy. The simplicity of the models, which only consist of

add/sub and shift operations, made it possible to implement the nonlinear astrocyte

equations effectively on hardware. The HDL code describing the hardware was first

simulated and further implemented on FPGA as proof of concept.

102

References

[1] K. E. Friedl, A. R. Voelker, A. Peer, and C. Eliasmith, “Human-inspired neu-
rorobotic system for classifying surface textures by touch,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 516–523, 2016.

[2] J. A. Wall, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “Spiking neural
network model of sound localization using the interaural intensity difference,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 4,
pp. 574–586, 2012.

[3] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C. W. Shin, H. Ryu, and B. C.
Kang, “Real-time gesture interface based on event-driven processing from stereo
silicon retinas,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 12, pp. 2250–2263, 2014.

[4] E. Capecci, F. C. Morabito, M. Campolo, N. Mammone, D. Labate, and
N. Kasabov, A Feasibility Study of Using the NeuCube Spiking Neural Network
Architecture for Modelling Alzheimer’s Disease EEG Data. Cham: Springer
International Publishing, 2015, pp. 159–172.

[5] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm for mul-
tiple spiking neural networks with application in epilepsy and seizure detection,”
Neural networks, vol. 22, no. 10, pp. 1419–1431, 2009.

[6] I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: A deep convolutional neu-
ral network for bioactivity prediction in structure-based drug discovery,” arXiv
preprint arXiv:1510.02855, 2015.

[7] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti,
R. E. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers of
neuronal and nonneuronal cells make the human brain an isometrically scaled-
up primate brain,” The Journal of Comparative Neurology, vol. 513, no. 5, pp.
532–541, 2009.

103

REFERENCES

[8] D. Postnov, L. Ryazanova, and O. Sosnovtseva, “Functional modeling of neural-
glial interaction,” Biosystems, vol. 89, no. 1–3, pp. 84 – 91, 2007, selected Papers
presented at the 6th International Workshop on Neural CodingNeural Coding
20056th International Workshop on Neural Coding.

[9] M. De Pittà, M. Goldberg, V. Volman, H. Berry, and E. Ben-Jacob, “Glutamate
regulation of calcium and ip3 oscillating and pulsating dynamics in astrocytes,”
Journal of Biological Physics, vol. 35, no. 4, pp. 383–411, 2009.

[10] J. J. Wade, L. J. McDaid, J. Harkin, V. Crunelli, and J. A. S. Kelso, “Bidirec-
tional coupling between astrocytes and neurons mediates learning and dynamic
coordination in the brain: A multiple modeling approach,” PLOS ONE, vol. 6,
no. 12, pp. 1–24, 2011.

[11] S. G. Tewari and K. K. Majumdar, “A mathematical model of the tripartite
synapse: Astrocyte-induced synaptic plasticity,” Journal of Biological Physics,
vol. 38, no. 3, pp. 465–496, 2012.

[12] M. Nedergaard, B. Ransom, and S. A. Goldman, “New roles for astrocytes:
Redefining the functional architecture of the brain,” Trends in Neurosciences,
vol. 26, no. 10, pp. 523 – 530, 2003.

[13] M. D. Pittà, N. Brunel, and A. Volterra, “Astrocytes: Orchestrating synaptic
plasticity?” Neuroscience, vol. 323, pp. 43 – 61, 2016, dynamic and metabolic
astrocyte-neuron interactions in healthy and diseased brain.

[14] T. Fellin, J. Ellenbogen, M. De Pittà, E. Ben-Jacob, and M. Halassa, “Astrocyte
regulation of sleep circuits: Experimental and modeling perspectives,” Frontiers
in Computational Neuroscience, vol. 6, p. 65, 2012.

[15] J. Liu, J. Harkin, L. McDaid, D. M. Halliday, A. M. Tyrrell, and J. Timmis,
“Self-repairing mobile robotic car using astrocyte-neuron networks,” in 2016 In-
ternational Joint Conference on Neural Networks (IJCNN), 2016, pp. 1379–1386.

[16] S. Nadkarni and P. Jung, “Modeling synaptic transmission of the tripartite
synapse,” Physical Biology, vol. 4, no. 1, p. 1, 2007.

[17] V. Volman, E. Ben-Jacob, and H. Levine, “The astrocyte as a gatekeeper of
synaptic information transfer,” Neural Comput., vol. 19, no. 2, pp. 303–326,
2007.

[18] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal
learning rule for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595,
pp. 76–78, 1996.

104

REFERENCES

[19] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hard-
ware for adaptive exponential integrate and fire neuron,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986–1996, 2016.

[20] T. Matsubara, H. Torikai, and T. Hishiki, “A generalized rotate-and-fire digital
spiking neuron model and its on-fpga learning,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, vol. 58, no. 10, pp. 677–681, 2011.

[21] J. Liu, J. Harkin, L. Maguire, L. McDaid, J. Wade, and M. McElholm, “Self-
repairing hardware with astrocyte-neuron networks,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), 2016, pp. 1350–1353.

[22] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation of 2d
hindmarsh-rose neuron,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2259–2272, Aug
2017.

[23] L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin,
“Challenges for large-scale implementations of spiking neural networks on
{FPGAs},” Neurocomputing, vol. 71, no. 1–3, pp. 13 – 29, 2007, dedicated
Hardware Architectures for Intelligent SystemsAdvances on Neural Networks for
Speech and Audio Processing.

[24] E. Jokar and H. Soleimani, “Digital multiplierless realisation of a calcium based
plasticity model,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. PP, no. 99, pp. 1–1, 2016.

[25] A. Ahmadi and M. Heidarpur, “An integrated astrocyte-adaptive exponential
(aadex) neuron and circuit implementation,” in 2016 24th Iranian Conference
on Electrical Engineering (ICEE), 2016, pp. 1545–1550.

[26] M. Graupner and N. Brunel, “Calcium-based plasticity model explains sensitivity
of synaptic changes to spike pattern, rate, and dendritic location,” Proceedings
of the National Academy of Sciences, vol. 109, no. 10, pp. 3991–3996, 2012.

[27] E. Jokar and H. Soleimani, “Digital multiplierless realisation of a calcium based
plasticity model,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. PP, no. 99, pp. 1–1, 2016.

[28] M. Falcke, “Reading the patterns in living cells -the physics of ca2+ signaling,”
Advances in Physics, vol. 53, no. 3, pp. 255–440, 2004.

[29] S. Karim, J. Harkin, L. McDaid, B. Gardiner, J. Liu, D. M. Halliday, A. M.
Tyrrell, J. Timmis, A. Millard, and A. Johnson, “Assessing self-repair on fpgas
with biologically realistic astrocyte-neuron networks,” in 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2017, pp. 421–426.

105

REFERENCES

[30] S. R. McIver, M. Faideau, and P. G. Haydon, Astrocyte-Neuron Communications.
Boston, MA: Springer US, 2013, pp. 31–64.

[31] S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher,
and P. Maire, “The hill equation: A review of its capabilities in pharmacological
modelling,” Fundamental and Clinical Pharmacology, vol. 22, no. 6, pp. 633–648,
2008.

[32] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accu-
racy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679 – 688, 2006.

106

Time Step Impact on

Performance and Accuracy of

Izhikevich Neuron: Software

Simulation and Hardware

Implementation

5.1 Introduction

Spiking neural networks (SNNs) are the third generation of neural networks, which

neurons communicate through sequences of spikes. Comparing to previous genera-

tions, SNNs are faster, smaller in size, more energy efficient and biologically realistic

[1, 2, 3]. There exist a number of mathematical models, with different levels of bio-

logical detail, that describe spiking neurons [4, 5, 6].

Simulation of SNNs is computationally complex because of nonlinear expressions

in neuron models, size of the network and various communication pathways. Re-

searchers have used variety of simulation platforms including: PCs [7], supercomput-

ers [8], analog [9], digital [10] and mixed analog-digital application specific hardware

107

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

Table 5.1: Reported time step (ms) in some of published works that implemented

spiking neurons and astrocytes on FPGA.

Reference Time step Reference Time step

Grassia et al. [18] 0.015625 Matsubara et al. [19] 0.5

Soleimani et al. [20] 2−11 Yang et al. [21] 0.125

Farsa et al. [22] 10−3 Johnson et al. [23] 2−10

Chen et al. [24] 10−4 Heidarpur et al. [25] 2−7

[11] and FPGAs [12]. Each of these platforms has its advantages and disadvantages.

Nevertheless, in all platforms, optimization of SNN is important to increase perfor-

mance and reduce cost of implementation. Some of the techniques to optimize neurons

as main components of SNNs are presented in [13, 14, 15, 16].

Euler’s method [17] is one of the most common methods used in previous works

to numerically solve Ordinary Differential Equations (ODEs) describing neurons. A

factor that has major impact on speed and computational cost of this method is time

step. Smaller time steps preserve accuracy with the cost of higher computational

cost.

Table 5.1 presents time steps used in some of published works that implemented

spiking neurons and astrocytes on FPGA. As data indicates, employed time steps

are different, even for the same model. We found no work explaining their criteria

for selecting time steps. Indeed, in most works, authors just indicated that time

step needs to be small enough and even they did not report its value [26, 27, 28].

Time step is an important factor, particularly in neuromorphic hardware, where it

can significantly impact cost and speed of the system. Reference [29] investigated this

impact for the software simulation of Izhikevich neuron. In [30], Computational Cost

Factor (CCF) and Global Performance Factor (GPF) were calculated and compared

for different spiking neurons firing at different rates.

In this paper, we investigated how different values of the time step affect the

behaviour of the Izhikevich model. Further, we increased time step and obtained the

threshold that neuron becomes unstable for different input currents. It was uncovered

for the first time that instability threshold is an exponential function of neuron’s

108

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

input current. Moreover, the neuron model was synthesized and implemented on

the FPGA. Accuracy and hardware performance metrics such as speed, area and

power consumption were compared for different time steps. Results indicated that

larger time steps than those that used in the previous works could be employed which

significantly improves performance and cost of the design.

The rest of this Chapter is organized as follows. Section 5.2 reviews Izhikevich

neuron and presents the accuracy analysis for different time steps. Performance mea-

surement for software simulation and hardware implementation are provided in the

Section 5.3. Section 5.4 discusses achieved results. Finally, paper concludes in the

Section 5.5.

5.2 Accuracy Analysis

In this work we used Izhikevich neuron as a case study model to analyze effects of

changing time step on its accuracy and performance. Izhikevich neuron is a biologi-

cally inspired model in the form of two coupled differential equations as:

dv

dt
= 0.04v2 + 5v + 140− u+ I (5.1)

and a reset equation as:

if v > 30 mv then

{
v → vr

u→ wr = u+ d.
(5.2)

Where v is membrane potential, w is recovery variable and I is applied current.

Other parameters are model constants.

5.2.1 Impact on Software Simulation

Fig. 5.1 shows the simulation of a tonic spiking and a tonic bursting Izhikevich

neuron for different time steps (all time steps are in ms). A rectangular current pulse

with maximum level of 4 was applied to the neurons as depicted in this figure with

a red line. First, Izhikevich neuron was simulated with small time step of 0.001, and

109

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic spiking, Time Step=0.001

(a)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic spiking, Time Step=1

(b)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic spiking, Time Step=2

(c)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic spiking, Time Step=3

(d)-100

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic bursting, Time Step=0.001

(e)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic Bursting, Time Step=1

(f)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic Bursting, Time Step=2

(g)

20

0

-20

-40

-60

-80

40

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l
(m

v
)

0 200 400 600 800
Time (ms)

Tonic Bursting, Time Step=3

(h)-100

Figure 5.1: Simulation of the Izhikevich neuron for different time steps. First and

second row show the result for case of tonic spiking and tonic bursting respectively.

Input current is specified with a red color.

110

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

0 0.5 1 1.5 2 2.5
0

1

2

3

4

Time Step

N
R

M
S
E
%

Figure 5.2: NRMSD error between waveform of the Izhikevich neuron with reference

time step (0.001) and those of with larger time steps.

subsequently, the simulation repeated with larger time steps. As Fig. 5.1 indicates,

for a time step up to 1, still the response of the model is similar to that of with

the small time step of 0.001. The Izhikevich neuron with a time step of 2 showed

additional unnecessary dumped oscillations in membrane potential waveform, but

nonetheless, results resemble the neuron with time step of 0.001. The neuron with a

time step of 3 is unstable and is not following the Izhikevich neuron anymore.

To quantitatively measure the error, the Normalized Root Mean Square Deviation

(NRMSD) was calculated for each time step [31]. This error is defined as :

NRMSD =

√
n∑
i=1

(v(n)− vts(n))2

√
n (vmax − vmin)

(5.3)

where v and vts are waveforms of the izhikevich neuron with the reference (0.001) and

larger time steps. vmax and vmin are the maximum and minimum values of v in the

span of measuring the error. NRMSD error as function of the time step is plotted in

Fig. 5.2. As this figures illustrates, with increasing the time step, NRMSD shows an

increasing trend. Another factor that contributes to this error is the input current

of the neuron. By increasing the input current, the spike frequency of the neuron

increases. Therefore, for a specific time step (sampling time), higher input currents

result in a larger error. In addition, neurons simulated with higher input current tend

111

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

Tonic Spiking, Stability

0

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200 250 300
Input current

T
h
re

s
h
o
ld

 T
im

e
 S

te
p

(a)

Tonic Spiking, Oscillation

0

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200 250 300
Input current

T
h
re

s
h
o
ld

 T
im

e
 S

te
p

(b)

Tonic Bursting, Stability

0

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200 250 300
Input current

T
h
re

s
h
o
ld

 T
im

e
 S

te
p

(c)

Tonic Bursting, Oscillation

0

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200 250 300
Input current

T
h
re

s
h
o
ld

 T
im

e
 S

te
p

(d)

Figure 5.3: Threshold time steps that dumped oscillation starts in Izhikevich neuron

and thresholds that it becomes unstable for two models of tonic spiking and tonic

bursting.

to become unstable for a smaller time steps compared to those with lower currents.

The threshold time step that triggers dumped oscillation and the threshold that

neuron becomes unstable are plotted against the input current in Fig. 5.3. As this

figure shows, the threshold time steps are decreasing exponentially with the input

current. A function approximation to the measured data in Fig. 5.3 (a) is:

tsth = 5.76 I−0.22 − 1.26 (5.4)

Where tsth is the stability threshold and I is the input current.

112

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

i=12
1

>

0

Tru
e

F
a
ls
e

x

Mux

1
/2

>

0
Tru

e

+

F

>
>

1

V
[n
]

W
[n
]

I[n
]

(a
)

d
<

d
<

Figure 5.4: Control data flow graph for neuron’s hardware. (Figure is taken from

[32])

113

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

Table 5.2: Total memory required for 2 second simulation of Izhikevich neuron on

Matlab software for different time steps.

Time Step 0.001 0.01 0.05 0.5 1

Memery 45.8 MB 4.2 MB 920 KB 94 KB 47 KB

(a) Tonic Spiking, Time

Step=1/1024, Oscilloscope

Time Scale= 40 ms

(b) Tonic Spiking, Time

Step=1/128, Oscilloscope

Time Scale= 4 ms

(c) Tonic Spiking, Time

Step=1/16, Oscilloscope

Time Scale= 1 ms

(d) Tonic Spiking, Time

Step=1/2, Oscilloscope

Time Scale= 100 µs

(e) Tonic Spiking, Time

Step=1, Oscilloscope Time

Scale= 40 µs

(f) Tonic Spiking, Time

Step=2, Oscilloscope Time

Scale= 20 µs

Figure 5.5: Oscilloscope photos of FPGA implementation of a tonic spiking Izhikevich

neuron for various time steps. The input current for tonic spiking neuron is 12.

5.2.2 Impact on Hardware Implementation

This section presents the behaviour of the on-FPGA Izhikevich neuron for various

time steps. Fig. 5.4 shows the hardware data flow graph for FPGA implementation

of the neuron. This design described in VHDL, synthesized using XILINX XST

synthesizer and implemented on XILINX Spartan-6 XC6SLX75. For efficient digital

implementation, a fixed point arithmetic was used. Coefficients in the model were

approximated with the power of two numbers to reduce multiplication in constants

to shift and add operations. The square term in Izhikevich neuron equation was

114

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

(a) Tonic Bursting, Time

Step=1/1024, Oscilloscope

Time Scale= 100 ms

(b) Tonic Bursting, Time

Step=1/128, Oscilloscope

Time Scale= 10 ms

(c) Tonic Bursting, Time

Step=1/16, Oscilloscope

Time Scale= 2 ms

(d) Tonic Bursting, Time

Step=1/2, Oscilloscope

Time Scale= 200 µs

(e) Tonic Bursting, Time

Step=1, Oscilloscope Time

Scale= 100 µs

(f) Tonic Bursting, Time

Step=2, Oscilloscope Time

Scale= 40 µs

Figure 5.6: Oscilloscope photos of FPGA implementation of a tonic bursting Izhike-

vich neuron for various time steps. The input current for tonic bursting neuron is

6.

calculated using COordinate Rotation DIgital Computer (CORDIC) technique. For

more information about the design please refer to [32].

Fig. 5.5 and Fig. 5.6 shows oscilloscope photos of FPGA implementation of a

tonic bursting and a tonic spiking Izhikevich neuron for different time steps. One can

see in these figures that for relatively larger values of time step such as 0.5 or 1, the

shape of the spikes and response of the neuron is still close to that with very small

time step (1/1024). Even for time step of 2, the form of spikes is still preserved.

115

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

Table 5.3: FPGA frequency and resource utilization for the Izhikevich neuron with

different time steps.

Time step 1/1024 1/128 1/16 1/2

LUTs 458 420 380 380

Slice Registers 253 229 205 205

Frequency (MHz) 177.5 182.7 185.9 185.9

To
ta

l
c
o
m

p
u
ta

io
n
 t

im
e
 r

a
ti

o

0 0.5 1.5 2

500

1000

1500

2000

1
0

Time Step

Figure 5.7: The ratio of computational time for larger time steps to that for 0.001.

The results are obtained for 2 seconds Matlab simulation of this neuron.

5.3 Performance analysis

5.3.1 Impact on Software Simulation

The number of points that the neuron function is evaluated for a specific simulation

time has a negative linear relation with the time step. Fig. 5.7 shows computation

time required for a 2 second simulation of a single Izhikevich neuron on the Matlab

as function of the time step. As this figure denotes, a decreasing time step will result

in a corresponding linear increase in computation time. Furthermore, simulations

with smaller time steps increase the memory usage. Table 5.2 compares the memory

required for a 2 second simulation of the Izhikevich neuron on Matlab software for

various time steps. According to this table, software simulation with a time step of

0.5 required 500 times less memory than that with a time step of 0.001. High memory

116

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

Table 5.4: On FPGA power and total number of clock cycles required for each design

to generate 5 spikes.

Time Step 1/1024 1/128 1/16 1/2

Dynamic power (mW) 90 87 85 85

Number of clocks 13839040 1729880 216235 27030

usage could become a critical issue for large scale simulations.

5.3.2 Impact on Hardware Implementation

Area: Fig. 5.4 shows the points at which variables are shifted by the time step

(indicated with ‘dt’ in Fig. 5.4 in the hardware . Changing the time step does not

require any extra computational unit. However, small values of the time step require

larger word length to prevent underflow. This, in turn, slightly increases the FPGA

utilization of the design. Table 5.3 shows the implementation of the FPGA resource

utilization for the Izhikevich neuron with different time steps. As this Table indicates,

designs with smaller time steps require more resources. No extra bit is required for

time steps smaller than 1/16.

Speed: Table 5.3 presents the frequency of neurons implemented with different

time steps. Changing the time step does not directly result in a considerable change

in the frequency and, therefore, in the throughput of the hardware. However, the

spiking frequency linearly changes with the time step. For instance, in Fig. 5.5 (a),

the period between two spikes for the neuron with time step of 0.001 is approximately

0.8×40ms=32ms. This time for the neuron with a time step of 1, as shown in Fig.

5.5 (e), is roughly 0.9×40µs=36µs. In other words, neurons with a time step of 1 are

roughly 1125 times faster than those with time step of 1/1024.

Power: Table 5.4 compares the on-FPGA power for the neurons with different

time steps. As this table shows, designs with smaller time steps consume marginally

less power. However, energy consumption is a function of the total time taken to

complete a task. Table 5.4 presents the number of clock cycles required for each

design to generate 5 spikes. According to this table, generating 5 spikes with a time

117

TIME STEP IMPACT ON PERFORMANCE AND ACCURACY OF IZHIKEVICH...

step of 1/1024 consumes 64 × (90/85) = 67.8 times more power compared to those

with time step of 1/16.

5.4 Discussion

As discussed in the previous sections, for the Izhikevich neuron there is a threshold

time step in which unnecessary dumping oscillations appear in the output waveform

of the neuron. If we continue to increase the time step, at a certain point the neuron

becomes unstable. Further, we showed that the time step linearly affects the per-

formance of the software simulations and hardware implementation. The question

to raise is what would be the optimum time step for simulation of Izhikevich neu-

ron? The answer is dependant on the maximum input current. For instance, in a

network by knowing the number of the inputs and the maximum weight of each one,

the maximum input to the neuron and accordingly the appropriate time step could

be determined using Fig. 5.3.

5.5 Conclusion

In this work, the relation between the threshold time step that neuron produces stable

output and its input current was uncovered. Total computational time and memory

required for simulation of a single Izhikevich neuron with different time steps were

measured and compared. Further, the model was implemented on the FPGA and

design with different time steps were compared in the terms of speed, area and power

consumption.

118

References

[1] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges,” Frontiers in Neuroscience, vol. 12, p. 774, 2018.

[2] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[3] J. Vreeken, “Spiking neural networks, an introduction,” 2003.

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, p. 500, 1952.

[5] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[6] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, popu-
lations, plasticity. Cambridge university press, 2002.

[7] “Nemo: High-performance spiking neural network simulator,” 2019. [Online].
Available: http://nemosim.sourceforge.net/

[8] “The human brain project,” 2019. [Online]. Available: https://www.
humanbrainproject.eu

[9] E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, “Synaptic potentiation and de-
pression in al: Hfo2-based memristor,” Microelectronic Engineering, vol. 147, pp.
41–44, 2015.

[10] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and
tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 10, pp. 1537–1557, 2015.

119

http://nemosim.sourceforge.net/
https://www.humanbrainproject.eu
https://www.humanbrainproject.eu

REFERENCES

[11] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen,
“Neurogrid: A mixed-analog-digital multichip system for large-scale neural sim-
ulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

[12] D. Neil and S. Liu, “Minitaur, an event-driven fpga-based spiking network ac-
celerator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 12, pp. 2621–2628, Dec 2014.

[13] T. Naka and H. Torikai, “A novel generalized hardware-efficient neuron model
based on asynchronous ca dynamics and its biologically plausible on-fpga learn-
ings,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66,
no. 7, pp. 1247–1251, July 2019.

[14] S. M. Kueh and T. Kazmierski, “A dedicated bit-serial hardware neuron for
massively-parallel neural networks in fast epilepsy diagnosis,” in 2017 IEEE
Healthcare Innovations and Point of Care Technologies (HI-POCT), Nov 2017,
pp. 105–108.

[15] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation of 2d
hindmarsh–rose neuron,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2259–2272,
Aug 2017.

[16] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity,” Journal of neurophysiology, vol. 94,
no. 5, pp. 3637–3642, 2005.

[17] D. F. Griffiths and D. J. Higham, Euler’s Method. London: Springer London,
2010, pp. 19–31.

[18] F. Grassia, T. Levi, T. Kohno, and S. Säıghi, “Silicon neuron: digital hardware
implementation of the quartic model,” Artificial Life and Robotics, vol. 19, no. 3,
pp. 215–219, Nov 2014.

[19] T. Matsubara and H. Torikai, “Asynchronous cellular automaton-based neuron:
Theoretical analysis and on-fpga learning,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 24, no. 5, pp. 736–748, May 2013.

[20] H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired spiking
neurons: Piecewise linear models and digital implementation,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2991–3004,
Dec 2012.

120

REFERENCES

[21] S. Yang, J. Wang, S. Li, B. Deng, X. Wei, H. Yu, and H. Li, “Cost-efficient
fpga implementation of basal ganglia and their parkinsonian analysis,” Neural
Networks, vol. 71, pp. 62 – 75, 2015.

[22] E. Z. Farsa, A. Ahmadi, M. A. Maleki, M. Gholami, and H. N. Rad, “A low-
cost high-speed neuromorphic hardware based on spiking neural network,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1582–
1586, Sep. 2019.

[23] A. P. Johnson, D. M. Halliday, A. G. Millard, A. M. Tyrrell, J. Timmis, J. Liu,
J. Harkin, L. McDaid, and S. Karim, “An fpga-based hardware-efficient fault-
tolerant astrocyte-neuron network,” in 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI), Dec 2016, pp. 1–8.

[24] Q. Chen, J. Wang, S. Yang, Y. Qin, B. Deng, and X. Wei, “A real-time fpga
implementation of a biologically inspired central pattern generator network,”
Neurocomputing, vol. 244, pp. 63 – 80, 2017.

[25] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hard-
ware for adaptive exponential integrate and fire neuron,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986–1996, Nov 2016.

[26] H. Soleimani and E. M. Drakakis, “A compact synchronous cellular model of non-
linear calcium dynamics: Simulation and fpga synthesis results,” IEEE Trans-
actions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 703–713, June
2017.

[27] T. Matsubara, H. Torikai, and T. Hishiki, “A generalized rotate-and-fire digital
spiking neuron model and its on-fpga learning,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 10, pp. 677–681, Oct 2011.

[28] E. Jokar, H. Abolfathi, and A. Ahmadi, “A novel nonlinear function evaluation
approach for efficient fpga mapping of neuron and synaptic plasticity models,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 2, pp. 454–
469, April 2019.

[29] S. Valadez-God́ınez, H. Sossa, and R. Santiago-Montero, “The step size impact
on the computational cost of spiking neuron simulation,” in 2017 Computing
Conference, July 2017, pp. 722–728.

[30] S. Valadez-God́ınez, H. Sossa, and R. Santiago-Montero, “On the accuracy and
computational cost of spiking neuron implementation,” Neural Networks, 2019.

[31] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accu-
racy,” International journal of forecasting, vol. 22, no. 4, pp. 679–688, 2006.

121

REFERENCES

[32] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. Rahimi Azghadi, “Cordic-snn:
On-fpga stdp learning with izhikevich neurons,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, no. 7, pp. 2651–2661, July 2019.

122

Conclusion and Future Work

6.1 Summary

In this dissertation, several hardware developed for efficient digital implementation

of spiking neural network on FPGAs. To take full advantage of available resources on

FPGAs, one needs to develop a rich library of different neural network building blocks

and primitives to be used in a high level synthesizer for large scale implementation

of SNNs. This research could be considered as step toward this objective.

In Chapter 2, a novel hardware was presented based on the CORDIC method for

on-FPGA online STDP learning. This hardware proved to be accurate while requiring

less FPGA resources and having higher speed compared to the original models and

state-of-the-art designs. The CORDIC method was utilized because of the simplicity

of its structure, since it only uses add and shift operations which could be cheaply

implemented on hardware. In order to implement the proposed learning system, first,

the CORDIC method was used to implement Izhikevich neurons and its accuracy was

analyzed. Second, the STDP algorithm was adopted for online learning and modified

using the CORDIC algorithm to improve hardware efficiency. Furthermore, error

analysis was performed on computer simulation data to ensure the accuracy of the

implemented CORDIC models. Consequently, hardware was designed, described in

VHDL, and simulated for both neuron and learning mechanism. Finally, the models

were implemented on FPGA to form a spiking neural network composed of Izhikevich

123

CONCLUSION AND FUTURE WORK

neurons and STDP synapses to demonstrate competitive Hebbian learning.

In Chapter 3, a digital hardware was proposed to implement biological-plausible

models of astrocyte and glutamate release mechanism. The design demonstrated high

accuracy in replicating the behaviour of aforementioned biological cells in hardware.

Furthermore, implementation results indicated that the design is much more area

efficient and faster comparing to recently published works. This new design, allows

researchers to implement large number of these biological-plausible cells on FPGAs.

This is most important because, unlike high level models, simulation of these models

due to high biological details requires long time and computational power and will fall

behind the real time easily. This hardware is most useful to replicate the tripartite

synapse and its components. Such hardware could also be scaled to study brain

diseases and information processing algorithms.

In Chapter 4, a biological G-ChI astrocyte model for Ca2+ oscillation was modified

for hardware implementation. Simulation data reveals that these models follow the

original model with an acceptable accuracy. The simplicity of the models, which only

consist of add/sub and shift operations, made it possible to implement the nonlinear

astrocyte equations effectively on hardware. The HDL code describing the hardware

was first simulated and further implemented on FPGA as proof of concept.

In Chapter 5, the relation between the threshold time step that neuron produces

stable output and its input current was uncovered. Total computational time and

memory required for simulation of a single Izhikevich neuron with different time steps

were measured and compared. Further, the model was implemented on the FPGA

and design with different time steps were compared in the terms of speed, area and

power consumption.

6.2 Conclusion

In this dissertation, hardware were presented based on CORDIC and linearization

method to implement spiking neural networks on FPGA.

Using linearization technique, nonlinear terms in the neuron and astrocyte differ-

124

CONCLUSION AND FUTURE WORK

ential equations were replaced with a sequence of linear segments. This modification,

resulted in a small deviation in behaviour of astrocyte model. NRMSE error was cal-

culated to numerically measure this error. It was observed that for a higher number

of linear segments, this error tends to be smaller. As an example, for the term N2 in

the Table 4.1, this error was 0.011 for 4 linear segments, 0.009 for 6 linear segments

and 0.006 for 9 linear segments. Different models was proposed with different num-

ber of linear segments. Furthermore, computer simulations and error analysis were

performed to ensure proper function of the modified astrocyte model.

In another technique, CORDIC method was used to calculate nonlinear terms in

the differential equations describing spiking neurons and astrocytes. Comparing with

previous method, this algorithm had considerably higher precision and lower deviation

from the original model. For instance the NRMSD error for the CORDIC Izhikevich

measured as 0.0034 for 6 iterations, 0.0006 for 8 iterations and 0.0001 for 10 iterations.

Several errors including NRMSD, MD and timing error was calculated to compare

the results. Afterwards, the original and CORDIC based models were simulated

using Matlab software both as a single cell and population of cells. Simulation results

confirmed that CORCID models follow the original model with a very small deviation.

Further, implementation results confirmed the proper functioning of the proposed

CORDIC and linearization based SNNs on FPGA. These results also show that the

proposed design can lead to more efficient and faster FPGA-based SNNs compared

to implementation of the original models and other available implementations in the

literature. As an example, the Izhikevich neuron in the chapter 2, while working in

higher frequency, uses less resources comparing to other implementations in the liter-

ature, almost half and even one third in some cases. Despite being more efficient, the

implemented model had considerably smaller NRMSD error of 0.003% comparing to

other works where the minimum reported error was 3.7%. In chapter 3 a biological as-

trocyte model is implemented on the FPGA. As a result of using CORDIC algorithm,

the implemented model also had a very small error. While being accurate, implemen-

tation results indicated that the design is more area efficient and faster comparing to

other works. The minimum resources reported in the literature for implementation

125

CONCLUSION AND FUTURE WORK

of a similar astrocyte model are 11394 LUTs, 11666 slice registers and 42 DSP slices

while the proposed hardware uses 1156 LUTs, 1380 slice registers and no DSP slices.

This results indicate more than ten times optimization of the circuits. In the terms

of speed, delay from input to output for the proposed hardware is 1.02 µs while this

delay is reported in another work as 12.5 µs which indicates that the CORDIC based

model is approximately 12 times faster. Using the CORDIC method, the area were

decreased to one tenth while being almost 12 times faster.

Overall, this dissertation contributes to design and implementation of low-cost

and high-speed large-scale digital neuromorphic systems. It is important to note

that FPGA devices utilize more resources for hardware implementation than that of

ASICs. Implementing such hardware on silicon would have considerably less cost and

have better performance.

6.3 Suggested Future Work

The work in this dissertation could be continued as following :

• In this dissertation the CORCID algorithm was used to implement nonlinear

terms in differential equations describing biological neurons and astrocytes. This

algorithm has a very high precision , however, it is an iterative algorithm and requires

a certain number of the iteration to complete. Author believe that this algorithm

could be optimized to compensate the delay correspond to the iterations since the

the derivative of the membrane potential is have a limited value.

• So far, using the CORDIC algorithm, the models describing astrocyte and its

glutamate release mechanism were implemented on a FPGA. This work could be

continued by implementing other biological detailed models such Hodgkin-Huxley

neuron and eventually building a biological detailed neuro-processor.

• The CORDIC algorithm was used to calculate nonlinear terms in neuron and

astrocyte ODEs. Author believe that a CORDIC algorithm could be developed to

calculate all differential equations which make the implementation very cheaper and

faster.

126

VITA AUCTORIS

Moslem Heidarpur received the B.Sc. degree in electrical engineering and M.Sc.

degree in electronic engineering from the Department of Electrical Engineering, Razi

University, Kermanshah, Iran, in 2012 and 2014. He is now Ph.D. student in the

University of Windsor, Canada. His research interests include analog and digital

electronic circuit design and optimization, bio-inspired computing, neuromorphic and

integrated circuit design.

127

	Spiking Neural Networks: Modification and Digital Implementation
	Recommended Citation

	Title Page
	Declaration of Co-Authorship / Previous Publication
	Abstract
	Dedication
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	1.1 Background
	1.1.1 Neuromorphic Systems
	1.1.2 Spiking Neural Network

	1.2 Problem Statement
	1.2.1 The Challenge
	1.2.2 Implementation Platforms
	1.2.3 ASICs Versus FPGAs
	1.2.4 Objectives

	1.3 Proposed Solutions
	1.3.1 Linearization
	1.3.2 CORDIC

	1.4 Outline of disseration and list of the contributes

	References
	CORDIC-SNN: On-FPGA STDP Learning with Izhikevich Neurons
	2.1 Introduction
	2.2 CORDIC neuron
	2.2.1 Izhikevich neuron
	2.2.2 CORDIC Izhikevich
	2.2.3 Simulation Results

	2.3 Network and STDP rule
	2.3.1 Models Numerical Analysis
	2.3.2 Network Topology
	2.3.3 STDP Learning
	2.3.4 CORDIC STDP

	2.4 FPGA implementation
	2.4.1 Architecture of Izhikevich neuron
	2.4.2 Architecture of Network and STDP rule
	2.4.3 FPGA Implementation

	2.5 Results and Discussion
	2.6 Conclusion

	References
	CORDIC-Astrocyte: A Tripartite Glutamate-IP3-Ca2+ Interaction Dynamics on FPGA
	3.1 Introduction
	3.2 Background
	3.2.1 Pre and Post-Synaptic Neurons
	3.2.2 Astrocyte Ca2+ Oscillation
	3.2.3 Astrocyte Glutamate Production

	3.3 CORDIC Astrocyte Model
	3.3.1 CORDIC Based Astrocyte and Glutamate Release
	3.3.2 Simulation Results

	3.4 Hardware Implementation
	3.4.1 Hardware Design
	3.4.2 FPGA Implementation

	3.5 Results and Discussion
	3.6 Conclusion

	References
	Digital Implementation of a Biological-Plausible Model For Astrocyte Ca2+ Oscillations
	4.1 Introduction
	4.2 Background
	4.3 Modified Model
	4.4 Hardware Implementation
	4.5 Implementation Results
	4.6 Conclusion

	References
	Time Step Impact on Performance and Accuracy of Izhikevich Neuron: Software Simulation and Hardware Implementation
	5.1 Introduction
	5.2 Accuracy Analysis
	5.2.1 Impact on Software Simulation
	5.2.2 Impact on Hardware Implementation

	5.3 Performance analysis
	5.3.1 Impact on Software Simulation
	5.3.2 Impact on Hardware Implementation

	5.4 Discussion
	5.5 Conclusion

	References
	Conclusion and Future Work
	6.1 Summary
	6.2 Conclusion
	6.3 Suggested Future Work

	VITA AUCTORIS

