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Abstract: 
 

 The deep-sea, defined as the area 200 m below the surface, is facing emerging 

chemical, physical and biological stressors.  Currently, very little is known regarding 

deep-sea ecosystems both globally and in the Arctic. In this thesis I undertook a literature 

review on the current understanding of global deep-sea ecosystems through the use of 

stable isotopes. Specifically, I synthesized the available literature on spatial variation, 

energy pathways, depth, temporal variation, feeding behaviour, niche, trophic position 

and body size isotopic trends.  This thesis then presents a case study examining the 

isotopic niche of five teleost and two decapod species within Arctic deep-sea food webs 

across the localized latitudinal gradient of Baffin Island.  Spatial variation in isotopic 

niche was quantified using d13C and d15N for seven deep-sea species at three locations on 

Baffin Island, Nunavut to determine whether the “Latitudinal Niche Breadth Hypothesis” 

which states that niche breadth should increase with latitude holds true in the Arctic. 

Overall, isotopic patterns in global deep-sea ecosystem are variable; consistent trends are 

not observed across all taxa and habitats.  It was concluded that niche breadth did not 

consistently increase with latitude in the eastern Canadian Arctic; localized conditions 

(e.g. sea ice, temperature) and individual condition (e.g. hepatosomatic index) may 

contribute more to a species’ niche than latitude.  Overall, this thesis improves our 

understanding of deep-sea ecosystems globally, contributes baseline data for future 

monitoring, and by investigating multiple species and locations it will provide input on 

how climate change may impact Arctic food web diversity, energy dynamics and 

ecosystem structure to aid in sustainable fishery development. 
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Chapter 1: General Introduction 

 Around the world, marine ecosystems are threatened by a variety of stressors 

(Ashford et al., 2018) including: climate change (Bruno et al., 2018; Levin & Le Bris, 

2015), hydrocarbon-related activities (Venegas-Li et al., 2019), invasive species (Seebens 

et al., 2013), shipping (Melia et al., 2016), fishing (Coll et al., 2008), ghost fishing gear 

(Bo et al., 2014), tourism (Hardiman & Burgin, 2010), mining (Jones et al., 2018; 

Sharma, 2015), and plastic pollution (Cózar et al., 2014; Taylor et al., 2016).  These 

stressors impact native diversity and habitat quality and there are increasing concerns 

about their effects on marine food webs and ecosystem services (Sandifer & Sutton-

Grier, 2014).   

Two-hundred meters under the ocean surface lies the deep-sea; one of earth’s 

largest (Webb et al., 2010) and least understood habitats (Danovaro et al., 2017).  Many 

species within the deep-sea have highly k-selected traits (i.e. slow maturation, long life, 

few offspring; Victorero et al., 2018) and have adapted to the low light (Danovaro et al., 

2014), limited food availability (Clark, 2001), and the high pressure (Rogers, 2015) 

environment they inhabit.  The deep-sea provides ecosystem functions and services to 

both humans and oceanic processes through water circulation (“global conveyor belt”), 

carbon dioxide exchange, nutrient cycling, biological pump for nutrients, in-situ primary 

and secondary production, waste disposal, and fisheries (Thurber et al., 2014).  

Globally, deep-sea ecosystems have diverse biological, physical and chemical 

characteristics depending on their location and biogeography.  Broad-scale patterns in 

deep-sea temperature variability is largely due to the great ocean conveyor belt 

transporting water to the deep-sea through global thermohaline circulation (Priede, 2017).  
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The deep-sea is generally colder in polar regions (typically < 0°C; Priede, 2017) than in 

temperate and tropical regions (Mediterranean: 12.8 – 15.5°C at 3000 m; Danovaro et al., 

2010; Emig & Geistdoerfer, 2005 and Red Sea: 21.7°C at 3000 m; Klausewitz, 1989) 

because of evaporation, cooling and sinking of warm saline water that occurs in the 

tropics and temperate regions (Priede, 2017). Deep-sea temperatures are rising due to 

climate change and it is predicted that by 2100 deep-sea temperatures will increase by up 

to 4.41°C in some areas, specifically the Atlantic (Sweetman et al., 2017). In Antarctica, 

impacts of warming in the deep-sea extend beyond the deep-sea into shallow 

environments because warmer sub-surface waters (depth: 50 – 400 m) have led to ice 

shelf collapse and recession (Etourneau et al., 2019).   

Global species richness dips at the equator, increases in low-mid latitudes (e.g. 5-

10°N, the Philippines), dipping and then peaking again in higher latitude locations (e.g. 

75-90°N; Saeedi et al., 2019).  Deep-sea polar regions have lower species richness 

compared to tropical and temperate deep-sea regions (Costello & Chaudhary, 2017). 

Species richness is strongly linked to higher temperatures (Righetti et al., 2019), which 

increases competition due to higher metabolic rates and thus higher food demands 

(Costello & Chaudhary, 2017), which drives speciation (Wright & Rohde, 2013).  

Species richness also declines with increasing depth (Costello & Chaudhary, 2017; 

Saeedi et al., 2019) as species must be able to withstand the harsh deep-sea conditions. It 

is difficult to obtain accurate species richness estimates for the deep-sea because there are 

many undiscovered species (Danovaro et al., 2017).    

Stable isotopes (Inger & Bearhop, 2008) have gained popularity in ecology in the 

past two decades (Carter et al., 2019) as a means to provide inference into a species’ 
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niche (Newsome et al., 2007; Bearhop et al., 2004), trophic position (Post, 2002; Turner 

et al., 2010; Zimmo et al., 2012), habitat utilisation (Inger & Bearhop, 2008), diet 

(DeNiro & Epstein, 1976; Post, 2002), energy pathways (Gladyshev, 2009) and 

movements (Shaw & Ryan, 2014; Rubenstein & Hobson, 2004; Carlisle et al., 2012).  

DeNiro and Epstein (1976) described stable isotopes as “you are what you eat” because 

ratios between stable isotopes in consumer protein tissues reflect the ratios in their 

consumed prey (Bergmann et al., 2009).  Analyzing species’ tissues for stable isotopes is 

inexpensive (Newton, 2010), non-lethal (Shipley et al., 2017) and minimally invasive 

(Newton, 2010). The approach provides temporally integrated ecological information on 

a species by analyzing tissues with different isotope turnover rates (Peterson & Fry, 

1987).   The nitrogen stable isotope ratio (15N:14N) infers trophic position (Fry, 1988; 

Post, 2002) and food web length whereas the carbon stable isotope ratio (13C:12C) is used 

to make inferences about habitat usage (Inger & Bearhop, 2008) and primary carbon 

sources (Bergmann et al., 2009).    

Niche was first used to describe an environmental realm in 1917 (Grinnell, 1917).  

Ten years later, Elton (1927) described niche as the role that species play in an ecosystem 

under different environmental scenarios.  Over the years, niche has evolved and divided 

into several categories: trophic (Bearhop et al., 2004), climatic (Moen & Wiens, 2017), 

environmental (Pearman et al., 2007), dietary (Sato et al., 2018) and isotopic (Newsome 

et al., 2007).  Isotopic niche uses stable isotopes (d15N and d13C) to determine the n-

dimensional d-space to understand connections between resource consumption (d15N) 

and habitat (d13C) (Newsome et al., 2007).  The isotopic niche consequently provides a 

tool to understand prey dynamics (Bearhop et al., 2004), inter- and intra- specific 
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variability in resource-habitat use (Yeakel et al., 2016), and competition and response to 

emerging stressors (Shipley et al., 2019).  But few studies have investigated the isotopic 

niche of species in the deep sea (e.g. Kopp et al., 2017; Demopoulos et al., 2017; Valls et 

al., 2017). 

The “Latitude Niche Breadth Hypothesis” states that niche breadth increases with 

latitude towards the poles (MacArthur, 1972; Vázquez & Stevens, 2004).  Under this 

scenario, species are deemed more specialized at the tropics (Saupe et al., 2018) because 

of higher resource diversity (Araújo & Costa-Pereira, 2013) and less seasonality 

compared to the poles (Vázquez & Stevens, 2004).  Moreover, inter-specific competition 

is higher in tropical species whereas intra-specific competition is higher at the poles 

(Barnes & Neutel, 2016) because of higher resource diversity in the tropics (Araújo & 

Costa-Pereira, 2013).  The “Latitudinal Niche Breadth Hypothesis” has been observed 

around the globe in crabs (Papacostas & Freestone, 2016), plants (Saupe et al., 2018), and 

in lake and stream food webs (Cirtwill et al., 2015).  However, it is also suggested that 

the type of environment can have a greater effect on niche breadth than latitude for 

species in estuarine, marine and terrestrial ecosystems (Cirtwill et al., 2015).  No 

relationships between latitude, air temperature or ecosystem size and food chain length 

using stable isotopes have been suggested for marine and aquatic ecosystems (Vander 

Zanden & Fetzer, 2007).  Gilbert (2019) also indicated that temperature predicts food 

web structure more than latitude, indicating that there is a negative relationship between 

temperature and the number species.  Predators in warmer ecosystems will therefore have 

more species interactions compared to species in colder ecosystems (Cirtwill et al., 

2015).  These contrasting trends and hypotheses identify the need to further investigate 
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latitudinal trends in species ecological characteristics at small scales, particularly at the 

poles.  

Limited research has been undertaken to understand how sea ice influences the 

Arctic deep-sea.  The Arctic is a highly seasonal ecosystem and experiences a period of 

ice formation, ice coverage, ice melt and the open water season which relies on seasonal 

ice for primary productivity (Ramirez et al., 2017).  Summer sea ice in the Arctic is 

predicted to be diminished by mid-century (Notz et al., 2018) and sea surface 

temperatures are predicted to increase to 10°C by 2300 (Carton et al., 2015).  Regional 

concerns over declining sea ice include: more stratification (Carton et al., 2015), changes 

in productivity (Harada, 2016; Coad & Reist, 2017), reduced protection from predators 

for marine species (Hussey et al., 2017b; Coad & Reist, 2017), and increased sea water 

temperature (Lind et al., 2018) which will have consequences for food web structure, 

species diversity and energy dynamics (Kortsch et al., 2015; Murphy et al. 2016). 

Globally, sea ice plays an important role in regulating climate due to the Albedo effect 

(NSIDC, 2019) and water freshening (reduced salinity; Bethke, Furevik, & Drange, 2006; 

Ohshima et al., 2014).  In the Okhotsk Sea, water freshening caused by sea ice declines 

has been observed from the surface to 500 m and is linked to reductions in dense shelf 

water (Ohshima et al., 2014).    

Sea ice connects to the surface to the deep-sea as one of several energy pathways 

providing nutrition to deep-sea food webs (Bergmann et al., 2009; Iken et al., 2004).  

Research using highly branched isoprenoid lipid biomarkers determined that Alligator 

fish (Asphidophoroides olrikii), a species known to forage in the Arctic deep-sea, utilized 

sea ice derived carbon (Brown & Belt, 2011) indicating surface to deep-sea connectivity.  
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Variation in stable isotopes (specifically, d13C) can also provide an indication of whether 

species are utilizing sea ice derived resources (Hobson et al., 1995).  Previous Arctic 

research has focused heavily on understanding shallower water food webs (e.g. 

Linnebjerg et al., 2016; Hobson & Welch, 1992) with little research on deep-sea food 

webs. Understanding the link between sea ice and food web dynamics will be key to 

understanding how Arctic deep-sea food webs may respond to sea ice declines.   

Arctic food webs experience greater seasonality than tropical food webs (Vázquez 

& Stevens, 2004).  Seasonal variation in the tropical deep-sea is also present due to 

hydrological seasons and the resulting temperature variations (Morales-Nin & Panfili, 

2005) with diversity found to be highly influenced by climate (Yasuhara et al., 2009).  

Severe coastal storms transport and sequester large quantities of organic carbon from 

shallow regions to the deep-sea (Sanchez-Vidal et al., 2012).  More frequent tropical 

storms, therefore, have the potential to alter the deep-sea carbon sequestration potential 

(Sanchez-Vidal et al., 2012). Whereas in the Arctic, seasonality is largely driven by sea 

ice formation, and break up followed by phytoplankton blooms in the spring (Hoegh-

Guldberg & Bruno, 2010).  

 This thesis examines global deep-sea food webs through the application of stable 

isotopes and presents a case study within the Canadian Arctic examining three food webs 

across a relatively localized latitudinal gradient.   It is anticipated that this thesis will 

provide insight into deep-sea environments both in the Arctic and globally.  Specifically, 

the chapters in this thesis address the following topics: 

 Chapter 2 is a literature review that examines how stable isotopes have been used 

to understand deep-sea environments around the world. This chapter focuses on 
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summarizing isotopic trends under the umbrella of nine core ecological topics: niche, 

feeding behaviour, trophic position, energy pathways, depth, body size, spatial variation 

and temporal variation.  Insight into deep-sea environments will provide an opportunity 

to make more informed conservation and management decisions in an environment, that 

until recently, has remained relatively untouched compared to shallower counterparts.   

 Chapter 3 provides a novel approach using stable isotopes to understand the 

isotopic niches of Arctic deep-sea species and food web structure across a localized 

latitudinal gradient.  Economically significant species were studied including: Greenland 

Halibut (Reinhardtius hippoglossoides), Northern shrimp (Pandalus borealis), and Arctic 

Cod (Boreogadus saida). Non-commercial species that are also part of the deep-sea food 

web and support economic species include: Bigeye Sculpin (Triglops nybelini), 

Gelatinous Snailfish (Liparis fabricii), Atlantic Poacher (Leptagonus decagonus), and 

Sclerocrangon ferox (a shrimp).  To date, minimal research has been undertaken to fully 

understand the role that Arctic fauna play in deep-sea food webs, particularly for species 

with little cultural or economic significance. Greenland halibut, Arctic char and Northern 

shrimp combined contributed 86.3 million dollars to Nunavut’s economy in 2015 

(Government of Nunavut, 2016). There is currently one community-based commercial 

Greenland halibut fishery in Cumberland Sound, Nunavut which in winter 2014 involved 

over 70 licensed participants (Government of Nunavut, 2016). Due to its positive 

socioeconomic impact, this has now led other communities to investigate the 

development of fisheries (Barkley et al., 2018).  Findings from Chapter 3 provide 

necessary baseline data on the trophic roles of different deep-sea species. These baseline 

data can be used to aid in the monitoring of test fisheries in other communities which 
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would contribute to socio-economic growth, employment and food security in the North 

(Christie, 2018).  
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Chapter 2: A glimpse into the deep: State of knowledge on global deep-sea 

ecosystems through the application of stable isotopes (δ15N and δ13C) 

1.0 Introduction:  
 

Defined as the area >200 m below the sea surface, the deep-sea represents the 

largest volumetric space on the planet (99% by volume; Norse et al., 2012), accounting 

for the majority of earth’s surface (65%; Priede, 2017).  Deep-sea species grow slowly, 

mature late and have low metabolic rates compared to shallower-water counterparts 

(Victorero et al., 2018).  These k-selected ecological traits are considered to be a result of 

light limitation, which prohibits photosynthesis (Danovaro et al., 2014; Drazen & Sutton, 

2017; Priede, 2017), limited food availability, low energy (Clark, 2001; Woolley et al., 

2016), variable temperatures (Yasuhara & Danovaro, 2016; Klausewitz, 1989; Priede, 

2017), and the extreme pressure (Rogers, 2015) of these environments.  Within the deep-

sea, species span all trophic levels from primary consumers to apex predators and, similar 

to terrestrial systems, environments are spatially diverse from volcanoes and vents to 

canyons, trenches and slopes (Priede, 2017).  

Advances in technology and the recognized significance of the deep-sea, both 

economically and ecologically, have driven increased interest in this previously little 

explored environment in recent decades.  As deep-sea habitats face increased exploitation 

pressures from mining (Glover et al., 2018) and fishing (Morato et al., 2006), it is 

important that exploration is conducted in a sustainable manner to avoid disrupting 

ecosystem stability and resilience.  The orange roughy, Hoplostethus atlanticus, a k-

selected species, distributed throughout New Zealand (depths 700-1500 m), for example, 

was heavily overexploited during the 1980’s driving stocks to rapidly decline within a 



 

 21 

decade (Clark, 2001). At present, there are more than 300 exploited deep-sea species 

around the world (Priede, 2017) and lack of basic biological-ecological knowledge raises 

concern over their long-term sustainability.  Non-commercial species can also play 

important roles in food webs that support fisheries (Christie, 2019) and it has been shown 

that with fishing pressure there are indirect effects on non-commercial species including 

the decline of mean body mass over time (Jørgensen et al., 2014).   Deep-sea 

environments should not be considered replacements for degrading shallow water 

environments (Morato et al., 2006), but rather opportunities to develop fisheries in a 

sustainable manner that are built upon the successes and lessons learned from other 

fisheries (Hidalgo & Browman, 2019).  Protected areas in the deep-sea will help provide 

refuge for fauna and help reduce stress from fishing and other stressors (e.g. climate 

change; Levin & Le Bris, 2015).    

Stable isotopes have gained popularity over the past twenty years (Carter et al., 

2019) as a tool to understand species movements (Rubenstein & Hobson, 2004; Carlisle 

et al., 2012), dietary history (Post, 2002; DeNiro & Epstein, 1976), trophic level (Turner 

et al., 2010; Zimmo et al., 2012), habitat utilization (Peterson & Fry, 1987; Inger & 

Bearhop, 2008; Layman et al., 2011), energy pathways (Gladyshev, 2009) and niche 

(Newsome et al., 2007; see review by Layman et al 2007). Temporally integrated 

ecological information derived from stable isotopes can be inferred from multiple tissues 

that have different turnover rates increasing the power of inference (Peterson & Fry, 

1987).  The isotopic approach is typically inexpensive when compared to other 

techniques, such as telemetry, minimally invasive via tissue sampling and release of 

individuals (Newton, 2001; Shipley et al., 2017), yet can answer questions from the 
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individual to ecosystem level.  Furthermore, stable isotope analysis (SIA) can 

complement traditional methods (e.g. stomach content analysis, telemetry, respirometry, 

fecal analysis, and fatty acid analysis) to provide insight on both recent and longer-term 

ecological characteristics of species.    

Observed trends in stable isotope values are based on the principle that consumer 

protein reflects that of the prey they consume (Bergmann et al., 2009) and primary 

productivity where the consumer forages (Churchill et al., 2015) when considering tissue 

turnover rates. The ratio of nitrogen stable isotopes (15N:14N) has a stepwise enrichment 

of between 2‰ and 5‰ per trophic level (Bearhop et al., 2004) and is principally used to 

infer trophic position (Fry, 1988; Post, 2002) and food web length.  The ratio of carbon 

stable isotopes (13C:12C) is indicative of habitat (Inger & Bearhop, 2008), distance to the 

primary carbon source (Bergmann et al., 2009) and undergoes a more conservative 

stepwise enrichment of 1‰ per trophic level (Mill et al., 2007).  Caution is needed, 

however, when interpreting isotopic values because two distinct trophic pathways could 

be characterized by primary consumers with identical isotope values, leading to 

misinterpretation (Layman et al., 2011). Consequently, an integrated multi-method 

approach is often recommended (Christiansen et al. 2015; Churchill et al., 2015).  Within 

deep-sea food webs, stable isotopes are now being used to address several key ecological 

questions with a recent review providing the first insights into macro- and megafauna in 

heterotrophic environments across a latitudinal gradient (Parzanini et al., 2019).  

 Here I review the state of knowledge on the application of stable isotopes to 

understand the structure and function of global deep-sea ecosystems including both 

chemosynthetic and heterotrophic environments.  The review focuses on the following 
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core topics: spatial variation, energy pathways, depth, temporal variation, feeding 

behaviour, trophic position, niche and body size. 

2.0 Methods:  

A systematic literature search was conducted using ‘Web of Science.’  Studies 

were identified using the key words “stable isotopes” and “food webs” and one of the 

following terms: “deep-water” or “deep-sea.” References within identified papers but not 

identified through the systematic search were also considered. All studies focusing on 

deep-sea food webs and applying stable isotopes to examine species interactions and 

trends published before January 2018 were included.    

For each study, the following information was extracted: location, biome 

classification (based on Sutton et al., 2017), environment type (i.e. canyon, slope, vent, 

etc.), depth, species studied (phylum), study purpose, how stable isotopes were used and 

key findings. All studies were subsequently categorized according to the identified topics 

in Table 1.   

3.0 Results and Discussion:  

A total of 53 stable isotope studies focused on global deep-sea ecosystems were 

published from 1992 – 2017 (Figure 1) with the majority of studies in the northern 

hemisphere (Figure 2). The mesopelagic zone (200-1000m) is lower in the deep-sea and 

can be divided into four biomes based on primary productivity patterns, seasonal fluxes, 

stratification, and irradiance which play dominant roles in defining the structure of 

ecosystems (Sutton et al., 2017).  Deep-sea food webs have been most frequently studied 

in the westerly winds biome (n=26; 46%), followed by the polar biome (n=14; 25%), 

distant neritic biome (n=8, 14 %) and trade wind biome (n=8, 14%) (Figure 3).   Each 
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biome can be further subdivided by ecoregions (number of ecoregions: westerly winds 

=10, polar =3, distant neritic=13, trade wind=7), which are defined based on water 

masses, oxygen minimum zones, temperature extremes, surface water productivity, biotic 

partitioning and caveats (e.g. data deficient areas; Sutton et al., 2017).   The most well 

studied ecoregion is the Mediterranean with 21.4% of studies (n=12); the next most 

popular study hot spots are located in the Northwest Atlantic Subarctic ecoregion (n=7, 

12.5%) and North Atlantic Drift ecoregion (n=6, 10.7%) (Figure 3).  Areas that have not 

been studied and should be considered for future research include: the Arabian Sea, Bay 

of Bengal, Northern Indian Ocean, Mid-Indian Ocean, Mauritania / Cape Verde, 

Benguela upwelling, Coral Sea, Tasman sea, Southern Indian Ocean and the South 

Atlantic (Figure 3).     
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Figure 1: Count of deep-sea ecosystem studies by publication year (1992 - 2017). Bar 

length reflects publications in orange for the current year and cumulative publications to 

date from previous years are in blue.   

 
Figure 2: Locations of studies using stable isotopes to examine deep-sea ecosystems 
globally.   Each dot represents a relevant identified study. For studies undertaken in two 
or more distinct locations, one dot was added for each relevant location. 
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Figure 3: Count of studies published by biome and ecoregion. The count is a reflection 
of ecoregions which are studied but some studies occurred in more than one ecoregion 
which was therefore counted in each relevant region.  Blue represents the distant neritic 
biome (n=8), purple is the polar biome (n=14), orange is the trade wind biome (n=7), and 
green is the westerly winds biome (n=26).  
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Table 1: All studies examining bulk stable isotope (δ15N and δ13C) in deep-sea food webs from 1992 – 2017 identified from ‘Web of 

Science’ standard literature searches. 
# Reference Location  Environment type  Year(s) Ocean  δ15N δ13C Species studied  Depth (m) Key themes discussed  

1 Asante et al., 

2008 

East China Sea  NR  2001-

2002 

Pacific  Y Y Chordate, mollusca, 

coelenterata, echinodermata, 

arthropoda  

91 - 500   Depth, trophic position 

2 Asante et al., 

2010 

Sulu and Celeb 

Sea, Philippines  

Basin  2002 Pacific  Y Y Chordate  0 - 1488  Body size, spatial  

3 Bergmann et 

al., 2009 

Hausgarten 

station, East of 

Greenland  

Upper slope  2005 Arctic  Y Y Chordate, retaria, porifera, 

cnidaria, nemertea  

1300 - 5600  Depth, trophic position, energy, 

spatial  

4 

 

 

Boyle et al., 

2012 

Cape Flattery, 

Washington to the 

US - Mexico 

boarder  

Continental slope 2007, 

2008  

Pacific  Y Y Chordate, cnidaria, 

echinodermata, gastropoda, 

arthropoda, annelida  

1000 -1200  Body size, trophic position, 

feeding 

5 Colaço et al., 

2013 

Condor seamount, 

located 18.5 km 

southwest of Faial 

Island in the 

Azores  

Seamount  2010 Atlantic  Y Y Porifera, cnidaria, 

ctenophora, bryozoa, 

mollusca, annelida, 

echinodermata, chaetognatha, 

chordate 

50 - 500  Trophic position, energy  

6 Chambers, 

2009 

Baffin Island 

region, Nunavut, 

Canada  

NR 2000-

2004 

Arctic  Y Y Chordate  401 - 1500  Body size, feeding, trophic 

position  

7 Chouvelon et 

al., 2012 

Bay of Biscay Shelf, canyon 2001-

2010 

Atlantic  Y Y Chordate, mollusca, 

arthropoda,  

0 - >2000  Trophic position, temporal, 

spatial  

8 Churchill et 

al., 2015 

Gulf of Mexico  Slope  2011, 

2012 

Atlantic  Y Y Elasmobranch 200  - 1100  Body size, depth, trophic 

position, temporal, feeding, 

energy, niche, ontogenetic, spatial  

9 Demopoulos 

et al., 2017 

Baltimore 

Canyon, NE 

United States in 

mid-Atlantic 

Ocean  

Canyon, slope 2011 - 

2013  

Atlantic  Y Y Annelida, arthropoda, 

chordate, cnidaria, 

echinodermata, mollusca, 

porifera, sediments   

200 - > 900   Depth, temporal, energy, niche, 

spatial  

10 Denda et al., 

2011 

Rhodes Basin and 

Anaximenes 

Mountain  

Seamount, basin 2006 Atlantic  Y Y Chordate, arthropoda,  50 - 4487  Depth, spatial  
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11 Fanelli et al., 

2016 

Balearic Basin, 

Mediterranean 

Sea  

Slope, basin 1985-

1989,  

2007-

2011 

Atlantic  Y Y Chordate, arthropoda, 

echinodermata, porifera, 

sipuncula 

1000,  2250  Temporal 

12 Fanelli et al., 

2013 

Balearic Basin, 

NW 

Mediterranean  

Slope, basin  2010 Atlantic  Y Y Chordate, arthropoda 445 - 2198  Depth, trophic, feeding, niche, 

spatial  

13 Fanelli et al., 

2009 

Cabrera 

Archipelago - 

Balearic Islands, 

Western 

Mediterranean  

Slope, basin  2003-

2004 

Atlantic  Y Y Arthropoda 650, 780  Trophic, temporal 

14 Fanelli et al., 

2011a  

Barcelona, Span 

middle slope  

Slope, basin  2007-

2008  

Atlantic  Y Y Arthropoda  650, 800  Trophic, temporal, feeding 

15 Fanelli et al., 

2011b 

Continental slope 

of Catalan Sea  

Slope, basin  2007- 

2008 

Atlantic  Y Y Nemertea, annelida, 

sipuncula, mollusca, 

arthropoda, echinodermata  

651 - 1694 Depth, trophic position, temporal, 

feeding, energy  

16 Fisher et al., 

1994 

Galapagos Rift  Vent, rift  1988 Pacific  Y Y Echinodermata, cnidaria, 

arthropoda, annelida, 

mollusca, chordate 

NR  
 

17 Fontanier et 

al., 2016 

Madagascar 

Mozambique 

Channel  

Slope, basin  2014 Indian  N Y Retaria 527 – 789  Ontogenetic  

18 Gale et al., 

2013 

North-eastern 

continental shelf 

and slope of 

Newfoundland 

and Labrador 

(Canada) 

Continental shelf  2005-

2011 

Atlantic  Y Y Echinodermata  258 - 1418  Trophic position, temporal, 

feeding 

19 Gerringer et 

al., 2017 

Mariana trench, 

Kermadec trench 

Trench 2014 Pacific  Y N Chordate  3569 - 7966 Trophic position, feeding, energy 

20 Gorbatenko et 

al., 2014  

Sea of Okhotsk  Shelf, open water  2003-

2013  

Pacific  Y Y Arthropoda, cnidaria, 

chaetognatha, chordate, 

mollusca,  

0 - 200  Trophic position, temporal, 

spatial  

21 Hill et al., 

2014 

California margin 

(6 seamounts and 

Monterey 

Canyon) 

Margin, seamount  2004, 

2007  

Pacific  Y Y Cnidaria  792 - 2136  Depth, trophic position, temporal, 

energy, spatial  

22 Iken et al., 

2005  

Canada Basin  Gulf/Basin 2002 Arctic  Y Y Retaria, arthropoda, 

echinodermata  

625 - 3398 Depth, trophic position, energy, 

spatial  
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23 Jeffreys et al., 

2010 

Iberian margin 

(Northern 

Atlantic) 

Margin  2008, 

2009 

Atlantic  Y Y Chordate, sediment, POM, 

zooplankton  

3000  Feeding  

24 Kiyashko et 

al., 2014 

Sea of Japan  Basin 2010 Pacific  Y Y Chordate, arthropoda, 

echinodermata, molluscs  

2481  - 

3666   

Body size, trophic position, 

ontogenetic, energy, spatial 

25 Kopp et al., 

2017 

Celtic Sea  Upper continental 

slope  

2014 Atlantic  Y Y Chordate  415, 516  Trophic position, feeding, energy, 

niche  

26 Koppelmann 

et al., 2009 

Levantine Basin 

of the eastern 

Mediterranean  

Basin  2001 Atlantic  Y Y Mesozooplankton  0 - 4200  Body size, depth, trophic 

position, temporal 

27 Laakmann 

and Auel., 

2009 

Southern Ocean - 

Atlantic Sector  

Strait, shelf 2006 Atlantic  Y Y Arthropoda  2097 - 4841  Depth, ontogenetic  

28 Laakmann et 

al., 2009 

Fram Strait, 

Arctic Ocean  

Strait  2006 Arctic  Y Y Arthropoda  105 - 2000 Depth, trophic position, 

ontogenetic  

29 Leduc et al., 

2015  

Chatham Rise, 

New Zealand 

(South Island).  

Submarine ridge  2011 Pacific  Y Y Arthropoda, echinodermata, 

nematoda  

566 - 1026  Spatial, trophic position  

30 Levesque et 

al., 2006 

Juan de Fuca 

Ridge : NE 

Pacific (Seattle, 

Washington)  

Hydrothermal vents, 

volcano 

1998-

2000 

Pacific  Y Y Annelida, mollusca, 

pogonophora  

~1500  Spatial, temporal 

31 Limen et al., 

2007 

Juan de Fuca 

Ridge : NE 

Pacific  

Hydrothermal vents 2002 Pacific  Y Y Arthropoda, nematoda, 

pogonophora, mollusca, 

annelids 

~1500  Feeding  

32 Louzao et al., 

2016 

Iberian 

continental shelf 

and slope  

Continental shelf, 

slope, oceanographic 

features, basin  

2004 Atlantic  Y Y Chordate  256 +/- 219 Body size, spatial 

33 McClain-

Counts et al., 

2017 

North-Central 

Gulf of Mexico 

Cold seep  2007 Atlantic  Y Y Chordate, arthropoda, 

mollusca, chaetognatha, 

cnidaria, gastropods, 

zooplankton 

45 - 1503 Body size, depth, trophic 

position, feeding, energy, 

ontogenetic, spatial  

34 Mintenbeck 

et al., 2007 

Weddell Sea Shelf  Shelf, slope  1996, 

1998, 

2003  

Southern  Y N Arthropoda, cnidaria, 

chordate, mollusca, bryozoa, 

echinodermata, 

hemichordata, porifera, 

sipuncula, annelids  

50 - 1500  Depth, trophic position  

35 Navarro et al., 

2014 

Catalan Sea and 

Gulf of Lions  

NR 2011-

2013 

Atlantic  Y Y Chordate 350 - 1200  Trophic position, temporal, 

feeding 

36 Papiol et  al., 

2013 

NW 

Mediterranean  

Continental slope, 

canyon, basin 

2007, 

2008 

Atlantic  Y Y Arthropoda, chordate  423 - 1175  Body size, temporal 
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37 Parzanini et 

al., 2017 

Northwest 

Atlantic, 

Newfoundland 

NR  2016 Atlantic  Y Y Chordate  310 - 1413  Body size, depth, trophic 

position, feeding, energy 

38 Portail et al., 

2016 

Guaymas Basin  Hydrothermal vents,  

cold seeps, basin  

2010 Pacific  Y Y Mollusca, annelida, 

proteobacteria, arthropoda, 

nematoda, cnidaria, 

echinodermata 

1500 Energy, niche, spatial  

39 Preciado et 

al., 2017 

Galicia Bank 

(Lusitanian)  

Seamount  2009-

2011 

Atlantic  Y Y Chordate  749, 1809  Trophic position, feeding, spatial, 

body size  

40 Pruski et al., 

2017 

Congo deep-sea 

fan  

Fan 2011 Atlantic  Y Y Annelida, echinodermata, 

arthropoda, cnidaria, 

porifera, mollusca  

3200 - 4950  Feeding, energy  

41 Reid et al., 

2012 

Mid-Atlantic 

Ridge  

Ridge 2007, 

2009  

Atlantic  Y Y Cnidaria, echinodermata, 

chordate, arthropoda 

2405 - 2720   Temporal, energy, spatial  

42 Reid et al., 

2013 

Mid-Atlantic 

Ridge  

Ridge  2007, 

2009  

Atlantic  Y Y Chordate  2400 - 2750   Body size, trophic position, 

temporal, ontogenetic, spatial  

43 Romero et al., 

2016  

Cantabrian Sea, 

Southern Bay of 

Biscay  

Submarine canyon  2012-

2013 

Atlantic  Y N Mollusca, arthropoda, 

chordate, cnidaria, 

echinodermata, annelida, 

sipuncula, branchiopoda, 

porifera 

128 - 4766   Body size, trophic position, 

temporal  

44 Sherwood et 

al., 2011 

Nova scotia  Continental slope 2002 Atlantic  Y N Cnidaria  275 - 450  Trophic position, temporal,  

45 Shipley et al., 

2017 

Exuma Sound, 

Bahamas  

Slope  2013-

2014 

Atlantic  Y Y Chordata, arthropoda 462 - 923  Body size, depth, ontogenetic  

46 Stevens et al., 

2015 

Mariana Arc  

submarine 

volcano East 

Diamante  

Hydrothermal vent, 

submarine volcano  

2004 Pacific  Y Y Arthropoda, gastropoda, 

annelid, porifera, 

echinoderm, cnidaria  

179 - 461  Depth, energy  

47 Stowasser et 

al., 2009 

Porcupine 

Seabight of the 

NE Atlantic  

Seabight and plain 2001-

2002 

Atlantic  Y Y Chordate 785 - 4814  Body size, depth, trophic 

position, feeding, ontogenetic, 

temporal  

48 Valls et al., 

2017 

Balearic Sea, 

Western 

Mediterranean  

NR 2007-

2016  

Atlantic  Y Y Mollusca, chordate 50 - 755 Body size, trophic position, 

feeding, energy, niche, 

ontogenetic, spatial  

49 Valls et al., 

2014 

Mallorca, Balearic 

Islands, western 

Mediterranean  

Continental shelf, 

slope  

2009-

2010 

Atlantic  Y Y POM, zooplankton, 

arthropoda, chordate, 

brachiopod, echinoderms, 

gastropoda, molluscs 

250 - 850  Depth, trophic position, energy 

50 Van Dover et 

al., 1992 

 New Jersey coast  Dumpsite  1989-

1990 

Atlantic  Y Y Cnidaria, echinodermata, 

chordate 

2500  Energy  
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51 Veit-Köhler 

et al., 2013 

Atlantic, Southern 

Ocean (southern 

Polar front, 

Central Weddell 

Sea, seamount 

Maud Rise, 

Lazarev Sea).  

Seamount, continental 

slope 

2007-

2008  

Southern 

/ Pacific  

Y Y Arthropoda, nematoda, 

sediment  

1935 -  

5323  

Depth, spatial  

52 Zapata-

Hernández et 

al., 2016 

Interior Sea of 

Chiloé in 

Northern 

Patagonia  

Fjord, basin 2013-

2014  

Pacific  Y Y Porifera, cnidaria, nemertea, 

sipuncula, mollusca, 

annelida, arthropoda, 

bryozoa, brachiopoda, 

echinodermata, chordate, 

algae, OM  

200 - 461  Trophic position, feeding, energy, 

niche  

53 Zintzen et al., 

2013 

White Island and 

Kaikoura, NZ  

NR  2009-

2010 

Pacific  Y Y Seagrass, mollusca, chordate 50 - 900  Depth, trophic position 

Literature was identified from Web of Science standard searches using the search terms “stable isotopes” and “food webs” and one of the following terms: “deep-water” or “deep-sea” conducted 

January 2018. NR refers to not recorded.  δ15N and δ13C columns identify studies that did (y) and did not (n) discuss δ15N and/or δ13C.  
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3.1 Spatial variation:  

Spatial variation refers to variation in the isotopic composition of consumers 

related to different environments or locations where they reside.  Spatial patterns are 

principally denoted by the δ13C value which indicates habitat usage related to baseline 

carbon sources and processes (Peterson & Fry, 1987), whereby higher δ13C values are 

associated with benthic habitats and more negative δ13C values are associated with 

pelagic environments (Watt, 2013). Isotopic variation can occur at fine spatial scales, 

such as over hundreds of meters between mangrove and seagrass beds (Duarte et al., 

2018), to broad spatial scales such as across a latitudinal gradient (Ruiz-Cooley & 

Gerrodette, 2012).  

3.1.2 Latitudinal Gradients: 

A synthesis of the Isotopic composition of consumers in deep-sea heterotrophic 

environments across a global latitudinal gradient was conducted by Parzanini et al. 

(2019).  The authors indicated that lower isotopic values (d13C and d15N) are present in 

deep-sea temperate and polar species compared to tropical counterparts (Parzanini et al., 

2019), matching trends observed across all marine ecosystems (Newsome et al. 2007), 

phytoplankton (Laakmann & Auel, 2010) and meiofauna (Veit-Köhler et al., 2013) at a 

regional latitudinal scale in polar deep-sea environments.  Declining isotope values near 

the poles is attributed to water temperature whereby higher fractionation rates are linked 

with colder temperatures (Sackett et al., 1965) and thus lower d13C values (Lara et al., 

2010) as well as denitrification related to lower productivity (Hetherington et al., 2017).  

Additional studies undertaken at regional latitudinal scales, however, have identified that 

stable isotope values increased at higher latitudes in the deep-sea (e.g. Chouvelon et al., 
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2012; Louzao et al., 2017), linking this increase in d15N with latitude to less dissolved 

organic nitrogen in the food web being unable to meet the demand for nutrients needed 

thus driving higher d15N values in primary producers (Chouvelon et al., 2012), and the 

influence of oceanographic conditions (Louzao et al., 2017).  Studies undertaken at 

smaller latitudinal scales reinforce that there are additional factors besides latitude 

driving variation in consumer isotope values including chlorophyll-A concentrations, 

bathymetry and localized oceanographic processes (Louzao et al., 2017).   

3.2 Energy pathways within the deep-sea:  Consideration of habitat types   

Carbon plays an essential role in providing energy for the growth, development 

and survival of organisms.  The deep-sea is generally considered to be an energy limited 

environment, yet multiple pathways deliver energy to the deep-sea including: sinking 

particulate organic matter (e.g. marine snow; Stevens et al., 2015; Gerringer et al., 2017; 

Bergmann et al., 2009), sea ice (-18.4‰, -18.7‰; Hobson et al., 1995; Nurnberg et al., 

1994), photosynthetic material including phytoplankton (range d13C is -18 to -24 ‰; Fry 

& Sherr, 1984; Churchill et al., 2015; Demopoulos et al., 2017; Reid et al., 2012; Stevens 

et al., 2015; Iken et al., 2004; Zapata-Hernández et al., 2016), seaweed (e.g. Sargassum 

species; -16.6 ‰ to -16.2‰; Wells & Rooker, 2009), terrestrial organic matter (−22.5‰; 

Kumar et al., 2016; Fanelli, Cartes, & Papiol, 2011a; Pruski et al., 2017), whale falls (-

32‰ to -20‰; Smith & Baco, 2003), macroalgae (-8 ‰ to -27 ‰; Fry & Sherr, 1984) 

and chemosynthetic sources (-65‰ to -25 ‰; MacAvoy et al., 2008). The reported 

relative contributions of these various carbon sources vary depending on the type of 

environment a species or community inhabits.  Deep-sea environments are not all equally 

represented in literature (Figure 4) which may be because some habitats are less 
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accessible or have a higher proximity from land. For example, slope and basin 

environments are studied more frequently, whereas trenches are more difficult to access 

and are therefore less studied (Figure 4).   

Benthic pelagic coupling refers to the connection between surface water inputs 

via the water column to benthic taxa through trophic interactions that exchange energy, 

mass or nutrients (Valls et al., 2014). Large variation in d13C of deep sea consumers is 

used as an indicator of benthic-pelagic coupling and has identified this process providing 

energy pathways to deep-sea bamboo corals (Hill et al., 2014) and cephalopods in the 

Mediterranean (Valls et al., 2017).   In Arctic deep-sea environments species utilize 

carbon from surface-derived particulate organic matter, refractory bottom sediments, 

particles trickling downslope, sea ice and photosynthetic pathways (Bergmann et al., 

2009; Iken et al., 2004) which highlights the connection between the surface and deep-

sea environments.   

  
Figure 4: Count of published studies from 1992-2017 examining deep-sea ecosystems by 
environment type.    
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Slopes, the most studied environment in the deep-sea to date (n=18) extend out 

from the shelf and have varying steepness, but are typically divided into upper, lower, 

middle and continental (Table 1, Figure 4).  Slope communities receive energy from 

photosynthetic carbon (e.g. -22.9 to -15.5 ‰; Demopoulos et al., 2017) and terrestrial 

inputs (Fanelli et al., 2011a). Isotopic enrichment (13C and 15N) on the Catalan slope 

compared to the Balearic slope occurred because of differences in physical variables (e.g. 

temperature, salinity, oxygen, direction was not reported) and higher chlorophyll-A 

concentration from vertical inputs (Fanelli et al., 2013) which impact the energy available 

to species in slope environments.  

Fluvial environments are created and modified through erosion, transport and 

sediment deposition (Evans, 2018), often in the form of deltas and estuaries (Savoye et 

al., 2009).  Deep-sea fans are unique in their size, structure and morphology and are 

usually located at the mouth of fluvial environments (Savoye et al., 2009).  Both 

chemosynthetic and terrestrial energy in the form of organic matter transferred by 

bacteria through turbidity currents are important to deep-sea fans (Pruski et al., 2017).  

Chemosynthetic environments (e.g. seeps, vents) rely on microbes which use sulphur and 

methane to create organic material (Levin et al., 2016; Van Dover et al., 2012; Priede, 

2017; Portail et al., 2016; Stevens et al., 2015). Chemosynthetic environments are 

different from heterotrophic environments because they do not utilize photosynthesis to 

generate primary productivity (Van Dover et al., 2012) and despite harsh conditions there 

are many chemosynthetic endemic species (Erickson et al., 2009).  In a deep-sea fan, 

chemosynthetic derived energy for vesicomyid bivalves and heterotrophs was indicated 

by more negative d13C values (Pruski et al., 2017).   



 

 36 

Cold seeps are a chemosynthetic environment present in continental areas where 

fluids seep out of the seafloor (Portail et al., 2016) with methane and hydrogen sulphide 

(Torres & Bohrmann, 2014).  Although often found near volcanic environments where 

species rely on chemosynthetic and photosynthetic derived energy (Stevens et al., 2015), 

cold seeps are not directly reliant on volcanic activity (Priede, 2017). For example, weak 

d13C and d15N relationships among cold seep fauna in the Gulf of Mexico indicated that 

the fauna relied on a variety of trophic pathways for energy (McClain-Counts et al., 

2018). These pathways included basal sources, endogenous microbial production (Portail 

et al., 2016), benthic sources for suspension feeders (Pseudamussium peslutrae) and the 

pelagic pathway for planktivorous fish (Micromesistius poutassou, indicated by lower 

d13C, Kopp et al., 2018).   

Hydrothermal vents are a geothermal feature characterized by the presence of 

buoyant hot water plumes (Priede, 2017) and emissions rising from seafloor cracks 

(Portail et al., 2016) which are a chemosynthetic environment. Energy access in 

hydrothermal vents is linked to location as species that live closest to the vent have 

access to greater primary productivity (Levesque et al., 2016) and species in high flow 

environments utilize more chemoautotrophic bacteria (70%) compared to lower flow 

environments (Limen et al., 2007).  Additionally, vent species obtain energy from basal 

sources, and endogenous microbial production (Portail et al., 2016; Limen et al., 2007).   

Seamounts are undersea mountains (Denda & Christiansen, 2011), often 

originating as volcanoes containing magma and hydrothermals (Staudigel & Clague, 

2010) and are exposed in summits, slopes and cliffs (Priede, 2017). In seamounts, SIA 

has revealed that energy is provided to fauna through lateral advection of non-migrating 
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organisms, inputs from the pelagic food web (Colaço et al., 2013) and allochthonous 

inputs of organic material (Clark et al., 2010).  A further study examining zooplankton at 

seamount and basin locations indicated similar diets and food web structure, and thus 

energy transfer, among basins and seamounts in the Eastern Mediterranean (Denda & 

Christiansen, 2011).  

Trenches, specifically in the hadal zone (>6,000 m), are one of the world’s least 

studied environments (Jamieson et al., 2010).  Trenches are formed by the collision of 

tectonic plates (Stern, 2002) and have a V-shape cross-section that is relatively narrow 

(2-5 km wide), flat bottomed, extremely long (usually < 2000 km) and generally run 

parallel to continental landmasses or island arc systems (Jamieson et al., 2010).  Trenches 

are the deepest places on earth; at nearly 11,000 m below the surface, the Mariana Trench 

is the deepest part of the ocean (Kato et al., 1998).  Within the hadal zone trenches, two 

major d15N deep-sea pathways occur (i) slowly sinking particles and organic matter from 

downslope (higher d15N in consumer tissues due to 15N enrichment with depth) and (2) 

larger dead organisms that sink and reflect the isotopic composition of the habitat from 

where they died (e.g. euphotic zone with lower d15N; Gerringer et al., 2017).   

 Isotopic studies have revealed that anthropogenically produced carbon is also 

found in the deep-sea. For example, sewage-derived organic matter identified by lower 

d15N values relative to plankton derived organic matter reference trawls were found in 

sea urchins (Echinus affinus) and sea cucumbers (Benthodytes sanguinolenta).  The sea 

urchins and seas cucumbers were sampled within the benthic food web 185 km off the 

coast of New Jersey, United States at depths of 2500 m (Van Dover et al., 1992).   
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 Overall, energy contributions to the deep-sea are variable and dependent on 

habitat type and taxa. Variations in energy contribution suggests complexity and multiple 

pathways present within deep-sea environments which are primarily derived from 

photosynthetic, chemosynthetic or anthropogenically produced energy. These energy 

sources are a reflection of the importance of surface to deep-sea connectivity.  

3.3 Stable isotopes and depth: 

 The relationship between consumer isotopic composition and depth has received 

considerable attention when compared to remaining topics, with the majority of studies 

examining d15N versus d13C (Table 2).    
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Table 2: Relationship between d15N and d13C values of distinct trophic levels or 
functional groups with depth. 

Functional Group  Reference 

d15N increases with depth 

Copepods  Laakmann & Auel, 2009 ; Laakmann et al., 2009  
Zooplankton  Koppelmann et al., 2009; Leduc et al., 2015; 

Denda & Christiansen, 2010 

Invertebrates  Stevens et al., 2015  
Coral  Hill et al., 2015 
Fishes  Zintzen et al., 2013; McClain-Counts et al., 2017; 

Asante et al., 2008 

Pelagic feeders  Demopoulos et al., 2017 
Benthic feeders  Fanelli et al., 2013; Demopoulos et al., 2017 
Suspension feeders  Bergmann et al., 2009; Mintenbeck et al., 2007  
Entire food web (POM to 
large fish) 

Valls et al., 2014 

d15N decreases with depth 

Fishes  Zintzen et al., 2013; Churchill et al., 2015 
Deposit feeders  Bergmann et al., 2009 
Copepods Laakmann et al., 2009 
Sediment  Bergmann et al., 2009 

d15N no clear relationship with depth  

Fishes  Shipley et al., 2017; Parzanini et al., 2017 
Invertebrates  Bergmann et al., 2009; Iken et al., 2005;  

Veit-Köhler et al., 2013  
Deposit feeders  Mintenbeck et al., 2007  
Sediment Fanelli et al., 2011b 

d13C increases with depth  

Fishes  Parzanini et al., 2017; Zintzen et al., 2013  
Invertebrates  Fontanier et al., 2016 

d13C decreases with depth 

Fish  Shipley et al., 2017; Churchill et al., 2015 
Invertebrates  Shipley et al., 2017 

d13C no clear relationship with depth 

Fishes  Stowasser et al., 2009 
Sediment Fanelli et al., 2011b 
Invertebrates Iken et al., 2005; Veit-Köhler et al., 2013 



 

 40 

 
3.3.1 d15N and depth: 

 A recent review reported that d15N values of deep-sea consumers in general 

increased with depth at a global scale (Parzanini et al., 2019). This trend of increasing 

d15N values with depth was reported for several environments from the poles to the 

tropics and across several taxa (Table 2).   For example, deep-sea copepods in the Arctic 

had d15N values of 6.3 - 6.9‰ from the surface to 200 m with values increasing to 8.9 - 

9.9‰ below 2000 m (Laakmann et al., 2009). Equally, d15N values of particulate organic 

matter in the Mediterranean increased from 1.3 – 5.5‰ at 50 m to 9.3 – 15.6‰ below 

1000 m (Denda & Christiansen, 2010). Potential explanations for increased consumer 

d15N values with depth in the deep-sea include: longer food webs with more trophic links 

(Polunin et al., 2001; Denda & Christiansen, 2010), increased consumption rates of 

higher trophic level species (Zintzen et al., 2013) due to the lower abundance of 

phytoplankton in deeper regions (e.g. more carnivory; Auel & Hagen, 2002), nutritional 

stress and associated fasting due to food limitation (Zintzen et al., 2013; Hobson et al., 

1993).  Species at depth also consume sinking particles / marine snow consisting of 

aggregated phytoplankton, phytodetrital materials, fecal pellets, and other particles 

(Turner, 2015) which are absent in the diet of surface primary producers (Denda & 

Christiansen, 2011; Mintenbeck et al., 2007).  Overall, the d15N values of deep-sea 

consumers are expected to be higher because particles often contain organic material 

originating from higher trophic level organisms.   

 In contrast to the overarching patterns reported by Parzanini et al. (2019), 

decreasing d15N values with depth are widely reported for both vertebrates and 
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invertebrates. Elasmobranchs in the Gulf of Mexico (Churchill et al., 2015), hagfish 

(range of Eptatretus cirrhatus is ~15.0‰-15.4‰ at 48 m and ~14.4‰ at 912 m; Zintzen 

et al., 2013), deposit feeders (Bergmann et al., 2009), and copepods (Laakmann et al., 

2009) all followed this trend. Sediment sampled along a depth gradient in the Arctic also 

indicated that d15N values decreased with depth although the effect was weak (1292 m; 

5.28‰, 5586 m; 5.41‰; Bergmann et al., 2009).  It was suggested that the decrease in 

d15N values occurred because less and smaller particulate organic matter (with lower 

d15N values; Rau et al., 1990) reaches deeper depths, resulting in lower microorganism 

turnover rates and a more food limited environment for deposit feeders (Bergmann et al., 

2009).  Other potential factors are less well examined, but the decrease in d15N with 

depth could be due to diet shifts, such as individuals consuming lower trophic level prey 

(Churchill et al., 2015; Zintzen et al., 2013), and productivity differences (Churchill et al., 

2015).   Clearly, a positive or negative relationship between d15N and depth is not 

ubiquitous across deep-sea food webs and the trophic level of a species and depth are not 

always linked (Shipley et al., 2017).   

Despite most studies indicating a clear positive or negative trend between d15N 

and depth, several studies reported no clear relationship.  For example, d15N values of 

several elasmobranches (Shipley et al., 2017), teleosts (Shipley et al., 2007; Parzanini et 

al., 2017[demersal]), invertebrate species (Shipley et al., 2017), pelagic particulate 

organic matter (Iken et al., 2005), predators, scavengers (Bergmann et al., 2009) and 

deposit feeders (Mintenbeck et al., 2007) were not correlated with depth (Table 2).  The 

rationale for the lack of a relationships is not well explained and is often overlooked.    
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3.3.2 d13C relationships in the deep-sea 

The relationship between depth and d13C values of consumers has received less 

attention when compared to d15N.  Parzanini et al. (2019) indicated that in the deep-sea, 

d13C values typically increased with depth when examined at a global scale (Table 2).    

Moreover, more positive d13C values are associated with benthic habitat use and more 

negative d13C values tied with feeding in pelagic habitats (Watt, 2013; Zintzen et al., 

2013), similar to trends observed in the photic zone.  There is less photosynthesis and 

phytoplankton at deeper depths, resulting in more 12C, and therefore less negative d13C. 

An increase in d13C values with depth has been observed in fishes (Parzanini et al., 2017; 

Zintzen et al., 2013) and invertebrates (Fontanier et al., 2016), likely a result of particle 

fractionation and degradation (Altabet et al., 1999) which consumers feed on.  

In contrast to the above trends, three shark species in the Gulf of Mexico 

(Churchill et al., 2015) and several functional groups examined in Exuma Sound, 

Bahamas (6 elasmobranchs, 7 teleosts, 3 invertebrates; Shipley et al., 2017) showed 

decreasing d13C values with depth.  These trends are not well understood but may be 

linked to diet shifts, productivity in the deep sea (Churchill et al., 2015) and/or changes in 

community composition associated with depth strata (Trueman et al., 2014). Similarly, 

studies of fishes in the North East Atlantic (Stowasser et al., 2009) and pelagic particulate 

organic matter in the Canadian High Arctic (Iken et al., 2005) suggested no clear 

relationship between d13C and depth.  These contrasting findings indicate that the 

relationship between d13C and depth may not be clear cut in the deep-sea.  
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3.4 Temporal variation in isotopic profiles in the deep-sea:   

Temporal variation in isotope values considers how an ecosystem changes both 

physically and chemically through time.  This variation can occur seasonally (intra-

annual) or between years (inter-annual) as a result of environmental or anthropogenic 

influences.  Understanding how the isotopic profiles of species, communities and 

ecosystems change temporally is important to understand how species interactions and 

energy flow vary within and among years.   

3.4.1 Intra-annual variation: Seasonal 

 Limited research has been undertaken to understand seasonal isotopic variation 

within the deep-sea, but available data indicates that it may be dependent on the 

functional group examined.  For example, zooplankton and suprabenthos in the Western 

Mediterranean had more positive d13C values in late autumn through late winter which is 

likely due to higher chlorophyll-a surface concentrations before sampling (Fanelli, et al., 

2009).  Similarly, seasonal isotopic shifts in zooplankton that feed on particulate organic 

matter and decapods feeding on migratory macroplankton were observed with lower d13C 

values in late winter and spring (Papiol et al., 2013).  The authors proposed that these 

lower zooplankton/decapod d13C values were related to the food web becoming more 

reliant on pelagic productivity and/or ontogenetic migrations of individuals from mid 

water habitats to the benthic zone (Papiol et al., 2013).    

During summer and fall, d13C patterns were not uniform across all habitats and 

functional groups among studies examined. For example, d13C liver values were 2‰ 

more negative in August compared to October because of different organic matter 

reaching the seafloor for deep-sea fish (Abyssal Grenadier, Coryphaenoides armatus and 
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Blue Antimora, Antimora rostrata) in the North East Atlantic (Stowasser et al., 2009).  

Contrary to deep-sea fish, plankton d13C were 2‰ higher (less negative) in the summer in 

the Sea of Okhotsk, reflecting diets composed of spring phytoplankton bloom species, 

such as diatom algae and plankton foraging on the shelf zone (Gorbatenko et al., 2015).  

These studies suggest that seasonal d13C shifts among consumers is not straight forward 

but indicate that there may be some habitat switching seasonally among consumers.  

Generally, lower d15N in spring for consumers across studies was linked to 

phytoplankton blooms, but this pattern is not uniform across all taxa.  For example, d15N 

values of pelagic and benthic submarine canyon species (Romero-Romero et al., 2016) 

and plankton (Gorbatenko et al., 2015) decreased during the spring (March – May) 

potentially a result of the spring phytoplankton bloom (Romero-Romero et al., 2016; 

Gorbatenko et al., 2015), plankton feeding behaviour (Raymont, 1983) and particulate 

organic matter reflecting the previous season (Sorokin, 1997) all of which contribute to 

lower d15N values. Whereas during the fall, d15N values for benthic and pelagic 

consumers were higher due to stratification as well as consumption of suprabenthic prey 

and macroplankton-micronekton availability (Papiol et al., 2013; Cartes, 2010; Romero-

Romero et al., 2016). For example, d15N of the benthic feeding fish, Longsnout grenadier, 

Trachyrhynchus scabrus was 10.71 ± 0.60‰ in October which was higher than 9.77 ± 

0.55‰ in February (Papiol et al., 2013).   These results suggest that generally consumers 

with access to abundant phytoplankton had lower d15N values (e.g. during spring) and 

when phytoplankton was not as abundant (e.g. fall) species had higher d15N values.    

In the Mediterranean, strong correlations occurred between d15N and d13C values 

of species (invertebrates, decapods, fishes) during the spring when peak surface primary 
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production occurs. In contrast, weaker d15N vs d13C relationships were recorded in the 

summer/ fall when surface primary production was lower and multiple carbon sources 

(i.e. river discharge particulate organic matter) were available to species (Papiol et al., 

2013; Fanelli et al., 2011a; Fanelli et al., 2009). Despite, indications of seasonal isotopic 

patterns for several taxa, no seasonal d15N variation occurred in the European pilchard, 

Sardina pilchardus, between the spring and fall (Chouvelon et al., 2012) and there was 

no pattern for d15N for deep-sea fish in the North Atlantic (Stowasser et al., 2009). 

Overall, these results indicate deep-sea environments experience seasonal differences but 

that that this is variable within the deep-sea.  

3.4.2 Inter-annual variation: Less than a decade 

Food webs in the deep-sea experience inter-annual variation in isotope values as a 

result of changing environmental conditions and prey availability, but the trends to date 

are variable and species dependent. Over a three year period (2007-2009), the d13C values 

declined for a Holothuroidea species (Benthothuria funebris) and fish species 

(Coryphaenoides brevibarbis), while an increase in d13C values was observed for a 

cnidaria species (Anthomastus agaricus) in the Mid-Atlantic Ridge (Reid et al., 2012).  

Similarly, d13C values increased by 3.5‰ between 2005-2006 for the starfish, Novodinia 

Americana likely because of variation in phytodetritus inputs (Gale et al., 2013). In 

contrast, a second starfish species, Mediaster bairdi, had lower d13C values in 2011 

compared to 2006 (Gale et al., 2013).  No consistent inter-annual patterns in d15N values 

of cephalopods and fish were observed in the Bay of Biscay, indicating that inter-annual 

variation may be the result of changes in food supply rather than a baseline isotopic shift, 
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or a combination of the two (Chouvelon et al., 2012). In summary, this suggests that there 

are no consistent short term (less than a decade) inter-annual temporal trends in the 

isotopic composition of deep-sea species.  

3.4.3 Inter-annual variation: More than a decade 

Studies examining inter-annual variation in the deep-sea over more than a decade 

indicate that generally d15N and d13C has declined.  This has been observed in 

benthopelagic fish , benthic invertebrates and pelagic organisms in the Mediterranean 

between the 1980’s and 2000’s (mean decrease of 1.5, 1.1 and 0.8‰, respectively; 

Fanelli et al., 2016) and in cold-water coral, Primnoa resedaeformis, since 1926, with the 

strongest decline recorded in the 1970’s (Sherwood et al., 2011). These studies indicate 

that the decline in d15N was linked to increased temperature and salinity, reduced O2 in 

deep-sea water masses driven by climate change and river damming (Fanelli et al., 2016) 

as well as changes to the North Atlantic Oscillation (NAO) (Sherwood et al., 2011).  

Decadal change in d13C is not as well studied, but the d13C values for benthic 

invertebrates and pelagic species in the Mediterranean, with the exception of 

benthopelagic fishes, was more negative in the 2000’s than the 1980’s (Fanelli et al., 

2016), which is attributed to increased consumption of  zooplankton (Conversi et al., 

2010; Fanelli et al., 2016) that have lower d13C, changes in the North Atlantic Oscillation 

and increased bottom temperature which reduced available benthic biomass in the area 

(Cartes et al., 2015; Fanelli et al., 2016).   These examples indicate that there has been 

isotopic composition shifts within the deep-sea over recent decades due to changes in 

foraging and environmental changes.  
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3.4.4 Inter-annual variation: Century  

Only one study has examined stable isotope trends in the deep sea over a century.  

Deep-sea bamboo corals (Isididae family) can live up to 400 years (Thresher et al., 2004) 

and grow their calcite skeleton in rings which when analyzed, similar to trees and ice 

cores, provide inferences on past oceanographic conditions from decades to centuries 

(Hill et al., 2014). The d15N and d13C of deep-sea bamboo corals have remained relatively 

stable on a centennial scale in the California current (Hill et al., 2014).  However, the 

ocean quahog, Arctica islandica, shell was examined to reconstruct d13C values in the 

northern North Sea from 1551 to 2005 revealing a depletion in 13C in the 1850's (Estrella-

Martinez et al., 2019).  The point at which 13C became depleted was correlated with fossil 

fuel burning, a trend termed the ‘Suess Effect’ (Keeling, 1979). This suggests that the 

major shift in d13C may have occurred before the deep-sea bamboo corals were studied.  

3.5 Feeding behaviour: 

3.5.1 Seasonal diet estimates: Comparing stomach content and SIA 

Combining stomach content analysis (SCA) and SIA can provide insight into 

recent and long-term diet (Post et al., 2002; Pinnegar & Polunin, 1999).  Seasonal 

variation in diets in deep-sea food webs is considered to be minimal, however recent 

work is starting to identify more variable diets on a species by species basis. For 

example, similar SCA and SIA results indicated consistent diets in 13 of 17 deep-water 

sharks from the Gulf of Mexico (Churchill et al., 2015), kitefin shark (Dalatias licha) in 

the Mediterranean (Navarro et al., 2014) and the roughtail skate (Bathyraja trachura), in 

the Eastern North Pacific (Boyle et al., 2012), suggesting similarity in the short term 
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versus long term diet. In contrast, SCA and muscle SIA results for five deep-sea sharks 

and rays (Etmopterus spinax, Galeus melastomus, Scyliorhinus canicula, Dipturus 

oxyrhinchus, Raja clavate) in the Mediterranean did not align (Valls et al., 2017).  SCA 

suggested that deep-sea sharks consumed mesopelagic prey such as cephalopods and, 

pelagic crustaceans and teleosts whereas SIA indicated consumption of benthic prey 

(Valls et al., 2017). These differences between methods may be because of contrasting 

prey isotopic signatures (Valls et al., 2017). Few comparisons of SIA and SCA to 

determine diet in teleost fish have been undertaken.  However, results of SCA and SIA 

aligned for the teleost, Gunther’s grenadier [Coryphaenoides guentheri] suggesting a 

primarily benthic diet in the Northeast Atlantic (Stowasser et la., 2009) and hadal liparids 

rely heavily on benthic inputs (identified by high d15N values) and crustaceans (Gerringer 

et al., 2013).  Combining SIA and SCA provides insight into seasonal variation in diet by 

examining recent dietary snapshots and average longer diet history, with results 

indicating that there are inconsistencies in seasonal variation of diet in the deep-sea.  

More research is needed to clearly understand taxa specific patterns in the deep-sea in 

seasonal diet variation.    

3.5.2 Feeding behaviour: Mixing models 

Four studies have used stable isotope mixing models to estimate prey proportions 

in the diet of deep-sea species which include: megabenthic fauna in the Interior Sea of 

Chiloé (Zapata-Hernández et al., 2016), roughtail skates (Bathyraja trachura) along the 

Pacific coast of the United States (Boyle et al., 2012),  mesopelagic fishes in the North-

Central Gulf of Mexico (McClain-Counts et al., 2017) and kitefin sharks in the 

Mediterranean (Navarro et al., 2014). These studies indicated the need for more research 
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in the deep-sea as stable isotope mixing models do not always align with SCA. For 

example, a mixing model using the package Stable Isotope Analysis in R (SIAR) for 

roughtail skates estimated six prey groups whereas SCA estimated 86 prey groups (Boyle 

et al., 2012).  Due to low sample availability and similar isotopic composition among 

sampled prey, the SIA mixing model underestimated the importance of euphausiids and 

overestimated the importance of tanner crabs (Chionoecetes tanneri) to the diet of rough 

tail skates compared to SCA (Boyle et al., 2012).  The MixSIAR output suggested that 

the diet of one of the lanternfish, Myctophum affine could potentially be supplemented 

with chemosynthetic pathways (18.6% of diet) (McClain-Counts et al., 2017).  It is 

unclear whether mixing model parameters led to the inference that chemosynthetic 

pathways are utilized directly or if variation in particulate organic matter with more 

negative d13C may have lowered the contribution of chemosynthetic materials to the diet 

of mesopelagic fish in the mixing model (McClain-Counts et al., 2017).  These 

mesopelagic fish may also aggregate in the benthos where they could potentially utilize 

chemosynthetic pathways, but samples were not taken in the benthic zone to understand 

if this occurred (McClain-Counts et al., 2017).  However, another example indicated that 

mixing models and SCA both agreed. Small demersal sharks as well as teleosts, 

crustaceans and cephalopods were found to be major contributors to the diet of kitefin 

sharks (Navarro et al., 2014).   These mixed results demonstrate that the successful 

application of stable isotope mixing models is dependent on several factors including data 

quality, study design, previous knowledge of a species diet, temporal scale of samples 

collected, diet tissue discrimination factors and the inclusion of relevant food sources to 

avoid bias (Phillips et al., 2014).   
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3.5.3 Feeding behaviour: Remotely operated vehicles and in-situ 

Remotely operated vehicles and video are gaining popularity as tools to 

understand food web dynamics (Sward et al., 2019). Two studies used video footage in 

combination with stable isotope analysis and indicated variation in feeding behaviours   

among deep-sea species (e.g. Gale et al., 2013; Jeffreys et al., 2010). Gale et al. (2013) 

used a remotely operated vehicle, which observed Asteroidea predating on corals 

(Hippasteria phrygiana, Tremaster mirabilis) and other species (Ceramaster granularis, 

Mediaster Bairdi) in Newfoundland and Labrador (Gale et al., 2013). Feeding 

experiments on Asteroidea (Ceramaster granularis) in a laboratory indicated a generalist 

sponge feeding behaviour and the species that were observed being consumed by 

Asteroidea in the wild were located near sponges and corals (Gale et al., 2013).  All 

Asteroidea in the video that were analyzed for d13C and d15N (i.e. excludes Tremaster 

mirabilis) had higher d15N (16.4 ± 0.9 ‰, n=15) and similar d13C compared to the other 

species in the video (Ctenodiscus crispatus, Leptychaster arcticus, Novodinia americana, 

Zoroaster fulgens; Gale et al. 2013). This indicated that the Asteroidea are either 

predators or scavengers and fed at a higher trophic level than the other species (Gale et 

al., 2013).  For teleosts, plant-based material (i.e. seagrass, macrophyte debris, terrestrial 

plant material) could be an important dietary contributor in the deep-sea based on the first 

in-situ documentation which captured grenadiers (Coryphaenoides mediterraneus) and 

cusk-eels (Spectrunculus sp.) consuming spinach (Jeffreys et al., 2010), but the study did 

not capture this fish for SIA as a longer temporal scale is needed to show the reflection of 

spinach in fish diet. This study highlights that deep-sea fishes are variable in their 

scavenging and could be linked to photic zone productivity if the resources are available 
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in the deep-sea (Jeffreys et al., 2010).  However, Kiyashko et al. (2014) reported that 

despite plant material being available for polychaetes in the Sea of Japan, this was not 

reflected in stable isotope signatures.  Video provides the opportunity to observe deep-sea 

environments in real time (similar to SCA) and used in combination with SIA gives 

scientists a better understanding of species behaviour and how diet varies temporally in 

deep-sea environments.   

3.6 Estimating trophic position in the deep-sea: 

Trophic position is a measure of the energy pathway to a consumer and is used to 

quantify a species’ position within a food web (Vander Zanden & Rasmussen, 1999). 

Trophic position is commonly calculated with stable isotopes (Post, 2002) and is used to 

group species into categories or functional groups including: primary producers, primary 

consumers, secondary consumers, and predators, etc. (Lindeman, 1942). 

Trophic position using d15N is estimated based on known stepwise fractionation 

between consumers relative to a known baseline species (MacNeil, Drouillard & Fisk, 

2016; Post, 2002; Peterson & Fry, 1987). Baseline data, although difficult to obtain, is 

necessary to accurately estimate trophic positions and to determine whether isotopic 

variation is the result of changes at the base of a food web or structural changes within a 

food web (Post, 2002).  Most deep-sea studies estimating trophic position used a standard 

fractionation value of 3.4‰ (Post, 2002; Vander Zanden et al., 1999; Cabana & 

Rasmussen, 1996; Vander Zanden et al., 2001), but also values of 3.8‰ (Bergmann et al., 

2009; Iken, Bluhm, & Gradinger, 2004) and 2.54‰ (Fanelli et al., 2009).  The latter 

value of 2.54‰ was used to ensure that trophic positions were distinguished because of 

high d15N overlap among all trophic levels in the deep-water food web in the Algerian 
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Basin (Fanelli et al., 2009).  To date, only one deep-sea study (e.g. Churchill et al., 2015) 

has discussed trophic position using the scaled fractionation approach of Hussey et al. 

(2014).  Fourteen studies did not calculate absolute trophic position using a fractionation 

factor, but instead inferred relative trophic position from d15N values, based on the 

premise that a larger d15N implies higher trophic position (Fry, 1988).   

Deep-sea food webs typically contained four to five trophic levels; with data 

available for the Arctic (Bergmann et al., 2009; Iken et al., 2004), canyon (Demopoulos 

et al., 2017),  as well as column and shelf ground environments (Valls et al., 2014). Low 

trophic levels (~1) typically contained invertebrate species such as, mesozooplankton 

(Koppelmann et al., 2009), cumaceans (deposit feeders), amphipoda (deposit feeders), 

and hydrozoans (suspension feeder; Bergmann et al., 2009).  Deep-sea skate species 

generally occupied trophic position 3 including: roughtail skate, (3.5 ± 0.2: Boyle, Ebert, 

& Cailliet, 2012), shorttail skate, Amblyraja jenseni (3.0), smooth skate, Malacoraja 

senta (3.3), and round skate, Rajella fyllae (3.4 ± 0.1: Parzanini et al., 2017).  Most 

teleost species were found at approximately the third and forth trophic level: the banded 

whiptail, Coelorinchus fasciatus (3.6 : Zapata-Hernández et al., 2016), Angler, Lophius 

piscatorius (4.9), rockfish, Trachyscorpia cristulata (4.9; Preciado et al., 2017), 

bristlemouth species, Cyclothone sp., (zooplanktivore, 2.6; Colaço et al., 2013a). Higher 

level trophic species include: kitefin shark, Dalatias licha, (4.3 to 5.5; Navarro et al., 

2014) and Greenland shark, Somniosus microcephalus (4 -7 ; Hussey et al., 2014).   

Trophic position can be determined using traditional SCA and compared to SIA to 

understand temporal variation.  For example, the SCA-derived trophic positions of 

mesopelagic fishes in the Gulf of Mexico were higher than those calculated with stable 
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isotopes, with the exception of constellation fish (Valenciennellus tripunctulatus), tan 

bristlemouth (Cyclothone pallida), lovely hatchetfish (Argyropelecus aculeatus) and half-

naked hatchetfish (Argyropelecus hemigymnus) (McClain-Counts et al., 2017).  This 

indicates that trophic position of mesopelagic fish in the Gulf of Mexico may vary 

seasonally because trophic position derived from SCA (i.e. recent dietary history) was 

than SIA (i.e. long term average dietary history).  However, the opposite was observed in 

bentho-pelagic fishes on the Galicia Bank, where SIA predictions for trophic level were 

higher than SCA trophic position estimates (Preciado et al., 2017). This may have 

occurred because they used the pelagic organism (amphipod, Phronima sedentaria) as a 

baseline suggesting that there may be bias in the benthic feeder trophic position estimates 

(Preciado et al., 2017) or that species were consuming species of lower trophic level 

compared to the average trophic position that they consume.   

Due to the unique environment of deep-sea ecosystems, several factors can 

influence and drive variation in the trophic position of deep-sea species’ when compared 

to pelagic species. Given the deep-sea is typically resource limited environment (no 

available sunlight), species rely on food obtained from: (i) sinking surface particulate 

organic matter which falls as marine snow through the water column known as the 

‘biological pump,’ (ii) food falling to the seafloor (macrocarrion, mesocarrion, 

nanocarrion, ultracarrion) and (iii) seafloor predation (Priede, 2017).  Deep-water species 

of a similar body size and functional group can therefore have enriched 15N values 

relative to shallow-water counterparts due to the consumption (directly or indirectly) of 

sinking organic matter derived from higher trophic level species (e.g. carrion falls; Boyle 

et al., 2012; Gerringer et al., 2017; Koppelmann et al., 2009) which has been observed in 
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zooplankton that are highly reliant on suspended particles (Koppelmann et al., 2009).  A 

higher estimated trophic position than expected may also indicate species are 

nutritionally stressed (i.e. fasting; Bergmann et al., 2009).  Nutritional stress elevates 15N 

values because the lighter 14N is not replenished through the species’ diet (Bergmann et 

al., 2009).  In addition, scavenging (Churchill et al., 2015) and continual recycling of 

food in benthic environments instead of consuming fresh phytodetritus available in 

pelagic ecosystems (Iken et al., 2004) and the choice of baseline species (e.g. using a 

pelagic species instead of benthic; Preciado et al., 2017) all influence the trophic 

positions estimated for deep-sea species.  

3.7 Niche and community metrics in the deep-sea:  

Limited research has been undertaken to understand species’ niche in the deep-

sea. Dietary niche is traditionally characterized using stomach content data, but the 

isotopic niche now provides a complementary approach (Bearhop et al., 2004; Newsome 

et al., 2007). The isotopic niche considers the area in !-space with !13C on the X-axis and 

!15N on the Y-axis providing a link between prey resources and foraging location 

(Newsome et al., 2007). Moreover, aspects of isotopic community structure can be 

inferred using standardized metrics (e.g. !15N nitrogen range, !13C carbon range, total 

area of the convex hull, distance to the centroid, mean nearest neighbor distance, standard 

deviation of the nearest neighbor distance; Layman et al., 2007).  In total 6/7 studies that 

examined niche in the deep-sea food web used a combination of metrics by Layman et al. 

(2007; convex hull, and associated community metrics; n = 5) and Jackson et al. (2011; 

corrected standard ellipse area, SEAC, n=6 ; Bayesian standard ellipse area, SEAB n=4).  
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Niche overlap occurs in the deep-sea environment (e.g. Demopoulos et al., 2017; 

Kopp et al., 2017; Zapata-Hernández et al., 2016).  Within deep-sea environments, the 

most comprehensive study to quantify an entire community estimated niche overlap 

(SEAc) for 140 species from invertebrates to sharks in three basins of the Sea of Chiloé 

(Zapata-Hernández et al., 2016). The high incidence of overlapping niche among the 

three basins (range: 52% to 79%,) indicated that habitat usage, trophic position and 

species interactions were similar among communities (Zapata-Hernández et al., 2016).   

A high degree of isotopic niche overlap was also observed among benthic slope species 

in the Celtic Sea (Kopp et al., 2017). Along the upper continental slope, three of the five 

studied fish species had overlapping niches (SEAc, overlapping niche area: 1 to 44%), as 

predicted given that all species were benthopelagic consumers (Kopp et al., 2017). The 

overlap observed by Kopp et al. (2017) is thought to be due to larger organisms having 

higher search times for food (Dayton & Hessler, 1972) and revealed that these species are 

highly linked to benthic species (Kopp et al., 2017).  Within a community, niche overlap 

can also indicate prey abundance (Pettitt-Wade et al., 2015), productivity in an ecosystem 

(Linnebjerg et al., 2016), invasive species (Guzzo et al., 2013), and / or competition 

(Bolnick, 2001).    

Contrary to the previously mentioned findings, no niche overlap occurred for 

suspension, epibenthic and unknown feeders in canyon and slope environments 

(Demopoulos et al., 2017), invertebrate species within some cold seep and vent sites 

despite overlap not being quantitatively estimated (Portail et al., 2016),  corals and 

anemones in a canyon environment despite both being suspension feeders (Demopoulos 

et al., 2017), and secondary consumers (benthic and a benthopelagic fishes) in the Celtic 
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Sea (Kopp et al., 2017).  Distinct niches indicated variability in the location of foraging, 

carbon sources and trophic level of prey being consumed. 

To understand niche diversification at the base of the food web and determine if 

species are foraging in a single habitat or on the same primary consumers, the carbon 

(!13C) range is often examined (Layman et al. 2007) because !13C provides inference on 

the number of basal carbon resources species are using (Demopoulos et al., 2017).  

Through this approach it was found that canyon species (Layman metric !13C carbon 

range: 4.33) had significantly higher !13C range compared to slope species (Layman 

metric !13C carbon range: 1.25) and wider isotopic niches estimated using the standard 

ellipse area corrected approach (Demopoulos et al., 2017).  A larger !13C range was also 

observed for lower fluid environments (characterized by having lower sulphide and 

methane concentrations as well as being less enriched in compounds that promote 

microbial activity) compared to higher ones, with seeps (generally less fluid) having 

larger !13C ranges comparable to vents (generally more fluid) at some locations due to 

variable basal carbon sources such as endogenous microbial production, thiotrophs, 

methanotrophy, and petroleum-derived organic matter (Portail et al., 2016). 

Trophic level diversity within an ecosystem and chemosynthetic !15N baselines 

can be inferred using the nitrogen isotope range (Layman et al., 2007; Portail et al., 

2016).  Fishes in Mediterranean slope environments generally had wider !15N ranges (6.1 

to 12.63‰) compared to decapods (4.19 to 10.53 ‰; Fanelli et al., 2013), indicating that 

fishes have more trophic diversity. Similarly, seep ecosystems had higher !15N ranges 

(~7 to 14 ‰) compared to vent ecosystems (~5 to 7 ‰; Portail et al., 2016) and canyon 

ecosystems had significantly higher !15N range (Layman metric !15N nitrogen range: 
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6.26) compared to slope ecosystems (Layman metric !15N nitrogen range: 3.35, p < 

0.01).  The larger !15N range could be attributed to the presence of deep-sea corals, 

which have lower !15N values in the canyon (Demopoulos et al., 2017). The low !15N 

values in corals could be due to consumption of bacteria or symbiotic nitrogen fixation, 

whereby N2 is converted to NH4 (ammonium; Demopoulos et al., 2017; Mueller et al., 

2013; Middelburg et al., 2015).   

Overall, trends in niche overlap were diverse between habitats and among 

functional groups, suggesting variability in trophic resources in deep-sea environments.  

There is a need for additional studies to examine niche in the deep-sea and potential 

distinction of overlapping niches in shelf, canyon and chemosynthetic environments to 

further understand deep-sea niche spatial and temporal variation. There is also a need for 

more comprehensive niche studies to ensure that the entire food web is captured.  Further 

research in different environments will aid in identifying more clearly whether there are 

patterns in niche related to environment and species type in deep-sea environments.   
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3.8 Body size in the deep-sea: 

Table 3: Relationship between body size and isotopic composition in the deep-sea.  

Phylum  Species  Area(s) Reference  

d15N Increases with increasing body size  
Chordata 22 fish species  Celebes Sea, Sulu Sea, Philippine Sea  Asante et al., 2010  

Chordata A. rostrate, C. brevibarbis, H. macrochir Mid Atlantic Ridge  Reid et al., 2013 

Chordata 19/20 mesopelagic fish Gulf of Mexico  McClain-Counts, 
Demopoulos & Ross, 2017 

Chordata Pelagic and benthic fish  Cantabrian Sea  Romero-Romero et al., 
2016 

Chordata Lampanyctus crocodilus, Gadiculus argenteus, 
Micromesistius poutassou 

Mediterranean Iberian Shelf  Louzao et al., 2017  

Chordata Hymenocephalus italicus, Cataetyx alleni, Galeus 
melastomus 

Catalan Sea  Papiol et al., 2013 

Chordata Sculpin Species  Arctic  Chambers et al., 2005 

Chordata A. rostrate, C.  armatus Porcupine Seabight  Reid et al., 2013 

Chordata giant squid (Architeuthis dux)  Cantabrian Sea  Romero-Romero et al., 
2016  

Chordata cetaceans (Delphinus delphis, Stenella coeruleoalba, 
Physeter microcephalus)  

Cantabrian Sea  Romero-Romero et al., 
2016  

Chordata Squalus cf. mitsukurii Gulf of Mexico  Churchill et al., 2015  

Chordata Squalus cubensis  Exuma Sound, Bahamas  Shipley et al., 2017  

Chordata  Deep-sea fish  NE Atlantic  Parzanini et al., 2017 

Chordata  Antimora rostrate and Coryphaenoides armatus  NE Atlantic  Stowasser et al., 2009 
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Arthropoda Decapods  Catalan Sea  Papiol et al., 2013  

Zooplankton Zooplankton  Submarine Canyon  Romero-Romero et al., 
2016 

Arthropoda Zooplankton  Eastern Mediterranean  Koppelmann et al., 2009  

d15N decreases with body size  
Chordata Mustelus canis  Gulf of Mexico Churchill et al., 2015 

d15N no relationship with body size  
Chordata 8 deep-sea shark species  Gulf of Mexico Churchill et al., 2015  

Chordata Spiny skates Western United States and Mexican 
Border  

Boyle et al., 2012  

Chordata Bentho-pelagic fish  Galicia bank  Preciado et al., 2017 

Annelida Polychaeta, Harmothoe derjugini Sea of Japan Kiyashko et al., 2014  

Chordata Deep-sea fish  Baffin Region, Nunavut  Chambers, 2008 

d13C Increases with increasing body size  
Chordata  Lampanyctus crocodiles, Gadiculus argenteus, 

Micromesistius 
Mediterranean  Louzao et al., 2017 

Chordata  A. rostrate, H. macrochir, C. armatus, C. brevibarbis – 
not all stations indicated this trend 

Mid Atlantic Ridge  Reid et al., 2013  

Chordata  Hymenocephalus italicus, Cataetyx alleni, Galeus 
melastomus  

Catalan Sea  Papiol et al., 2013  

Chordata Lampanyctus crocodilus  Mediterranean  Valls et al., 2017 
Chordata  18 deep-sea fish  NE Atlantic  Parzanini et al., 2017 

d13C decreases with increasing body size  
Chordata  C. armatus  Mid-Atlantic Ridge  Reid et al., 2013  
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d13C no relationship with increasing body size  
Chordata  5 sharks  Gulf of Mexico  Churchill et al., 2015 

Chordata  4 species  Galicia Bank  Preciado et al., 2017  

Chordata  Antimora rostrate and Coryphaenoides armatus  NE Atlantic  Stowasser et al., 2009 

Chordata  Demersal and Pelagic fish  Sulu Sea, Philippines Sea, Celebes 
Sea  

Asante et al., 2010  

Chordata 18 deep-sea fish  Baffin Region, Nunavut  Chambers, 2008 
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Table 4: Studies that specifically used the term ontogenetic variation. 

Species  Ontogenetic pattern  Reference  
Fish: Abyssal grenadier  
(C. armatus)  

Switched from a benthic to pelagic prey (d13C 
lowered with body size)  

Reid et al., 2013 

Mesopelagic fish  Increase d15N with body size, suggesting ontogenetic 
shifts in diet 

McClain-Counts et al., 2017 

Copepods  Diet shift from juveniles to adults where d15N was 
lower in adults due to more carnivorous predation 
occurring in juveniles and herbivory/ omnivory 
occurs in adults.  

Laakmann et al., 2009 

Fish: A. rostrate and C. 
armatus  

Shift from active predation to scavenging with the 
increase in body size  

Stowasser et al., 2009 

Sharks: M. canis, S. cubensis 
and S. cf. mitsukurii 

Altering prey types or foraging locations  Churchill et al., 2015 

Cephalopods, elasmobranchs As species grow, they are consuming the same prey 
but at different ontogenetic stages 

Valls et al., 2017 

Fish and polychaete  No dietary ontogenetic shift due to no relationship 
between body size and d15N 

Kiyashko et al., 2014 

Elasmobranch: Cuban dogfish, 
Squalus cubensis  

Switched to higher trophic level prey with ontogeny  Shipley et al., 2017 
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3.8.1 Effect of body size on d15N:  

Larger organisms typically had higher d15N values due to consumption of larger 

and higher trophic level prey, linked to ontogenetic changes (Table 3; Table 4; McClain-

Counts et al., 2017; Stowasser et al., 2009), switching foraging locations to areas that 

have different prey isotopic signatures (Churchill et al., 2015), temporal variation in prey 

isotope values (Matthews & Mazumder, 2005), and increased levels of scavenging 

(Churchill et al., 2015).  The majority of studies indicated that as body size increased, 

d15N values were higher in fishes (Table 3), giant squid (Architeuthis dux) and cetaceans 

in the Cantabrian Sea (Romero-Romero, 2016), shortspine spurdog (Squalus cf. 

mitsukurii) in the Gulf of Mexico (Churchill et al., 2015), Cuban dogfish (Squalus 

cubensis) in Exuma Sound, Bahamas  (Shipley et al., 2017) and decapods in the Catalan 

Sea (Papiol et al., 2013).  Smaller species also increased in d15N with body size, which 

was observed in zooplankton and invertebrates in a submarine canyon (Romero-Romero, 

2016) and in the Eastern Mediterranean (Koppelmann, et al., 2009).   

Despite the majority of studies suggesting that d15N increases with body size in 

the deep-sea, some research contradicts this pattern (Table 3).  For example, in the dog 

shark, Mustelus canis, d15N values declined with increasing body size in the Gulf of 

Mexico, potentially in response to changes in both foraging habitat and prey (Churchill et 

al., 2015).  Moreover, several studies have not found a relationship between d15N and 

body size, in particular this trend has been observed in some sharks (Centrophorus cf. 

granulosus, Etmopterus bigelowi, Galeocerdo cuvier, Hexanchus griseus, Squalus cf. 

mitsukurii, Centrophorus cf. niaukang), some bentho-pelagic fish, and polychaeta, 

Harmothoe derjugini (Table 3).  The lack of relationship in sharks may be due to reduced 
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resource pathways such as starvation (Hussey et al., 2012) or scavenging (Churchill et al., 

2015), whereas in polychaeta the relationship indicates similarity among trophic status 

and diet (Kiyashko et al., 2014).  The other studies did not provide a rationale for why a 

trend between d15N and body size is absent.  Overall, the majority of studies indicated 

that with increasing body size, d15N also increased, but this was not consistent among 

species suggesting that foraging strategies, among other factors impacts trophic dynamics 

in the deep-sea environment.  

3.8.2 Effect of body size on d13C:  

 Higher d13C values with increasing body size have been observed in fishes (Table 

3) and may be a result of ontogenetic changes from pelagic to benthic prey, which are 

more enriched in 13C relative to their pelagic counterparts (Table 3; Reid et al., 2013; 

Papiol et al., 2013). In contrast, d13C decreased with body size in the abyssal grenadier in 

the Mid-Atlantic Ridge, (Reid et al., 2013) which the authors attributed to spatial 

differences in the isotopic composition of benthic prey items (Reid et al., 2013).  As with 

d15N, several studies reported no relationship between body size and d13C values for 

some sharks (Centrophorus cf. granulosus, Etmopterus bigelowi, Galeocerdo cuvier, 

Hexanchus griseus, Squalus cf. mitsukurii, Centrophorus cf. niaukang, Mustelus canis) 

and demersal, pelagic and deep-sea fish (Table 3). These studies suggest that the 

relationship between d13C and body size is variable among species, and that more in 

depth research is needed to understand this pattern.  

4.0 Future directions:  

Since the first deep-sea expedition by the British Navy in 1857, the deep-sea has 

gained considerable popularity among scientists, explorers and extractive industries (e.g. 
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deep-sea mining, fishing, tourism; Miller et al., 2018; Danovaro et al., 2014). Advances 

in fishing gear, sampling techniques and methodological approaches to understand 

species interactions (e.g. chemical tracer analysis) within recent decades has granted 

access to further reaches of the deep-sea, providing new opportunities to understand this 

environment. Despite the progress to date, there is still much to be understood about 

deep-sea ecosystems.  

At present our understanding of spatial isotopic variation within the deep-sea and 

characterization of isotopic patterns across entire deep-sea habitats is lacking. Deep-sea 

ecosystems are complex and the harsh conditions bring ecological challenges. A meta-

analysis of species’ isotopic compositions is recommended to understand how isotopes 

vary depending on environment type (e.g. slope versus trench, seamount versus basin) 

and by phylum to determine the influence of habitat to ecological traits (e.g. energy 

pathways, trophic position, feeding behaviour) in the deep sea. However, in order for this 

to be completed more data needs to be collected in specific environments (e.g. canyon, 

ridge, cold seep, volcano, among others in Figure 4 are all particularly understudied).  

It is critical that dedicated work focuses on deep-sea environments to establish 

baseline data to understand how the deep-sea is being altered due to physical, chemical 

and biological modifications (Thresher et al., 2015).  Emerging stressors facing the deep-

sea include: climate change (Ramirez-Llodra et al., 2011; Sweetman et al., 2017), 

invasive species (Galil et al., 2019), changes to nutrient recycling (Levin & Le Bris, 

2015), ocean acidification (Kunz et al. 2016; Sweetman et al., 2017), mineral exploitation 

(Weaver et al., 2018), fishing (Norse et al., 2012; Victorero et al., 2018), waste disposal 

(Ramirez-Llodra et al., 2011), and biogeochemical changes (Danovaro et al., 2016).  
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Direct climate change impacts to the deep sea include: temperature increases of up to 

4.4°C in the Atlantic Ocean (Sweetman et al., 2017), carbon dioxide more readily 

dissolving in colder waters than warmer waters (Chen et al., 2017), release of methane 

from continental margins (Levin & Le Bris, 2015) which may exceed the capacity for 

organisms to oxidize methane (Marlow et al., 2014), and acidification because it is 

predicted the pH will be lowered by 0.29 to 0.37 pH units (Sweetman et al., 2017).    SIA 

will address the impact of climate change in the deep-sea because the burning of fossil 

fuels has led to the release of more 12C and less 13C, known as the ‘Suess effect’ (Keeling 

et al., 1979), this d13C decline has been observed in tuna globally from 2000-2015 

(Lorrain et al., 2020). By monitoring d13C over long time periods in the deep-sea, it is 

possible to detect that anthropogenic induced emissions are reaching the deep-sea.   Long 

term studies utilizing SIA will also provide ecological insight into how species may 

respond to stressors described above by detecting top down and bottom up effects as well 

as how species’ habitat, physiology and trophic position may be affected pre- and post- 

stressor.  

 Accessibility has been a barrier to study deep-sea environments in the past. 

However, the rise of technology in the form of remotely operated vehicles, fishing 

technology, tracer analysis, sampling equipment, as well as communication and sensor 

advancements has improved accessibility for both scientists and industry.  The deep-sea 

remains largely inaccessible for humans to directly experience, although visits are 

increasing (Lutz & Falkowski, 2012). The remoteness of the deep-sea environment incurs 

large challenges and limitations on potential sampling gear.  For example, it is difficult to 

encapsulate the entire deep-sea food web from primary producers to predators using 
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current methods. Some sampling gear, such as trawls with larger mesh sizes, can 

selectively exclude smaller prey items that pass through the mesh and are not captured. In 

contrast, larger predatory species can alter behaviour to avoid being captured by the 

trawl. Researchers are encouraged to undertake a multi-method approach to sample 

several trophic levels within the deep-sea and reduce associated limitations with each 

method when gathering samples for SIA.  

It is recommended that SIA be used in combination with other metrics including 

telemetry (e.g. Matich & Heithaus, 2014), fatty acids (e.g. Leduc et al., 2015; Kiyashko et 

al., 2014), highly branched isoprenoid lipid biomarkers (e.g. Brown et al., 2017), and 

respirometry.  An multi-method approach (e.g. combination of SIA with another metric) 

could provide more confidence in the trends observed.  Using a multi-method approach 

by combining SIA with another metric adds confidence in observed trends and provides 

an opportunity to make inferences on the ecological characteristics of deep-sea food webs 

without constant monitoring and having to be physically present. Additionally, future 

work needs to be undertaken to better understand the isotopic turnover rates of deep-sea 

species; this will aid in advancing understanding of temporal variability in ecological 

characteristics that can be inferred from SIA such as feeding behaviour, trophic 

dynamics, and ecological characteristics.   

Overall, SIA is a powerful tool which can be used to understand deep-sea species’ 

ecological characteristics and how they may respond to stressors.  This review acts as a 

baseline and summary for future research directions by synthesizing available literature. 

Additional research involving SIA in combination with other metrics is needed to fully 

understand observed patterns. By understanding key ecological trends in deep-sea 



 

 67 

environments through a multiple species approach, this information can be used for 

management to understand how several species interact.  

5.0 Summary of findings: 

 
• Deep-sea environments are highly complex and variable in isotopic patterns 

among taxa and the type of habitat.  The general trend is that generally d13C and 

d15N decrease with latitude towards the poles, however this is not uniform across 

all deep-sea environments and taxa and additional factors besides latitude (e.g. 

environmental influences, localized conditions) drive isotopic composition.  

• Deep-sea environments have been studied more frequently in the Northern 

hemisphere compared to the southern hemisphere with data hotspots occurring in 

Western Europe, North America, Eastern Asia and the Southern Ocean.   

• The most well studied environment types include: slope, basin and shelf.  Rift, 

trench, margin, strait, ridge, volcano, cold seep, fan, sea bright, plain and fjord are 

not as well studied.  

• Energy pathways in the deep-sea are variable depending on the type of habitat and 

(e.g. trench, seamount, etc.) species present suggesting multiple d13C pathways 

including: sinking particulate organic matter, anthropogenic sources, sea ice, 

phytoplankton, terrestrial organic matter and sinking particles.  Additionally, 

some habitats rely on energy derived from chemosynthetic pathways which rely 

on microbial activity, sulphur and methane for primary productivity instead of 

photosynthesis.   
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• The relationship between depth and d15N is not ubiquitous across deep-sea food 

webs, but the majority of studies indicate that d15N increases with depth.  The 

pattern for d13C and depth is not as clear because of data deficiency.  

• Deep-sea food webs experience temporal variation both intra- and inter- annually. 

Generally, lower d15N correlates to spring phytoplankton blooms and higher d15N 

is present when phytoplankton may not be as abundant in an environment. Studies 

examining temporal scales less than ten years did not indicate that there are 

consistent changes in stable isotopes.  However, studies examining more than ten 

years of data suggest that overtime d15N and d13C has decreased due to 

environmental changes, development and plankton consumption.  At a centennial 

scale, isotopic composition has remained relatively stable except for decreases in 

d13C with the onset of fossil fuel burning.  

• There is variation in some species feeding between the average dietary history 

(e.g. SIA) and recent diet (e.g. SCA). More research is needed to determine 

mixing models which encapsulate and best predict deep-sea species diet. The 

introduction of video is a novel approach to understand feeding behaviour in the 

deep-sea alongside SIA.   

• There are typically 4 to 5 trophic levels in the deep-sea. Trophic position in the 

deep-sea is dependent on sinking particulate organic matter (marine snow), falling 

food (macro – and meso- carrion falls) and prey consumption on the seafloor. 

Isotope derived estimates of trophic position are impacted by prey choice, 

biological conditions, baseline data, tissue type and scavenging. Trophic level is 

not standardized in the deep-sea which makes cross study comparisons difficult.  
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• Niche is highly variable dependent on functional groups and variability in the 

base of the food web.  Species within the deep-sea have inconsistent overlapping 

and non-overlapping niches. 

• Larger organisms typically have higher d15N due to shifts in feeding behaviour.  

The relationship with d13C is not as well studied, but higher d13C  does occur with 

increasing body size for some species suggesting changes in foraging behaviour.  

• It is critical that baseline research is undertaken to understand how deep-sea 

environments will respond to future environmental perturbations and aid in 

conservation measures.    
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Chapter 3: Trophic ecology of five deep-sea teleosts and two decapod species 

with different functional roles across an Arctic latitudinal gradient. 

1.0 Introduction: 

 
Globally, marine food web structure varies along environmental gradients, 

however, limited studies have examined these relationships in poorly sampled Arctic 

waters.  Environmental conditions in the Arctic are rapidly changing and marine food 

webs face several emerging stressors which may impact local functional ecology 

including: climate change (Beaugrand & Kirby, 2018), resource extraction (Reeves et al., 

2014), increased shipping (Halliday et al., 2017) and tourism (Palma et al., 2019), north-

ward shift of species ranges (Chan et al., 2019), and plastic pollution (Halsband & 

Herzke, 2019). Within the Barents Sea, food webs have been shown to be more distinct 

(e.g. fewer links per species, low connectivity) at sites with cooler waters and higher 

seasonal ice coverage compared to lower latitude areas (Kortsch et al., 2018).   Sea ice 

and temperature influence species’ ecological and biological traits (Frainer et al., 2017), 

interactions (Post et al., 2013), movements (Hussey et al., 2017), abundance (Szymanski 

& Gradinger, 2016), and distributions (David et al., 2016).  These interacting traits 

suggest that Arctic marine food webs are particularly vulnerable to emerging stressors, 

especially climate change.  

Stable isotope analysis (δ15N and δ13C) is a proven tool to examine food web 

dynamics in marine environments. The ratio of nitrogen stable isotopes (δ15N) is 

commonly used to make inferences on trophic position (Post, 2002), whereas the ratio of 

carbon stable isotopes (δ13C) reflects a species’ foraging habitat (Inger & Bearhop, 2008).  

Inference based on these isotopic patterns centres on the distinct and relatively 
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conservative enrichment of 15N and 13C, respectively in food webs and the incorporation 

of these signals into animals’ tissues following consumption. These methods can be 

particularly valuable for resolving trophic relationships in physically challenging 

environments such as the deep-sea, which is light limited (Danovaro et al., 2014), and 

generally considered to be low energy (Woolley et al., 2016), high pressure (Rogers, 

2015) and host highly k-selected species (Victorero et al., 2018). At the global level, δ13C  

values in deep-sea fauna (specifically pelagic and demersal species) and squid (Dosidicus 

gigas and Sthenoteuthis oualaniensis) were shown to decrease from low to high latitudes 

(Parzanini et al., 2019; Ruiz-Cooley & Gerrodette, 2012). In contrast, benthic species 

showed no latitudinal relationships with δ13C (Parzanini et al., 2019).  Squid sampled at 

higher latitudes had higher δ15N values compared to those at the equator (Ruiz-Cooley & 

Gerrodette, 2012) whereas in deep-sea fauna δ15N at the poles was lower compared to the 

equator (Parzanini et al., 2019). Aside from the synthesis of data by Parzanini et al. 

(2019), limited research has been undertaken to understand isotopic latitudinal trends, 

especially in poorly sampled and potentially vulnerable ecosystems such as the deep-sea 

and Arctic regions.   

Niche breadth is one metric which can be used to understand how food web 

structure is influenced by environmental gradients. The concept of niche was first used to 

describe species in an environmental context by examining environmental factors and 

non-interactive variables (e.g. solar radiation, precipitation; Turner et al., 2003) to look at 

biotic and abiotic species properties (Grinnell, 1917). Hutchinson then expanded on this 

concept in the mid-1900’s defining the ecological niche as a hypervolume of n-

dimensions in space occupied by a species in relation to resource use (Hutchinson, 1957; 
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Bearhop et al., 2004; Colwell et al., 2009). While, Hutchinson’s approach is considered 

the most rigorous for quantifying niche, the n-dimension concept is inherently complex to 

estimate because the calculation requires a robust understanding of the effects of multiple 

biotic and abiotic variables on the life history characteristics of the species in question 

(Holt, 2009).  

Building on the seminal work of Hutchinson, MacArthur’s ‘Latitudinal Niche 

Breadth Hypothesis’ (MacArthur, 1972) states that species at the poles will occupy wider 

niches compared to tropical environments due to a lack of tropical seasonality (Vázquez 

& Stevens, 2004). Moreover, narrower niches are predicted in the tropics due to higher 

resource diversity, promoting intraspecific niche variation among species (Araújo & 

Costa-Pereira, 2013). The ‘Latitudinal Niche Breadth Hypothesis’ has been tested at large 

scales from the poles to the tropics (e.g. Vázquez & Stevens, 2004; Cirtwill et al., 2015) 

and at smaller scales spanning < 10 ° (e.g. 5°: Lappalainen & Soininen, 2006).  Recent 

studies examining niche breadth in the Arctic, suggest the Latitudinal Niche Breadth 

Hypothesis may not hold true. Fishes were observed to have smaller niche widths in more 

northern colder waters compared to warmer waters in the Chukchi Sea (Marsh et al., 

2017) and niche size decreased with increasing latitude for beluga whales and ringed 

seals in the Canadian Arctic (Yurkowski et al., 2016).   

  The isotopic niche (combined δ15N and δ13C) considers the n-dimensional δ-

space of a species (or community) and can provide insight into links among a species’ 

bionomic resource use (resource consumption, prey trophic level, prey abundance), 

scenopoetic (habitat, depth), as well as inter- and intraspecific variation (Newsome et al., 

2007). Isotopic niche can also be used to understand how species biotic (e.g. prey 
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consumption) and abiotic (e.g. habitat) traits interact with each other. For example, 

inferences based upon isotopic niche can be used to understand species co-existence 

(Shipley et al., 2019), interspecies interactions (Bison et al., 2015), feeding behaviours 

(Clavel et al., 2011), long term persistence (Shipley et al., 2019), and responses to 

environmental stressors (Clavel et al., 2011; Weisse et al., 2013; White et al., 2015) to aid 

in species conservation and management (Shipley et al., 2019). In the deep-sea, niche is 

highly variable and is considered to be dependent on species’ functional roles and the 

environment they inhabit, dependent on basal carbon sources and trophic diversity in the 

environment (Kopp et al., 2017; Zapata-Hernández et al., 2016; Demopoulos et al., 2017; 

Portail et al., 2016; Valls et al., 2017). While previous work has examined niche across 

Arctic shallow water ecosystems, including polar bears (Ursus maritimus; Johnson et al., 

2019), narwhals (Monodon Monoceros; Watt et al., 2013), walrus (Odobenus rosmarus ; 

Linnebjerg et al., 2016), seals (Pusa hispida, Pagophilus groenlandicus; Ogloff et al., 

2019), seabirds (Rissa tridactyla, Uria aalge, Uria lomvia; Will & Kitaysky, 2018), and 

fish (Boreogadus saida, Eleginus gracilis, Gadus ogac; Brewster et al., 2016), little work 

has been undertaken to understand niche in the deep-sea, particularly across a latitudinal 

gradient in the Eastern Canadian Arctic.    

The overall objective of the current study is to test whether MacArthur’s 

‘Latitudinal Niche Breadth Hypothesis’ holds true on a relatively small latitudinal scale 

in the Eastern Canadian Arctic.  To examine this hypothesis, I quantify and compare the 

niches of five fish and two shrimp species that have diverse functional roles across a 

latitudinal gradient spanning 67°N to 72°N at three sampling sites in the Eastern 

Canadian Arctic deep-sea. I also examine several biotic (e.g. morphometric, condition) 
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and abiotic (e.g. air temperature, illumination, sea ice) factors to investigate potential 

drivers of differences in niche breadth other than latitude. Specifically, I address key 

aspects of niche across an Arctic latitudinal gradient through (i) characterizing the 

environmental conditions at each study location to determine variation in sea ice, air 

temperature and illuminance, (ii)  quantifying species’ morphometric and condition 

characteristics (e.g. hepatosomatic index, fork or carapace length, body mass), (iii) 

estimating isotopic niche for each species to compare and contrast niche size/overlap 

within each study site and among sites, (iv) calculating isotopic community metrics at 

each site using methods developed by Layman et al. (2007) (nitrogen range, carbon 

range, mean distance to the centroid, nearest neighbour distance, standard deviation to the 

nearest neighbour), and (v) determining whether fish length, hepatosomatic index, 

latitude and sampling depth are factors that explain variation in isotopic composition 

among species and sites.  

Based on MacArthur’s ‘Latitudinal Niche Breadth Hypothesis’, I predict that: 1)  

species will have narrower niches at lower latitudes compared to higher latitudes as a 

result of lower productivity and biodiversity at the most northern site; 2) there will be 

positive relationships between latitude and overlap, niche breadth and morphometric 

characteristics (i.e. length), as well as niche breadth and condition (i.e. hepatosomatic 

index); and 3) latitude will have an overriding effect because environmental conditions 

(i.e. elevated temperatures and less sea ice, i.e. shorter duration of land fast ice) and 

energy pathways (i.e. dominance of pelagic vs. sympagic derived carbon) will contribute 

to smaller isotopic niches at lower latitudes.   
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2.0 Materials and Methods:  

2.1 Study Sites and Environmental Conditions 

 
 Sampling took place in three deep-sea channels near the communities of Pond 

Inlet (~72°N), Scott Inlet (~71°N) near Clyde River and Qikiqtarjuaq (~67°N), Nunavut, 

located on Eastern Baffin Island in the Canadian Arctic (Figure 5).   

 Daily air temperature (°C) was obtained for Pond Inlet, Clyde River and 

Qikiqtarjuaq.  Data was obtained for the years 2018, 2013, 2018 respectively from the 

Environment Canada historical database. Daily hours of illumination (both daylight and 

sky) were obtained for all sites from the sunrise and sunset calendar published by the 

National Research Council of Canada (https://app.hia-iha.nrc-cnrc.gc.ca/cgi-bin/sun-soleil.pl, 

November 2019). Daylight hours are defined as the period of light from sunrise to sunset 

whereas sky illumination is the amount of time during civil twilight (NRCC, 2019).  

Weekly sea ice data were obtained from the Canadian Ice Survey 

(https://iceweb1.cis.ec.gc.ca/, December 2019) and a spatially weighted average was 

obtained for a 25-kilometer zone around all sampling locations at each of the three sites. 

Sea ice data were categorized into three types, formation defined as >50% sea ice 

concentration when the sea ice concentration is increasing, break up between 10% and 

50% when the sea ice concentration is decreasing and the open water period as <10%.   

 Environmental data were subdivided into meteorological seasons (winter: 

December-February, spring: March-May, summer: June-August, fall: September-

November).  This was selected to avoid sampling bias by selecting dates that best fit the 

unique seasonal conditions of the Arctic.  Data did not fit a normal distribution (Shapiro-
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Wilk Test), consequently differences among sites were tested using Kruskal-Wallis and 

Dunn’s post hoc tests.  

 
Figure 5: Locations of scientific bottom trawl surveys and longline surveys conducted 
along the Eastern Coast of Baffin Island in 2013 (Scott Inlet) and 2018 (Pond Inlet, 
Qikiqtarjuaq).  The distance between Pond Inlet and Scott Inlet is ~300km; the distance 
between Scott Inlet and Qikiqtarjuaq is 500km; the full geographic range was ~800km.   

2.2 Sample collection and morphometric characteristics  

 
The M.V. Nuliajuk, a fisheries research vessel owned by the Government of 

Nunavut, was used for all sampling. Longline and trawl surveys were completed during 

the fall in 2013 in Scott Inlet near the community of Clyde River (~71°N, 14 trawls, 

depth range 224 - 800 m). During the late summer and early fall of 2018, trawl surveys 

were completed near Pond Inlet (~72°N, 51 trawls, depth range 67 – 844 m) and in the 

Qikiqtarjuaq area (~67°N, 35 trawls, depth range 67 - 732 m) (Figure 5). Target species 

include 5 fishes and 2 shrimp that were selected based on functional roles (Table 5).   

Upon retrieval of fishing gear, samples were sorted and immediately frozen 

onboard in a -20°C freezer and transported back to the University of Windsor. During 
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dissection, a ~5 g sample of muscle tissue was excised form the dorsal side of each fish 

and from the abdomen of each shrimp. Muscle was chosen because it is considered to 

have a relatively slow turnover rate (MacNeil et al., 2006; Matich et al., 2006; Xia et al., 

2013), which provides inferences on integrated average dietary history over a long time 

period.  

Morphometric characteristics including body mass (g), liver mass (g), fork length 

(cm) (Greenland Halibut [Reinhardtius hippoglossoides], Arctic Cod [Boreogadus 

saida]), total length (cm) (Gelatinous Snailfish [Liparis fabricii ], Atlantic Poacher 

[Leptagonus decagonus], Bigeye Sculpin [Triglops nybelini]) and carapace length (cm) 

(Northern Shrimp [Pandalus borealis], Sclerocrangon ferox) were recorded. The 

hepatosomatic index (HSI) was calculated ("#$ = 	 '()*+	,-../012	,-.. 	3	100) and used as a proxy 

for fish health and condition (Hussey et al., 2009) because higher HSI indicate that fish 

are well fed and not in a period of nutritional stress (Plante et al., 2005).  HSI was chosen 

because of all condition metrics, it is sensitive to short term variations (Hussey et al., 

2009).  Greenland Halibut was removed from morphometric and condition data 

comparisons because we did not have complete measurements across all locations.
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 Table 5: Ecological characteristics of deep-sea Arctic species collected in Scott Inlet (2013), Qikiqtarjuaq (2018) and Pond Inlet 

(2017, 2018) (Christie, 2019). 

 Depth Range (m) Maximum 
Length 

(cm) 

Age of maturity  Stomach Contents 
Frequency of Occurrence (%) 

Economically 
Significant 

References 

Arctic Cod,  

Boreogadus saida 

Surface – 1390 m 

      
Benthopelagic / 

pelagic  

40  2-3 years (males)  

3-4 years (females) 

Offshore fish reach 

2.0 cm in their first 

year 

Polychaeta (0-1.82%) 

Crustacea (12.7-23.6%)  

Copepods (53.5-63.6%)  

Mysidae (0-10.5%) 

Cumacea (0-8.9)  

Amphipoda (30-37.6%)  

Euphausiids (0-17.1%)  

Decapods (4.1-15.0%)  

Echiuroidea (0-2.3%)  

Chaetognatha (0-15.4%)  

Thaliacea (2.9-4.1%) 

Copelata (23.6-52.9%)  

Teleostei (6.44-23.18%)  

Unidentified (5.7-11.7%)  

Yes  Coad & Reist, 2017;  

Vollen et al., 2004 

 
Greenland Halibut,  

Reinhardtius 
hippoglossoides 

14 – 2000 m 

Benthopelagic   

130  50% maturity 9.5-10 

years (females) and 

8.2-11.6 years (males)  

Mollusca (23.3%)  

Crustacea (38.7% - 47.6%)  

Teleostei (44.7% - 78.8 %)  

Offal (9.3%)  

Cephalopoda (1.2%) 

Echinodermata (2.5%) 

Other (2.35-3.4%)  

Yes Coad & Reist, 2017;  

Fish base, n.d.d.;   

Hovde et al., 2002; 

Vollen et al., 2004 

 
Bigeye Sculpin,  

Triglops nybelini 

135-1279 m  

Bathydemersal  

Juveniles can be 

found >37 m 

17  Not available  Hydrozoa (0-1.3%)  

Copepoda (0-1.4%) 

Mysididacea (0-12.8%)  

Gammaridae (0-5.7%) 

Parathemisto libellula (0-30%)  

Hyperia galba (0-18.5%) 

Pandalus sp. (0-1.4%)  

Cructacea (unidentifiable) (4.1 - 30%)  

Animal remains (50-95.8%) 

No  Coad & Reist, 2017;  

Fish base, n.d.b.;  

Ottesen, 2004 

 
Atlantic Poacher,  

2 – 968 m 25  Females larger than 

males  

Bradyidius similis (87%) 

Amphipoda (23%)  

Calanus species (23%)  

No  Coad & Reist, 2017;  

Fish base, n.d.a.  

Heggland et al., 2015 
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Leptagonus 
decagonus 

Benthic – 

Bathypelagic, 

Demersal  

Isopoda (17%)  

Mysida (13%)  

OstraCoda (10%) 

Cumacea (7%) 

Decapoda (7%)  

Euphasiacea (7%)  

 
Gelatinous 

Snailfish,  

Liparis fabricii  

6 – 1880 m 

Southeastern Baffin 

Island depth is 146-

409 m 

Bathydemersal  

 

19.4  Not available  Stomach content data is not available. Prey 

include: Crustaceans (pelagic hyperiid 

amphipods, mysids, euphausiids, 

gammarids, gastropods, polychaete worms, 

calanoid copepods 

No  Coad & Reist, 2017;  

Fish base, n.d.c. 

 
Northern Shrimp,  

Pandalus borealis 

20-1330 m  

Benthic  

 

16.5  2.4 cm  Shells  

 (2.5 – 16.9%)  

Cructaceans (4.5 – 18.4 %)  

 (Gulf of Maine)  

Additional prey items include:  

zooplankton, detritus, phytoplankton, 

euphausiids, chaetognaths, amphipods, 

mysids, jellyfish, copepods, tunicates, 

ichthyoplankton   

Yes  McLeod et al., n.d.  

Fisheries and Oceans Canada, 

2003;  

Savenkoff et al., 2006; Sea Life, 

n.d.; 

Apollonio et al., 1986 

 
Sclerocrangon 
ferox 

90 – 1000 m  
Carapace 

length : 3.1  

Males mature at 1.5cm 

and females 2.4 cm  

Stomach content is not available. Prey 

include: phytobenthos, amphipods, 

polychaetes, ophiuroids, gastropods, 

bivalves, spong spinicles   

No  McLeod et al., n.d.; 

Squires, 1990;  

Squires, 1996;  

Squires, 1965 
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2.2 Sample preparation for stable isotope analysis    
 

 To prepare fish and shrimp muscle tissue for stable isotope analysis (SIA), 

samples were freeze dried using a Labconco freeze drier at -53°C for 48 hours and then 

homogenized. Lipids were removed using a modified Bligh and Dyer (1959) method with 

a 2:1 chloroform methanol solution. The chemical extraction method was chosen given 

inadequate mathematical lipid correction models for deep-sea fish (Hoffman & Sutton, 

2010). Tissue samples were first vortexed in 2:1 chloroform methanol and then placed in 

a 30°C water bath for 24 hours.  Samples were then centrifuged for 5 minutes; the 

chloroform methanol was discarded and the remaining supernatant was retained in a vial.  

A second dose of 2:1 chloroform methanol was then added and the sample was vortexed 

again. After the 2:1 chloroform methanol was discarded, the remaining supernatant and 

samples were placed with the lid off in a fume hood for 24 – 48 h to allow the sample to 

dry by evaporation.  This process was completed once for all species except Greenland 

Halibut (Pond Inlet, Qikiqtarjuaq) which were lipid extracted twice due to high C:N 

ratios in previously analysed samples from a different location (N. Hussey, personal 

communication, July 2019).  The C:N ratios in this study range from 2.8 to 5.3 (1 Arctic 

Cod from Scott Inlet > 5, 21 Greenland Halibut from Scott Inlet 4-5), with the majority of 

samples having a C:N ratio between 2.8 and 4.0 (n=315).  

Homogenized lipid-extracted muscle samples were weighed out (400-600 um) in 

tin capsules using a Sartorius microgram balance. All samples were then analyzed using a 

continuous flow Thermofinnigan Delta Plus mass spectrometer coupled with an 

elemental analyzer. Scott Inlet fish were analyzed at the Great Lakes Institute for 

Environmental Research (GLIER, Windsor). Pond Inlet and Qikiqtarjuaq fish and all 
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shrimp were analyzed at the chemical tracer lab in Fisheries and Oceans Canada 

Freshwater Institute (FWI, Winnipeg). Stable isotope ratios were obtained (
15

N:
14

N and 

13
C:

12
C) and referenced to internal standards (δ

13
C: Pee Dee Belemnite carbonate derived 

from cretaceous cephalopods, δ
15

N: Atmospheric nitrogen as well as USGS40 and 41a) at 

GLIER and the FWI (Christie, 2018; Newton, 2001; Pinnegar & Polunin, 1999; 

Rosenberg, personal communications). The ratio of stable isotopes was then calculated in 

parts per thousand (‰) compared to the internal standard references using the formula: 

 δ! = ( $%&'()*

$%+&,-&.-
 – 1) x 10

3
, 

where δ is quantifying the measure of heavy to light isotope, X representing the 

heavier isotope (
15

N or 
13

C), Rsample the sample isotope ratio (
15

N:
14

N or 
13

C:
12

C) and 

Rstandard representing the isotope ratio in the standard reference	(Pinnegar & Polunin, 

1999 ; McMeans et al., 2010) to assess accuracy and precision. The averages among runs 

were -26.4‰ ± 0.02 and -4.5‰ ± 0.1 for USGS 40 for δ
13

C and δ
15

N, respectively, and   

-36.6‰  ± 0.1 and 47.6‰  ± 0.2 for USGS 41a for δ
13

C and δ
15

N, respectively .       

2.3 Data Analysis  
2.3.1 Isotopic Niche  
 

Isotopic niche was determined using Stable Isotope Bayesian Ellipses in R 

(SIBER) to account for differences in sample size and to facilitate comparisons across 

sites (Jackson et al., 2011). Standard ellipse areas corrected (SEAc) were estimated that 

account for 40% of the true data, which is a conservative estimate of true niche core area 

(Jackson et al., 2011). One degree of freedom is added to account for bivariate data 

(SEAc) to adjust for differences in sample sizes (Jackson et al., 2011).  Bayesian statistics 

(SEAB) were then used to run the simulation (i.e. 10000 iterations), providing unbiased 
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40% ellipses that account for different sample sizes among species and populations 

(Jackson et al., 2011). Niche overlap was determined to understand niche similarities 

between and among species across a latitudinal gradient using SEAB. An overlap 

of >60% was considered significant and 100% indicated complete overlap (Schoener, 

1971).  Overlap was determined using the following equation:       

%	1234567	18	9:;ℎ3	= = 	 >?@AB	CDEFBAGGHIJ	KFEA	?LMBBHGNE	K	AIO	MBBHGNE	P		
>?@AB	MBBHGNE	KFEA	?L	K

  x 100      

To test parametric assumptions before performing statistical tests on isotope data, 

Levine’s Test was used to determine if sample variances were equal and the Shapiro-

Wilk Test was used to determine if the data were normally distributed. Data (length, 

δ
15

N, δ
13

C) was mostly normal and heteroscedastic.  A MANOVA was first undertaken 

to test for differences in combined δ
15

N and δ
13

C values among species at each location. 

ANOVA was then used to test for significant differences in isotopic composition among 

species at each site for δ
15

N and δ
13

C independently where the MANOVA indicated a 

significant difference.   Tukey-Post Hoc tests were used for pairwise comparisons when 

the ANOVA results showed a statistically significant difference. All statistical analyses 

were conducted in R v.1.1.383. Unless otherwise stated the significance level was p < 

0.05. 

2.3.2 Layman Metrics  
 

 Layman niche metrics (Table 12) were calculated to understand species and 

community metrics across a latitudinal gradient. Layman metrics provide estimates of 

isotopic variation across an entire community (i.e. at one study location) by examining 

the δ
15

N range, δ
13

C range, mean nearest neighbour distance, standard deviation of the 
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mean nearest neighbour distance, distance to the centroid and the total area of the convex 

hull (Layman et al., 2007, Jackson et al., 2011, Table 12).   

2.3.3 Linear Model   
 

 Linear models were used to examine isotopic variation (either δ
15

N or δ
13

C) in 

relation to location, sampling depth, and length (fork or carapace) for species at each site. 

Species (Atlantic Poacher, Arctic Cod, Greenland Halibut, Bigeye Sculpin, Gelatinous 

Snailfish, Sclerocrangon ferox, Northern Shrimp) and location (numerical value given for 

each site: Pond Inlet, Scott Inlet, Qikiqtarjuaq) were categorical fixed factors, while 

length was included as a continuous fixed factor.  

3.0 Results: 

3.1 Environmental characteristics of the three study sites  
 

Of the three study sites on Baffin Island, Pond Inlet had significantly colder mean 

air temperatures in the winter and spring compared to Scott Inlet and Qikiqtarjuaq 

(winter: Kruskal-Wallis chi-squared = 44.7, df=2, p < 0.001 ; spring: Kruskal-Wallis chi-

squared = 15.1, df=2, p < 0.001; Figure 6). Mean air temperatures were not significantly 

different between Pond Inlet and Scott Inlet During the summer and fall (Dunn’s-test, p > 

0.05), or between Qikiqtarjuaq and Scott Inlet in the winter and spring (Dunn’s-test, p < 

0.001).   

 Pond Inlet had the shortest open water period (7 weeks), followed by Qikiqtarjuaq 

(10 weeks) and Scott Inlet (13 weeks) (Figure 7).  There were no significant differences 

in weekly ice concentration during the summer months (Kruskal-Wallis chi-squared = 

1.6, df=2, p > 0.05) but Pond Inlet had significantly higher ice concentration in the winter 

compared to Qikiqtarjuaq and Scott Inlet (Kruskal-Wallis chi-squared = 20.6, df=2, p < 
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0.0001). Pond Inlet was also ice covered (>50% ice coverage) for 42 weeks, when 

compared to Qikiqtarjuaq (40 weeks) and Scott Inlet (36 weeks) (Figure 7). Freeze up in 

Pond Inlet occurred earlier than Qikiqtarjuaq and Scott Inlet (Figure 7).    

As expected for this latitudinal gradient, Pond Inlet had the longest period of 24-

hour sunlight (93 days) and darkness (75 days) compared to Scott Inlet (sunlight: 78 

days, darkness: 57 days) and Qikiqtarjuaq (daylight: 51 days, darkness: 21 days) (Figure 

8). There were no significant differences in daylight hours of illumination and sky hours 

of illumination during the spring (daylight: Kruskal-Wallis chi-squared = 3.4012, df = 2, 

p-value > 0.05; sky: Kruskal-Wallis chi-squared = 0.74514, df = 2, p-value = 0.689). 

During the summer, Pond Inlet and Scott Inlet had more daylight hours of illumination 

than Qikiqtarjuaq (Dunn’s test p<0.05).  All three sites were significantly different in 

hours of illumination in the fall (Kruskal-Wallis chi-squared =92.033, df=2, p < 0.001).   
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Figure 6: Average air temperature (°C) for the three locations: Pond Inlet (green), Clyde River near Scott Inlet (red), and 

Qikiqtarjuaq (blue), Nunavut.  Points represent daily mean air temperature data which was obtained from Environment Canada.  

Data was smoothed using a smoothed conditional means and the grey represents standard error bounds. 
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Figure 7: Mean spatially weighted sea ice concentration for Pond Inlet (2018), Scott Inlet (2013), and Qikiqtarjuaq 
(2018).  Sea ice data obtained from the Canadian Ice Survey weekly ice charts.   Sea ice concentration >50% is 
considered formation when the ice concentration is increasing (i.e. fall), <50% is considered sea ice break up when the 
sea ice concentration is decreasing (i.e. spring) and <10% is considered ice free / open water (i.e. summer period) 
(Canadian Ice Service, 2019). Pond Inlet (green), Clyde River near Scott Inlet (red), and Qikiqtarjuaq (blue), Nunavut. 
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Figure 8: Hours of daylight illumination (solid) and sky hours of illumination (dashed) at three locations: Pond Inlet 
(green), Clyde River near Scott Inlet (red) Qikiqtarjuaq (blue). Data obtained from sunrise and sunset calendar from the 
National Research Council of Canada (https://app.hia-iha.nrc-cnrc.gc.ca/cgi-bin/sun-soleil.pl, September 2019).  
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3.2 Morphometric Data  

Across sampling years, a total of 448 individuals of the two shrimp and five fish 

species were sampled (Table 6). Fish fork/total length ranged from 3.1 to 58 cm across all 

locations and taxa, whereas shrimp carapace length ranged from 1.6 to 4.2 cm (Table 6, 

Figure 9).  Average lengths (mean ± S.D.) of fish species across all three sites were the 

highest for Greenland Halibut (44.9 ± 7.66 cm) and the lowest for Bigeye Sculpin (10.8 ± 

1.35 cm) (Table 6, Figure 9). Northern Shrimp had a higher carapace length (3.21 ± 0.57 

cm) than Sclerocrangon ferox (2.32 ± 0.45 cm, Table 6, Figure 9).   

The length of Bigeye Sculpin increased in length from high to lower latitudes 

(Table 6, Figure 9). Across all three sites the species that had the highest body mass 

(mean ± S.D.) was Greenland Halibut (850 ± 455 g) followed by Arctic Cod (30 ± 25.8 

g) (Table 6). Sclerocrangon ferox, Northern Shrimp, Gelatinous Snailfish, Bigeye 

Sculpin and Atlantic Poacher had similar lower masses (Table 6).   

HSI varied across species and sites (Figure 10, Table 13 in supplemental).  HSI 

was the highest at mid-latitude (Scott Inlet) for Arctic Cod (Figure 10, Table 13 in 

supplemental).  There was a decline in mean HSI with increasing latitude between 

Qikiqtarjuaq and Pond Inlet for Bigeye Sculpin (i.e. Qikiqtarjuaq was highest in HSI, 

Figure 10, Table 13 in supplemental).  

 



 

 112 

 

      
Figure 9: (A) Boxplot representing the distribution of fork length in cm (Arctic Cod), 
total length (Gelatinous Snailfish, Atlantic Poacher, Bigeye Sculpin) and (B) Carapace 
length in (Northern Shrimp, Sclerocrangon ferox) for each species at the three locations. 
Boxes represent the interquartile range (first quartile, median and third quartile), whiskers 
representing approximately the 95% confidence interval and outliers.  
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Table 6: Stable isotope (white muscle d13C and d15N; ‰) and body size data (all mean ± SD) for five deep-sea fish and two shrimp 

species across three sites on Baffin Island, Nunavut collected in 2013 (Scott Inlet) and 2018 (Pond Inlet, Qikiqtarjuaq).  

 Pond Inlet Scott Inlet Qikiqtarjuaq 
Species n1 Length 

(cm) 
Mass  
(g) 

n2 d13C d15N n1 Length 
(cm) 

Mass 
(g)  

n2 d13C  d15N n1 Length  
(cm) 

Mass (g) n2 d13C d15N 

 

AC  

22 14.1  ±  

2.5 

23.7 ± 

16.8 

22 -20.4 ± 

0.4 

14.4 ± 

0.60 

30 13.8  ±  

3.4 

23.7 ± 

16.3 

30 -20.5 ± 

0.4 

14.8 ± 

0.7 

20 17.3  ±  

4.6 

46.5 ± 

37.0 

20 -20.3 ± 

0.5  

15.3 ± 

1.0 

AP 
20 15.3  ±  

2.4 

13.0 ± 

5.8 

20 -18.8 ± 

0.3 

17.3 ± 

0.33 

10 14.2  ±  

2.8 

10.3 ± 

6.3 

10 -19.6 ± 

0.2 

17.4 ± 

0.3 

27 14.0  ±  

2.4 

9.5 ± 5.7 27 -19.8 ± 

0.3 

17.1 ± 

0.5 

GH 
0 NA NA 6 -19.6 ± 

0.1 

16.7 ± 

0.41 

0 N/A NA 56 -20.7 ± 

0.7 

15.0 ± 

0.4 

20 44.9 ±  

7.7 

849.7 ± 

454.8 

20 -19.6 ± 

0.2  

15.9 ± 

0.3 

SC 
4 8.6  ±  0.2 5.0 ± 

1.4 

4 -21.0 ±  

0.3 

14.1 ± 

0.21 

28 10.4  ±  

1.0 

10.2 ± 

3.7 

28 -20.5 ± 

0.1 

14.6 ± 

0.3 

19 11.8  ±  

1.1 

15.2 ± 

4.5  

19 -20.9  ± 

0.3 

13.9 ± 

0.3 

GSF 

31 12.3 ± 1.4 16.0 ± 

6.7 

31 -20.5 ± 

0.3 

14.5 ± 

0.36 

22 11.0 ± 2.0 12.9 ± 

9.3 

22 -20.4 ± 

0.3 

14.6 ± 

0.6 

23 11.38 ± 

1.7 

12.6 ± 

6.5 

23 -20.8 ± 

0.2  

14.2 ± 

0.5 

NS 
19 3.0 ± 0.4 15.0 ± 

4.4 

19 -17.9 ± 

0.3 

15.4 ± 

0.62 

20 3.6 ± 0.7 9.3 ± 

8.9 

20 -19.6 ± 

0.3 

15.1 ± 

0.4 

20 3.00 ± 0.3 14.2 ± 

3.4 

20 -18.3 ± 

0.6 

15.5 ± 

0.5 

SCF 

6 2.4 ± 0.5 18.7 ± 

10.2 

20 -16.1 ± 

0.5 

16.6 ± 

0.88 

19 2.4 ± 0.4 11.5 ± 

5.0 

17 -17.5 ± 

2.0 

17.9 ± 

0.6 

11 2.11 ± 0.3 9.6 ± 4.3  11 -16.6 ± 

0.5  

16.4 ± 

0.6 

Arctic Cod (AC), Atlantic Poacher (AP), Greenland Halibut (GH), Bigeye Sculpin (SC), Gelatinous Snailfish (GSF), Northern Shrimp (NS), Sclerocrangon ferox Shrimp (SCF).  Length (cm) refers 

to fork length (AC, GH), total length (AP, SC, GSF) or carapace length (NS SCF). N1 refers to the number of individuals measured for length and mass and n2 refers to the number of individuals used 

for stable isotope analysis.  The following lists the overall mean δ15N and δ13C ± SD of each species across all sites: Arctic Cod (14.8 ± 0.9 and -20.4 ± 0.4), Atlantic Poacher (17.2 ± 0.4 and -19.4 ± 

0.5), Bigeye Sculpin (14.3 ± 0.5 and -20.7 ± 0.3), Gelatinous Snailfish (14.4 ± 0.5 and -20.6 ± 0.3), Greenland Halibut (15.3 ± 0.7 and -20.4 ± 0.8), Northern Shrimp (15.3 ± 0.5 and -18.6 ± 0.8), and 

Sclerocrangon ferox shrimp (17.0 ± 1.0 and -16.6 ± 0.7).   
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Figure 10: Frequency distribution of Hepatosomatic Index (HSI) (%) for Arctic Cod, 
Atlantic Poacher, Bigeye Sculpin, Gelatinous Snailfish, and Greenland Halibut at three 
sites: Pond Inlet, Scott Inlet and Qikiqtarjuaq. Greenland Halibut HSI is unavailable for 
Pond Inlet and Scott Inlet. The maximum, minimum, mean and standard deviation are in 
the supplemental material (Table 13).   

3.3 Stable Isotope Data:  

Variation in δ13C and δ15N values was observed across Arctic deep-sea food webs 

(-21.4‰ to -15.4‰ and 13.0‰ to 18.8‰, respectively). For all three sites, maximum and 

minimum δ13C values were nearly identical; Pond Inlet: -21.4 to -15.4‰, Scott Inlet: -

22.0 to -16.3 ‰, Qikiqtarjuaq: -21.6 to -16.0 ‰ (Table 6).  Trophic diversity, measured 

using the range of δ15N values, was also similar across the three sites; Pond Inlet: 13.0 to 

18.1‰, Scott Inlet: 13.0 to 18.8‰, and Qikiqtarjuaq: 13.2 to 18.4‰, Table 6). The 

highest δ15N value recorded in the study was for Sclerocrangon ferox (Pond Inlet; 

17.7‰) and the lowest was for Arctic Cod (Pond Inlet; 13.0‰; Table 6). Arctic Cod also 



 

 115 

had the lowest δ13C value (Scott Inlet; -21.4‰) while Atlantic Poacher had the highest 

δ13C value (Scott Inlet; -19.3‰; Table 6).  

Greenland Halibut had higher mean δ15N at Pond Inlet compared to Scott Inlet 

and Qikiqtarjuaq (Table 6, Figure 11). The mean δ15N was lowest for Bigeye Sculpin in 

Qikiqtarjuaq compared to the other sites (Table 6, Figure 11).  For two species (Atlantic 

Poacher and Northern Shrimp) the mean δ13C was higher in Pond Inlet than the other 

sites (Table 6, Figure 11). 
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Figure 11: Isotopic biplot (δ13C versus δ15N) of Arctic Cod, Atlantic Poacher, Bigeye Sculpin, Gelatinous Snailfish, Greenland 
Halibut, Northern Shrimp and Sclerocrangon ferox collected from three locations in the Canadian Arctic: Pond Inlet, Scott 
Inlet, and Qikiqtarjuaq. 
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There was a significant effect of species on combined δ13C and δ15N at all three 

sites (MANOVA, Table 7).  Results from each ANOVA found that there were significant 

differences in δ13C and δ15N between species at each site (ANOVA, Table 7). 

Sclerocrangon ferox had significantly higher δ15N and δ13C than Arctic Cod, Northern 

Shrimp, Gelatinous Snailfish and Bigeye Sculpin at all locations (Tukey multiple 

comparison of means hereafter, p < 0.05, Table 8, Table 9).  The δ15N and δ13C values for 

Arctic Cod and Gelatinous Snailfish were not significantly different from each other 

within each of the two high latitude sites (i.e. Pond Inlet and Scott Inlet, p > 0.05), but 

differed from those in Qikiqtarjuaq (p < 0.05; Table 8, Table 9). In contrast, Gelatinous 

Snailfish and Bigeye Sculpin were isotopically similar within Scott Inlet and Qikiqtarjuaq 

(Table 8, Table 9, p > 0.05). Atlantic Poacher was significantly higher in δ15N compared 

to all other species within each site (p < 0.05) except Greenland Halibut in Pond Inlet and 

Sclerocrangon ferox in Scott Inlet and Qikiqtarjuaq (p > 0.05, Table 9).  
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Table 7: MANOVA and ANOVA results testing whether significant differences were 
present in δ15N and δ13C between species at each location.  *** Indicates that there was a 
significant effect (p < 0.05).   

MANOVA  df  Pillai 
trace  

F Num df  P 

Pond Inlet  Species  5 1.67 115.29 10 p < 0.0001*** 
Residuals  112 

 

Scott Inlet  Species  6 1.27 50.57 12 p < 0.0001*** 
Residuals  176 

 

Qikiqtarjuaq  Species  1 0.63 117.72 2 p < 0.0001*** 
Residuals  142 

    
 

ANOVA (δ13C)  df  Sum sq  Mean sq  F value  P 
Pond Inlet  Species  5 153 31 93.85 p < 0.0001*** 

Residuals  112 
    

Scott Inlet  Species  6 196 33 127.5 p < 0.0001*** 
Residuals  176 

 

Qikiqtarjuaq  Species  6 201 33 185.2 p < 0.0001*** 
Residuals  137 

 
 

ANOVA (δ15N)  df  Sum sq  Mean sq  F value  P 
Pond Inlet  Species  5 153 31 93.85 p < 0.0001*** 

Residuals  112 
 

Scott Inlet  Species  6 203 34 135.8 p < 0.0001*** 
Residuals  176 

 

Qikiqtarjuaq  Species  6 164 27 57.39 p < 0.0001*** 
Residuals  137 
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Table 9: Tukey post hoc test results for d15N species comparisons within each location; Pond Inlet (PI), Scott Inlet (SI) and 
Qikiqtarjuaq (Qik).  Species Codes are as follows: Atlantic Poacher (AP), Greenland Halibut (GH), Gelatinous Snailfish 
(GSF), Northern Shrimp (NS), Bigeye Sculpin (SC), and Sclerocrangon ferox shrimp (SFS). *** p < 0.0001, ** p = 0.0001 - 
0.009, * p = 0.01 – 0.049.  Dark grey area is for Bigeye Sculpin in Pond Inlet which had low sample size (n < 5) and was not 
included. 

 AC AP GH GSF NS SC 
 PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik 

AP *** *** *** - - - - - - - - - - - -   - - 
GH *** 0.5 0.1 0.2 *** *** - - - - - - - - -   - - 
GSF  1 0.8 *** *** *** *** *** * *** - - - - - -   - - 
NS *** 0.2 1 ** *** *** *** 1 0.5 *** * *** - - -   - - 
SC   0.7 ***   *** ***   ** ***   1 0.8   ** ***   - - 
SCF *** *** ** *** 0.1 0.1 1 *** 0.3 *** ** *** *** *** ***   *** *** 

Table 8: Tukey post hoc test results for d13C species comparisons within each location; Pond Inlet (PI), Scott Inlet (SI) and 
Qikiqtarjuaq (Qik).  Species Codes are as follows: Atlantic Poacher (AP), Greenland Halibut (GH), Gelatinous Snailfish 
(GSF), Northern Shrimp (NS), Bigeye Sculpin (SC), and Sclerocrangon ferox (SFS). *** p < 0.0001, ** p = 0.0001 - 0.009, 
* p = 0.01 – 0.049.  Dark grey area is for Bigeye Sculpin in Pond Inlet which had low sample size (n < 5) and therefore was 
not included in the comparisons. 

 AC AP GH GSF NS SC 
 PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik PI SI  Qik 

AP *** ** ** - - - - - - - - - - - -   - - 
GH ** 0.2 *** *** 1 1 - - - - - - - - -   - - 
GSF  0.5 1 * *** ** *** *** 0.3 *** - - - - - -   - - 
NS *** *** *** *** 1 *** *** *** *** *** *** *** - - -   - - 
SC   *** **   *** ***   *** ***   1 1   *** ***   - - 
SCF *** ** *** *** *** *** *** 1 *** *** *** *** *** *** ***   *** *** 
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 There was a significant positive relationship between length and d15N  for Arctic 

Cod at all three locations (linear regression hereafter, Pond Inlet: R2=0.6, F1, 20= 29.4, p < 

0.0001; Scott Inlet: R2=0.8, F1, 28= 110.3, p < 0.0001; Qikiqtarjuaq: R2=0.9, F1, 18=174.2, 

p < 0.0001). Equally, δ15N values of Atlantic Poacher increased significantly with length 

in Pond Inlet (R2=0.4, F1, 18=13.3, p < 0.01) and Qikiqtarjuaq (R2=0.3, F1, 25=11.0, p < 

0.01). No significant relationship between length and d15N were observed for remaining 

fish (n = 3) and shrimp (n = 2) species at any of the sites (Figure 12).  Length data were 

not available for Greenland Halibut in Pond Inlet and Scott Inlet.   

 

 
Figure 12: Linear regressions of length and d15N (‰) separated by site for (A) four deep-
sea fish species separated and (B) two deep-sea shrimp species. Note the different scales 
on the x-axis between panels.      
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 When examining HSI and d15N, there was a significant  positive relationship for 

Arctic Cod in Scott Inlet (linear regression, hereafter, R2=0.2, F1,28=10.2, p < 0.05) and 

Atlantic Poacher in Qikiqtarjuaq (R2=0.1, F1,25=5.0, p < 0.05) (Figure 13). No 

relationships were observed for any other species at the three locations. 

     

 
Figure 13: Linear regressions of hepatosomatic index (HSI) and δ15N for five deep sea 
Arctic fish species separated by site.   

 Overall, for all species pooled in Pond Inlet and Qikiqtarjuaq, δ15N decreased 

minimally with increasing depth (linear regression, hereafter, R2=0.02, F1, 260=5.2, p = 

0.02) and there was no relationship between depth and d13C (R2=0.0003, F1, 260=1.08, p = 

0.30). Examining each site (Pond Inlet and Qikiqtarjuaq) individually with the entire 

community combined, there were no significant relationships between d15N or d13C and 

depth (Pond Inlet d15N, R2=0.01, F1, 120=2.7, p=0.1 and d13C,  R2=0.01, F1, 120=2.2, p=0.1; 

Qikiqtarjuaq d15N,  R2=0.02, F1, 137=3.1, p=0.08 and d13C, R2=0.01, F1, 137=3.03, p=0.08). 

There was not enough depth data available for Scott Inlet.  There was a weak 

significantly positive relationships between δ15N and depth for Arctic Cod (R2=0.2, 

F1,18=6.9, p < 0.05) and Northern Shrimp (R2=0.3, F1,18=10.2, p < 0.05) at Qikiqtarjuaq 

(Figure 14).  Sclerocrangon ferox (R2=-0.01 F1,9=9.9, p < 0.05) and Gelatinous Snailfish 
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(R2=0.4, F1, 21=15.1, p < 0.001) were the only species to show a significant relationship 

between depth and d13C at Qikiqtarjuaq (Figure 14).    

 

 
Figure 14: Isotopic composition and depth (m) for shrimp and fish in Pond Inlet and 
Qikiqtarjuaq (A) δ15N (‰) and (B) δ13C (‰). Not enough data were available to examine 
Scott Inlet. 

3.3.2 Isotopic niche 

Bayesian Standard Ellipse Areas (SEAB) varied across species and locations with 

Sclerocrangon ferox having the highest SEAB value at all locations except Qikiqtarjuaq, 

where Greenland Halibut was the highest (Table 10, Figure 15). Greenland Halibut (Pond 

Inlet and Qikiqtarjuaq) and Bigeye Sculpin (Scott Inlet) had the smallest SEAB values 

(Table 10, Figure 15).  Gelatinous Snailfish and Atlantic Poacher displayed similar SEAB 

values across all sites (Table 10, Figure 15).  
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As hypothesized, niche breadth (i.e. SEAB) increased with latitude for Gelatinous 

Snailfish and Sclerocrangon ferox (Table 10, Figure 15). However, for all other fishes 

(n=4) and shrimp (n=1) niche breadth either i) decreased with latitude, or ii) did not 

change with latitude, although these findings were not tested for significance (Table 10).   

 Across Bayesian 40% ellipses, the degree of overlap between ellipses was 

variable across sites and species (Table 11).  We hypothesized that Pond Inlet would have 

the highest niche overlap, but the highest latitude location had the lowest species’ niche 

overlap.  Scott Inlet (mid-latitude) had the greatest amount of niche overlap among 

species (Figure 15, Table 11).   The only significant overlap in Pond Inlet was for 

Gelatinous Snailfish (67.2%) with Arctic Cod (Figure 15, Table 11). Significant overlap 

in Scott Inlet included Gelatinous Snailfish (63.2%) with Arctic Cod and Bigeye Sculpin 

(75.2%) with Arctic Cod (Table 11, Figure 12).  Arctic Cod and Gelatinous Snailfish 

overlapped at all three locations, but Gelatinous Snailfish was only significant in Pond 

Inlet (67.2%) and Scott Inlet (63.2%) (Figure 15, Table 11). There was no isotopic niche 

overlap between any species and either shrimp species (Sclerocrangon ferox and 

Northern Shrimp) or Atlantic Poacher (Figure 15, Table 11).   
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(A) High-Arctic Latitude         (B) Mid-Arctic Latitude      (C) Low-Arctic Latitude  

      
Figure 15: Isotopic niches of five deep-sea fishes and two shrimp in Pond Inlet (A), Scott 
Inlet (B) and Qikiqtarjuaq (C), Nunavut generated from muscle tissue.  Ellipses contain 
40% of the data. Colours represent each species with codes: Arctic Cod (AC), Atlantic 
Poacher (AP), Greenland Halibut (GH), Gelatinous Snailfish (GSF), Bigeye Sculpin (SC) 
Northern Shrimp (NS), and Sclerocrangon ferox (SCF). Estimates were not available for 
Bigeye Sculpin in Pond Inlet because the sample size was small (n < 5).   

 
Table 10: Bayesian standard ellipse areas (SEAB mode, ‰2) for five fish and two shrimp 
species in Pond Inlet, Scott Inlet and Qikiqtarjuaq, Nunavut. The sample size was not 
sufficient for Bigeye Sculpin in Pond Inlet to perform the analysis.   

      Pond Inlet  Scott Inlet  Qikiqtarjuaq  
Arctic Cod  0.6 0.8 1.3 

Atlantic Poacher 0.3 0.2 0.4 

Bigeye Sculpin  Not Available 0.1 0.2 
Gelatinous Snailfish  0.3 0.3 0.2 
Greenland Halibut   0.1 1.0 0.1 
Northern Shrimp  0.6 0.3 1.0 

Sclerocrangon ferox shrimp 1.3 0.9 0.8 



 

 125 

Table 11: Bayesian estimated isotopic niche overlap probability (%) determined from 40% Bayesian ellipses, separated by 
location (high to low Arctic: Pond Inlet, Scott Inlet, Qikiqtarjuaq).  Overlap estimates are directional and presented based on the 
amount of species A’s niche that overlaps with species B’s niche.  For example, in Scott Inlet 23.6% of Bigeye Sculpin niche 
overlaps with Gelatinous Snailfish niche, but only 9.3% of Gelatinous Snailfish niche overlaps with Bigeye Sculpin niche.  
Bigeye Sculpin is not available in Pond Inlet.  * represents significant overlap which is defined as >60%.  Species Codes are as 
follows: Arctic Cod (AC), Atlantic Poacher (AP), Gelatinous Snailfish (GSF), Bigeye Sculpin (BSC), Greenland Halibut (GH), 
Northern Shrimp (NS), Sclerocrangon ferox (SFS). 

Species B 

Sp
ec

ie
s A

 

 Pond Inlet Scott Inlet Qikiqtarjuaq 
 AC  AP GSF  BSC  GH NS SFS AC  AP GSF  BSC  GH NS SFS AC  AP GSF  BSC  GH NS SFS 

AC  0 27.5 NA 0 0 0  0 26.0 12.2 52.9 0 0  0 22.1 20.0 0 0 0 
AP 0  0 NA 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 

GSF *67.2 0  NA 0 0 0 *63.2 0  9.3 39.8 0 0 23.3 0  52.4 0 0 0 

BSC NA NA NA NA NA NA NA *75.2  0 23.6  44.4 0 0 17.7 0 44.1  0 0 0 
GH 0 0 0 NA  0 0 43.9 0 13.6 6.0  0 0 0 0 0 0  0 0 

NS 0 0 0 NA 0  0 0 0 0 0 0  0 0 0 0 0 0  0 

SFS 0 0 0 NA 0 0  0 0 0 0 0 0  0 0 0 0 0 0  
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3.3.3 Layman Community Metrics: 
 
 Community-wide estimates varied depending on location.  The d13C range (CR) 

was highest in Pond Inlet (4.4), indicating more variation in carbon sources compared to 

other sites (Scott Inlet: 3.7, Qikiqtarjuaq: 4.2, Table 12) which aligns with our hypothesis 

that niche breadth increases with latitude.  The d15N range (NR) did not align with our 

hypothesis, indicating that trophic diversity was lowest in Pond Inlet (2.91), followed by 

Qikiqtarjuaq (3.09) and Scott Inlet (3.37) (Table 12). Total area (TA), distance to 

centroid (CD), and mean nearest neighbour distance (MNND) were highest in Pond Inlet. 

As hypothesized the results indicate that intraspecific variation is highest and there is less 

similar resource use in the highest latitude compared to lower counterparts (Table 12).  

These findings suggests that Pond Inlet may overall have a larger community niche 

breadth (Table 12).  Qikiqtarjuaq (0.6) and Pond Inlet (0.8) had more even trophic 

distribution (SDNND) within their communities relative to Scott Inlet (1.1) (Table 12).  
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Table 12: Community-wide metrics (Layman et al., 2007) for 5 deep-sea fishes used to estimate variability in trophic structure for Pond Inlet, 
Scott Inlet, and Qikiqtarjuaq, Nunavut for white muscle tissue.  Note: due to sample size (n=4), Bigeye Sculpin in Pond Inlet were not 
included. 

Metric  Description  Interpretation at community level  Pond 
Inlet 

Scott 
Inlet 

Qikiqtarjuaq 

δ15N Range (NR), ‰ Range of δ15N mean signatures from 
the most enriched (highest 15N) to 
the most depleted (lowest 15N).   

Measure of trophic diversity, low NR 
indicates similar diet. Provides 
estimate of vertical length of the 
community food web.  

2.9 3.4 3.1 

δ13C Range (CR), ‰ Range of δ13C mean signatures from 
the minimum (13C depleted, more 
negative) to maximum (13C 
enriched, less negative).  

Low values indicate uniform basal 
signatures at the base of the food web.  

4.4 3.7 4.2 

Total Area of the 
Convex Hull 

(TA), ‰2 

Total area containing all of the δ13C 
and δ15N of individuals being tested. 

Low values indicate lack of 
intraspecific variation among niche 
and similar resource use.  
 

5.9 4.6 5.2 

Distance to the 
Centroid (CD) 

Measure of trophic diversity in a 
food web to determine how similar 
species are in a food web by using 
the Euclidean distance between 
species means and centroid.  

Consistent values of CD represent 
similar trophic diversity among all 
individuals and species examined 
indicating similar resource use.   

1.8 1.5 1.5 

Mean Nearest 
Neighbour Distance 

(MNND) 

Indicates niche diversity and 
represents the average Euclidean 
distance between the species means.  

Low nearest neighbour distance 
indicates more ecological similarities 
among and between species in a 
community. 

1.1 0.9 1.0 

Standard Deviation 
of Nearest Neighbour 

Distance (SDNND) 

Measures evenness within a 
community. Not as impacted by 
sample size. 

Lower values indicate more even 
trophic distribution within a food web 
and thus similar resource use in a 
community. 

0.8 1.1 0.6 
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3.3.4 Linear model: 

 When examining variation in d15N and d13C across all three sites relative to the 

factors, species, length, and the species-length interaction, the linear model (location + 

species + length + species*length) suggested that there was no relationship with location 

(i.e. latitude) for d15N, but there was a significant positive linear relationship between 

d13C and location (i.e. highest in Pond Inlet, p < 0.0001).  The CR was higher at high 

latitudes than lower latitudes which may explain this relationship (Pond Inlet: 4.4, Scott 

Inlet: 3.7, Qikiqtarjuaq: 4.2). Additionally, the upper and lower values of d13C were the 

highest for Pond Inlet compared to Scott Inlet and Qikiqtarjuaq.  There were significant 

linear relationships between both d13C and d15N, and length (p < 0.0001).   

4.0 Discussion:  

To my knowledge, this study was the first to examine isotopic niche breadth of 

multiple deep-sea species in the Canadian Arctic along a latitudinal gradient.  This 

includes both commercially significant species (i.e. Northern Shrimp, Arctic Cod, 

Greenland Halibut) and species that support these fisheries by being part of the 

benthopelagic food web (i.e. Sclerocrangon ferox, Bigeye Sculpin, Gelatinous Snailfish, 

Atlantic Poacher).  This thesis examined isotopic niche at a localized scale (e.g. spanning 

5°) in the Polar regions which is an extreme environment.  Within the Polar regions there  

are large environmental shifts with latitude due to hours of daylight impacting 

productivity. Understanding how isotopic niche breadth changes with latitude provides 

insight into how species may respond to stressors in the future (e.g. increasing water 

temperature due to climate change, poleward shifts in species ranges). The current study 

found isotopic niche breadth had mixed patterns with latitude in deep-sea food webs in 
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the Canadian Arctic. These mixed findings do not align or refute MacArthur’s Latitudinal 

Niche Breadth Hypothesis which states that niche breadth increases with increasing 

latitude, i.e. species are more generalist and consequently would have broader niches at 

higher latitudes (MacArthur, 1972; Vázquez & Stevens, 2004). 

My findings for Arctic Cod and the current literature on niche breadth, species 

richness and ecological characteristics of marine fauna indicates that decreasing niche 

breadth with latitude may be a common occurrence for the Arctic. Recent work in the 

Arctic reported that niche breadth decreased with latitude for beluga whales (Yurkowski 

et al., 2016) and for fish in more northern areas of the Chukchi Sea (Marsh et al., 2017).  

The findings from Yurkowski et al. (2016) and Marsh et al. (2017) match our findings for 

Arctic Cod with latitude.  Decline in niche breadth with latitude may be due to reduced 

ecological opportunity (e.g. prey diversity), lower species density, and higher 

interspecific competition promoting narrower niche breadth (Yurkowski et al., 2016). 

Additionally, species richness may be driving differences in isotopic niche breadth, for 

example, globally fewer generalist species are needed to replace more specialists 

(Hayden et al., 2019) limiting diversity loss and functional redundancy decline 

(Rosenfeld et al., 2002).  Both phytoplankton (Righetti et al., 2019) and zooplankton 

(Yasuhara et al., 2012) have lower species richness at the poles compared to the tropics. 

 In my study niche breadth was larger at higher latitudes for Sclerocrangon ferox 

and Gelatinous Snailfish.  Few studies in the marine environment have supported 

MacArthur’s “Latitudinal Niche Breadth Hypothesis.”  For example, temperate region 

brachyuran crab species had larger niche breadths at higher latitudes for temperate 

species whereas tropical species niche breadth was driven more by evolutionary life 
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history traits instead of latitude (Papacostas & Freestone, 2015).   Niche breadth increase 

with latitude may be linked to higher predation intensity at lower latitudes (Schemske et 

al., 2009) and species richness which is bimodal with latitude (Saeedi et al., 2019).  At 

the poles, most species are generalist feeders by foraging on multiple trophic level prey 

with a wider niche breadth compared to tropical counterparts (Hayden et al., 2019).   

Non-linear variation in isotopic niche with latitude in the Arctic deep-sea food 

webs studied here may be linked to the dominant influence of localized drivers (e.g. sea 

ice, sea surface temperature, chlorophyll-A) on species’ isotopic niche trends. Local 

abiotic drivers may be particularly important for Arctic food webs over the latitudinal 

scale and time scale (i.e. tissue turnover rates) we examined.  Localized environmental 

conditions, as discussed previously, demonstrate the importance of scale both temporally 

and spatially.  Isotopic composition of species was examined on a geographical scale 

from 67°N to 72°N, yet localized conditions impacted isotopic composition more than 

latitude. Muscle integrates average dietary history over a long time period (Boecklen et 

al., 2011; Heady & Moore, 2012; Trueman, MacKenzie, & Palmer, 2012; Vander Zanden 

et al., 2015). Based on the equation for ectotherms by Vander Zanden et al. (2015), the 

average turnover rates (half-life) for each species across all sites were: Arctic Cod (53 ± 

10 days), Atlantic Poacher (44 ± 6 days), Bigeye Sculpin (45 ± 4 days), Gelatinous 

Snailfish (46 ± 6 days), Greenland Halibut (114 ±15 days), Northern Shrimp (40 ± 3 

days) and Sclerocrangon ferox (40 ± 6 days).  This suggests that our niche assessment is 

a reflection of a 5° latitude difference across the late summer / early fall. Arctic 

ecosystems are highly seasonal, for example, sea ice spring melt drives phytoplankton 

blooms (Hoegh-Guldberg & Bruno, 2010).  The highest latitude site in the current study, 
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Pond Inlet is ~800 kilometers north of the most southern site, Qikiqtarjuaq. Pond Inlet 

had significantly colder mean air temperature from December to May, the shortest ice-

free open water period and the longest period of 24-hour daylight. Environmental 

conditions (e.g. temperature) were quantified because they are a stronger regulator of 

food webs (Gilbert et al., 2019) and isotopic niche (Cirtwill et al., 2015) than latitude at 

localized scales, which could explain some niche breadth variability.  

To my knowledge, this was the first time that the isotopic niche of Atlantic 

Poacher, Gelatinous Snailfish, Bigeye Sculpin and Sclerocrangon ferox was quantified, 

whereas previous studies have examined the isotopic niche of Arctic Cod, Greenland 

Halibut and Northern Shrimp (e.g. Linnebjerg et al., 2016; Marsh et al., 2017; McNicholl 

et al., 2018).  Isotopic niche for invertebrates, including Northern Shrimp did not overlap 

with any species indicating that invertebrates in the Arctic may be specialized whereas 

fish species had higher overlap suggesting they are more generalists (Linnebjerg et al., 

2016).  In particular, little research examining isotopic niche has been completed on 

multiple species in Arctic food webs and no study has examined these particular species 

in the deep-sea.  

Previous research has examined the δ15N and δ13C composition of species in the 

current study. Pooling samples within species across all sites for Arctic Cod (e.g. Marsh 

et al., 2017; Matley et al., 2013; Hansen et al., 2012), Bigeye Sculpin (e.g. Chambers, 

2008; Hobson et al., 1995), Greenland Halibut (e.g. Linnebjerg et al., 2016; Hansen et al., 

2012; Yurkowski et al., 2017) and Gelatinous Snailfish (Chambers, 2008) aligned in the 

mean ± standard deviation δ15N and δ13C composition in my study compared to other 

studies. For example, the mean pooled Greenland Halibut in my study was 15.3 ±  0.7‰ 
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and in Cumberland Sound, Nunavut nearer to my locations, δ15N was 16.4 ± 0.7‰ 

(Yurkowski et al., 2017), whereas in Greenland the δ15N of Greenland Halibut was 14.5 ± 

0.3‰ (Hansen et al., 2012) and 14.1 ± 1.1‰ (Linnebjerg et al., 2016).  Compared to 

other studies Northern Shrimp (e.g. Hansen et al., 2012; Linnebjerg et al., 2016) and 

Atlantic Poacher (Källgren et al., 2015) had higher δ15N and similar δ13C in my study. 

This suggests that there are similarities in isotopic composition between my study and 

others, but that some regional variation exists which could be due to localized inputs such 

as glaciers.  My samples were lipid extracted and without standardizing all isotopic 

values in the literature using baseline data it is difficult to quantitatively compare to other 

regions.  However, the majority of my study species aligned with other published values 

suggesting similarity in isotopic composition.   

 In the current study, Sclerocrangon ferox and Atlantic Poacher had the highest 

δ15N, indicating that they occupy the highest trophic levels in the Arctic deep-sea, despite 

not having the largest body size.  Deep-sea species are generally thought to use various 

foraging strategies (e.g. benthic and benthopelagic) and have high diet overlap which 

makes classifying species into trophic levels and habitats challenging (Dayton & Hessler, 

1972).  Sclerocrangon ferox exhibited more positive δ13C (-16.6 ± 0.7‰) and similar 

δ15N (17.0  ± 1.0‰) in my study compared to previous studies (e.g. δ13C: -23.3‰, δ15N: 

16.3‰; Hobson et al., 1995).  Sclerocrangon ferox in a previous study also had higher 

δ15N than decapods and fish in the Northeast Water Polynya food web and likely 

consumed small crustaceans and bivalves (Hobson et al., 1995). The δ15N value of a 

species does not always reflect the actual trophic position in Arctic deep-sea species. For 

example, smaller species have been found to have higher δ15N than larger counterparts 
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due to the consumption of invertebrate detritivores and other benthic invertebrates 

(Chambers, 2008).  Northern shrimp, Sclerocrangon ferox and Atlantic Poacher generally 

had higher δ13C suggesting that they forage on more benthic prey compared to the other 

species.  

I found a weak, although significant, positive relationship between δ13C and 

latitude for pooled species which contrasts findings by Hansen et al. (2012) and Marsh et 

al. (2017). In the Chukchi Sea a decrease in δ13C  with latitude (Marsh et al., 2017) may 

be because CO2 dissolves more easily at lower temperatures (and thus higher latitudes) 

and phytoplankton preferentially use more of the lighter isotope (12CO2) which results in 

lower δ13C overall (reviewed in Fry & Sherr, 1984).   The δ13C of a species provides 

inferences on the habitat that a species is utilizing (e.g. benthic or pelagic prey; Inger & 

Bearhop, 2008).  An increase in δ13C with latitude suggests that species in Pond Inlet are 

foraging on more benthic prey than in Scott Inlet and Qikiqtarjuaq.  Overall, species in 

my study from the Arctic deep-sea food web are likely reliant on a combination of 

phytoplankton, macroalgae and microphytobenthos derived δ13C (Fry & Sherr, 1984) 

indicating a connection between the surface and the deep-sea.  I found that Arctic Cod 

had similar δ13C composition among sites (Pond Inlet: -20.4 ± 0.4 ‰, Scott Inlet: -20.5 ± 

0.4 ‰, Qikiqtarjuaq: -20.3 ± 0.5 ‰) suggesting that their diet is sourced from 

phytoplankton (-24 to -18‰), macroalgae (-27 to -8 ‰), and microphytobenthos (-20 to -

10 ‰, Fry & Sherr, 1984).  Arctic Cod rely on sea ice algae for up to 54% of their diet in 

the European Basin of the Arctic (Kohlbach et al., 2017) and also use sea ice to provide 

protection from predators (Coad & Reist, 2017).   
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Previous research has indicated that depth can influence isotopic composition 

(e.g. Leduc et al., 2015; Denda & Christiansen, 2010; Laakmann et al., 2009).   Across a 

latitudinal gradient in the deep-sea, δ15N generally increases with depth (Parzanini et al., 

2019).  Findings from Parzanini et al. (2019) contrast findings from my study which 

suggested that there is a weak decrease in δ15N with depth for deep-sea species.  Similar 

to my study, decreasing δ15N with depth has been reported in elasmobranchs (Churchill et 

al., 2015) and hagfish (Zintzen et al., 2013). Declining δ15N with depth could be due to: a 

diet shift to consume lower trophic level prey (Zintzen et al., 2013), differences in 

productivity (Churchill et al., 2015), or smaller particulate matter with lower δ15N being 

present in the deep-sea (Rau et al., 1990) originating from shallower waters.   Globally, 

δ13C increases with depth in the deep-sea (Parzanini et al., 2019) because more positive 

δ13C signatures are generally associated with benthic habitats (Zintzen et al., 2013) due to 

less 13C enrichment from phytoplankton (Hobson et al., 1995).  Our findings indicate that 

depth did not influence δ13C in the Arctic deep-sea, which is similar to other Arctic deep-

sea food webs (e.g. Iken et al., 2004).   

Bergmann’s Rule states that species at higher latitudes with cooler temperatures 

have larger body sizes compared to their warmer and lower latitude counterparts 

(Bergmann, 1847).  Highly seasonal environments whereby life history traits favour 

larger species predominate at higher latitudes (Hutchings, 2002).  This rule generally 

applies to birds and several mammal species (Meiri & Dayan, 2003) including Canidae 

(Gohli & Voje, 2016).  Niche breadth (specifically dietary) increased with maximum 

length in global fishes (2938 fishes) suggesting that the relationship is due to larger 

species being able to consume a wider array of prey sources (Hayden et al., 2019).  
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Results from my study suggested that there were mixed relationships with length and 

latitude (e.g. Atlantic Poacher increased length with latitude whereas Bigeye Sculpin 

decreased length with latitude), which is in contrast to fishes in the North Atlantic, South 

Pacific, Indian Ocean (Fisher et al., 2010) and deep-sea fishes in the East Atlantic 

(MacPherson and Duarte, 1994). In North America, cold freshwater fish followed 

Bergmann’s Rule, suggesting that these patterns may be linked to a species niche 

(specifically thermal niche requirements and tolerances) (Rypel, 2014).   

  Around the world fish trophic position is most strongly predicted by species 

length, with fish at the poles generally consuming higher trophic level prey compared to 

similar length equatorial counterparts (Hayden et al., 2019).  In Northeast Greenland, 

larger-bodied individuals within Arctic Cod and Polar Cod (Arctogadus glacialis) 

consumed higher trophic level prey because δ15N increased with body size (Christiansen 

et al., 2012).  In our study, Arctic Cod (across all three sites), Atlantic Poacher 

(Qikiqtarjuaq, Pond Inlet) and Gelatinous Snailfish (Scott Inlet, Pond Inlet) all showed 

increases in prey trophic level (higher δ15N) with length.  Larger bodied fishes are able to 

consume larger prey because they are gape limited consumers, and prey must fit into their 

mouth (Hayden et al., 2019).  The other species in this study, which did not show positive 

relationships between species length and δ15N, may have reduced resource pathways in 

the deep-sea, experience isotopic discrimination (Hussey et al., 2012) or utilize 

scavenging (Churchill et al., 2015).   

Increasing δ13C with length may explain the larger niche breadths observed for 

most of the species that had a positive relationship between δ13C and length. Larger 

species/individuals have a greater ability to move between habitats for feeding or change 
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their foraging locations with increasing body size. In our study, there was a positive 

relationship between length and δ13C for Arctic Cod (Qikiqtarjuaq, Pond Inlet), Atlantic 

Poacher (Qikiqtarjuaq), Greenland Halibut (Qikiqtarjuaq), Northern shrimp 

(Qikiqtarjuaq) and Sclerocrangon ferox (Pond Inlet). Increases in δ13C with length have 

been observed for the Jewel Lanternfish (Lampanyctus crocodilus) in the Mediterranean 

(Louzao et al., 2017), Glasshead Grenadier (Hymenocephalus italicus), Cataetyx alleni, 

and Blackmouth catshark (Galeus melastomus) in the Catalan Sea (Papiol et al., 2013) as 

well as Arctic Cod and Polar Cod in Northeast Greenland (Christiansen et al., 2012).  

To my knowledge, there has been no work examining the effect of latitude on 

HSI.  In my study, HSI did not show a clear pattern with latitude among fishes.  Previous 

research has indicated that HSI is highest in July for American plaice (Hippoglossoides 

platessoides; Maddock & Burton, 1999) and in October and November for Atlantic Cod 

(Gadus morhua; Mello & Rose, 2005), suggesting that HSI for fish in my study may 

reflect the maximum in a year. Higher HSI has been recorded during periods of active 

feeding post spawning (Mello & Rose, 2005).  Some fish sampled in this study contained 

eggs which may be an indication that they are in the post spawning phase. Isotopic niche 

breadth increased for species that are under physiological stress and have poor condition 

compared to their healthier counterparts (Karlson et al., 2018).  Generally, species in our 

study with lower body condition levels did not have larger isotopic niches.  This may be 

due to deep-sea fishes having variable and large livers accounting for up to 16% of total 

body mass (Drazen, 2007). Arctic Cod sampled in Svalbard ranged from 6.1– 24 cm, 

were 0 – 4 years old (Fey & Węsławski, 2017) and mature at ages 2-4 (Table 5), 
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suggesting that many Arctic Cod in our study were juveniles.  This suggests that the 

length of fish sampled may have a greater effect than latitude for HSI.    

The highest latitude location, Pond Inlet had the lowest niche overlap whereas 

mid-latitude had the highest amount of niche overlap.  Niche overlap provides insight 

into foraging and diet patterns for an entire community (Holt, 1987). Elton (1927) 

suggested that the same niche space could not be occupied by two different species, but 

more recent studies have indicated that similar species’ niches can co-occur (e.g. Guzzo 

et al., 2013). The presence of high niche overlap in a community may indicate prey 

abundance (Pettitt-Wade et al., 2015), high productivity within an ecosystem (Linnebjerg 

et al., 2016) or species invasion (Guzzo et al., 2013).  If prey are not abundant relative to 

the population in a community and there is high overlap, this could indicate that 

competition is occurring (Bolnick, 2001; Pettitt-Wade et al., 2018) and / or niche breadth 

is increasing because species have to find alternative resources (Bolnick, 2001).   No 

overlap or non-significant overlap (>60%; Schoener, 1968) may indicate that species are 

consistently foraging in different locations and/or on different prey and/or at different 

times and thus not directly competing with other study species.  Low niche overlap may 

suggest that there are multiple sources of abundant prey, the targeted study species may 

not be in direct competition for prey and/or we did not study all species in the food web.  

Low niche overlap may also indicate that the environment is nutrient poor and distinct 

niches reduce competition (Linnebjerg et al., 2016), as well as the presence of resource 

plasticity (Jackson & Britton, 2014).   For example, Arctic Cod are primarily 

benthopelagic and also utilize sea ice whereas Gelatinous Snailfish are bathydemersal 

(Coad & Reist, 2017). Arctic Cod foraging behaviour depends on their life stage (pelagic 
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and benthopelagic) (Majewski et al., 2015; Matley et al., 2013) which may explain the 

observed overlap.  

The highest niche overlap occurred at the mid latitude site, Scott Inlet, suggesting 

that significantly overlapping species (Gelatinous Snailfish and Arctic Cod; Bigeye 

Sculpin and Arctic Cod) were foraging on the same prey (e.g. crustaceans) because prey 

may be abundant.  High overlap in niche for multiple taxa of fish was also observed in 

West Greenland where fish adopted generalist feeding strategies (Linnebjerg et al., 2016).  

Overlap may also indicate the presence of multiple prey with similar isotopic signatures 

because it is difficult to taxonomically identify prey using stable isotopes (Newsome et 

al., 2007).  Within Scott Inlet, the δ15N value was similar among fishes, suggesting 

species were foraging on similar trophic level prey (e.g. crustaceans), but in different 

locations due to differences in δ13C. Differences in δ13C could also be attributed to Arctic 

cod using sea ice seasonally (Coad & Reist, 2017).     

At the lowest latitude location, Qikiqtarjuaq, there was more overlap than at Pond 

Inlet but not as high as Scott Inlet.  In Qikiqtarjuaq, δ13C was similar among fishes 

suggesting species were feeding in similar locations, but δ15N indicated that species were 

feeding at different trophic levels. In Qikiqtarjuaq, there was no significant overlap 

between fishes. Non-significant overlap suggests that some individuals could share the 

same prey but that the majority of each species fed on different prey.    

Inconsistencies in niche overlap between sites in the current study suggests that 

there may be plasticity in feeding, foraging, competitive interactions and resource 

partitioning (Shiffman et al., 2019).  In West Greenland, there was low overlap among 

mammals, fishes (including Greenland Halibut and Arctic Cod), seabirds and 
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invertebrates (including Northern shrimp) when species were pooled together (Linnebjerg 

et al., 2016).  In our study, Gelatinous Snailfish overlapped significantly with Arctic Cod 

at the two highest latitudes and Greenland Halibut overlapped with Arctic Cod, Bigeye 

Sculpin and Gelatinous Snailfish in the mid latitude.   Greenland Halibut are good 

indicators for ecosystem change because they feed on the most abundant prey available 

(Dwyer et al., 2010) and also have isotopic niche overlap with Arctic Cod in West 

Greenland (Linnebjerg et al., 2016).  Due to the opportunistic feeding behaviour of 

Greenland Halibut (Dwyer et al., 2010), it is likely that Arctic Cod, Gelatinous Snailfish 

and Bigeye Sculpin may be feeding on the same highly abundant prey in Scott Inlet.  It 

also could indicate that Greenland Halibut are feeding on Arctic Cod, Gelatinous 

Snailfish, and Bigeye Sculpin. From stomach content analyses, Greenland Halibut are 

known to consume Arctic Cod, Gelatinous Snailfish (Giraldo et al., 2018) and Bigeye 

Sculpin (Chambers, 2008).  Low sample sizes for Greenland Halibut (n=7) and Bigeye 

Sculpin (n=4) in Pond Inlet did not allow for accurate comparisons of isotopic niche at 

the highest latitude site. 

Within the examination of the Eastern Baffin Island deep-sea food web, no 

isotopic niche overlap occurred for shrimp (Northern shrimp, Sclerocrangon ferox) or 

Atlantic Poacher.   Findings for shrimp were similar to West Greenland where Northern 

shrimp did not overlap with any invertebrate species (squid, blue mussel, copepods, 

Iceland scallop, Northern krill and snow crab) suggesting a specialist feeding behaviour 

(Linnebjerg et al., 2016). However, I acknowledge in our study that there may be species 

that were not included that could be occupying similar isotopic niche space as the shrimp 

and Atlantic Poacher.  However, when selecting sample species, the species’ functional 
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roles were considered to gain a more complete understanding of the Arctic deep-sea food 

web. An absence of niche overlap may also suggest that shrimp and Atlantic Poacher are 

seeking out different prey than other species.  

Limitations exist when using stable isotopes to understand deep-sea organisms.  

Deep-sea fishes typically have variable and high lipid content (Hoffman & Sutton, 2010; 

Parzanini et al., 2018) and require lipid removal prior to SIA.  The C:N ratio is used to 

understand lipid content as it represents a ratio of lipids to protein in tissues (Sweeting, 

Polunin, & Jennings, 2006).  Fish store their lipids in skeletal muscle and liver tissue 

(Pinnegar & Polunin, 1999).  Lipid removal is typically not necessary when the C:N ratio 

is < 3.5, accounting for approximately 5% lipid content in a tissue (Post et al., 2007) and 

a C:N ratio < 4 is considered low (Hoffman & Sutton, 2010).  In this study, there was 

some variation, with C:N ratios ranging from 2.8 to 5.3 and most in the 2.8 to 4.0 range.  

However, lipid removal is necessary when tissues have high lipid content (or variable) 

and when the δ13C difference among consumers or between a consumer and an end 

member (e.g. primary producer baseline) is less than 10-12‰ (Post et al., 2007).   I 

acknowledge that differences in lipid removal methods (i.e. Greenland Halibut muscle 

was either lipid extracted once or twice) may have altered the isotopic composition, but I 

am confident that I captured the trophic dynamics within each community.   It is also well 

recognised that physiology and non-dietary stressors (e.g. nutrient imbalance, 

anthropogenic stress, environmental drivers) can be falsely interpreted as dietary 

variation through isotopic niche (Karlson et al., 2018). Only prey species with contrasting 

isotopic compositions can be identified (Newsome et al., 2007; Bearhop et al., 2004) and 

diet derived macromolecules are constantly being rearranged in a species, which can alter 
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the stable isotope values (Martinez del Rio & Wolf, 2005).   In addition, there are factors 

that influence bulk isotopic turnover rate include maturity, metabolic rate (Sakano et al., 

2005), growth rate (Miller, 2006) and amino acid composition (Xia et al., 2013), which 

alter isotopic composition.  Differences in fish and shrimp isotopic composition could be 

a reflection of regional differences at the base of the food web (Layman et al., 2007) and 

comparisons between species at locations need to be interpreted with implicit 

assumptions.  However, it is likely that the isotopic niche relationships observed between 

species at each location provide an indication of resource use patterns on a regional scale.  

The current study advances our knowledge of little-known deep-sea ecosystems, 

which collectively represent the largest environment on earth (99% by volume; Norse et 

al., 2012). To date, little research has been completed using stable isotopes to understand 

Arctic deep-sea environments (e.g. Laakmann et al., 2009, Bergmann et al., 2009, Iken et 

al., 2005).  By studying isotopic niches, inferences can be made on species co-existence 

and long-term persistence, which can help us understand vulnerability to stressors in the 

future (Shipley et al., 2019).  Better understanding of species vulnerability to stressors 

will aid in conservation and management.  The Arctic deep-sea is facing increasing 

stressors from anthropogenic sources (e.g. increasing pressure for fishing and mining, 

more transportation traffic due to increased open water periods) and climate scenarios 

indicate that the deep-sea will experience physical and chemical changes in the future 

(Thresher et al., 2015).  

Environmental models suggest that by 2100, deep-sea (200 to > 3000 m) 

temperatures in the Arctic will rise by 0.1 - 3.7°C and the pH will be lowered by 0.01 to 

0.37 pH units (Sweetman et al., 2017).  Despite these predictions, it remains unclear how 
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our study species will be impacted by these environmental changes. Temperature impacts 

studied on Greenland Halibut suggest that the age distribution and depth preference will 

be negatively impacted by climate change because younger fish inhabit shallower areas 

(warmer, more variable temperatures) whereas older fish prefer consistent temperatures 

in deeper waters (Wheeland & Morgan, 2020). Northern Shrimp have shown increases in 

mortality with pH declines (Dupont et al., 2014) and the movement and physiology of 

Arctic Cod are also predicted to be negatively impacted by climate change (Pettitt-Wade 

et al., 2020 – in press; Drost et al., 2014).  Increased presence of boreal species 

expanding their ranges northward (e.g. Atlantic Cod and Haddock; Fossheim et al., 2015, 

Atlantic pipefish; Fleischer et al., 2007) is decreasing the abundances of northern species 

(e.g. Bigeye Sculpin, Snailfish species, Greenland Halibut) (Fossheim et al., 2015).  The 

Arctic is expected to have increased precipitation, changes in snowfall timing and 

accumulation, decreased sea ice thickness (Bell & Brown, 2018), increased ocean 

stratification, and limited nutrient flow which may lead to less primary production 

(Carton et al., 2015).    

Findings from this study will be useful for understanding how fishery food webs 

may be impacted by climate change.  Here, I examined the same species at different 

latitudes and thus environmental conditions, which provided insight into how a species 

may respond to different environmental conditions (e.g. sea ice decline, temperature 

increase).  Climate change impacts are an important consideration as the demand for the 

development of future test fisheries increases to bring economic, employment and food 

security (e.g. subsistence opportunities in the deep-sea: shrimp fisheries, grenadier; 

Christie, 2018) opportunities to northern communities.  Ecosystem services and 
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traditional foods are being compromised in the Eastern Arctic due to the area having 

some of the most accelerated warming in the North (Bell & Brown, 2018).  Despite 

warming, offshore and inshore fisheries play an important role in Nunavut’s economy; 

the Northern Shrimp, Arctic char and Greenland Halibut fisheries brought an estimated 

$86.3 million to the territory in 2015 (Government of Nunavut, 2016).  There is currently 

only one Nunavut community-based Greenland Halibut fishery, in Pangnirtung (Coad & 

Reist, 2017); due to the success of the Pangnirtung fishery, other communities are 

interested in starting fisheries (Barkley et al., 2018).  It is important to understand the 

isotopic niche of deep-sea food webs before the Arctic experiences its first ice free 

summer as this study will act as a baseline for future research as well as aid in monitoring 

and conservation efforts.   

5.0	Conclusion:	

 Niche breadth did not consistently increase with latitude as was hypothesized in 

all species, suggesting that the Latitudinal Niche Breadth hypothesis may not hold true in 

the Canadian Arctic (67°N to 72°N). Isotopic niche overlap did not increase with latitude; 

the highest niche overlap occurred in Scott Inlet, suggesting that species in Scott Inlet 

may be consuming abundant prey or experiencing higher competition for prey compared 

to Pond Inlet and Qikiqtarjuaq. These trends could be linked to seasonal environmental 

conditions, such as sea ice and temperature or species-specific life histories (e.g. HSI).  

We found that HSI, an indicator of body condition, did not decrease with latitude in most 

fishes, the exception being Bigeye Sculpin. Intraspecific variation in isotopic niche 

among deep-sea species suggests flexibility in foraging and may provide insight into 

future trophic dynamics in an environment that is under increasing stress.  Further 
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research is needed to better understand the ecological traits of Arctic deep-sea species 

supporting economically important species to ensure the long-term sustainability and 

conservation of deep-sea food webs in a changing Arctic environment.  
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Chapter 4: General Conclusions and Future Directions 

 Globally marine ecosystems face numerous stressors (e.g. climate change; Bruno 

et al., 2018) raising concerns about impacts on marine food webs and ecosystem services 

(Sandifer & Sutton-Grier, 2014).  The structure and function of marine food webs is 

variable across a latitudinal gradient from the poles to the tropics in terms of species 

richness (Saeedi et al., 2019), feeding behaviour (generalist vs. specialist; Saupe et al., 

2018), competition (Barnes & Neutel, 2016) and environmental conditions (e.g. water 

temperature; Priede, 2017).  The deep-sea environment, defined as the area below 200 m 

is poorly understood, contains species with highly k-selected life history traits (Victorero 

et al., 2018) and conditions are generally harsh for inhabiting species (e.g. low light, high 

pressure, limited food availability; Clark, 2001; Rogers, 2015; Danovaro et al., 2014).   

The principle objectives of this thesis were to first synthesize all available 

literature on the application of stable isotope analysis to understand deep-sea 

environments through a systematic review.  I then, examined the isotopic niche for five 

deep-sea teleost and two decapod species across a localized latitudinal gradient in the 

Canadian Arctic to investigate if the “Latitudinal Niche Breadth Hypothesis”, which 

states that  species’ niche breadth increases with latitude (MacArthur, 1972; Vázquez & 

Stevens, 2004),  is supported on a regional scale in the Arctic.  Globally, niche breadth is 

thought to increase with latitude due to species in the tropics being more specialized than 

polar counterparts (Saupe et al., 2018) as a result of increased availability of resources in 

the tropics (Araújo & Costa-Pereira, 2013). Testing of this theory in the marine 

environment has received minimal attention to date, but an initial study on crab 

(Papacostas & Freestone, 2016) found support.   
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Despite the deep-sea being the largest environment on the planet which faces 

increasing exploitation pressures, relatively little is known about deep-sea food webs. My 

results in Chapter 2 indicate patterns in spatial isotopic variation, energy pathways, 

trophic position, feeding behaviour, body size, temporal isotopic variation, and isotopic 

niche are highly variable within the deep-sea and there are inconsistencies across taxa 

and habitats.  These reported results identify key future research directions and provide 

support for the inherent complexity within the little studied deep-sea environment.  By 

acknowledging research gaps in the deep-sea, policy makers can make more informed 

management decisions, establish marine protected areas, and enact a conservative 

approach towards food web sustainability in the deep-sea.  

To my knowledge, Chapter 3 provided the first estimation of niche for five teleost 

and two decapod species across a latitudinal gradient in the Canadian Arctic deep-sea.  

Studying the same species across a latitudinal gradient provides scientists and resource 

managers with insight into understanding how species may respond to environmental 

changes such as increasing water temperature and decreasing sea ice concentration. 

Isotopic niche breadth increased with latitude for Gelatinous Snailfish (Liparis fabricii) 

and Sclerocrangon ferox (shrimp), suggesting that more generalist feeding behaviours are 

present at higher latitudes for these two species. This provides some support for the 

“Latitudinal Niche Breadth Hypothesis” (MacArthur, 1972; Vázquez & Stevens, 2004).  

This trend of increasing niche with latitude, however, was not consistent for all Arctic 

deep-sea species, suggesting that localized changes (e.g. temperature, prey availability) 

may have a greater influence on driving niche diversification in the Arctic deep-sea in 

comparison with latitude.  Examining the isotopic niche of Arctic deep-sea species over a 
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latitudinal gradient indicates Arctic deep-sea species may be able to respond to some 

degree of environmental change as a result of high variation in niche among the three 

locations studied.  

Findings from this thesis indicated that Arctic deep-sea species showed a weak 

d15N relationship with depth, which agrees with findings from global deep-sea food web 

reviews for fish (Zintzen et al., 2013; Churchill et al., 2015), deposit feeders (Bergmann 

et al., 2009), and copepods (Laakmann et al., 2009), but contrasted with the majority of 

studies that have found positive relationships between depth and d15N in the deep-sea 

(e.g. McClain-Counts et al., 2017; Parzanini et al., 2019).   Arctic deep-sea species also 

did not show a relationship between d13C and depth, which was similar to particulate 

organic matter in the Arctic (Iken et al., 2005) and fish in the Northeast Atlantic 

(Stowasser et al., 2009).  These findings contrast to those of Parzanini et al. (2019) who 

reported that d13C increased with depth in the deep-sea.  

Species at higher latitudes typically have larger body sizes (and therefore higher 

d15N) compared to lower latitude species (Bergmann, 1847) due to seasonal environments 

favouring larger body size life history traits (Hutchings, 2002).  Larger organisms 

generally have higher d15N in the deep-sea, which was observed for a few species in the 

Arctic deep-sea food webs studied here (e.g. Arctic Cod, Boreogadus saida, at all three 

sites, Atlantic Poacher, Leptagonus decagonus, in Pond Inlet and Qikiqtarjuaq).  The 

deep-sea review indicated that some deep-sea species have higher d13C values with 

increasing body size, which was observed in certain Arctic deep-sea species (Arctic Cod 

in Pond Inlet and Qikiqtarjuaq, Atlantic Poacher in Qikiqtarjuaq, Greenland Halibut, 

Reinhardtius hippoglossoides in Qikiqtarjuaq, Northern Shrimp, Pandalus borealis  in 
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Qikiqtarjuaq and Sclerocrangon ferox in Pond Inlet), suggesting changes in foraging 

location with species growth.  

Overall, more research is needed to fully understand Arctic deep-sea food webs.  

Due to time, sample availability, and finances this research focused on seven key species.  

Future research should examine additional invertebrates (e.g. Asteroidea, porifera, 

crustaceans, polychaetes, molluscs), fishes (e.g. Eelpout species, Lycodes mcallisteri, L. 

rossi, L. eudipleurostictus, Sea Tadpole, Careproctus reinhardti, American Plaice, 

Hippoglossoides platessoides), and elasmobranchs (e.g. Arctic skate, Amblyraja 

hyperborea) that have been collected at all three of the current study locations in the 

Canadian Arctic to gain a more complete understanding of these Arctic deep-sea food 

webs.  This will aid in understanding trophic dynamics and species interactions and help 

inform resource allocations within deep-sea food webs for both commercial and non-

targeted species.  

Stable isotopes provide an integrated average dietary history of a species, but it is 

recommended that stomach content analysis (SCA) is completed as a complimentary 

method to understand recent diet (Pinnegar & Polunin, 1999).  Frozen stomachs are 

available for my study specimens to identify dietary constituents (Vollen, Albert, & 

Nilssen, 2004; Woll & Gundersen, 2004) and can be compared to stable isotope results.  

In particular, it is recommended that SCA be undertaken on Gelatinous Snailfish, as there 

are no published SCA results to my knowledge for this species.  SCA was not undertaken 

due to time constraints and small size of stomachs.  

Arctic marine ecosystems experience seasonal differences in productivity between 

the open-water summer and ice-covered winter months.  Highly branched isoprenoid 
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(HBI) lipids are secondary metabolites (Brown & Belt, 2017) originating from diatom 

species that form an index known as H-Print (Brown et al., 2014b) which can be used to 

quantify the amount of pelagic- and sympagic-derived carbon in food webs  (Brown & 

Belt, 2017). This can provide an understanding of surface to deep-sea connectivity.  

Identifying HBIs and calculating the H-Print has been used previously to quantify carbon 

inputs of both sea ice and pelagic sources in primary consumers such as zooplankton 

(Brown & Belt, 2017; Brown & Belt, 2012)31 and particulate organic matter (Brown et 

al., 2016),  fishes (Brown & Belt, 2017; Brown et al., 2017; Brown et al., 2015), beluga 

whales (Brown et al., 2017), ringed seals (Brown et al. 2014a), and polar bears (Brown et 

al., 2018) in the Arctic.  Results from these studies show that species reliant on sea ice 

derived carbon include shallow water species such as polar bears (Brown et al., 2018), 

beluga whales (Brown et al., 2017), and ringed seals (Brown et al., 2017; Brown, et al., 

2014a), as well as species that are known to utilize the deep-sea (e.g. alligator fish; 

Brown & Belt, 2011).  Species that rely on phytoplankton (i.e. pelagic) derived carbon 

include capelin (Brown et al., 2017) and polar cod (Brown, Hegseth, & Belt, 2013).  

HBIs provide a complimentary tool to stable isotopes to understand food web dynamics 

and surface to deep-sea connectivity.  In the future, it is recommended that deep-sea fish 

livers are analyzed for HBIs to understand the influence of sea ice to the deep-sea 

ecosystem across multiple sites spanning a latitudinal gradient.    

 There are several other tracers that may be useful for gaining a more complete 

understanding of deep-sea food webs.   For example, fatty and amino acids have been 

used to understand trophic interactions in terrestrial and aquatic ecosystems (Ruess & 

Muller-Navarra, 2019) as well as the deep-sea (Parzanini et al., 2019). Fatty acids are 
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required for optimum fitness and must be acquired from the consumption of food (e.g. 

primary producers; Kopprio et al., 2015; Parzanini et al., 2019).  Fatty acids are impacted 

by temperature and by studying them in the deep-sea, this will aid in understanding how 

species will respond to changing temperatures with climate change (Parzanini et al., 

2019).    

Future work should also consider sampling multiple tissues with different 

metabolic turnover rates to gain a more complete understanding of seasonal diet 

dynamics.   For example, muscle integrates average diet history over a long time period 

whereas liver integrates diets over shorter time periods (Boecklen et al.,  2011; Heady & 

Moore, 2012; Trueman, MacKenzie, & Palmer, 2012; Vander Zanden et al., 2015).  The 

90% turnover rate of Arctic Sculpin (Myoxocephalus scorpioides) for muscle is 122 days 

and 58 days for liver (Barton et al., 2019). Fin tissue has been proposed as a non-lethal 

alternative to sampling a short turnover tissue because the 90% turnover rate is 56 days 

for Arctic Sculpin fin clips (Barton et al., 2019).  By sampling tissues with different 

turnover rates, temporal variation in stable isotope signatures can be incorporated into 

analyses to provide insight into changes in diet over multiple time periods (i.e. 

seasonally).   

Environmental data should be collected together with specimens to understand 

how sampling temperature, salinity, and dissolved oxygen may influence species isotopic 

composition in the Arctic, particularly with depth. Furthermore, chlorophyll-A 

concentration should be determined for study areas and analysed with niche breadth. This 

study used data that were collected in 2013 and 2018, and an ideal study would conduct a 

spatial comparison using data from the same year.  By using the same year temporal 
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variability would be reduced, strengthening spatial comparisons across the same year.   It 

is difficult to compare isotopes across a latitudinal gradient because environmental 

conditions vary annually, and these changes can erroneously be attributed to latitude 

rather than inter-annual variation.  

Undertaking research in the deep-sea and in particular the Arctic which is covered 

in sea ice for most of the year is challenging. High associated costs, limited accessibility 

and difficult working conditions (e.g. unpredictable weather) provide barriers to data 

collection in one of the harshest environments on the planet. Very few people have 

physically been present in the deep-sea and scientists rely on samples from bottom trawls, 

long-lining, dredges and tows as well as analysis from video footage and chemical tracers 

to understand these highly complex habitats.   

The deep-sea contains abundant biotic and abiotic resources which could 

supplement natural resources that are depleting elsewhere in the world. Fishery 

development within deep-sea environments, in particular in the Arctic, may provide 

northern communities with opportunities for economic growth, employment, and food 

security.  However, it is imperative that these resources and industries are developed with 

caution to ensure sustainability for future generations, especially in fragile ecosystems 

such as the Arctic, and given the typical life history traits of deep-sea species that make 

them sensitive to overexploitation (e.g. late maturing; Jennings et al., 1998, lower 

metabolic rates; Victorero et al., 2018).   This thesis undertook a multiple species 

approach to food web ecology which will contribute to expanding baseline understanding 

of species that co-exist with already economic significant species such as Greenland 

Halibut, Northern Shrimp and Arctic Cod.  
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Effort was made to involve Inuit communities in this research, and future work 

should consider involving more community collaboration.  Nunavut has the highest food 

insecurity rate (69%) and lowest high school graduation rate in Canada, and high suicide 

rates are prevalent across Nunavut (Bell & Brown, 2018).  Inuit youth want to be 

involved in research and would like to see opportunities to be a “research apprentice” 

(Sadowsky, 2019), with studies indicating that engaging community members creates 

more integrative and inclusive research (Falardeau et al., 2019).  By providing 

opportunities for northerners to further their education, this is one tool which can help 

improve well-being (Bell & Brown, 2018).    This project worked closely with local 

Hunters and Trappers Associations to obtain support and receive input towards the 

project. Inuit research assistants were hired and trained in field sampling. These Inuit 

team members provided traditional knowledge and local insights to the project and sites.  

I also organized a community fisheries meeting in Qikiqtarjuaq and completed 

workshops in Nunavut high schools (Qikiqtarjuaq, Pangnirtung, Iqaluit) to explain 

project objectives, connect with northerners, and inspire them to be engaged in the 

research happening in their backyard. A poster was produced showcasing this project 

(available in English and Inuktitut) which is on display at the Nattivak Hunters and 

Trappers Association in Qikiqtarjuaq. While outreach activities and connections are 

helping to bridge the gap between the local and scientific communities to promote long-

term collaboration, more activities are needed to further engagement and project 

ownership in northern communities. 

In conclusion, this thesis provides an overview and fills a knowledge gap of how 

stable isotope analysis has been used to understand ecological dynamics in deep-sea food 
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webs in different habitats around the globe.  I concluded that niche breadth did not 

consistently increase with latitude, suggesting that environmental conditions or life 

history traits may contribute to variation in niche at localized scales. As climate change 

and other stressors continue to threaten deep-sea ecosystems, it is imperative that more 

research is undertaken to understand these ecosystems which will ensure sustainability 

and conservation within the changing deep-sea environment for future generations.  
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Supplemental: 

 

 
 

  
Figure 16: Linear regressions of length and d13C (‰) separated by site for (A) four deep-
sea fish species separated and (B) two deep-sea shrimp species. Note the different scales 
on the y-axis between panels.  

Table 13: Mean hepatosomatic index (HSI) in % for deep-sea fishes at three locations 
in the Eastern Arctic ± standard deviation, values in parentheses indicate the maximum 
and minimum HSI.   

 Pond Inlet Scott Inlet Qikiqtarjuaq 
n HSI %  n HSI % n HSI % 

Arctic Cod 22 3.51 ± 2.62 (0.4 – 
9.3) 

30 12.0 ± 3.83 (6.8 – 
19.8) 

20 4.17 ± 1.16 (1.8 – 
6.2) 

Atlantic Poacher 20 2.26 ± 0.83 (1.1 – 
4.7) 

10 2.58 ± 1.57 (1.1 – 
5.5) 

27 1.55 ± 0.57 (0.8 – 
3.0) 

Bigeye Sculpin 3 1.20 ± 0.55 (0.6 – 
1.6) 

19 3.15 ± 2.35 (1.0 – 
13.0) 

28 3.52 ± 0.77 (2.1 – 
4.9) 

Gelatinous 
Snailfish 

31 1.52 ±  0.55 (0.7 – 
2.7) 

23 2.81 ± 1.50 (0.5 – 
5.9) 

22 2.71 ± 1.54 (0.7 – 
7.6) 

Greenland Halibut N/A N/A N/A N/A 20 1.85 ± 0.4 (1.07 – 
2.50) 

The number of individuals examined is represented by n.  Refer to methods for how to calculate HSI.  
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