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Abstract

Identifying biomarkers that can be used to classify certain disease stages or predict

when a disease becomes more aggressive is one of the most important applications of

machine learning. Next generation sequencing (NGS) is a state-of-the-art method that

enables fast sequencing of DNA or RNA samples. The output usually contains a very

large file that consists of base pairs of DNA or RNA. The generated data can be analyzed

to provide gene expression, chromosome counting, detection of mutations on the genes,

and detecting levels of copy number variations or alterations in specific genes, just as

examples. NGS is leading the way to explore the human genome, enabling the future of

personalized medicine. In this thesis, a demonstration is done on how machine learning is

used extensively to identify genes that can be used to predict prostate cancer stages with

very high accuracy, using gene expression. We have also been successful in predicting the

location of prostate tumors based on gene expression.

In addition, traditional biomarker identification approaches, typically, use ma-

chine learning techniques to identify a number of genes and macromolecules as biomarkers

that can be used to diagnose specific diseases or states of diseases with very high accuracy,

using molecular measurements such as mutations, gene expression, copy number varia-

tions, and others. However, experts’ opinions and knowledge is required to validate such

findings. We, therefore, also introduce a new machine learning model that incorporates

a knowledge-assisted system used to integrate the findings of the DisGeNET database,

which is a framework that contains proven relationships among diseases and genes. The

machine learning pipeline starts by reducing the number of features using a filter-based
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feature selection method. The DisGeNET database is used to score each gene related to

the given cancer name. Then, a wrapper-based feature-selection algorithm picks the best

set of genes with the highest classification accuracy. The method has been able to re-

trieve key genes from multiple data sets that classify with very high accuracy, while being

biologically relevant, and no human intervention needed. Initial results provide a high

area-under-the-curve with a handful of genes that are already proven to be related to the

relevant disease and state based on the latest published medical findings. The proposed

methods results provide biomarkers that can be verified in wet lab environments and can

then be further analyzed and studied for diagnostic purposes.

VII



Dedication

This thesis is dedicated to the love of my life ’Nada’, my family and to the soul of my

mother; may she rest in peace.

VIII



Acknowledgements

I would like to thank all the people who made this thesis possible, especially my

supervisor Prof. Luis Rueda. He was very close to everyone in the Pattern Recognition

and Bioinformatics lab. He always supported us, guided us, and motivated us. Even when

we lost hope in certain areas, he would help us pursue a new area that would enable us

to strive again. The whole lab worked as a family; we were always holding our weekly

meetings to discuss our work, and that meeting made us feel more supportive to each

other. We were able to see what our colleagues were doing, which gave us an insight of

things to come, and if we needed help, they would assist us in the best way possible.

I would also like to thank Prof. Alioune Ngom who acted as one of the internal

committee members. He was also a great mentor to me; his guidance and his smiling

face were always there to help me and my lab teammates. Big thanks go also to Prof.

Saeed Samet, who was in my thesis committee, and he was also the Ph.D. coordinator,

making sure that our needs and concerns were always heard. I would like to sincerely

thank Prof. Phillip Karpowicz, who was the external reader of my thesis; he assisted me

in understanding much more about the biological aspects of my thesis.

My tokens of appreciation go to Prof. FangXiang Wu, for his willingness to be

the external examiner of this thesis, and for taking time to read this thesis. I was amazed

by having such an outstanding researcher like Prof. Wu as my external reader.

I must also thank my dear colleagues in my lab, especially Dr. Abedlrahman

Al-Khateeb who was more like a mentor to me during the past three years. He was the

helping hand that was always there to guide me. A big thank you goes to my colleague

IX



Quang Pham; we spent many days and nights in the lab. I remember entering the room

multiple times and seeing Quang sleeping while his R and Java scripts were running on his

PC!

X



Table of Contents

Declaration Of Co-Authorship / Previous Publication III

Abstract VI

Dedication VIII

Acknowledgements IX

List of Tables XV

List of Figures XVII

List of Acronyms XIX

1 Introduction 1

1.1 Prostate cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Next Generation Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Gene Expression Data Analysis and Machine Learning Methods . . . . . . 5

1.4 Traditional and Integrative Machine Learning Feature Selection Methods . 8

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

XI



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 A Hierarchical Machine Learning Model to Discover Gleason Grade-

Specific Biomarkers in Prostate Cancer 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Identifying Transcripts within Different Gleason Scores . . . . . . . 24

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Prediction of Tumor Location in Prostate Cancer Tissue Using a Ma-

chine Learning System on Gene Expression Data 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Biological insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XII



3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 An Integrative Knowledge-based Method to Identify Cancer Biomark-

ers Based on Gene-Disease Relations 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Filter-based feature selection . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 DisGeNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Wrapper-based feature selection . . . . . . . . . . . . . . . . . . . . 84

4.2.5 Back-propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusion and Future Work 94

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDICES 99

A Information about data sets used 99

A.1 List of aligning percentage from 104 samples in the Hierarchical method . . 99

A.2 List of samples used in the Laterality method . . . . . . . . . . . . . . . . 105

XIII



A.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

VITA AUCTORIS 134

XIV



List of Tables

1.1 Gleason groups as per the latest study from Epstein et al [4]. . . . . . . . . 3

2.1 Numbers of samples in different Gleason groups. . . . . . . . . . . . . . . . 20

2.2 Set of resulting transcripts in Gleason group 1. . . . . . . . . . . . . . . . . 28

2.3 Set of resulting transcripts in Gleason group 2. . . . . . . . . . . . . . . . . 29

2.4 Set of resulting transcripts in Gleason group 3. . . . . . . . . . . . . . . . . 30

2.5 Set of resulting transcripts in Gleason group 4. . . . . . . . . . . . . . . . . 30

2.6 Classification performance for each step in the hierarchy. . . . . . . . . . . 30

3.1 Number of samples in each prostate cancer tumor location. . . . . . . . . . 50

3.2 Number of samples in each prostate cancer tumor location after applying

the SMOTE+ENN resampling methods. . . . . . . . . . . . . . . . . . . . 53

3.3 Accuracy and precision for classifying each class versus the rest. . . . . . . 56

3.4 Genes that can predict tumors in each location class of the prostate tumor. 56

4.1 Results for running the laterality study. . . . . . . . . . . . . . . . . . . . . 87

4.2 Results for running the laterality study with the new proposed method . . 87

4.3 Results for running the previous method. . . . . . . . . . . . . . . . . . . . 87

4.4 Results for running the proposed method. . . . . . . . . . . . . . . . . . . 88

XV



4.5 The effect of changing the value of (number of genes chosen) on the classi-

fication performance and the number of genes that are related to cancer. . 88

A.1 The percentage of uniquely aligned mapped reads to the human genome

for each sample of the 104 prostate cancer patients sample using the STAR

genome alignment tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 The location of tumor and the Gleason scores for the 499 prostate cancer

patients samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

XVI



List of Figures

1.1 The central dogma of molecular biology. . . . . . . . . . . . . . . . . . . . 2

1.2 Illumnia Nextseq 550 model is one of the most powerful next generation

sequencers; image taken from the Illumina website [9] . . . . . . . . . . . . 4

1.3 Pipeline used to obtain the TPM expression levels from the raw reads that

the NGS technology produces. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Hypothetical example that shows how the synthetic minority oversampling

technique (SMOTE) works. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Machine learning pipeline used in the proposed method. . . . . . . . . . . 26

2.3 Gleason groups and their distributions. . . . . . . . . . . . . . . . . . . . . 27

2.4 Hierarchical tree of classifications of Gleason groups against the rest, along

with the corresponding classification accuracies. . . . . . . . . . . . . . . . 28

2.5 Accuracy obtained by each classifier for classifying one versus the rest for

all five Gleason groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Classification accuracies obtained after applying the model on the second

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

XVII



2.7 An interactive figure taken from proteomics database STRING. It shows

neighbouring protein binding and pathway interactions for a given gene using

STRING and KEGG pathway analysis. Here, the gene of interest is PIAS3,

an identified possible biomarker in the 4 + 3 = 7 score. The figure shows

the interaction between other proteins and pathways associated with it. . 35

3.1 Possible locations of the tumor in prostate cancer. . . . . . . . . . . . . . . 50

3.2 Synthetic Minority Oversampling Technique (SMOTE) works by adding new

synthetic sample randomly along the line that connects each of the two

original samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Different classifiers accuracy for the different locations. . . . . . . . . . . . 56

3.4 The ROC curve for left versus the rest using different classifiers. . . . . . 58

3.5 The ROC curve for bilateral versus the rest using different classifiers. . . . 59

3.6 The ROC curve for right versus the rest using different classifiers. . . . . . 60

4.1 Machine learning pipeline used on the proposed method and testing. . . . . 79

XVIII



List of Acronyms

mRNA messenger RNA

NGS Next Generation Sequencing

TPM Transcripts Per Kilobase Million per reads

AUC-ROC Area Under the Receiver Operating Characteristics Curve

AUC Area Under the Curve

ROC Receiver Operating Characteristics Curve

TPR True Positive Rate

FPR False Positive Rate

LHGDN Literature Human Gene Derived Network

TNM Tumour, Node, Metastasis

TMA Tissue MicroArray

CNN Convolutional Neural Network

SVM Support Vector Machine

NCBI National Center for Biotechnology Information

GEO Gene Expression Omnibus

MCC Moffitt Cancer Center

AVAMC Atlanta Veterans Administration Medical Center

hg19 human genome, version 19

RPKM Reads Per Kilobase per Million of reads

FPKM Fragments Per Kilobase per Million of reads

SMOTE Synthetic Minority Oversampling Technique

XIX



NCL Neighbourhood Cleaning rule

IG Information Gain

mRMR minimum Redundancy Maximum Relevance

Rcor3 Rest Corepressor 3

AR Androgen Receptors

DHT DiHydrotestosterone

PSA Prostate Specific Antigen

TRUS Transrectal Ultrasound image

DRE Digital Rectal Exam

MRI Magnetic Resonance Imaging

CRF Conditional Random Fields

TCGA The Cancer Genome Atlas

PRAD Prostate Adenocarcinoma

ENN Edited Nearest Neighbor

RBF Radial Basis Function

ER Endoplasmic Reticulum

PP2A Protein Phosphatase 2A

OXPHOS Oxidative Phosphorylation

HIF Hypoxia-Inducible Factor

MRP Mitochondrial RNA Processing

APC Antigen-Presenting Cells

SRSF6 Serine and Arginine Rich Splicing Factor 6

XX



EMT Epithelial to Mesenchymal Transition

NED Neuroendocrine Differentiation

CNA Copy Number Alterations

CTD Comparative Toxicogenomics Database

RGD Rat Genome Database

MGD Mouse Genome Database

GAD Genetic Association Database

LHGDN Literature Human Gene Derived Network

CSV Command Separated Values

NCBI National Center for Biotechnology Information

GEO Gene Expression Omnibus

BCB Conference on Bioinformatics, Computational Biology & Health Informatics

XXI



Chapter 1

Introduction

Machine learning provides tools and methods that help work on large data sets to find

patterns that are usually hidden. The main idea behind machine learning is that we do

not explicitly provide the rules, but examples of the data and the labels associated with it

[1]. As such, the underlying algorithms will be able discover the hidden patterns and rules

that can be used to predict the class labels for a new, unknown sample [2]. The methods

used for of automatic classification and recognition of newly given samples are becoming

very important and are used in many fields, including the fields of biology and clinical

diagnosis.

Cancer is one of the main causes of death worldwide. Cancer is considered a

genetic disorder [3], in which gene mutations and changes cause the cells to malfunction,

which affects the cells growth and division. Roughly speaking, genes are “transformed” into

proteins that are responsible for most of the work in biological processes and are required
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Figure 1.1: The central dogma of molecular biology.

for the structure, function, and regulation of the body’s tissues and organs. Parts of the

DNA are transcribed into messenger RNA (mRNA) through the process of transcription

and then they will be translated into proteins in the process of translation. The full process

is typically called the central dogma and is illustrated in Figure 1.1 Changes to the genes,

mRNAs or the proteins may lead to some kind of malfunctions in the cell or tissue. As

such, tissue might then go through uncontrolled growth and become cancer.

1.1 Prostate cancer

Prostate cancer is the cancer type with the highest incidence among males; around 1.276

million cases were newly diagnosed worldwide in 2019 [1]. In prostate cancer, the size

of the main tumour and the lymphatic involvement are used to assign a metric of tissue

organization and disease aggressiveness called the Gleason score.

The Gleason score is calculated by adding two numbers: the most common pattern

2



Table 1.1: Gleason groups as per the latest study from Epstein et al [4].

Gleason Group Score
1 6
2 3 + 4 = 7
3 4 + 3 = 7
4 8
5 9 and 10

of the tumour cells is used as the first number, while the second number corresponds to

the next most common pattern. Each individual score varies from 3 to 5, depending on

the aggressiveness of the tumour. This number is determined by a pathologist, where the

highest score means the most aggressive form of cancer [4]. For example a Gleason score

of 3+3=6 is the first stage of prostate cancer, while a 5+5=10 is considered the last stage

of the disease. Epstein et al., however, indicated that Scores 2–5 are no longer assigned to

the tissue and these multiple scores can be categorized together with score 6 as group 1,

yielding categories as depicted in Table 1.1.

Prostate cancer tumor can be located in three different locations, left, right or

the middle of the prostate gland. A recent study by Akatsuka et al. [6] concluded that

cancer incidence and prognosis varies based on the location within the prostate gland. In

Chapter 3 we utilized gene expressions to predict the location of the tumor.

1.2 Next Generation Sequencing

The first successful attempts to sequence DNA started in the early 1970s by academic

researchers using laborious methods based on two-dimensional chromatography. Then,

3



Figure 1.2: Illumnia Nextseq 550 model is one of the most powerful next generation se-
quencers; image taken from the Illumina website [9]

fluorescence-based sequencing methods were developed with a DNA sequencer [7]. The

whole process of DNA sequencing became much easier and faster in the late 2000s [8].

Since then, DNA sequencing technology speeds increased dramatically, which

cleared the way to start the process of sequencing the complete DNA of different species of

life, including the Human genome. Next generation sequencing (NGS) parallel processing

power enabled the sequencing of a massive number of DNA molecules at the same time,

whose number can stretch up to the order of millions of molecules.

The high-throughput and the possibility of sequencing multiple samples in the

same run enabled researchers to advance in the fields of clinical diagnostics, personalized

medicine and genetic diseases, among others. Modern-day Sanger sequencing instruments
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use capillary-based automated electrophoresis, which typically analyzes 8–96 sequencing

reactions simultaneously. NGS systems have been introduced in the past decade, allowing

for massively parallel sequencing reactions. These systems are capable of analyzing millions

or even billions of sequencing reactions at the same time. The major disadvantage of this

technology is that to achieve a significant level of accuracy very short sequencing reads

have to be generated.

These include whole genome sequencing, exome sequencing, RNA sequencing,

disease panels, lane rentals, and many more. Illumina is one of the market leaders in pro-

viding life science tools and integrated systems for large-scale analysis of genetic variation

and function. They produce multiple models of next generation sequencers, such as the

Illumina Nextseq 550 sequencer model shown in Figure 1.2.

1.3 Gene Expression Data Analysis and Machine Learn-

ing Methods

The data produced by NGS are usually large raw data sets, which may include the whole

genome DNA or messenger RNA from the tissues that are inspected. These raw data sets

consist of millions of short sequence reads, which are used to measure gene expression at

the nucleotide resolution level. The first step to obtain information from thes data consists

of aligning these reads to a reference genome. There are many tools that can be used to

perform this task. One of the most widely-used tools is Tophat2 [10], which aligns the

given raw reads into annotated genes or transcripts. STAR [11] is another aligner tool
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that is well-known for its blazing aligning speed. The next step involves counting these

reads. This task can be done using tools like Tophat2 or RSEM [12] to generate the “gene

expressions”, which are accounted for in terms of TPM (Transcripts Per Kilobase Million).

Figure 1.3 shows the pipeline used to obtain the TPM expression levels from the raw reads

that the NGS technology produces.

Once we obtain the gene expressions from each sample and the label of the cor-

responding sample, the next step is a direct implementation of machine learning methods.

Machine learning provides methods to handle data with given labels, which are

called supervised learning. We also have unsupervised learning methods which deals with

data without labels. Classifiers are methods that can utilize data that includes features

and their corresponding labels to build a model that is capable of predicting the labels

of new given, unlabelled samples. For example, a sample has gene expressions which are

considered features and also has a Gleason score that can be considered the label.

There are many classifiers that can be used, but there is no specific classifier

that can solve all the problems efficiently. In Chapter 2, we used multiple classifiers to

build a model that predicts the Gleason group of a sample prostate tumour given it’s gene

expressions, while in Chapter 3, we used different classifiers to predict the location of the

tumour.

The data generated from the NGS includes gene and transcript data for each

sample. A single sample can contain up to 70,000 transcripts or more than 30,000 genes.

Dealing with this huge number of features would make the classifiers struggle with pro-

cessing all the features; this problem is known as the curse of dimensionality. Machine

6



Figure 1.3: Pipeline used to obtain the TPM expression levels from the raw reads that the
NGS technology produces.
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learning has tools to reduce the number of features using feature selection methods.

1.4 Traditional and Integrative Machine Learning Fea-

ture Selection Methods

Traditional feature selection is generally done in two steps. The initial step involves filter-

based the feature selection, which aims at giving a score to each feature based on its effect

on the predicted target for the main classifier. Each attribute, which in our case, are

the genes, is assigned a score that depends on how relevant the feature is to perform the

classification task. The second step is a wrapper-based feature selection method, which

involves identifying sets of attributes that can be used to categorize certain biological

features (the target) [13]. An example of a clinical feature that can be used as a target for

classification is the Gleason score in prostate cancer or progression stages in breast cancer.

The constructed model can then be assessed using certain performance measures, such as

accuracy, specificity, or Area Under the Receiver Operating Characteristics (AUC-ROC)

[14].

The final step of traditional machine learning entails a trained individual deter-

mining the validity of the results based on the newest literature.

In order to evaluate the model, certain metrics are used, such as accuracy which

calculates the ratio of correctly classified samples against the total number of samples [15].

Another two metrics used are sensitivity and specificity, where sensitivity indicates, how

well the test predicts one category and specificity measures how well the test predicts the
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other category. Another important metric is the AUC (Area Under The Curve), where the

curve is the ROC (Receiver Operating Characteristics) curve. It is a graph that shows the

performance of a classification model by plotting the True Positive Rate (TPR) against the

False Positive Rate (FPR), where TPR is the the number of samples classified correctly

as a positive class divided by the sum of both the number of samples classified incorrectly

as the negative class and number of samples classified correctly as the positive class. FPR

is the number of samples classified correctly as a negative class divided by the sum of

both the number of samples classified incorrectly as the negative class and the number

of samples classified correctly as the positive class. This area indicates the capability of

the model to distinguish between different classes. A higher AUC value means a better

predictive model.

On the other hand, integrative techniques add domain knowledge from trusted

external knowledge databases during feature selection, which might lead to better ability to

interpret the data and might give a better predictive outcome. A recent study by Perscheid

et al. proposed a framework that utilizes domain knowledge from different databases to

generate a list of genes related to the disease of study [16].

The way genes affect certain diseases is an area that is being extensively studied,

and numerous discoveries in this regard have already been published. Taking that aspect

into account, DisGeNET [17] is a database that can gather knowledge and offer a tool that

can be used to find established relations between genes and diseases.

DisGeNET incorporates data from expert-curated sources, GWAS catalogues, an-

imal models and the literature. DisGeNET data are consistently annotated with controlled
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terms and community-driven ontologies. It also integrates the literature directly using text-

mining approaches like The Literature Human Gene Derived Network (LHGDN) [18] and

BeFree data, obtained using the BeFree System, which obtains gene-disease associations

from MEDLINE abstracts [19] [20].

This database provides several ways to gather its findings, whether it be through

the main web portal, a web API, a SQL database or an all in one file. The results obtained

are a score that associates a gene to a disease.

There are other databases that are publicly available , like DISEASES [21], Poly-

Search2 [22], and DigSee [23]. However, DisGeNET contains more resources than any other

database, and has a higher number of citations in the latest publications. In Chapter 4 of

this thesis, we propose a knowledge-base integrated approach that enhances conventional

methods such as those proposed in Chapters 2 and 3, and it can be used with any machine

learning project that deals with cancer data sets.
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1.5 Thesis Organization

This thesis is organized in five chapters. The first chapter is an introduction to the rel-

evant fields and the main terms used in the thesis. Chapter 2 discusses how to utilize

machine learning techniques to identify Gleason Groups based on mRNA transcripts and

gene expressions. This involves a multi-class classification problem that was solved using

a hierarchical model:

Chapter 2: Hamzeh, O., Alkhateeb, A., Zheng, J. Z., Kandalam, S., Leung,

C., Atikukke, G. & Rueda, L. (2019). A Hierarchical Machine Learning Model to Discover

Gleason Grade-Specific Biomarkers in Prostate Cancer. Diagnostics, 9(4), 219.

Chapter 3 covers the implementation of a machine learning approach that uses

feature selection methods and classification models to predict the location of the prostate

tumours based on gene expression:

Chapter 3: Hamzeh, O., Alkhateeb, A., & Rueda, L. (2018, April). Predicting

Tumor Locations in Prostate Cancer Tissue Using Gene Expression. In International

Conference on Bioinformatics and Biomedical Engineering (pp. 343-351). Presented at

the 6th International Work-Conference on Bioinformatics and Biomedical Engineering,

IWBBIO 2018, Granada, Spain, April 25–27, 2018.

In Chapter 4, we propose an integrative feature selection method that utilizes lit-

erature from online databases to integrate knowledge of gene to disease relation to enhance

the feature selection methods:

Chapter 4: Hamzeh, O., & Rueda, L. (2019, September). A Gene-disease-based
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Machine Learning Approach to Identify Prostate Cancer Biomarkers. In Proceedings of

the 10th ACM International Conference on Bioinformatics, Computational Biology and

Health Informatics (pp. 633-638). Presented at the Machine Learning Models for Multi-

omics Data Integration MODI 2019, a workshop held at the 10th ACM Conference on

Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), in the , Ni-

agara Falls, New York, September 7-10, 2019.

Finally, Chapter 5 concludes the thesis and highlights the contributions and some

of the drawbacks of the implementations covered inside this thesis, and also discusses

possible avenues for extension of the proposed approaches and future work.
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[19] Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J.,

Centeno, E., ...& Furlong, L. I. (2016). DisGeNET: a comprehensive platform inte-

grating information on human disease-associated genes and variants. Nucleic Acids

Research, gkw943.
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Chapter 2

A Hierarchical Machine Learning

Model to Discover Gleason

Grade-Specific Biomarkers in

Prostate Cancer

2.1 Introduction

Cancer is among the main causes of death worldwide. Among males, prostate cancer is

the cancer type with the highest incidence; 1.276 million new cases were diagnosed in 2019

[1]. To date, most cancer studies have concentrated on finding biomarkers that enable

differentiating malignant tumours from benign ones. More recent studies, though, have
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focused on specific clinical aspects of tumours, such as recurrence, progression, survivability,

and metastasis, among others.

In the 1950s, Denoix devised a system that categorises solid tumours into different

stages [2]. The classification (TNM) of cancer progression is done by utilising (T) the

extension and the size of the main tumour, (N) the lymphatic involvement, and (M) the

metastasis levels [3]. In prostate cancer, these characteristics are also used to assign a

metric of tissue organisation and disease aggressiveness called the Gleason score. That

score is calculated by adding two numbers: the most common pattern of the tumour cells

is used as the first number, while the second number corresponds to the next most common

pattern. Each individual score varies from 3 to 5, depending on the aggressiveness of the

tumour, where the highest score means the most aggressive form of cancer [4]. Epstein

et al., however, indicated that Scores 2–5 are no longer assigned to the tissue and these

multiple scores can be categorized together with score 6 as group 1, yielding categories

as depicted in Table 1.1. They are used to determine prognosis of disease. As such, we

have used it as the main scheme for prostate cancer score categorization in our method to

detect transcriptomic biomarkers that can accurately classify specific Gleason scores and

groups. This categorization strategy has been shown to clearly indicate cancer recurrence,

and improve the prognostic role of the Gleason score [5].

Recent prostate cancer research has greatly focused on identifying gene expres-

sion patterns that correlate with disease progression, and can be used as predictive tools

for patient treatment and outcome. Moreover, advances in next generation sequencing

(NGS) technology have made genomic data analysis widely available. The output of NGS

sequencers requires preprocessing algorithms to do things such as align the reads to a ref-

17



erence human genome and assemble them into transcripts. Many genomic tools that align

the RNA-Seq reads to the human genome have been proposed, especially BLAST is one of

the first tools developed to align reads [6]. TopHat2 is a widely used, open-source tool that

incorporates Bowtie sequence alignment to align reads [7]. STAR is the fastest RNA-Seq

sequence alignment algorithm to date, although it requires huge computational resources

to perform efficiently [8]. Based on the need for understanding the biological basis of the

visual Gleason microscopic assessment, Roberto et al. conducted a gene expression pro-

filing on two groups of Gleason scores 6 and 7, or high, using a metabolic gene panel.

The panel consists of many gene members of the JAK/STAT pathway [9]; this pathway

is involved in processes such as immunity, cell division, cell death and tumour formation.

In this study, we analysed the transcription level of different Gleason scores to find genes

that can identify one specific Gleason group from the others.

In addition, machine learning applications in genomic analysis have become a solid

approach to analysing RNA-Seq data for studying a multitude of diseases. Alkhateeb et al.

proposed a supervised method to discover biomarkers that can predict the likelihood that

a prostate cancer tumour will progress to the next stage [10]. Arvaniti et al. proposed a

deep learning approach to predict Gleason scores [11]. Their model was trained using tissue

microarray (TMA) images of 641 patients with varying Gleason scores, and validated using

245 patient samples with Gleason scores that were reviewed by pathologists. Although the

study by Arvaniti et al. reported decent performance measurements (average accuracy

85.72%, and recall 57%), it did not report the panel of biomarker genes that were used by

the trained convolutional neural network (CNN) to predict Gleason scores. Citak-Er et al.

proposed a machine learning approach for predicting Gleason scores [12]. Their method
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uses a support vector machine (SVM) on prostate images to learn the visual attributes of

the disease and to predict the disease outcome. That study was conducted on a limited

cohort of prostate cancer patients, and the results showed a higher sensitivity over the

specificity in the prediction model (accuracy = 76.83%; sensitivity = 83.38%; specificity =

68.36%).

The focus of this study was to identify genes that can be used to differentiate

specific Gleason groups. This work is an extension of our previously proposed predic-

tion model, which was based on analysing the RNA-Seq data from patients with different

Gleason scores [13]. The method can track transcripts associated with specific genes, in

addition to their corresponding expression values. The results of the initial trial show great

potential to build a simple system to diagnose Gleason scores based on NGS data.

2.2 Materials and Methods

The primary data set used in this study was retrieved from the National Center for Biotech-

nology Information (NCBI) and is referenced with Gene Expression Omnibus (GEO) num-

ber GSE54460 [40]. This RNAseq prostatectomy data set was generated from 106 prostate

cancer tissue samples and validated on an independent data set with 140 patients. Several

health sciences centres provided data samples as well. The Moffitt Cancer Center (MCC)

contributed ten samples from patients who underwent radical prostatectomies between the

years 1987 and 2003. The Sunnybrook Health Sciences Centre at the University of Toronto

provided 35 samples from patients treated for prostate cancer between the years 1998 and

2006. The Atlanta Veterans Administration Medical Center (AVAMC) donated 61 tissue
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Table 2.1: Numbers of samples in different Gleason groups.

Gleason Score Number of Samples
6 10

3 + 4 = 7 55
4 + 3 = 7 24

8 10
9 4

samples from patients who underwent radical prostatectomy between the years 1990 and

2000. Table 2.1 shows the number of samples grouped by their Gleason group. Based on

Epstein’s model, there are five Gleason groups: 4 + 3 = 7, 3 + 4 = 7, 6, 8, and above 8 (9

and 10).

This data set was generated by using the Illumina HiSeq 2000 NGS on paired-end

sequences of length 51 bp each. The pre-processing pipeline starts by obtaining the RNA-

Seq samples and pre-processing them using SRAtools [41], as depicted in Figure 1.3. The

process continues by incorporating the STAR aligner [8] to align the samples reads into

the human genome (hg19). Then, the process assembles the transcripts and quantifies the

reads into the assembled transcripts using RSEM [42]. RSEM uses transcripts per million

of reads (TPM) to compute the quantification of each read into a transcript.

NGS technology allows us to read the patient’s genome and generate a significant

amount of raw data in a snapshot. However, the underlying process yields artefacts, and

pre-processing must be done before the downstream analysis. These artefacts include

duplication and bias reads [43], among others. Counting the reads that are assembled by

mapping them to the human genome gives accurate indicators of transcript expression.

Since the samples are pair-ended reads, TPM is used to measure the read quantification
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rather than reads per kilobase per million of reads (RPKM) [44]. Additionally, the reason

for choosing TPM instead of fragments per kilobase per million (FPKM) [45] is that TPM

normalises the reads to the length of the gene first, which makes it easier to compare the

quantified reads among different samples.

2.2.1 Class Imbalance

Some classes have a markedly lower number of samples than the others, which may cause

some classifiers to become biased towards the majority class. To solve this problem, mul-

tiple resampling methods were deployed and tested to identify the specific method that

would yield the best solution for a particular data set. After applying multiple oversam-

pling and under-sampling methods, the best option was found to be the synthetic minority

oversampling technique (SMOTE) [46] for oversampling the minority class, while the neigh-

bourhood cleaning rule (NCL) [47] was used for undersampling the majority class.

NCL works by removing any sample whose class is different from the class of at

least two of its three nearest neighbours. SMOTE, instead, introduces a new way of creating

new samples, by utilising the feature vector that connects each sample and introduces a

new synthetic sample along the line that connects the two underlying samples. The exact

location of the new sample on the line itself is calculated by measuring the Euclidean

distance between the two samples and multiplying that value by a random number between

0 and 1. Figure 2.1 shows a hypothetical example of the mechanism followed by SMOTE,

by adding new synthetic samples randomly along the line that connects each of two original

samples in a minority class. The blue points represent the original samples, while the amber
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Figure 2.1: Hypothetical example that shows how the synthetic minority oversampling
technique (SMOTE) works.

points represent the synthetically generated samples.

2.2.2 Feature Selection

As the output of the pre-processing step, the method retrieved 41,971 transcripts along with

their corresponding quantifications measured by TPM. Such a large number of transcripts

leads to a complex classification model, mostly due to the curse of dimensionality [48].

Thus, feature selection was applied to reduce the dimensionality of the problem. The first

step of the feature selection is to filter the transcripts based on their information gain values

by selecting the ones with the highest scores. The filter method, which is called attribute

evaluator, is the procedure by which each attribute (transcript) in the data set is assessed
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with regard to the class. This procedure produces a list of attributes (transcripts) with a

score for each attribute showing its effect on the actual class. Then, the attributes with the

highest scores are selected, discarding those with lower scores. In this work, information

gain (IG) was used as an attribute evaluator to rank each attribute vector [49]. The IG of

attribute vector X concerning class vector A is defined as follows:

IG(A,X) = H(A)−H(A|X), (2.1)

Where, H(A) is the entropy of the class vector A and H(A|X) is the conditional

entropy of A given X.

After filtering the transcripts based on their IG scores, a wrapper-based feature

selection algorithm that uses minimum redundancy maximum relevance (mRMR) is used to

narrow down the most relevant, least redundant transcripts to a few per group; mRMR has

the capability of incorporating any classifier to select features (transcripts) that minimise

the redundancy while increasing the correlation to the class vector [50]. The wrapper

method adds up the features that minimise redundancy (W ), and maximize the relevance

(V ), with the best possible accuracy of an SVM classifier that uses a linear kernel, as per

the following equations:

W =
1

|S|2
∑
i,j∈S

I(i, j) , (2.2)

and

V =
1

|S|
∑
i∈S

I(h, i) , (2.3)

where S is the set of features, I(i, j) is the mutual information between features (i, j), and
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h is the class, in our case, the five Gleason groups.

2.2.3 Classification

The problem dealt with is multi-class classification, which was solved using the one-versus-

rest approach. There are five different classes, which correspond to the five distinct Gleason

groups. To apply a one-versus-rest approach, we created five different data sets from

the actual data. For each data set, we set one of the classes to form the positive class,

while the rest of the classes were combined to form the negative class. The classification

pipeline resembles a binary tree structure, where each internal node is a binary classification

problem (see Figure 2.4). Starting from the root, in the one-versus-rest classification, we

remove the samples that belong to the chosen class earlier. We repeat the same steps of

building data sets for the remaining four different classes. At each node, the best class

is chosen and the classification continues in the same fashion until two classes are left.

To select the best class at each node, different performance measures can be used; The

accuracy, sensitivity, and specificity are used in this study. Note that the hierarchical

model involves list processing, and as such, any error at a particular node is propagated

down the tree structure. In a greedy-like algorithm, we minimise the error propagation by

choosing the class with the highest accuracy at each internal node.

2.2.4 Identifying Transcripts within Different Gleason Scores

We used the Scitkit-learn [51] library to apply different classification algorithms to the

final transcripts selected. This step identifies which transcripts can decide a Gleason group
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from the others based on their quantification values. Standard classifiers such as Näıve

Bayes and SVM were used in this study to build the classification model. Naive Bayes is

a probability-based classifier that applies the well-known Bayes’ theorem, while assuming

that the features are independent of each other [52]. While being simple, Näıve Bayes

has been shown to perform very well in many problems and avoid overfitting. An SVM

classifier was also used to build a prediction model using the transcripts selected in the

previous step [53]. The advantage of SVM is its exceptional generalisation power, especially

in high-dimensional data with a small number of samples. Figure 2.2 shows the pipeline

followed in this study.

2.3 Results

The first data set used in this study is a collection of 104 samples and their TPM values.

Stated as a classification problem, this study designates five classes obtained from joint

Gleason groups. The distribution of each group is shown in Figure 2.3. The data set

was mapped against the human genome version hg19 with 88% to 99% uniquely aligned

reads. Throughout a 10-fold cross-validation model, we obtained a total of seven samples

that were misclassified and another 97 samples that were classified correctly, with the total

number of samples being 104. The accuracy of the model was calculated from the total

number of correctly classified samples divided by the total number of samples.

The model also identified six gene transcripts that are differentially expressed

in the five different Gleason scores. Of these, the corresponding genes shown in Tables

2.2–2.5 are the most relevant for identifying prostate cancer; the Gleason scores using the
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Figure 2.2: Machine learning pipeline used in the proposed method.
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Figure 2.3: Gleason groups and their distributions.

hierarchical method are illustrated in Figure 2.4. Different classification methods for each

stage within the hierarchy are shown in Table 2.6.

The first node of the hierarchy yields 94% accuracy in identifying Gleason score

3 + 4 = 7 compared to the other scores. The samples are then passed through node 2,

in which Gleason score 4 + 3 = 7 was identified from the rest with a prediction accuracy

of 98%. The other samples were then passed through node 3, where Gleason score 6 was

identified with the accuracy of 100%. The remaining samples were finally processed in

the last node, where the Gleason score 8 was identified from the Gleason score 9 with the

accuracy of 100%. Due to the similarity in the aggressiveness of the tumour and the low

number of samples, all the other Gleason scores were merged in the last node.

Figure 2.5 shows the classifiers that have been utilised to identify the set of tran-

scripts that differentiate specific Gleason groups against the rest. The classifiers are rep-
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Figure 2.4: Hierarchical tree of classifications of Gleason groups against the rest, along
with the corresponding classification accuracies.

Table 2.2: Set of resulting transcripts in Gleason group 1.

Transcript Gene Description
NM 003350 UBE2V2 ubiquitin conjugating enzyme E2 V2

(UBE2V2 )
NM 153051 MTMR3 myotubularin related protein 3 (MTMR3 ),

transcript variant 2
NM 207445 C15orf54 chromosome 15 open reading frame 54

(C15orf54 ),
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Table 2.3: Set of resulting transcripts in Gleason group 2.

Transcript Gene Description
NM 001170880 GPR137 G protein-coupled receptor 137 (GPR137 ),

transcript variant 2
NM 001198827 C8orf58 chromosome 8 open reading frame 58

(C8orf58 ), transcript variant 3
NM 004629 9p13.3 Fanconi anemia complementation group G

(FANCG)
NM 001098268 LIG4S DNA ligase 4 (LIG4 ), transcript variant 3

NM 016641 GDE1 glycerophosphodiester phosphodiesterase 1
(GDE1 ), transcript variant 1

NM 002445 MSR1 macrophage scavenger receptor 1 (MSR1 ),
transcript variant SR-AII

NM 001126337 TUFT1 tuftelin 1 (TUFT1 ), transcript variant 2
NM 033071 SYNE1 spectrin repeat containing nuclear envelope pro-

tein 1(SYNE1 ), transcript variant 2
NM 052906 ELFN2 extracellular leucine rich repeat and fibronectin

typeIII domain containing 2 (ELFN2 ), tran-
script variant 1

NM 000714 TSPO translocator protein (TSPO), transcript variant
PBR

NM 004374 COX6C cytochrome c oxidase subunit 6C (COX6C )
NM 001007544 C1orf186 chromosome 1 open reading frame 186

(C1orf186 )
NM 001276438 KCNJ15 potassium voltage-gated channel subfamily J

member 15 (KCNJ15 ), transcript variant 7
NM 001252021 TOR2A torsin family 2 member A (TOR2A), transcript

variant 7
NM 152612 CCDC116 coiled-coil domain containing 116 (CCDC116 ),

transcript variant 1
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Table 2.4: Set of resulting transcripts in Gleason group 3.

Transcript Gene Description
NM 001136224 RCOR3 REST corepressor 3 (RCOR3 ), transcript vari-

ant 2
NM 001017967 MARVELD3 MARVEL domain containing 3 (MARVELD3 ),

transcript variant 1
NM 006099 PIAS3 protein inhibitor of activated STAT 3 (PIAS3 )
NM 152395 NUDT16 nudix hydrolase 16 (NUDT16 ), transcript vari-

ant 2
NM 006473 TAF6L TATA-box binding protein associated factor 6

like (TAF6L)
NM 001145541 TCP11L1 t-complex 11 like 1 (TCP11L1 ), transcript vari-

ant 2
NM 182501 MTERF4 mitochondrial transcription termination factor

4 (MTERF4 )

Table 2.5: Set of resulting transcripts in Gleason group 4.

Transcript Gene Description
NM 001258330 EPB41L1 erythrocyte membrane protein band 4.1 like 1

(EPB41L1 ), transcript variant 4

Table 2.6: Classification performance for each step in the hierarchy.

Gleason Group Accuracy Sensitivity Specificity F-Measure MCC ROC
3 + 4 = 7 vs. Res 94 95 94 0.94 0.88 95
4 + 3 = 7 vs. Rest 98 100 96 0.98 0.96 99

6 vs. Rest 100 100 100 1.00 1.00 100
8 vs. 9 100 100 100 1.00 1.00 100
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Figure 2.5: Accuracy obtained by each classifier for classifying one versus the rest for all
five Gleason groups.

resented on the x-axis, while the classification performance measurements are represented

on the y-axis.

Näıve Bayes outperformed the other classifiers, as it distinguished the first Glea-

son score node from the rest with the accuracy of 94%, the second node with a higher

accuracy of 98%, and the last two Gleason score nodes with the accuracy of 100% accu-

racy, as shown in Figure 2.5.

2.4 Discussion

Many of the genes that encode the differentially expressed transcripts identified in this

study have been previously shown to play various roles in cancer. Some have been shown

to promote cancer progression, while other play a protective role. For example, UBE2V2,
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Figure 2.6: Classification accuracies obtained after applying the model on the second data
set.

whose gene’s transcript was selected in the third node of our hierarchical model, has been

shown to protect cells by mediating DNA repair functions [16]. In familial prostate cancer,

however, a high frequency variant of UBE2V2 was identified and found to affect DNA

repair and androgen signaling [17]. In our model study, a different quantification of the

UBE2V2 transcript was able to predict Gleason score 6 (group 1) in the first data set.

Differential expression of UBE2V2 has also been associated with poor prognosis in breast

cancer [18].

Our study also reveals that the differential expression of GPR137 expression and

EPB41L1 is associated with tumours of Gleason scores 3 + 4 = 7 and 8, respectively.

Earlier studies show that proteins encoded by EPB41L1 are associated with the proper

organisation of the cell cytoskeleton, and that EPB41L1 plays an important role in the

negative regulation of cell metastasis, migration, and invasion. Expression of EPB41L1
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has been observed to be lower in prostate cancer compared to normal cells. Although it

remains unclear, disruption of normal EPB41L1 expression may play an important role in

disorganised cell and tissue structures associated with higher grade prostate cancer [19],

and thus link its deregulation to prostate cancer progression and prognosis. Furthermore,

reduced expression of EPB41L1 plays an important role in recurrence and has been asso-

ciated with highly metastatic lung and breast cancer [20]. EPB41L1 was also shown to be

differentially expressed in gastric cancer [21]. On the other hand, GPR137 expression has

been shown to be upregulated in prostate cancer tissues compared with paracancerous tis-

sues. Moreover, knockdown of GPR137 resulted in decreased cell proliferation and colony

formation in PC-3 and DU145 prostate cancer cell lines, and was associated with cell cycle

arrest at G0/G1 phase. GPR137 suppression also decreases the migration and invasive

abilities of PC-3 cells, suggesting that GPR137 plays a role in prostate cancer progression

and metastasis [22].

Differential expression of PIAS3 and Rest Corepressor 3 (Rcor3) were both as-

sociated with tumours of Gleason score 4 + 3 = 7. While very little is known about the

role of Rest Corepressor 3 (Rcor3) in prostate cancer, it has been shown to act as an

antagonist of cell differentiation [23], a characteristic of prostate tumours with Gleason

score 4 + 3 = 7 [4]. On the other hand, differential PIAS3 expression has been observed

in a variety of human cancers, including lung, breast, prostate, colorectal, and brain [24].

PIAS3 is expressed in prostate cancer cells, and its expression is induced in response to

androgens [26, 25]. Although PIAS has been shown to enhance the transcriptional activ-

ity of androgen receptors (AR) in prostate cancer cells, other studies have revealed that

ectopic overexpression of PIAS3 suppresses AR-mediated gene activation induced by di-
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hydrotestosterone (DHT) [24]. PIAS3 acts as a negative regulator of AR transcriptional

activity and signaling through direct protein–protein interaction. Recent findings have

also revealed that AR is also differentially correlated with Gleason score patterns in both

primary and metastatic prostate cancer, where it is upregulated in Gleason group 4 and

downregulated in Gleason pattern 5.

PIAS3 is a member of the mammalian PIAS family consisting of four mem-

bers: PIAS1, PIAS2, PIAS3, and PIAS4 [27]. PIAS3 protein directly binds to several

transcription factors and either blocks or enhances their activity. PIAS3 is also specific

inhibitor of signal transducer and activator of transcription 3 (STAT3), a transcription

factor and member of the Janus kinase (JAK)/STAT signaling pathway [28, 29]. This

signaling pathway has been a target of interest in many cancer studies in recent years.

In prostate cancer, the expression levels of JAK/STAT have been shown to impact the

progression of the disease [30, 31]. As an inhibitor of STAT3, PIAS3 blocks the trans-

activation and binding of STAT3 to specific DNA elements via protein–protein interac-

tions, thereby inhibiting STAT3-mediated gene activation. Figure 2.7 depicts the protein–

protein interaction among genes with 4 + 3 = 7 and 6 scores, as extracted from Pro-

teomicsDB (https://www.proteomicsdb.org/proteomicsdb/#human/proteinDetails/

86810/interactions) based on experimental and epidemiological evidence. The Figure

shows that both PIAS3 and UBE2V2 share the same protein interaction network.

PIAS3 is also the only member of the PIAS family that has been shown to di-

rectly interact with Stat5a/b and repress Stat5-mediated transcription [32]. Stat5a/b is

constantly active in human prostate cancer [33], associated with high histological grades

[34], and a predictor of early prostate cancer recurrence [35]. Transcription factor Stat5a/b
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Figure 2.7: An interactive figure taken from proteomics database STRING. It shows
neighbouring protein binding and pathway interactions for a given gene using STRING
and KEGG pathway analysis. Here, the gene of interest is PIAS3, an identified possible
biomarker in the 4 + 3 = 7 score. The figure shows the interaction between other proteins
and pathways associated with it.
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has been shown to regulate the viability and growth of human prostate cancer cells [36, 37].

Moreover, in vitro inhibition of Stat5a/b induces apoptosis in human prostate cancer cells

[33, 38]. In vivo, Stat5a/b inhibition blocks prostate cancer subcutaneous and orthotopic

xenograft tumour growth in nude mice [38]. Although studies have revealed an inhibitory

role for PIAS3 against Stat5a/b-driven gene transcription and disease progression in breast

cancer, the predominant Stat5a/b protein that binds to DNA has been shown to be N-

terminally truncated in human prostate cancer cells and clinical prostate cancers [39]. Fur-

ther studies have demonstrated that the N-domain of Stat5a/b binds to PIAS3. Hence, the

truncated form of Stat5 in prostate cancer cells evades PIAS3 -mediated transcriptional in-

hibition, thereby increasing prostate cancer growth and progression. Thus, the proteolytic

cleavage of the N-terminus of Stat5a/b may be a mechanism by which Stat5 evades the

transcriptional repression by PIAS3 in prostate cancer cells. This further indicates the

complexity of intracellular protein interactions and its role in disease progression.

Our study applied a novel machine learning model to identify differentially ex-

pressed, prostate cancer stage-specific transcripts. Although the application of this model

to other related data sets is required to further valid our findings, the use of this model

in conjunction with in vitro and in vivo biological studies will aid in elucidating the intri-

cate molecular relationships between the identified transcripts. Moreover, this will provide

more insight into predicted prognostic outcomes and the development of effective thera-

peutic strategies against prostate cancer progression.
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2.5 Conclusions and Future Directions

Identifying novel biomarkers that are clinically associated with specific Gleason groups

in prostate cancer is vital for the diagnosis and treatment of the disease. Utilising NGS

data and machine learning techniques, a supervised learning method was proposed to find

group-specific sets of transcripts with significant different levels of quantification values.

The transcripts, along with the corresponding genes, identified by the proposed machine

learning method, were found in the literature to play crucial roles in cancer pathogenesis;

key transcripts were strongly correlated to prostate cancer. To validate the model, we also

tested it on a gene expression data set, showing that the resulting genes are related to

prostate cancer progression.
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The work presented in this chapter opens the way for future directions of

research. One of these is to apply and adjust the same method to other cancer types.

Another possible avenue would be to consider analysing samples from patients who have

progressed through more than one Gleason group. This method aims to eliminate

confounding factors between patients, potentially leading to a clearer analysis of

differential gene expression between different grades of prostate cancer. In addition, a

multi-omics model based on different types of genomics data for this problem could be

investigated, which may provide a comprehensive analysis of the progression, diagnosis,

and treatment of the disease. References

[1] Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D., Piñeros, M.;
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Chapter 3

Prediction of Tumor Location in

Prostate Cancer Tissue Using a

Machine Learning System on Gene

Expression Data

3.1 Introduction

Cancer is among the leading causes of death worldwide. In 2013, there were 8.2 million

deaths, and 14.9 million cases of cancer incidence [1]. As with all cancer diseases, in-

vestigating prostate cancer at the molecular level reveals transcriptional and regulatory

mechanisms of the tumour biology. Traditionally, prostate cancer studies centered pri-
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marily on finding biomarkers for differentiation between benign and cancerous tumors.

Recently, studies have considered some other aspects of the tumours including progression,

metastasis, location, and recurrence, among others.

Traditional methods for detecting prostate cancer such as prostate specific antigen

(PSA) blood test, transrectal ultrasound image (TRUS) guided biopsy, and digital rectal

exam (DRE) do not measure up to the medical standards. PSA blood test statistical results

shows a specificity of 61% and a low sensitivity of 34.9%, while TRUS-guided biopsy and

DRE are invasive [2].

In addition, multiparametric magnetic resonance imaging (MRI) of the prostate

is a functional form of imaging used to augment standard T1- and T2-weighted imaging.

Multiparametric MRI may miss up to 12% of cancer cases [3]. In addition to the need

for reducing the number of biopsies come most of the time with pain, fever, bleeding,

infection, transient urinary difficulties, or other complications that require hospitalization

[4]. Finding gene biomarkers of prostate cancer location and analyzing their proteomics can

help clinically understand the development of the disease and improve treatment efficiency.

Machine learning approaches, on the other hand, have been successfully applied

on prostate cancer data to identify gene biomarkers of the disease [5, 6]. Using next gen-

eration sequencing and the power of machine learning, Singireddy et al. devised a support

vector machine (SVM) classifier to identify biomarker genes associated with prostate can-

cer progression. The biomarkers were able to discriminate consecutive prostate cancer

stages with high performance [5]. Earlier, Hamzeh et al. proposed a method for finding

groups of transcripts that are differentially expressed among the different Gleason stages
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[7]. The identified transcripts can be used to predict the actual Gleason score for new

samples, and these transcripts belong to genes that are well known to play important roles

in prostate and other types of cancer. Yu et al. demonstrated that their method is efficient

for predicting prostate cancer aggressiveness based on gene expression patterns [8].

Similarly, machine learning approaches have been used for cancer localization

prediction [10, 9]. Artan et al. proposed a prediction model based on a cost-sensitive SVM.

The model is used to analyze a large data set of multispectral magnatic resonance imaging

(MRI). This method improves the cost-sensitive SVM using a segmentation method by

combining conditional random fields (CRF) with a cost-sensitive framework. Incorporating

spatial information leads to better localization accuracy [9]. As stated earlier, prediction by

imaging is still inaccurate, not specific and hence needs more improvement. In an attempt

to find different gene expression levels between two lists, the first contains the expression

levels of colon tumor cells, while the latter for rectal tumor cells, Sanz-Pamplona et al.

applied agglomerative hierarchical clustering to display the classification ability between

both lists. Both lists have very similar gene expression levels except for several HOX genes

which are found to be associated with tumor location [10].

In this work, we are extending our previous method for classifying different lat-

erality prostate samples which are left unary, right unary, or bilateral [11]. The results of

this multi-class model are set of genes that can determine a specific class from the others.

The literature shows that these genes are related to prostate cancer, which may lead to be

a potential biomarkers for prostate cancer laterality.
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3.2 Materials and Methods

RNA-sequencing data from The Cancer Genome Atlas (TCGA) Prostate Adenocarcinoma

(PRAD) was used. This data set consists of 450 samples for different patients with different

cancer locations. There are three primary locations that the tumor might be located within

the prostate: left, right and bilateral. Figure 3.1 shows the actual possible locations, while

Table 3.1 describes the number of samples in each location.

Figure 3.1: Possible locations of the tumor in prostate cancer.

Table 3.1: Number of samples in each prostate cancer tumor location.

Left Bilateral Right
18 431 38

Gene expression data was downloaded through the cBioPortal for cancer genomics

database [12]. Each sample contains expression levels for each of the 60,488 genes; the gene

expressions are given in terms of Transcripts Per Kilobase Million (TPM) values. The aim

of this study is to identify genes which are associated with specific tumor locations, and
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hence we need to use the genes as features and the actual locations as classes to build a

model to predict locations for future samples. Since most of the samples are bilateral, we

deal with a class imbalance problem. We used the resampling method proposed in [13] as

measure to lower the effect of this imbalance.

3.2.1 Resampling

By observing Table 3.1, we clearly notice that there is a class imbalance problem, where

the number of samples in the right class (38) is almost twice as large as that of the left

class (18). while the number of samples of the bilateral class (431) is more than twenty

times larger than the left class and more than ten times larger than the right class.

Figure 3.2: Synthetic Minority Oversampling Technique (SMOTE) works by adding new
synthetic sample randomly along the line that connects each of the two original samples.

To solve this problem, multiple resampling methods were deployed and tested
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to identify a method that would yield the best solution for our data set. Oversampling

provides a fast solution for classes left and right. This method duplicates samples from

the minority classes and adds them until yielding a similar number of samples for each

class. Applying oversampling directly did resolve the class imbalance problem and provided

high accuracy for classifiers, although after taking a closer look at the samples used in

these classifiers, we noticed that there was a major overfitting. Based on the literature

[24, 25], we selected the combination of oversampling Synthetic Minority Oversampling

Technique (SMOTE) [26] and Neighborhood Cleaning Rule (NCL)[27] for under-sampling

the majority class. Junsomboon et al. reported that the combination (NCL+SMOTE)

outperfomed another set of methods for handling the imbalance data sets. They have

applied this combination on different health related data sets [24]. NCL uses the Wilson’s

Edited Nearest Neighbor Rule (ENN) to remove majority class outliers [28]. Batista et al.

reported a high performance for SMOTE+ENN in handling imbalance data set [25].

NCL works by removing any sample whose class is different from the class of

at least two of its three nearest neighbors. SMOTE introduces a new way of creating

new samples, by utilizing the feature vector connecting each sample and introducing a

new synthetic sample along the line that connects the two underlying samples. The exact

location of the new sample on the line itself is calculated by measuring the distance between

the two samples and multiplying that value by a random number between 0 and 1. Figure

3.2 shows the behavior of SMOTE.

Applying these two methods allowed us to use three classes that are balanced.

Table 3.2 shows the number of samples after applying the SMOTE+ENN resampling meth-

ods.
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Table 3.2: Number of samples in each prostate cancer tumor location after applying the
SMOTE+ENN resampling methods.

70 vs 70 240 vs 240 40 vs 40
Left vs rest Bilateral vs rest Right vs rest

3.2.2 Feature Selection

Dealing with a huge number of features lead us to the problem of curse of dimensionality.

As such, we use machine learning techniques to lower the number of features used for

classification. We applied the information gain (IG) feature selection method to rank all

the genes with a score that relates to the highest information gain against the different

classes. We then chose the attributes with the highest scores, discarding those with lower

scores. In this chapter, the IG attribute evaluator [14] is used to evaluate each attribute.

IG of feature X with respect to class Y is calculated as follows:

IG(Y,X) = H(Y )−H(Y |X) (3.1)

Here, H(Y ) is the entropy of class Y and H(Y |X) is the conditional entropy of

Y given X.

The next step is to choose the best set of attributes (genes) that provide good

classification among the different classes.

A wrapper that binds feature selection and classification methods is used. The

feature selection method is the minimum redundancy maximum relevance (mRMR), which

takes features that contain minimum redundancy while at the same time have high corre-

lation to the classification variable [15]. The equation for minimizing redundancy (W ) and
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maximizing the relevancy (V ) is the following:

min{W (S), W} =
1

|S|2
∑
i,j∈S

I(i, j), (3.2)

and

max{V (S, h), V } =
1

|S|
∑
i∈S

I(h, i), (3.3)

where S is the set of features, I(i, j) is mutual information between features (i, j), h is the

class.

3.2.3 Classification

We deal with a multi-class classification problem which is solved by using the one-versus-all

approach. We have three different classes which are the three different locations. To apply

the one-versus-all approach, we need to create three separate copies from the actual data

set. For each data set, we set one of the classes to positive, and the rest of the classes are

combined together to form the negative class. We used accuracy, sensitivity and specificity

to choose the best classification method.

Multiple classification methods were applied on the data to identify which meth-

ods separate the locations better. Accordingly, the probabilistic classifier Naive Bayes that

applies Bayes’ theorem with the assumption of independence between the features [16] was

tested. SVM was also used to build a classification model based on the features selected

in the previous step [17]. The other classifier that was tested is random forest [18], which
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attempts to build multiple decision tree models with different samples and different initial

variables.

The Weka open source libraries were used to run different classification algorithms

on the minimized number of features to identify which genes are differentially expressed in

the different locations [19].

3.3 Results and Discussion

The different classifiers produced varied results as observed in Table 3.3 and Figure 3.3.

The classifiers were chosen based on accuracy and precision, as leading high accuracy

with low precision is not a good criterion at all. The accuracy measures the number of

correctly classified samples divided by the number of all samples, while the precision is the

true positive rate which measures the number of true positive calls divided by all positive

calls. Table 3.3 shows the actual accuracy and precision for each classifier. The highest

accuracy and precision for the different classifiers came from the SVM Radial basis function

kernel (SVM-RBF) classifier. Grid search optimization was applied to fine tune the RBF

classifier, it was able to separate the different locations by an accuracy of 99%. Random

forest managed to result in high accuracy too, while the naive Bayes classifier results were

not satisfactory.

Table 3.4 show the actual genes that were identified by SVM-RBF. These genes

can be used to predict the location of the prostate cancer tumor very accurately from gene

expression data.
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Figure 3.3: Different classifiers accuracy for the different locations.

Table 3.3: Accuracy and precision for classifying each class versus the rest.

Classifier Accuracy Precision Accuracy Precision Accuracy Precision
SVM RBF 99 97 99 97 99 97

Naive Bayes 88 78 82 78 80 78
Random Forest 93 85 90 85 95 85

Left vs rest Bilateral vs rest Right vs rest

Table 3.4: Genes that can predict tumors in each location class of the prostate tumor.

Gene Gene Gene
FBXO21 ALG5 HLA-DMB

RTN1 Z99129 SRSF6
NDUFA5 SNAI2 EIF4G2

POP7 MRI1
TAF7

Left vs rest Bilateral vs rest Right vs rest
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Throughout our model 10-fold cross-validation was used. The proposed method

identified 12 genes that are differentially expressed among the three different possible lo-

cations.

It is important to highlight that most of the genes identified in this work have been

previously characterized and described to play some role in prostate cancer as well as other

types of cancer. SNAI2 is a gene shown [20] to be silenced in prostate cancer and regulates

neuroendocrine differentiation, metastasis-suppressor, and pluripotency gene expression.

Likewise, the results shown in [21, 22] indicate that increased TAF1/7 expression

is associated with progression of human prostate cancers to the lethal castration-resistant

state. In a similar way, the results reported in [23] found that tumor cell expression of

HLA-DMB is associated with increased numbers of tumor-infiltrating CD8 T lymphocytes

and both are associated with improved survival in advanced serous ovarian cancer.

Figures 3.4-3.6 depict the ROC curves for all the classes versus the rest at each

node. The area under the curve AUC for SVM-RBF tends to be further towards the

north west with 0.99 value in the three figures, which means the best overall performance

across all classes versus the rest. All other classifiers were inconsistent in the three figures.

However, random forest performed very well in later false positive rates for both left and

right classes with overall performance 0.87, 0.84 in order for both classes. it slightly

outperformed the SVM-RBF in one point at both classes. but as we stated earlier, it was

inconsistent through out different running parameters for false positive rates.

57



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

Left versus Rest - ROC

SVM RBF ROC area = 0.99)
Random Forest ROC area = 0.87)
Naïve Bayes ROC area = 0.56)

Figure 3.4: The ROC curve for left versus the rest using different classifiers.

3.3.1 Biological insight

We have conducted a thoroughly literature review on the most up to date classification,

as well as in the relevant databases and gathered valuable information about the most

relevant genes that we have found in our study. A summary for each gene is given below

and opens the avenue for further studies as well as additional lab experiments that can

corroborate our studies and lead to novel ways of diagnosis, treatment and prognosis of
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Figure 3.5: The ROC curve for bilateral versus the rest using different classifiers.

the disease.

FBXO21 (F-box protein 21) is part of the multiprotein complex, SCF E3-ligase,

which functions in phosphorylation-dependent ubiquitination. FBXO21 may affect prostate

cancer through different mechanisms, and here we hypothesize two possibilities. Firstly,

ABCB1 is a known tumour drug resistance biomarker because it is a multi-drug efflux

pump linked with the development of metastases [29]. FBXO21 tags ABCB1 for proteaso-
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Figure 3.6: The ROC curve for right versus the rest using different classifiers.

mal degradation, whereas inhibition of FBXO21 leads to higher expression level of ABCB1.

Secondly, FBXO21 recognizes EID1 in cycling and G0 stage cells and targets it for degrada-

tion. EID1 interacts with retinoblastoma tumour suppressor (pRB), melanoma-associated

antigen (MAGE), and E1A binding protein p300 (EP300) as well as being involved in

the coupling cell cycle exit to cellular differentiation. All available evidence suggests that

FBXO21 may be downregulated in prostate cancer, although further research is desirable

[30].

60



RTN1 (reticulon 1) is associated with the endoplasmic reticulum (ER) and is in-

volved in neuroendocrine secretions and membrane trafficking. RTN1 has been known

exert a cancer-specific proapoptotic function. Specifically, RTN1-C regulates the two

mutually exclusive ER stress-induced apoptosis and DNA damage-induced cell death.

Overexpression of RTN1-C results in ER stress-induced cell death mediated by aber-

rantly increased cytosolic Ca2+ due to depletion of ER calcium stores [31]. A recent

publicaiton on prostate cancer shows that silencing RTN1 by siRNA enabled androgen-

independent proliferation of androgen-dependent prostate cancer tumours. The knock-

down of RTN1 increases the nuclear concentration of HDAC8, a multifunctional histone

deacetylase that regulates activity of transcription factors such as nuclear hormone recep-

tors [32]. In particular, it is known that ceramide inhibits androgen receptor activity and

inhibits androgen-independent growth by activation of protein phosphatase 2A (PP2A)

[33]. However, HDAC8-induced depletion of SPTSSA in the ER compromises the ER-

localized ceramide biosynthesis pathway, leading to downregulation of ceramide, partial

inhibition of PP2A and androgen receptor activation in androgen-deprived conditions [32].

Consequently, RTN1 may be a proto-oncogene associated with aggressive, malignant and

androgen-independent prostate cancer.

NDUFA5 (NADH:ubiquinone oxidoreductase subunit A5) is localized to the inner

mitochondrial membrane and functions in the NADH two-electron reduction of ubiquinone

[34]. Complex I, also known as NADH-ubiquinone oxidoreductase, is the first complex

of the mitochondrial oxidative phosphorylation (OXPHOS) system. The energy released

is coupled with generation of the electrochemical gradient necessary for ATP synthesis

[35]. As expected, NDUFA5 activity is lower in hypoxic cells [36]. The Warburg effect
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states that tumour cells demonstrate drastically increased glycolysis activity compared

to oxidative phosphorylation due to target genes upregulated by hypoxia-inducible factor

(HIF) [37]. On the other hand, NDUFA5 is upregulated in HPV+ cervical cancer and its

overexpression may play a role in carcinogenesis through acquiring growth advantage and

resistance against an apoptotic signal [34]. In a recent publication, NDUFA5 also gained

copy numbers in both low-grade and high-grade gliomas. Therefore, NDUFA5 may also

be upregulated in prostate cancer, although further research is necessary to confirm this

hypothesis [38].

POP7 (POP7 homolog, ribonuclease P/MRP subunit) is discovered in S. cere-

visiae. POP7 heterodimerizes to POP6 and binds to the P3 domain of catalytic ribonu-

cleoproteins RNase MRP (mitochondrial RNA processing) and Rpr1 RNA [39]. RNase

MRP is critically important to the viability of eukaryotic cells because it is localized in the

nucleolus and is involved in processing mitochondrial RNAs and regulating mitochondrial

DNA replication [40]. POP1/POP6/POP7 complex is required for telomere elongation

protein (Est1) to associate with the RNP, which is critical during the process of mitosis

for the cell lifespan before its senescence [41]. Despite the critical importance of POP7,

no known human diseases are associated with this gene currently. Further research will be

important to explore the biological significance of POP7.

HLA-DMB (major histocompatibility complex class II, DM beta) is a subunit

of the HLA class II heterodimer found embedded in intracellular vesicles. In antigen-

presenting cells (APC), HLA-DMB is critical in the antigen-presentation machinery by

releasing class II-associated invariant chain peptide (CLIP) from MHC class II molecules

so that the peptide binding site is free to interact with antigenic peptides [42]. A recent
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publication on prostate cancer research found that HLA-DMB is coexpressed with ERG

and silencing ERG led to significant underexpression of HLA-DMB. Thus, HLA-DMB is

an upregulated tumour-associated gene in prostate cancer [43].

SRSF6 (Serine and Arginine rich Splicing Factor 6) modulates a splicing factor

protein called SFRS12 to determine alternative splicing of mRNA. In a recent publication

on colorectal cancer, SRSF6 targeted ZO-1 (tight junction protein 1) exon23 for alternative

splicing, consequentially disrupting ZO-1 from regulating tight junctions between adjacent

cells [44]. Furthermore, SRSF6 is the direct target of LINC01133, a key SRSF6 modulates a

splicing factor protein called SFRS12 to determine alternative splicing of mRNA. In a 2017

paper on colorectal cancer, SRSF6 targeted ZO-1 (tight junction protein 1) exon23 for al-

ternative splicing, consequentially disrupting ZO-1 from regulating tight junctions between

adjacent cells. In addition, SRSF6 is the direct target of LINC01133, a key downstream

protein of TGF-β signaling pathway which is critical for cell growth and differentiation [45].

Silencing SRSF6 in colorectal cancer tissues inhibited epithelial-mesenchymal transition,

tissue invasion, and metastasis. A study on wound healing found that overexpression of

SRSF6 induces skin hyperplasia due to SRSF6 upregulating Tenascin C and suppressing

the normal epithelial differentiation mechanism. Therefore, SRSF6 may be upregulated in

prostate cancer [44].

EIF4G2 gene, Eukaryotic Translation Initiation Factor 4 Gamma 2 is a cap -

binding protein complex which has three sub units – eiF4A, eiF4E eiF4G. The gene is

known to upregulate p21, a cyclin dependant kinase inhibitor and interleukin 6 [46]. Higher

expression levels of p21 oncogene protein are found with increasing prostate cancer tumor

grade [47]. Interleukin 6 is involved in the progression of prostate cancer [48], and is used
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as a clinicopathological feature by detecting the levels in serum [49]. With the upregulated

expression levels of EIF4G2 gene in prostate cancer, it can be used as a potential marker

for studying the progression of the disease.

Interestingly, EIF4G2 and HLA-DMB which are part of the gene set that can

identify right side from the rest, they are both part of Allograft rejection SuperPath path-

way [50].

The discovery of fusion protein transcripts in the recent times have helped study-

ing prostate cancer development with much detail. ALG5, Dolichyl-Phosphate Beta-

Glucosyltransferase and PIGU, Phosphatidylinositol Glycan Anchor Biosynthesis Class

forms a chimeric-fusion protein transcript in which glucosyltransferase, the head from

ALG5 is retained but GPI transamidase, the tail has been eliminated in PIGU resulting

in the loss of functionality of both the genes [51]. The uncommon joining of the genes

would result in serious complications in the overall environment of the cell causing fur-

ther progression of the cancer. The transcription of the fused ALG5-PIGU is androgen

independent [52]. Fusion protein transcripts will serve as an important biomarker both in

detection and treatment of Prostate Cancer.

SNAI2, Snail Family Transcriptional Repressor 2 encodes zinc-finger protein of

the Snail family transcription factors, is involved in the generation and migration of neu-

ral crest cells in embryonic stages which is driven by epithelial to mesenchymal transition

(EMT). Presence of neuroendocrine cells in nests - neuroendocrine differentiation (NED)

is a known histological marker for prostate Cancer. SNAI2 expression is down regulated

in prostate cancer and silencing of the gene may turn on neuroendocrine differentiation,
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pluripotent genes and turn on specific metastasis suppressors [53]. SNAI2 knockdown ini-

tiating metastatic suppressor genes involves many pathways and further research is needed

to derive a conclusion. Studies of SNAI2 gene regulation properties will help us in under-

standing the development of prostate cancer.

MRI1, Methylthioribose-1-Phosphate Isomerase 1 gene helps in catalyses of me-

thionine, an important amino acid, in methionine salvage pathway. Development of cer-

tain cancers like prostate, glioma, bladder, breast, melanoma are dependent on methionine

[54, 55]. To understand the dependency of methionine in prostate cancer a study has been

conducted on patients who were not receiving any conventional treatment and were under-

going an intensive lifestyle program with a restricted methionine vegan diet. Analysis of

serum samples revealed that there was a 70% inhibition of the growth androgen sensitive

prostate adenocarcinoma (LNCaP) cells [56]. The data suggests that methionine restricted

diet and lifestyle changes may help in slowing down the development of prostate cancer.

3.4 Conclusion

Understanding gene activity in the prostate cancer laterality may help to guide the diag-

nosis and treatment of the disease. In this work, we have proposed a machine learning

method that is capable of predicting with a high accuracy the tumor location in a cancer

infected prostate. As a result, we have found genes as indicators that can differentiate

the three locations of prostate cancer with high accuracy. The contributions of this study

are two-fold. The proposed machine learning system can be used as a protocol for other

types of cancer and other clinical problems in cancer studies. It also open the doors for
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potential biomarkers that can be further tested in wet-lab scenarios with the hope to move

to clinical trials in order to replace the invasive biopsy or inaccurate image scanning.

The literature shows strong relations between prostate cancer metastasis and the

computationally derived genes. Wet-lab experiments and RNA-seq profiling of those genes

will better explore the relation between the findings and the prostate cancer laterality,

which will potentially help the prognosis of the disease.
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Chapter 4

An Integrative Knowledge-based

Method to Identify Cancer

Biomarkers Based on Gene-Disease

Relations

4.1 Introduction

Next generation sequencing (NGS) is one of the most important technologies to explore

genetic associations in medical studies. NGS technologies large data sets, which provides a

detailed view of the human genome [1]. The sensitivity, speed and reduced cost per sample

make it an attractive option, especially when compared to older technologies. These details
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include the actual DNA or RNA in various forms. The amount of raw data produced require

many computational steps to produce high-quality data that can be later used to obtain

information [2]; this information can be in the form of mutations, copy number alterations

(CNA), and others. Cancer is known to be a genetic disorder which might be heritable

or in terms of somatic mutations. NGS has a significant impact on the detection, and

treatment of this disease [3].

The generated data sets from this technology are huge and involve a big chal-

lenge. Machine learning techniques, on the other hand, have proved to be useful for such

large data sets and provided excellent results for classifying cancer states based on gene ex-

pression, CNA levels or mutations of certain genes. Machine learning techniques construct

models that can be used to predict certain biological characteristics from multi-dimensional

data sets, these predictive models are becoming essential to modern biological research [4]

[5]. Machine learning offers so many techniques that can be used to extract information

from these data sets. The data sets are made of a huge number of genes or transcripts

expressions. These gene/transcripts are called attributes in machine learning. One of the

first steps in machine learning is to reduce the number of attributes. In a typical data-set

that contains gene expressions, the number of attributes is approximately 35,000 to 40,000

genes, and can reach up to 65,000 transcripts. The reduction is done using a procedure

called feature selection [6], in which the attributes that do not affect the performance of

the model are removed.

Feature selection is done usually in two steps. The first step is to give a score

for each attribute against the medical feature that the model tries to predict. This step

is called filter-based feature selection. The second step is to find sets of attributes that
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can be used together to classify a certain clinical sign, this step is called wrapper-based

feature selection. The classifiers usually provide a model that can classify a certain clinical

sign [7]. For example a certain Gleason score in prostate cancer or a certain breast cancer

stage. The produced model can be evaluated using certain measures, for e.g. accuracy,

specificity or Area Under the Curve (AUC) [8].

The last step would require an expert to look into the findings and to search the

latest literature to verify the results. Hamzeh et al. applied a method to identify biomarkers

that can predict Gleason score stages for prostate cancer patients using machine learning

techniques [9]. Gleason score is a grading system which is widely used to describe the

aggressiveness of prostate cancer, it was first introduced by Dr. Donald Gleason back in

the 1960’s. A recent study proposed to join certain Gleason scores together, which will

create a new 5 Grade Group system, this simplifies the Gleason score[10]. Disease to gene

relation is a field that has been studied widely, and the findings have been published in

medical journals and scientific papers. In this regard, DisGeNET [11] is a database that

collects such knowledge and provides a tool that can be queried to find proven relations

between diseases and genes. In this work, we integrate the latest knowledge from the

literature as a step in the feature selection method. The results show an increase in the

number and relevance of cancer related genes that can be used in a predictive model.

DisGeNET integrates data from expert-curated repositories, GWAS catalogues,

animal models and the literature. DisGeNET data are homogeneously annotated with

controlled vocabularies and community-driven ontologies. DisGeNET utilizes the follow-

ing resources to provide the disease to gene relations: The Comparative Toxicogenomics

Database (CTD) [12], UniProt [13], ClinVar [14], Orphanet [15], The GWAS Catalog [16],
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The Rat Genome Database (RGD) [17], The Mouse Genome Database (MGD) [18], and

The Genetic Association Database (GAD) [19]. It also incorporates the literature directly

using text-mining approaches like The Literature Human Gene Derived Network (LHGDN)

[20] and BeFree data, obtained using the BeFree System, which extracts gene-disease as-

sociations from MEDLINE abstracts [21] [22].

This database provides many ways to collect its findings, either through the main

Web portal, a Web API, a SQL database or an all in one file. The results would be a score

that relates a gene to disease.

We are proposing a new machine learning pipeline that utilizes proven literature

knowledge to identify bio-markers that can be used to classify certain clinical attributes.

4.2 Methods

The proposed machine learning method starts with a basic data pre-procession step fol-

lowed by two different filter-based feature selection methods. The output of the two meth-

ods are two different lists, each one includes the gene names that affect the actual class.

We then create a new list from the combination of the two lists and create a third list from

the intersection of the two lists. The combined version is sent to DisGeNET to obtain

the scores against the actual disease that we are looking for, and the intersection list is

processed in another function that checks Pearson’s correlation [26] among the different

genes depending on their expression levels. The two methods produce different scores for

each gene. The final score for all the genes is calculated, and then sorted in a descending
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Figure 4.1: Machine learning pipeline used on the proposed method and testing.
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order according to the final score. A wrapper-based filter selection method picks the top

N number of genes in the list and tries to find the best subset with the best classifier

according to their ROC. After this step, the wrapper-based feature selection picks a larger

N to find another subset and calculates the ROC for the new subset and the new classifier.

This process continues until all the genes in the sorted final list are considered. We then

pick the best subset based on ROC and relations to the disease that we are looking for, as

the first generated subset will have genes that are more related to the given disease. Thus,

the final choice would be specific to each researcher. Figure 4.1 illustrates the machine

learning pipeline used by the proposed method. The details of each step are explained

below.

4.2.1 Pre-processing

This step checks for missing data and fills the missing cells with the median values. In

the same step, we also look for attributes whose values are not changing throughout the

samples. These attributes are usually irrelevant for the model, and so they are deleted at

this stage. A specific step that is needed for DisGeNET makes sure that the gene names

are actually following the HGNC [23] naming schema. If the gene names correspond to

the Ensembl genes naming codes [24], an actual name converter is used to convert these

into the HGNC. If the data-set includes transcript names, they need to be converted to the

HGNC naming schema, and again the developed converter applied the required conversion.
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4.2.2 Filter-based feature selection

As the data for gene expressions, CNA or mutation are numerical and continuous, a good

filter-based scoring criterion is Information Gain (IG) [25].

We used IG to rank all the attribute with a score that relates to the highest

information gain against the different classes of choice.

IG of feature X with respect to class Y is calculated as follows:

IG(Y,X) = H(Y )−H(Y |X), (4.1)

Here, H(Y ) is the entropy of class Y , H(Y |X) is the conditional entropy of Y

given X, p(y) is the probability of y, p(x) is the probability of x and p(y|x) is the probability

of y given x.

After obtaining the scores for each attribute using IG, we save the names of the

gene with scores higher than zero in a list.

We also use another filter based method, Chi-squared which measures the degree

of independence of each feature:

χ2(Y,X) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
(4.2)

where A is the number of times feature X and class Y co occur, B in the number

of times X occurs without Y , C in the number of times Y occurs without X , D in the

number of times neither X and Y occurs, and N is the total number of samples.
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We run Chi-squared on the original data to generate another list that contains

the gene name with scores higher than zero in a list. The two lists are combined into a

new combined list that includes all the gene names that have a positive score from each of

the methods. Another list is created from the intersection of the two lists.

The intersection list is used in a Pearson’s correlation test, which is a statistical

method that finds the correlation between two genes based on their expression levels as

follows:

p(X, Y ) =
conv(X, Y )

σxσy
, (4.3)

where cov is the co-variance between X and Y , σx is the standard deviation of

x, and σy is the standard deviation of y.

4.2.3 DisGeNET

The combined list that is generated in the filter based feature selections step is used during

this step. We noticed that using the online API version of DisGeNET to query each

gene in the list against the given diseases did not work well as the number of genes was

more than 5,000 genes and it took a very long time to query each gene. We used the

offline Command Separated Values (CSV) version, which provides instant responses to

each query. DisGeNET provides a single score against each query, the query itself requires

the gene name in HGNC gene naming schema and requires the disease name. As in real

life, when an expert verifies the biomarkers, they usually check if the gene is related to a

particular disease (specific cancer type or stage). They also check if the gene is related to

cancer in general. As such, we had to do the same, each gene will be DisGeNET is queried
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twice for each gene. The first query includes the gene name and the particular cancer type

we are looking for, while the second query includes the gene name and the word ”cancer”.

Our method utilizes RegEx [27] to find any disease name that includes the word ”cancer”.

This means that each gene has two scores from each query. We give the specific cancer

score a high weight δ and the score returned for cancer a lower weight γ. Thus, the total

score for the gene is:

s(X) = s(a) ∗ δ + s(b) ∗ γ + s(c) ∗ β (4.4)

where s(x) is the final score, s(a) is the score returned for the specific cancer

type, s(b) is the score returned for the word ”cancer”, s(c) is the score obtained from the

Pearson correlation, δ, γ, β are user-defined weights.

δ, γ, β are weights defined by the researcher depending on the actual use of the

method itself, increasing the value of δ will prioritize genes that are related to the specific

key-word given, while increasing the value of γ will increase the priority of genes that are

known to be related to cancer in general, and increasing the value of β will increase the

priority of genes that are correlated based on their gene expression values.

A new data set is generated from the set of genes that are part of the final

calculated score, this list is sorted in descending order based on the calculated score.
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4.2.4 Wrapper-based feature selection

We choose the top N genes from the previously scored and sorted list to start this step. We

use a wrapper-based feature selection method that utilizes the minimum redundancy max-

imum relevance (mRMR) method. This method fuses feature selection and a classification

method to find a subset that can classify with high accuracy and specificity. This produces

a good AUC. It does this by taking features that contain minimum redundancy while at

the same time have a high correlation to the classification variable [28]. The equation for

minimizing redundancy W and maximizing the relevancy V is the following:

W =
1

|S|2
∑
i,j∈S

I(i, j), (4.5)

and

V =
1

|S|
∑
i∈S

I(h, i), (4.6)

where S is the set of features, I(i, j) is mutual information between features (i, j), and h

is the class.

In this step, we make sure to use multiple classifiers, since it is not guaranteed that

a specific classifier would perform on all data sets. The classifiers that were used during

this step are: Support Vector Machine with the Radial Basis Function kernel (SVB-RBF)

[29], Naive Bayes [30], Random Forest [31] and K-Nearest Neighbour [32].

The output of this step would be a single subset generated with each of the four

classifiers, and each one will have its own accuracy, specificity, and ROC.
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4.2.5 Back-propagation

In this step, we go back to the wrapper-based feature selection step and choose a larger

value for N and repeat the last wrapper-based feature selection method again to generate

another subset for each of the classifiers, the results are saved for each value of N . We

continue doing this until the value of N is equal to the number of genes in the scored list.

By the end of this final step, we will have scores from each of the four classifiers

for each of the values of N used. The final decision on which subset and classifier to choose

can be automated based on the larger value of the AUC and the smallest value of N used.

Instead, the researcher can pick which set of genes to choose. Taking into considerations,

that the lower number of N means that genes are most likely related to the given key-word

and that provide genes that are related to the clinical attributes in study.

4.3 Results and Discussion

In our previous work [9], an RNA-Seq data set of 104 prostate cancer patients was analyzed.

This data set is publicly available from the National Center for Biotechnology Information

(NCBI) with Gene Expression Omnibus (GEO) number GSE54460 [33]. It includes samples

with different Gleason stages, and has been analyzed using machine learning techniques to

identify transcripts that are linked to prostate progression.

In that study, filter-based feature selection is performed first using IG. Then,

a wrapper-based feature selection was performed on the resulting genes to find the best

possible subset that are able to predict the Gleason score group with the highest accuracy
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possible. After the subset is identified for each of the Gleason score, an expert has to take

revise the genes that were used to classify each stage and look into the literature for a

proof that these genes are already linked to prostate cancer or at least related to types

of cancer. The expert found that only seven out of the 26 genes that we identified were

already found in the literature. We applied the new method on the same data set.

We started with the pre-processing step, and noticed that the transcripts were

used in this data set. These needed to be converted to the NHGC naming schema. We

then ran the two filter-based feature selection methods and identified the combined list and

the intersected list. The combined list was processed with the DigGeNET and the scores

for each gene were calculated. The other intersected list was processed with Pearson’s

correlation test and the final scores for each gene were calculated. The genes were sorted

in descending order based on their score.

We then picked N = 500 to start the wrapper-based feature selection with the

top 500 genes. Wrapper-based feature selection provided a different subset for each of the

four classifiers used. We then started increasing N by 500 genes each time and continued

repeating the wrapper-based feature selection step with the a new value of N , until all the

genes in the sorted list were used. With the new method, we were able to obtain similar

results to the original method. The results for the original method are shown in Table 4.3,

and the results for the new method are shown in Table 4.5.

The results shown in Table 4.5 are for N = 500. We were able to classify with

high accuracy using a subset of 21 genes, 20 of these genes are already known to be related

to prostate cancer directly, or to another type of cancer. Increasing the value of N increased
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the accuracy for the ’347 vs rest’, but the number of genes related to cancer went down to

the original number that was discovered in the first study.

The accuracy for the rest of the Gleason scores did not increase as it is already

very high. We can notice in Table 3 how the accuracy of the class ’347 vs rest’ increased

while the number of genes related to cancer becomes smaller.

Table 4.1: Results for running the laterality study.

Total/Average 347 vs rest 437 vs rest 336 vs rest 448 vs 538

Accuracy 98 94 98 100 100

Number of Genes 26 15 7 3 1

Cancer related 7 3 2 1 1

Table 4.2: Results for running the laterality study with the new proposed method

Total/Average 347 vs rest 437 vs rest 336 vs rest 448 vs 538

Accuracy 98 94 98 100 100

Number of genes 26 15 7 3 1

Cancer related 7 3 2 1 1

Table 4.3: Results for running the previous method.

Total/Average 347 vs rest 437 vs rest 336 vs rest 448 vs 538

Accuracy 98 94 98 100 100

Number of genes 26 15 7 3 1

Cancer related 7 3 2 1 1

4.4 Conclusion

Using feature selection is an important step in any machine learning problem that has a

large number of attributes. In the field of biology and especially studying gene expression,
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Table 4.4: Results for running the proposed method.

Total/Average 347 vs rest 437 vs rest 336 vs rest 448 vs 538

Accuracy 95 83 98 100 100

Number of genes 21 7 8 4 2

Cancer related 20 7 8 3 2

Table 4.5: The effect of changing the value of (number of genes chosen) on the classification
performance and the number of genes that are related to cancer.

N Classification accuracy Number of genes Cancer related

500 83 7 7

1000 86 10 6

1500 90 10 5

2000 93 13 4

2500 94 15 3

the number of features is huge, and many of the features/genes that are eliminated during

this step might be a gene that is proven to be related to cancer that is being studied or

to another related cancer type. With the new method, genes that are proven in literature

are priority and are part of the first phase of the wrapper-based feature selection step. In

fact, they are part of each step after the selection. At the same time, if a gene is not at all

expressed, or if it is not deferentially expressed, it is discarded at the first pre-processing

step. The results for each iteration in the last step are stored, so that the researcher is able

to choose which sub set has either a larger AUC or that the subset that has the highest

number of genes related to cancer.

We are planning to incorporate deep learning into future versions of this method,

either as an additional feature selection step, or as another classifier within the wrapper-

base feature selection step.
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Future versions of this method are expected to integrate deep learning

techniques. This will be done either as a supplementary feature selection step or as an

additional classifier within the wrapper-based feature selection step.
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[22] Bravo, ., Piñero, J., Queralt-Rosinach, N., Rautschka, M., & Furlong, L. (2015).

Extraction of relations between genes and diseases from text and large-scale data

analysis: implications for translational research. BMC Bioinformatics, 16(1), 55.

[23] Povey, S., Lovering, R., Bruford, E., Wright, M., Lush, M., & Wain, H. (2001). The

HUGO gene nomenclature committee (HGNC). Human Genetics, 109(6), 678–680.

[24] Aken, B., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., Fernandez Banet,

J., Billis, K., C., Hourlier, T., & others (2016). The Ensembl gene annotation system.

Database, 2016.

92



[25] Novakovic, J. (2009). Using information gain attribute evaluation to classify sonar

targets. In 17th Telecommunications Forum TELFOR (pp. 1351–1354).

[26] Benesty J., Chen J., Huang Y., Cohen I. (2009) Pearson Correlation Coefficient. In:

Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol 2.

Springer, Berlin, Heidelberg.

[27] Yu, S. (1997). Regular languages. In Handbook of formal languages (pp. 41-110).

Springer, Berlin, Heidelberg.

[28] Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238.

[29] Chang, C.C., & Lin, C.J. (2011). LIBSVM: A library for support vector machinesACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

[30] Rish, I. (2001). An Empirical Study of the Näıve Bayes Classifier. IJCAI 2001 Work
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main contribution of this thesis is to provide a generic pipeline for modeling RNA-

Seq data as a supervised learning scheme used to obtain meaningful biomarkers in cancer.

While the main models were created for different cancer problems, the proposed models

showed high performance and throughput. In Chapter 2, the proposed models we were

able to extract transcriptomic biomarkers that can predict, with very high accuracy, cer-

tain Gleason groups for prostate cancer. Using the model described in Chapter 3, we

were able to detect prostate cancer location based on the gene expressions provided. Ad-

ditionally, we performed biological validation using the literature in collaboration with
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biologists to investigate the obtained biomarkers’ significance. In Chapter 4, we proposed

a machine learning framework that is capable of enhancing conventional models to iden-

tify and validate biomarkers. This framework enhances the feature selection method by

utilizing knowledge extracted from Medline and other public resources. The method can

be used in any kind of cancer and can also be used as an integrative multi-omics model

that utilizes mutations, copy number alterations or any other clinical data that is avail-

able. The methods were able to provide a number of genes, which can be used to classify

samples accurately, and these genes are already proven to be related to cancer by the latest

literature.

The main methods proposed were able to handle different machine learning prob-

lems, such as class-imbalance and multi-class classification. In the work presented in Chap-

ter 3, we faced the the class-imbalance problem, in which the number of samples from one

class is much higher than the number of samples from the other class. We were able to

solve this problem using a combination of machine learning techniques.

To summarize, the contributions of this thesis are listed below:

⇒ Developing a framework that enhances the feature selection method for a classifica-

tion problem, and applying this method to enhance earlier work.

⇒ Proposing a machine learning pipeline that takes raw RNA-Seq data and provides a

number of biomarkers that can classify prostate cancer Gleason groups.

⇒ Developing a machine learning pipeline that takes gene expressions and provides a

model that detects the location of the prostate cancer.
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⇒ Handling the multi-class problem using the one-versus-all approach for prostate can-

cer Gleason stages.

⇒ Proposing a generic pipeline that can be proved to work with any kind of cancer, as

long as gene expressions or other types of data are used.

Even the though the proposed work is valuable, it does have some limitations.

The framework proposed in Chapter 4 provides excellent results, but it is sensitive to the

availability of information on the knowledge-base used. For example, if the gene name is

not in the database, then that gene will have the same priority as the genes that are not

related to cancer. Although this is an issue that is beyond our control, it is something that

could be investigated further. The proposed framework takes a long time to run, especially

when it creates the weights, though this task is performed only once at the beginning of

the pipeline. To solve the class-imbalance problem faced in Chapter 3, we used machine

learning techniques to create synthetic samples, which solves the class imbalance, while it

introduces extra samples that are not in the original sample set.

Most parts of this work have been published in conferences in collaboration with

my lab mates and other researchers from different disciplines, who have jointly co-authored

these publications. Chapter 2 has been published, by invitation, in Diagnostics journal as

part of the Special Issue on Next Generation Sequencing in Tumor Diagnosis and Treat-

ment, in 2019. Chapter 2 was also presented at the 5th International Work-Conference on

Bioinformatics and Biomedical Engineering, IWBBIO 2017, Granada, Spain, April 26–28,

2017. Chapter 3 has been accepted in a special edition of BMC Bioinformatics journal,

and is currently in press. This publication was the result of an invitation to submit an
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extended version after presenting our work at the 6th International Work-Conference on

Bioinformatics and Biomedical Engineering, IWBBIO 2018, Granada, Spain, April 25–27,

2018., which was presented by L. Rueda as a keynote talk. Chapter 4 of this thesis was

presented at the Machine Learning Models for Multi-omics Data Integration, MODI 2019,

a workshop held at the 10th ACM Conference on Bioinformatics, Computational Biology,

and Health Informatics (ACM-BCB), in the , Niagara Falls, New York, September 7-10,

2019., in which we received an invitation to submit an extended version to a special col-

lection of Evolutionary Bioinformatics journal. The draft has been submitted already and

is currently being reviewed.

5.2 Future work

Even though this work provides the scientific community with meaningful contributions,

there is some room for improvement.

• In Chapter 2, the hierarchical model utilized one-versus-all approach, which can be

enhanced by implementing other methods such as one-versus-rest and then a com-

parison can be done against the original results to provide a comprehensive solution

to the multi-class problem.

• The method implemented in Chapter 2 can be utilized to study other kinds of cancer,

as long as we utilize gene expressions or transcriptomic data.

• In Chapter 3, we utilized SMOTE to introduce synthetic samples to the minority class
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and we used NCL to remove samples from the majority class, a future enhancement

would add boosting and bagging methods and then benchmark the two methods.

• In the framework introduced in Chapter 4 we used the DisGeNET database. However,

other resources are available, accordingly, the framework can be enhanced by utilizing

plugins. These plugins can be used to connect the framework to any source that can

be utilized as a knowledge-base.
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APPENDICES

Appendix A

Information about data sets used

A.1 List of aligning percentage from 104 samples in

the Hierarchical method
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Table A.1: The percentage of uniquely aligned mapped reads to the human genome for
each sample of the 104 prostate cancer patients sample using the STAR genome alignment
tool.

SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554892 SRR1164787 347 pT3 91.20%

SRS554893 SRR1164788 336 pT2 89.76%

SRS554894 SRR1164789 336 pT2 89.01%

SRS554895 SRR1164790 347 pT3 88.81%

SRS554896 SRR1164791 347 pT2 88.27%

SRS554897 SRR1164792 347 pT2 89.32%

SRS554898 SRR1164793 437 pT1C 86.10%

SRS554899 SRR1164794 347 pT2 94.36%

SRS554900 SRR1164795 448 pT2B 93.49%

SRS554901 SRR1164796 336 pT1C 94.33%

SRS554902 SRR1164797 347 pT1C 92.03%

SRS554903 SRR1164798 347 pT2C 94.88%

SRS554904 SRR1164799 347 pT2 92.58%

SRS554905 SRR1164800 437 pT2C 91.19%

SRS554906 SRR1164801 538 pT3A 93.76%

SRS554907 SRR1164802 347 pT2A 93.75%

SRS554908 SRR1164803 347 pT3A 93.33%

SRS554909 SRR1164804 347 pT2C 93.91%

Continued on next page –
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– continued from previous page

SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554910 SRR1164805 336 pT2C 92.92%

SRS554911 SRR1164806 347 pT2C 92.77%

SRS554912 SRR1164807 437 pT2C 92.28%

SRS554913 SRR1164808 448 pT2C 91.58%

SRS554914 SRR1164809 347 pT2C 95.75%

SRS554915 SRR1164810 347 pT2A 93.42%

SRS554916 SRR1164811 347 pT2C 96.01%

SRS554917 SRR1164812 347 pT2 90.93%

SRS554918 SRR1164813 347 pT2 95.03%

SRS554919 SRR1164814 347 pT2A 95.59%

SRS554920 SRR1164815 437 pT2C 94.04%

SRS554921 SRR1164816 347 pT2C 92.04%

SRS554922 SRR1164817 347 pT3A 92.72%

SRS554923 SRR1164818 347 pT3A 92.92%

SRS554924 SRR1164819 347 pT2C 93.50%

SRS554925 SRR1164820 347 pT2C 91.91%

SRS554926 SRR1164821 336 pT2A 89.54%

SRS554927 SRR1164822 347 pT2A 92.63%

SRS554928 SRR1164823 437 pT2B 93.39%

Continued on next page –
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– continued from previous page

SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554929 SRR1164824 437 pT2C 93.42%

SRS554930 SRR1164825 347 pT2C 90.71%

SRS554931 SRR1164826 437 pT2A 93.48%

SRS554932 SRR1164827 347 pT2C 88.83%

SRS554933 SRR1164828 347 pT2A 94.77%

SRS554934 SRR1164829 347 pT2C 94.67%

SRS554935 SRR1164830 336 pT2A 95.70%

SRS554936 SRR1164831 347 pT2A 95.32%

SRS554937 SRR1164832 347 pT2B 93.33%

SRS554938 SRR1164833 347 pT2C 91.23%

SRS554939 SRR1164834 437 pT2 94.51%

SRS554940 SRR1164835 347 pT2C 93.33%

SRS554941 SRR1164836 347 pT2A 95.19%

SRS554942 SRR1164837 336 pT2A 94.06%

SRS554943 SRR1164838 336 pT1C 88.71%

SRS554944 SRR1164839 336 pT1C 91.35%

SRS554945 SRR1164840 325 NA 89.48%

SRS554946 SRR1164841 549 pT1C 85.01%

SRS554947 SRR1164842 549 pT1C 87.16%

Continued on next page –
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– continued from previous page

SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554948 SRR1164843 347 pT2B 84.12%

SRS554949 SRR1164844 347 pT2B 85.67%

SRS554950 SRR1164845 437 pT2A 82.92%

SRS554951 SRR1164846 437 pT2A 88.31%

SRS554952 SRR1164847 437 pT1C 83.87%

SRS554953 SRR1164848 437 pT1C 87.38%

SRS554954 SRR1164849 347 pT2A 83.11%

SRS554955 SRR1164850 347 pT2A 85.12%

SRS554956 SRR1164851 347 pT2B 91.79%

SRS554957 SRR1164852 347 pT2B 92.70%

SRS554958 SRR1164853 347 pT1C 89.31%

SRS554959 SRR1164854 347 pT2B 92.03%

SRS554960 SRR1164855 336 pT1C 91.27%

SRS554961 SRR1164856 347 pT2A 81.47%

SRS554962 SRR1164857 459 pT2B 87.48%

SRS554963 SRR1164858 448 pT3B 84.01%

SRS554964 SRR1164859 437 pT2A 88.89%

SRS554965 SRR1164860 549 pT2B 94.46%

SRS554966 SRR1164861 347 pT1C 88.21%

Continued on next page –
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SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554967 SRR1164862 347 pT2A 89.46%

SRS554968 SRR1164863 437 pT3B 88.21%

SRS554969 SRR1164864 437 pT3B 93.94%

SRS554970 SRR1164865 437 pT2A 94.90%

SRS554971 SRR1164866 347 pT2A 85.55%

SRS554972 SRR1164867 448 pT3B 93.78%

SRS554973 SRR1164868 347 pT2A 91.84%

SRS554974 SRR1164869 347 pT1C 92.50%

SRS554975 SRR1164870 437 pT2A 92.78%

SRS554976 SRR1164871 437 pT1C 90.55%

SRS554977 SRR1164872 437 pT3B 95.48%

SRS554978 SRR1164873 347 pT2C 89.17%

SRS554979 SRR1164874 437 pT3A 89.97%

SRS554980 SRR1164875 437 pT2C 94.34%

SRS554981 SRR1164876 448 pT3B 88.91%

SRS554982 SRR1164877 459 pT3B 92.32%

SRS554983 SRR1164878 448 pT3B 94.09%

SRS554984 SRR1164879 347 pT3B 95.13%

SRS554985 SRR1164880 448 pT2C 93.98%

Continued on next page –
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SRA Sample Run name Gleason score Pstage Uniquely mapped reads

SRS554986 SRR1164881 347 pT2C 91.91%

SRS554987 SRR1164882 437 pT2 94.01%

SRS554988 SRR1164883 448 pT2C 95.41%

SRS554989 SRR1164884 347 pT2C 91.62%

SRS554990 SRR1164885 347 pT2C 95.20%

SRS554991 SRR1164886 347 pT2C 90.21%

SRS554992 SRR1164887 347 pT4 91.75%

SRS554993 SRR1164888 437 pT2C 89.09%

SRS554994 SRR1164889 437 pT2C 87.34%

SRS554995 SRR1164890 347 pT2C 86.01%

SRS554996 SRR1164891 448 pT2A 90.54%

SRS554997 SRR1164892 347 pT3A 94.43%

A.2 List of samples used in the Laterality method

Table A.2: The location of tumor and the Gleason scores for the 499 prostate cancer
patients samples.

Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-2A-A8VO 4 5 9 Bilateral

Continued on next page –
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– continued from previous page

Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-2A-A8VT 3 3 6 Bilateral

TCGA-2A-A8VV 4 4 8 Right

TCGA-2A-A8VX 4 3 7 Bilateral

TCGA-2A-A8W1 4 5 9 Left

TCGA-2A-A8W3 3 4 7 Left

TCGA-2A-AAYF 3 3 6 Right

TCGA-2A-AAYO 3 3 6 Bilateral

TCGA-2A-AAYU 4 4 8 Left

TCGA-4L-AA1F 4 3 7 Bilateral

TCGA-CH-5737 3 3 6 Bilateral

TCGA-CH-5738 3 4 7 Bilateral

TCGA-CH-5739 3 4 7 Left

TCGA-CH-5740 4 5 9 Bilateral

TCGA-CH-5741 3 4 7 Bilateral

TCGA-CH-5743 4 3 7 Bilateral

TCGA-CH-5744 3 4 7 Bilateral

TCGA-CH-5745 3 4 7 [Not Available]

TCGA-CH-5746 4 3 7 Bilateral

TCGA-CH-5748 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-CH-5750 5 5 10 Bilateral

TCGA-CH-5751 4 4 8 Bilateral

TCGA-CH-5752 4 5 9 Bilateral

TCGA-CH-5753 4 5 9 Bilateral

TCGA-CH-5754 5 4 9 Bilateral

TCGA-CH-5761 4 3 7 Left

TCGA-CH-5762 3 4 7 Bilateral

TCGA-CH-5763 4 3 7 Bilateral

TCGA-CH-5764 3 4 7 Bilateral

TCGA-CH-5765 4 3 7 Bilateral

TCGA-CH-5766 4 3 7 Bilateral

TCGA-CH-5767 2 4 6 Bilateral

TCGA-CH-5768 5 4 9 Bilateral

TCGA-CH-5769 4 3 7 Bilateral

TCGA-CH-5771 4 5 9 Bilateral

TCGA-CH-5772 4 3 7 Bilateral

TCGA-CH-5788 3 4 7 Bilateral

TCGA-CH-5789 3 4 7 Bilateral

TCGA-CH-5790 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-CH-5791 4 5 9 Bilateral

TCGA-CH-5792 3 4 7 Bilateral

TCGA-CH-5794 4 3 7 Bilateral

TCGA-EJ-5494 5 3 8 Bilateral

TCGA-EJ-5495 3 4 7 Bilateral

TCGA-EJ-5496 3 4 7 Bilateral

TCGA-EJ-5497 4 3 7 Bilateral

TCGA-EJ-5498 4 3 7 Bilateral

TCGA-EJ-5499 4 3 7 Bilateral

TCGA-EJ-5501 4 3 7 Bilateral

TCGA-EJ-5502 5 3 8 Bilateral

TCGA-EJ-5503 4 3 7 Bilateral

TCGA-EJ-5504 4 3 7 Bilateral

TCGA-EJ-5505 5 3 8 Bilateral

TCGA-EJ-5506 4 5 9 Bilateral

TCGA-EJ-5507 3 4 7 Bilateral

TCGA-EJ-5508 3 4 7 Bilateral

TCGA-EJ-5509 4 3 7 Bilateral

TCGA-EJ-5510 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-EJ-5511 3 4 7 Bilateral

TCGA-EJ-5512 4 5 9 Bilateral

TCGA-EJ-5514 3 4 7 Bilateral

TCGA-EJ-5515 3 4 7 Right

TCGA-EJ-5516 3 3 6 Bilateral

TCGA-EJ-5517 4 5 9 Bilateral

TCGA-EJ-5518 4 4 8 Bilateral

TCGA-EJ-5519 3 4 7 Bilateral

TCGA-EJ-5521 3 4 7 Right

TCGA-EJ-5522 4 5 9 Bilateral

TCGA-EJ-5524 4 5 9 Bilateral

TCGA-EJ-5525 4 4 8 Bilateral

TCGA-EJ-5526 4 3 7 Bilateral

TCGA-EJ-5527 3 4 7 Bilateral

TCGA-EJ-5530 4 3 7 Bilateral

TCGA-EJ-5531 3 4 7 Bilateral

TCGA-EJ-5532 3 4 7 Bilateral

TCGA-EJ-5542 4 3 7 Bilateral

TCGA-EJ-7115 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-EJ-7123 3 4 7 Bilateral

TCGA-EJ-7125 3 4 7 Bilateral

TCGA-EJ-7218 4 3 7 Bilateral

TCGA-EJ-7312 4 3 7 Bilateral

TCGA-EJ-7314 4 3 7 Bilateral

TCGA-EJ-7315 3 4 7 Bilateral

TCGA-EJ-7317 4 3 7 Bilateral

TCGA-EJ-7318 3 3 6 Bilateral

TCGA-EJ-7321 3 4 7 Bilateral

TCGA-EJ-7325 3 4 7 Bilateral

TCGA-EJ-7327 4 3 7 Bilateral

TCGA-EJ-7328 4 3 7 Bilateral

TCGA-EJ-7330 3 4 7 Bilateral

TCGA-EJ-7331 3 4 7 Bilateral

TCGA-EJ-7781 4 4 8 Bilateral

TCGA-EJ-7782 4 3 7 Bilateral

TCGA-EJ-7783 4 3 7 Bilateral

TCGA-EJ-7784 3 4 7 Bilateral

TCGA-EJ-7785 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-EJ-7786 3 4 7 Bilateral

TCGA-EJ-7788 4 3 7 Bilateral

TCGA-EJ-7789 3 4 7 Bilateral

TCGA-EJ-7791 3 4 7 Bilateral

TCGA-EJ-7792 3 4 7 Bilateral

TCGA-EJ-7793 3 4 7 Bilateral

TCGA-EJ-7794 3 4 7 Bilateral

TCGA-EJ-7797 4 4 8 Bilateral

TCGA-EJ-8468 4 5 9 Left

TCGA-EJ-8469 4 3 7 Bilateral

TCGA-EJ-8470 4 4 8 Bilateral

TCGA-EJ-8472 4 4 8 [Not Available]

TCGA-EJ-8474 4 4 8 Bilateral

TCGA-EJ-A46B 3 5 8 Bilateral

TCGA-EJ-A46D 4 4 8 Bilateral

TCGA-EJ-A46E 4 4 8 Bilateral

TCGA-EJ-A46F 4 4 8 Bilateral

TCGA-EJ-A46G 3 4 7 Bilateral

TCGA-EJ-A46H 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-EJ-A46I 4 5 9 Bilateral

TCGA-EJ-A65B 4 4 8 [Not Available]

TCGA-EJ-A65D 4 3 7 Bilateral

TCGA-EJ-A65E 4 5 9 Bilateral

TCGA-EJ-A65F 3 5 8 Bilateral

TCGA-EJ-A65G 4 5 9 Bilateral

TCGA-EJ-A65J 3 3 6 Bilateral

TCGA-EJ-A65M 4 4 8 Bilateral

TCGA-EJ-A6RA 4 3 7 Bilateral

TCGA-EJ-A6RC 3 4 7 Bilateral

TCGA-EJ-A7NF 3 4 7 Bilateral

TCGA-EJ-A7NG 3 4 7 Bilateral

TCGA-EJ-A7NH 4 4 8 Bilateral

TCGA-EJ-A7NJ 3 4 7 Bilateral

TCGA-EJ-A7NK 4 5 9 Bilateral

TCGA-EJ-A7NM 4 3 7 Bilateral

TCGA-EJ-A7NN 3 4 7 Bilateral

TCGA-EJ-A8FN 4 3 7 Bilateral

TCGA-EJ-A8FO 3 5 8 Bilateral

Continued on next page –

112



– continued from previous page

Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-EJ-A8FP 3 4 7 Bilateral

TCGA-EJ-A8FS 5 3 8 Bilateral

TCGA-EJ-A8FU 3 3 6 Bilateral

TCGA-EJ-AB20 3 3 6 Bilateral

TCGA-EJ-AB27 4 3 7 Bilateral

TCGA-FC-7708 4 5 9 Bilateral

TCGA-FC-7961 5 3 8 Bilateral

TCGA-FC-A4JI 4 5 9 Bilateral

TCGA-FC-A5OB 4 3 7 Bilateral

TCGA-FC-A66V 4 3 7 Bilateral

TCGA-FC-A6HD 3 3 6 Bilateral

TCGA-FC-A8O0 3 4 7 Bilateral

TCGA-G9-6329 4 3 7 Bilateral

TCGA-G9-6332 4 3 7 Bilateral

TCGA-G9-6333 3 4 7 Bilateral

TCGA-G9-6336 4 3 7 Bilateral

TCGA-G9-6338 3 4 7 Bilateral

TCGA-G9-6339 3 3 6 Bilateral

TCGA-G9-6342 4 3 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-G9-6343 3 3 6 Bilateral

TCGA-G9-6347 3 4 7 Bilateral

TCGA-G9-6348 3 4 7 Bilateral

TCGA-G9-6351 3 4 7 Bilateral

TCGA-G9-6353 3 4 7 Bilateral

TCGA-G9-6354 4 5 9 Right

TCGA-G9-6356 3 4 7 Bilateral

TCGA-G9-6361 4 3 7 Bilateral

TCGA-G9-6362 4 3 7 Bilateral

TCGA-G9-6363 3 4 7 Bilateral

TCGA-G9-6364 3 4 7 Bilateral

TCGA-G9-6365 4 3 7 Bilateral

TCGA-G9-6366 4 5 9 Left

TCGA-G9-6367 4 3 7 Bilateral

TCGA-G9-6369 3 4 7 Bilateral

TCGA-G9-6370 3 3 6 Bilateral

TCGA-G9-6371 4 3 7 Bilateral

TCGA-G9-6373 3 4 7 Bilateral

TCGA-G9-6377 3 4 7 Bilateral

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-G9-6378 4 3 7 Bilateral

TCGA-G9-6379 3 4 7 Bilateral

TCGA-G9-6384 3 4 7 Bilateral

TCGA-G9-6385 4 3 7 Bilateral

TCGA-G9-6494 4 3 7 Bilateral

TCGA-G9-6496 3 4 7 Bilateral

TCGA-G9-6498 4 5 9 Bilateral

TCGA-G9-6499 3 3 6 Bilateral

TCGA-G9-7509 4 4 8 Bilateral

TCGA-G9-7510 3 4 7 Bilateral

TCGA-G9-7519 4 4 8 Bilateral

TCGA-G9-7521 3 4 7 Bilateral

TCGA-G9-7522 5 5 10 Bilateral

TCGA-G9-7523 4 3 7 Bilateral

TCGA-G9-7525 4 4 8 Bilateral

TCGA-G9-A9S0 4 4 8 Bilateral

TCGA-G9-A9S4 4 4 8 Bilateral

TCGA-G9-A9S7 3 4 7 Bilateral

TCGA-H9-7775 3 3 6 Right

Continued on next page –
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-H9-A6BX 3 4 7 Bilateral

TCGA-H9-A6BY 3 3 6 Bilateral

TCGA-HC-7075 3 3 6 Right

TCGA-HC-7077 3 4 7 Bilateral

TCGA-HC-7078 3 4 7 Bilateral

TCGA-HC-7079 3 4 7 Bilateral

TCGA-HC-7080 4 5 9 Right

TCGA-HC-7081 3 3 6 Bilateral

TCGA-HC-7209 3 4 7 Bilateral

TCGA-HC-7210 3 4 7 Right

TCGA-HC-7211 3 4 7 Bilateral

TCGA-HC-7212 4 5 9 Right

TCGA-HC-7213 3 4 7 Bilateral

TCGA-HC-7230 3 4 7 [Not Available]

TCGA-HC-7231 4 5 9 Bilateral

TCGA-HC-7232 4 3 7 Bilateral

TCGA-HC-7233 3 4 7 Left

TCGA-HC-7736 3 4 7 Bilateral

TCGA-HC-7737 3 4 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-HC-7738 3 4 7 Bilateral

TCGA-HC-7740 3 4 7 Bilateral

TCGA-HC-7742 4 3 7 Bilateral

TCGA-HC-7744 4 3 7 Bilateral

TCGA-HC-7745 3 4 7 Bilateral

TCGA-HC-7747 3 3 6 Right

TCGA-HC-7748 4 3 7 Right

TCGA-HC-7749 3 4 7 Left

TCGA-HC-7750 3 4 7 Bilateral

TCGA-HC-7752 4 3 7 Bilateral

TCGA-HC-7817 3 4 7 Bilateral

TCGA-HC-7818 4 4 8 Bilateral

TCGA-HC-7819 3 4 7 Bilateral

TCGA-HC-7820 4 4 8 Bilateral

TCGA-HC-7821 3 3 6 Bilateral

TCGA-HC-8213 4 3 7 Bilateral

TCGA-HC-8216 3 4 7 Right

TCGA-HC-8256 3 4 7 Bilateral

TCGA-HC-8257 3 3 6 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-HC-8258 3 3 6 Bilateral

TCGA-HC-8259 3 4 7 Left

TCGA-HC-8260 3 4 7 Bilateral

TCGA-HC-8261 4 4 8 Bilateral

TCGA-HC-8262 4 5 9 Bilateral

TCGA-HC-8264 3 5 8 Bilateral

TCGA-HC-8265 4 4 8 Bilateral

TCGA-HC-8266 4 4 8 Bilateral

TCGA-HC-A48F 5 4 9 Bilateral

TCGA-HC-A4ZV 4 5 9 Bilateral

TCGA-HC-A631 4 5 9 Bilateral

TCGA-HC-A632 3 4 7 Bilateral

TCGA-HC-A6AL 4 3 7 Bilateral

TCGA-HC-A6AN 4 3 7 Bilateral

TCGA-HC-A6AO 3 4 7 Bilateral

TCGA-HC-A6AP 3 4 7 Bilateral

TCGA-HC-A6AQ 3 4 7 Bilateral

TCGA-HC-A6AS 4 3 7 Right

TCGA-HC-A6HX 3 4 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-HC-A6HY 3 4 7 Bilateral

TCGA-HC-A76W 3 4 7 Bilateral

TCGA-HC-A76X 5 4 9 Bilateral

TCGA-HC-A8CY 3 4 7 Bilateral

TCGA-HC-A8D0 3 4 7 Left

TCGA-HC-A8D1 5 4 9 Bilateral

TCGA-HC-A9TE 5 4 9 Bilateral

TCGA-HC-A9TH 4 5 9 Bilateral

TCGA-HI-7168 3 4 7 Bilateral

TCGA-HI-7169 3 3 6 Bilateral

TCGA-HI-7170 5 4 9 Bilateral

TCGA-HI-7171 4 3 7 Bilateral

TCGA-J4-8198 3 4 7 Bilateral

TCGA-J4-8200 4 3 7 Bilateral

TCGA-J4-A67K 3 4 7 Bilateral

TCGA-J4-A67L 4 3 7 Left

TCGA-J4-A67M 3 4 7 Bilateral

TCGA-J4-A67N 3 4 7 Bilateral

TCGA-J4-A67O 3 3 6 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-J4-A67Q 4 3 7 Bilateral

TCGA-J4-A67R 3 4 7 Bilateral

TCGA-J4-A67S 3 4 7 Bilateral

TCGA-J4-A67T 4 4 8 Bilateral

TCGA-J4-A6G1 4 4 8 Bilateral

TCGA-J4-A6G3 3 4 7 Bilateral

TCGA-J4-A6M7 4 3 7 Bilateral

TCGA-J4-A83I 3 4 7 Bilateral

TCGA-J4-A83J 3 3 6 Bilateral

TCGA-J4-A83K 3 4 7 Bilateral

TCGA-J4-A83L 4 3 7 Bilateral

TCGA-J4-A83M 3 4 7 Bilateral

TCGA-J4-A83N 3 3 6 Bilateral

TCGA-J4-AATV 4 5 9 Bilateral

TCGA-J4-AATZ 3 3 6 Bilateral

TCGA-J4-AAU2 5 4 9 Bilateral

TCGA-J9-A52B 4 5 9 Bilateral

TCGA-J9-A52C 4 5 9 Bilateral

TCGA-J9-A52D 4 5 9 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-J9-A52E 4 5 9 Bilateral

TCGA-J9-A8CK 4 5 9 Bilateral

TCGA-J9-A8CL 5 4 9 Bilateral

TCGA-J9-A8CM 3 3 6 Bilateral

TCGA-J9-A8CN 4 3 7 Bilateral

TCGA-J9-A8CP 3 4 7 Bilateral

TCGA-KC-A4BL 3 4 7 Bilateral

TCGA-KC-A4BN 4 5 9 Right

TCGA-KC-A4BR 4 5 9 Bilateral

TCGA-KC-A4BV 3 4 7 Bilateral

TCGA-KC-A7F3 4 3 7 Bilateral

TCGA-KC-A7F5 3 4 7 Right

TCGA-KC-A7F6 3 4 7 Bilateral

TCGA-KC-A7FA 3 4 7 Bilateral

TCGA-KC-A7FD 3 4 7 Bilateral

TCGA-KC-A7FE 4 5 9 Bilateral

TCGA-KK-A59V 5 4 9 Bilateral

TCGA-KK-A59X 4 5 9 Bilateral

TCGA-KK-A59Y 4 3 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-KK-A59Z 4 5 9 Bilateral

TCGA-KK-A5A1 3 4 7 Bilateral

TCGA-KK-A6DY 4 5 9 Bilateral

TCGA-KK-A6E0 4 5 9 Right

TCGA-KK-A6E1 3 4 7 Bilateral

TCGA-KK-A6E2 3 4 7 Bilateral

TCGA-KK-A6E3 3 4 7 Bilateral

TCGA-KK-A6E4 4 3 7 Right

TCGA-KK-A6E5 4 5 9 Bilateral

TCGA-KK-A6E6 5 4 9 Bilateral

TCGA-KK-A6E7 4 5 9 Bilateral

TCGA-KK-A6E8 4 5 9 Bilateral

TCGA-KK-A7AP 4 3 7 Right

TCGA-KK-A7AQ 4 5 9 Bilateral

TCGA-KK-A7AU 3 4 7 Bilateral

TCGA-KK-A7AV 4 3 7 Bilateral

TCGA-KK-A7AW 4 3 7 Right

TCGA-KK-A7AY 4 3 7 Bilateral

TCGA-KK-A7AZ 4 5 9 Right
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-KK-A7B0 4 3 7 Bilateral

TCGA-KK-A7B1 4 5 9 Bilateral

TCGA-KK-A7B2 4 5 9 Left

TCGA-KK-A7B3 4 5 9 Bilateral

TCGA-KK-A7B4 4 3 7 Bilateral

TCGA-KK-A8I4 3 4 7 Left

TCGA-KK-A8I5 4 3 7 Right

TCGA-KK-A8I6 4 5 9 Bilateral

TCGA-KK-A8I7 4 5 9 Bilateral

TCGA-KK-A8I8 4 4 8 Bilateral

TCGA-KK-A8I9 4 5 9 Bilateral

TCGA-KK-A8IA 4 5 9 Bilateral

TCGA-KK-A8IB 4 5 9 Bilateral

TCGA-KK-A8IC 5 4 9 Bilateral

TCGA-KK-A8ID 4 3 7 Bilateral

TCGA-KK-A8IF 4 3 7 Bilateral

TCGA-KK-A8IG 4 3 7 Bilateral

TCGA-KK-A8IH 4 5 9 Bilateral

TCGA-KK-A8II 4 3 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-KK-A8IJ 4 5 9 Bilateral

TCGA-KK-A8IK 4 5 9 Bilateral

TCGA-KK-A8IL 4 3 7 Bilateral

TCGA-KK-A8IM 3 4 7 Bilateral

TCGA-M7-A71Y 4 3 7 Bilateral

TCGA-M7-A71Z 3 3 6 Right

TCGA-M7-A720 3 4 7 Bilateral

TCGA-M7-A721 4 4 8 Bilateral

TCGA-M7-A722 4 3 7 Bilateral

TCGA-M7-A723 4 4 8 Bilateral

TCGA-M7-A724 4 3 7 Right

TCGA-M7-A725 4 5 9 Bilateral

TCGA-MG-AAMC 3 4 7 [Not Available]

TCGA-QU-A6IL 3 4 7 Bilateral

TCGA-QU-A6IM 3 4 7 Left

TCGA-QU-A6IN 3 3 6 Bilateral

TCGA-QU-A6IO 3 3 6 Bilateral

TCGA-QU-A6IP 5 3 8 Right

TCGA-SU-A7E7 3 4 7 Right
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-TK-A8OK 4 3 7 Right

TCGA-TP-A8TT 4 3 7 Left

TCGA-TP-A8TV 3 3 6 Bilateral

TCGA-V1-A8MF 3 4 7 Bilateral

TCGA-V1-A8MG 3 3 6 Bilateral

TCGA-V1-A8MK 3 4 7 Bilateral

TCGA-V1-A8ML 4 3 7 Bilateral

TCGA-V1-A8MM 3 4 7 Bilateral

TCGA-V1-A8MU 3 4 7 Bilateral

TCGA-V1-A8WL 3 3 6 Bilateral

TCGA-V1-A8WN 3 3 6 Bilateral

TCGA-V1-A8WS 4 5 9 Bilateral

TCGA-V1-A8WV 4 5 9 Bilateral

TCGA-V1-A8WW 3 4 7 Bilateral

TCGA-V1-A8X3 5 4 9 Bilateral

TCGA-V1-A9O5 5 4 9 Bilateral

TCGA-V1-A9O7 3 5 8 Bilateral

TCGA-V1-A9O9 4 5 9 Bilateral

TCGA-V1-A9OA 3 3 6 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-V1-A9OF 4 4 8 Right

TCGA-V1-A9OH 5 4 9 Bilateral

TCGA-V1-A9OL 3 3 6 Bilateral

TCGA-V1-A9OQ 3 3 6 Bilateral

TCGA-V1-A9OT 3 5 8 Bilateral

TCGA-V1-A9OX 4 3 7 Bilateral

TCGA-V1-A9OY 5 4 9 Bilateral

TCGA-V1-A9Z7 5 4 9 Bilateral

TCGA-V1-A9Z8 4 5 9 Bilateral

TCGA-V1-A9Z9 4 5 9 Bilateral

TCGA-V1-A9ZG 4 5 9 Bilateral

TCGA-V1-A9ZI 4 4 8 Left

TCGA-V1-A9ZK 4 4 8 Bilateral

TCGA-V1-A9ZR 4 4 8 Bilateral

TCGA-VN-A88I 4 4 8 Bilateral

TCGA-VN-A88K 3 4 7 Bilateral

TCGA-VN-A88L 3 4 7 Bilateral

TCGA-VN-A88M 4 3 7 Bilateral

TCGA-VN-A88N 3 4 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-VN-A88O 3 4 7 Bilateral

TCGA-VN-A88P 4 4 8 Bilateral

TCGA-VN-A88Q 4 4 8 Bilateral

TCGA-VN-A88R 4 4 8 Bilateral

TCGA-VN-A943 5 3 8 Bilateral

TCGA-VP-A872 3 4 7 Bilateral

TCGA-VP-A875 3 5 8 Bilateral

TCGA-VP-A876 4 5 9 Bilateral

TCGA-VP-A878 4 5 9 Right

TCGA-VP-A879 4 4 8 Right

TCGA-VP-A87B 4 3 7 Bilateral

TCGA-VP-A87C 4 5 9 Bilateral

TCGA-VP-A87D 3 3 6 Bilateral

TCGA-VP-A87E 4 5 9 Bilateral

TCGA-VP-A87H 3 4 7 Bilateral

TCGA-VP-A87J 4 4 8 Bilateral

TCGA-VP-A87K 5 4 9 Bilateral

TCGA-VP-AA1N 4 4 8 Bilateral

TCGA-WW-A8ZI 4 5 9 Right
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-X4-A8KQ 3 4 7 Bilateral

TCGA-X4-A8KS 4 3 7 Bilateral

TCGA-XA-A8JR 3 4 7 Right

TCGA-XJ-A83F 4 3 7 Bilateral

TCGA-XJ-A83G 3 4 7 Bilateral

TCGA-XJ-A83H 5 4 9 [Not Available]

TCGA-XJ-A9DI 4 4 8 Right

TCGA-XJ-A9DK 3 3 6 Right

TCGA-XJ-A9DQ 5 4 9 Bilateral

TCGA-XJ-A9DX 4 4 8 Bilateral

TCGA-XK-AAIR 5 5 10 Bilateral

TCGA-XK-AAIV 5 4 9 Bilateral

TCGA-XK-AAIW 4 4 8 Bilateral

TCGA-XK-AAJ3 4 3 7 Bilateral

TCGA-XK-AAJA 4 3 7 Left

TCGA-XK-AAJP 4 3 7 Bilateral

TCGA-XK-AAJR 4 3 7 Bilateral

TCGA-XK-AAJT 4 3 7 Bilateral

TCGA-XK-AAJU 4 3 7 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-XK-AAK1 5 5 10 Bilateral

TCGA-XQ-A8TA 4 5 9 Bilateral

TCGA-XQ-A8TB 3 3 6 Right

TCGA-Y6-A8TL 4 4 8 Bilateral

TCGA-Y6-A9XI 5 4 9 Right

TCGA-YJ-A8SW 4 5 9 Bilateral

TCGA-YL-A8HJ 4 5 9 Bilateral

TCGA-YL-A8HK 4 5 9 Bilateral

TCGA-YL-A8HL 4 5 9 Bilateral

TCGA-YL-A8HM 4 3 7 Bilateral

TCGA-YL-A8HO 4 5 9 Bilateral

TCGA-YL-A8S8 4 5 9 Bilateral

TCGA-YL-A8S9 4 4 8 Bilateral

TCGA-YL-A8SA 4 5 9 Bilateral

TCGA-YL-A8SB 4 5 9 Bilateral

TCGA-YL-A8SC 4 3 7 Bilateral

TCGA-YL-A8SH 4 5 9 Bilateral

TCGA-YL-A8SI 4 5 9 Bilateral

TCGA-YL-A8SJ 4 5 9 Bilateral
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Sample name Gleason Prim. Gleason Sec. Gleason Score Laterality

TCGA-YL-A8SK 4 4 8 Bilateral

TCGA-YL-A8SL 4 5 9 Bilateral

TCGA-YL-A8SO 4 5 9 Bilateral

TCGA-YL-A8SP 4 5 9 Bilateral

TCGA-YL-A8SQ 4 5 9 Bilateral

TCGA-YL-A8SR 4 5 9 Bilateral

TCGA-YL-A9WH 4 5 9 Bilateral

TCGA-YL-A9WI 4 4 8 Bilateral

TCGA-YL-A9WJ 4 5 9 Bilateral

TCGA-YL-A9WK 4 5 9 Bilateral

TCGA-YL-A9WL 4 5 9 Bilateral

TCGA-YL-A9WX 5 4 9 Bilateral

TCGA-YL-A9WY 4 5 9 Bilateral

TCGA-ZG-A8QW 3 3 6 Bilateral

TCGA-ZG-A8QX 5 4 9 Bilateral

TCGA-ZG-A8QY 4 5 9 Bilateral

TCGA-ZG-A8QZ 5 4 9 Bilateral

TCGA-ZG-A9KY 5 4 9 Bilateral

TCGA-ZG-A9L0 4 5 9 Bilateral
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TCGA-ZG-A9L1 4 5 9 Bilateral

TCGA-ZG-A9L2 5 4 9 [Not Available]

TCGA-ZG-A9L4 5 4 9 Bilateral

TCGA-ZG-A9L5 5 4 9 Bilateral

TCGA-ZG-A9L6 4 5 9 Bilateral

TCGA-ZG-A9L9 5 4 9 Bilateral

TCGA-ZG-A9LB 4 5 9 Right

TCGA-ZG-A9LM 5 4 9 Right

TCGA-ZG-A9LN 5 4 9 Bilateral

TCGA-ZG-A9LS 5 4 9 Bilateral

TCGA-ZG-A9LU 4 5 9 Bilateral

TCGA-ZG-A9LY 4 5 9 Bilateral

TCGA-ZG-A9LZ 5 4 9 Bilateral

TCGA-ZG-A9M4 5 4 9 Bilateral

TCGA-ZG-A9MC 5 4 9 Bilateral

TCGA-ZG-A9N3 5 4 9 Bilateral

TCGA-ZG-A9ND 5 4 9 Bilateral

TCGA-ZG-A9NI 3 3 6 Bilateral
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