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ABSTRACT 

In recent years, an increasing number of researchers and practitioners have shown an interest 

in model freight transportation activities. These activities have been growing at a significant 

rate due to globalization and the dependence on goods that are produced in offshore markets. 

Prior freight models were often aggregated, which made them less reliable for policy 

analysis. A remedy to overcome the limitations in aggregate model is to develop agent-

based micro-simulation transportation models. These models are more comprehensive, 

thereby allowing them to calculate more accurate predictions. The current study utilizes data 

extracted from truck GPS records to model freight movements as the outcome of truck tours. 

A modeling framework is proposed for use in simulating the tours of individual trucks. The 

framework starts by predicting the number of tours per individual establishments. This is 

followed by micro-simulating each tour travel time, duration, and exact starting time. A stop 

generation model was used to predict the number of stops per tour and then the purpose of 

all intermediate stops within the tour. Next, the location of truck stops and the dwelling time 

at each stop are simulated. The focus of this research is to study the destination and duration 

of truck tour stops, and the analysis of the tours will make use of advanced statistical and 

geo-spatial modeling techniques. The results allow us to identify the significant factors that 

impact the movement of heavy trucks on the road network system. The geospatial and 

statistical results form the basis for developing a more comprehensive understanding of 

freight movement processes in Ontario. The models were incorporated in the proposed 

agent-based simulation model and were then used to predict the destination and duration of 

truck tour stops at the micro-level.  
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CHAPTER 1: INTRODUCTION  

 

1.1 Overview 

The continuous increase in freight transportation activities has encouraged research on 

freight movements in recent years. However, current freight models are either too aggregate in 

nature or still too immature or under development to be included in advanced agent-based micro-

simulation transportation modeling systems. This is a problem given the fact that freight activities 

represent a significant portion of the observed traffic congestion on the transportation network. 

The lack of adequate data and the diversity of carries that interact in the shipping operations have 

curtailed the progress of developing advanced freight demand forecasting models. In general, 

freight travel activities are more complicated than personal travel activities. Also, detailed freight 

demand modeling requires disaggregate data to understand on-ground activities and predict future 

freight travel demand. Accordingly, the availability of detailed data should enable researchers to 

develop comprehensive models to be used by decision-maker to assist in informing future 

transportation plans.   

Traditional freight demand models (TFDMs) are focused on modeling trips at the zonal 

level. These models are still being used by most governmental agencies as part of their existing 

transportation planning models. TFDMs are usually developed as part of a conventional four-stage 

model (i.e., trip generation, trip distribution, modal split, and traffic assignment), although they 

might not include all four stages especially the modal split model. Historically, the four-stage 

modeling process was intended to deal with passenger vehicle movements but has been modified 

to model commercial vehicle movement despite key differences between passenger and 
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commercial traffic. Despite their popularity, TFDMs suffer several drawbacks including their 

aggregate nature and lack of behavioral realism (Tavasszy, 2006).  

Researchers during the last 15 years have shifted to developing agent-based models to 

overcome the drawbacks of traditional freight models (Stefan et al. 2005; Hunt and Stefan, 2007; 

Kuppam et al. 2014;  Greaves and Figliozzi, 2008; You and Ritchie, 2017). However, agent-based 

models are considered to be data-hungry as they require extensive amount of information about 

the individual commercial vehicles and their establishments. Such data are traditionally collected 

via specialized surveys that are costly. For instance, Hunt et al. (2006) conducted an exhaustive 

survey to collect information from establishments engaged in shipping goods and providing 

services in Alberta, Canada. The survey also included an extensive set of interview with truck 

drivers to understand their commercial vehicle movement activities. The collected data considered 

commercial vehicle movements for 24-hour periods and contained origin, destination, purpose, 

and commodity information that was associated with the tours. 

Recently, the availability of the Global Positioning System (GPS) technology created the 

opportunity for those who are interested in analyzing travel demand data. As a result, a growing 

number of studies have conducted research on commercial vehicle movements using big data from 

trucks’ GPS data. Generally, GPS transponders are used by freight carriers to track the movement 

of their trucks from the start of the trip until the final destination and back. The generated records, 

specifically, the coordinates (i.e., longitude and latitude) of the truck itself at a specific point in 

time, can provide critical insights into the current patterns of freight movement. However, since 

the records forming the GPS data were not originally intended as an input for transportation models 

and analysis, there is a need for novel methods and techniques to mine truck GPS big data before 

they can be used in travel demand analysis. When dealing with truck movements at the micro-
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level, it is important to analyze tours. Truck tours represent a chain of travel activities in which a 

truck starts from an establishment and then makes several stops—including stops to pick up/deliver 

goods, refuel, or rest—before returning back to the establishment. The majority of existing freight 

models focus on trips as opposed to tours. 

1.2 Statement of the Problem 

The current study contends that the analysis of truck tours within a microsimulation 

framework will provide a more realistic picture of the true process governing the movement of 

trucks. This research project is unique because it will make use of truck GPS big-data of Canadian 

trucks. More specifically, this study will utilize one month of truck GPS data that represent the 

movement of trucks within the province of Ontario to advance the micro-simulation paradigm in 

travel demand modeling. Such work has not been done in the past; therefore, the study’s results 

will offer a novel contribution to the transportation engineering literature and contribute to the 

development of operational integrated micro-simulation models of freight movement. Overall, this 

research will facilitate the development of operational micro-simulation models that are behavioral 

and policy sensitive.  

1.3 Objectives 
 

The current research has four primary objectives: 

1. develop a more comprehensive understanding of freight movement processes in Canada by 

studying truck tours;  

2. specify, estimate, and develop destination choice models to identify the location of a truck 

stops comprising a tour; 
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3. specifiy, estimate, and develop truck stop duration models to determine the total length of a 

truck stopped event.  

4. contribute to the development of an agent-based micro-simulation modeling framework for 

simulating freight movements by focusing on the destination and duration of truck tour stops; 

 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter two provides an overview of 

previous studies regarding freight model types, issues, and challenges, while chapter three 

highlights the methods of analysis and the data that will be used in this project. This will be 

followed the fourth chapter, which details and discusses the results. The fifth and final chapter 

outlines the anticipated outcomes and provides conclusions. 
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CHAPTER 2: LITERATURE REVIEW 

 

Modern supply chain processes rely heavily on goods that are shipped between different 

manufacturers, wholesalers, and venders. Freight travel activities are at the heart of the supply-

chain process. The forecasting of freight activities is a complex process and has not been explored 

to the same degree as passenger travel activities. Freight in a transportation system can be found 

in five basic  forms: road systems, rail systems, rapid transit systems, marine transport systems, 

and airline systems. The literature review focuses on road systems, specifically commercial vehicle 

movments (CVMs). The continuous dependency on road freight activities has influenced the 

performance of road systems especially in countries like Canada and the US. This, in turn, makes 

road freight transportation a critical part of the transportation planning process. Failing to plan for 

freight activities in transportation plans could hamper the performance of transportation networks, 

resulting in distress in freight movement and economic performance. In recent years, an increasing 

number of studies have been conducted on commercial vehicle activities to help planners and 

policy makers improve their ongoing and future Transportation Master Plans (TMPs). Despite the 

ongoing efforts, most freight transportation models in the urban and/or metropolitan context are 

either immature or are still under development (Freight Demand Modeling). 

 A recent study by (Doustmohammadi et al. 2016a) demonstrates how transportaion 

planning processes can be assisted, but this requires efficient and reliable freight demand 

forecasting models. Data from these models can be used to predict three important factors: the 

impact of freight on transportation networks, short- and long-term freight demands, and the 

interaction between commerical and passenger vehicle travel.  
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2.1 Freight Modeling Approaches 

Developing an effective model necessitates a deep study of CVMs. Researchers were able 

to apply a variety of methodological techniques to study commercial vehicle activities. Several 

studies developed various frameworks to analyze and model CVMs. In this context CVMs 

respresent truck tours. A truck tour is typically defined as a round trip where a truck leaves the 

establishment to perform one or more stops before returning to the establishment. These stops may 

be for a variety of reasons, including transferring goods, providing services, or taking a break.  

Chow et al. (2010) and Fischer et al. (2005) provide a review of different freight forecasting models 

with respect to input data, model development, and the output of used model. The tree diagram in 

Figure 2-1 is created based on their reviews to illustrate the distribution of freight forecasting 

models. 

 

Figure 2-1: Modified freight demand modeling approaches based on Chow et al. (2010) and 

Fischer et al. (2005) 
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The following two sub-sections provides a review of models, modeling efforts in freight demand 

models, the nature of the data required, and the advantages and drawbacks of each approach. 

2.1.1 Traditional Freight Demand Forecasting Models 

Traditional freight demand models (TFDMs), which are focused on modeling trips at the 

zonal level, are still being used by most governmental agencies as part of their existing 

transportation planning models. TFDMs are easy to operate but their data and results are limited. 

Some studies, use the term “conventional demand models,” among other terminology; however, 

to avoid any confusion, the current proposal will use the term “traditional”.   

TFDMs can be classified into one of the following four approaches: the factoring model, 

truck model, commidity model, and economic activity model (National Academies of Sciences, 

Engineering, and Medicine, 2008). The factoring model is considering as one of the simplest and 

fastest ways to forecast commercial vehicle movements or commodity flows. Since this method 

relies on growth factors in its calculation, Yang et al. (2010), it has been identified as a growth-

factor model in some studies. Factoring models include two approaches: the direct facility flow 

approach, and the origin-destination approach. The direct facility flow approach predicts truck 

flows by implementing current and past truck count data to estimate the growth factor and then 

apply the latter to observed truck traffic volumes to determine truck flows on a link-by-link basis 

Chow et al. (2010). In contrast, the origin-destination method applies the growth factors to the 

base year origin-destination matrix to determine truck trips.  

TFDMs are usually developed  as part of a conventional four-stage model, although they 

might not include all four stages (i.e., trip generation, trip distribution, modal split, and traffic 

assignment). Historically, the four-stage modeling proccess was intended to deal with passenger 

vehicle movements but has been modified to model commercial vehicle movement despite key 



 

8 

 

differences between passenger and commercial traffic. These models are known as Truck models 

and since the name specifies truck, the modal split stage of the conventional four-stage model is 

eliminated. Therefore, a truck model is referred to as a three-step model as it features a trip 

generation, trip distribution and traffic assignment steps. The truck model usually represents three 

different truck classes: light, medium and heavy trucks based on gross vehicle weight rating. The 

latter estimates aggregate truck flows and assign them to the road network links. A commodity 

model in essence is a four-step model. In a nutshell, the first step estimates an origin-destination 

matrix of freight in terms of weight or value using a set of predefined Traffic Analysis Zones 

(TAZs). In the second step, trip flow between distinct zones are estimated for the study area. In 

the third step, a mode choice model is applied to determine what modes should be used to ship the 

commodities between their respective origins and destinations. Usually, trucks stand as one of the 

major modes that are used for long-haul commodity logistics. In the last step, assigning the flows 

to the road netwrok depends on the estimated truck flows from the third step. This stage will 

provide the traffic volume on each road link of the network. 

The economic activity model can be named as an Input-output economic model. This 

model describes the effects of transportation on the trade and economy Anon (2013). The model 

relies on a set of technical coefficients as well as trade coeffiecients that describe how economic 

sectors are tied to each other within the one region and between regions. Examples of this approach 

can be found in the work of Maoh et al. (2008).  Huang and Kockelman (2007) developed a 

Random Utility Based Multi-regional Input-Output (RUBMRIO) models to study how economic 

linkages and trade translates into freight trips. Another example of such model at the urban level 

can be found in the work of Abraham and Hunt (1999) who developed the MEPLAN model. The 

latter is an Integrated Urban Model that models the process of trading between markets (here 
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TAZs) as the outcome of consuming land uses by various land use activities. The interactions of 

these actors in response to changes in land prices translate into passenger and commercial trips 

that can then be assigned to the road network.  

 

To conclude, traditional freight demand forecasting models, with the exception of 

economic models, are usually straightforward and easy to implement since their data requirements 

are minimal and not hard to obtain. The challenges and issues of this approach will be discussed 

in the last section. 

2.1.2 Advanced Freight Demand Forecasting Models   

An investigation done by Doustmohammadi et al. (2016a) revealed that the two most recent 

models—the tour-based model and the supply-chain model—demonstrated greater promise with 

regard to addressing current and future freight forecasting needs. Another study done by 

Doustmohammadi et al. (2016b) showed that the tour-based approach was more effective than the 

trip-based approach since the tour models have the ability to capture the true movement of 

commercial vehicles. However, unlike the trip-based approach, tour model development requires 

observed GPS data or detailed survey data.  

The following sections are organized on the basis of two basic advance freight demand 

forecating models: 1) tour-based model and 2) supply-chain model.  

 

 

 

 



 

10 

 

Tour-Based Model 

The tour-based models have the capability to predict the movement patterns of commercial 

vehicles at the micro-level. However, this class of models is considered to be data-hungry as they 

require extensive amount of information about the individual vehicles and their establishments.  

The first dissagregate tour-based model was developed by Hunt and Stefan (2007) for Calgary, 

Alberta. This model used data generated from an extensive set of interviews as a primary source 

for representing commercial vehicle movements. The collected data considered commercial 

vehicle movements for 24-hour periods. The collected data also contained origin, destination, 

purpose, and commodity information that were associated with the tours. The Calgary model 

offered a novel technique for modeling commercial vehicle tours as a process that consisted of six 

stages. In the first stage, a tour generation model is developed to estimate the number of tours per 

employee for a given establishment category in a given zone per day using a regression models.  

In the second stage, single-level logit models are developed to find the tour purpose and vehicle 

type for each tour per each zone based on establishment category. The utility functions of the logit 

models include zonal-level land uses variables, as well as, establishment location and accessibility 

attributes. In the third stage, a single level logit model is used to determine the time period of the 

day when the tour will take place. Here, the model divides the 24 hours into five major periods 

(i.e. five alternatives). Next, a Monte Carlo simulation process is used to determine the precise 

start-time for each tour with respect to the simulated period based on the period specific logit 

model. In the fourth stage, single-level logit models are used again to specify the next stop purpose, 

such as business, return to establishment, or another. In the fifth stage, a different set of logit 

models are used to determine the next stop location, which depends on the purpose of the next 

stop. In the sixths and final stage, Monte Carlo simulations are applied for a second time to 
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determine the duration of a given stop. The Calgary model offered a more promising approach 

compared to the conventional trip-based approach. This was demonstrated by the work conducted 

by Ferguson et al. (2012), which transferred the Calgary’s modeling framework for the Greater 

Toronto and Hamilton Area (GTHA).  

Recently, Kim and Park (2017) developed a tour-based model similar to the Calgary model. 

The type of data used in the model was a nationwide commodity flow survey. The framework 

consists of four sub-modules; departure time choice, next-stop destination, stop duration, and next-

stop purpose choice. The first sub-module, departure time choice, has been modeled using the 

Monte Carlo process which considered the establishment category and time period. The second 

sub-module, next-stop choice destination, was based on the multinomial logit (MNL) model and 

included an accessibility variable to capture different levels of economic agglomeration. In the 

third sub-module, Monte Carlo simulations were employed to predict stop duration. However the 

simulation made use of travel distance, existence of an industry, total number of employees, and 

accessibility variables. The fourth sub-module in the modeling framework was focused on next-

stop purpose choice. This was modeled as the last stage unlike the case of models in other studies 

such as Hunt and Stefan (2007) and Gliebe et al. (2007). The next-stop purpose choice was 

modeled in the same fashion as the next-stop choice destination. However, including the 

accessibility variable in the MNL model was not helpful. 

Gliebe et al. (2007) proposed a dynamic activity choice model as a disaggregate tour-based 

freight modeling scheme for the pattern genearation for Ohio, USA. The model incremently 

assigns activities and activity locations to the traveler, as shown in Figure 2-2. This model was 

developed based on an establishment survey data. 



 

12 

 

                    

Figure 2-2: Structure of Dynamic activity choice model (Gliebe et al., 2007) 

 

Several tour-based modeling frameworks have been developed based on raw Global Positioning 

System (GPS) data to gain information about truck movement activities. The study by Joubert and 

Axhausen (2009)for South Africa provided a novel technique to process truck GPS data and extract 

commercial vehicles tours. This study was followed up by Joubert et al. (2010), who developed an 

agent-based model that combines and simulates the commercial vehicles chains and passenger 

vehicles. Other efforts can be found in the works of Stephen et al. (2008), Kuppam et al. (2014) 

and You and Ritchie (2017). Recently, Gingerich (2017) devised novel techniques for mining truck 

GPS data to identify detailed truck movement activities between Canada and USA. For instance, 

Gingerich et al. (2014) developed an entropy classification method to differentiate stop types as 

primary and secondary stops. Building on the pioneer effort of preivous studies, Doustmohammadi 

et al. (2016b) were able to compare the results from a truck tour-based model to field truck counts 

at a regional scale. Their work showed that the tour-based modeling approach is capable of 

producing relatively close results to real life movements.  
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Supply-Chain Model 

The supply-chain model is fashioned by linking different activity parties, such as 

consumers or factories, to the distribution channel list (Disserta, 2011). These class of models are 

considered dynamic  as they can investigate the interface between freight transport and economic 

processes. Based on the litreature review, this class of models is classified as comprehensive as it 

uses commodity flow data to capture new shipping behaviours, such as the adoption of 

outsourcing, e-commerce and Just-in-Time (JIT) delivery systems Samimi et al. (2010) to better 

understand the CVMs . Also this approach pushes forward the predictive-ability of the developed 

modeling framework as it improves sensitivity of the calibrated models in terms of  the economics 

of commodities when decisions are made to ship goods Fischer et al. (2005). In summary, the 

supply-chain framework is shaped to allow the user to analyze, estimate, and forecast the logistical 

choices for a variety of stakeholders. A study conducted in Chicago has produced a freight 

forecasting framework (see Figure 2-3) that includes supply-chain and tour-based methods at a 

national and regional scales, respectively, to forecast goods movement and commercial vehicles 

for regional planning purposes Outwater et al. (2013). The latter study integrated the two methods 

in a single framework. This integration provides a linkage between short-haul (regional) and long-

haul (national) shipements. However, this framework has been developed to work with 

disaggregate data.  
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Figure 2-3: Chicago supply-chain and tour-based modeling  

framework (Outwater et al. 2013) 
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2.2 Freight Forecasting Modeling Issues and Challenges  
 

Despite the progress made on developing freight forecasting models, researchers are still 

facing challenges in modeling freight movements. These challenges can be classified as follows: 

economic, political, geographic, and commerce operation concerns (Outwater et al. 2013). Besides 

these challenges, data availability plays a vital role in the development of freight models. In this 

context, data can be obtained from different sources starting from the most common type —Travel 

survey data — and ending at the advanced type —GPS tracking data—. As shown in Table 2-1, 

each of these sources has their pros and cons.  

Table 2-1: Pros and Cons for different data type 

Data Type Pros Cons 

Driver Surveys 
Firsthand accounts of routes and 

route choice 

Lacks certain details due to privacy 

concerns; often contain mistakes 

Establishment 

Surveys 

Contains employment information, 

commodity production, and building 

details 

Lacks certain details due to privacy 

concerns 

Zonal-Level 

Data 

Contains demographic, business 

sector, and land use data 
Allows for general estimation 

GPS Data 
Contains accurate route data (unless 

signal loss or user error occurs) 

Lacks truck type, commodity type, 

and pertinent business and route 

choice information; biased because 

it’s obtained from a sample 

Source: (Moore, 2017) 

TFDMs rely heavily on travel survey data for their calibration. When dealing with TFDMs 

that uses the conventional 4-stage modeling approach, the data requirements are usually not as 

intensive as in the case of agent tour-based models. The 4-stage modeling approach is fairly 

simplistic since the use of the gravity model for producing the Origin-Destination flows depends on 
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two factors as described by Wang and Holguin-Versas (2008): the zonal attributes and the travel 

impedance. A recent report by Moore (2017) showed that TFDMs are not suitable for modeling 

freight tours for urban areas since TFDMs fail to capture information about the interdependency 

of multiple trips within truck tours. 

Generally, carriers are usually reluctant to disclose or share their fleet movement 

information with other agencies. Fortunately, in recent years, GPS data depicting the movement 

of trucks across various geographies started emerging. As such, several researchers have been able 

to develop their freight models based on such rich data (You and Ritchie, 2017; Kuppam et al. 

2014; Stephen et al. 2008). Despite their ability to provide details about the movement of trucks, 

GPS tracking information available to researchers usually suffers from drawbacks such as, lack of 

details on the types of commidities being shipped, class of trucks used for the shipments, the 

location of the establishments, etc. Also, the utilized GPS data usually pertain to a smaple of trucks 

whose carriers subsribed to track their trucks. Therefore, unless the obtained GPS data covers a 

fairly large sample, the derived trip information might be biased. These drawbacks can be 

attributed to the fact that GPS tracking records were not originally intended as an input for 

transportation models and analysis. Thus, in turn, requires a need for novel methods and techniques 

to mine truck GPS big-data before they can be used in travel demand analysis. Research on travel 

demand models has placed a stronger emphasis on passenger vehicles rather than commercial 

vehicles. Despite the existing efforts, these modeling approaches suffer from several serious 

drawbacks for both passengers and commercial vehicles (Mladenovic and Trifunovic, 2014). On 

the freight side, a recent study shows that the development of freight forecasting methods still lags 

behind the development of passenger transportation forecasting, in both theoretical and simulation 

modeling analyses Jansuwan et al. (2017). According to Tavasszy (2006) these lags can be 
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classified into two challenges: policy issues and modeling needs. Issues related to these two types 

of challenges are highlighted in Table 2-2. 

Table 2-2: Key policy issues and modeling needs 

Policy Issue Modeling Needs 

 A doubling of freight flows 

worldwide by 2050 

 Forecasting international freight 

growth 

 Decoupling freight and the economy 

 Sensitivity to cost changes 

 Growing volumes and shares of 

freight traffic on roads, due to both 

increased flows and greater numbers 

of smaller trucks 

 Truck traffic behavior 

 Influence of greater freight shares on 

car drivers 

 Creation of seamless multimodal 

networks 

 Linking sea, inland waterway, and land 

transport models 

 Concerns about international 

economic competitiveness; relation 

between worldwide networks and 

global trade; determining the costs 

and benefits of freight investments 

 Suitable worldwide and continental 

models 

 Improved relation between spatial 

computable general equilibrium 

(freight—economy) and network 

models 

 Pricing 
 Response to cost changes by truck 

type, road type, time of day 

 Ascertaining the performance of 

advancing logistics concepts such as 

hybrid supply chains, collaborative 

networks, e-logistics (business-to-

consumers and business-to-business), 

and return logistics 

 Differentiating between goods with 

different logistics characteristics 

 Making detailed statistics available 

 Changes in vehicle type/mix—

growth is surpassing all other 

categories and appears more difficult 

to capture in measurement or policy 

 Forecasting choice of vehicle type, as 

well as causes and impacts 

 Noise and emissions regulations, 

environmental damage, investments 

in new technology 

 More accurate prediction of freight 

impacts and level of detail 

 24-hour economy—spreading out 

operations to deal with congestion 

 Explaining shift of flows to different 

time-of-day periods 

 New concepts for urban goods 

distribution 

 Forecasting of tours at urban level 

 Sensitivity to time of day 

 Safety and security 
 Modeling of critical commodity 

movements by contents and origin 

              Source: Tavasszy (2006) 
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2.3 Modeling Tour Stop Destination Choices 

Truck destination is the main influential character that governs truck tours (Hunt and 

Stefan, 2007). This makes truck destination one of the most important stages in freight demand 

forecasting models. However, the higher complexity in truck destination behavior demands greater 

insight into the modeling techniques used in freight demand forecasting models. Also, the 

availability of data determines the appropriate modeling techniques to model truck destinations. 

For instance, Hunt and Stefan (2007) developed a different set of logit models to determine the 

next stop location that depends on the purpose of the next stop as a part of a tour-based 

microsimulation for the city of Calgary. A total of 13 models were developed to model the stop 

location. Each model differentiates the behaviour of stop loaction based on a combination of 

industry category, vehicle type, and next stop purpose. Among the used covariates, the developed 

utility function included the average household income for a given zone, the travel utility between 

pair of zones (e.g., travel distance and travel time), the number of population and employment for 

a given zone, the accessibility to population and emloyment for a given zone, an attractor score for 

a given zone which provides an additional factor attracting a given type of stop, and enclosed angle 

for a given zone. The enclosed angle investigates whether the next stop gets closer or further from 

the establishment in a physical sense. 

  Kuppam et. al (2014) developed a destination choice model that predicts the location of 

each stop for a given tour. The used variables in this model are land use type of the establishment, 

previous stop location, current stop purpose, number of stops for a given tour by purpose. Also, 

the model accounted for the employment and population which are represnted in terms of zonal 

area type. The model also considered two types of  accessibility variables: direct zone-to-zone or 

travel time between locations of two consecutive stops and aggregate accessibility measures; 
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which describes the accessibility of a stop location to employment. Among the key findings of this 

model, travel time has a very high negative impact on location choice utility. However, this impact 

increases as the number of stops increases for a given tour. Gliebe et al. (2007) proposed a dynamic 

activity pattern generation that includes the next stop location choice model. Like other models, 

this model considered the next stop purpose as a pre-step to model the next stop location. What 

distinguish this model is that, every five minutes, the driver is asked whether to stay at the current 

location or leave to start a new location, though restrictions were applied.  

Througout the litreature, destination choice models have been explored similarly regarding 

the next stop purpose. However, the developed models were grouped regardless of the tour class. 

For example, these models did not distinguish a tour that has two stops from one that has four 

stops. The tour was grown until the next stop destination was the home establishment. In this 

thesis, we decided to develop separte models based on the class of the tour to gain a more accurate 

picture of the destination choice behaviour. Having separate models will also provide a more 

comprehensive understanding of the movements associate with of each class type.  
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2.4 Modeling Tour Stop Duration 

Tour stop duration plays a vital role in determining the overall tour duration since the latter 

is the sum of the stop duration of each individual stop within the tour and the travel time spent by 

the commercial vehicle on the road. However, unlike stop duration, travel time can be easily 

predicted by calculating the shortest path time between any two points on the network. Several 

studies attempted to model the stop duration using rudimentary Monte Carlo techniques (Kim and 

Park, 2017; Gliebe et al. 2007; Hunt and Stefan, 2007). However, the approach followed in these 

studies was not adequately capturing the behavioral variation of stops duration. By comparison, 

econometric hazard duration models have the ability to capture those behavioral variations as they 

study the factors affecting the lifespan of the stop duration. There are three types of hazard duration 

models: parametric model, non-parametric model and semi-parametric model. 

 The parametric modeling approach starts by assuming that the used data is follow a known 

statistical distribution such as the Log-normal, Exponential, Gompertz, and Gamma to 

name a few. The model is specified based a number of fixed variables with respect to the 

sample size. However, to maintain a superior performance, specification has to be 

parsimonious; that is, the number of variables should not be too large (Wheatley-Price et. 

al 2012) ; 

 The non-parametric modeling approach is useful for graphical assessment as it provides a 

better picture of how the survival function looks like before a parametric or semi-

parametric approach is used. However, unlike parametric and semi-parametric models, the 

non-parametric model does not account for independent variables in its calculation/graph 

(Katchova, 2013). As a result, this model does not lend itself well for predictive purposes. 
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 The semi-parametric model is a mix of parametric and non-parametric components. Oakes 

(1977) used the maximum likelihood techniques in a semi-parametric model to provide a 

more efficient estimation of the parameters of the model. The Cox-proportional hazard 

model is the most widely used semi-parametric model. The model consists of two 

multiplicative components: the underlying baseline hazard function 0(t) and the 

parametric part exp(x’β). In the model, 0(t) describes how the risk of an event per time 

changes over time at a baseline levels of the specified covariates, while exp(x’β) describes 

how the hazard changes in response to the explanatory variables.  

According to the freight transportation literature, Sharman et al. (2012) is the only study to date 

that developed hazard-based stop duration models. The authors developed two models: an 

accelerated failure-time parametric hazard model, and a proportional non-parametric hazard 

model. The developed models made use of the following variables: 1) Arrival time of a stop 

whether in a dense region or not. Dense region is defined as a gross combined population and 

employment density of greater than 3,500 per square kilometer, 2) Travel distance whether on the 

inbound or outbound trip, 3) Number of stops on the tour, 4) Total sales value of all firms located 

on the property parcel, and 5) Type of establishment industry. The results of both models agreed 

on the following: longer travel distance on the inbound or outbound trips were associated with 

longer stop duration, and higher number of stops for a given tour decrease the stop duration for 

each stop. After comparing the results for the two models, the authors concluded that the 

accelerated failure-time parametric hazard model provided more interesting insights compared to 

the non-parametric model.  
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CHAPTER 3: STUDY AREA AND DATA DESCRIPTION 

 

3.1 Study Area 
 

 The study area in this research is the Greater Toronto and Hamilton Area (GTHA). The 

GTHA consists of the following six key regions: Toronto, Peel, Durham, York, Hamilton and 

Halton (Figure 3-1). The GTHA is the economic heart of the province of Ontario and Canada. 

According to the most recent Canadian census, the GTHA was house for 6,954,433 people, 

2,415,181 households, and 5,718,120 jobs in the year 2016. Table 3-1 provides the distribution of 

people and jobs by region. 

Table 3-1: Distribution of people and jobs in GTHA regions 

Region Population Jobs 

Peel 1,381,739 1,119,400 

York 1,109,909 905,545 

Toronto 2,731,571 2,294,785 

Durham 645,862 523,485 

Hamilton 536,917 441,060 

Halton 548,435 433,845 
 

Table 3-2 provides the distribution of workers by economic sector. Out of the all industries in the 

GTHA, the six most prominent demands were in manufacturing, retail trade, professional, 

scientific and technical services, educational services, and health care and social assistance. 

Among the highest regions of these industries, Toronto tended to be the biggest host. This is not 

surprising given the fact that Toronto is one of the most populous and largest cities in Canada and 

the fourth largest city in North America. Within respect to hosting industries in the GTHA, Peel 

and York came in second after Toronto, while the rest of regions—Durham, Halton, and 

Hamilton—were third.
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Figure 3-1: Geographic distribution of the Greater Toronto Hamilton area
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Table 3-2: Distribution of workers by economic sector 

Industry/ Region Durham York Toronto Peel Halton Hamilton Total 

Agriculture, forestry, fishing 

and hunting 

3,000 2,265 2,095 2,175 1,470 2,865 13,870 

Mining, quarrying, and oil 

and gas extraction 

630 785 2,040 860 705 320 5,340 

Utilities 7,560 3,320 5,915 3,055 1,835 1,315 23,000 

Construction 27,260 43,055 76,480 44,755 16,790 20,115 228,455 

Manufacturing 28,645 54,190 105,285 90,490 28,415 33,155 340,180 

Wholesale trade 13,320 31,265 50,120 41,925 18,220 11,105 165,955 

Retail trade 39,960 68,000 141,540 85,425 34,640 32,195 401,760 

Transportation and 

warehousing 

16,610 21,225 57,910 69,920 13,505 11,465 190,635 

Information and cultural 

industries 

9,895 16,790 61,345 17,780 8,235 5,545 119,590 

Finance and insurance 22,355 49,310 120,005 47,495 23,510 10,835 273,510 

Real estate and rental and 

leasing 

6,615 18,415 39,940 15,495 7,125 4,870 92,460 

Professional, scientific and 

technical services 

24,150 66,445 175,685 61,500 31,020 15,705 374,505 

Management of companies 

and enterprises 

835 1,465 4,085 1,815 1,160 395 9,755 

Administrative and support, 

waste management  

17,425 24,035 78,890 41,985 11,900 14,130 188,365 

Educational services 26,935 46,900 110,280 43,005 24,385 24,300 275,805 

Health care and social 

assistance 

36,610 50,510 143,250 59,265 27,390 36,280 353,305 

Arts, entertainment and 

recreation 

7,600 11,230 35,000 9,720 5,840 4,840 74,230 

Accommodation and food 

services 

20,630 33,525 106,910 42,200 17,150 18,325 238,740 

Other services (except 

public administration) 

13,660 25,045 67,385 27,625 10,705 11,740 156,160 

Public administration 20,050 22,865 53,395 24,375 13,755 12,490 146,930 

Total 343,745 590,640 1,437,555 730,865 297,755 271,990 3,672,550 
 

3.2 Data Description 
 

This study utilizes GPS truck data to explore the tours of trucks originating from the 

Greater Toronto and Hamilton Area (GTHA) and destined within the province of Ontario for the 

month of March 2016. These tours are derived from GPS data that represent the movement of 

trucks. GPS transponders are used by freight carriers to track the movement of their trucks from 

the start of the trip, to the destination, and back. The records generated from the transponders are 
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referred to as pings. These pings provide the coordinates (longitude and latitude) besides a unique 

ID of the truck itself at a specific point in time. The March 2016 GPS data were acquired from 

Shaw Tracking, which is a Canadian fleet management company that was acquired by Omnitracs 

in 2017. The acquired raw GPS pings captured the movement of 43,142 individual Canadian 

registered trucks across all of North America. These trucks were owned by 569 Canadian carriers. 

The truck ID plays a vital role in determining the belonged pings for a given a tour. To that extent, 

truck tour can be visualized by plotting the recorded pings on a map. Here, each tour starts when 

a truck leaves the establishment to perform one or more intermediate stops that fall under one of 

three classifications: primary stops, which usually occur when goods are subjected to 

loading/unloading; secondary stops, which include refueling stops, rest, and others stops that do 

not involve the goods; or return stops, which are when a truck returns to the yard after visiting the 

last stop of a tour.  

Figure 3-2 is used to visualize the idea of processing pings to identify stops and tours. In the 

example, three colors are used to present the pings belonging to the same Truck ID. The dwell 

time associated with the pings are then used to determine the stops for the trucks following the 

approach presented in Gingerich et al. (2015). Gingerich et al. (2016) also developed a model for 

differentiating primary stops from secondary ones. Calculating the dwelling time, travel time and 

travel distance between stops can be done using the timestamp, longitude and latitude associated 

with the pings representing the stops. 

The processed GPS pings resulted in a total of 13,482 valid tours that represent the movement of 

trucks within the province of Ontario. These tours were generated by a total of 2,314 trucks that 

belonged to 42 Canadian carriers. Figure 3-3 presents the spatial distribution of these tours by 
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origin. As the figure shows, the Peel region by far generated the largest number of tours (26%) 

within the province. Overall, the GTHA accounted for 45% of all the generated tours (i.e. 6,113 

tours) observed during March 2016.  
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Figure 3-2: Transformation of pings 
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Figure 3-3: Spatial distribution of tours by origin census division
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3.3 Preliminary Data Exploration and Manipulation 

 

In this study, a total of 4,111 tours were derived from the 6,113 tours dataset, such that 

these tours originate from a location within the GTHA, return to establishment, and has a duration 

of one hour to thirteen hours. The analyzed tours included 13,401 intermediate stops that are 

categorized as follows: 64% primary, 31% secondary, and 5% return to establishment (see figure 

3-4(.  The 4,111 tours have been classified based on number of stop/s in each tour (e.g. if a tour 

has 2 stops, then it will be classified as a 2-stop tour). Four different tours were classified; 1-stop, 

2-stop, 3-stop, and 4-stop tour.  

 

Figure 3-4: Proportion of stops by type 

 

Majority of the 4,111 derived tours were 1-stop tour (77%). While the rest of tours 

accounted for (23%). Figure 3-5 shows a high demand on 1-stop tour compared to other 

classifications of tours. The 1-stop tour is known as 2-leg trip where the truck leaves the 

establishment to perform one stop and then goes back to the same establishment. 

64%

5%

31%

Primary Stop Secondary Stop Return Stop
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Figure 3-5: Distribution of tours based on tours classification 

The following section will explore in more details the distribution of intermediate stops in 

each tour’s class. As shown in Figure 3-6, the percentage of primary stops decreases as the 

classification of tours increases. While, the percentage of secondary stops increases as the 

classification of tour increases.  

 

Figure 3-6: Percentage of intermediate stops per k-stop tour 
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In term of the geographic locations of the derived tours, Peel region generated 59% of these tours. 

However, York, Halton, Toronto, Durham, and Hamilton generated 42% in total (see Figure 3-7). 

More details about the percentage of Origin/k-stop tour are provided in Table 3-3.  Each tour in 

the dataset includes information about its intermediate stops, the distance travelled by the truck to 

complete the tour, and the time it took the truck to complete the tour. The tour duration includes 

both of the travel time between stops and the dwelling time at each stop.  

 

Figure 3-7: Percentage of geographic location of tour by origin 

 

Table 3-3: Percentage of k-stop tour per origin  

  

Durham
7% Halton

9%
Hamilton

4%

Peel
59%

Toronto
9%

York
12%

k-stop tour Durham Halton Hamilton Peel Toronto York 

1-stop 6.03 % 6.91 % 3.45 % 44.15 % 7.30 % 9.88 % 

2-stop 1.07 % 1.73 % 1.02 % 11.89 % 1.48 % 1.68 % 

3-stop 0.17 % 0.24 % 0.10 % 2.41 % 0.10 % 0.10 % 

4-stop 0.05 % 0.02 % 0.00 % 0.17 % 0.00 % 0.05 % 

Total 7.32 % 8.90 % 4.57 % 58.62 % 8.88 % 11.70 % 
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The geographic distribution of tours by starting location of tours in GTHA vary. Peel region 

tends to have most of the tours because it houses a multimodal rail facility (i.e., CN yard) and the 

Toronto Pearson International Airport. Followed by York, which is also has a CN yard. Then, both 

of Halton, Toronto, and Durham have approximately same number of tours. Hamilton came last 

in this geographic distribution (see Figure 3-8).  

 

Figure 3-8: Number of stops based on the origin 

 

Since the generated tours have no information about the stops purposes, the GPS Tracker 

software was used. The latter will take the coordinate system of a stop and based on the built-in 

geodatabase, the software will determine the stop’s purpose. The GPS Tracker software 

categorized the stops into nine different industries. A summary of stop distribution by type of 

industry is presented in Figure 3-9. Out of all the industries, over 33% were service’s stops, while 

transportation accounted for 21%. On the other hand, retail trade, manufacturing, and wholesale 

trade accounted for about 14%, 12%, and 10% respectively. As for construction, finance, public 

administration and agriculture, they pertained to about 9% of the stops.  
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Figure 3-9: Distribution of stops based on industry 
 

A total of 5,179 primary and secondary stops were associated with tours that started in the     

GTHA. Table 3-4 shows the distribution and percentage of these stops by industry and region.  

Table 3-4: Distribution of industry's stops based on origin 

Industry  
Peel York Halton Toronto Durham Hamilton 

Count Ratio Count Ratio Count Ratio Count Ratio Count Ratio Count Ratio 

Services 1004 32 204 36 122 27 132 30 132 36 86 36 

Transportation 713 23 124 22 96 21 76 18 83 23 13 5 

Retail Trade 412 13 70 12 71 15 55 13 40 11 69 29 

Manufacturing 342 11 67 12 104 23 67 15 22 6 26 11 

Wholesale 

Trade 
313 10 58 10 47 10 73 17 50 14 28 12 

Construction 199 6 15 3 14 3 18 4 33 9 13 5 

Finance 84 3 19 3 2 0 8 2 3 1 1 0 

Public Admin 37 1 2 0 1 0 3 1 2 1 0 0 

Agriculture 14 0 5 1 3 1 2 0 0 0 2 1 

Total 3118 100% 564 100% 460 100% 434 100% 365 100% 238 100% 
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To illustrate the spatial nature of the analyzed stops, desire-line maps were generated to 

connect the origins of the tours (i.e. Peel, York, Halton, Toronto, Durham and Hamilton) to the 

destinations of the stops (i.e. any area in Ontario) as shown in Figures 3-10 to 3-15 (next page). The 

generated maps have a density for each line which reflects how many times a given destination stop 

was visited by a trucks from a specific GTHA origin. The average trip length for these destinations 

were obtained for each GTHA origin. This length represents the average travel distance between a 

GTHA origin and all corresponding stop destinations (see Table 3-5).         

          Table 3-5: Average trip distance based on origin 

Origin Average trip length (km) Count of trips 

Peel 121 3,118 

York 116 564 

Halton 98 460 

Toronto 128 435 

Durham 150 366 

Hamilton 103 238 
 

As shown in table 3-4, Peel region is associated with 60% (=3118/5179) of the total stops. 

Among the 3,118 stops, a total of 1,004 stops or 32% of the stops linked to Peel were associated 

with the service sector. Also, a total of 713 stops or 23% of the stops linked to Peel were associated 

with the Transportation sector. Peel is considered as one of the major freight hubs in North 

America and as such has direct access to three major Transportation modes including: (1) The 

Toronto Pearson International Airport, the largest freight air-hub in Canada; (2) two of the biggest 

CN yards and (3) seven major expressways. Therefore, the Peel region is truly an intermodal region 

that has the ability to handle freight movements between Southern Ontario and rest of the world.  
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Figure 3-10: Origin-Destination trip of Peel 

 

Figure 3-11: Origin-Destination trip of York 
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Figure 3-12: Origin-Destination trip of Halton 

 

Figure 3-13: Origin-Destination trip of Toronto 
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Figure 3-14: Origin-Destination trip of Hamilton 

 

Figure 3-15: Origin-Destination trip of Durham 
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As mentioned earlier, four types of tours are explored in this study, where each tour has a 

number of primary/secondary stops. The table below shows the distribution of these stops based on 

the classification of tours (i.e. k-stop tour). in 1-stop tour are being primary stops (93%), For instance, 

2-stop tour has two stops, where these can be a combination of primary, secondary or mix stops. As 

shown in table 3-6, the stops distribution for 2-stop tour is; one primary and one secondary stops 

(32%), two primary stops (66%) or two secondary stops (2%). 
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Table 3-6: Distribution of stop's type per k-stop tour 

k-stop 

tour 

Number 

of tours 

One 

primary 

stop (%) 

One 

secondary 

stop (%) 

Two 

primary 

stops (%) 

Two 

secondary 

stops (%) 

Three 

primary 

stops (%) 

Three 

secondary 

stops (%) 

Four 

primary 

stops 

(%) 

Four secondary 

stops (%) 

1-stop  3,195 2968 (93%) 227 (7%) 0 0 0 0 0 0 

2-stop  776 0 251 (32%) 510 (66%) 15 (2%) 0 0 0 0 

3-stop  128 0 0 55 (43%) 23 (18%) 48 (38%) 2 (2%) 0 0 

4-stop  12 1 (8%) 0 5 (42%) 0 2 (17%) 0 3 (25%)   1 (8%) 
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CHAPTER 4: METHODS OF ANALYSIS 

4.1 Modeling Framework 

The work in this thesis introduces a tour-based micro-simulation modeling 

framework that incorporates a number of integrated sub-modules for generating full tours 

for individual establishments and associated trucks. The framework, shown in Figure 4-1, 

consists of three modules: (1) Tour Generation Module, (2) Tour Time Module, and (3) 

Tour Stop Module.  

 
 

 

Figure 4-1: Proposed modeling framework for tour-based micro-simulation model 

 

The proposed framework extends the general approach presented in Gingerich et 

al. (2015), which was only focused on two components of the third  module; namely stop 

generation and stop purpose models. In essence, the extended framework incorporates the 

two models from Gingerich et al. (2015) in a more comprehensive system that starts by 

determining the number of tours per carrier or establishment. This is the first module of the 
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proposed framework. Once the number of tours has been determined for each 

establishment, the second module (i.e. time module) is engaged. Within this module a total 

of three models are proposed: a tour duration model, a tour travel time model and a tour 

start time model. The tour duration model will be used to determine the length of the tour 

from start to end in minutes. A tour travel time model will also be used to predict the total 

time spent for driving. This part represents the Service Area covered by the tour and will 

become instrumental in the tour stop location model. Finally, within the second module, a 

tour start time model will be used to predict the start time of the tour. This could be done 

following a similar approach to the one used in Hunt and Stefan (2007).  

The third module of the framework is concerned with the stops comprising the 

tours. Within this module, the stop generation model developed by Gingerich et al. (2015) 

will be employed. The latter is an ordered logit model which determines the number of 

stops per tour (i.e. 1-stop, 2-stops, 3-stops, etc.). Upon determining the number of stops per 

tour, the type of the generated stops will be predicted using a multinomial logit (MNL) 

model. Such model, as shown by Gingerich et al. (2015), predicts the probability of the 

stop being a primary, secondary or return to establishment.  

Next, a stop location model is proposed to predict the exact location of the 

generated stops. Given the predicted information from the previous two steps and the travel 

time (i.e., service area) associated with the truck making the tour from the second module, 

a list of potential stops from the universe of all stops of a particular type in the study area 

will be selected and used to form the choice set for possible destinations. Tours will be 

classified as 1-stop, 2-stop, 3-stop or 4-stop tours. Next, MNL models will be developed 

and used to predict the destination location of the stops forming the tours. For instance, if 
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the modeled tour is a 3-stop tour where the stop purpose model has determined that the 

first two stops are primary, the third is secondary, then the stop location model will engage 

a MNL model for primary and secondary stops. A MNL-1 to determine the location of the 

first primary stops based on the formulated choice set. Next, another MNL-2 will be 

engaged to determine the location of the second primary stop. This is followed by engaging 

a third MNL for the secondary stop MNL-3 to determine the location of the stop based on 

the list of potential stops within the determined service area.  

Finally, a stop duration model is introduced as the last stage to predict the length of 

each stop made by the truck within the tour. As a starting point, information from the 

second module; namely tour duration and tour travel time, will be utilized here. In essence, 

the difference between the tour duration time and the tour travel time represents the dwell 

time at all visited stops. Therefore, the total dwell time resulting from the second module 

will be used as a constraint in the tour duration model. Here, a hazard duration model could 

be used to predict the stop duration.  

The proposed micro-simulation framework will enable us to produce refined 

Origin-Destination (OD) matrices that could be used as input to freight transportation 

planning models. Conventional models use the gravity model to estimate OD matrices. We 

contend that the microsimulation approach is more suitable for capturing the complexities 

of spatial interactions between the traffic analysis zones forming an urban area.  Therefore, 

the research in this thesis will mainly focus on the stop location and stop duration models 

of a micro-simulation freight tour model. It will also model the tour travel time process 

highlighted in the second module. 
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4.1.1 Modeling Tour Travel Time 

 

Overview 

The extracted 4,111 tours contain information about travel distance and travel time 

for each tour. Travel distance represents the total distance of a particular truck tour, where 

cumulative travel time represents the total time of a particular truck tour including the dwell 

time. However, the purpose of developing a Travel Salesman Problem (TSP) model is 

twofold: 1) calculate the travel distance and travel time. The calculated travel time will be 

used to create the service area for a given tour. This step is very vital in modeling the stop 

destination of a truck, and 2) Observed tours extracted from the GPS data to determine if 

trucks generally optimize their tours when making multiple stops. 

4.1.1.1 Travel Salesman Problem Model (TSP) 

The use of visual programming models within a Geographic Information Systems 

(GIS) environment facilitate the automation of geo-spatial processes by connecting visual 

models to each other or by modifying geo-processing workflows that are native to the 

utilized software. In this study, a GIS extension called “ModelBuilder” within the ArcGIS 

10.6.1 software was used to automate the generation of trucks tours. The purpose of this 

exercise was to explore the observed tours extracted from the GPS data to determine if 

trucks generally optimize their tours when making multiple stops. Such process is referred 

to as the Travel Salesman Problem (TSP). The TSP assumes that a truck starting from the 

establishment will make several stops before returning to the establishment such that once 

a stop location is visited the truck will not return to that location. In this model, the location 

of the establishment along with the location of the different stops for each tour is provided 

as an input to run the TSP within ArcGIS 10.6.1.  
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ModelBuilder is an integral component of ArcGIS. It is a visual programming 

language for creating, automating or modifying geo-processing models by combining 

different tools from the Arc Toolbox of ArcGIS (ESRI, 2019).  The ModelBuilder features 

an iterator which can save time for repeated or recursive processes. A model is usually 

represented as a diagram that chains together sequences of processes and geo-processing 

tools. The advantage of using the ModelBuilder is the ability to build a complex model 

visually without the need to engage in computer program coding. While running the TSP 

could be done for each tour manually, the problem becomes very time consuming when 

dealing with a large number of tours. Therefore, a model for automating the creation of 

trucks tours was created using the ModelBuilder in this study. The model diagram in Figure 

4-2 represents a geoprocessing workflow with multiple processes strung together. The 

model was developed in such a way that can be used by any users and in future applications 

given the fact that each step is parameterized. The developed model consists of five 

tools/steps: 1) three core tools, and 2) two formating tools. Each step utilizes different tool, 

and the output for each service is used as the input for the step that follows  (Table 4-1).  
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Figure 4-2: Travelling Salesman Problem (TSP) model 

 

As mentioned earlier, the model consists of three core steps:1) make route layer; 2) add 

locations and 3) solve. For example, step one utilizes a “Make Route Layer” tool using the 

Travel Salesman Problem (TSP) method from the Network Analyst ToolBox, where the 

“Network_Dataset.nd*” is used as an input to creat a route layer in conjunction with the 

five parameters: “accumulators”, “Preserve ordering of stops”, “U_Turn Policy”, 

“Imperdence” and “Restrictions”.  This creates “Route 1”, which is then inputted into the 

“Add Locations” tool along with “Valid_Stops.shp*” to allocate the stops on the “Route 

1” with the help of two parameters: “Sub Layers” and “Field Mappings”. This is used to 

create “Route 2”, which is then inputted into the “Solve” tool to determine “Route 3”. The 

final two steps—Select Data and Copy Features are used to put the output consistent format 

to make subsequent analysis easier for the Results section.  
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Table 4-1: Breakdown of the TSP model Components 

Steps Tools Inputs Parameters Output 

1 
Make Route 

Layer 
Network_Dataset.nd* 

Accumulators (i.e., 

travel time and travel 

distance) 

Route(1) 

Preserve Ordering 

of Stops (i.e., follows 

the order of stops for 

a given tour) 

U-Turn Policy (i.e., 

follows the network 

dataset) 

Impedance 

Attribute  

(i.e., travel time) 

Restrictions  
(i.e., no restrictions) 

2 Add Locations 

Valid_Stops.shp* 
Sub Layer 

 (i.e., stops) 
Route(2) 

Route(1) 
Field Mappings  
(i.e., Route_ID) 

3 Solve Route(2) NA Route(3) 

4 Select Data Route(3) 
Child Data Element 

(i.e.,Routes) 
Routes 

5 Copy Features Routes NA Result.shp** 
*Input file provided by the user  ** An output in a shapefile format 

 In short, the model was developed in such a way that it can recognize each stop in 

a tour. For example, Tour_ID 25 has 2 stops, where each stop has the same tour 

identification. The model will create a route for these stops and record the travel distance 

and travel time for that tour. The green pins in Figure 4-3 illustrates the locations of all the 

stops recorded in the data collected from Tour_ID 25 before implementing the model, 

while the red line outlines a suggested optimal route for that tour based on the model. All 

stops have been inputted in an automated fashion, as have their outputs (i.e., TSP routes 

for tours ).  
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Figure 4-3: Suggested TSP route for tour_ID 25 

4.1.2 Modeling Tour Stop Destination Choices  

As noted earlier, the stop location component within the third module of the tour 

modeling framework entails identifying the locations of the stops forming the tour. The 

problem could be modeled as a destination choice process. Here, a truck must visit one or 

more stop locations before returning to the establishment. A 30% sample (i.e., 959 tours) 

was randomly selected from the 3,195 1-stop tours to be used in the modeling work. The 

random sample was chosen to reduce the number of tours given the long computational 

time that was required to process these tours in ArcGIS, while the rest of other type of tour 

classes (i.e. 2-stop, 3-stop and 4-stop tours) were not exposed to random sampling due to 

the small number of tours in these tours (see Table 4-2). 

 

TSP Route for Tour_ID 25 
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                                  Table 4-2: Random sample of k-stop tour 

k-stop tour Number of tours Random sample 

1-stop 3,195 959 (30%) 

2-stop 776 776  (100%) 

3-stop 128 128  (100%) 

4-stop 12 12    (100%) 
 

4.1.2.1 Modeling Tour Service Areas 

We start by developing a model to determine the service area containing the truck 

tour. Figure 4-4 provides an example of a service area for an establishment (green dotted 

point) where a truck tour started and visited three stops (red triangles) before returning to 

the establishments. This step is vital to defining the list of potential stops N (blue and red 

triangles) that will be used in the formulation of the stop destination choice model. Failing 

to do so will result in an extremely large number of stops to choose from, which will be 

unrealistic and computationally prohibitive.  

 
 

Figure 4-4: An example of a service area of one tour 
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The tour service area can be delineated on the transportation network based on the 

calculated travel times required to visit the stops that belong to the tour, not including 

dwelling time. The travel time is obtained by running the TSP model of the Network 

Analyst of ArcGIS. Since the TSP time is in minutes (i.e., continuous and non-negative 

value), regression would be a sensible technique to predict the TSP time when running 

micro-simulations especially that the stop would not be known at that stage of the micro-

simulation. Accordingly, the TSP travel time tr can be used as the dependent variable in a 

multivariate regression model, which can be formulated as follows: 

ln(𝑡𝑟) =  𝛽0 + 𝛽1𝑋1𝑟 + ⋯ ⋯ ⋯ + 𝛽𝑅𝑋𝑅𝑟                                                                                   (1) 

 In the above formula, each β is a parameter that will be estimated for the specified 

covariates X that pertains to the trucks, tours, and/or types of industry serviced by the truck. 

Once tr is determined by the model, the service area per truck establishment can be 

calculated using ArcGIS. Table 4-3 lists the key variables used in the model. While some 

of these variables are used as is, some are combined in the form of interaction terms to 

account for observed heterogeneity. It should be noted that TSP travel time is directly 

related to the size of the service area and as such the specified covariates in equation 1 will 

either contribute to increasing or decreasing the size of the service area depending on the 

achieved sign of the parameters associated with these covariates.     
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Table 4-3: Explanatory variables for the tour service area model 

 

The tour class variable represents the number of stops for a given tour (e.g. if a tour 

has three stops, then the tour class value is 3). It is expected a higher tour class to be 

associated with a larger service area. The majority of the tours used in this model are 1-

stop tour (77%). This simplified the process of defining the industry associated with the 

tour. In the model, the tour was assigned the industry associated with the first primary stop 

serviced by the truck. We do not have a clear direction with respect to the impact of the 

industry on the size of the service area, but we generally believe that some industries are 

more likely to have smaller services area compared to other. The starting time of the tour 

was also used in the model. Here, we generally anticipate that tours starting in the morning 

and mid-day to have a smaller service area because they have a higher probability to start 

new tours after those tours. As for the origin, the location of the starting zone of the first 

stop is also used. Similar to the industry, we do not have a specific direction about the 

relationship between the origin of the tour and the size of the service area but we expect 

certain municipalities within the Greater Toronto and Hamilton Area (GTHA) to have 

smaller service areas relative to other municipalities.  

Variable Name   Description 

Tour class 
Class of the available tours:1= 1-stop tour; 2= 2-stop tour; 3=3-stop tour; 

and 4=4-stop tour 

Metropolitan(i) 1 if tour starts from metropolitan i; 0 otherwise 

Industry(n) 1 if stop pertains to industry type n; 0 otherwise 

Time of Day 

AM Peak 

Morning  

Afternoon 

PM Peak 

Evening 

Night 

Start hour of the tour 

1 if tour starts in morning rush hour (6am - 8am); 0 otherwise 

1 if  tour starts in  morning hours (9am - 11am); 0 otherwise 

1 if  tour starts in  afternoon hours (12pm – 2pm); 0 otherwise 

1 if  tour starts in afternoon rush hour (3pm – 5pm); 0 otherwise 

1 if  tour starts in evening hours (6pm – 8pm); 0 otherwise 

1 if  tour starts in night hours (9pm – 5am); 0 otherwise 
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4.1.2.2 Modeling Tour Stop Destination 

The discrete choice modeling technique namely, the MNL model, is used to 

develop the tour stop destination component of the tour microsimulation framework. The 

MNL is used to model the choice behavior associated with the selection of the destination 

stops forming the tours made by truck. The econometric analysis for the discrete choice 

modeling is performed in the NLOGIT 5 software. Separate MNL models will be 

developed for 1-stop, 2-stop, and 3-stop tours. For instance, if the truck is going to make a 

2-stop tour, then two separate model will be engaged; an MNL model for the first stop and 

another MNL for the second stop. The probability that stop i is the chosen destination from 

a set of alternative stops j = 1, 2, …, N can be estimated as follows: 

    𝑃(𝑖) =
𝑒𝑉𝑖

∑ 𝑒𝑉𝑗𝑁
𝑗=1

                                                                                              (2) 

Where Vj is a linear-in-parameters systematic utility function that depends on the 

characteristics of the stop and the attributes of the truck and/or establishment. Table 4-3 

provide the list of explanatory variables that are used in the specification of the utility Vj. 

The type of stop (i.e., primary or secondary) is expected to impact the choice probability 

with primary stops having a higher probability of being chosen. This positive relation can 

be attributed to the fact that there is at least one primary stop in a given tour regardless of 

its number of stops. Further, 1-stop tours are more likely to take place for deliver or pickup 

goods from primary stops. The cumulative time involved to complete a stop is considered 

in the model specification. This time represents the time spent driving the truck between 

the establishment and a potential stop plus the time spent at the stop (i.e. stop duration). 

We hypothesize that longer cumulative time for a stop will increase its chance of being 
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chosen in the case of 1-stop tour. This is particularly the case since the modeled tours are 

long-haul tours by nature and as such further stops are more likely to be plausible 

destinations. However, when the number of stops for a given tour is higher than one stop, 

then a different assumption is imposed. More specifically, we hypothesize that the 

parameter of the cumulative time variable in the 1st stop model of the 2- and 3-stop tour 

models will have a negative sign because the 1st stop is usually a starting-up stop and as 

such it is more likely to be much closer to the establishment compared to 2nd or 3rd stops.   

Besides the cumulative time, a travel distance variable is also introduced in the 

model specification. Travel distance represents the distance between the establishment and 

a potential stop. We hypothesize that the travel distance will have a positive impact on the 

choice probability in the 1-stop tour model again due to the long-haul nature of the modeled 

tours. In the case of 2- and 3-stop tours, the probability is expected to decrease for the 1st 

stop since many of such stops in a multi-leg tours are more likely to be secondary stops for 

the purpose of fueling. Such activity is more likely to happen at a location closer to the 

establishment. Further, the parameter of the distance variable in the 2nd stop model of 2- 

and 3-stop tours is expected to have a positive sign because there is a higher chance that 

this stop will be a primary stop. The positive affiliation could be attributed to the long-haul 

nature of the modeled tours. However, the impact of travel distance on the choice of the 

stop in the 3rd stop model for the 3-stop tour is difficult to be expected. While the 

cumulative time and travel distance are introduced in the model specification, they are also 

used to derive a number of categorical (i.e. dummy variables) to represent different ranges 

of time and distance. These variables are introduced to account for any possible 

heterogeneity in the destination choice behavior. 
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A total of ten industry dummy variables were created and used in the specification 

of the models. Each of these industry dummies specify the purpose of the stops and as such 

are expected to have different impacts on the modeled choice probabilities. Location 

dummy variables were also considered in the model specification. Stops in the choice set 

were categorized based on the metropolitan area they fall in. Again, we expect the choice 

probability for stops to differ based on the location of these stops. That is, stops at certain 

locations are more likely to be chosen, while this is not the case for certain stops at other 

locations. Starting time dummy variable are also introduced in the model. Here, a total of 

six variables are derived to represent the six key periods of the day: AM peak, morning, 

afternoon, PM peak, evening and night. We hypothesize that tour will usually start in the 

morning. Therefore, the AM peak variable is expected to have a positive sign in the case 

of the 1-stop tour model. The same is also expected for the 1st stop of the 2- and 3-stop tour 

models.  

The enclosed angle (Theta) between the chosen stop and the previous location from 

where the truck started that leg of the tour is introduced in the model specification. Figure 

4-5 provides a visual depiction of the enclose angle, which is measured counter clockwise 

from the x-axis where the start location is. The start location could be the establishment or 

a previously visited stop. The value of theta will range from 0o to 359o. The enclosed angle 

is introduced to capture the impact of tour leg directionality on the choice probability. Hunt 

and Stefan (2007) used the enclosed angle between the zones of two consecutive stops in 

their stop destination choice model. Besides the enclosed angle, we introduce four dummy 

variables to represent the quadrants for which the chosen stop belongs to with respect to 

the start location of the tour leg, as shown in Figure 4-5. These variables along with the 
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enclosed angle are used to capture the spatial orientation of the chosen stops. We do not 

have prior knowledge about the impact of these variables on the choice probabilities.  

 
Figure 4-5: Depiction of the angle between a starting point and a stop of a truck 

 

It is worth noting that many of the dummy variables introduced in Table 4-4 are 

used in the model specification as interaction terms to account for the observed 

heterogeneity in the modeled stops. In many instances, the hypothesis is focused on testing 

how certain combined characteristics influence the choice probabilities of the modeled 

stops. The creation of interaction terms was done by using one of three options: (1) the 

metropolitan housing the stops, (2) the industry the stops are serving, or (3) the direction 

of the visited stop with respect to the location where the tour-leg started. 
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Table 4-4: Explanatory variables for the stop destination model 

Variable Name   Description 

Primary stop 1 if the stop is primary; 0 otherwise 

Cumulative time (CT) 

CT Less than 50min 

CT Between 50min and 150min 

Cumulative time (minutes) involved in completing a stop 

1 if cumulative time is less than 50 minutes; 0 otherwise 

1 if cumulative travel time is between 50 and 150 minutes; 0 

otherwise 

Travel distance (TD) 

TD Less than 50 km  

TD Between 50km and 100km 

TD Between 100km and 150km 

TD Between 150km and 200km 

TD Between 200km and 250km 

TD Over 400 km  

Travel distance (km) from the origin of stop to the destination 

1 if travel distance less than 50 km; 0 otherwise 

1 if travel distance between 50 and 100 km; 0 otherwise 

1 if travel distance between 100 and 150 km; 0 otherwise 

1 if travel distance between 150 and 250 km; 0 otherwise 

1 if travel distance between 200 and 250 km; 0 otherwise 

1 if travel distance over 400 km; 0 otherwise 

Industry(n) 1 if stop pertains to industry type n; 0 otherwise 

Metropolitan(i) 
1 if stop is located in the same metropolitan i as the previous stop; 

0 otherwise 

Metropolitan(ij) 
1 if stop is located in the metropolitan j which is not the same as 

previous stop’s metropolitan i (i.e., i ≠ j); 0 otherwise 

AM Peak 

Morning 

Afternoon 

PM Peak 

Evening 

Night 

1 if stop is visited in morning rush hour (6am - 8am); 0 otherwise 

1 if stop is visited in morning (9am - 11am); 0 otherwise 

1 if stop is visited in afternoon (12pm – 2pm); 0 otherwise 

1 if stop is visited in afternoon rush hour (3pm – 5pm); 0 

otherwise 

1 if stop is visited in evening (6pm – 8pm); 0 otherwise 

1 if stop is visited in night (9pm – 5am); 0 otherwise 

Enclosed Angle (Theta) 

Q1 

Q2 

Q3 

Q4 

The direction of the stop with respect to the origin 

1 if stop going to first Cartesian quadrant; 0 otherwise 

1 if stop going to second Cartesian quadrant; 0 otherwise 

1 if stop going to third Cartesian quadrant; 0 otherwise 

1 if stop going to fourth Cartesian quadrant; 0 otherwise 
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4.1.3 Modeling Tour Stop Duration  

 

Overview  

This study aims to model truck stop duration as a survival analysis problem for trucks 

dwelling time. Survival analysis is suitable in our context because it is used to estimate the 

lifespan of an event. According to the literature, survival analysis is also known as time-

to-event analysis. The terms “stop duration” and “dwell time” are identical; however, to 

avoid any confusion, the current study will use the term “dwell time”. The dwell time 

represents the time it took a truck to load/unload the shipment at the stop. The dwell time 

was derived and calculated from the dataset. The dataset has information (i.e., a time stamp) 

just before the stop has happened and after the stop has took place. The difference between 

the two-time stamps represents the stop duration. In this study, time-to-event represents the 

dwell time from the moment the truck stops at a location until it departs. 

Modeling the survival function can be done through one of three techniques: 

parametric, semi-parametric, and non-parametric. Since this research will focus on the 

semi-parametric and non-parametric modeling techniques, the following two sub-section 

will clarify why these two techniques were utilized. 

4.1.3.1 Semi-Parametric Modeling 

As the name suggests, the semi-parametric technique is a mix of parametric and 

non-parametric components. In parametric hazard duration models, the analyst starts by 

assuming that the used data follow a known statistical distribution such as the Log-normal, 

Exponential, Gompertz, and Gamma to name a few. However, this is not the case in semi-

parametric models. Oakes (1977) used the maximum likelihood techniques to estimate a 
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semi-parametric model to obtain more efficient estimation compared to the parametric 

technique. The Cox proportional hazard (CPH) model is the most extensively used semi-

parametric model since it allows incorporating covariates to explain and predict the dwell 

time. The CPH is also popular because it avoids the possible misspecification of the hazards 

functional form. Thus, it is easier to formulate the effects of time-independent covariates 

through this model. The CPH model consists of two multiplicative parts as shown in the 

following formula: 

      ℎ𝑖(𝑡) = 𝜆0
 (𝑡) exp(𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)                                                                                (3) 

In this formula, ℎ𝑖(𝑡) is the hazard for truck i to dwell for a duration t at a given stop, 𝜆0
 (𝑡) 

is the unspecified baseline hazard which describes how the risk of completing the stop (i.e., 

finish dwelling) changes over time at a baseline levels of the specified covariates (𝜆0
 (𝑡) >

0), and, exp(.) is the parametric part which describes how the hazard changes in response 

to the explanatory variables; it also represents the hazard ratio (HR). Here, 𝛽𝑖 is a set of 

parameters that are associated with the 𝑥𝑖 explanatory variables. The 𝛽𝑖′𝑠 in this model can 

be estimated using the partial likelihood method by formulating and maximizing the 

following function: 

        𝑃𝐿(𝛽) = ∏
ℎ0(𝑡)𝑒

𝛽𝑥
(𝑡𝑘)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

𝑡𝑘:𝑒𝑣𝑒𝑛𝑡 𝑎𝑡 𝑡𝑘                                                                      (4) 

The hazard in the CPH model is calculated to happen at a certain time t, say tk. If we divide 

time into small intervals j = {1, 2, 3, 4, ..., k, ..., J}, then the probability that the hazard will 

occur at time interval tk is: 

ℎ0(𝑡)𝑒
𝛽𝑥(𝑡𝑘)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗
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Also, the probability that the hazard will happen at time t1, t2, t3 ..., and tJ is: 

  

ℎ0(𝑡)𝑒𝛽𝑥(𝑡1)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

,
ℎ0(𝑡)𝑒𝛽𝑥(𝑡2)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

 ,
ℎ0(𝑡)𝑒𝛽𝑥(𝑡3)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

, … , and 
ℎ0(𝑡)𝑒

𝛽𝑥
(𝑡𝐽)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

   

The chance that the hazard will happen at any time interval 1, 2, 3, ..., k, ..., J is the Joint 

Probability which is the product of the above probabilities: 

𝑃𝐿(𝛽) =
ℎ0(𝑡)𝑒𝛽𝑥(𝑡1)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

×  
ℎ0(𝑡)𝑒𝛽𝑥(𝑡2)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

 ×
ℎ0(𝑡)𝑒𝛽𝑥(𝑡3)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

× … ×
ℎ0(𝑡)𝑒

𝛽𝑥(𝑡𝑘)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

 ×   
ℎ0(𝑡)𝑒

𝛽𝑥
(𝑡𝐽)

∑ ℎ0(𝑡)𝑒
𝛽𝑥

(𝑡𝑗)
𝑗

 

The above product is basically equation 4. The CPH model is estimated by finding the 

values of betas that maximize the joint probability PL. These betas will provide the best 

chance of predicting the correct time interval for the event to occur. 

The CPH model will be used in the analysis of time-to-event data along with 

censoring and covariates.  The dwelling time in this data varies and depends on the stop 

type (i.e., primary stop or secondary stop).  As a result, two CPH models will be developed 

to predict the dwelling time with respect to the stop type. The process outlined in Figure 4-

6 will be used to generate the dwell time to differentiate between censored data and event 

data. However, it is not easy to determine the length of the stop given no prior information 

on this in the literature. As a result, this model will rely on the average dwelling time with 

respect to the stop type. For the case of the primary stop model, the average of the dwelling 

time is calculated to be used in this model as the critical value τ which is 55 minutes. That 

is, if the dwell time is less than 55 minutes, the observation will be censored; otherwise if 

it is greater than or equal to 55 minutes, it will be labeled as an event. Similarly, the average 

of dwelling time is calculated for the secondary stop model and found to be 20 minutes. 

The calculated value will be used to differentiate between event and censored data 

following the same logic as in the case of the primary stop model.  
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A number of explanatory variables, as shown in Table 4-5, are devised and included 

in the CPH model. As for the primary stop model, we hypothesize that tours associated 

with higher number of stops will likely have longer dwelling time. Further, we expect 

some variability in the dwell time based on the type of industry serviced by the truck. We 

anticipate some variability for tours taking place in certain metropolitan areas. As for the 

secondary stop model, we expect that, as the travel time increases, the dwell time also 

increases, while other variables (e.g. metropolitan location, time of day, etc.) are more 

likely to decrease the dwell time since the modeled stops are secondary.  

 

Figure 4-6: Classifying dwell time to event or censor 
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Table 4-5: Explanatory variables for the stop duration model 

 

4.1.3.2 Non-Parametric Modeling 

Typically, non-parametric techniques are used to visualize how the model behaves 

with respect to other significant variables. In this regard, the Kaplan-Meier model is 

considered as one of the most widely recognized non-parametric models that can be used 

to provide survival probability curves. What distinguishes this model is its capability of 

estimating the survival function in the presence of censoring. However, the outcome of the 

survival function curve is not smooth. The survival function is the probability that a truck 

will still be dwelling beyond time t,  

S(𝑡) = P(𝑇 > 𝑡),                                                                                         0 < 𝑡 < ∞               (5)                                                          

The survival probability curve distinguishes between the model for all variables against the 

model of each variable. The graphical assessment studies the distributional characteristics 

of the dwell time in order to determine whether the developed model for all variables is 

sufficiently different when compared to the model with each variable only. 

Variable Name   Description 

Tour class 
Class of the available tours:1= 1-stop tour; 2= 2-stop tour; 3=3-stop 

tour; and 4=4-stop tour 

Metropolitan(i) 
1 if stop is located in the same metropolitan i as the previous stop; 0 

otherwise 

Metropolitan(ij) 

1 if stop is located in the metropolitan j which is not the same as 

previous stop’s metropolitan i (i.e., i ≠ j); 0 otherwise 

Industry(n) 1 if stop pertains to industry type n; 0 otherwise 

Time of Day 

AM Peak 

Morning  

Afternoon 

PM Peak 

Evening 

Night 

Start hour of the tour 

1 if stop is visited in morning rush hour (6am - 8am); 0 otherwise 

1 if stop is visited in morning (9am - 11am); 0 otherwise 

1 if stop is visited in afternoon (12pm – 2pm); 0 otherwise 

1 if stop is visited in afternoon rush hour (3pm – 5pm); 0 otherwise 

1 if stop is visited in evening (6pm – 8pm); 0 otherwise 

1 if stop  is visited in night (9pm – 5am); 0 otherwise 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Travel Salesman Problem in GIS 

The results obtained from running the Travel Salesman Problem (TSP) model in 

ArcGIS provide interesting insights about travel distance and travel time for the analyzed 

tours. The predicted travel distances for the tours are closely related to the observed ones 

obtained from the GPS data. However, the predicted travel time values were less reliable. 

Table 5-1 shows the Pearson correlation between the observed and predicted values for 

both travel distance and travel time.  

Table 5-1: A summary of correlation factor for travel time and travel distance 
  

 

 

In general, travel distance for trucks is usually expected to follow the least resistance path 

on the road network. As such, the application of a TSP model while using length (km) of 

the road links as impedance should produce comparable results to those observed from the 

GPS pings. In that sense, the travel distance can be said to be highly predictable. By 

comparison, the use of free-flow travel time of the road links as impedance might not 

produce comparable results with the observed values. The observed travel time from the 

GPS pings is normally influenced by several factors that may include: 1) ongoing road 

construction, 2) presence of other vehicles or incidents on the road, and 3) the time waited 

at truck inspection stations. Figure 5-1 presents a comparison between the predicted and 

observed average road link impedance with respect to travel distance and travel time by 

Variable Correlation  

Travel Distance 0.99 

Travel Time  0.77 
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type of tour. The results indicate that the predicted average travel distances is very close to 

the observed ones, while this is not the case for the predicted and observed average travel 

times. In the case of the latter, the predicted values are systematically lower than the 

observed values. 

 
(a) 

 

 
(b) 

 

Figure 5-1: Comparison of predicted and observed (a) travel distance, and (b) travel 

time 
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5.2 Tour Service Area Model 

The tour service area model is developed to predict the total minutes that will be 

covered by a given tour on the transportation network as described in the previous chapter. 

Here, a linear-regression model is estimated and the results are presented in Table 5-2, with 

all of the coefficients and their corresponding t-statistics. To avoid any confusion in reading 

the table, a positive coefficient suggests a larger service area —which means a longer 

tour— while a negative coefficient indicates a smaller service area —which means a 

shorter tour. According to the model, the size of the service area (minutes) for the modeled 

tours can be explained by the number of stops made in the tour, the municipality where the 

tour originated from within the Greater Toronto and Hamilton Area (GTHA), the time of 

the day when the tour started and the type of industry associated with the tour. Also, the 

specified interaction terms in the model reveal several observed heterogeneities with 

respect to the nature of the tours. 

 

Based on the estimated coefficients, tours that have more stops tend to have larger 

service areas than the ones that have fewer stops. This is not surprising since a truck making 

more stops in a given tour is more likely to cover a larger geographic area on the 

transportation network. Relative to tours starting from the different municipalities within 

the GTHA, tours starting from Hamilton and Halton have smaller service areas, other 

things being equal. This means tour originating from Hamilton and Halton are short and 

most likely to be done within/around the GTHA. Although the effect is more pronounced 

in the case of the Halton tours in general especially for the tours starting during the evening 

period. Interestingly, the size of the tours from Halton that are associated with the 
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manufacturing sector are not as small as the other tours originating from this municipality 

as depicted by the positive coefficient of the interaction term (Halton × Manufacturing).  

While the majority of the tours starting during the AM peak period are associated 

with smaller service areas, the opposite is observed for the tours originating from Toronto 

during that period. Similarly, the size of the Toronto-based tours that are associated with 

the construction industry tend to be larger than other tours, other things being equal. By 

comparison, the size of the service areas tends to be smaller for the Toronto-based tours 

that start during the PM peak, evening and night periods. The same could be said about the 

tours associated with the service industry and which originate from this municipality. 

According to the model, the size of the service areas for the Peel-based tours 

starting in the AM peak period tends to be the smallest when compared to all other tours 

starting during that period, other things being equal. However, the opposite effect is 

observed for the tours starting from this municipality during the evening period as 

discerned from the coefficient of the term (Peel × Evening). Here, tours start at night are 

more likely to go longer distance unlike the ones start in the morning and go for shorter 

distance. This makes sense because traffic at night is not as busy as it is in the morning. 

Therefore, carriers are very unlikely to dispatch trucks in the morning for long tours but 

instead send trucks at night. Similar to the AM peak case, tours starting during the morning 

period tend to be smaller in terms of their service area and this is even more pronounced in 

the case of the York-based tours as depicted by the coefficient of the term (York × 

Morning). Further, York-based tours that are associated with the manufacturing industry 

also tend to have a smaller service areas. This could suggest that the York tours are more 

localized in nature.  
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Durham-based tours starting in the evening period tend to have larger service areas, 

other things being equal. The same could be said about the Durham-based tours that are 

associated with the retail trade industry. By comparison, the opposite can be seen for the 

Durham-based tours that are associated with the public administration sector. While all 

tours that are associated with the public administration sector tend to have smaller service 

areas, those originating from Durham tend to be the smallest as depicted by the coefficient 

of the term (Durham × Public Administration), other things being equal. It is worth noting 

that, tours associated with light duty industries (e.g., services, public administration, and 

etc.) are more likely to be short and stay within/around the GTHA. Tours associated with 

the transportation industry tend to have a smaller service areas. Likewise, tours associated 

with the retail trade industry and which start during the PM peak period tend to have smaller 

service areas. Finally, afternoon-based tours from all industries tend to have smaller service 

areas except for the tours associated with the finance industries. The latter tend to have 

larger service areas as illustrated by the positive coefficient of the term (Finance × 

Afternoon). 
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Table 5-2: Regression estimation results for tour service areas 

Variable Name Beta t-stats 

Constant 4.615 184.43 

Tour class 0.465 30.51 

Origin   
Hamilton -0.143 -3.64 

Halton -0.256 -7.66 

Industry   
Transportation -0.057 -3.03 

Public Administration -0.173 -2.00 

Time of day   
AM Peak -0.143 -4.81 

Morning -0.091 -3.34 

Afternoon -0.093 -3.52 

Origin Vs. Time of day   
Halton × Evening -0.177 -2.10 

Toronto × AM Peak 0.172 2.82 

Toronto × PM Peak -0.242 -2.77 

Toronto × Evening -0.231 -2.67 

Toronto × Night -0.157 -2.88 

Peel × AM Peak -0.074 -1.97 

Peel × Evening 0.066 1.85 

York × Morning -0.196 -2.92 

Durham × Night 0.305 6.24 

Origin Vs. Industry   
Halton × Manufacturing 0.109 1.65 

Toronto × Construction 0.396 1.74 

Toronto × Services -0.088 -1.69 

York × Manufacturing -0.149 -2.43 

Durham × Retail Trade 0.174 2.07 

Durham × Public Administration  -0.868 -1.70 

Industry Vs. Time of day   
Retail Trade × PM Peak -0.102 -1.71 

Finance × Afternoon 0.303 2.45 

No. of Observations 4,111  

R-square 0.252 
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5.3 Modeling Tour Stop Destination Choices 

A total of six MNL models are estimated to determine the destination location of 

the stops made by trucks engaged in generating tours. The estimated models included: one 

MNL model for the 1-stop tour (Table 5-3); two MNL models for the 2-stop tour, where 

each stop has a separate MNL model (Table 5-4); and three MNL models for the 3-stop 

tour, where each stop also has a separate MNL model (Table 5-5). The estimation is 

performed in the NLOGIT 5.0 software. It should be noted that the concept for developing 

the different MNL models is similar regardless of the rank of the stop. Here, the truck’s 

choice of a stop from a finite and discrete set of available stops is modeled as a function of 

the stops characteristics including the type of industry and geographic location of these 

stops. 

5.3.1 One-Stop Tour Destination Choice Model 

Table 5-3 presents the results of the one-stop tour destination choice model with all 

of the coefficients and their corresponding t-statistics. Most of the estimated parameters 

are statistically significant although few of the interaction terms were marginally 

significant (i.e., under 90% statistical significance level).  

According to the model, the probability of choosing a stop as a destination increases 

if the stop is classified as Primary, other things being equal. This is not surprising since 1-

stop tours are mainly generated to deliver or pickup merchandize and such activity would 

take place when primary stops are visited. On the other hand, very few 1-stop tours will 

take place where the visited stop is a secondary stop, albeit such activities might occur 

from time to time (e.g., truck fueling). Further, the probability of selecting a primary stop 
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increases for tours that have a cumulative time of less than 50 minutes, as illustrated by the 

coefficient of the term (CT Less than 50min × Primary Stop). 

Table 5-3: MNL estimation results for 1-stop Tour model 
 

Variable Name Beta t-stats 

Primary Stop 0.371 2.54 

Primary Stop × CT Less than 50min 0.739 3.38 

Cumulative Time (CT) 0.003 4.52 

CT × Morning 0.001 2.20 

Travel Distance (TD) 0.007 6.32 

TD × PM Peak 0.002 1.94 

TD × Durham(j) 0.005 3.33 

TD × Waterloo(j) -0.005 -3.09 

TD × Simcoe(j) -0.003 -2.03 

TD × Q2 0.003 3.88 

Enclosed Angle ( ) 0.001 2.64 

CT Between 50min and 150min 0.450 2.53 

CT Between 50min and 150min × York(i) 0.306 2.33 

TD Between 50km and 100km 0.626 6.22 

TD Between 50km and 100km  × AM Peak 0.582 3.73 

TD Less than 50 km  × Morning -1.525 -2.94 

Retail Trade 0.360 2.68 

Peel(i) × Retail Trade  -0.338 -1.87 

Oxford(j) × Retail Trade  -2.225 -2.20 

Waterloo(j) × Construction 0.721 1.85 

Simcoe(j) × Public Administration 1.888 1.66 

Hamilton(i) × Morning 0.536 2.39 

Durham(j)× AM Peak -2.101 -3.46 

No. of Observations 959 

LL(0) -2746.72 

LL(β) -2533.5 

 0.077 
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The probability of choosing a stop increases when the cumulative time between the 

stop and the tour origin (i.e., location where the truck started) increases. This might come 

across as a counter intuitive result given that cumulative time is usually considered a 

disutility. However, in the context of the modeled tours, the obtained result is not surprising 

given the long-haul nature of the tours and the fact that the choice set (i.e., alternative stops) 

is confined by the service area covered by the tour. That is, the size of the delineated service 

area (minutes) for the tour is strongly correlated to the actual travel time between the stop 

location and the origin of the truck. As such, the true destinations are more likely to be 

located at the edge of the service area boundary. When forming the choice set, alternative 

stops are chosen to fall within the delineated service area. However, since the true stop 

location is more likely to be located at the edge of the boundary of the service area, stops 

closer to the origin of the tour are less likely to be chosen while ones far away from it are 

more likely to be chosen. While the probability of selecting a stop increases with the 

cumulative time between the stop and the origin, this tends to be more pronounced for tours 

starting in the morning as depicted by the coefficient of the term (Cumulative Time × 

Morning). This is not surprising since tours start in the morning are more likely to spend 

longer time before returning to their establishments.  

Similar to cumulative time, the probability for selecting a stop increases for stops 

that are far away from the tour origin as discerned by the coefficient of the (Travel 

Distance) parameter. The impact of travel distance is even more pronounced for tours 

starting during the PM peak period and for stops that are located in Durham. By 

comparison, the impact of travel distance on the choice probability is reduced for stops 

located in Waterloo and Simcoe, other things being equal. Further, the impact of travel 
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distance on the choice probability of a stop increases for stops that are located in the second 

Cartesian quadrant relative to the origin location of the tour.   

Tours associated with certain industries exhibit higher probability of being chosen. 

For example, tours associated with the retail trade industry tend to have a positive impact 

on the choice probability. However, the impact of the retail trade industry on the choice 

probability is reduced for stops affiliated with the origin of the tour and when that origin is 

Peel. This could be attributed to the fact that Peel is more industrial in nature and as such 

stops in Peel will be less likely to attract retail trade freight activities. Also, the impact of 

the retail trade industry is even more pronounced for stops located in Oxford, as depicted 

by the coefficient of the term (Oxford(j) × Retail Trade). This could be explained by the 

fact that Oxford has a strong agriculture industry presence, and as such will be attracting 

transportation or agriculture industries as opposed to retail trade industries. Furthermore, 

stops associated with certain industries have a higher chance of being selected when these 

stops are located in foreign locations relative to the home of the tour, as depicted by the 

coefficient of the term (Waterloo(j) × Construction). This tends to even be more 

pronounced for stops linked with public administration and which are located in Simcoe, 

as depicted by the coefficient of the term (Simcoe(j) × Public Administration).  

As mentioned before, the modeled tours are long-haul, which decrease the 

probability of choosing stops that are located within the GTHA. This is supported by the 

negative coefficient of the term (TD Less than 50 km × Morning). The parameter suggests 

that the probability of choosing stops from the GTHA will decrease especially in the 

morning. This is further supported by the results pertaining to the negative parameter of 

the term (Durham(j) × AM Peak). Stops located in Durham and visited during the AM Peak 
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period have a negative impact on the choice probability, other things being equal. As 

established earlier, the probability of selecting a stop increases as the travel distance also 

increases. However, the impact is more visible for distances ranging between 50 km and 

100 km especially for stops visited during the AM Peak period, as depicted by the 

coefficient of the term (TD Between 50km and 100km × AM Peak).  

5.3.2 Two-Stop Tour Destination Choice Models 

Table 5-4 presents the results of the two-stop tour destination choice model with all 

of the coefficients and their corresponding t-statistics. This model consists of two separate 

MNL models: the first MNL model represents the behavior associated with the choice of 

the first stop, while the second MNL model represents the behavior for selecting the second 

stop. Most of the estimated parameters are statistically significant, although a few of the 

interaction terms were marginally significant (i.e., under 90% statistical significance level). 

The two MNL models have a rho-squared (ρ2) value of 0.248 and 0.214, respectively. 

First Stop Destination Choice Model 

The probability of choosing a first stop decreases when the travel distance between the stop 

and the tour origin (i.e., location where the truck started) increases. Unlike the travel 

distance, the probability of choosing a stop increases when the cumulative travel time 

between the tour origin and the stop increases. The impact of cumulative time is even more 

amplified for stops lasting less than 50 minutes. This is not surprising since the first stop is 

considered the start-stop of the tour; therefore, this stop will most likely be the closest to 

the establishment when more than one stop is involved. Further, the probability of selecting 

a primary stop increases for stops that have longer cumulative time, as illustrated by the 

coefficient of the term (CT × Primary Stop). Also, the impact of cumulative time on the  
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Table 5-4: MNL estimation results for 2-stop tour model 

 

Variable Name 
1st stop model 2nd stop model 

Beta t-stats Beta t-stats 

Primary Stop -- -- 0.731 2.09 

Cumulative Time (CT) 0.004 1.95 -- -- 

CT Less than 50 min 1.344 5.18 -- -- 

CT × Primary stop 0.012 2.10 -- -- 

CT × Q2 -0.045 -3.04 -- -- 

CT × Morning 0.017 4.65 -- -- 

CT × Simcoe(j) 0.013 2.95 -- -- 

CT × Middlesex(j) -0.011 -1.49 -- -- 

Travel Distance (TD) -0.027 -4.23 -0.021 -5.68 

TD Between 100km and 150km -- -- 0.721 1.97 

TD × Toronto(j) -- -- 0.019 1.90 

Enclosed Angle ( ) -- -- -0.003 -2.30 

Halton(i) × Q1 -1.450 -1.94 -- -- 

Halton(i) × Q2 3.060 2.55 -- -- 

York(i) × Q1 -- -- 0.894 2.22 

York(i) × Services -- -- -2.399 -2.18 

Toronto(j) × Q1 -- -- 2.256 2.32 

Waterloo(j) × Q1 -- -- -1.308 -2.26 

Waterloo(j) × Evening -- -- 2.025 2.22 

Retail Trade × Q2 2.710 2.81 -- -- 

PM Peak × Q4 -- -- 2.569 2.13 

Construction × PM Peak 1.472 1.80 1.266 1.8 3 

Durham(j) -- -- -2.064 -2.92 

Durham(j) × Retail Trade -- -- 1.770 2.16 

AM Peak 1.901 5.55 -1.860 -2.27 

Toronto(i) × AM Peak -- -- 3.612 2.52 

Peel(i) × Morning -0.892 -2.15 -- -- 

Peel(i) × Evening 1.001 2.31 -- -- 

Oxford(j) × PM Peak 1.951 1.70 -- -- 

Services × Afternoon -- -- 1.081 2.88 

Halton(i) × Wholesale -- -- 1.981 1.85 

Brant(j) × Manufacturing 0.958 1.63 -- -- 

Wellington(j) × Construction 2.288 1.89 -- -- 

Oxford(j) × Construction 1.337 1.90 -- -- 

No. of Observations 776 

LL(0) -284.59 -284.59 

LL(β) -214.02 -223.72 

2 0.248 0.214 
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choice probability is increased for stops located in Simcoe. By comparison, the impact of 

the variable on the choice probability is reduced for stops located in Middlesex. While the 

probability of selecting a stop increases for stops that have longer cumulative times and 

stops that are visited during a specific time of day. This tends to be more pronounced for 

stops visited in the morning, as depicted by the coefficient of the term (CT × Morning).  

In this model, the enclosed angle (theta) between stops locations had no impact on 

the choice probability. Nonetheless, the spatial orientation of the chosen stops was further 

analyzed according to the Cartesian system, which basically consists of four Cartesian 

quadrants.  It is found that stops associated with the home origin of the tour had a lower 

probability of being selected when that origin is Halton and the stops fall in the first 

Cartesian quadrant. Further, the impact of Halton, as an origin, on the choice probability 

of a stop increases for stops that are located in the second Cartesian quadrant relative to the 

origin location of the stop. However, the impact of having stops fall in the second Cartesian 

quadrant decreases the choice probability of choosing stops that take longer travel time to 

complete their duties. Also, stops falling in the second Cartesian quadrant see an increase 

in their choice probability when these stops are affiliated with the retail trade industry.  

Throughout the entire day, stops visited during the AM Peak had a higher tendency 

of being chosen. This is not surprising since tours with a higher number of stops are more 

likely to start in the early morning, which is done to complete the tour and start another 

tour. However, the choice probability decreases for stops visited during the Morning when 

these stops are associated with the home origin of the tour and the origin is Peel. 

Interestingly, the opposite is observed for these Peel stops when visited in the Evening. 

This suggests that 2-stop tours from Peel are more likely to occur at later hours in the day.  



 

74 

 

The probability of selecting stops increases for stops located in certain metropolitan 

areas and which are associated with certain industries, as depicted by the coefficient of the 

term (Brant(j) × Manufacturing). Similarly, the probability for selecting a stop increases 

for stops associated with the Construction industry and for stops located in Oxford, as 

depicted by the coefficient of the term (Oxford(j) × Construction). The impact of the 

Construction stops tend to be even more pronounced for stops located in Wellington, as 

depicted by the coefficient of the term (Wellington(j) × Construction). Also, stops visited 

during the PM Peak have a higher chance of being selected if they are associated with the 

Construction industry, as depicted by the coefficient of the term (Construction × PM Peak). 

Second Stop Destination Choice Model 

Unlike the first stop model, the probability of choosing the second stop in the 2-

stop tour case increases if the stop is classified as Primary, all other things being equal. The 

probability for selecting a stop decreases for stops that are far away from the previous stop, 

as discerned by the coefficient of the (Travel Distance) variable. However, this is not the 

case if the stop is located in Durham, as discerned by the coefficient of the (Durham(j)) 

variable. That being said, the probability of selecting a stop increases for stops located in 

Durham if these stops are associated with the retail trade industry, as depicted by the 

coefficient of the term (Durham(j) × Retail Trade), all things being equal.  

Further, the probability of selecting a stop increases for distances ranging between 

100 km and 150 km, as portrayed by the coefficient of the (TD Between 100km and 150km) 

variable. The probability of selecting a second stop increases for stops located in Toronto 

when the distance between the stop and the previous stop is large, as discerned from the 

parameter of the term (TD ×Toronto(j)). Also, the coefficient of the term (Toronto(j) × Q1) 
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suggests that stops located in the Toronto region had a higher probability of being selected 

if these stops fall in the first Cartesian quadrant relative to the previous stop location, 

though the impact of having stops fall in the first Cartesian quadrant decreases the choice 

probability for stops located in Waterloo. With respect to the latter region, the choice 

probability increases for stops in Waterloo when these stops are visited during the Evening, 

as depicted by the coefficient of the term (Waterloo(j) × Evening).  

Unlike the first stop model, the probability of selecting a second stop decreases for 

stops visited during the AM Peak. This is not surprising since the chosen stop is the last 

stop in the tour and as such is less likely to correspond to an AM Peak period. However, 

the opposite is observed for stops located in the home origin of the tour and when this 

origin is Toronto. One possible explanation could be that the tours associated with these 

stops are local (e.g. pickup/deliver done within the same metropolitan). Similar to the 

previous stop, stops visited during the PM Peak are more likely to be selected if they are 

associated with the construction industry, as depicted by the coefficient of the term 

(Construction × PM Peak). Also, stops visited during the Afternoon are less likely to be 

chosen if they are affiliated with the services industry, as depicted by the coefficient of the 

term (Services × Afternoon). 

The probability of selecting the second stop decreases as the enclosed angle 

between the stop and the first stop increases. Also, the probability of choosing a stop 

increases for stops located in York when these stops fall in the first Cartesian quadrant 

relative to the location of the previous stop. However, stops located in York have a lower 

probability of being chosen if they are associated with service industries. By comparison, 

stops located in the home origin of the tour and which are associated with the wholesale 
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industry have a higher chance of being selected when the origin is Halton, as depicted by 

the coefficient of the term (Halton(i) × Wholesale). 

5.3.3 Three-Stop Tour Destination Choice Models 

Table 5-5 presents the results of the three-stop tour destination choice models with 

all of the coefficients and their corresponding t-statistics. The presented results are for three 

separate MNL models: the first MNL model represents the behavior associated with the 

choice of the first stop, the second MNL model represents the behavior for selecting the 

second stop, and the third MNL model represents the behavior for selecting the third stop. 

Most of the estimated parameters are statistically significant, although a few of the 

interaction terms were marginally significant (i.e., under 90% statistical significance level). 

The three MNL models have a rho-squared (ρ2) values of 0.174, 0.132 and 0.157, 

respectively. 

First Stop Destination Choice Model 

The probability of choosing a stop decreases when the travel distance between the 

stop and the tour origin (i.e., location where the truck started) increases. This result is 

sensible since the first stop in a 3-leg tour is more likely closer to the origin of the tour.  

The impact of travel distance becomes more pronounced in the case of stops visited in the 

PM Peak period, as depicted by the coefficient of the term (TD × PM Peak). Further, the 

probability of selecting a first stop increases for stops that are at a distance ranging between 

150 km and 200 km from the origin, as discerned by the coefficient of the (TD Between 

150km and 200km). Such parameter captured the long-haul nature of the modeled tours. 

The probability of selecting a stop increases for stops associated with certain home 

origins and when visited during a specific time period. For instance, the positive 
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coefficients of the terms (Halton(i) × Morning) and (Hamilton(i) × Morning) suggest that 

stops affiliated with Halton and Hamilton have a higher chance of being selected when 

visited during the morning period. By comparison, the opposite is observed for stops 

located in the Peel region, as illustrated by the coefficient of the term (Peel(i) × Morning). 

As the results suggest, stops visited during the morning have a higher probability of being 

selected if they are associated with the transportation industry, as depicted by the 

coefficient of the terms (Transportation × Morning). Also, stops located in Toronto and 

which are linked to the transportation industry have a higher chance of being selected by 

trucks originating from Toronto In the same context, stops located in Durham and visited 

during the PM Peak have a higher probability of being chosen by trucks originating from 

Durham. As for the attraction regions, stops located in Wellington have a lower chance of 

being chosen. However, this is not the case for Wellington-based stops that are visited 

during the Afternoon and the PM Peak periods, as depicted by the coefficient of the terms 

(Wellington(j) × Afternoon) and (Wellington(j) × PM Peak), other things being equal. 

Similarly, stops visited during the PM Peak have a higher chance of being selected if they 

are located in Waterloo, as depicted by the coefficient of the term (Waterloo(j) × PM Peak). 

The model was able to capture the direction of stops generated from the GTHA 

relative to their origins and the type of industry that they are associated with. For example, 

stops falling in the first Cartesian quadrant see an increase in their choice probability if 

they belong to the manufacturing industry, as depicted by the coefficient of the term 

(Manufacturing × Q1).  Similarly, the probability for selecting a stop increases for stops 

associated with the wholesale industry in the case of stops falling in the second Cartesian 

quadrant, as depicted by the coefficient of the term (Wholesale × Q2). Also, stops falling 
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in the third Cartesian quadrant have a higher probability of being chosen if they are 

associated with the Transportation industry, as depicted by the coefficient of the term 

(Transportation × Q3). 

Second Stop Destination Choice Model 

Unlike the first stop case, the probability for selecting the second stop increases for 

stops that are far away from the first stop location, as discerned by the positive coefficient 

of the (Travel Distance) parameter. The impact of travel distance is more pronounced for 

stops associated with the Services industry and for stops that are located in Middlesex. 

Stops located in their Toronto tour-home region have a higher chance of being selected if 

they are at a distance ranging between 200 km and 250 km from the previous stop, as 

discerned by the positive coefficient of the (Toronto(i) × TD Between 200km and 250km). 

Unlike the first stop, the choice of the second stop decreases during the AM Peak period. 

However, the impact of the AM Peak is reversed if the second stop is associated with the 

wholesale industry, as depicted by the coefficient of the term (Wholesale × AM- Peak). 

Further, the probability of selecting a second stop tends to increase for stops visited during 

the Morning period, as discerned by the coefficient of the (Morning).  

Stops located in Hamilton and which are associated with the manufacturing 

industry have a higher chance of being selected by trucks originating from Hamilton, as 

depicted by the coefficient of the term (Hamilton(i) × Manufacturing). The same could be 

said about these Hamilton stops if they are visited during the Afternoon period, as depicted 

by the coefficient of the term (Hamilton(i) × Afternoon). A similar trend is also observed 

in Halton as portrayed by the coefficient of the term (Halton(i) × Afternoon). Further, the 

probability of Halton-based trucks to choose stops from Halton decreases if these stops fall 
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in the first Cartesian quadrant relative to the first stop, as depicted by the coefficient of the 

term (Halton(i) × Q1). By comparison, the positive coefficient of the term (Hasting(j) × 

Q1) suggests that the choice probability for stops increases if these stops are located in 

Hasting and fall in the first Cartesian quadrant, other things being equal.  

Third Stop Destination Choice Model 

The travel distance in this model has no impact on the choice probability on its own. 

However, the probability of selecting a final stop to be from York increases for trucks 

originating from York at a distance ranging between 100 km and 150 km from the previous 

stop, as depicted by the coefficient of the term (York(i) × TD Between 100km and 150km). 

Also, the probability of selecting a stop increases for stops located in Durham and which 

are at a further distance from the previous stop, as discerned by the coefficient of the term 

(Durham(j) × TD). In the same context, the probability of choosing a stop from Durham 

decreases if the stop falls in the first Cartesian quadrant relative to the previous stop, as 

illustrated by the coefficient of the term (Durham(j) × Q1). Furthermore, stops located in 

Wellington have a higher chance of being selected, other things being equal.  

The probability of selecting a final stop decreases for stops visited during the AM 

Peak, Morning and Evening. However, the coefficient of the term (Peel(i) × Morning) 

suggests that the probability of choose a final stop from Peel by a truck originating from 

Peel will increase if the stop is visited during the morning. By comparison, the probability 

of choosing such a stop decreases if the stop is visited during the PM Peak. Furthermore, 

the probability for selecting a stop increases for stops associated with the Services industry 

and for stops located in Oxford. However, the choice probability decreases for Services 

stops located in the third quadrant Q3. 
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Table 5-5: MNL estimation results for 3-stop tours 

Variable Name 
1st stop model 2nd stop model 3rd stop model 

Beta t-stats Beta t-stats Beta t-stats 

Travel Distance (TD) -0.003 -2.41 0.007 6.12 -- -- 

TD × PM Peak -0.008 -1.69 -- -- -- -- 

TD × Services -- -- 0.002 2.21 -- -- 

TD × Middlesex(j) -- -- 0.004 2.29 -- -- 

TD × Durham(j) -- -- -- -- 0.133 3.08 

TD Between 150km and 200km 0.437 1.91 -- -- -- -- 

TD Over 400km  -- -- -1.381 -1.66 -- -- 

TD Between 100km and 150km × York(i) -- -- -- -- 1.325 1.59 

TD Between 200km and 250km × Toronto(i)  -- 2.100 1.93 -- -- 

Wellington(j) -2.064 -2.02 -- -- 0.875 2.89 

Services × Oxford(j) -- -- -- -- 1.320 2.21 

Toronto(i) -- -- -1.372 -1.80 -- -- 

Manufacturing × Hamilton(i) -- -- 1.352 1.43 -- -- 

Manufacturing × Q1  0.772 2.32 -- -- -- -- 

Wholesale × Q2 1.279 2.22 -- -- -- -- 

Services × Q3 -- -- -- -- -1.038 -1.95 

Transportation × Toronto(i)  2.070 1.79 -- -- -- -- 

Transportation × Q3 0.546 1.78 -- -- -- -- 

Transportation × Night -- -- 0.470 1.54 -- -- 

Retail Trade × Q4 -- -- 1.860 1.57 -- -- 

Halton(i) × Q1 -- -- -1.550 -1.88 -- -- 

Toronto(i) × Q3 -- -- -- -- 2.102 3.04 

Hasting(j) × Q1 -- -- 0.775 1.92 -- -- 

Durham(j) × Q1 -- -- -- -- -1.275 -1.75 
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Table 5-5 Continued 

Variable Name 
1st stop model 2nd stop model 3rd stop model 

Beta t-stats Beta t-stats Beta t-stats 

Oxford(j) × Q2 -- -- -- -- 1.005 1.44 

AM Peak 1.720 6.30 -0.937 -1.96 -2.275 -4.23 

Wholesale × AM Peak -- -- 1.716 2.51 -- -- 

Morning -- -- 0.875 3.64 -2.800 -2.67 

Peel(i) × Morning -1.614 -2.02 -- -- 2.105 1.92 

Halton(i) × Morning 0.875 1.59 -- -- -- -- 

Hamilton(i) × Morning 1.610 2.01 -- -- -- -- 

Transportation × Morning  1.259 2.19 -- -- -- -- 

Public Administration × Morning -- -- -- -- 1.251 1.48 

Afternoon -1.222 -1.95 -- -- -- -- 

Wellington(j) × Afternoon 3.829 2.44 -- -- -- -- 

Hamilton(i) × Afternoon -- -- 1.550 1.64 -- -- 

Halton(i) × Afternoon -- -- 1.431 2.62 -- -- 

PM Peak 1.481 1.97 -- -- -- -- 

Q2 × PM Peak  1.394 2.03 -- -- -- -- 

Durham(i) × PM Peak 1.465 2.13 -- -- -- -- 

Peel(i) × PM Peak -- -- -- -- -1.545 -2.53 

Waterloo(j) × PM Peak 1.820 1.99 -- -- -- -- 

Wellington(j) × PM Peak 2.937 1.92 -- -- -- -- 

Evening 1.471 5.08 -- -- -2.537 -3.51 

No. of Observations 128 

LL(0) -377 -365.22 -374.05 

LL(β) -311.45 -316.84 -315.23 

2 0.174 0.132 0.157 
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5.4 Modeling Tour Stop Duration 

5.4.1 Cox Proportional Hazard Duration Model 

The Cox Proportional Hazard (CPH) model has been estimated twice; the first CPH 

model studied the primary stop duration, while the second CPH model studied the 

secondary stop duration. The following two sections namely; Primary Stop Duration 

Model, and Secondary Stop Duration Model, will discuss and present the results with all 

of the coefficients and their corresponding t-statistics1.  

Primary Stop Duration Model 

A CPH model is estimated to predict the duration of primary stops of trucks. The 

results are organized and summarized into six groups as shown in Table 5-6. For brevity, 

the following section will highlight only key parameters form each group. A positive 

coefficient suggests an increase in the stop duration while a negative coefficient indicates 

a decrease in the stop duration. 

The tour class plays a vital role in governing the stop duration. The model suggests 

that, an increase in the number of stops for a given tour is positively correlated with the 

time spent for a visited stop during the tour. Although the effect of the increase in number 

of stops should be the negatively correlated with the stop duration, the majority of the 

modeled tours in this study were 1-stop tours. As such, the duration of the stop in these 

                                                           
1 It is worth noting that besides the CPH models, three Kaplan-Meier curves were plotted to show the 

predicted survival probability for three different group variables that were used in the specification of the 

CPH models. These are: Tour class, Origins, and Destination of the stops. The generated curves, shown in 

Appendix A, illustrates the distinction between the model and the group variables. 
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tours would usually take longer than other type of tours (e.g., 4-stop tour). The parameter 

of travel time is significant and indicates longer travel time is positively correlated with the 

stop duration. 

In terms of the geographic location of the stops, the model suggests that the duration 

decreases for stops located with their tour-home regions in the case of Peel, York, or 

Hamilton. The impact is most pronounced in the case of Hamilton. In addition, stops 

located at non-tour-home regions like Durham, Halton, Peterborough also have shorter 

truck stop durations. However, the opposite is observed for further destinations from the 

GTHA such as Chatham-Kent, Wellington and Lambton. 

With respect to the starting time of the tour and the tour-home region of stops, the 

model indicates that the duration tends to decrease for stops from Halton during the PM 

Peak. By comparison, the duration tends to increase the most for stops located in Toronto 

for tours generated during the Evening period. With respect to the starting time and the 

destination (i.e., none-tour-home region) of stops, the model suggests shorter durations for 

stops from Ottawa Wellington, Lambton and Perth for tours generated during the morning 

period. By comparison, longest durations are more likely to occur for stops from Halton 

and Toronto for tours generated during the Evening period. 

With respect to the industry associated with the tours and the destination of the 

stops, the results suggest that the longest duration will occur for stops located in Hastings 

and tied to the public administration industry and for stops located in Lambton and tied to 

the Finance Industry. By comparison, the shortest durations are more likely to occur for 

stops located in Hamilton and associated with wholesale Industry, in Waterloo and 

associated with the public administration industry.     
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Table 5-6: Cox Proportional Hazard estimation results for primary stop duration 

Variable Name          Beta        t-stats Hazard Ratio 

Tour Class 0.196 5.49 1.22 

Travel Time 0.001 1.85 1.00 

Origin    

Peel -0.226 -3.90 0.80 

York -0.346 -3.98 0.71 

Hamilton -0.910 -6.89 0.40 

Destination    

Durham -0.125 -1.77 0.88 

Halton -0.340 -2.41 0.71 

Peterborough -0.439 -3.37 0.64 

Chatham-Kent 0.598 3.62 1.82 

Middlesex 0.247 2.85 1.28 

Wellington 0.595 4.40 1.81 

Lambton 0.603 3.31 1.83 

Oxford 0.252 2.84 1.29 

Time of day Vs. Origin     

AM Peak × Toronto 0.783 2.19 2.19 

AM Peak × Hamilton 0.766 3.28 2.15 

Morning × Hamilton 0.357 1.96 1.43 

PM Peak × Halton -0.516 -2.08 0.60 

Evening × Toronto 0.943 2.45 2.57 

Night × York 0.476 2.08 1.61 

Time of day Vs. Destination     

AM Peak × Middlesex -0.393 -1.95 0.68 

AM Peak × Peterborough 0.751 2.10 2.12 

Morning × Ottawa -1.364 -1.92 0.26 

Morning × Wellington -0.659 -2.32 0.52 

Morning × Waterloo 0.269 2.35 1.31 

Morning × Lambton -0.711 -1.95 0.49 

Morning × Perth -0.548 -2.37 0.58 

Evening × Greater Sudbury 0.678 1.78 1.97 

Evening × Toronto 1.947 3.35 7.01 

Evening × Halton 2.967 2.93 19.43 

Night × Essex 0.639 2.81 1.89 
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Table 5-6 Continued 

Variable Name      Beta t-stats Hazard Ratio 

Time of Day Vs. Industry     

Afternoon × Construction -0.556 -2.54 0.57 

Afternoon × Services 0.256 2.61 1.29 

Evening × Manufacturing -0.446 -1.92 0.64 

Industry Vs. Destination    

Construction × Oxford -0.455 -1.81 0.63 

Construction × Perth 1.327 1.81 3.77 

Construction × Grey 1.858 1.85 6.41 

Construction × Frontenac 1.649 1.65 5.20 

Wholesale × Ottawa 1.973 1.97 7.19 

Wholesale × Hamilton -1.030 -2.53 0.36 

Wholesale × Chatham-Kent 1.202 2.00 3.33 

Wholesale × Essex 0.458 1.62 1.58 

Retail × Essex -0.716 -2.51 0.49 

Finance × Essex 1.629 2.81 5.10 

Finance × Lambton 2.945 2.79 19.00 

Services × Waterloo -0.246 -1.95 0.78 

Public Admin × Middlesex 1.547 3.04 4.70 

Public Admin × Hastings 2.226 3.13 9.26 

Public Admin × Waterloo -0.822 -2.15 0.44 

No. of Observations 4,406 

Concordance 0.605 

logrank test  367.3 

Degrees of freedom 48 

 0.066 
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Secondary Stop Duration Model 

A CPH model is estimated to predict the duration of truck stops at secondary stop 

locations.  The results are summarized in Table 5-7. The developed model achieved a rho-

squared (ρ2) value of 0.129.  

As the name suggests, secondary stops are usually short in natural, unlike the 

primary stops. Therefore, the expectations of the results from a secondary stop model are 

more likely to be negative. Like the primary stop duration model, the parameter associated 

with travel time is still significant and indicates that longer travel time is positively 

correlated with the stop duration. This makes sense because truck drivers are more likely 

to have a break whether for refueling or taking a rest due after spending long time on the 

road. The impact of travel distance is only visible on tours that are generated during the 

AM Peak. This impact is positively correlated with the stop duration, as depicted by the 

coefficient of the term (Travel Distance × AM Peak).  

Among the six origins comprising the GTHA, the model suggests that stops located 

in their home-tour regions of Halton or Toronto tend to have a negative impact on the stop 

duration. However, the shortest duration is associated with the Toronto stops. In addition, 

stops that are destined to certain none-home-tour regions (namely, Leeds, Peel, Toronto, 

Hastings, Waterloo, Essex, or Parry Sound) are more likely to have shorter stop durations. 

Again, stops that located in Toronto have the shortest stop duration. 
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     Table 5-7: Cox Proportional Hazard estimation results for secondary stops 

Variable Name Beta t-stats Hazard Ratio 

Travel Time 0.001 2.06 1.00 

Travel Distance × AM Peak 0.002 1.85 1.00 

Origin   
 

Halton -0.603 -2.17 0.55 

Toronto -1.047 -4.51 0.35 

Destination   
 

Leeds -0.544 -1.54 0.58 

Peel -2.102 -2.79 0.12 

Toronto -1.667 -4.33 0.19 

Hastings -0.727 -3.46 0.48 

Waterloo -0.814 -2.73 0.44 

Essex -0.740 -2.29 0.48 

Parry Sound -0.727 -1.57 0.48 

Industry   
 

Manufacturing -0.432 -2.54 0.65 

Transportation -0.208 -1.67 0.81 

No. of Observations 548 

Concordance 0.633 

Logrank test  68.8 

Degree of freedom 13 

 0.129 
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CHAPTER 6: CONCLUSION 

 

6.1 Summary of Empirical Results  

The broad purpose of this thesis was to analyze and model two aspects of 

commercial vehicle movements: 1) truck stop destination, and 2) truck stop duration at the 

micro-level. Also, these models were designed to be implemented as a part of a micro-

simulation tour-based model. The work is based on truck tours that were created from a 

large GPS dataset that depicts the movement of Canadian trucks during the month of March 

2016. The information was further analyzed to identify the tours originitaing from the 

Greater Toronto and Hamilton Area (GTHA) in Ontario to consider in the modeling 

exercise. To date, the majority of freight demand models are either too aggregate in nature 

or still too immature or under developed. The current study adopts the proposition that the 

analysis of truck tours within a micro-simulation framework can provide a more realistic 

picture of the true process governing the movement of trucks. To this end, econometric 

models were applied to respectively investigate the factors that affect stop destination and 

stop duration for a given tour. Therefore, identifying the factors that explain truck stop 

destination choice behavior and stop duration will help devise more effective travel 

demand models. Furthermore, the availability of detailed micro-data in this research will 

facilitate the development of models that are behavioral and policy sensitive to assist in 

informing future transportation plans. The work conducted in this thesis has not been done 

in the past; therefore, the study’s results offer a novel contribution to the transportation 

engineering literature. The results also contribute to the development of an operational 

integrated micro-simulation model of freight movement.  
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6.1.1 Tour Stop Destination Models 

 Location choice models are used to explain the destination of truck tour stops at the 

micro-level. Three classes of tours were considered in these models: One-Stop Tour, Two-

Stop Tour, and Three-Stop Tour. A total of six Multinomial Logit (MNL) model were 

developed for the three classes of tours: one MNL model for One-Stop Tour, two MNL 

models for Two-Stop Tour, and three MNL models for Three-Stop Tour. The purpose of 

these models was to test the influence of various characteristics of stops on the location 

choice sets. The models made use of the following stop’s characteristics: stop purpose, 

travel time and travel distance between the target stop and a previous stop, type of industry 

associated with the stop, the origin and destination geography of the stop, stop direction 

with respect to the previous stop, and time of day when the stop was visited.  

The results offered promising insights about the truck destination choice when 

interaction terms are introduced. Table 6-1 provides a summary of the McFadden’s Rho-

square of the estimated MNL models, while Table 6-2 highlights the common variables 

among the six MNL models.  

Table 6-1: McFadden’s Rho-squared Values for the MNL Models 

 

 

 

 

  

Tour class 
McFadden’s Rho-squared 

1st stop 2nd stop 3rd stop 

1-stop tour 0.077 -- -- 

2-stop tour 0.248 0.214 -- 

3-stop tour 0.174 0.132 0.157 
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Table 6-2: Common Variables of the MNL Models 

* Less than 95% significant 

Overall, the results of the MNL models provided interesting insights about the choice 

behavior of the stop destinations chosen by trucks as part of the tours. To avoid any 

confusion in reading the information in Table 6-2, a positive coefficient suggests an 

increase in the probability of choosing a stop with respect to a certain parameter, while a 

negative coefficient indicates a decrease in the probability of choosing a stop with respect 

to a certain parameter. In general, the first stop is relatively consistent among the three 

classes of tour (i.e. 1-stop, 2-stop, and 3-stop tours). However, this consistency is gradually 

disappearing when it comes to the second stop for the case of 2-stop tours and 3-stop tours.  

The primary stop dummy variable increases the probability of choosing a stop as a 

destination in the case of 1st stop model and 2nd stop model for the 1-stop tour and 2-stop 

tour, respectively. As for the travel distance, stops that are far away from the tour origin 

increases the probability of choosing a stop in the case of  1st stop for the 1-stop tour, while 

it decreases the probability of choosing a stop in the case of 1st stop for the 2-stop tour. 

k-stop tour model 1-stop tour 2-stop tour 3-stop tour 

Variable Name 
1st stop 

model 

1st stop 

model 

2nd stop 

model 

1st stop 

model 

2nd stop 

model 

3rd stop 

model 

Primary Stop  +ve --  +ve -- -- -- 

Travel Distance  +ve  -ve  -ve  -ve  +ve -- 

Travel Distance × PM Peak  +ve -- --  -ve* -- -- 

Cumulative Time  +ve  +ve -- -- -- -- 

Cumulative Time × Morning  +ve  +ve -- -- -- -- 

Enclosed Angle  +ve --  -ve -- -- -- 

AM Peak --  +ve  -ve  +ve  -ve  -ve 

Peel(i) × Morning --  -ve --  -ve --  +ve* 

Hamilton(i) × Morning  +ve -- --  +ve -- -- 
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Also, the probability of selecting a stop decreases for stops that are far away from the 

previous stop as captured in the 2nd stop model for the 2-stop tour. However, the probability 

of selecting a stop increases for stops that are far away from the previous stop as captured 

in the 2nd stop model for the 3-stop tour. Furthermore, the probability of choosing a stop 

increases when the cumulative time between the stop and the tour origin increases in the 

case of 1st stop model for the 1-stop tour and 2-stop tour. However, the cumulative time 

has no effect when a stop is visited in the morning period. 

A wider enclosed angle (theta) increases the probability of choosing a stop relative 

to the origin in the case of 1st stop model for the 1-stop tour, while it decreases the 

probability of choosing a stop relative to the previous stop in the case of 2nd stop model for 

the 2-stop tour. However, theta has no impact on the choice set of the 3-stop tour. The AM 

Peak dummy variable was found to have a high positive significant impact on the 2-stop 

and 3-stop tours. Here, the probability of choosing stops that are visited during the AM 

Peak increases for the case of 1st stop of the 2-stop tour and 3-stop tour. Further, the 

probability of choosing stops that are visited during the AM Peak decreases in the 

remaining stop models of the 2-stop tour and 3-stop tour. In the case of the 1st stop of the 

1-stop tour and 3-stop tour, the probability of selecting a stop located in Hamilton by a 

truck originating from Hamilton increases when the stop is visited during the Morning. On 

the other hand, in the case of 1st stop of the 2-stop tour and 3-stop tour, the probability of 

selecting a stop located in Peel by a truck originating from Peel decreases when such a stop 

is visited during the Morning. 
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6.1.2 Tour Stop Duration Models 

 Different survival models were developed to study the factors affecting the duration 

of truck stopped event when tours take place. More specifically, the models included: Cox 

proportional hazard (CPH) model, and Kaplan-Meier model. Here, two CPH models were 

estimated to study the duration of stopped events at primary and secondary stop locations, 

respectively. The CPH models will be used as part of the micro-simulation tour-based 

model. On the other hand, a Kaplan-Meier model was developed for the primary stops to 

explore how the survival probability curve of the Cox proportional hazard model compares 

with non-parametric survival curves. Unlike the CPH models, the Kaplan-Meier model will 

not be part of the tour-base model as it was developed for illustration purposes. Overall, 

the results of the CPH models provided interesting insights about the tour stop duration by 

considering the influence of various characteristics of stops. The models made use of the 

following stop’s characteristics: stop purpose, travel time and travel distance to the stop, 

type of industry associated with the stop, the origin and destination location of the stop, 

stop direction, and time of day when the stop was visited. Promising insights about the 

truck stop duration were obtained when interaction terms were introduced in the model. As 

for, some of the key findings from the primary stop duration model include:  

 An increase in the number of stops – up to four stops– for a given tour is positively 

correlated with the time spent for a visited stop during the tour, which translates in 

a longer stop duration. 

 An increase in the travel time is positively correlated with the stop duration, which 

translates in a longer stop duration. 
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 In general, the stop duration decreases for stops located within their tour-home 

regions. 

 Stops located at none-tour-home regions but still close to the tour-home-regions 

tend to have shorter stop durations. However, stops located in none-tour-home 

regions that are further away from the tour-home-regions tend to have longer stop 

durations. 

 Time of day and stop industry variables in the model had no impact on stop duration 

when specified on their own. However, interacting these variables with some 

factors improved the model. 

Some of the key findings in the secondary stop duration model include: 

 Longer travel time is positively correlated with the stop duration, which translates 

in a longer stop duration. 

 Stops associated with longer travel distance and which are visited during the AM 

Peak tend to have longer stop duration. 

6.2 Contributions and Policy Implications 

 The analysis conducted in this research offers an innovative effort to form the basis 

for developing a more comprehensive understanding of freight movement processes. The 

current thesis makes two key contributions: 1) it advances the current state of knowledge 

on freight demand modeling, and 2) it applies advance geo-spatial methods and statistical 

techniques to model the commercial vehicles movements. The developed models will 

allow planners to predict destinations and stops duration of commercial vehicles and in 

turn create schedules that can reduce stop duration and increase the efficiency of each tour, 

thereby saving time and money. Given the fact that, the geo-spatial characteristics of a 
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large sample of truck tours from the Greater Toronto Hamilton Area (GTHA) is highlighted 

for the first time, the statistical analysis forms the basis for a novel tour-based 

microsimulation framework that will be built with data derived from passive truck GPS 

data. 

From a transport policy presprective, modeling and understanding commercial 

vehicles movements is essential for both urban and regional transportation planning since 

commercial vehicles influence traffic and level-of-service on the transportation network. 

The results from this research can assist planners and decision-makers as it can help them 

predict destinations and stops duration of commercial vehicles in the province of Ontario 

in future freight transportation plans at the micro-level. However, failing to plan for freight 

activities in transportation plans could hamper the performance of transportation networks, 

resulting in distress in freight movement and economic performance. In short, the research 

conducted in this thesis addresses some of the drawbacks in existing freight demand 

forecasting models and offers a platform for performing better predictions using data 

derived from truck GPS data.  

6.3 Limitations and Recommendations for Future Research 

  Finally, as mentioned earlier, the innovative models presented here use truck GPS 

data to address an important gap in current research in terms of the factors that could help 

researchers better understand the destination choice of truck stops and the duration of truck 

stopped events at such stops. Limitations of this empirical analysis can be attributed to the 

passive nature of the truck GPS dataset used in this research. This is particularly true 

because the records forming the GPS data were not originally intended as an input for 

transportation models. Accordingly, analyzing these records was very time consuming. 
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Also, the analysis would have been enriched if further information about the types of 

commodities carried by the modeled trucks was available. The size of the original dataset 

was massive as it covered the movement of trucks across all North America. Even the 

records pertaining to the province of Ontario were too large to be included in the models 

developed in this thesis. Consequently, the analysis had to be confined to the tours 

generated from the Greater Toronto and Hamilton Area (GTHA). Although the developed 

models can help improve the predictive abilities of freight demand models, the analysis did 

not explore the influence of accessibility and employment on the destination choice for 

stops. Further, the tours were filtered to include only tours associated with a 13-hours of 

driving time. Finally, the models did not include any information about the size of the 

analyzed trucks.  

Future research that can help address the limitations listed above should focus on 

incorporating accessibility and employment variables in the model specification. 

Predicting and incorporating the size of the truck and the type of commodities shipped 

would be also an area of future research. Expanding the study area to cover a larger 

geography would also be beneficial. Also, considering non return to home tours is 

important sine these tours have not be modeled in the past. Another aspect to consider in 

future research is to study tours that cross the Canada-US international border. Future 

research could also utilize the advance discrete modeling techniques such as Mixed logit 

(MXL) model to improve upon the MNL approach used in this thesis. Finally, since the 

work conducted in this thesis contributes to the development of an agent-based micro-

simulation truck movement model, future work should focus on implementing the 

developed destination and duration truck tour stop models to perform predictions and 
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examine a variety of scenarios to promote policies for minimizing traffic congestion caused 

by commerical vehicles.   
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APPENDICES  

Appendix A: Kaplan-Meier non-parametric survival probability 

Figures 1-A through 2-A presents the Kaplan-Meier (KM) non-parametric survival 

probabilities for each group of the variables used to specify the CPH model. As shown in 

Figure A-1, a total of four curves are plotted for the modeled tour classes. The three curves 

labeled as (1), (2) and (3) represents the KM survival probabilities for the 1-stop tour, 2-

stop tour and 3-stop tour, respectively. The curve labeled as (M) pertains to the developed 

model. According to the figure, the probability of a stopped event lasting for 75 minutes 

for stops associated with 2- and 3-stop tours is around 0.5. By comparison, the same 

probability is associated with a stop event lasting for 82.5 minutes for stops associated with 

1-stop tours. 

 

Figure A-1: Developed model vs. k-stop tour model 
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Figure A-2 provides a comparison between the developed model (M) and the 

significant origins of the stops: (1) Hamilton, (2) York and (3) Peel. The KM curves 

pertaining to York and Peel are quite similar to each other and to the developed model. 

However, the variation in the survival probability curves become more apparent at around 

100 minutes and ends at 170 minutes. The probability of a stopped event lasting for around 

100 minutes is approximately 0.5 for stops located in York. The time of a stopped event 

under the same probability for Peel is around 90 minutes. By comparison, the probability 

of a stopped event lasting for 100 minutes for stops in Hamilton is approximately 0.6.  

 

Figure A-2: Developed model vs. Origin model 
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Figure A-3 presents the KM survival curves based on the destination regions. As 

can be seen, there is a wider range with respect to the time of a stopped event to end at a 

destination stop. For instance, the probability for a stopped event to last for 75 minutes is 

around 0.5 for stops in Lambton. The same time is associated with a much lower probability 

of 0.4 for stops in Chatham-Kent. On the other hand, the probability of stopped event to 

last for 75 minutes is remarkably higher for stops in Durham and Peterborough.  

 

 

Figure A-3: Developed model vs. Destination  
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